WO2019034063A1 - 各向异性绝缘导热垫及其制造方法 - Google Patents

各向异性绝缘导热垫及其制造方法 Download PDF

Info

Publication number
WO2019034063A1
WO2019034063A1 PCT/CN2018/100535 CN2018100535W WO2019034063A1 WO 2019034063 A1 WO2019034063 A1 WO 2019034063A1 CN 2018100535 W CN2018100535 W CN 2018100535W WO 2019034063 A1 WO2019034063 A1 WO 2019034063A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
thermal pad
carbon fiber
parts
anisotropic
Prior art date
Application number
PCT/CN2018/100535
Other languages
English (en)
French (fr)
Inventor
谢佑楠
Original Assignee
深圳市鸿富诚屏蔽材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿富诚屏蔽材料有限公司 filed Critical 深圳市鸿富诚屏蔽材料有限公司
Publication of WO2019034063A1 publication Critical patent/WO2019034063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention relates to the technical field of thermal conductive elements, in particular to an anisotropic insulating thermal pad and a manufacturing method thereof.
  • thermal interface materials have gradually evolved from low-end products such as thermal oil, thermal grease, and thermal conductive tape to high-end products such as thermal conductive gaskets, phase change materials, thermal gels, and liquid metals.
  • low-end products such as thermal oil, thermal grease, and thermal conductive tape
  • high-end products such as thermal conductive gaskets, phase change materials, thermal gels, and liquid metals.
  • the technology has also been gradually improved, among which the thermal pad is the fastest and the most widely used.
  • the traditional thermal conductive gaskets are basically made of silica gel or other polymer materials.
  • the composite material By filling the thermal conductive powder, the composite material has a heat conduction channel, thereby functioning as a material for heat conduction.
  • the more powder is filled the powder particles are The more reasonable the diameter matching, the more thermal conduction channels, the higher the thermal conductivity of the corresponding materials, but with the increasing amount of filler materials, the mechanical properties of the products, especially the tensile strength and compressibility, are greatly reduced, so that it can be applied in many occasions. Due to limitations, the more powder that is filled, the higher the density of the material, which is clearly inconsistent with the current trend of pursuing lightweight and user physical examination.
  • the carbon fiber with high thermal conductivity is used as a filling material in some thermally conductive joint elements, the carbon fibers protrude from the upper and lower surfaces of the joint layer during the processing, and such an oriented carbon fiber thermal pad may exist in practical applications.
  • the invention provides an anisotropic insulating thermal pad and a manufacturing method thereof to solve the above problems.
  • the invention provides an anisotropic insulating thermal pad, comprising: a thermosetting insulating polymer substrate and carbon fibers implanted in the thermosetting insulating polymer substrate by thermal curing, the carbon fibers having a orientation perpendicular to the direction of the polymer substrate The bottom end of the carbon fiber does not penetrate the bottom of the polymer substrate.
  • the polymer substrate comprises an insulating primer and a topping rubber for infiltrating the carbon fiber on the primer, the carbon fiber is implanted into the primer by electrostatic flocking, and the portion of the carbon fiber exposed to the primer is covered by the surface glue.
  • the depth of the carbon fiber implant primer is from three quarters to one quarter of the thickness of the primer.
  • the primer comprises the following components by weight: 5-10 parts of methyl vinyl silicone rubber, 30-50 parts of vinyl silicone oil, 30-60 parts of dimethicone oil, 300-600 parts of alumina, 100 to 200 parts of aluminum hydroxide, 3 to 5 parts of hydrogen-containing silicone oil, and 1 to 2 parts of platinum catalyst.
  • the top coat comprises the following components by weight: 80-120 parts of vinyl silicone oil, 10-15 parts of hydrogen-containing silicone oil, and 1 to 2.5 parts of platinum gold catalyst.
  • a second layer of primer is coated on the top coat, a second layer of carbon fiber is implanted in the second layer of the primer, and a portion of the second layer of carbon fiber exposed to the primer is filled and coated by the second layer of glue.
  • a double thickness thermal pad is formed.
  • two sheets of thermally conductive pads of the same structure are snapped together to form a double-sided insulated anisotropic insulating thermal pad.
  • the invention provides an anisotropic insulating thermal pad manufacturing method, comprising the following steps:
  • the semi-finished product is heat-cured to form an anisotropic insulating thermal pad product.
  • the method further comprises the steps of: placing the semi-finished product in a vacuum box and evacuating.
  • the conditions in the vacuum box are vacuum degree ⁇ -0.09 MPa, time > 10 min; heat curing conditions are 80 to 150 ° C, time 10 to 30 min.
  • the carbon fiber does not penetrate the substrate during the implantation process, so that the entire thermal pad has better insulation performance and does not affect the work of the entire electric appliance.
  • the carbon fibers of the thermal pad have the orientation of the vertical substrate, and the thermal conductivity in the direction of the vertical substrate is better.
  • Embodiment 1 is a schematic structural view of a thermal pad in Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural view of a thermal pad in Embodiment 2 of the present invention.
  • Embodiment 3 is a schematic structural view of a double thickness thermal pad in Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a double-sided insulated thermal pad in another embodiment of the present invention.
  • Figure 5 is a flow chart showing a method of manufacturing a thermal pad in Embodiment 4 of the present invention.
  • An embodiment of the present invention provides an anisotropic insulating thermal pad, as shown in FIG. 1 , comprising: a thermosetting insulating polymer substrate 1 and carbon fibers 2 implanted in the thermosetting insulating polymer substrate 1 by thermal curing, the carbon fiber 2 has an orientation perpendicular to the direction of the polymer substrate 1, and the bottom end of the carbon fiber 2 does not penetrate the bottom of the polymer substrate 1.
  • the insulating polymer substrate forms an insulating layer at the bottom. In the case of being applied to an electric appliance, a circuit board or the like, no electrical conduction occurs, and the insulating layer has a certain current-proof breakdown capability, and does not work normally on an electrical product or a circuit board. Produce any interference.
  • the thermal conductive pad is disposed through the thermal conductive material from top to bottom, thereby neglecting the conductive interference factor.
  • the insulating layer is disposed at the bottom without affecting the thermal conductivity. Under the circumstances, it avoids the interference to the work of the heat-dissipated product, and ensures the safety and stability of the product.
  • the carbon fiber described in the embodiment has a diameter of 5 to 30 ⁇ m and a length of 100 to 1000 ⁇ m, which can be easily electrostatically implanted, and is easy to control the distribution of carbon fibers in the production process, thereby improving production efficiency, and carbon fiber is a high thermal conductivity fiber.
  • the thermal conductivity is 150-1500 W/mk.
  • the polymer substrate can be one or more of a silica gel material, an acrylic material, a polyisobutylene material or a polyurethane elastomer material to which a flame retardant powder and a heat conductive powder are added, and can also have an insulating effect when ensuring thermal conductivity, especially
  • the carbon fiber can be well fixed, which is beneficial to the electrostatic implantation of carbon fiber.
  • the polymer substrate can also be selected as other materials having heat conduction function and high insulation property.
  • the polymer substrate is further improved.
  • the polymer substrate 1 comprises an insulating primer 11 and a topping 12 for infiltrating the carbon fiber 2 on the primer, and the carbon fiber 2 is electrostatically flocked.
  • the primer 11 is implanted, and the portion of the carbon fiber 2 exposed to the primer is filled and covered by the top coat 12.
  • the primer is one or more of a silicone material, an acrylic material, a polyisobutylene material or a polyurethane elastomer material to which a flame retardant powder and a heat conductive powder are added, and the top rubber may be made of the same material as the primer, in this embodiment
  • the glue is preferably one or more of a silica gel material, an acrylic material, a polyisobutylene material or a polyurethane elastomer material which is not added with the flame retardant powder and the heat conductive powder, and can reduce the product density and light the thermal pad without affecting the function. Quantify.
  • the primer and the top coat are further improved.
  • the primer comprises the following components by weight: 5-10 parts of methyl vinyl silicone rubber, 30-50 parts of vinyl silicone oil, 30-60 parts of dimethicone, 300-600 parts of alumina, 100-200. Part of aluminum hydroxide, 3 to 5 parts of hydrogen-containing silicone oil, and 1 to 2 parts of platinum catalyst.
  • the top coat comprises the following components by weight: 80-120 parts of vinyl silicone oil, 10-15 parts of hydrogen-containing silicone oil, and 1 to 2.5 parts of platinum gold catalyst.
  • the following table shows the experimental data obtained by selecting three kinds of thermal pads with different compositions.
  • the three thermal pads have the same structure, that is, the same layer thickness, and the carbon fiber implantation depth is also the same.
  • alumina in the primer is used as a heat-conducting powder and aluminum hydroxide as a flame-retardant powder.
  • the effect of the addition amount on the heat conduction effect is not as high as possible, and the insulation and weight reduction of the product need to be considered.
  • the depth of the carbon fiber implant primer is from three quarters to one quarter of the thickness of the primer.
  • the depth of the carbon fiber implanted primer is one-half of the thickness of the primer, it has better carbon fiber fixation and better insulation performance, and its breakdown voltage can be as high as 1.5KV, when the carbon fiber is implanted into the depth of the primer.
  • the insulation performance is lowered, and it is easy to be electrically penetrated by voltage breakdown, and the depth of the carbon fiber implanted primer is one quarter of the thickness of the primer. The insulation performance is very good, but the thermal conductivity is less, and the carbon fiber is not sufficiently fixed.
  • the existing thinking of increasing the thickness directly in each layer is broken, as shown in FIG. 3, but the second layer of the primer is also coated on the top rubber 12. 21, a second layer of carbon fiber is implanted in the second layer of primer 21, and a portion of the second layer of carbon fiber exposed to the primer is filled and coated by the second layer of glue 22 to form a double thickness thermal pad.
  • the heat-dissipating pad of three times or multiple thickness formed by such a structure does not affect the heat dissipation effect when the thickness requirement is satisfied.
  • two sheets of the same structure of thermal pads can be snapped together to form a double-sided insulated anisotropic insulating thermal pad.
  • the insulation of the thermal pad can be ensured in complicated occasions, and the heat sink can be attached to both sides.
  • the embodiment provides a method for manufacturing an anisotropic insulating thermal pad, comprising the following steps:
  • a release film refers to a film that is distinguishable on the surface of the film. The release film does not have tack or slight tack after contact with a particular material under limited conditions. Release film is also called release film, separator, separation film, resist film, release film, film, plastic film, mask film, silicone film, silicone paper, anti-adhesive film, paper, slip film, Tianna paper, Release paper, silliconfilm, releasefilm, release.
  • the carbon fiber is arranged on the primer by means of electrostatic flocking; the electrostatic flocking is a physical property of attracting the same kind of repulsive anisotropy, so that the fluff is negatively charged, and the object to be flocked is placed at zero potential. Or under grounding conditions, the villus is attracted by the plant body by the isopotential, and accelerates vertically to the surface of the object to be flocked. Since the plant body is coated with glue, the fluff is vertically adhered to the plant body, so the static electricity Flocking is a production process that uses the natural characteristics of electric charge and will not be described here.
  • the flocking voltage is 10 to 80 kV.
  • the actual carbon fiber may not be perpendicular to the substrate 100%. However, in the embodiment of the present invention, it is required to ensure that at least 80% of the carbon fiber of the flocking and the angle of the release film are greater than or equal to 45°, that is, the orientation is perpendicular to the direction of the polymer substrate. Sex.
  • the carbon fiber has an implantation density of not less than 0.02 g/cm 2 , and generally > 0.04 g/cm 2 is a relatively good effect.
  • the surface of the primer of the flocked carbon fiber further requires a surface adhesive, and the thickness of the top layer is 0.03 to 0.2 mm.
  • the carbon fiber is allowed to have a head in the top layer because the length of the carbon fiber is not uniform, and the carbon fiber on the surface of the top surface does not affect various aspects of the thermal pad.
  • the semi-finished product is heat-cured to form an anisotropic insulating thermal pad product; the curing condition is 80-150 ° C for 10-30 min. Under this temperature condition and undergoing heat curing for a long time, the product can be molded.

Abstract

一种各向异性绝缘导热垫及其制造方法,导热垫,包括:热固性绝缘高分子基板(1)及通过热固化方式植入在热固性绝缘高分子基板(1)内的碳纤维(2),所述碳纤维(2)具有垂直于高分子基板(1)方向的取向性,碳纤维(2)的底端不穿透高分子基板(1)的底部。由于采用热固性绝缘高分子作为基板(1),碳纤维(2)在植入过程中并未穿透该基板(1),使得整个导热垫具有较好的绝缘性能,不会影响整个电器的工作,且导热垫的碳纤维(2)具有垂直基板(1)的取向性,在垂直基板(1)的方向导热性能更佳。

Description

各向异性绝缘导热垫及其制造方法 技术领域
本发明涉及导热元件技术领域,具体涉及一种各向异性绝缘导热垫及其制造方法。
背景技术
现今热界面材料经过几十年的发展,从最初的导热油、导热硅脂、导热矽胶布等低端产品逐步发展到导热垫片、相变化材料、导热凝胶以及液态金属等高端的产品,技术也逐步得到提升,其中以导热垫片发展最为迅速,应用最为广泛。
传统的导热垫片基本都是以硅胶或者其它高分子材料作为基体材料,通过填充导热粉体,使复合材料具有导热通道,从而起到材料的热传导作用,填充的粉体越多,粉体粒径搭配越合理,导热通道越多,相应的材料导热系数越高,但是随着填充材料越来越多,产品的力学性能,尤其是拉伸强度和可压缩性大幅下降,从而在很多场合应用受到局限,同时,填充的粉体越多,材料的密度也随之增加,显然与当今追求轻质化和用户体检的大潮流不符。
虽然在一些导热接合元件中将高导热性能的碳纤维通过取向化作为填充材料,但其加工过程中碳纤维在接合层的上下表面均伸出,这样的取向化碳纤维导热垫在实际应用中会存在与电路板上相关电气元件接触导电的风险,从而导致影响整个电器的工作。
发明内容
本发明提供一种各向异性绝缘导热垫及其制造方法,以解决上述问题。
本发明提供的一种各向异性绝缘导热垫,包括:热固性绝缘高分子基板及通过热固化方式植入在热固性绝缘高分子基板内的碳纤维,所述碳纤维具有垂直于高分子基板方向的取向性,碳纤维的底端不穿透高分子基板的底部。
优选地,高分子基板包括绝缘底胶和位于底胶之上用于浸润碳纤维的面胶,碳纤维以静电植绒方式植入底胶,碳纤维外露于底胶的部分由面胶填充包覆。
优选地,碳纤维植入底胶的深度为底胶厚度的四分之三至四分之一。
优选地,所述底胶包括按重量计的如下成分:5~10份甲基乙烯基硅橡胶、30~50份乙烯基硅油、30~60份二甲基硅油、300~600份氧化铝、100~200份 氢氧化铝、3~5份含氢硅油、1~2份铂金催化剂。
优选地,所述面胶包括按重量计的如下成分:80~120份乙烯基硅油、10~15份含氢硅油、1~2.5份铂金催化剂。
优选地,在面胶之上还涂覆有第二层底胶,第二层底胶内植入第二层碳纤维,第二层碳纤维外露于底胶的部分由第二层面胶填充包覆,形成双倍厚度的导热垫。
优选地,将两片相同结构的导热垫扣合形成双面绝缘的各向异性绝缘导热垫。
本发明提供的一种各向异性绝缘导热垫制造方法,包括如下步骤:
A:在离型膜上涂覆底胶;
B:通过静电植绒的方式将碳纤维排布在底胶上;
C:在底胶上涂覆面胶使面胶能够填充包覆外露于底胶上的碳纤维,形成半成品;
D:将所述半成品加热固化形成各向异性绝缘导热垫成品。
优选地,步骤D之前还包括如下步骤:将半成品放置于真空箱中抽真空。
优选地,真空箱中的条件为真空度≤-0.09Mpa,时间>10min;加热固化的条件为80~150℃,时间10~30min。
上述技术方案可以看出,由于本发明采用热固定绝缘高分子作为基板,碳纤维在植入过程中并未穿透该基板,使得整个导热垫具有较好的绝缘性能,不会影响整个电器的工作,且本发明中导热垫的碳纤维具有垂直基板的取向性,在垂直基板的方向导热性能更佳。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例1中导热垫的结构示意图;
图2是本发明实施例2中导热垫的结构示意图;
图3是本发明实施例3中双倍厚度导热垫的结构示意图;
图4是本发明另一实施例中双面绝缘导热垫的结构示意图;
图5是本发明实施例4中导热垫制造方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1:
本发明实施例提供一种各向异性绝缘导热垫,结合图1所示,包括:热固性绝缘高分子基板1及通过热固化方式植入在热固性绝缘高分子基板1内的碳纤维2,所述碳纤维2具有垂直于高分子基板1方向的取向性,碳纤维2的底端不穿透高分子基板1的底部。绝缘高分子基板在底部形成绝缘层,在适用于电器、电路板等场合中,不会发生导电,而且该绝缘层具有一定的防电流击穿能力,不会对电器产品或电路板的正常工作产生任何干扰。相比于现有的导热垫只考虑导热性能进而在导热垫自上而下都贯穿设置导热材料,从而忽略导电干扰的因素而言,本发明中在底部设置绝缘层,在不影响导热性能的情况下,避免对了对被散热产品的工作干扰,保证了产品的安全稳定工作。
在本实施例中所述的碳纤维的直径控制5~30μm,长度控制在100~1000μm,能够易于静电植入,且在生产过程中易于掌控碳纤维的分布,提高生产效率,碳纤维为高导热性能纤维,其导热系数为150~1500W/mk。高分子基板可以采用加入了阻燃粉和导热粉的硅胶材质、丙烯酸材质、聚异丁烯材质或者聚氨酯弹性体材质中的一种或几种,在保证导热性能时,还能够具有绝缘效果,尤其是能够很好的固定碳纤维,有利于碳纤维的静电植入。当然,高分子基板还可以精选为具有热传导功能和高绝缘性能的其他材料。
实施例2:
本实施例中对于高分子基板做了进一步改进,如图2所示,高分子基板1包括绝缘底胶11和位于底胶之上用于浸润碳纤维2的面胶12,碳纤维2以静电植绒方式植入底胶11,碳纤维2外露于底胶的部分由面胶12填充包覆。底胶采用加入 了阻燃粉和导热粉的硅胶材质、丙烯酸材质、聚异丁烯材质或者聚氨酯弹性体材质中的一种或几种,面胶可以采用与底胶相同的材质,本实施例中面胶优选未加入阻燃粉和导热粉的硅胶材质、丙烯酸材质、聚异丁烯材质或者聚氨酯弹性体材质中的一种或几种,能够在不影响功能的情况下,降低产品密度,使导热垫轻量化。
实施例3:
本实施例中在实施例2的基础上,对底胶和面胶做了进一步的改进。所述底胶包括按重量计的如下成分:5~10份甲基乙烯基硅橡胶、30~50份乙烯基硅油、30~60份二甲基硅油、300~600份氧化铝、100~200份氢氧化铝、3~5份含氢硅油、1~2份铂金催化剂。所述面胶包括按重量计的如下成分:80~120份乙烯基硅油、10~15份含氢硅油、1~2.5份铂金催化剂。
以下表格中是选取了组分不同的三种导热垫所获得的实验数据,三种导热垫的结构相同,即有相同的层厚度,碳纤维的植入深度也相同。
Figure PCTCN2018100535-appb-000001
由以上数据可以看出底胶中氧化铝作为导热粉、氢氧化铝作为阻燃粉,其 加入量对于导热效果的影响并非是越多越好,需要考虑到产品的绝缘性和轻量化。
本发明实施例中碳纤维植入底胶的深度为底胶厚度的四分之三至四分之一。当碳纤维植入底胶的深度为底胶厚度的二分之一时,具有更好的碳纤维固定性,且绝缘性能更好,其击穿电压能够高达1.5KV,当碳纤维植入底胶的深度为底胶的四分之三时,虽然对碳纤维的固定性最佳,但是绝缘性能下降,容易被电压击穿而导电,而碳纤维植入底胶的深度为底胶厚度的四分之一时,绝缘性能很好,但是导热性能会稍逊,且碳纤维的固定性也不够好。
本发明实施例中为了增加整个导热垫的厚度,突破了直接在各层增加厚度的现有思维,如图3所示,而是采用在面胶12之上还涂覆有第二层底胶21,第二层底胶21内植入第二层碳纤维,第二层碳纤维外露于底胶的部分由第二层面胶22填充包覆,形成双倍厚度的导热垫。当然,采用此种结构形成的三倍厚度或多倍厚度的导热垫在满足厚度需求时,散热效果亦不受影响。
在另外的实施例中,如图4所示,可以将两片相同结构的导热垫扣合形成双面绝缘的各向异性绝缘导热垫。在使用时,无需区分正反面,在复杂场合亦能够保证导热垫的绝缘,双面均可贴附散热源。
实施例4:
本实施例提供了一种各向异性绝缘导热垫的制造方法,包括如下步骤:
101:在离型膜上涂覆底胶;本步骤中离型膜涂覆的底胶层厚度为0.03~0.2mm。离型膜是指薄膜表面能有区分的薄膜,离型膜与特定的材料在有限的条件下接触后不具有粘性,或轻微的粘性。离型膜又称剥离膜、隔离膜、分离膜、阻胶膜、离形膜、薄膜、塑料薄膜、掩孔膜、硅油膜、硅油纸、防粘膜、型纸、打滑膜、天那纸、离型纸、silliconfilm、releasefilm、release。
102:通过静电植绒的方式将碳纤维排布在底胶上;静电植绒是利用电荷同性相斥异性相吸的物理特性,使绒毛带上负电荷,把需要植绒的物体放在零电位或接地条件下,绒毛受到异电位被植物体的吸引,呈垂直状加速飞升到需要植绒的物体表面上,由于被植物体涂有胶,绒毛就被垂直粘在被植物体上,因此静电植绒是利用电荷的自然特性产生的一种生产工艺,此处不再赘述。
本步骤中采用一种高电压低电流设备,制备此步骤材料时,植绒电压大小为10~80KV。实际中碳纤维不可能与基板百分之百的垂直,但本发明实施例中 要求至少保证植绒的碳纤维80%以上与离型膜的角度大于等于45°,即视为具有垂直于高分子基板方向的取向性。碳纤维的植入密度不少于0.02g/cm 2,一般>0.04g/cm 2为比较好的效果。
103:在底胶上涂覆面胶使面胶能够填充包覆外露于底胶上的碳纤维,形成半成品;植绒完碳纤维的底胶表面还需要覆面胶,面胶层厚度为0.03~0.2mm。本步骤中允许碳纤维在面胶层有冒头的情况,因为碳纤维的长度并不一致,且碳纤维在面胶上表面伸出并不影响导热垫的各方面效果。
104:将半成品放置于真空箱中抽真空;真空箱中的条件为真空度≤-0.09Mpa,时间>10min;将半成品放置于真空箱中有利于碳纤维更加稳定的固定在底胶和面胶内,保证产品质量。
105:将所述半成品加热固化形成各向异性绝缘导热垫成品;加热固化的条件为80~150℃,时间10~30min。在此温度条件下及经历足够长时间的加热固化,能够保证产品成型。
以上对本发明实施例所提供的一种各向异性绝缘导热垫及其制造方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想和方法,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 各向异性绝缘导热垫,其特征在于,包括:热固性绝缘高分子基板及通过热固化方式植入在热固性绝缘高分子基板内的碳纤维,所述碳纤维具有垂直于高分子基板方向的取向性,碳纤维的底端不穿透高分子基板的底部。
  2. 如权利要求1所述的各向异性绝缘导热垫,其特征在于,高分子基板包括绝缘底胶和位于底胶之上用于浸润碳纤维的面胶,碳纤维以静电植绒方式植入底胶,碳纤维外露于底胶的部分由面胶填充包覆。
  3. 如权利要求2所述的各向异性绝缘导热垫,其特征在于,碳纤维植入底胶的深度为底胶厚度的四分之三至四分之一。
  4. 如权利要求2所述的各向异性绝缘导热垫,其特征在于,所述底胶包括按重量计的如下成分:5~10份甲基乙烯基硅橡胶、30~50份乙烯基硅油、30~60份二甲基硅油、300~600份氧化铝、100~200份氢氧化铝、3~5份含氢硅油、1~2份铂金催化剂。
  5. 如权利要求2所述的各向异性绝缘导热垫,其特征在于,所述面胶包括按重量计的如下成分:80~120份乙烯基硅油、10~15份含氢硅油、1~2.5份铂金催化剂。
  6. 如权利要求2所述的各向异性绝缘导热垫,其特征在于,在面胶之上还涂覆有第二层底胶,第二层底胶内植入第二层碳纤维,第二层碳纤维外露于底胶的部分由第二层面胶填充包覆,形成双倍厚度的导热垫。
  7. 如权利要求2所述的各向异性绝缘导热垫,其特征在于,将两片相同结构的导热垫扣合形成双面绝缘的各向异性绝缘导热垫。
  8. 各向异性绝缘导热垫制造方法,其特征在于,包括如下步骤:
    A:在离型膜上涂覆底胶;
    B:通过静电植绒的方式将碳纤维排布在底胶上;
    C:在底胶上涂覆面胶使面胶能够填充包覆外露于底胶上的碳纤维,形成半成品;
    D:将所述半成品加热固化形成各向异性绝缘导热垫成品。
  9. 如权利要求8各向异性绝缘导热垫制作方法,其特征在于,步骤D之前还包括如下步骤:将半成品放置于真空箱中抽真空。
  10. 如权利要求9所述的各向异性绝缘导热垫制作方法,其特征在于,真 空箱中的条件为真空度≤-0.09Mpa,时间>10min;加热固化的条件为80~150℃,时间10~30min。
PCT/CN2018/100535 2017-08-15 2018-08-14 各向异性绝缘导热垫及其制造方法 WO2019034063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710697597.3 2017-08-15
CN201710697597.3A CN107396610B (zh) 2017-08-15 2017-08-15 各向异性绝缘导热垫及其制造方法

Publications (1)

Publication Number Publication Date
WO2019034063A1 true WO2019034063A1 (zh) 2019-02-21

Family

ID=60355650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100535 WO2019034063A1 (zh) 2017-08-15 2018-08-14 各向异性绝缘导热垫及其制造方法

Country Status (2)

Country Link
CN (1) CN107396610B (zh)
WO (1) WO2019034063A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107396610B (zh) * 2017-08-15 2020-08-18 深圳市鸿富诚屏蔽材料有限公司 各向异性绝缘导热垫及其制造方法
CN110157389B (zh) * 2019-03-22 2020-12-01 中国科学院工程热物理研究所 一种高强度导热硅胶垫片及其制备方法
CN110229367A (zh) * 2019-05-22 2019-09-13 深圳市鸿富诚屏蔽材料有限公司 一种各向异性绝缘导热性片材及其制备方法
CN110230187A (zh) * 2019-05-22 2019-09-13 深圳市鸿富诚屏蔽材料有限公司 表面绝缘包覆的碳纤维及其制备方法、导热垫片及其制备方法
CN112721230B (zh) * 2020-11-16 2022-03-25 浙江大学 制造三维增强碳纤维复合材料的微细纤维高能植入装备
CN112938649B (zh) * 2021-01-29 2022-09-13 深圳市鸿富诚新材料股份有限公司 一种化学处理式碳纤维排序工艺及碳纤维切断装置
CN117070183B (zh) * 2023-08-04 2024-04-16 常州宏巨电子科技有限公司 一种多层结构的复合绝缘导热胶膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306475A (zh) * 1998-06-24 2001-08-01 约翰逊·马太电子公司 柔顺性纤维导热接合层
US6311769B1 (en) * 1999-11-08 2001-11-06 Space Systems/Loral, Inc. Thermal interface materials using thermally conductive fiber and polymer matrix materials
CN101740529A (zh) * 2008-11-14 2010-06-16 富士通株式会社 散热材料、电子器件以及电子器件的制造方法
CN107396610A (zh) * 2017-08-15 2017-11-24 深圳市鸿富诚屏蔽材料有限公司 各向异性绝缘导热垫及其制造方法
CN207219264U (zh) * 2017-08-15 2018-04-10 深圳市鸿富诚屏蔽材料有限公司 各向异性绝缘导热垫

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522685B (zh) * 2013-10-10 2016-03-02 烟台德邦科技有限公司 一种复合型散热硅胶垫及其制备方法
CN106867422A (zh) * 2017-03-03 2017-06-20 东莞市华鸿橡塑材料有限公司 自粘导热硅胶片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306475A (zh) * 1998-06-24 2001-08-01 约翰逊·马太电子公司 柔顺性纤维导热接合层
US6311769B1 (en) * 1999-11-08 2001-11-06 Space Systems/Loral, Inc. Thermal interface materials using thermally conductive fiber and polymer matrix materials
CN101740529A (zh) * 2008-11-14 2010-06-16 富士通株式会社 散热材料、电子器件以及电子器件的制造方法
CN107396610A (zh) * 2017-08-15 2017-11-24 深圳市鸿富诚屏蔽材料有限公司 各向异性绝缘导热垫及其制造方法
CN207219264U (zh) * 2017-08-15 2018-04-10 深圳市鸿富诚屏蔽材料有限公司 各向异性绝缘导热垫

Also Published As

Publication number Publication date
CN107396610B (zh) 2020-08-18
CN107396610A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2019034063A1 (zh) 各向异性绝缘导热垫及其制造方法
CN104918468B (zh) 导热片和电子设备
US10526519B2 (en) Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device
CN106304780B (zh) 用于高导热石墨膜的制造工艺
CN110157196B (zh) 一种石墨烯材料定向排布及与硅胶垫复合成型方法及制品
JP5185582B2 (ja) 熱伝導性シート
CN207219264U (zh) 各向异性绝缘导热垫
US20190075683A1 (en) Heat sink, preparation method therefor, and communications device
CN105670297A (zh) 一种用于柔性传感器的导电橡胶材料及其制备方法和应用
CN104883866A (zh) 一种具有良好导热性的电磁屏蔽膜及其制造工艺
CN105611716B (zh) 一种移动终端的主板散热结构及移动终端
CN104559819A (zh) 一种高性能纳米碳散热复合材料
Yao et al. Hydroxyl-group decreased dielectric loss coupled with 3D-BN network enhanced high thermal conductivity epoxy composite for high voltage-high frequency conditions
KR20110012559A (ko) 열전도성 기판 및 그의 제조방법
CN111607364B (zh) 石墨烯导热材料、其制备方法及电子设备
CN207958216U (zh) 一种醋酸纤维导电胶带
CN209912866U (zh) 复合导热垫片及散热组件、散热装置
CN107396618A (zh) 一种绝缘性好的散热片
CN105966019B (zh) 用于胶带的导热石墨贴片
CN105038626B (zh) 复合型双面胶带
Tuersun et al. Enhanced thermal performance from liquid metal in copper/graphite filled elastomer
CN208497881U (zh) 一种石墨烯-碳纳米管纤维基导热垫片
CN107266076A (zh) 一种手机用的导热贴膜的制造工艺
Liu et al. Preparation and mechanism research of bio-inspired dopamine decorated expanded graphite/silicone rubber composite with high thermal conductivity and excellent insulation
CN208732936U (zh) 一种导电电陶瓷涂层结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845738

Country of ref document: EP

Kind code of ref document: A1