WO2019033858A1 - 阵列基板及制备方法、显示装置及驱动方法 - Google Patents

阵列基板及制备方法、显示装置及驱动方法 Download PDF

Info

Publication number
WO2019033858A1
WO2019033858A1 PCT/CN2018/093315 CN2018093315W WO2019033858A1 WO 2019033858 A1 WO2019033858 A1 WO 2019033858A1 CN 2018093315 W CN2018093315 W CN 2018093315W WO 2019033858 A1 WO2019033858 A1 WO 2019033858A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
array substrate
light
sub
light source
Prior art date
Application number
PCT/CN2018/093315
Other languages
English (en)
French (fr)
Inventor
祝文秀
史世明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/328,820 priority Critical patent/US10777126B2/en
Priority to EP18845601.6A priority patent/EP3671846A4/en
Publication of WO2019033858A1 publication Critical patent/WO2019033858A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an array substrate, a method for fabricating the same, a display device, and a method for driving the same.
  • OLED Organic Light Emitting Diode
  • the OLED display with optical fingerprint recognition function utilizes a partial area in the effective display area (A-A area) as an optical fingerprint identification area. However, after a period of use, the optical fingerprint recognition area and other areas of the A-A area may produce a difference in brightness, which may affect the OLED display effect.
  • Embodiments of the present disclosure relate to an array substrate, a method of fabricating the same, a display device, and a method of driving the same.
  • an array substrate including a plurality of sub-pixels arranged in an array and a light source; wherein the array substrate is further provided with an optical fingerprint identification area, and the optical fingerprint identification area includes at least part of the a sub-pixel and at least a portion of the light source.
  • the light source is located within the optical fingerprinting area.
  • the optical fingerprint recognition area includes all sub-pixels and a light source.
  • the light source includes a plurality of light emitting units, and at least one of the light emitting units is located between adjacent ones of the sub-pixels.
  • the light emitting unit includes a first microcavity structure including: a first electrode; a second electrode; located at the first electrode and the second electrode The first luminescent layer between.
  • the sub-pixel includes a second microcavity structure including: a third electrode; a fourth electrode; located at the third electrode and the fourth electrode a second luminescent layer between.
  • the thickness of the first microcavity structure is greater than the thickness of the second microcavity structure.
  • the first electrode and the third electrode are transflective electrodes
  • the second electrode and the fourth electrode are reflective electrodes.
  • the thickness of the first electrode is greater than the thickness of the third electrode.
  • the thickness of the first electrode is 6 to 8 nm larger than the thickness of the third electrode.
  • the first light emitting layer and the second light emitting layer are organic light emitting layers including a hole transporting layer, wherein a thickness of the hole transporting layer in the first light emitting layer is greater than The thickness of the hole transport layer in the second luminescent layer.
  • the first light emitting layer includes a green light emitting material.
  • the first electrode and the third electrode are formed in one body.
  • the array substrate further includes: a light guiding layer disposed on a surface of the first electrode and the third electrode formed away from the second electrode and the fourth electrode on.
  • a method for fabricating an array substrate includes: forming a plurality of sub-pixels arranged in an array on a substrate; forming a light source between adjacent sub-pixels in a region; wherein The area is an optical fingerprint identification area, and the optical fingerprint identification area includes at least a portion of the sub-pixels and at least a portion of the light sources.
  • a display device comprising the array substrate of any of the above; and a first driving circuit for controlling illumination of each sub-pixel to perform image display during an image display phase;
  • the second driving circuit is configured to control the light source to emit light as a light source for optical fingerprint recognition in the optical fingerprinting stage.
  • a driving method of a display device for driving the display device includes: controlling, in an image display phase, each sub-pixel to emit light to perform image display by using a first driving circuit In the optical fingerprinting stage, the second driving circuit is used to control the light source to emit light as a light source for optical fingerprint recognition.
  • FIG. 1 is a schematic view showing an OLED display screen having an optical fingerprint recognition function in the related art
  • FIG. 2 schematically shows a schematic diagram of an OLED backplane having an optical fingerprinting function in an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view showing an OLED back sheet in an exemplary embodiment of the present disclosure
  • FIG. 4 schematically shows a spectrogram of a luminescent pixel in an exemplary embodiment of the present disclosure
  • FIG. 5 is a flow chart schematically showing a method of fabricating an OLED back sheet in an exemplary embodiment of the present disclosure
  • FIG. 6 is a flow chart schematically showing a driving method of an OLED display device in an exemplary embodiment of the present disclosure.
  • spatially relative terms such as “below”, “below”, “lower”, “above”, “upper”, etc., may be used herein to describe one element as shown or The relationship of features to another element or feature (or other element or feature). It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation shown in the figures. For example, elements in the “a” or “an” Thus, the exemplary term “below” can encompass the orientation of both “above” and “under”.
  • the device may additionally be positioned (rotated 90 degrees or at other orientations) and the spatial relationship descriptors used herein interpreted accordingly.
  • an OLED display screen with an optical fingerprint recognition function uses a partial area in the effective display area (AA area) 10 as an optical fingerprint identification area 100, and uses the light emitted by the OLED display screen as an optical fingerprint recognition.
  • the light source thus achieves its optical fingerprinting function.
  • the sensor In order to perform optical fingerprint recognition quickly and stably, the sensor needs to receive sufficiently strong reflected light, which requires that the OLED illumination brightness of the optical fingerprint recognition area is significantly higher than that required for normal display.
  • the T95 of the OLED in the normal brightness mode is about 240 hours, and the T95 in the high brightness mode of the double brightness is only 29 hours; among them, the T95 is an index for measuring the lifetime of the OLED, and specifically refers to the brightness of the OLED.
  • the optical fingerprint recognition is unlocked 200 times a day, each time using 0.2 seconds. After one year, the optical fingerprint recognition area will be lit for about 4 hours more than other areas in the AA area. As the usage time increases, the brightness of the light is increased. The difference will gradually widen. In the actual display process, the brightness of the adjacent areas differs by 0.8% when the human eye can detect it. In this way, the difference in brightness variation between the optical fingerprint recognition area and other areas of the A-A area affects the OLED display effect.
  • This example embodiment provides an array substrate.
  • 2 shows an OLED backplane as an array substrate, but the present disclosure is not limited thereto, and for example, the array substrate may also be a QLED (Quantum Dot Light Emitting Diode) backplane.
  • the OLED backplane includes a plurality of sub-pixels 201 arranged in an array and a light source 202.
  • An optical fingerprint identification area 100 is further disposed on the OLED backplane, and the optical fingerprint identification area 100 may include a partial sub-pixel 201 and a light source 202.
  • the optical fingerprint recognition area 100 may include all sub-pixels and a light source.
  • the sub-pixel 201 may be disposed in the first light-emitting area 20a in the effective display area 10 of the OLED backplane for displaying an image; the light source 202 may be disposed in the effective display area 10 of the OLED backplane. In the two light-emitting regions 20b, it serves as a light source for optical fingerprint recognition.
  • the first light emitting region 20a and the second light emitting region 20b may be defined by the pixel defining layer 200 to provide a space for vaporizing the organic light emitting material.
  • the optical fingerprint identification area 100 includes a plurality of sub-pixels 201 and a light source 202 at the same time, and the sub-pixel 201 can also be used for illumination, the present embodiment only uses the above-mentioned light source 202 as an optical fingerprint recognition. light source.
  • the OLED backplane provided by the exemplary embodiment of the present disclosure can effectively avoid the optical fingerprint recognition area 100 and the effective display area 10 by adding a light source 202 dedicated to the optical fingerprint recognition light source in the optical fingerprint recognition area 100. In other areas, when the image is displayed, uneven brightness changes occur, thereby ensuring the display quality of the OLED display, so that the user presents a good overall visual effect.
  • the sub-pixel 201 may include a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B that are periodically spaced apart;
  • the light source 202 may include a plurality of light-emitting units X. And any of the light emitting units X are located between the adjacent sub-pixels 201.
  • the sub-pixel 201 and the light-emitting unit may each include:
  • one of the first electrode 301 and the second electrode 302 is a transflective electrode and the other is a reflective electrode;
  • the organic light emitting layer 303 may include a hole injection layer, a hole transport layer, and an electron a hole composite layer, an electron transport layer, and an electron injection layer.
  • the first electrode 301 and the second electrode 302 which are parallel to each other and the organic light-emitting layer 303 located therebetween can constitute an OLED microcavity structure.
  • the light-emitting unit is used as a light source for optical fingerprint recognition, which should have a high luminous efficiency. Therefore, the thickness of the microcavity structure corresponding to the light-emitting unit can be controlled to be larger than the sub-pixel 201. The thickness of the corresponding microcavity structure is such that the light emitting unit has lower power consumption and higher luminous efficiency.
  • the first electrode 301 may be a transflective electrode
  • the second electrode 302 may be a reflective electrode
  • the thickness of the transflective electrode corresponding to the light emitting unit may be greater than the translucent half corresponding to the sub-pixel 201.
  • the thickness of the counter electrode can be, for example, 6 to 8 nm and preferably 7 nm, which can effectively reduce the power consumption of the light-emitting unit and improve its luminous efficiency.
  • the thickness of each electrode corresponding to the sub-pixel 201 may be the same as the prior art, and the thickness of the reflective electrode corresponding to the light-emitting unit is constant, and the thickness of the transflective electrode is increased. In this case, the thickness of the microcavity structure corresponding to the light emitting unit changes, thereby reducing the power consumption of the light emitting unit and improving its luminous efficiency.
  • the thickness of the hole transport layer in the organic light emitting layer 303 corresponding to the light emitting unit may be greater than the thickness of the hole transport layer in the organic light emitting layer 303 corresponding to the sub pixel 201. In this case, the thickness of the microcavity structure corresponding to the light emitting unit changes, thereby reducing the power consumption of the light emitting unit and improving its luminous efficiency.
  • the increase of the thickness of the transflective electrode increases the luminous efficiency without substantially causing the shift of the spectral peak, but increases the thickness of the hole transport layer to enhance the light emission.
  • the efficiency may cause the shift of the spectral peak, and in order to ensure that the peak of the spectrum does not change, it is necessary to match the thickness variation of the other layers while changing the thickness of the hole transport layer. Therefore, the present disclosure preferably improves the light emission by changing the thickness of the electrode.
  • the luminous efficiency of the unit is preferably improves the light emission by changing the thickness of the electrode.
  • the organic light-emitting material in the light-emitting unit may be a green light-emitting material, and of course, other colors of the light-emitting material are not excluded.
  • the green organic luminescent material requires less power consumption and higher luminous efficiency when reaching the same brightness, and thus is the best choice for this embodiment.
  • the luminous efficiency of the luminescent pixel 202 formed based on the green luminescent material can be improved by about 10%.
  • the first electrode 301 may be a cathode, which may be, for example, a magnesium silver electrode, and the second electrode 302 may be an anode, which may be, for example, a gold electrode.
  • the OLED backplane may further include a Capping Layer (CPL) 304 disposed on a side of the first electrode 301 facing away from the second electrode 302.
  • CPL Capping Layer
  • the exemplary embodiment further provides a method for preparing an OLED backplane. As shown in FIG. 5, the preparation method may include:
  • the preset area is the optical fingerprint identification area 100, and the optical fingerprint identification area 100 may include a part of the sub-pixel 201 and the light source 202.
  • the specific steps may include: preparing a pixel defining layer 200 on the substrate to define a plurality of first light emitting regions 20a and located in a predetermined region, as shown in FIG. a second light-emitting region 20b between adjacent first light-emitting regions 20a; as shown in FIG. 2, a plurality of sub-pixels 201 arranged in an array are prepared in the first light-emitting region 20a for image display, and A plurality of light emitting units are prepared in the second light emitting region 20b to serve as a light source for optical fingerprint recognition.
  • the sub-pixel 201 and the light-emitting unit may each include a first electrode 301, a second electrode 302, and an organic light-emitting layer 303 therebetween;
  • the first electrode 301 may be, for example,
  • the second electrode 302 can be, for example, a reflective anode, so that an OLED microcavity structure can be formed.
  • the optical fingerprint identification area 100 includes a part of the sub-pixel 201 and the light source 202, so as to avoid the optical fingerprint identification area.
  • 100 and other areas of the effective display area 10 may exhibit uneven illumination brightness when performing image display, thereby ensuring the display quality of the OLED display screen and presenting a good overall visual effect for the user.
  • the thickness of the first electrode 301 corresponding to the light-emitting unit may be controlled to be greater than the thickness of the first electrode 301 corresponding to the sub-pixel 201, or the The thickness of the hole transport layer in the organic light-emitting layer 303 corresponding to the light-emitting unit is greater than the thickness of the hole transport layer in the organic light-emitting layer 303 corresponding to the sub-pixel 201, thereby achieving the purpose of reducing the power consumption of the light-emitting unit.
  • the organic light-emitting material in the light-emitting unit selects the green light-emitting material, the light-emitting efficiency of the light-emitting unit can be further improved.
  • the exemplary embodiment further provides an OLED display device including the above OLED backplane and a driving circuit.
  • the driving circuit may include:
  • a first driving circuit configured to control each sub-pixel 201 to emit light to perform image display during an image display phase
  • the second driving circuit is configured to control the light source 202, that is, each of the light emitting units to emit light as a light source for optical fingerprint recognition in the optical fingerprinting stage.
  • the structure of the second drive circuit can be relatively simple compared to the structure of the first drive circuit.
  • the same driving circuit can be used for the sub-pixel 201 for performing image display and the light-emitting unit used for optical fingerprint recognition light source, but the design method of the driving circuit is complicated, considering The ease of implementation of the process, the embodiment preferably adopts the above-described driving circuit design manner, that is, the first driving circuit and the second driving circuit are respectively disposed for the sub-pixel 201 and the light source 202.
  • the example embodiment further provides a driving method of the OLED display device for driving the OLED display device described above.
  • the driving method may include:
  • the second driving circuit is used to control the light source 202, that is, the light emitting unit to emit light as a light source for optical fingerprint recognition.
  • the second driving circuit when performing optical fingerprint recognition, can control the light emitting unit to emit light as a light source for optical fingerprint recognition; and when performing image display, the first driving circuit can control each sub-pixel 201 to emit light for image display. .
  • the OLED unit used as the optical fingerprint recognition light source and the OLED unit for image display are independent from each other, even if the light-emitting unit used as the optical fingerprint recognition light source has higher luminance and greater influence on the lifetime of the OLED.
  • each of the sub-pixels 201 for performing image display and the light-emitting unit are independent of each other, and the influence of the light-emitting brightness on the lifetime of the OLED is balanced, so that the uniformity of the brightness change of the image display can be ensured, thereby ensuring the display of the OLED display. Quality, can give users a good visual effect.
  • the image display phase and the optical fingerprint recognition phase described herein are not non-overlapping in time; that is, while the first driving circuit drives each sub-pixel 201 to perform image display, the second driving circuit can also Each of the light emitting units is driven to emit light as a light source for optical fingerprint recognition.
  • the OLED display device may be a top emission type, a bottom emission type, or a double-sided emission type display device, which may include, for example, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, and a navigator.
  • a mobile phone a tablet computer
  • a television a notebook computer
  • a digital photo frame a navigator
  • the present disclosure does not specifically limit any product or component having a display function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种阵列基板及其制备方法显示装置及其驱动方法。所述阵列基板包括阵列排布的多个子像素以及光源;其中,所述阵列基板还设有光学指纹识别区,且该光学指纹识别区包括至少部分所述子像素以及至少部分所述光源。 (图2)

Description

阵列基板及制备方法、显示装置及驱动方法
交叉引用
本申请要求于2017年8月18日提交的申请号为201710712970.8、发明名称为“OLED背板及制备方法、OLED显示装置及驱动方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板及其制备方法、显示装置及其驱动方法。
背景技术
OLED(Organic Light Emitting Diode,有机发光二极管)作为一种电流型发光器件,具有自发光、快速响应、宽视角、以及可制作于柔性衬底等优点而被广泛的应用于高性能显示领域。
具有光学指纹识别功能的OLED显示屏是利用有效显示区(A-A区)中的部分区域作为光学指纹识别区。然而,在使用一段时间之后,光学指纹识别区与A-A区的其它区域会产生亮度差异,这种亮度差异会影响OLED显示效果。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的实施例涉及一种阵列基板及其制备方法、显示装置及其驱动方法。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一方面,提供了一种阵列基板,包括阵列排布的多个子像素以及光源;其中,所述阵列基板还设有光学指纹识别区,且该光学指纹识别区包括至少部分所述子像素以及至少部分所述光源。
根据本公开的示例性实施例,所述光源位于所述光学指纹识别区内。
根据本公开的示例性实施例,所述光学指纹识别区包括全部子像素和光源。
根据本公开的示例性实施例,所述光源包括多个发光单元,至少一个所述发光单元位于相邻所述子像素之间。
根据本公开的示例性实施例,所述发光单元包括第一微腔结构,所述第一微腔结构包括:第一电极;第二电极;位于所述第一电极和所述第二电极之间的第一发光层。
根据本公开的示例性实施例,所述子像素包括第二微腔结构,所述第二微腔结构包括:第三电极;第四电极;位于所述第三电极和所述第四电极之间的第二发光层。
根据本公开的示例性实施例,所述第一微腔结构的厚度大于所述第二微腔结构的厚度。
根据本公开的示例性实施例,所述第一电极和所述第三电极为半透半反电极,所述第二电极和所述第四电极为反射电极。
根据本公开的示例性实施例,所述第一电极的厚度大于所述第三电极的厚度。
根据本公开的示例性实施例,所述第一电极的厚度比所述第三电极的厚度大6~8nm。
根据本公开的示例性实施例,所述第一发光层和所述第二发光层为包括空穴传输层的有机发光层,其中,所述第一发光层中的空穴传输层的厚度大于所述第二发光层中的空穴传输层的厚度。
根据本公开的示例性实施例,所述第一发光层包括绿色发光材料。
根据本公开的示例性实施例,所述第一电极和所述第三电极形成为一体。
根据本公开的示例性实施例,阵列基板还包括:光导输层,设置在形成为一体的所述第一电极和所述第三电极的远离所述第二电极和所述第四电极的表面上。
根据本公开的另一方面,提供了一种阵列基板的制备方法,包括:在基板上形成阵列排布的多个子像素;在一区域内的相邻所述子像素之间形成光源;其中,所述区域为光学指纹识别区,且该光学指纹识别区包括至少部分所述子像素以及至少部分所述光源。
根据本公开的又一方面,提供了一种显示装置,包括上述任一项所述的阵列基板;以及,第一驱动电路,用于在图像显示阶段控制各子像素发光以进行图像的显示;第二驱动电路,用于在光学指纹识别阶段控制光源发光以作为光学指纹识别的光源。
根据本公开的再一方面,提供一种显示装置的驱动方法,用于驱动上述显示装置;所述驱动方法包括:在图像显示阶段,利用第一驱动电路控制各子像素发光以进行图像的显示;在光学指纹识别阶段,利用第二驱动电路控制光源发光以作为光学指纹识别的光源。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出相关技术中具有光学指纹识别功能的OLED显示屏的示意图;
图2示意性示出本公开示例性实施例中具有光学指纹识别功能的OLED背板的示意图;
图3示意性示出本公开示例性实施例中OLED背板的剖面结构示意图;
图4示意性示出本公开示例性实施例中发光像素的光谱图;
图5示意性示出本公开示例性实施例中OLED背板的制备方法流程图;以及
图6示意性示出本公开示例性实施例中OLED显示装置的驱动方法流程图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免使本公开的各方面变得模糊。
为易于描述,诸如“在…下方”、“在…下面”、“下部”、“在…上方”、“上部”等的空间关系术语,在此处可用于描述如图所示的一个元件或特征与另一个元件或特征(或者其它元件或特征)的关系。应当理解,空间关系术语旨在包括使用中或操作中的装置除图中所示的方位之外的不同方位。例如,如果图中的设备被翻转,则被描述为位于其它元件或特征的“下面”或“下方”的元件将位于其它元件或特征的“上方”。因此,示例性术语“在…下面”可包括“在…上方”和“在…下面”两者的方位。可另外对设备进行定位(被旋转90度或在其它的方位),并且相应地解释在此处使用的空间关系描述符。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。附图中各层的厚度和形状不反映真实比例,仅是为了便于说明本公开的内容。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
如图1所示,通常,具有光学指纹识别功能的OLED显示屏是利用有效显示区(A-A区)10中的部分区域作为光学指纹识别区100,以OLED显示屏自身发出的光作为光学指纹识别的光源,从而实现其光学指纹识别功能。为了能够快速稳定地进行光学指纹识别,传感器需要接收到足够强的反射光,这就要求光学指纹识别区的OLED发光亮度明显高于正常显示所需的发光亮度。
但是,OLED在正常亮度模式下的T95约为240小时,而双倍亮度的高亮模式下的T95仅为29小时;其中,T95是用于衡量OLED寿命的指标,其具体是指OLED发光亮度降至初始亮度的95%所需的时间。由此可知,相比于正常亮度模式,双倍亮度的高亮模式对于OLED寿命的影响十分显著。假设每天使用光学指纹识别解锁200 次,每次使用0.2秒,经过一年的时间,光学指纹识别区就会比A-A区的其它区域多点亮大约4小时,随着使用时间的增加,发光亮度的差异就会逐渐拉大。而在实际显示过程中,相邻区域的亮度相差0.8%时人眼便可察觉。这样一来,光学指纹识别区与A-A区的其它区域的亮度变化差异就会影响OLED显示效果。
下面将参照附图详细地描述根据本公开的示例性实施例的阵列基板及其制造方法、显示装置及其驱动方法。虽然下面以OLED背板和OLED显示装置为例说明了根据本公开的阵列基板及其制造方法、显示装置及其驱动方法,但是本领域技术人员将认识到,本公开不限于此,例如,本公开的技术构思还可以应用到QLED(量子点发光二极管)背板和QLED显示装置。
本示例实施方式提供了一种阵列基板。图2示出了OLED背板作为阵列基板,然而本公开不限于此,例如,该阵列基板也可以是QLED(量子点发光二极管)背板。如图2中所示,该OLED背板包括阵列排布的多个子像素201以及光源202。在所述OLED背板上还设有一光学指纹识别区100,该光学指纹识别区100可以包括部分子像素201以及光源202。然而,本公开不限于此,例如,该光学指纹识别区100可以包括全部子像素和光源。
所述子像素201可以设置在OLED背板的有效显示区10内的第一发光区域20a中,用于进行图像的显示;所述光源202可以设置在OLED背板的有效显示区10内的第二发光区域20b中,用作光学指纹识别的光源。其中,所述第一发光区域20a和所述第二发光区域20b可以通过像素界定层200来进行限定,从而提供用于蒸镀有机发光材料的空间。
需要说明的是:虽然所述光学指纹识别区100同时包含了多个子像素201以及光源202,且所述子像素201也可用于发光,但本实施例仅以上述的光源202作为光学指纹识别的光源。
本公开示例性实施方式所提供的OLED背板,通过在光学指纹识别区100内增设专用作光学指纹识别光源的光源202,这样便可以有效地避免该光学指纹识别区100与有效显示区10的其它区域在进行图像显示时出现发光亮度变化不均的情况,从而保证OLED显示屏的显示品质,以为用户呈现良好的整体视觉效果。
基于上述结构,参考图2所示,所述子像素201可以包括周期性间隔设置的红色子像素R、绿色子像素G、以及蓝色子像素B;所述光源202可以包括多个发光单元X,且任一发光单元X位于相邻的子像素201之间。
本示例实施方式中,如图3所示,所述子像素201和所述发光单元均可以包括:
第一电极301;
第二电极302;
位于第一电极301和第二电极302之间的发光层,例如有机发光层303;
其中,所述第一电极301和所述第二电极302中的一个为半透半反电极、另一个 为反射电极;所述有机发光层303可以包括空穴注入层、空穴传输层、电子-空穴复合层、电子传输层、以及电子注入层。
这样一来,相互平行的第一电极301和第二电极302以及位于二者之间的有机发光层303便可以构成OLED微腔结构。在此基础上,考虑到发光单元是用作光学指纹识别的光源,其应当具有较高的发光效率,因此本实施例可控制所述发光单元对应的微腔结构的厚度大于所述子像素201对应的微腔结构的厚度,从而使得发光单元具有较低的功耗和较高的发光效率。
在一种实施方式中,第一电极301可以为半透半反电极,第二电极302可以为反射电极,且发光单元对应的半透半反电极的厚度可以大于子像素201对应的半透半反电极的厚度,例如可以相差6~8nm且优选7nm,这可以有效地降低发光单元的功耗并提升其发光效率。具体而言,所述子像素201对应的各电极的厚度可以与现有工艺相同,而所述发光单元对应的反射电极的厚度不变、半透半反电极的厚度增大。在此情况下,发光单元对应的微腔结构的厚度便会发生变化,从而降低发光单元的功耗并提升其发光效率。
在另一种实施方式中,发光单元对应的有机发光层303中的空穴传输层的厚度可以大于子像素201对应的有机发光层303中的空穴传输层的厚度。在此情况下,发光单元对应的微腔结构的厚度便会发生变化,从而降低发光单元的功耗并提升其发光效率。
需要说明的是:在上述的两种实施方式中,通过增加半透半反电极的厚度来提升发光效率时基本不会引起光谱峰值的偏移,但通过增加空穴传输层的厚度来提升发光效率时可能引起光谱峰值的偏移,而为了保证光谱峰值不发生变化,在改变空穴传输层厚度的同时还需匹配其它层的厚度变化,因此本公开优选采用改变电极厚度的方式来改善发光单元的发光效率。
本示例实施方式中,所述发光单元中的有机发光材料可以为绿色发光材料,当然也不排除其它颜色的发光材料。相比于其它颜色的发光材料,绿色有机发光材料在达到相同亮度时所需的功耗较小、发光效率较高,因此作为本实施例的最佳选择。参考图4所示,以增加半透半反电极的厚度为例,经过验证可得,基于该绿色发光材料形成的发光像素202的发光效率可提升10%左右。
在上述的OLED背板中,第一电极301可以为阴极,其例如可以为镁银电极,第二电极302可以为阳极,其例如可以为金电极。在此基础上,参考图3所示,所述OLED背板还可以包括设置在第一电极301背离第二电极302一侧的光导输层(Capping Layer,简称CPL)304。这样一来,本实施例通过在阴极上方设置光导输层304,不仅有利于提高发光效率,还可以对易氧化的阴极材料起到保护作用。
本示例实施方式还提供了一种OLED背板的制备方法,如图5所示,所述制备方法可以包括:
S501、在基板上形成阵列排布的多个子像素201;
S502、在一预设区域内的相邻所述子像素201之间形成光源202。
其中,所述预设区域为光学指纹识别区100,且该光学指纹识别区100可以包括部分所述子像素201以及所述光源202。
举例而言,在制备所述OLED背板时,其具体步骤可以包括:参考图3所示,在基板上制备一像素界定层200以限定出多个第一发光区域20a以及位于一预设区域内的相邻第一发光区域20a之间的第二发光区域20b;参考图2所示,在第一发光区域20a内制备阵列排布的多个子像素201以用于进行图像的显示,并在第二发光区域20b内制备多个发光单元以用作光学指纹识别的光源。
在本实施例中,所述子像素201和所述发光单元均可以包括第一电极301、第二电极302、以及位于二者之间的有机发光层303;所述第一电极301例如可以为半透半反阴极,所述第二电极302例如可以为反射阳极,这样便可以形成OLED微腔结构。
在基于上述步骤所制备的OLED背板中,以一预设区域作为光学指纹识别区100,且该光学指纹识别区100包含了部分的子像素201以及光源202,这样便可以避免光学指纹识别区100与有效显示区10的其它区域在进行图像显示时出现发光亮度变化不均的情况,从而保证OLED显示屏的显示品质,为用户呈现良好的整体视觉效果。
本示例实施方式中,在制备子像素201以及发光单元时,可以控制所述发光单元对应的第一电极301的厚度大于所述子像素201对应的第一电极301的厚度,或者也可以控制所述发光单元对应的有机发光层303中的空穴传输层的厚度大于所述子像素201对应的有机发光层303中的空穴传输层的厚度,从而达到降低发光单元功耗的目的。
其中,在发光单元中的有机发光材料选用绿色发光材料时,还可以进一步改善发光单元的发光效率。
需要说明的是:所述OLED背板的制备方法的具体细节已经在对应的OLED背板中进行了详细的描述,这里不再赘述。
本示例实施方式还提供了一种OLED显示装置,包括上述的OLED背板以及驱动电路。
其中,所述驱动电路可以包括:
第一驱动电路,用于在图像显示阶段控制各子像素201发光以进行图像的显示;
第二驱动电路,用于在光学指纹识别阶段控制光源202即各发光单元发光以作为光学指纹识别的光源。
本实施例中,由于用作光学指纹识别光源的发光单元无需进行复杂的亮度调节,因此第二驱动电路的结构相比于第一驱动电路的结构可以相对简单。
需要说明的是:本实施例也可以针对用于进行图像显示的子像素201和用作光学 指纹识别光源的发光单元采用相同的驱动电路,只不过这种驱动电路的设计方式较为复杂,考虑到工艺实现的难易程度,本实施例优选采用上述的驱动电路设计方式,即,针对子像素201和光源202分别设置第一驱动电路和第二驱动电路。
相应的,本示例实施方式还提供了一种OLED显示装置的驱动方法,用于驱动上述的OLED显示装置。
如图6所示,所述驱动方法可以包括:
S601、在图像显示阶段,利用第一驱动电路控制各子像素201发光以进行图像的显示;
S602、在光学指纹识别阶段,利用第二驱动电路控制光源202即发光单元发光以作为光学指纹识别的光源。
基于此,在进行光学指纹识别时,第二驱动电路可以控制发光单元发光以作为光学指纹识别的光源;而在进行图像显示时,第一驱动电路可以控制各子像素201发光以进行图像的显示。
这样一来,用作光学指纹识别光源的OLED单元与用于进行图像显示的OLED单元之间相互独立,即便用作光学指纹识别光源的发光单元的发光亮度较高、对于OLED寿命的影响较大,但用于进行图像显示的各子像素201与该发光单元之间相互独立,其发光亮度对于OLED寿命的影响均衡,因此可以保证图像显示的亮度变化的均一性,从而保证OLED显示屏的显示品质,能够为用户呈现良好的视觉效果。
需要说明的是:这里所述的图像显示阶段和光学指纹识别阶段在时间上并非不可重叠;也就是说,在第一驱动电路驱动各子像素201进行图像显示的同时,第二驱动电路也可以驱动各发光单元进行发光以作为光学指纹识别的光源。
在本示例实施方式中,所述OLED显示装置可以为顶发射型、底发射型、或者双面发射型显示装置,其例如可以包括手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开对此不进行特殊限定。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种阵列基板,包括阵列排布的多个子像素以及光源;
    其中,所述阵列基板还设有光学指纹识别区,且该光学指纹识别区包括至少部分所述子像素以及至少部分所述光源。
  2. 根据权利要求1所述的阵列基板,其中,所述光源位于所述光学指纹识别区内。
  3. 根据权利要求1所述的阵列基板,其中,所述光学指纹识别区包括全部子像素和光源。
  4. 根据权利要求1所述的阵列基板,其中,所述光源包括多个发光单元,至少一个所述发光单元位于相邻所述子像素之间。
  5. 根据权利要求4所述的阵列基板,其中,所述发光单元包括第一微腔结构,所述第一微腔结构包括:
    第一电极;
    第二电极;
    位于所述第一电极和所述第二电极之间的第一发光层。
  6. 根据权利要求5所述的阵列基板,其中,所述子像素包括第二微腔结构,所述第二微腔结构包括:
    第三电极;
    第四电极;
    位于所述第三电极和所述第四电极之间的第二发光层。
  7. 根据权利要求6所述的阵列基板,其中,所述第一微腔结构的厚度大于所述第二微腔结构的厚度。
  8. 根据权利要求6所述的阵列基板,其中,所述第一电极和所述第三电极为半透半反电极,所述第二电极和所述第四电极为反射电极。
  9. 根据权利要求6所述的阵列基板,其中,所述第一电极的厚度大于所述第三电极的厚度。
  10. 根据权利要求9所述的阵列基板,其中,所述第一电极的厚度比所述第三电极的厚度大6~8nm。
  11. 根据权利要求3所述的阵列基板,其中,所述第一发光层和所述第二发光层为包括空穴传输层的有机发光层,其中,所述第一发光层中的空穴传输层的厚度大于所述第二发光层中的空穴传输层的厚度。
  12. 根据权利要求5所述的阵列基板,其中,所述第一发光层包括绿色发光材料。
  13. 根据权利要求6所述的阵列基板,其中,所述第一电极和所述第三电极形成为一体。
  14. 根据权利要求13所述的阵列基板,还包括:光导输层,设置在形成为一体的所述 第一电极和所述第三电极的远离所述第二电极和所述第四电极的表面上。
  15. 一种阵列基板的制备方法,包括:
    在基板上形成阵列排布的多个子像素;
    在一区域内的相邻所述子像素之间形成光源;
    其中,所述区域为光学指纹识别区,且该光学指纹识别区包括至少部分所述子像素以及至少部分所述光源。
  16. 一种显示装置,包括权利要求1-14中任一项所述的阵列基板;以及,
    第一驱动电路,用于在图像显示阶段控制各子像素发光以进行图像的显示;
    第二驱动电路,用于在光学指纹识别阶段控制光源发光以作为光学指纹识别的光源。
  17. 一种显示装置的驱动方法,用于驱动权利要求16所述的显示装置;所述驱动方法包括:
    在图像显示阶段,利用第一驱动电路控制各子像素发光以进行图像的显示;
    在光学指纹识别阶段,利用第二驱动电路控制光源发光以作为光学指纹识别的光源。
PCT/CN2018/093315 2017-08-18 2018-06-28 阵列基板及制备方法、显示装置及驱动方法 WO2019033858A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/328,820 US10777126B2 (en) 2017-08-18 2018-06-28 Array substrate and preparing method thereof, display device and driving method thereof
EP18845601.6A EP3671846A4 (en) 2017-08-18 2018-06-28 NETWORK SUBSTRATE AND PREPARATION PROCESS, DISPLAY DEVICE AND ATTACK PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710712970.8 2017-08-18
CN201710712970.8A CN109411506B (zh) 2017-08-18 2017-08-18 Oled背板及制备方法、oled显示装置及驱动方法

Publications (1)

Publication Number Publication Date
WO2019033858A1 true WO2019033858A1 (zh) 2019-02-21

Family

ID=65361780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093315 WO2019033858A1 (zh) 2017-08-18 2018-06-28 阵列基板及制备方法、显示装置及驱动方法

Country Status (4)

Country Link
US (1) US10777126B2 (zh)
EP (1) EP3671846A4 (zh)
CN (1) CN109411506B (zh)
WO (1) WO2019033858A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979391A (zh) * 2019-04-28 2019-07-05 武汉天马微电子有限公司 一种显示面板及其驱动方法、显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108647606B (zh) * 2018-04-28 2020-07-14 武汉天马微电子有限公司 一种显示面板和显示装置
WO2020215275A1 (zh) * 2019-04-25 2020-10-29 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN115101555A (zh) * 2019-04-29 2022-09-23 武汉天马微电子有限公司 显示面板和显示装置
KR20220004729A (ko) * 2019-06-19 2022-01-11 에지스 테크놀러지 인코포레이티드 전자 장치
KR20210158592A (ko) * 2020-06-24 2021-12-31 엘지디스플레이 주식회사 표시장치와 이를 포함한 모바일 단말기
CN111726502B (zh) * 2020-06-28 2022-05-17 Oppo广东移动通信有限公司 电子设备及显示装置
CN115802795A (zh) * 2023-01-05 2023-03-14 厦门天马显示科技有限公司 一种显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336751A (zh) * 2014-06-23 2016-02-17 上海箩箕技术有限公司 光电传感器及其制造方法
CN105702176A (zh) * 2016-04-12 2016-06-22 深圳市华星光电技术有限公司 具有指纹识别的显示面板及显示装置
CN106024836A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 带指纹识别功能的显示面板及制备方法、显示设备
KR101688084B1 (ko) * 2010-06-30 2016-12-20 삼성전자주식회사 이미지 센서 및 이를 포함하는 패키지
CN106971181A (zh) * 2017-05-27 2017-07-21 上海天马微电子有限公司 一种显示面板及显示装置
CN106981503A (zh) * 2017-04-27 2017-07-25 上海天马微电子有限公司 一种显示面板及电子设备
CN107025451A (zh) * 2017-04-27 2017-08-08 上海天马微电子有限公司 一种显示面板及显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367787A (ja) * 2001-06-05 2002-12-20 Tohoku Pioneer Corp 有機el表示装置及びその製造方法
KR101995920B1 (ko) * 2013-04-17 2019-10-02 삼성디스플레이 주식회사 유기 발광 표시 장치
US9836165B2 (en) * 2014-05-16 2017-12-05 Apple Inc. Integrated silicon-OLED display and touch sensor panel
CN104779267A (zh) * 2015-04-01 2015-07-15 上海天马微电子有限公司 有机发光显示面板以及有机发光显示器
CN104934008A (zh) * 2015-07-09 2015-09-23 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
US10229316B2 (en) * 2016-01-29 2019-03-12 Synaptics Incorporated Compound collimating system using apertures and collimators
CN206179868U (zh) * 2016-09-30 2017-05-17 京东方科技集团股份有限公司 触控面板及显示装置
KR102649729B1 (ko) * 2016-11-02 2024-03-22 삼성디스플레이 주식회사 표시장치
CN106959757B (zh) * 2017-03-28 2021-03-23 京东方科技集团股份有限公司 一种显示面板及显示设备
US10331939B2 (en) * 2017-07-06 2019-06-25 Shenzhen GOODIX Technology Co., Ltd. Multi-layer optical designs of under-screen optical sensor module having spaced optical collimator array and optical sensor array for on-screen fingerprint sensing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688084B1 (ko) * 2010-06-30 2016-12-20 삼성전자주식회사 이미지 센서 및 이를 포함하는 패키지
CN105336751A (zh) * 2014-06-23 2016-02-17 上海箩箕技术有限公司 光电传感器及其制造方法
CN105702176A (zh) * 2016-04-12 2016-06-22 深圳市华星光电技术有限公司 具有指纹识别的显示面板及显示装置
CN106024836A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 带指纹识别功能的显示面板及制备方法、显示设备
CN106981503A (zh) * 2017-04-27 2017-07-25 上海天马微电子有限公司 一种显示面板及电子设备
CN107025451A (zh) * 2017-04-27 2017-08-08 上海天马微电子有限公司 一种显示面板及显示装置
CN106971181A (zh) * 2017-05-27 2017-07-21 上海天马微电子有限公司 一种显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671846A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979391A (zh) * 2019-04-28 2019-07-05 武汉天马微电子有限公司 一种显示面板及其驱动方法、显示装置

Also Published As

Publication number Publication date
EP3671846A4 (en) 2021-05-05
EP3671846A1 (en) 2020-06-24
CN109411506B (zh) 2021-04-02
US20190244562A1 (en) 2019-08-08
US10777126B2 (en) 2020-09-15
CN109411506A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2019033858A1 (zh) 阵列基板及制备方法、显示装置及驱动方法
KR102579448B1 (ko) 유기 발광 표시 장치
TWI552332B (zh) 有機發光裝置、以及包含其之影像顯示系統
US20190165323A1 (en) Electroluminescent display device
US11404485B2 (en) Array substrate, method of fabricating array substrate, and display panel
KR20180124011A (ko) 디스플레이 기판 및 디스플레이 장치
US20080203898A1 (en) Display device
KR20170071538A (ko) 제어가능한 시야각을 가지는 디스플레이를 위한 서브픽셀
US10319794B2 (en) OLED array substrate, manufacturing method thereof, OLED display panel
JP2010050014A (ja) 発光装置および電子機器
WO2018227754A1 (zh) 透明oled显示面板及其制作方法
JP2006012579A (ja) カラー有機elディスプレイ及びその製造方法
JP2009048892A (ja) 発光装置
WO2020140284A1 (zh) 阵列基板、显示装置及其驱动方法
US11309513B2 (en) Anode, light emitting device, display substrate and method of manufacturing the same, and display device
WO2017198074A1 (zh) 背光源及其制作方法、显示基板、显示装置及其显示方法
WO2018205573A1 (zh) 子像素结构、像素结构、显示面板及显示装置
CN107634084A (zh) 顶发射白光oled显示装置
JP2006100430A (ja) 有機el表示装置
US11575110B2 (en) Display substrate including blue light-emitting unit with its light-emitting layer disposed at anti-node, display panel, and display apparatus
CN108511488A (zh) 显示面板和显示装置及显示面板的驱动方法
US11223031B2 (en) Full color display module and manufacturing method of same
JP5786675B2 (ja) 有機発光装置
CN110311048B (zh) 一种发光器件和显示面板
JP2004227854A (ja) エレクトロルミネッセンス表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845601

Country of ref document: EP

Effective date: 20200318