WO2019033805A1 - 活性染料染色残液回收系统及回收方法 - Google Patents

活性染料染色残液回收系统及回收方法 Download PDF

Info

Publication number
WO2019033805A1
WO2019033805A1 PCT/CN2018/087412 CN2018087412W WO2019033805A1 WO 2019033805 A1 WO2019033805 A1 WO 2019033805A1 CN 2018087412 W CN2018087412 W CN 2018087412W WO 2019033805 A1 WO2019033805 A1 WO 2019033805A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction
reactive dye
residual liquid
extractant
organic solvent
Prior art date
Application number
PCT/CN2018/087412
Other languages
English (en)
French (fr)
Inventor
韦节彬
李世琪
刘奎东
张佐平
李华
陈超
张庆娟
禹辉
陈仰孚
Original Assignee
新疆如意纺织服装有限公司
新疆鲁意纺织科技有限公司
新疆神邦环境工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆如意纺织服装有限公司, 新疆鲁意纺织科技有限公司, 新疆神邦环境工程有限公司 filed Critical 新疆如意纺织服装有限公司
Publication of WO2019033805A1 publication Critical patent/WO2019033805A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry

Definitions

  • the invention relates to the field of textile printing and dyeing, in particular to the treatment and recycling of textile printing and dyeing wastewater.
  • the reactive dye is dyed with a large amount of hydrolyzed dye, in order to obtain good washing fastness, the hydrolyzed dye should be thoroughly washed out. For this reason, the parent structure of the reactive dye is designed to have a lower affinity for the fiber while being active. In the dyeing process, it is necessary to add 1-10% salt to promote dyeing, so as to increase the dye uptake rate. For some deep color, the dosage is up to 1 ton of salt per ton of fiber. These salts have no loss in dyeing, and directly stained from sewage. All of them are discharged. Many factories have more than tens of tons of salt per day. The annual average amount of salt used in the country is 1 million tons. This kind of discharge for many years has caused serious damage to the ecology of the surrounding soil and rivers.
  • the present invention provides a reactive dye staining residue recovery system and a recovery method.
  • a reactive dye staining residue recovery system comprising an extraction system and a stripping system; the extraction system extracts the reactive dye in the residue into an organic solvent, and the extracted residue is used for dyeing; and the stripping The system extracts the reactive dye in the organic solvent extracted with the reactive dye from the extraction system into the aqueous solution, and the organic solvent after the stripping is returned to the extraction system as an extracting agent.
  • Both the extraction system and the stripping system are centrifugally extracted.
  • the extractant in the extraction system is a mixture of trioctylamine, n-octanol and diesel in a volume ratio of 1-2:1-2:3-5.
  • the aqueous phase extractant in the stripping system is an alkaline solution having a pH of 10-11.
  • a method for recovering a reactive dyeing residue comprising the steps of: S1, extracting a residual liquid, extracting the hydrolyzed reactive dye in the residual liquid into an organic solvent, and extracting the salt-containing aqueous solution for dyeing again; S2, passing The stripping extracts the reactive dye in the organic solvent extracted with the reactive dye to the aqueous phase; and S3, and reuses the organic solvent after the stripping as the extractant.
  • step S1 Also included before the step S1 is a pretreatment step of adjusting the pH of the dye residue to 2-3 with acid.
  • the acid is at least one of sulfuric acid, formic acid, and acetic acid.
  • the extraction and stripping are both centrifugal extractions.
  • the extracted extractant is a mixture of trioctylamine, n-octanol and diesel in a volume ratio of 1-2:1-2:3-5.
  • the stripped aqueous phase extractant is an alkaline solution having a pH of 10-11.
  • the centrifugal extraction separation technology used in the invention is a polar organic chemical extraction and separation method based on reversible reaction, and a closed loop cycle of water + salt and extractant is formed in the process of dyeing the residual liquid, and is centrifuged.
  • the interaction in the extraction device continuously extracts the hydrolyzed dye in the dye residue, thereby allowing the high salinity residue to be recycled, thereby avoiding a large amount of salt discharge. It not only reduces environmental pollution, but also reduces production costs. At the same time, more than 95% of the hydrolyzed dyes and other contaminants are removed, the extractant used can be recycled and reused, and industrial application is realized.
  • the regeneration dyeing process of reactive dyes is developed to solve the high chroma and high dyeing of reactive dyes.
  • the problem of salinity wastewater treatment has realized the resource utilization of dye residue liquid and water, which has broken through the ecological and environmental constraints of the existing reactive dye dyeing production methods.
  • Figure 1 is a schematic diagram of a reactive dyeing residue recovery system of the present invention
  • Figure 2 is a schematic view showing the structure of a reactive dyeing residue recovery system of the present invention
  • Figure 3 is a schematic illustration of a reactive dye staining residue recovery system of the present invention.
  • 1-extractant configuration tank 2-residual storage tank; 3-flow meter; 4-backflushant storage tank; 5-regressant configuration tank; 6-extractant recovery tank; 7-pump; 8-level Countercurrent extraction device; 9-stage countercurrent extraction device.
  • the reactive dye staining residue recovery system of the present invention comprises an extraction system and a stripping system.
  • the extraction system extracts the reactive dye in the raffinate into an organic solvent, and the extracted residue is used for dyeing.
  • the stripping system strips the reactive dye in the organic solvent extracted with the reactive dye from the extraction system into the aqueous solution, and the stripped organic solvent is returned to the extraction system as an extractant.
  • the method for recovering the reactive dyeing residue of the present invention comprises the following steps: S1, extracting the residual liquid, extracting the reactive dye in the residual liquid into an organic solvent, and extracting the salt-containing aqueous solution for dyeing again; S2, by stripping The reactive dye in the organic solvent extracted with the reactive dye is extracted to the aqueous phase; and S3, the organic solvent after the stripping is reused as an extractant.
  • a pretreatment step is also included prior to the S1 step, which is to adjust the pH of the raffinate to 2-3 with an acid.
  • the acid-removing treatment of the residual liquid is for the purpose of extracting the dye from the residual liquid by converting the extracting agent from a non-ionic state to a cation during the extraction process to complex the anion formed by hydrolysis of the reactive dye in the residual liquid.
  • the acid to be used may be an inorganic acid or an organic acid.
  • the inorganic acid may be sulfuric acid or the like
  • the organic acid may be formic acid, acetic acid or the like.
  • the extractant When extracting the extractant of the extraction system, it is generally required that the extractant is not miscible with the residual liquid, the solubility of the reactive dye is much larger than that of the reactive dye in the residual liquid, or is not easy to volatilize and the residual liquid cannot react.
  • a nonvolatile organic solvent is usually used as an extractant, and an appropriate organic solvent should be selected according to the kind of the reactive dye.
  • the extractant may include a complexing agent, a cosolvent, and a diluent in the present invention.
  • the complexing agent in the extractant is converted from a non-ionic state to a cation under acidic conditions, and the anion formed by the hydrolysis of the reactive dye in the complex liquid is used to achieve the purpose of extracting the dye from the residual liquid.
  • the co-solvent is a good solvent for the selected complexing agent and complexing product to facilitate the formation and phase transfer of the complex.
  • the diluent is used to improve the viscosity, surface tension, etc. of the mixed extractant, and to improve the extraction ability.
  • One skilled in the art can select a suitable co-solvent and diluent as needed based on the selected complexing agent.
  • a reactive dye is a water-soluble dye with a reactive group, which can be covalently bonded to a hydroxyl group on a cellulose fiber, an amino group on a protein fiber, an amino group on a polyamide fiber, and a carboxy hydroxyl group.
  • Reactive dyes are distinguished by different reactive groups. There are mainly nine types, namely, dichlorotriazine type, monochlorotriazine type, vinyl sulfone type, monochlorotriazine and vinyl sulfone double active group, and double chlorinated three.
  • the complexing agent in the extractant is selected from organic solvents capable of forming cations under acidic conditions, such as tertiary amines or mixtures thereof, which may be mixed in different ratios.
  • a mixed extractant R3N containing a polyamine is formed. The following is an example of the use of sulfuric acid in the acid treatment to illustrate the extraction process of the hydrolysis dye in the extraction residue by the extractant containing the polyamine:
  • the polyamine is converted from a nonionic state to a cation under acidic conditions.
  • the cation is complexed with the hydrolyzed dye R'SO3.
  • the extractant may be, but is not limited to, a mixture of trioctylamine, n-octanol and diesel in a volume ratio of 1-2:1-2:3-5.
  • One skilled in the art can suitably select other suitable extractants in accordance with the teachings of the present invention.
  • the stripping system is the stripping of the dye extracted into the organic solvent into the aqueous phase.
  • the aqueous phase extracting agent may be an alkaline aqueous solution to which a pH of 10 to 11 is added, and the alkaline aqueous solution may be an aqueous sodium hydroxide solution.
  • the complex formed in the oil phase removes H+ under alkaline conditions, and the extractant returns to a non-ionic state, so that the hydrolyzed dye is separated from the oil phase, dissolved in the aqueous phase, and the back extraction is completed.
  • the stripping process is as shown in equation (3):
  • the stripped organic solvent is returned to the extraction system as an extractant.
  • Figure 1 is a schematic diagram of a reactive dye staining residue recovery system.
  • the dyeing machine removes the residual liquid, collects and adjusts the residual liquid, and then supplies the collected residual liquid to a centrifugal extraction device for extraction.
  • the extracted residual liquid is a saline solution, which can be returned to the dyeing machine for reuse; then the organic dye extraction is performed.
  • the solvent is subjected to stripping, the dye therein is back-extracted to the aqueous phase, and the stripped organic solvent is supplied to the centrifugal extraction apparatus as an extractant for reuse.
  • the reactive dye dyeing residue recovery system comprises an extractant configuration tank 1, a residual liquid storage tank 2, a three-stage countercurrent extraction device 8 for extraction, a secondary countercurrent extraction device for stripping extraction 9, a stripping agent configuration tank 5, Stripper tank 4, extractant tank 6, flow meter 3 for controlling flow, and pump 7.
  • the system extraction consists of three identical centrifugal devices, for example, a commercially available model RYD680P with a throughput of 150 m 3 /h, and the residual liquid is continuously extracted three times through three identical centrifugal devices.
  • the three-stage countercurrent extraction apparatus is only for explaining the present invention, and the present invention is not limited to the three-stage countercurrent extraction apparatus, and may be other extraction apparatuses.
  • the stripping is not limited to a two-stage countercurrent extraction apparatus, and may be other extraction apparatuses.
  • the raffinate recovery process of the system is described in detail below. First, the waste liquid discharged from the dyeing machine can be pretreated, and the pH of the residual liquid is adjusted to 2-3. The residual liquid after pretreatment is stored in the residual liquid storage tank 2, and the flow rate of the residual liquid entering the three-stage countercurrent extraction device 8 is controlled by the flow meter 3, and the residual liquid after the extraction flows out from the extraction device to treat the decolorized brine.
  • the organic solvent as the extractant is stored in the extractant disposing tank 1, and is controlled by the flow meter 3 to enter the three-stage countercurrent extracting apparatus 8 in a direction opposite to the inflow direction of the residual liquid, and the reactive dye in the residual liquid is extracted.
  • the flow direction of the residual liquid is opposite to the flow direction of the extractant, and in order to rapidly mix and disperse the two-phase solution, they are subjected to a sufficient mass transfer process.
  • the organic solvent extracted with the reactive dye flowing out of the three-stage countercurrent extraction device 8 enters the secondary countercurrent extraction device 9.
  • the aqueous phase extractant used for the stripping is an aqueous solution of sodium hydroxide having a pH of 10-11.
  • Sodium hydroxide and water are mixed in a stripping agent tank 5 to prepare an aqueous sodium hydroxide solution, and then an aqueous sodium hydroxide solution is supplied to the stripping tank 7 by a pump 7.
  • the aqueous sodium hydroxide solution in the stripping tank 7 is flowed into the secondary countercurrent extraction device 9 by the flow meter 3 in the opposite direction to the flow direction of the organic solvent extracted with the reactive dye, and the formed complex is in the alkali condition.
  • the extractant Under the removal of H+, the extractant returns to a non-ionic state, separating the hydrolyzed dye from the oil phase, entering the aqueous phase to dissolve, and completing the back extraction.
  • the organic solvent is discharged from the apparatus 12 and flows into the extractant storage tank 6 for reuse.
  • the organic solvent as the extractant is stored in the extractant disposing tank 1, and is controlled by the flow meter 3 to enter the three-stage countercurrent extracting apparatus 8 in a direction opposite to the inflow direction of the residual liquid, and the hydrolyzed reactive dye in the residual liquid is extracted.
  • the flow direction of the residual liquid and the flow direction of the extractant are opposite, in order to rapidly mix and disperse the two-phase solution, so that they can obtain a sufficient mass transfer process and improve the extraction efficiency.
  • the extract flowing backward from the three-stage countercurrent extraction device 8 enters the secondary countercurrent extraction device 9.
  • the aqueous sodium hydroxide solution used for the stripping has a pH of 10.
  • Sodium hydroxide and water are mixed and arranged in an aqueous solution of sodium hydroxide in the stripping agent tank 5, and then the aqueous sodium hydroxide solution is sent to the stripping tank 7 by the pump 7.
  • the aqueous sodium hydroxide solution in the stripping tank 7 is flowed into the secondary countercurrent extraction device 9 by the flow meter 3 in the opposite direction to the flow direction of the organic solvent extracted with the reactive dye, and the formed complex is in the alkali condition.
  • the extractant Under the removal of H+, the extractant returns to a non-ionic state, separating the hydrolyzed dye from the oil phase, entering the aqueous phase to dissolve, and completing the back extraction.
  • the extracted hydrolyzed reactive dye is discharged from the secondary countercurrent extraction apparatus 10, and the organic solvent flows from the outlet 12 into the extractant storage tank 6 for reuse.
  • the centrifugal extraction separation technology used in the invention is a polar organic chemical extraction and separation method based on reversible reaction, and a closed loop cycle of water + salt and extractant is formed in the process of dyeing the residual liquid, and is centrifuged.
  • the interaction in the extraction device continuously extracts the hydrolyzed dye in the dye residue, thereby allowing the high salinity residue to be recycled, thereby avoiding a large amount of salt discharge. It not only reduces environmental pollution, but also reduces production costs. At the same time, more than 95% of the hydrolyzed dyes and other contaminants are removed, the extractant used can be recycled and reused, and industrial application is realized.
  • the regeneration dyeing process of reactive dyes is developed to solve the high chroma and high dyeing of reactive dyes.
  • the problem of salinity wastewater treatment has realized the resource utilization of dye residue liquid and water, which has broken through the ecological and environmental constraints of the existing reactive dye dyeing production methods.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

一种活性染料染色残液回收系统,包括萃取系统和反萃系统;萃取系统将残液中的活性染料萃取至有机溶剂中,经过萃取后的残液用于染色;以及反萃系统将萃取系统中萃取有活性染料的有机溶剂中的活性染料反萃至水溶液中,经过反萃后的有机溶剂回至萃取系统作为萃取剂。还公开一种回收方法,本发明所采用的离心萃取分离技术是一种基于可逆反应的极性有机物化学萃取分离方法,在对染色残液的处理过程中形成了水+盐和萃取剂两个体系的闭环循环,在离心萃取装置中相互作用,连续性地将染色残液中的水解染料提取出来,从而使含高盐度的残液得以循环使用,避免了盐的大量排放。既减少了对环境的污染,又降低了生产成本。

Description

活性染料染色残液回收系统及回收方法 技术领域
本发明涉及纺织印染领域,具体涉及纺织印染废水处理及回收。
背景技术
我国每年排放的印染废水高达20亿吨,其中活性染色废水占20%左右,总量约4亿吨。
由于活性染料染色过程中伴有大量的水解染料生成,为获得良好的水洗牢度,要彻底洗除水解染料,为此,活性染料的母体结构设计成为对纤维具有较低的亲和力,同时在活性染色过程中必需加入1-10%的盐促染,以提高染料的上染率,对有些深浓颜色用量多达1吨盐/吨纤维,这些盐在染色中无损耗,染色后直接从污水中全部排出,很多工厂日排盐量超过数十吨,全国年排放量化用盐量100万吨,长年累月的这样排放,给周围的土壤、河流的生态造成严重危害。
发明内容
为了克服上述缺陷,本发明提供一种活性染料染色残液回收系统及回收方法。
一种活性染料染色残液回收系统,包括萃取系统和反萃系统;所述萃取系统将残液中的活性染料萃取至有机溶剂中,经过萃取后的残液用于染色;以及所述反萃系统将所述萃取系统中萃取有活性染料的有机溶剂中的活性染料反萃至水溶液中,经过反萃后的有机溶剂回至萃取系统作为萃取剂。
所述萃取系统和反萃系统均为离心萃取。
所述萃取系统中的萃取剂是按体积比为1-2:1-2:3-5的三辛胺、正辛醇和柴油的混合物。
所述反萃系统中的水相萃取剂是pH为10-11的碱性溶液。5.一种活性染料染色残液回收方法,包括如下步骤:S1,萃取残液,将残液中的水解活性染料萃取至有机溶剂中,萃取后含盐的水溶液再次用于染色;S2,通过反萃将萃取有活性染料的有机溶剂中活性染料萃取至水相;以及S3,将通过反萃后的有机溶剂作为萃取剂再利用。
在所述S1步骤之前还包括预处理步骤,所述预处理步骤是用酸将染色残液的pH调整到2-3。
所述酸为硫酸、甲酸、乙酸中的至少一种。
所述萃取和反萃均为离心萃取。
所述萃取的萃取剂是按体积比为1-2:1-2:3-5的三辛胺、正辛醇和柴油的混合物。
所述反萃的水相萃取剂是pH为10-11的碱性溶液。
本发明所采用的离心萃取分离技术是一种基于可逆反应的极性有机物化学萃取分离 方法,在对染色残液的处理过程中形成了水+盐和萃取剂两个体系的闭环循环,在离心萃取装置中相互作用,连续性地将染色残液中的水解染料提取出来,从而使含高盐度的残液得以循环使用,避免了盐的大量排放。既减少了对环境的污染,又降低了生产成本。同时去除95%以上的水解染料等污染物,所用的萃取剂能够再生循环利用,并实现了产业化应用;开发了再生盐水回收活性染料染色工艺技术,解决了活性染料染色的高色度、高盐度废水处理难题,实现了染色残液盐和水的资源化利用,突破了现有活性染料染色生产方式的生态与环境制约。
附图说明
通过参照附图详细描述其示例实施方式,本发明的上述和其它特征及优点将变得更加明显。
图1是本发明的活性染料染色残液回收系统示意图;
图2是本发明的活性染料染色残液回收系统的结构示意图;以及
图3是本发明的活性染料染色残液回收系统示意图。
其中,附图标记说明如下:
1-萃取剂配置罐;2-残液储罐;3-流量计;4-反萃剂储罐;5-反萃剂配置罐;6-萃取剂回收罐;7-泵;8-三级逆流萃取装置;9-二级逆流萃取装置。
具体实施方式
下面结合具体实施方式对本发明作详细说明。
本发明的活性染料染色残液回收系统,包括萃取系统和反萃系统。萃取系统将残液中的活性染料萃取至有机溶剂中,经过萃取后的残液用于染色。反萃系统将萃取系统中萃取有活性染料的有机溶剂中的活性染料反萃至水溶液中,经过反萃后的有机溶剂回至萃取系统作为萃取剂。
本发明的活性染料染色残液回收方法,包括如下步骤:S1,萃取残液,将残液中的活性染料萃取至有机溶剂中,萃取后含盐的水溶液再次用于染色;S2,通过反萃将萃取有活性染料的有机溶剂中活性染料萃取至水相;以及S3,将通过反萃后的有机溶剂作为萃取剂再利用。
在S1步骤之前还包括预处理步骤,预处理步骤是用酸调整残液的pH值为2-3。对残液调酸处理是为了在萃取过程中,将萃取剂由非离子状态转变为阳离子,以络合残液中活性染料水解形成的阴离子实现从残液中萃取染料的目的。所用的酸可以是无机酸,也可以是有机酸,例如无机酸可以是硫酸等,有机酸可以是甲酸、乙酸等。在选取萃取系统的萃取剂时,一般要求萃取剂不能与残液互溶、对活性染料的溶解度远大于活性染料在残液中的溶解度、要不易于挥发并且不能残液发生反应。考虑以上因素,通常采用不易挥发的有机溶剂作为萃取剂,同时应当根据活性染料的种类选择适当的有机溶剂。本发明中萃取剂 中可以包括络合剂、助溶剂和稀释剂。萃取过程中萃取剂中的络合剂在酸性条件下由非离子状态转变为阳离子,以络合残液中活性染料水解形成的阴离子实现从残液中萃取染料的目的。助溶剂是所选络合剂和络合产物的良溶剂,以利于络合物的形成与相转移。稀释剂用于改善混合萃取剂的黏度、表面张力等,提高萃取能力的作用。本领域技术人员可以根据所选络合剂按需要选择合适的助溶剂和稀释剂。活性染料是一种带有活性基团的水溶性染料,能与纤维素纤维上的羟基、蛋白质纤维上的氨基、聚酰胺纤维上的氨基和羧羟基发生共价键结合,故又称为反应性染料。活性染料以不同反应基来区分,主要有九种类型,即二氯三嗪型、一氯均三嗪型、乙烯砜型、一氯均三嗪与乙烯砜双活性基、双一氯均三嗪A型、双一氯均三嗪B型、膦酸其型、二氟一氯嘧啶型和吡啶羧酸三嗪基型。由于不同类型的活性染料在水解后都是带负电性的,因此萃取剂中的络合剂选用在酸性条件下能形成阳离子的有机溶剂,例如叔胺类或其混合物,可以是不同的比例混合形成含有多元胺的混合萃取剂R3N。以下以调酸处理时采用硫酸为例,说明包含多元胺的萃取剂对萃取残液中水解染料的萃取过程:
如式(1)所示,多元胺在酸性条件下由非离子状态转变为阳离子。
Figure PCTCN2018087412-appb-000001
如式(2)所示,阳离子与水解的染料R’SO3络合。
Figure PCTCN2018087412-appb-000002
从而实现染料从残液中萃取到萃取剂中目的。
萃取剂可以是,但不限于,按体积比为1-2:1-2:3-5的三辛胺、正辛醇和柴油的混合物。本领域技术人员可以根据本发明的构思适当选择其他适合的萃取剂。
反萃剂系统是将萃取到有机溶剂中的染料反萃到水相中。水相萃取剂可以是加入pH值为10-11的碱性水溶液,碱性水溶液可以是氢氧化钠水溶液。经过萃取过程后,油相中形成的络合物在碱条件下去除H+,萃取剂回复为非离子状态,使水解染料与油相分离,进入水相溶解,完成反萃取。反萃取过程如式(3):
Figure PCTCN2018087412-appb-000003
经过反萃后的有机溶剂回至萃取系统作为萃取剂。
萃取和反萃均可以采用离心萃取。
图1是活性染料染色残液回收系统示意图。染色机排除残液,对残液进入收集调酸,然后将收集的残液供给离心萃取装置进行萃取,萃取后的残液为含盐水溶液,可以返回染色机再次利用;然后将萃取染料的有机溶剂进行反萃,将其中的染料反萃至水相,被反萃的有机溶剂提供给离心萃取装置作为萃取剂再次利用。
图2是活性染料染色残液回收系统的结构示意图。活性染料染色残液回收系统包括萃取剂配置罐1、残液储罐2、用于萃取的三级逆流萃取装置8、用于反萃的二级逆流萃取装置9、反萃剂配置罐5、反萃剂储罐4、萃取剂储罐6、控制流量的流量计3以及泵7。其中该系统萃取由三个相同的离心装置组成,例如可以是市售型号为RYD680P,处理量 150m 3/h的离心装置,残液连续通过三个相同的离心装置,连续萃取三次。三级逆流萃取装置仅是为了解释本发明,本发明并不限定为三级逆流萃取装置,还可以是其他的萃取装置。同样的理由,反萃也并不限定为二级逆流萃取装置,还可以是其他的萃取装置。以下详细描述该系统的残液回收过程。首先,可以对染色机排出的废液进行预处理,调整残液的pH为2-3。预处理后的残液存储于残液储罐2,通过流量计3控制残液进入三级逆流萃取装置8的残液流量,经过萃取后的残液从萃取装置流出,对脱色盐水进行处理,先调pH到中性,再调至预期的盐水浓度,以再次利用。作为萃取剂的有机溶剂存储于萃取剂配置罐1中,通过流量计3的控制以与残液的流入方向相反的方向进入三级逆流萃取装置8,萃取残液中的活性染料。在三级逆流萃取装置8中,残液的流向和萃取剂的流向相反,为了快速的混合、分散两相溶液,使它们得到充分的传质过程。从三级逆流萃取装置8中流出的萃取有活性染料的有机溶剂进入二级逆流萃取装置9中。用于反萃的水相萃取剂为氢氧化钠水溶液,pH值为10-11。在反萃剂配置罐5中将氢氧化钠和水混合配制成氢氧化钠水溶液,然后通过泵7将氢氧化钠水溶液送入反萃剂储罐7中。反萃剂储罐7中的氢氧化钠水溶液通过流量计3的控制以与萃取有活性染料的有机溶剂的流向相反的方向流入二级逆流萃取装置9中,将形成的络合物在碱条件下去除H+,萃取剂回复为非离子状态,使水解染料与油相分离,进入水相溶解,完成反萃取。有机溶剂从装置12中排出,流入萃取剂储罐6中,用于再利用。
实施例1
如图2和3所示,在散棉染色车间各个染色机(例如1#-10#染色机)的进出水口排出专用回收和投料管道,使各染缸的活性染色残液能够直接排放到特定的收集池M中,经G1、G2调酸后,进入离心脱色系统2中,通过流量计3控制残液进入三级逆流萃取装置8的残液流量,经过萃取后的残液从离心萃取装置11流出进入G3、G4储罐中,集中在N池中进行盐水浓度调整,以再次利用。作为萃取剂的有机溶剂存储于萃取剂配置罐1中,通过流量计3的控制以与残液的流入方向相反的方向进入三级逆流萃取装置8,萃取残液中的水解活性染料。在三级逆流萃取装置8中,残液的流向和萃取剂的流向相反,是为了快速的混合、分散两相溶液,使它们得到充分的传质过程,提高萃取效率。从三级逆流萃取装置8中逆流出的萃取液进入二级逆流萃取装置9中。用于反萃的氢氧化钠水溶液pH值10。在反萃剂配置罐5中将氢氧化钠和水混合配置成氢氧化钠水溶液,然后通过泵7将氢氧化钠水溶液送入反萃剂储罐7中。反萃剂储罐7中的氢氧化钠水溶液通过流量计3的控制以与萃取有活性染料的有机溶剂的流向相反的方向流入二级逆流萃取装置9中,将形成的络合物在碱条件下去除H+,萃取剂回复为非离子状态,使水解染料与油相分离,进入水相溶解,完成反萃取。被萃取出的水解活性染料从二级逆流萃取装置10中排出,有机溶剂从12出口流入萃取剂储罐6中,用于再利用。
本发明所采用的离心萃取分离技术是一种基于可逆反应的极性有机物化学萃取分离方法,在对染色残液的处理过程中形成了水+盐和萃取剂两个体系的闭环循环,在离心萃 取装置中相互作用,连续性地将染色残液中的水解染料提取出来,从而使含高盐度的残液得以循环使用,避免了盐的大量排放。既减少了对环境的污染,又降低了生产成本。同时去除95%以上的水解染料等污染物,所用的萃取剂能够再生循环利用,并实现了产业化应用;开发了再生盐水回收活性染料染色工艺技术,解决了活性染料染色的高色度、高盐度废水处理难题,实现了染色残液盐和水的资源化利用,突破了现有活性染料染色生产方式的生态与环境制约。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种活性染料染色残液回收系统,包括萃取系统和反萃系统;
    所述萃取系统将残液中的活性染料萃取至有机溶剂中,经过萃取后的残液用于染色;以及
    所述反萃系统将所述萃取系统中萃取有活性染料的有机溶剂中的活性染料反萃至水溶液中,经过反萃后的有机溶剂回至萃取系统作为萃取剂。
  2. 根据权利要求1所述的活性染料染色残液回收系统,其特征在于,所述萃取系统和反萃系统均为离心萃取。
  3. 根据权利要求1所述的活性染料染色残液回收系统,其特征在于,所述萃取系统中的萃取剂是按体积比为1-2:1-2:3-5的三辛胺、正辛醇和柴油的混合物。
  4. 根据权利要求1所述的活性染料染色残液回收系统,其特征在于,所述反萃系统中的水相萃取剂是pH为10-11的碱性溶液。
  5. 一种活性染料染色残液回收方法,包括如下步骤:
    S1,萃取残液,将残液中的水解活性染料萃取至有机溶剂中,萃取后含盐的水溶液再次用于染色;
    S2,通过反萃将萃取有活性染料的有机溶剂中活性染料萃取至水相;以及
    S3,将通过反萃后的有机溶剂作为萃取剂再利用。
  6. 根据权利要求5所述的回收方法,其特征在于,在所述S1步骤之前还包括预处理步骤,所述预处理步骤是用酸将染色残液的pH调整到2-3。
  7. 根据权利要求6所述的回收方法,其特征在于,所述酸为硫酸、甲酸、乙酸中的至少一种。
  8. 根据权利要求5所述的回收方法,其特征在于,所述萃取和反萃均为离心萃取。
  9. 根据权利要求5所述的回收方法,其特征在于,所述萃取的萃取剂是按体积比为1-2:1-2:3-5的三辛胺、正辛醇和柴油的混合物。
  10. 根据权利要求5所述的回收方法,其特征在于,所述反萃的水相萃取剂是pH为10-11的碱性溶液。
PCT/CN2018/087412 2017-08-18 2018-05-18 活性染料染色残液回收系统及回收方法 WO2019033805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710711114.0 2017-08-18
CN201710711114.0A CN107337246A (zh) 2017-08-18 2017-08-18 活性染料染色残液回收系统及回收方法

Publications (1)

Publication Number Publication Date
WO2019033805A1 true WO2019033805A1 (zh) 2019-02-21

Family

ID=60215214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087412 WO2019033805A1 (zh) 2017-08-18 2018-05-18 活性染料染色残液回收系统及回收方法

Country Status (2)

Country Link
CN (1) CN107337246A (zh)
WO (1) WO2019033805A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337246A (zh) * 2017-08-18 2017-11-10 新疆如意纺织服装有限公司 活性染料染色残液回收系统及回收方法
CN110552139A (zh) * 2018-05-30 2019-12-10 海宁绿宇纺织科技有限公司 一种分散染料非水介质染色工艺中非水介质的回收方法
CN109276910A (zh) * 2018-10-26 2019-01-29 新疆神邦环境工程有限公司 一种连续反萃系统
CN110627260A (zh) * 2019-10-25 2019-12-31 新疆神邦环境工程有限公司 一种染色残液盐回用系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828712A (en) * 1987-12-28 1989-05-09 Maxwell Laboratories, Inc. Extraction of pollutants by inorganic chelation
CN102992433A (zh) * 2012-11-28 2013-03-27 中国科学院南京土壤研究所 一种萘系染料中间体生产废水萃取回收方法
CN106277154A (zh) * 2016-08-25 2017-01-04 绵阳市龙鼎环保科技有限公司 萃取剂、该萃取剂处理1.4二羟基蒽醌生产中废水方法
CN107021538A (zh) * 2017-03-28 2017-08-08 刘奎东 一种活性染料染色残液的高效萃取脱色系统
CN107337246A (zh) * 2017-08-18 2017-11-10 新疆如意纺织服装有限公司 活性染料染色残液回收系统及回收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216930A (en) * 1963-01-04 1965-11-09 Dow Chemical Co Process for liquid recovery and solution concentration
CN103408092B (zh) * 2013-08-02 2015-01-07 浙江吉华集团股份有限公司 一种磺酸基类染料以及其染料中间体生产废水的处理方法
CN105523674B (zh) * 2016-02-05 2018-05-22 江苏明盛化工有限公司 H酸生产废水的处理方法及实施该方法的设备
CN205590494U (zh) * 2016-04-21 2016-09-21 江苏久吾高科技股份有限公司 一种磺酸类染料及染料中间体的废水处理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828712A (en) * 1987-12-28 1989-05-09 Maxwell Laboratories, Inc. Extraction of pollutants by inorganic chelation
CN102992433A (zh) * 2012-11-28 2013-03-27 中国科学院南京土壤研究所 一种萘系染料中间体生产废水萃取回收方法
CN106277154A (zh) * 2016-08-25 2017-01-04 绵阳市龙鼎环保科技有限公司 萃取剂、该萃取剂处理1.4二羟基蒽醌生产中废水方法
CN107021538A (zh) * 2017-03-28 2017-08-08 刘奎东 一种活性染料染色残液的高效萃取脱色系统
CN107337246A (zh) * 2017-08-18 2017-11-10 新疆如意纺织服装有限公司 活性染料染色残液回收系统及回收方法

Also Published As

Publication number Publication date
CN107337246A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019033805A1 (zh) 活性染料染色残液回收系统及回收方法
WO2019033806A1 (zh) 活性染料染色残液回收系统及回收方法
CN104609605B (zh) 一种实现印染染色废水回用和染料回收的装置及其方法
CN108975556B (zh) 净化回收老化磷酸抛光液的方法
CN107628714A (zh) 一种改良后的新型除盐水系统及其处理方法
CN108128939A (zh) 一种用集成膜技术处理稀土冶炼高氨氮废水的方法及装置
CN102241894B (zh) 一种从分散型染料生产废水中回收染料及分散剂的方法
CN104291398A (zh) 一种回收利用染色残液的处理方法
CN100427411C (zh) 一种洗羊毛废水的处理方法
CN102020366B (zh) 一种水中深度脱除苯胺的方法及其装置
CN105647697B (zh) 一种多组分清洗剂及其在多介质过滤器清洗中的应用
CN107585914A (zh) 肠衣肝素生产废水资源化利用装置
CN108483761B (zh) 一种高硬度高盐度的再生纸造纸废水的循环使用方法
CN107021538B (zh) 一种活性染料染色残液的高效萃取脱色系统
CN106865850A (zh) 氰化镀镉废水零排放处理方法
CN113926314B (zh) 一种除硫酸钙垢反渗透膜清洗剂及其制备方法
CN205999182U (zh) 特种树脂矮床废酸回收装置
CN110921952A (zh) 一种膜蒸馏浓缩染色残液及盐循环装置及方法
CN107427740A (zh) 包括电渗析处理步骤的用于纯化有机酸的方法
CN101891699B (zh) 树脂吸附法回收酸性废水中不溶性糖精的方法
CN114150167B (zh) 一种膜过程强化的无皂化稀土萃取分离的方法
CN113528863A (zh) 一种酸性萃取剂有机相直接萃取分离稀土元素的工艺方法
CN106698576A (zh) 一种h酸工业废水的处理方法
CN208762281U (zh) 一种用集成膜技术处理稀土冶炼高氨氮废水的装置
CN207726830U (zh) 湿法冶金萃余液的回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846634

Country of ref document: EP

Kind code of ref document: A1