WO2019033624A1 - Microlens array inspection system and microlens array inspection method - Google Patents

Microlens array inspection system and microlens array inspection method Download PDF

Info

Publication number
WO2019033624A1
WO2019033624A1 PCT/CN2017/114731 CN2017114731W WO2019033624A1 WO 2019033624 A1 WO2019033624 A1 WO 2019033624A1 CN 2017114731 W CN2017114731 W CN 2017114731W WO 2019033624 A1 WO2019033624 A1 WO 2019033624A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens array
tested
aperture
light
luminous flux
Prior art date
Application number
PCT/CN2017/114731
Other languages
French (fr)
Chinese (zh)
Inventor
杜鹏
周萌
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019033624A1 publication Critical patent/WO2019033624A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

A microlens array inspection system (100, 200, and 300) and a microlens array inspection method. The microlens array inspection system (100, 200, and 300) comprises: a light source apparatus (110, 210, and 310), a microlens array to be inspected (120, 220, and 320), an optic stop (140), and a luminous flux testing apparatus. The light source apparatus (110, 210, and 310) is used for emitting a light. The microlens array to be inspected (120, 220, and 320) is used for receiving and transmitting the light. The optic stop (140) comprises an aperture having a preset diameter. The aperture is used for transmitting the light emitted by the microlens array to be inspected (120, 220, and 320). The luminous flux testing apparatus is used for testing respectively a first luminous flux prior to passing though the optic stop (140) and a second luminous flux after passing through the optic stop (140). The first luminous flux and the second luminous flux are used for analyzing the quality of the microlens array to be inspected (120, 220, and 230). The microlens array inspection system (100, 200, and 300) and the microlens array inspection method employing the microlens array inspection system (100, 200, and 300) are simple and efficient to operate and highly accurate.

Description

微透镜阵列检测系统及微透镜阵列的检测方法Microlens array detection system and microlens array detection method 技术领域Technical field
本发明涉及微透镜阵列技术领域,尤其涉及一种微透镜阵列检测系统及微透镜阵列的检测方法。The present invention relates to the field of microlens array technology, and in particular, to a microlens array detection system and a microlens array detection method.
背景技术Background technique
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。This section is intended to provide a context or context for the specific embodiments of the invention set forth in the claims. The description herein is not admitted to be prior art as it is included in this section.
目前微透镜阵列常用的加工工艺有:光刻、开模压铸、机械加工等。其中开模的方式由于成本低的优势成为首选工艺,在其模具加工的过程中,靠近边缘的微透镜单元的尺寸精度会有所下降,进而导致边缘微透镜单元的大小及长宽比有误差,最终导致双复眼所成的像尺寸及长宽比变化,光学效率降低。而在对复眼器件本身进行良品检测时,由于微透镜透镜单元小、数量多,用测量微透镜单元尺寸的方法几乎不能够高效、准确地实现。At present, the commonly used processing techniques for microlens arrays are: photolithography, open mold casting, mechanical processing, and the like. Among them, the mode of mold opening is the preferred process due to the low cost. In the process of mold processing, the dimensional accuracy of the microlens unit near the edge will decrease, resulting in errors in the size and aspect ratio of the edge microlens unit. In the end, the image size and aspect ratio of the double compound eye are changed, and the optical efficiency is lowered. In the case of good detection of the compound eye device itself, since the microlens lens unit is small and large in number, the method of measuring the size of the microlens unit can hardly be realized efficiently and accurately.
发明内容Summary of the invention
为解决现有技术微透镜阵列的检测效率低且准确度不高的技术问题,本发明提供一种可以有效提高检测效率及准确度的微透镜阵列检测系统,本发光还提供一种微透镜阵列的检测方法。In order to solve the technical problem of low detection efficiency and low accuracy of the prior art microlens array, the present invention provides a microlens array detection system capable of effectively improving detection efficiency and accuracy, and the present illumination also provides a microlens array. Detection method.
一种微透镜阵列检测系统,包括:A microlens array detection system comprising:
光源装置,用于发射光线;a light source device for emitting light;
待测微透镜阵列,用于接收并透射所述光线;a microlens array to be tested for receiving and transmitting the light;
光阑,包含一具有预设孔径的通光孔,所述通光孔用于透射待测微透镜阵列出射的光线;The aperture includes a light-passing aperture having a predetermined aperture for transmitting light emitted by the array of microlenses to be tested;
光通量测试装置用于分别测试所述光线通过所述光阑前的第一光通量及通过所述光阑后的第二光通量,所述第一光通量与所述第二 光通量用于分析待测微透镜阵列的质量。a luminous flux testing device for respectively testing a first luminous flux before passing the light through the pupil and a second luminous flux passing through the aperture, the first luminous flux and the second luminous flux Luminous flux is used to analyze the quality of the microlens array to be tested.
进一步地,所述微透镜阵列检测系统还包括分析装置,所述分析装置用于根据所述第二光通量和所述第一光通量的比值分析待测微透镜阵列的质量。Further, the microlens array detecting system further includes an analyzing device, configured to analyze a quality of the microlens array to be tested according to a ratio of the second luminous flux and the first luminous flux.
进一步地,所述微透镜阵列检测系统还包括中继装置,所述中继装置设置于待测微透镜阵列与所述光阑之间,用于将待测微透镜阵列出射的光线会聚至所述光阑的通光孔。Further, the microlens array detection system further includes a relay device disposed between the microlens array to be tested and the aperture for concentrating light emitted from the microlens array to be tested to the The aperture of the aperture.
进一步地,所述光源装置包括激光器及扩束装置,所述扩束装置用于增大所述激光器发出的激光光束的发散角,使得所述光源装置出射的光线能够照射待测微透镜阵列通光口径上的更大的范围。Further, the light source device comprises a laser and a beam expanding device, wherein the beam expanding device is configured to increase a divergence angle of the laser beam emitted by the laser, so that the light emitted by the light source device can illuminate the microlens array to be tested. A larger range of light apertures.
进一步地,所述扩束装置为散射片。Further, the beam expanding device is a diffusion sheet.
进一步地,所述扩束装置与待测微透镜阵列之间的距离L满足:Further, the distance L between the beam expanding device and the microlens array to be tested satisfies:
L=H/2tan(θ)L=H/2tan(θ)
使得所述光源装置发出的光线照射至待测微透镜阵列上的光斑直径与待测微透镜阵列的通光口径H的差值落入第一预设误差范围内,The difference between the diameter of the spot on the microlens array to be tested and the clear aperture H of the microlens array to be tested falls within a first preset error range.
其中,among them,
θ≤arcsin(1/2F#)Θ≤arcsin(1/2F#)
F#=F/dF#=F/d
θ为所述光源装置发出光线的发散角,F为待测微透镜阵列的焦距,d为待测微透镜阵列上每个微透镜的直径。θ is the divergence angle of the light emitted by the light source device, F is the focal length of the microlens array to be tested, and d is the diameter of each microlens on the microlens array to be tested.
进一步地,所述扩束装置包括一凹透镜与一凸透镜,所述激光光束依次穿过所述凹透镜与所述凸透镜得到所述光线。Further, the beam expanding device includes a concave lens and a convex lens, and the laser beam sequentially passes through the concave lens and the convex lens to obtain the light.
进一步地,所述凹透镜的焦距f1与所述凸透镜的焦距f2满足:Further, a focal length f1 of the concave lens and a focal length f2 of the convex lens satisfy:
f1/f2=h/HF1/f2=h/H
使得所述光线照射至待测微透镜阵列上的光斑直径与待测微透镜阵列的通光口径的差值落入第一预设误差范围内,其中,h为所述激光光束的直径,H为待测微透镜阵列通光口径的高度。 The difference between the diameter of the spot on the microlens array to be tested and the aperture of the microlens array to be tested falls within a first predetermined error range, where h is the diameter of the laser beam, H The height of the aperture of the microlens array to be tested.
进一步地,所述扩束装置包括扩束微透镜阵列,所述扩束微透镜阵列与待测微透镜阵列的通光口径差值落入第二预设误差范围内。Further, the beam expanding device comprises a beam expanding microlens array, and the aperture diameter difference between the beam expanding microlens array and the microlens array to be tested falls within a second preset error range.
进一步地,所述扩束微透镜阵列为单复眼透镜。Further, the expanded beam microlens array is a single fly-eye lens.
一种微透镜阵列的检测方法,利用如上所述任意一项所述的微透镜阵列检测系统,若所述第二光通量与所述第一光通量之比大于等于比例阈值,则待测微透镜阵列合格。A microlens array detecting method, wherein the microlens array detecting system according to any one of the preceding claims, wherein the ratio of the second luminous flux to the first luminous flux is greater than or equal to a proportional threshold, the microlens array to be tested qualified.
本发明提供微透镜阵列检测系统及微透镜阵列的检测方法,所述微透镜阵列检测系统通过所述光源装置发出光线,所述光线经过待测微透镜阵列及所述光阑后出射,根据所述光阑前的第一光通量及所述光阑后的第二光通量来分析待测微透镜阵列的质量,所述微透镜阵列检测系统及采用所述微透镜阵列检测系统的微透镜阵列的检测方法操作简单高效,准确率高。The present invention provides a microlens array detection system and a microlens array detection method. The microlens array detection system emits light through the light source device, and the light passes through the microlens array to be tested and the aperture, and then exits. Detecting the quality of the microlens array to be tested by the first luminous flux before the pupil and the second luminous flux after the aperture, the microlens array detection system and the detection of the microlens array using the microlens array detection system The method is simple and efficient, and the accuracy is high.
附图说明DRAWINGS
图1为本发明第一实施例提供的微透镜阵列检测系统的结构示意图。FIG. 1 is a schematic structural diagram of a microlens array detecting system according to a first embodiment of the present invention.
图2为如图1所示的待测微透镜阵列出射光线包括杂散光时形成的光斑示意图。2 is a schematic view of a spot formed when the emitted light of the microlens array to be tested includes stray light as shown in FIG. 1.
图3为本发明第二实施例提供的微透镜阵列检测系统的结构示意图。FIG. 3 is a schematic structural diagram of a microlens array detecting system according to a second embodiment of the present invention.
图4为本发明第三实施例提供的微透镜阵列检测系统的结构示意图。FIG. 4 is a schematic structural diagram of a microlens array detecting system according to a third embodiment of the present invention.
主要元件符号说明Main component symbol description
微透镜阵列检测系统Microlens array detection system 100、200、300100, 200, 300
光源装置 Light source device 110、210、310110, 210, 310
发光体 illuminator 111、211、311111, 211, 311
扩束装置Beam expander 112、212、312112, 212, 312
待测微透镜阵列Microlens array to be tested 120、220、320120, 220, 320
凹透镜 concave lens 212a212a
凸透镜Convex lens 212b 212b
中继装置Relay device 130130
光阑Light 140140
边缘光斑Edge spot aa
如下具体实施方式将结合上述附图进一步说明本发明。The invention will be further illustrated by the following detailed description in conjunction with the accompanying drawings.
具体实施方式Detailed ways
请参阅图1,为本发明第一实施例提供的微透镜阵列检测系统100的结构示意图。所述微透镜阵列检测系统100包括:光源装置110、待测微透镜阵列120、中继装置130、光阑140、光通量测试装置(图未示)及分析装置(图未示)。其中,所述光源装置110用于发射光线;待测微透镜阵列120用于接收并透射所述光线;所述中继装置130设置于待测微透镜阵列120与所述光阑140之间,用于将待测微透镜阵列120出射的光线会聚至所述光阑140的通光孔;所述光阑140包含一具有预设孔径的通光孔,所述通光孔用于透射待测微透镜阵列120出射的光线;所述光通量测试装置用于分别测试所述光线通过所述光阑140前的第一光通量η1及通过所述光阑140后的第二光通量η2;所述分析装置用于根据所述第一光通量η1和所述第二光通量η2分析待测微透镜阵列120的质量,以判断待测微透镜阵列120上的微透镜单元的尺寸一致性是否合格。Please refer to FIG. 1 , which is a schematic structural diagram of a microlens array detection system 100 according to a first embodiment of the present invention. The microlens array detection system 100 includes a light source device 110, a microlens array 120 to be tested, a relay device 130, an aperture 140, a luminous flux test device (not shown), and an analysis device (not shown). The light source device 110 is configured to emit light; the microlens array 120 to be tested is configured to receive and transmit the light; the relay device 130 is disposed between the microlens array 120 to be tested and the aperture 140. The light emitted from the microlens array 120 to be tested is concentrated to the light passing hole of the aperture 140; the diaphragm 140 includes a light passing hole having a predetermined aperture for transmitting The light emitted from the microlens array 120; the luminous flux testing device is configured to respectively test the first light flux η1 before the light passes through the aperture 140 and the second light flux η2 after passing through the aperture 140; the analyzing device And configured to analyze the quality of the microlens array 120 to be tested according to the first luminous flux η1 and the second luminous flux η2 to determine whether the dimensional consistency of the microlens unit on the microlens array 120 to be tested is qualified.
具体地,所述光源装置110包括发光体111及扩束装置112。所述光源装置110可以为蓝光光源,发出蓝光光线。可以理解的是,在其他实施例中,所述光源装置可以为白光光源、紫光光源等等,并不以此为限。所述发光体111为蓝色激光器,用于发出蓝色激光作为所述光线,具体所述发光体111的数量可以依据实际需要选择。Specifically, the light source device 110 includes an illuminant 111 and a beam expanding device 112. The light source device 110 may be a blue light source that emits blue light. It is to be understood that in other embodiments, the light source device may be a white light source, a violet light source, or the like, and is not limited thereto. The illuminant 111 is a blue laser for emitting a blue laser as the ray. Specifically, the number of the illuminants 111 can be selected according to actual needs.
所述扩束装置112用于增大所述发光体111发出的激光光束的发散角,使得所述光源装置110出射的光线能够照射待测微透镜阵列120通光口径上的更大的范围。本实施例中,所述扩束装置112为散射片。The beam expanding device 112 is configured to increase a divergence angle of the laser beam emitted by the illuminant 111, so that the light emitted by the light source device 110 can illuminate a larger range of the aperture of the microlens array 120 to be tested. In this embodiment, the beam expanding device 112 is a diffusing sheet.
本实施例中,待测微透镜阵列120为双复眼透镜,双复眼透镜由于具有较高的光能利用率及大面积的均匀照明,从而在微显示器及投影显示领域有广阔的应用前景。所述双复眼透镜包括入光侧与出光侧, 所述入光侧与出光侧均设置有微透镜阵列,所述出光侧的微透镜阵列位于所述入光侧微透镜阵列的焦平面上。In this embodiment, the microlens array 120 to be tested is a double fly-eye lens, and the double fly-eye lens has a broad application prospect in the field of microdisplay and projection display because of high light energy utilization rate and uniform illumination of a large area. The double fly-eye lens includes a light incident side and a light exit side, The light incident side and the light exit side are both provided with a microlens array, and the light exiting side microlens array is located on a focal plane of the light incident side microlens array.
进一步地,用于均匀化地双复眼透镜本身对于入射光线发散角有一定的要求,即入射光线发散角与双复眼透镜本身的F#相匹配,Further, the double-folding eye lens for homogenization itself has a certain requirement for the incident light divergence angle, that is, the incident light divergence angle matches the F# of the double fly-eye lens itself,
θ≤arcsin(1/2F#)Θ≤arcsin(1/2F#)
F#=F/dF#=F/d
θ为所述光源装置110发出光线的发散角,F为待测微透镜阵列120的焦距,d为待测微透镜阵列120上每个微透镜的直径。θ is the divergence angle of the light emitted by the light source device 110, F is the focal length of the microlens array 120 to be tested, and d is the diameter of each microlens on the microlens array 120 to be tested.
另外,所述扩束装置112与待测微透镜阵列120之间的距离L满足:In addition, the distance L between the beam expanding device 112 and the microlens array 120 to be tested satisfies:
L=H/2tan(θ)L=H/2tan(θ)
使得所述光源装置110发出的光线照射至待测微透镜阵列120上的光斑直径与待测微透镜阵列120的通光口径H的差值落入预设误差范围,使得所述光斑直径与所述通光口径H大致相同,以获得较为准确的检测结果。此时,待测微透镜阵列120上被检测的微透镜单元足够多并且所述光线经待测微透镜阵列120不会产生杂散光。图2为如图1所示的待测微透镜阵列120出射光线包括杂散光时形成的光斑。图2中的光斑包括4个由所述杂散光形成的边缘光斑a,所述边缘光斑a相对于整个光斑的中间区域亮度较弱。当待测微透镜阵列120尺寸有误差时,待测微透镜阵列120出射的光线成像亦如图2所示。The difference between the spot diameter of the light source device 110 and the light path diameter H of the microlens array 120 to be tested falls within a preset error range, so that the spot diameter and the spot diameter The apertures H are substantially the same to obtain more accurate detection results. At this time, the microlens unit detected on the microlens array 120 to be tested is sufficiently large and the light does not generate stray light through the microlens array 120 to be tested. FIG. 2 is a light spot formed when the light to be detected by the microlens array 120 to be tested shown in FIG. 1 includes stray light. The spot in Fig. 2 includes four edge spots a formed by the stray light, the edge spot a being weaker relative to the middle portion of the entire spot. When the size of the microlens array 120 to be tested has an error, the light image emitted by the microlens array 120 to be tested is also shown in FIG. 2.
所述中继装置130将待测微透镜阵列120出射的光线引导至所述光阑140的通光孔。本实施例中,所述中继装置130为对入射光线进行会聚平凸透镜。The relay device 130 guides the light emitted from the microlens array 120 to be measured to the light passing hole of the aperture 140. In this embodiment, the relay device 130 is a concentrated plano-convex lens for incident light.
所述光阑140为视场光阑,能够通过所述光阑140的光通量将是有效的光通量。所述光阑140的通光孔具有预设孔径,当待测微透镜阵列120质量合格时,即待测微透镜阵列120形状大小一致性好,成像质量好时,其输出光线在所述光阑140处形成的光斑大小刚好与所述预设孔径大小一致,经过所述光阑140前后光斑的能量无损失,所述第一光通量η1等于所述第二光通量η2;当待测微透镜阵列120质量 不合格时,即待测微透镜阵列120形状大小一致性差,成像质量差时,其输出光线在所述光阑140处形成的光斑大小与所述预设孔径不一致,经过所述光阑140前后光斑的能量损失较大,所述第一光通量η1与所述第二光通量η2差别较大。The aperture 140 is a field stop and the luminous flux that can pass through the aperture 140 will be an effective luminous flux. The light-passing aperture of the aperture 140 has a predetermined aperture. When the quality of the microlens array 120 to be tested is good, that is, the shape and size of the microlens array 120 to be tested are consistent, and the image quality is good, the output light is in the light. The spot size formed at the crucible 140 is exactly the same as the preset aperture size, and the energy of the spot before and after the aperture 140 is not lost, the first luminous flux η1 is equal to the second luminous flux η2; when the microlens array to be tested 120 quality When the image is inferior, that is, the shape of the microlens array 120 to be tested is inferior in shape consistency, and when the image quality is poor, the size of the spot formed by the output light at the stop 140 is inconsistent with the preset aperture, and passes through the aperture 140. The energy loss of the spot is large, and the first luminous flux η1 and the second luminous flux η2 are largely different.
所述光通量测试装置用于测试所述光线通过所述光阑140前的第一光通量η1及通过所述光阑140后的第二光通量η2,以衡量所述光线经过所述光阑140的光能损失情况。可以理解的是,所述光通量测试装置可以是用于测试光功率的光功率计,或者是用于检测光亮度的亮度计。The luminous flux testing device is configured to test a first luminous flux η1 before the light passes through the aperture 140 and a second luminous flux η2 after passing through the aperture 140 to measure the light passing through the aperture 140. Can lose the situation. It can be understood that the luminous flux testing device can be an optical power meter for testing optical power or a luminance meter for detecting light brightness.
所述分析装置存储有用户输入的比例阈值,并用于计算所述第二光通量η2与所述第一光通量η1的比值。所述分析装置对所述比值τ与所述比例阈值做比较,当所述比值τ大于等于所述比例阈值时,待测微透镜阵列120质量合格;当所述比值τ小于所述比例阈值时,待测微透镜阵列120质量不合格。在待测微透镜阵列120数量较大的情况下,所述分析装置能够提高检测效率及准确度。The analysis device stores a proportional threshold input by the user and is used to calculate a ratio of the second luminous flux η2 to the first luminous flux η1. The analyzing device compares the ratio τ with the proportional threshold, when the ratio τ is greater than or equal to the proportional threshold, the microlens array 120 to be tested is qualified; when the ratio τ is less than the proportional threshold The quality of the microlens array 120 to be tested is unqualified. In the case where the number of microlens arrays 120 to be tested is large, the analysis device can improve detection efficiency and accuracy.
本发明第一实施例中的微透镜阵列检测系统通过所述光源装置110发出光线,所述光线经过待测微透镜阵列120及所述光阑140后出射,根据所述光阑140前的第一光通量η1及所述光阑140后的第二光通量η2来分析待测微透镜阵列120的质量,操作简单高效,准确率高。The microlens array detection system in the first embodiment of the present invention emits light through the light source device 110, and the light passes through the microlens array 120 to be tested and the aperture 140, and is emitted according to the front of the aperture 140. A light flux η1 and a second light flux η2 after the aperture 140 are used to analyze the quality of the microlens array 120 to be tested, and the operation is simple and efficient, and the accuracy is high.
本发明第一实施例还提供一种微透镜阵列的检测方法,利用所述微透镜阵列检测系统100,包括如下步骤:The first embodiment of the present invention further provides a method for detecting a microlens array. The microlens array detection system 100 includes the following steps:
S1:开启所述光源装置110,所述光源装置110发出照射至待测微透镜阵列120的光线;S1: turning on the light source device 110, the light source device 110 emitting light that is irradiated to the microlens array 120 to be tested;
S2:利用所述光通量测试装置测量获得所述光阑140前的第一光通量η1;S2: using the luminous flux testing device to measure the first luminous flux η1 before obtaining the aperture 140;
S3:利用所述光通量测试装置测量获得所述光阑140后的第二光通量η2;S3: measuring, by the luminous flux testing device, the second luminous flux η2 after obtaining the aperture 140;
S4:若所述第二光通量η2与所述第一光通量η1之比大于等于所述 比例阈值,则待测微透镜阵列120合格;若所述第二光通量η2与所述第一光通量η1之比小于所述比例阈值,则待测微透镜阵列120不合格;S4: if a ratio of the second luminous flux η2 to the first luminous flux η1 is greater than or equal to The microlens array 120 is qualified; if the ratio of the second luminous flux η2 to the first luminous flux η1 is less than the proportional threshold, the microlens array 120 to be tested is unqualified;
S5:将不合格的待测微透镜阵列120与其他待测微透镜阵列120予以区分。S5: distinguish the unqualified microlens array 120 to be tested from other microlens arrays 120 to be tested.
本发明第一实施例提供的微透镜阵列的检测方法操作简单高效,准确度高。The detection method of the microlens array provided by the first embodiment of the present invention is simple and efficient in operation and high in accuracy.
请参阅3,为本发明第二实施例提供的微透镜阵列检测系统200的结构示意图。本实施例中的微透镜阵列检测系统200与所述微透镜阵列检测系统100的主要区别在于,微透镜阵列检测系统200包括光源装置210,其中光源装置210中设置有发光体211与扩束装置212,所述扩束装置212与所述扩束装置112的结构不同。所述微透镜阵列检测系统200中的其他部件与所述微透镜阵列检测系统100中的相同,不做赘述。Please refer to FIG. 3 , which is a schematic structural diagram of a microlens array detection system 200 according to a second embodiment of the present invention. The main difference between the microlens array detection system 200 and the microlens array detection system 100 in this embodiment is that the microlens array detection system 200 includes a light source device 210, wherein the light source device 210 is provided with an illuminant 211 and a beam expander 212. The beam expanding device 212 is different in structure from the beam expanding device 112. Other components in the microlens array detection system 200 are the same as those in the microlens array detection system 100, and are not described herein.
所述扩束装置212包括一凹透镜212a与一凸透镜212b,所述发光体211发出的激光光束依次穿过所述凹透镜212a与所述凸透镜212b得到所述光源装置210发出的光线。所述激光光束经过扩束装置212后,光束直径增大,入射至待测微透镜阵列220上的光斑为高斯分布的光斑,所述扩束装置212对光束直径变化控制较为精确,可以避免入射至待测微透镜阵列220的光束的发散角过大而使待测微透镜阵列220出射杂散光。所述扩束装置212与待测微透镜阵列220之间的距离能够大范围灵活调节,有利于所述微透镜阵列检测系统200的搭建。The beam expander 212 includes a concave lens 212a and a convex lens 212b. The laser beam emitted by the illuminant 211 sequentially passes through the concave lens 212a and the convex lens 212b to obtain light emitted by the light source device 210. After the laser beam passes through the beam expanding device 212, the beam diameter increases, and the spot incident on the microlens array 220 to be tested is a Gaussian distribution spot. The beam expanding device 212 controls the beam diameter change accurately, and can avoid incidence. The divergence angle of the light beam to the microlens array 220 to be tested is too large to cause the microlens array 220 to be tested to emit stray light. The distance between the beam expanding device 212 and the microlens array 220 to be tested can be flexibly adjusted in a wide range, which is advantageous for the construction of the microlens array detecting system 200.
具体地,所述凹透镜212a的焦距f1与所述凸透镜212b的焦距f2满足:Specifically, the focal length f1 of the concave lens 212a and the focal length f2 of the convex lens 212b satisfy:
f1/f2=h/HF1/f2=h/H
使得所述光线照射至待测微透镜阵列220上的光斑直径与待测微透镜阵列220的通光口径H的差值落入预设误差范围内,使得所述光斑直径与所述通光口径H大致相同,以获得较为准确的检测结果。其 中,h为所述发光体211发出的激光光束的直径,H为待测微透镜阵列220通光口径的高度。The difference between the diameter of the spot on the microlens array 220 to be tested and the clear aperture H of the microlens array 220 to be tested falls within a preset error range, such that the spot diameter and the clear aperture H is roughly the same to obtain more accurate test results. Its Where h is the diameter of the laser beam emitted by the illuminant 211, and H is the height of the aperture of the microlens array 220 to be tested.
本发明第二实施例与第一实施例相同的是,所述微透镜阵列检测系统200结构简单,根据第一光通量η1及第二光通量η2来分析待测微透镜阵列120的质量,操作简单高效,准确率高。The second embodiment of the present invention is the same as the first embodiment. The microlens array detection system 200 has a simple structure, and analyzes the quality of the microlens array 120 to be tested according to the first luminous flux η1 and the second luminous flux η2. The operation is simple and efficient. The accuracy is high.
请参阅图4,为本发明第三实施例提供的微透镜阵列检测系统300的结构示意图。本实施例中的微透镜阵列检测系统300与所述微透镜阵列检测系统100的主要区别在于,微透镜阵列检测系统300包括光源装置310,其中光源装置310中设置有发光体311与扩束装置312,所述扩束装置312与所述扩束装置112的结构不同。所述微透镜阵列检测系统300中的其他部件与所述微透镜阵列检测系统100中的相同,不做赘述。Please refer to FIG. 4 , which is a schematic structural diagram of a microlens array detection system 300 according to a third embodiment of the present invention. The main difference between the microlens array detection system 300 and the microlens array detection system 100 in this embodiment is that the microlens array detection system 300 includes a light source device 310, wherein the light source device 310 is provided with an illuminant 311 and a beam expander 312, the beam expanding device 312 is different in structure from the beam expanding device 112. Other components in the microlens array detection system 300 are the same as those in the microlens array detection system 100, and are not described herein.
具体地,所述扩束装置312包括扩束微透镜阵列,所述扩束微透镜阵列与待测微透镜阵列320的通光口径的差值落入预设误差范围内,使得所述扩束微透镜阵列与待测微透镜阵列320的通光口径大致相同,以获得较为准确的检测结果。本实施例中,所述扩束微透镜阵列为单复眼微透镜。所述发光体311发出的高斯分布的激光光束经过所述单复眼微透镜后出射并在待测微透镜阵列320形成均匀的矩形光斑。所述矩形光斑与待测微透镜阵列320大小匹配。所述扩束装置312使用光学元件少,与待测微透镜阵列320之间的距离能够大范围灵活调节,有利于所述微透镜阵列检测系统300的搭建。Specifically, the beam expanding device 312 includes a beam expanding microlens array, and a difference between the beam expanding aperture of the beam expanding microlens array and the microlens array 320 to be tested falls within a preset error range, so that the beam expanding The aperture ratio of the microlens array to the microlens array 320 to be tested is substantially the same to obtain a more accurate detection result. In this embodiment, the expanded beam microlens array is a single compound eye microlens. The Gaussian-distributed laser beam emitted by the illuminant 311 passes through the single compound eye microlens and exits and forms a uniform rectangular spot on the microlens array 320 to be tested. The rectangular spot is matched in size to the microlens array 320 to be tested. The beam expanding device 312 uses a small number of optical components, and the distance between the microlens array 320 and the microlens array 320 to be tested can be flexibly adjusted in a wide range, which is advantageous for the construction of the microlens array detecting system 300.
本发明第三实施例与第一实施例相同的是,所述微透镜阵列检测系统300结构简单,根据第一光通量η1及第二光通量η2来分析待测微透镜阵列320的质量,操作简单高效,准确率高。The third embodiment of the present invention is the same as the first embodiment. The microlens array detection system 300 has a simple structure, and analyzes the quality of the microlens array 320 to be tested according to the first luminous flux η1 and the second luminous flux η2, and the operation is simple and efficient. The accuracy is high.
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。 The above is only the embodiment of the present invention, and is not intended to limit the scope of the invention, and the equivalent structure or equivalent process transformations made by the description of the invention and the drawings are directly or indirectly applied to other related technologies. The fields are all included in the scope of patent protection of the present invention.

Claims (11)

  1. 一种微透镜阵列检测系统,其特征在于,包括:A microlens array detection system, comprising:
    光源装置,用于发射光线;a light source device for emitting light;
    待测微透镜阵列,用于接收并透射所述光线;a microlens array to be tested for receiving and transmitting the light;
    光阑,包含一具有预设孔径的通光孔,所述通光孔用于透射待测微透镜阵列出射的光线;The aperture includes a light-passing aperture having a predetermined aperture for transmitting light emitted by the array of microlenses to be tested;
    光通量测试装置用于分别测试所述光线通过所述光阑前的第一光通量及通过所述光阑后的第二光通量,所述第一光通量与所述第二光通量用于分析待测微透镜阵列的质量。The luminous flux testing device is configured to respectively test a first luminous flux of the light before passing through the aperture and a second luminous flux after passing through the aperture, the first luminous flux and the second luminous flux being used for analyzing a microlens to be tested The quality of the array.
  2. 如权利要求1所述的微透镜阵列检测系统,其特征在于,所述微透镜阵列检测系统还包括分析装置,所述分析装置根据所述第二光通量和所述第一光通量的比值分析待测微透镜阵列的质量。The microlens array detecting system according to claim 1, wherein said microlens array detecting system further comprises analyzing means, said analyzing means analyzing said to be measured based on a ratio of said second luminous flux to said first luminous flux The quality of the microlens array.
  3. 如权利要求1所述的微透镜阵列检测系统,其特征在于,所述微透镜阵列检测系统还包括中继装置,所述中继装置设置于待测微透镜阵列与所述光阑之间,用于将待测微透镜阵列出射的光线会聚至所述光阑的通光孔。The microlens array detection system according to claim 1, wherein the microlens array detection system further comprises a relay device, the relay device being disposed between the microlens array to be tested and the aperture. The light for emitting the array of microlenses to be tested is concentrated to the light-passing holes of the aperture.
  4. 如权利要求1所述的微透镜阵列检测系统,其特征在于,所述光源装置包括激光器及扩束装置,所述扩束装置用于增大所述激光器发出的激光光束的发散角,使得所述光源装置出射的光线能够照射待测微透镜阵列通光口径上的更大的范围。A microlens array detecting system according to claim 1, wherein said light source means comprises a laser and a beam expanding means for increasing a divergence angle of a laser beam emitted from said laser, such that said The light emitted by the light source device can illuminate a larger range of the aperture of the microlens array to be tested.
  5. 如权利要求4所述的微透镜阵列检测系统,其特征在于,所述扩束装置为散射片。A microlens array detecting system according to claim 4, wherein said beam expanding means is a diffusion sheet.
  6. 如权利要求5所述的微透镜阵列检测系统,其特征在于,所述扩束装置与待测微透镜阵列之间的距离L满足:The microlens array detecting system according to claim 5, wherein a distance L between the beam expanding device and the microlens array to be tested satisfies:
    L=H/2tan(θ)L=H/2tan(θ)
    使得所述光源装置发出的光线照射至待测微透镜阵列上的光斑直径与待测微透镜阵列的通光口径H的差值落入第一预设误差范围内, The difference between the diameter of the spot on the microlens array to be tested and the clear aperture H of the microlens array to be tested falls within a first preset error range.
    其中,among them,
    θ≤arcsin(1/2F#)Θ≤arcsin(1/2F#)
    F#=F/dF#=F/d
    θ为所述光源装置发出光线的发散角,F为待测微透镜阵列的焦距,d为待测微透镜阵列上每个微透镜的直径。θ is the divergence angle of the light emitted by the light source device, F is the focal length of the microlens array to be tested, and d is the diameter of each microlens on the microlens array to be tested.
  7. 如权利要求4所述的微透镜阵列检测系统,其特征在于,所述扩束装置包括一凹透镜与一凸透镜,所述激光光束依次穿过所述凹透镜与所述凸透镜得到所述光线。The microlens array detecting system according to claim 4, wherein said beam expanding means comprises a concave lens and a convex lens, said laser beam sequentially passing through said concave lens and said convex lens to obtain said light.
  8. 如权利要求7所述的微透镜阵列检测系统,其特征在于,所述凹透镜的焦距f1与所述凸透镜的焦距f2满足:The microlens array detecting system according to claim 7, wherein a focal length f1 of the concave lens and a focal length f2 of the convex lens satisfy:
    f1/f2=h/HF1/f2=h/H
    使得所述光线照射至待测微透镜阵列上的光斑直径与待测微透镜阵列的通光口径的差值落入第一预设误差范围内,其中,h为所述激光光束的直径,H为待测微透镜阵列通光口径的高度。The difference between the diameter of the spot on the microlens array to be tested and the aperture of the microlens array to be tested falls within a first predetermined error range, where h is the diameter of the laser beam, H The height of the aperture of the microlens array to be tested.
  9. 如权利要求4所述的微透镜阵列检测系统,其特征在于,所述扩束装置包括扩束微透镜阵列,所述扩束微透镜阵列与待测微透镜阵列的通光口径的差值落入第二预设误差范围内。The microlens array detecting system according to claim 4, wherein the beam expanding device comprises a beam expanding microlens array, and a difference between the beam expanding microlens array and the aperture of the microlens array to be tested falls Within the second preset error range.
  10. 如权利要求9所述的微透镜阵列检测系统,其特征在于,所述扩束微透镜阵列为单复眼透镜。A microlens array detecting system according to claim 9, wherein said beam expanding microlens array is a single fly-eye lens.
  11. 一种微透镜阵列的检测方法,其特征在于,利用如权利要1-10任意一项所述的微透镜阵列检测系统,若所述第二光通量与所述第一光通量之比大于等于比例阈值,则待测微透镜阵列合格。 A microlens array detecting method according to any one of claims 1 to 10, wherein a ratio of the second luminous flux to the first luminous flux is greater than or equal to a proportional threshold , the microlens array to be tested is qualified.
PCT/CN2017/114731 2017-08-14 2017-12-06 Microlens array inspection system and microlens array inspection method WO2019033624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710693965.7A CN109387353B (en) 2017-08-14 2017-08-14 Micro-lens array detection system and micro-lens array detection method
CN201710693965.7 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019033624A1 true WO2019033624A1 (en) 2019-02-21

Family

ID=65361778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114731 WO2019033624A1 (en) 2017-08-14 2017-12-06 Microlens array inspection system and microlens array inspection method

Country Status (2)

Country Link
CN (1) CN109387353B (en)
WO (1) WO2019033624A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138524A (en) * 2020-01-19 2021-07-20 深圳光峰科技股份有限公司 Compound eye lens group, light source device and projection equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900673A (en) * 2006-07-25 2007-01-24 温州医学院眼视光研究院 Detector for glasses lens optic quality
CN101113937A (en) * 2006-07-27 2008-01-30 上海信诚至典网络技术有限公司 Compound eye lens simple detecting method
JP2008096233A (en) * 2006-10-11 2008-04-24 Pentax Corp Optical member inspection device
CN102735428A (en) * 2012-06-08 2012-10-17 中国科学院上海光学精密机械研究所 Measurement device and measurement method for optical performance of diffractive optical element
CN103217872A (en) * 2013-04-19 2013-07-24 中国科学院上海光学精密机械研究所 Detection device and detection method of micro-lens array for photoetching machine
CN106802233A (en) * 2017-04-07 2017-06-06 上海汇珏网络通信设备有限公司 A kind of microlens array test device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973750B2 (en) * 1992-03-31 1999-11-08 松下電器産業株式会社 Illumination optical device and projection display device using the same
CN100343622C (en) * 2003-05-29 2007-10-17 中国科学院光电技术研究所 Quick determining method for micro-lens structural parameters and surface deformation
CN102243137B (en) * 2011-06-21 2013-04-10 中国科学院上海光学精密机械研究所 Detection device and detection method for optical performance of beam shaping element
CN104165754B (en) * 2014-08-07 2016-09-14 江苏大学 A kind of measuring method of laser bar device for measuring focal length of thermal lens
CN204228121U (en) * 2014-10-09 2015-03-25 无锡中科光电技术有限公司 A kind of ellipsoidal mirror surface shape detection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900673A (en) * 2006-07-25 2007-01-24 温州医学院眼视光研究院 Detector for glasses lens optic quality
CN101113937A (en) * 2006-07-27 2008-01-30 上海信诚至典网络技术有限公司 Compound eye lens simple detecting method
JP2008096233A (en) * 2006-10-11 2008-04-24 Pentax Corp Optical member inspection device
CN102735428A (en) * 2012-06-08 2012-10-17 中国科学院上海光学精密机械研究所 Measurement device and measurement method for optical performance of diffractive optical element
CN103217872A (en) * 2013-04-19 2013-07-24 中国科学院上海光学精密机械研究所 Detection device and detection method of micro-lens array for photoetching machine
CN106802233A (en) * 2017-04-07 2017-06-06 上海汇珏网络通信设备有限公司 A kind of microlens array test device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, SIHAI ET AL.: "Optical Properties Theory and Measurement of Diffractive Microlens Arrays", LASER & OPTOELECTRONICS PROGRESS, 30 June 2000 (2000-06-30), pages 13 - 17, ISSN: 1006-4125 *

Also Published As

Publication number Publication date
CN109387353B (en) 2021-07-23
CN109387353A (en) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2018054090A1 (en) Light detection system and light detection device
TWI325953B (en) A high-speed optical sensing device abling to sense luminous intensity and chromaticity and an optical measuring system with the high-speed optical sensing device
CN106679940A (en) High-precision laser divergence angle parameter calibration device
US11099063B2 (en) Apparatus and method for profiling a beam of a light emitting semiconductor device
CN102589684A (en) Infrared laser measurement image surface alignment device
WO2021115099A1 (en) Multispectral ultraviolet light sensitivity measurement system and method
CN115574740A (en) Multifunctional optical autocollimator
JP2019516239A5 (en)
WO2019033624A1 (en) Microlens array inspection system and microlens array inspection method
CN216350391U (en) Detection lighting system based on LED projection module
KR102428402B1 (en) Inspecting system for micro led
US11828646B2 (en) Optoelectronic unit measuring device
CN105372816A (en) Light uniforming method of optical fiber coupling type semiconductor laser
US11280734B2 (en) Optical density testing system and optical density testing device
US20150109818A1 (en) Backlight module
JP2005127970A (en) Optical system for measuring light of wide dispersion light source, instrument for measuring light of wide dispersion light source, and light measuring method therefor
TWM603955U (en) Light type fast measuring device
TWM579270U (en) Lens test device
KR102231889B1 (en) System of detecting defectiong of camera for strobescope
CN213632410U (en) Light source calibration device
US11686669B2 (en) Optical measurement device including a light splitting module comprising light splitters and a light inspecting module comprising a plurality of inspecting cameras
CN109405749A (en) A kind of laser imaging distance measuring method and system
CN218524242U (en) Optical module for detecting light intensity of line scanning Micro LED
KR101396003B1 (en) Optical alignment apparatus of lidar system
TWI770809B (en) Rapid luminous efficiency testing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922043

Country of ref document: EP

Kind code of ref document: A1