WO2020127074A1 - Procédé d'usinage d'une surface au moyen d'un rayonnement énergétique - Google Patents

Procédé d'usinage d'une surface au moyen d'un rayonnement énergétique Download PDF

Info

Publication number
WO2020127074A1
WO2020127074A1 PCT/EP2019/085382 EP2019085382W WO2020127074A1 WO 2020127074 A1 WO2020127074 A1 WO 2020127074A1 EP 2019085382 W EP2019085382 W EP 2019085382W WO 2020127074 A1 WO2020127074 A1 WO 2020127074A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan vectors
distance
scan
vectors
length
Prior art date
Application number
PCT/EP2019/085382
Other languages
German (de)
English (en)
Inventor
Tobias Pichler
Christian Tenbrock
Wilhelm Meiners
Florian EIBL
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Publication of WO2020127074A1 publication Critical patent/WO2020127074A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for processing a surface with energetic radiation, in particular for selective laser melting, in which at least one energetic beam along a plurality of scan vectors running at a distance from one another over one or more regions of the
  • a substrate plate on which the powder layers are applied one after the other serves as the basis for powder bed-based beam melting processes.
  • the laser radiation is then guided, for example with the aid of galvanometer scanners, over the substrate plate or the construction field.
  • certain areas of the powder bed are covered in each layer using the
  • Areas are, depending on the process control strategy used, again divided into subordinate areas. With these subordinates
  • FIG. 1 shows an example of an exemplary component cross section of any layer of such a manufacturing process with a corresponding division into strips 2.
  • Solid line represents the component contour 1 of the component to be manufactured.
  • the width of the individual strips 2 is firmly defined.
  • Strip 2 is filled with individual scan vectors 3 running parallel to one another. These scan vectors 3 represent the path on which the laser beam is guided along for melting or exposing the layer.
  • FIG. 2 shows an example of a strip 2 of the component cross section from FIG. 1 with the associated scan vectors 3. During the exposure process, the scan vectors 3 of a strip 2 are moved one after the other. The laser beam then jumps to
  • each layer to be exposed has been scanned.
  • the area of each layer to be exposed can also be in instead of stripes
  • Chessboards The individual fields are then filled with scan vectors that are parallel to one another and identical to the strip exposure. Other patterns for dividing the exposing areas of a layer are possible. Below is an example of the stripe
  • Process control strategies for beam melting processes consist in defining a constant distance between the scan vectors lying within the strip. This distance is also called the track distance or hatch distance. The amount of
  • Track spacing is typically constant for all vectors within the stripes of a component.
  • the process parameters in general or the track spacing in particular are in such a process
  • the scan vector length is determined, the scan vector length corresponding to the stripe width.
  • a method for producing a three-dimensional object is known from DE 196 06 128 A1, in which the object is produced by successive
  • the scanning speed at which the beam is guided over the respective layer is moved into
  • a short scan vector is assigned a higher speed than a long scan vector.
  • Density distribution within the solidified layer leads. This strategy is particularly relevant for plastic components, for example to prevent overheating effects.
  • Additive manufacturing processes consist of the construction time required to manufacture a component.
  • the object of the present invention is to provide a generic method for processing a surface with energetic radiation, which increases the processing or construction speed without loss of processing accuracy
  • the method is intended in particular to
  • the task is performed according to the procedure
  • At least one energetic beam is passed in a known manner along one or more scan vectors running alongside one another at a distance from one another at a distance
  • Each of the scan vectors preferably extends over the entire area.
  • the method is characterized in that, with a varying length of the scan vectors in one or more of the areas, the distance between adjacent scan vectors is selected depending on the length of at least one of the respectively adjacent scan vectors.
  • the distance between adjacent scan vectors is selected depending on the length of at least one of the respectively adjacent scan vectors.
  • the distance between adjacent scan vectors is selected depending on the length of the scan vector along which the energetic beam is first guided.
  • the process thus enables the construction speed to be increased in the area of additive manufacturing, for example in selective laser melting.
  • the process can be done without any modification of the
  • Adjustments are primarily necessary in the software for data preparation and possibly in the software for controlling the system.
  • the method enables one, depending on the component geometry
  • Component structures with correspondingly short scan vectors can in particular benefit from the proposed method.
  • the shorter the average vector length for the respective component the greater the advantages of the method compared to conventional exposure strategies with a constant distance between the scan vectors.
  • Manufacturing processes can also be one
  • Remelting process can be achieved. This can have advantages in terms of process stability, for example reducing welding spatter, and
  • Component quality for example through reduced
  • Processing selected strips or fields varies according to the component contour. The shorter the length of one
  • Track spacing or distance of the scan vectors is set and a connection of the tracks to one another is ensured.
  • This variation of the distance between the scan vectors or track spacing as a function of the length of at least one of the adjacent scan vectors is carried out in the present method. The result is an increase in the remelting rate, a reduction in the number of vectors and one
  • the proposed method can be used for all beam-melting additive manufacturing processes in which the component areas are scanned vector by vector by means of electromagnetic radiation.
  • the procedure can be under
  • the method can also be used for other areas in which the surface with at least one energy beam along several in one Distance of running scan vectors processed,
  • FIG. 1 shows a representation of a division of an exemplary component cross section of any layer in additive manufacturing into a plurality of strips to be exposed
  • Fig. 2 shows an example of an arrangement of the
  • Fig. 3 shows a comparison between the length of the
  • Fig. 4 shows a comparison of the conventional
  • Fig. 5 is a diagram showing an exemplary
  • FIG. 3 shows a comparison between the scan vector length for one for the
  • Parameter determination of the selected cube-shaped test specimen (right part of the figure) and the scan vector length for an application-specific component (left part of the figure).
  • Such cube-shaped test specimens are used to determine the process parameters, in particular the distance between the scan vectors or track spacing, in advance when manufacturing a component.
  • Test specimens consist of the same material as the component to be manufactured. It can be seen from FIG. 3 that within the individual strips 2, into which the area to be melted is divided for processing, a constant scan vector length occurs in the cube-shaped test specimen, while it may vary within the strips 2 in the application-specific component geometry due to the component contour 1 . This variation results in cooling times of different lengths, before the laser beam on the adjacent track heats up again, and thus melting baths of different widths. This is exploited in the present method by using shorter scan vectors and correspondingly fewer
  • Distance of the scan vectors (track spacing) is set, with which a connection of the material continues adjacent tracks to each other is ensured.
  • Track spacing is done by adjusting the distance between two tracks depending on the length of the track first exposed by these two tracks.
  • Figure 4 shows this procedure schematically for a triangular component contour.
  • FIG. 4A shows the one typical of the SLM up to now
  • FIG. 4B shows schematically those in the proposed
  • the enlargement or variation of the track spacing is carried out such that a predetermined relative minimum density, for example> 99.5%, of the components produced therewith is achieved even with a correspondingly enlarged track spacing.
  • Track spacing can be done experimentally, for example, by producing test specimens of different sizes and thus vector lengths. In this way, a table of values with assignments between
  • Scan vector length and track spacing for the respective Material and the respective system can be created.
  • the relationship between scan vector length and track spacing can also be determined by means of simulation.
  • FIG. 5 shows the graphic relationship between the scan vector length and the distance of the
  • Scan vectors or the track spacing For each scan vector or its specific length, the associated distance is taken into account in the data preparation for production in accordance with the value table. You can interpolate between the individual discrete values. By increasing the track spacing, the
  • Remelting rate increased and the number of vectors required reduced.
  • the preparation of the corresponding component data with variable track spacing is preferably carried out during path planning with the aid of special software that can process the experimentally determined value tables accordingly.
  • the exemplary embodiment was primarily referred to methods for selective laser melting of metallic materials, in which galvanoscanners are generally used as steel deflection units. However, it is also a transfer to other beam sources, for example electron beam sources, others
  • Beam deflection units such as XY plotter systems or other materials such as
  • the process is not based on selective laser melting, powder bed-based beam melting or

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé d'usinage d'une surface au moyen d'un rayonnement énergétique, en particulier de fusion sélective par laser. Selon ledit procédé, au moins un rayon énergétique est guidé le long de plusieurs vecteurs de balayage (3) s'étendant à une certaine distance les uns à côté des autres sur une ou plusieurs zones (2) de la surface. Dans le cas d'une longueur variable des vecteurs de balayage (3) dans une ou plusieurs des zones (2), l'écart entre des vecteurs de balayage (3) voisins est sélectionné respectivement en fonction de la longueur d'au moins un des vecteurs de balayage (3) respectivement voisins. Le procédé permet d'augmenter la vitesse de refusion pour des procédés de fusion par rayonnement sur lit de poudre et donc de diminuer le temps de construction pour les pièces à fabriquer.
PCT/EP2019/085382 2018-12-17 2019-12-16 Procédé d'usinage d'une surface au moyen d'un rayonnement énergétique WO2020127074A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018132441.3 2018-12-17
DE102018132441.3A DE102018132441A1 (de) 2018-12-17 2018-12-17 Verfahren zur Bearbeitung einer Oberfläche mit energetischer Strahlung

Publications (1)

Publication Number Publication Date
WO2020127074A1 true WO2020127074A1 (fr) 2020-06-25

Family

ID=69005722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/085382 WO2020127074A1 (fr) 2018-12-17 2019-12-16 Procédé d'usinage d'une surface au moyen d'un rayonnement énergétique

Country Status (2)

Country Link
DE (1) DE102018132441A1 (fr)
WO (1) WO2020127074A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4359873A1 (fr) * 2021-06-25 2024-05-01 LayerWise NV Système d'impression en trois dimensions avec système de traitement vectoriel à vitesse optimisée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606128A1 (de) 1996-02-20 1997-08-21 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE112013003448T5 (de) * 2012-07-09 2015-04-16 Panasonic Intellectual Property Management Co., Ltd. Verfahren zum Fertigen eines dreidimensionalen Formgegenstands
US20150251249A1 (en) * 2014-03-07 2015-09-10 Arcam Ab Method for additive manufacturing of three-dimensional articles
DE102017207832A1 (de) * 2017-05-09 2018-11-15 Eos Gmbh Electro Optical Systems Positionsspezifischer Energieeintrag

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180071986A1 (en) * 2015-06-01 2018-03-15 Velo3D, Inc. Three-dimensional printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606128A1 (de) 1996-02-20 1997-08-21 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE112013003448T5 (de) * 2012-07-09 2015-04-16 Panasonic Intellectual Property Management Co., Ltd. Verfahren zum Fertigen eines dreidimensionalen Formgegenstands
US20150251249A1 (en) * 2014-03-07 2015-09-10 Arcam Ab Method for additive manufacturing of three-dimensional articles
DE102017207832A1 (de) * 2017-05-09 2018-11-15 Eos Gmbh Electro Optical Systems Positionsspezifischer Energieeintrag

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LO YU-LUNG ET AL: "Optimized hatch space selection in double-scanning track selective laser melting process", THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, SPRINGER, LONDON, vol. 105, no. 7-8, 9 November 2019 (2019-11-09), pages 2989 - 3006, XP036952040, ISSN: 0268-3768, [retrieved on 20191109], DOI: 10.1007/S00170-019-04456-W *

Also Published As

Publication number Publication date
DE102018132441A1 (de) 2020-06-18

Similar Documents

Publication Publication Date Title
EP2544840B1 (fr) Un procédé et un dispositif sur fabrication d'un composant
EP1993812B1 (fr) Procédé et dispositif de production d'un objet tridimensionnel
EP3074161B1 (fr) Procédé et dispositif de fabrication générative d'au moins zone d'un élément structurel
EP3235580B1 (fr) Procédé et dispositif de fabrication d'au moins une zone d'un composant
EP3582953B1 (fr) Dispositif et procédé de fabrication générative d'un objet tridimensionnel
WO2001007239A1 (fr) Procede et dispositif pour produire des elements a partir d'une combinaison de materiaux
DE19606128A1 (de) Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
EP3318352A1 (fr) Procédé de détection basé sur la simulation de zones de composants thermiquement critiques et procédé d'adaptation spécifique aux composants d'une génération de chaleur locale lors de la fabrication additive
EP3170648B1 (fr) Procédé de fabrication additive et procédé de commande d'un dispositif de fabrication additive d'un composant tridimensionnel
DE202015007709U1 (de) Hybrid-Elektroschlackeplattieren
WO2020127074A1 (fr) Procédé d'usinage d'une surface au moyen d'un rayonnement énergétique
WO2022043164A1 (fr) Dispositif de fabrication, procédé et produit programme d'ordinateur pour la fabrication additive de composants à partir d'un matériau en poudre
DE102017207832A1 (de) Positionsspezifischer Energieeintrag
WO2023083929A1 (fr) Procédé, dispositif de planification et produit-programme informatique pour planifier une exposition localement sélective d'une région de travail au rayonnement d'un faisceau d'énergie, et procédé, dispositif de fabrication et produit-programme informatique pour la fabrication additive de composants à partir d'un matériau en poudre
WO2019034259A1 (fr) Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable
EP2848392A1 (fr) Procédé d'assurance-qualité de composants fabriqués par des processus de fabrication génératifs et installation
EP4045212A1 (fr) Procédé de fonctionnement d'un dispositif de fabrication additive d'un objet tridimensionnel et procédé de création d'une fenêtre de traitement pour mettre en oeuvre ledit procédé
EP3538349B1 (fr) Procédé et dispositif pour usiner une couche de matière par rayonnement énergétique
DE102016212572A1 (de) Verfahren zur Herstellung von dreidimensionalen Bauteilen mit einem pulverbettbasierten Strahlschmelzverfahren
DE102018203273A1 (de) Induktionsheizvorrichtung, Vorrichtung zur additiven Herstellung zumindest eines Bauteilbereichs eines Bauteils mit einer solchen Induktionsheizvorrichtung, Verfahren zum induktiven Erwärmen eines Bauteilbereichs und Bauteil für eine Strömungsmaschine
DE102022111750A1 (de) Verfahren und Planungsvorrichtung zum Planen einer lokal selektiven Bestrahlung eines Arbeitsbereichs mit einem Energiestrahl, Verfahren und Fertigungsvorrichtung zum additiven Fertigen eines Bauteils aus einem Pulvermaterial, und Computerprogrammprodukt zum Durchführen eines solchen Verfahrens
DE102022134338A1 (de) Verfahren und Planungsvorrichtung zum Planen einer lokal selektiven Bestrahlung eines Arbeitsbereichs mit mindestens einem Energiestrahl, sowie Verfahren und Fertigungsvorrichtung zum additiven Fertigen von Bauteilen aus einem Pulvermaterial
WO2023247147A1 (fr) Procédé de planification de la solidification locale d'une couche de matériau en poudre lors de la fabrication d'une couche d'objet tridimensionnel par couche
WO2023083575A1 (fr) Procédé, dispositif de planification et produit-programme informatique de planification d'une exposition localement sélective d'une région de travail au rayonnement d'un faisceau d'énergie, et procédé, dispositif de fabrication et produit-programme informatique pour la fabrication additive de composants à partir d'un matériau en poudre
DE102014010930A1 (de) Vorrichtung und Verfahren zur Herstellung dreidimensionaler Objekte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827681

Country of ref document: EP

Kind code of ref document: A1