WO2019033847A1 - 有机薄膜晶体管结构及制作方法、气体传感器及相关装置 - Google Patents

有机薄膜晶体管结构及制作方法、气体传感器及相关装置 Download PDF

Info

Publication number
WO2019033847A1
WO2019033847A1 PCT/CN2018/092243 CN2018092243W WO2019033847A1 WO 2019033847 A1 WO2019033847 A1 WO 2019033847A1 CN 2018092243 W CN2018092243 W CN 2018092243W WO 2019033847 A1 WO2019033847 A1 WO 2019033847A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
transistor structure
organic thin
active layer
Prior art date
Application number
PCT/CN2018/092243
Other languages
English (en)
French (fr)
Inventor
冯翔
杨照坤
王庆贺
刘莎
杨瑞智
张强
谢春燕
邱云
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/329,274 priority Critical patent/US10804479B2/en
Priority to EP18846216.2A priority patent/EP3671878A4/en
Publication of WO2019033847A1 publication Critical patent/WO2019033847A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Definitions

  • the present disclosure relates to the field of thin film transistor technologies, and in particular, to an organic thin film transistor structure, a method of fabricating the same, a gas sensor, and related devices.
  • OTFTs Organic Thin Film Transistors
  • gas sensors are an indispensable element in industrial production and smart homes.
  • sensor applications have proven to be a good destination for OTFT technology.
  • the gas to be tested enters the carrier migration interface of the OTFT, which can affect the interface between the organic active layer and the insulating layer, thereby affecting the carrier mobility of the OTFT, causing the carrier mobility of the OTFT to decrease, and the current carrying
  • the degree of sub-drop is related to the concentration of the gas, that is, the OTFT has a characteristic that the mobility characteristic changes significantly (deterioration) when it encounters the gas to be tested. Therefore, the OTFT device can be applied to a gas sensor for gas.
  • Detection of concentration Especially in the application of disposable gas sensors, the low cost characteristics of OTFT can give play to its advantages. However, due to the limitation of the OTFT structure, it is difficult for the gas to reach the carrier migration interface, and the sensitivity of the gas concentration detection by the OTFT is low, and the gas concentration detection effect is poor.
  • An organic active layer, the organic active layer and the gate overlap each other in a thickness direction of the gate;
  • a gate insulating layer located between the gate electrode and the organic active layer, the gate insulating layer comprising: a space in contact with the organic active layer for accommodating a gas to be tested.
  • the void penetrates the gate insulating layer in a thickness direction of the gate insulating layer.
  • the void includes a plurality of strip-shaped voids having substantially the same extending direction
  • the strip-shaped voids and the organic active layer overlap each other in the thickness direction of the organic active layer.
  • both ends of the strip-shaped void along the length direction and the organic active layer are not mutually overlapping.
  • the spacing between any two adjacent strip-shaped gaps is equal.
  • the gate insulating layer further includes: a plurality of sub-insulating layers separated by the strip-shaped gap; any two adjacent sub-insulations The spacing between the layers is equal.
  • the material of the organic active layer is a donor-acceptor type conjugated polymer PBIBDF-BT.
  • the material of the gate insulating layer comprises silicon nitride.
  • the gate insulating layer is located above the gate, and the organic active layer is located above the gate insulating layer, the source drain The pole is located above the organic active layer.
  • an embodiment of the present disclosure also provides a gas sensor comprising the above organic thin film transistor structure.
  • an embodiment of the present disclosure further provides a display panel including an array substrate and the gas sensor located in a non-display area of the array substrate.
  • an embodiment of the present disclosure further provides a display device including the above display panel.
  • an embodiment of the present disclosure further provides a method for fabricating the above organic thin film transistor structure, including:
  • the filling material is removed using a cleaning solution.
  • the filler material comprises poly(1,4-butene adipate).
  • the cleaning liquid comprises one or a combination of the following materials: acetone, ethyl acetate.
  • FIG. 1 is a schematic diagram of an organic thin film transistor structure according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic view showing a projection of a sub-insulating layer and a strip-shaped void in a direction perpendicular to a gate electrode in an organic thin film transistor structure according to some embodiments of the present disclosure
  • FIG. 3 is a top plan view of an organic thin film transistor structure according to some embodiments of the present disclosure.
  • FIG. 4 is a cross-sectional view of the organic thin film transistor structure along AA' of FIG. 3 according to some embodiments of the present disclosure
  • FIG. 5 is a molecular structure diagram of PBIBDF-BT in an organic thin film transistor structure according to some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of transfer characteristics of organic thin film transistors corresponding to different gas concentrations according to some embodiments of the present disclosure
  • FIG. 7 is a schematic structural diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 8 is a flowchart of a method for fabricating an organic thin film transistor according to some embodiments of the present disclosure.
  • FIG. 9 is a molecular structural diagram of PBA in a method of fabricating an organic thin film transistor according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of each step in a method of fabricating an organic thin film transistor according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram of each step in a method for fabricating a display panel according to some embodiments of the present disclosure.
  • Embodiments of the present disclosure provide an organic thin film transistor structure, a method for fabricating the same, a gas sensor, and related devices for improving the sensitivity of a gas sensor for gas concentration detection and improving the detection effect of gas concentration.
  • An organic thin film transistor structure provided by an embodiment of the present disclosure, as shown in FIG. 1 includes:
  • the organic active layer 2 and the gate electrode 1 overlap each other in the thickness direction of the gate electrode 1;
  • a source drain 3 connected to the organic active layer 2;
  • a gate insulating layer 4 is disposed between the gate electrode 1 and the organic active layer 2, and the gate insulating layer 4 includes a void 5 that is in contact with the organic active layer 2 and accommodates a gas to be tested.
  • a void 5 that is in contact with the organic active layer 2 and accommodates a gas to be tested is disposed, so that when the organic thin film transistor structure is used for gas concentration detection,
  • the gas can enter the interior of the organic thin film transistor structure through the gap 5, and increase the contact area of the gas to be tested with the organic active layer 2 to increase the contact area between the gas to be tested and the carrier migration interface, thereby improving the organic thin film transistor.
  • the structure detects the sensitivity of the gas concentration to be measured, and improves the gas concentration detection effect.
  • the void 5 may penetrate the gate insulating layer 4 in the thickness direction of the gate insulating layer 4 in order to increase the gas to be tested as much as possible.
  • the accommodating space is favorable for the gas to be tested to be in sufficient contact with the organic active layer 2 to increase the contact area between the gas to be tested and the carrier migration interface, thereby improving the sensitivity of the organic thin film transistor structure for detecting the gas concentration to be measured, and increasing the gas concentration. Detect the effect.
  • the gap 5 may include a plurality of strip-shaped voids 51 extending substantially in the same direction;
  • the strip-shaped voids 51 and the organic active layer 2 overlap each other.
  • a plurality of strip-shaped voids 51 that are in contact with the organic active layer 2 are used to contact the gas to be tested and the respective regions of the organic active layer 2 to increase the interface between the gas to be tested and the carrier. Contact area, thereby improving the sensitivity of the organic thin film transistor structure to detect the gas concentration to be measured, and improving the gas concentration detection effect.
  • the strip-shaped voids 51 are both ends in the longitudinal direction (the dotted frame in FIG. 3)
  • the organic active layer 2 does not overlap with each other, that is, both ends of the strip-shaped gap 51 in the longitudinal direction protrude from the organic active layer 2, so that the gas to be tested can be from the strip-shaped gap 51 at both ends in the length direction.
  • the entry facilitates sufficient contact between the gas to be tested and the organic active layer 2 to increase the contact area between the gas to be tested and the carrier migration interface, thereby improving the sensitivity of the organic thin film transistor structure for detecting the gas concentration to be measured, and improving the gas concentration detection. effect.
  • the spacing between any two adjacent strip-shaped voids 51 is equal.
  • the strip-shaped voids 51 are uniformly disposed in the gate insulating layer 4.
  • the gas to be tested can be uniformly distributed in the carrier migration interface of the organic thin film transistor structure. This makes the gas concentration detection result more accurate.
  • the gate insulating layer 4 may further include: a plurality of sub-insulating layers 41 separated by strip-shaped voids 51; any adjacent two The spacing between the individual insulating layers 41 is equal. In this way, it can be ensured that the strip-shaped voids 51 are uniformly disposed in the gate insulating layer 4.
  • the gas to be tested can be uniformly distributed in the carriers of the organic thin film transistor structure. The migration interface makes the gas concentration detection result more accurate.
  • the material of the organic active layer 2 may be selected from a donor-acceptor type conjugated polymer (PBIBDF-BT).
  • PBIBDF-BT is sensitive to gases that are often required to be detected in daily life such as ammonia gas and sulfur dioxide.
  • PBIBDF-BT can also be used for ethanol, acetone, diethyl ether, Detection of gases such as n-hexane, toluene, ethyl acetate, isopropanol, and chloroform.
  • an organic semiconductor material it may be sensitive only to certain gases.
  • the material of the organic active layer 2 of the organic thin film transistor structure it is necessary to consider which gas is required for the gas sensor. The detection is performed to select a material sensitive to the gas as the material of the organic active layer 2.
  • the material of the gate insulating layer 4 may include silicon nitride (SiNx).
  • the organic thin film transistor structure provided by the embodiment of the present disclosure may be a bottom gate type structure.
  • the gate insulating layer 4 is located above the gate 1
  • the organic active layer 2 is located at the gate insulating layer.
  • the source drain 3 is located above the organic active layer 2.
  • the gas to be tested can contact the organic active layer 2 through the gap 5, and can also contact the upper surface of the organic active layer 2 to increase the contact area between the gas to be tested and the carrier migration interface, thereby improving the organic
  • the thin film transistor structure detects the sensitivity of the gas concentration to be measured, and improves the gas concentration detection effect.
  • the organic thin film transistor structure provided by the embodiment of the present disclosure may also be a top gate type structure, which is not limited herein.
  • an embodiment of the present disclosure further provides a gas sensor including the above-described organic thin film transistor structure provided by an embodiment of the present disclosure.
  • the OTFT when the gas concentration detection is performed by using the gas sensor provided by the embodiment of the present disclosure, the OTFT is in a normal working state before the gas to be tested enters the organic thin film transistor structure (OTFT), and the carrier mobility of the OTFT in this state is a.
  • the gas to be tested After the gas to be tested enters the organic thin film transistor structure, the gas to be tested contacts the organic active layer 2 through the gap 5, so that the gas environment of the carrier migration interface changes, which is equivalent to the organic thin film transistor structure under normal working conditions.
  • the carrier migration interface is contaminated by the gas to be tested, and the OTFT is in an abnormal working state.
  • the carrier mobility of the OTFT in an abnormal operating state is b, and the carrier mobility of the OTFT is decreased as compared with the state in which the OTFT is in a normal operation, and the carrier mobility b varies with the gas concentration. Increases much less than a. Therefore, the concentration of the gas to be tested in the environment can be judged based on the difference between b and a. The larger the difference between b and a, the higher the gas concentration, and vice versa.
  • the influence of gas concentration on the carrier mobility of OTFT can be reflected as the influence on the transfer characteristic curve of OTFT.
  • the transfer characteristic curve of OTFT is also different.
  • the organic active layer of OTFT is PBIBDF. -BT is taken as an example. As shown in Fig. 6, from the left side, from top to bottom, the transfer characteristics of the OTFT corresponding to different concentrations of ammonia gas are successively decreased from the bottom to the upper curve.
  • the uppermost curve corresponds to the OTFT transfer characteristic curve when the percentage of ammonia (parts per billion, ppm) is 0, and the lowermost curve corresponds to the OTFT transfer characteristic curve when the ppm of ammonia is 50, when OTFT
  • the on-state current (Ion) of the OTFT is the largest when the ppm is 0, and the Ion of the OTFT is the smallest when the ppm of the ammonia gas is 50.
  • the transfer characteristic curve of the OTFT at different concentrations for any gas can be measured in advance. Therefore, the gas concentration and the OTFT on-state current at the same driving voltage can be fitted according to the previously measured OTFT transfer characteristic curves of different concentrations. The relationship is such that when the concentration of the gas is detected by the OTFT, the concentration of the gas can be determined based on the relationship between the gas concentration and the on-state current of the OTFT.
  • an embodiment of the present disclosure further provides a display panel including an array substrate and the above-described gas sensor provided by an embodiment of the present disclosure located in a non-display area of the array substrate.
  • the above display panel provided by the embodiment of the present disclosure may be a liquid crystal display panel or an organic light emitting diode display panel.
  • the array substrate specifically includes: a substrate 6, a display structure 7 for realizing a display function on the substrate 6, and a substrate.
  • a sealant package may be used.
  • the display panel provided by the embodiment of the present disclosure is an OLED display panel
  • a Frit package may be used.
  • the material of the substrate 6 and the upper substrate 8 may be, for example, glass. If the display panel is a flexible liquid crystal display panel, both the substrate 6 and the upper substrate 8 may be made of polyimide (PI) or polyethylene terephthalate. Flexible material such as ester (PET) or polyethylene naphthalate (PEN).
  • the gas sensor may be disposed at the position of the display panel as long as it does not affect the display effect.
  • the position of the gas sensor may be planned in the non-display area of the display panel and the gas sensor may be disposed.
  • the number of the gas sensors can be selected according to actual needs, and the disclosure is not limited.
  • an embodiment of the present disclosure further provides a display device, including the above display panel provided by the embodiment of the present disclosure.
  • the display device provided by the embodiment of the present disclosure may be a display device such as a mobile phone, a television, a tablet, or the like.
  • the display device provided by the embodiment of the present disclosure has the function of gas concentration detection because the gas sensor provided by the embodiment of the present disclosure is provided.
  • the user may be exposed to some harmful gases.
  • the user can detect whether there is any harmful gas in the current environment, and the user may have harmful gas in the current environment according to the detection result. In case of timely departure, to avoid harmful gas damage to human health.
  • the embodiment of the present disclosure further provides a method for fabricating an organic thin film transistor structure, as shown in FIG.
  • an organic thin film transistor structure is obtained by using the method to perform gas concentration.
  • the gas to be tested can enter the organic thin film transistor structure through the gap, thereby increasing the contact area between the gas and the carrier transport interface of the organic thin film transistor structure, and improving the sensitivity of the organic thin film transistor structure for detecting the gas concentration to be measured, and then Improve the sensitivity of detecting the concentration of the gas to be tested, and improve the gas concentration detection effect.
  • a suitable filling material and a corresponding cleaning liquid may be selected according to materials of the respective film layers of the organic thin film transistor structure, so that the cleaning liquid can only be dissolved in step S806.
  • the filling material does not affect other film layers of the organic thin film transistor structure.
  • the flow is simple and easy to implement, and the cleaning liquid dissolves only the filling material without affecting the performance of the organic thin film transistor structure.
  • the filling material may be, for example, a polymer insulating material, and the filling material includes poly(1,4-butylene adipate) (Poly(1,4-butylene adipate). ), PBA), the molecular structure of PBA is shown in Figure 9.
  • the cleaning liquid comprises one or a combination of the following materials: acetone, ethyl acetate.
  • the method for fabricating the above-mentioned organic thin film transistor structure provided by the embodiments of the present disclosure is exemplified by taking the material of the gate insulating layer as SiNx, the material of the organic active layer as PBIBDF-BT, the filling material as PBA, and the cleaning liquid as acetone. :
  • a method for fabricating an organic thin film transistor structure includes the following steps:
  • the source and drain electrodes 3 are disposed on the PBIBDF-BT2.
  • the method for fabricating the organic thin film transistor structure as shown in FIG. 10 is provided by the embodiment of the present disclosure.
  • the material of the organic active layer of the organic thin film transistor structure is PBIBDF-BT, the filling material is PBA, and when acetone is selected as a cleaning agent to dissolve PBA, The molecular weight of PBIBDF-BT is much larger than the molecular weight of PBA, which is not dissolved by acetone.
  • the amount of the substance of the PBA may be 2000 g/mol, and the concentration of the PBA may be in the range of 1 to 10 mg/ml, and the substance of the PBIBDF-BT The amount may be 58852g/mol, the concentration of PBIBDF-BT may be in the range of 1-10 mg/ml, and both PBA and PBIBDF-BT may select a high molecular polymer as a solvent, and the high molecular polymer may be, for example, chloroform, chlorobenzene or the like. Chlorobenzene, trichlorobenzene, toluene, etc.
  • the PBA may be filled with the strip-like voids, and inkjet printing, enamel filming, or the like may be employed.
  • the deposition of PBIBDF-BT in step S105 can also select the drop film method.
  • step S805 when PBIBDF-BT is deposited in step S805, PBIBDF-BT does not completely cover the SiN x -PBA composite layer, and a certain edge can be left, so that when the subsequent step S06 dissolves PBA by using the cleaning solution, the cleaning liquid can be allowed to pass through. The edge enters the SiN x -PBA composite layer and dissolves the PBA.
  • an embodiment of the present disclosure provides a method for fabricating a display panel.
  • the display panel provided by the embodiment of the present disclosure includes a display structure and a gas sensor. Since the gas sensor also includes an OTFT, the preparation process of the OTFT can be integrated with the TFT fabrication process in the display structure. As shown in FIG. 11, the OTFT and the display TFT are prepared. Including the following steps:
  • the organic active layer of the OTFT is first disposed, and then the active layer of the display TFT is disposed. In actual production, the active layer of the display TFT may also be selected first. Thereafter, in the case where the organic active layer of the OTFT is provided, when the active layer material of the display TFT is the same as the organic active layer material of the OTFT, the active layers of the display TFT and the OTFT can also be disposed at the same time.
  • the organic thin film transistor structure and the manufacturing method thereof, the gas sensor and the related device provided by the embodiments of the present disclosure are disposed in the organic thin film transistor structure in contact with the organic active layer and used to accommodate the gap of the gas to be tested, thereby adopting
  • the gas to be tested can enter the inside of the organic thin film transistor structure through the gap, increasing the contact area of the gas to be tested and the organic active layer to increase the gas and carrier migration to be tested.
  • the contact area of the interface thereby improving the sensitivity of the organic thin film transistor structure to detect the gas concentration to be measured, and improving the gas concentration detection effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Thin Film Transistor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本公开公开了有机薄膜晶体管结构及制作方法、气体传感器及相关装置,在有机薄膜晶体管结构中设置与有机有源层接触且用于容纳待测气体的空隙,从而当采用该有机薄膜晶体管结构进行气体浓度检测时,待测气体可以通过空隙进入有机薄膜晶体管结构的内部,增大待测气体与有机有源层的接触面积,以增大待测气体与载流子迁移界面的接触面积,从而提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,提升气体浓度检测效果。

Description

有机薄膜晶体管结构及制作方法、气体传感器及相关装置
相关申请的交叉引用
本公开要求在2017年08月15日提交中国专利局、申请号为201710696196.6、发明名称为“传感器及其制备方法、阵列基板、显示面板、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及薄膜晶体管技术领域,尤其涉及一种有机薄膜晶体管结构及其制作方法、气体传感器及相关装置。
背景技术
有机薄膜晶体管(Organic Thin Film Transistor,OTFT)具有低成本、环境友好、易于大面积化等优点。气体传感器是工业生产和智能家居中必不可少的元素,目前,传感器应用已经被证明是OTFT技术较好的归宿。待测气体进入OTFT的载流子迁移界面,可以影响有机有源层与绝缘层之间的界面,从而影响OTFT的载流子的迁移速度,使得OTFT的载流子迁移率下降,并且载流子下降的程度与气体的浓度有关,也就是说,OTFT在遇到待测气体时,具有迁移率特性明显变化(变差)的特点,因此,OTFT器件可以应用于气体传感器,用以进行气体浓度的检测。特别是在一次性气体传感器的应用上,OTFT的低成本特点可以发挥出它的优势。但是由于OTFT结构的限制,气体较难到达载流子迁移界面,利用OTFT进行气体浓度检测的灵敏度低,气体浓度检测效果差。
发明内容
本公开实施例提供的一种有机薄膜晶体管结构,包括:
栅极;
有机有源层,在所述栅极的厚度方向上,所述有机有源层与所述栅极相互交叠;
源漏极,所述源漏极与所述有机有源层连接;
栅绝缘层,所述栅绝缘层位于所述栅极和所述有机有源层之间,所述栅绝缘层包括:与所述有机有源层接触且用于容纳待测气体的空隙。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,所述空隙在所述栅绝缘层的厚度方向贯穿所述栅绝缘层。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,所述空隙包括延伸方向大致一致的多个条状空隙;
在所述有机有源层的厚度方向上,所述条状空隙与所述有机有源层相互交叠。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,在所述有机有源层的厚度方向上,所述条状空隙沿长度方向的两端与所述有机有源层互不重叠。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,任意相邻的两个所述条状空隙之间的间距相等。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,所述栅绝缘层还包括:被所述条状空隙隔开的多个子绝缘层;任意相邻的两个所述子绝缘层之间的间距相等。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,所述有机有源层的材料为供体-受体型共轭聚合物PBIBDF-BT。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,所述栅绝缘层的材料包括氮化硅。
可选地,在本公开实施例提供的上述有机薄膜晶体管结构中,所述栅绝缘层位于所述栅极之上,所述有机有源层位于所述栅绝缘层之上,所述源漏极位于所述有机有源层之上。
另一方面,本公开实施例还提供了一种气体传感器,包括上述有机薄膜 晶体管结构。
另一方面,本公开实施例还提供了一种显示面板,包括阵列基板,以及位于所述阵列基板的非显示区域的上述气体传感器。
另一方面,本公开实施例还提供了一种显示装置,包括上述的显示面板。
另一方面,本公开实施例还提供了一种上述有机薄膜晶体管结构的制作方法,包括:
形成栅极的图案;
在所述栅极的图案上形成栅绝缘层;
刻蚀所述栅绝缘层,在所述栅绝缘层中形成用于容纳待测气体的空隙;
利用填充材料填充所述空隙,得到由所述填充材料与所述栅绝缘层形成的复合层;
在所述复合层上形成有机有源层的图案和源漏极的图案;
利用清洗液去除所述填充材料。
可选地,在本公开实施例提供的上述方法中,所述填充材料包括聚(1,4-丁烯己二酸酯)。
可选地,在本公开实施例提供的上述方法中,所述清洗液包括下列材料之一或其组合:丙酮、乙酸乙酯。
附图说明
图1为本公开一些实施例提供的有机薄膜晶体管结构的示意图;
图2为本公开一些实施例提供的有机薄膜晶体管结构中子绝缘层和条状空隙在垂直于栅极方向上的投影示意图;
图3为本公开一些实施例提供的有机薄膜晶体管结构的俯视图;
图4为本公开一些实施例提供的有机薄膜晶体管结构沿图3中AA’的剖面图;
图5为本公开一些实施例提供的有机薄膜晶体管结构中PBIBDF-BT的分子结构图;
图6为本公开一些实施例提供的不同气体浓度对应的有机薄膜晶体管的转移特性曲线示意图;
图7为本公开一些实施例提供的显示面板的结构示意图;
图8为本公开一些实施例提供的有机薄膜晶体管的制作方法的流程图;
图9为本公开一些实施例提供的有机薄膜晶体管的制作方法中PBA的分子结构图;
图10为本公开一些实施例提供的有机薄膜晶体管的制作方法中各步骤完成后的结构示意图;
图11为本公开一些实施例提供的显示面板的制作方法中各步骤完成后的结构示意图。
具体实施方式
本公开实施例提供了一种有机薄膜晶体管结构及其制作方法、气体传感器及相关装置,用以提高气体传感器进行气体浓度检测的灵敏度,提升气体浓度的检测效果。
本公开实施例提供的一种有机薄膜晶体管结构,如图1所示,包括:
栅极1;
有机有源层2,在栅极1的厚度方向上,有机有源层2与栅极1相互交叠;
源漏极3,源漏极3与有机有源层2连接;
栅绝缘层4,栅绝缘层4位于栅极1和有机有源层2之间,栅绝缘层4包括:与有机有源层2接触且用于容纳待测气体的空隙5。
具体地,在本公开实施例提供的有机薄膜晶体管结构中,设置与有机有源层2接触且用于容纳待测气体的空隙5,从而当采用该有机薄膜晶体管结构进行气体浓度检测时,待测气体可以通过空隙5进入有机薄膜晶体管结构的内部,增大待测气体与有机有源层2的接触面积,以增大待测气体与载流子迁移界面的接触面积,从而提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,提升气体浓度检测效果。
可选地,在本公开实施例提供的有机薄膜晶体管结构中,如图1所示,空隙5可以在栅绝缘层4的厚度方向贯穿栅绝缘层4,以便尽可能的增大待测气体的容纳空间,有利于待测气体与有机有源层2充分接触,以增大待测气体与载流子迁移界面的接触面积,从而提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,提升气体浓度检测效果。
可选地,在本公开实施例提供的有机薄膜晶体管结构中,如图1至图3所示,空隙5可以包括延伸方向大致一致的多个条状空隙51;
在有机有源层2的厚度方向上,条状空隙51与有机有源层2相互交叠。
具体地,采用多个与有机有源层2相互接触的条状空隙51,可以使待测气体与有机有源层2的各个区域相互接触,以增大待测气体与载流子迁移界面的接触面积,从而提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,提升气体浓度检测效果。
可选地,在本公开实施例提供的有机薄膜晶体管结构中,如图3所示,在有机有源层2的厚度方向上,条状空隙51沿长度方向的两端(图3中虚线框所示)与有机有源层2互不重叠,即条状空隙51沿长度方向的两端会凸出于有机有源层2,以便待测气体可以从条状空隙51沿长度方向的两端进入,有利于待测气体与有机有源层2充分接触,以增大待测气体与载流子迁移界面的接触面积,从而提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,提升气体浓度检测效果。
可选地,在本公开实施例提供的有机薄膜晶体管结构中,任意相邻的两个条状空隙51之间的间距相等。这样,条状空隙51均匀设置在栅绝缘层4中,当利用本公开实施例提供的有机薄膜晶体管结构进行气体浓度检测时,待测气体可以均匀分布于有机薄膜晶体管结构的载流子迁移界面,使得气体浓度检测结果更加准确。
可选地,在本公开实施例提供的有机薄膜晶体管结构中,如图2所示,栅绝缘层4还可以包括:被条状空隙51隔开的多个子绝缘层41;任意相邻的两个子绝缘层41之间的间距相等。这样,可以保证条状空隙51均匀设置在 栅绝缘层4中,当利用本公开实施例提供的有机薄膜晶体管结构进行气体浓度检测时,待测气体可以均匀分布于有机薄膜晶体管结构的载流子迁移界面,使得气体浓度检测结果更加准确。
可选地,在本公开实施例提供的有机薄膜晶体管结构中,有机有源层2的材料可以选择供体-受体型共轭聚合物(PBIBDF-BT)。
具体地,PBIBDF-BT的分子结构式如图5所示,PBIBDF-BT对氨气、二氧化硫等日常生活中常需要被检测的气体比较敏感,此外,PBIBDF-BT还可用于对乙醇、丙酮、乙醚、正己烷、甲苯、乙酸乙酯、异丙醇、氯仿等气体的检测。
需要说明的是,对于某一种有机半导体材料,其可能只对某些气体敏感,在选择有机薄膜晶体管结构的有机有源层2的材料时,需要考虑应用于气体传感器时需要对哪种气体进行检测,从而选择对该种气体敏感的材料作为有机有源层2的材料。
可选地,在本公开实施例提供的有机薄膜晶体管结构中,栅绝缘层4的材料可以包括氮化硅(SiNx)。
可选地,本公开实施例提供的有机薄膜晶体管结构可以为底栅型结构,具体地,如图1所示,栅绝缘层4位于栅极1之上,有机有源层2位于栅绝缘层4之上,源漏极3位于有机有源层2之上。这样,待测气体除了通过空隙5与有机有源层2接触,还可以通过有机有源层2的上表面与其接触,以增大待测气体与载流子迁移界面的接触面积,从而提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,提升气体浓度检测效果。
或者,可选地本公开实施例提供的有机薄膜晶体管结构也可以为顶栅型结构,在此不做限定。
基于同一发明构思,本公开实施例还提供了一种气体传感器,包括本公开实施例提供的上述有机薄膜晶体管结构。
具体地,利用本公开实施例提供的气体传感器进行气体浓度检测时,当待测气体进入有机薄膜晶体管结构(OTFT)之前,OTFT处于正常工作状态, 此状态OTFT的载流子迁移率为a。当待测气体进入到有机薄膜晶体管结构后,待测气体会通过空隙5与有机有源层2接触,使得载流子迁移界面的气体环境发生改变,相当于正常工作状态下的有机薄膜晶体管结构的载流子迁移界面被待测气体污染,OTFT处于异常工作状态。处于异常工作状态下的OTFT的载流子迁移率为b,与OTFT处于正常工作的状态相比,OTFT的载流子迁移率会下降,并且,载流子迁移率b会随着气体浓度的增大而远远小于a。因此,可以根据b与a的差值来判断环境中的待测气体的浓度,b与a的差值越大,则气体浓度越高,反之则气体浓度越低。
针对某种气体,气体浓度对OTFT载流子迁移率的影响可以反映为对OTFT转移特性曲线的影响,当气体浓度不同时,OTFT的转移特性曲线也不同,以OTFT的有机有源层为PBIBDF-BT为例,如图6所示,从最左侧观看,从上到下为不同浓度的氨气对应的OTFT的转移特性曲线,从下到上曲线对应的氨气的气体浓度依次递减,最上侧曲线对应的是氨气的百分比浓度(parts per billion,ppm)为0时的OTFT转移特性曲线,最下侧曲线对应的是氨气的ppm为50的情况下OTFT转移特性曲线,当OTFT的驱动电压一定时,ppm为0时,OTFT的开态电流(Ion)最大,当氨气的ppm为50的情况下,OTFT的Ion最小。对于任一种气体其不同浓度下OTFT的转移特性曲线可以预先测得,因此,可根据预先测得的不同浓度对应的OTFT转移特性曲线拟合出相同驱动电压下气体浓度和OTFT开态电流的关系,这样在利用OTFT对该气体的浓度检测时,便可以根据气体浓度和OTFT开态电流的关系的确定该气体的浓度。
基于同一发明构思,本公开实施例还提供了一种显示面板,包括阵列基板以及位于阵列基板的非显示区域的本公开实施例提供的上述气体传感器。
具体地,本公开实施例提供的上述显示面板可以是液晶显示面板、有机发光二极管显示面板。
具体地,在本公开实施例提供的上述显示面板中,如图7所示,阵列基板具体包括:衬底6、位于衬底6之上的用于实现显示功能的显示结构7、位 于衬底6之上的气体传感器100、位于显示结构7之上的上基板8、以及将上基板8、衬底6进行封装的封装材料9。
当本公开实施例提供的显示面板是液晶显示面板时,可以采用密封胶(sealant)封装,当本公开实施例提供的显示面板为OLED显示面板时,则可以采用玻璃胶(Frit)封装。衬底6、上基板8的材料例如可以是玻璃,如果显示面板为柔性液晶显示面板,则衬底6和上基板8都可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)等柔性材料。
需要说明的是,气体传感器在显示面板的设置位置,只要不影响显示效果即可,例如可以在显示面板的非显示区规划出气体传感器的位置并设置气体传感器。此外,气体传感器的设置数量也可以根据实际需要进行选择,本公开不进行限制。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示面板。
例如,本公开实施例提供的显示装置可以是手机、电视、平板电脑等显示装置。
本公开实施例提供的显示装置,由于设置有本公开实施例提供的上述气体传感器,因此显示装置也具有气体浓度检测的功能。日常生活中,用户可能会接触到一些有害气体,利用本公开实施例提供的上述显示装置,用户便可以检测当前环境中是否存在某种有害气体,用户可以根据检测结果,在当前环境存在有害气体的情况下及时离开,避免有害气体对人身体健康造成损害。
与本公开实施例提供的有机薄膜晶体管结构对应,本公开实施例还提供了一种有机薄膜晶体管结构的制作方法,如图8所示,包括:
S801、形成栅极的图案;
S802、在栅极的图案上形成栅绝缘层;
S803、刻蚀栅绝缘层,在栅绝缘层中形成用于容纳待测气体的空隙;
S804、利用填充材料填充空隙,得到由填充材料与栅绝缘层形成的复合层;
S805、在复合层上形成有机有源层的图案和源漏极的图案;
S806、利用清洗液去除填充材料。
具体地,在本公开实施例提供的上述有机薄膜晶体管结构的制作方法中,由于在栅绝缘层中制作有用于容纳待测气体的空隙,从而当采用该方法制得有机薄膜晶体管结构进行气体浓度检测时,待测气体可以通过空隙进入有机薄膜晶体管结构内部,从而增大气体与有机薄膜晶体管结构载流子迁移界面的接触面积,可以提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,进而可以提高检测待测气体浓度的灵敏度,提升气体浓度检测效果。
需要说明的是,在本公开实施例提供的上述制作方法中,可根据有机薄膜晶体管结构各个膜层的材料来选择合适的填充材料和相应的清洗液,使得在步骤S806中清洗液仅能溶解填充材料而不影响有机薄膜晶体管结构的其他膜层即可。
具体地,在本公开实施例提供的上述制作方法中,流程简单易于实现,并且清洗液仅溶解填充材料,不会影响有机薄膜晶体管结构的性能。
具体地,在本公开实施例提供的上述制作方法中,填充材料例如可以选择聚合物绝缘材料,填充材料包括聚(1,4-丁烯己二酸酯)(Poly(1,4-butylene adipate),PBA),PBA的分子结构式如图9所示。
可选地,在本公开实施例提供的上述制作方法中,清洗液包括下列材料之一或其组合:丙酮、乙酸乙酯。
下面以栅绝缘层的材料为SiNx、有机有源层的材料为PBIBDF-BT、填充材料为PBA、清洗液为丙酮为例,对本公开实施例提供的上述有机薄膜晶体管结构的制作方法进行举例说明:
如图10所示,本公开实施例提供的有机薄膜晶体管结构的制作方法包括如下步骤:
S101、在衬底6之上形成栅极1;
S102、在栅极1之上形成SiN x4;其中,SiN x层的厚度为
Figure PCTCN2018092243-appb-000001
S103、刻蚀SiN x4,在SiN x4中形成多个条状空隙51;
S104、采用涂布工艺将PBA0填满条状空隙51;得到由PBA0与SiN x4形成的SiN x-PBA复合层;
S105、采用喷墨打印工艺在SiN x-PBA复合层之上沉积PBIBDF-BT2;
S106、利用丙酮将PBA0溶解,得到由SiN x4和条状空隙51组成的SiN x-空隙复合层;
S107、在PBIBDF-BT2之上设置源漏极3。
本公开实施例提供的如图10所示的有机薄膜晶体管结构的制作方法,有机薄膜晶体管结构的有机有源层的材料为PBIBDF-BT,填充材料为PBA,选择丙酮作为清洗剂溶解PBA时,PBIBDF-BT的分子量远大于PBA的分子量,其不会被丙酮溶解。
需要说明的是,在步骤S104、S105中需要使用PBIBDF-BT和PBA溶液,PBA的物质的量可以为2000g/mol,PBA的浓度可以在1~10mg/ml范围内,PBIBDF-BT的物质的量可以为58852g/mol,PBIBDF-BT的浓度可以在1~10mg/ml范围内,PBA和PBIBDF-BT均可以选择高分子聚合物作为溶剂,高分子聚合物例如可以是氯仿、氯苯、二氯苯、三氯苯、甲苯等。
步骤S104中将PBA填满条状空隙还可以采用喷墨打印、甩膜法等。
步骤S105中沉积PBIBDF-BT还可以选择滴膜法。
此外,步骤S805中在沉积PBIBDF-BT时,PBIBDF-BT不完全覆盖SiN x-PBA复合层,可以留出一定的边缘,这样,后续步骤S06利用清洗液溶解PBA时,清洗液可以通过留出的边缘进入SiN x-PBA复合层,将PBA溶解。
与本公开实施例提供的显示面板相对应,本公开实施例提供了一种显示面板的制作方法。本公开实施例提供的显示面板包括显示结构和气体传感器,由于气体传感器也包括OTFT,这样,OTFT的制备工艺可以与显示结构中的TFT制备工艺集成,如图11所示,制备OTFT与显示TFT包括如下步骤:
S111、在衬底6上设置栅极1;
S112、沉积SiN x4,在气体传感器设置区域刻蚀SiN x4,形成多个条状空隙51;
S113、采用涂布工艺将PBA0填满条状空隙51;在气体传感器设置区域得到由PBA0与SiN x4形成的SiN x-PBA复合层;
S114、在气体传感器设置区域的SiN x-PBA复合层之上沉积PBIBDF-BT2;
S115、利用丙酮将PBA0溶解;
S116、在显示结构区域沉积、刻蚀非晶硅(a-Si)10,在a-Si10之上沉积、刻蚀电子型掺杂非晶硅(n +a-Si)11;
S117、形成源漏极3。
本公开实施例提供的上述制备显示面板的步骤中,先设置OTFT的有机有源层,之后再设置显示TFT的有源层,在实际生产中,也可以选择先设置显示TFT的有源层,之后在设置OTFT的有机有源层,当显示TFT的有源层材料与OTFT的有机有源层材料相同的情况下,显示TFT和OTFT的有源层也可以同时设置。
综上,本公开实施例提供的有机薄膜晶体管结构及其制作方法、气体传感器及相关装置,在有机薄膜晶体管结构中设置与有机有源层接触且用于容纳待测气体的空隙,从而当采用该有机薄膜晶体管结构进行气体浓度检测时,待测气体可以通过空隙进入有机薄膜晶体管结构的内部,增大待测气体与有机有源层的接触面积,以增大待测气体与载流子迁移界面的接触面积,从而提高有机薄膜晶体管结构检测待测气体浓度的灵敏度,提升气体浓度检测效果。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种有机薄膜晶体管结构,其中,包括:
    栅极;
    有机有源层,在所述栅极的厚度方向上,所述有机有源层与所述栅极相互交叠;
    源漏极,所述源漏极与所述有机有源层连接;
    栅绝缘层,所述栅绝缘层位于所述栅极和所述有机有源层之间,所述栅绝缘层包括:与所述有机有源层接触且用于容纳待测气体的空隙。
  2. 根据权利要求1所述的有机薄膜晶体管结构,其中,所述空隙在所述栅绝缘层的厚度方向贯穿所述栅绝缘层。
  3. 根据权利要求1所述的有机薄膜晶体管结构,其中,所述空隙包括延伸方向大致一致的多个条状空隙;
    在所述有机有源层的厚度方向上,所述条状空隙与所述有机有源层相互交叠。
  4. 根据权利要求3所述的有机薄膜晶体管结构,其中,在所述有机有源层的厚度方向上,所述条状空隙沿长度方向的两端与所述有机有源层互不重叠。
  5. 根据权利要求3所述的有机薄膜晶体管结构,其中,任意相邻的两个所述条状空隙之间的间距相等。
  6. 根据权利要求3所述的有机薄膜晶体管结构,其中,所述栅绝缘层还包括:被所述条状空隙隔开的多个子绝缘层;任意相邻的两个所述子绝缘层之间的间距相等。
  7. 根据权利要求1所述的有机薄膜晶体管结构,其中,所述有机有源层的材料为供体-受体型共轭聚合物PBIBDF-BT。
  8. 根据权利要求1所述的有机薄膜晶体管结构,其中,所述栅绝缘层的材料包括氮化硅。
  9. 根据权利要求1~8任一项所述的有机薄膜晶体管结构,其中,所述栅绝缘层位于所述栅极之上,所述有机有源层位于所述栅绝缘层之上,所述源漏极位于所述有机有源层之上。
  10. 一种气体传感器,其中,包括权利要求1~9任一权利要求所述的有机薄膜晶体管结构。
  11. 一种显示面板,其中,包括阵列基板,以及位于所述阵列基板的非显示区域的权利要求10所述的气体传感器。
  12. 一种显示装置,其中,包括权利要求11所述的显示面板。
  13. 一种如权利要求9所述的有机薄膜晶体管结构的制作方法,包括:
    形成栅极的图案;
    在所述栅极的图案上形成栅绝缘层;
    刻蚀所述栅绝缘层,在所述栅绝缘层中形成用于容纳待测气体的空隙;
    利用填充材料填充所述空隙,得到由所述填充材料与所述栅绝缘层形成的复合层;
    在所述复合层上形成有机有源层的图案和源漏极的图案;
    利用清洗液去除所述填充材料。
  14. 根据权利要求13所述的方法,其中,所述填充材料包括聚(1,4-丁烯己二酸酯)。
  15. 根据权利要求14所述的方法,其中,所述清洗液包括下列材料之一或其组合:丙酮、乙酸乙酯。
PCT/CN2018/092243 2017-08-15 2018-06-21 有机薄膜晶体管结构及制作方法、气体传感器及相关装置 WO2019033847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/329,274 US10804479B2 (en) 2017-08-15 2018-06-21 Organic thin film transistor structure and manufacturing method, gas sensor and related apparatus
EP18846216.2A EP3671878A4 (en) 2017-08-15 2018-06-21 ORGANIC THIN LAYER TRANSISTOR STRUCTURE AND MANUFACTURING PROCESS, GAS SENSOR AND RELATED APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710696196.6A CN109411604B (zh) 2017-08-15 2017-08-15 传感器及其制备方法、阵列基板、显示面板、显示装置
CN201710696196.6 2017-08-15

Publications (1)

Publication Number Publication Date
WO2019033847A1 true WO2019033847A1 (zh) 2019-02-21

Family

ID=65361812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092243 WO2019033847A1 (zh) 2017-08-15 2018-06-21 有机薄膜晶体管结构及制作方法、气体传感器及相关装置

Country Status (4)

Country Link
US (1) US10804479B2 (zh)
EP (1) EP3671878A4 (zh)
CN (1) CN109411604B (zh)
WO (1) WO2019033847A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243789B (zh) * 2019-06-28 2022-07-08 京东方科技集团股份有限公司 一种气体监测装置和气体监测方法,以及显示装置
CN112768496B (zh) * 2021-01-06 2022-09-09 武汉华星光电半导体显示技术有限公司 一种显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172028A (ja) * 2007-01-11 2008-07-24 Brother Ind Ltd 有機トランジスタおよび有機トランジスタの製造方法
CN102789985A (zh) * 2011-05-20 2012-11-21 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
CN103490010A (zh) * 2013-09-04 2014-01-01 中国科学院苏州纳米技术与纳米仿生研究所 基于微结构栅绝缘层的压力传感器及其制备方法
CN105699463A (zh) * 2015-08-27 2016-06-22 索武生 一种化学场效应晶体管气敏传感器及其制造方法
CN103500798B (zh) * 2013-09-04 2016-08-17 中国科学院苏州纳米技术与纳米仿生研究所 基于场效应晶体管结构的气体传感器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005314B2 (en) * 2001-06-27 2006-02-28 Intel Corporation Sacrificial layer technique to make gaps in MEMS applications
EP2006668B1 (de) * 2007-06-22 2014-05-07 Micronas GmbH Gassensor
CN102953037B (zh) * 2011-08-19 2014-12-17 京东方科技集团股份有限公司 一种超薄玻璃基板上导电膜的制备方法
CN104024817B (zh) * 2011-12-28 2016-09-07 Posco公司 传感器设备及包括其的冷却设备的性能评估装置
JP6497387B2 (ja) * 2014-04-21 2019-04-10 住友化学株式会社 膜および該膜を含有する有機半導体素子
KR102491851B1 (ko) * 2015-07-02 2023-01-26 삼성전자주식회사 마이크로 구조체를 포함하는 플렉서블 바이모달 센서
CN106037637B (zh) * 2016-05-16 2023-05-30 京东方科技集团股份有限公司 一种便携式设备及便携式系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172028A (ja) * 2007-01-11 2008-07-24 Brother Ind Ltd 有機トランジスタおよび有機トランジスタの製造方法
CN102789985A (zh) * 2011-05-20 2012-11-21 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
CN103490010A (zh) * 2013-09-04 2014-01-01 中国科学院苏州纳米技术与纳米仿生研究所 基于微结构栅绝缘层的压力传感器及其制备方法
CN103500798B (zh) * 2013-09-04 2016-08-17 中国科学院苏州纳米技术与纳米仿生研究所 基于场效应晶体管结构的气体传感器及其制备方法
CN105699463A (zh) * 2015-08-27 2016-06-22 索武生 一种化学场效应晶体管气敏传感器及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671878A4 *

Also Published As

Publication number Publication date
US20190252629A1 (en) 2019-08-15
CN109411604B (zh) 2021-01-08
CN109411604A (zh) 2019-03-01
US10804479B2 (en) 2020-10-13
EP3671878A1 (en) 2020-06-24
EP3671878A4 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
CN107919293B (zh) 显示设备和有机材料检测方法
US9453811B2 (en) Asymmetric bottom contacted device
JP5602390B2 (ja) 薄膜トランジスタ、アクティブマトリクス基板、及び撮像装置
US8829511B2 (en) Hybrid thin film transistor, manufacturing method thereof and display panel having the same
JP6362405B2 (ja) 半導体装置
US9159866B2 (en) Photo sensor, method of manufacturing photo sensor, and display apparatus
CN103558280A (zh) 一种基于隧穿场效应晶体管的生物传感器及其制备方法
CN109427823B (zh) 显示装置
WO2019033847A1 (zh) 有机薄膜晶体管结构及制作方法、气体传感器及相关装置
Tang et al. Low-voltage pH sensor tag based on all solution processed organic field-effect transistor
US20090278117A1 (en) Organic thin film transistor, method of manufacturing the same, and biosensor using the transistor
US20200287049A1 (en) Oxide semiconductor thin-film transistor and method of fabricating the same
US7923735B2 (en) Thin film transistor and method of manufacturing the same
JP5960398B2 (ja) 薄膜トランジスタセンサー及び薄膜トランジスタセンサーの製造方法
KR102227637B1 (ko) 적외선 감지 소자, 적외선 감지 소자를 포함하는 적외선 센서 및 이의 제조 방법
JP2016103577A (ja) 半導体バイオセンサ装置
US9466818B2 (en) Organic light emitting diode display device and method of fabricating the same
KR20160104485A (ko) 나노선을 구비한 나노선 전계효과 센서 및 그 제조방법
WO2019071824A1 (zh) 显示面板及其制造方法
KR102060377B1 (ko) 디스플레이 소자, 그 제조 방법, 및 이미지 센서 소자의 제조방법
TWI740325B (zh) 氣體感測器及其製備方法
CN109613065B (zh) 一种半导体湿度传感器及其制备方法
JP2011185818A (ja) 化学センサ及び検出方法
KR101308809B1 (ko) 산화물 반도체 박막 트랜지스터 제조방법 및 이를 이용한 능동구동 디스플레이 장치, 능동구동 센서장치
KR101273671B1 (ko) 산화물 반도체 박막 트랜지스터 제조방법, 이에 따라 제조된 산화물 반도체 박막 트랜지스터를 포함하는 디스플레이 장치 및 능동구동센서 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018846216

Country of ref document: EP

Effective date: 20200316