WO2019033242A1 - 确定滤波器抽头系数的方法和装置 - Google Patents

确定滤波器抽头系数的方法和装置 Download PDF

Info

Publication number
WO2019033242A1
WO2019033242A1 PCT/CN2017/097415 CN2017097415W WO2019033242A1 WO 2019033242 A1 WO2019033242 A1 WO 2019033242A1 CN 2017097415 W CN2017097415 W CN 2017097415W WO 2019033242 A1 WO2019033242 A1 WO 2019033242A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
spectral signal
spectral
communication system
tap coefficient
Prior art date
Application number
PCT/CN2017/097415
Other languages
English (en)
French (fr)
Inventor
刘玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780072363.8A priority Critical patent/CN109997322B/zh
Priority to PCT/CN2017/097415 priority patent/WO2019033242A1/zh
Publication of WO2019033242A1 publication Critical patent/WO2019033242A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present application relates to the field of optical communications, and in particular, to a method and apparatus for determining filter tap coefficients.
  • An optical communication system is a communication system that uses light as a carrier, uses a transmission medium such as optical fiber as a transmission channel, and transmits information by photoelectric conversion, such as a common wavelength division multiplexed optical communication system, generally including a transmitter and a receiver. , multiplexer, demultiplexer, and transport channel.
  • the general working principle is as follows: the optical signal of different wavelengths carried by the transmitter and transmitted by the transmitter is multiplexed to the transmission channel for transmission by the multiplexer, and the demultiplexer is connected to the optical signal transmitted by the transmission channel, and then The receiver recovers optical signals of different wavelengths to obtain information carried by optical signals of different wavelengths.
  • the transmitter often uses a pre-filter to compress and transmit a signal to reduce the bandwidth of the transmission signal, so as to improve the loss of the signal due to the limited bandwidth that the hardware can provide, thereby improving the optical communication.
  • the overall performance of the system It can be seen that the configuration of the tap coefficients of the pre-filter has a great influence on the overall performance of the system.
  • the tap coefficients of the pre-filter are usually determined by empirical data, other factors in actual system operation are not considered, thereby causing the tap coefficients of the pre-filter.
  • the design fails to meet the actual demand of the optical communication system for the transmission signal bandwidth, resulting in a transmission signal bandwidth higher than that provided by the optical communication system, resulting in adjacent channel interference, loss of the transmission signal, and ultimately resulting in poor overall performance of the communication system.
  • the present application provides a method and apparatus for determining filter tap coefficients, which are applied to an optical communication system for effectively solving a bandwidth of a transmission signal higher than a bandwidth provided by an optical communication system, resulting in adjacent channel interference and loss of transmission signals.
  • an embodiment of the present application provides a method for determining a filter tap coefficient, which is applied to an optical communication system, where the optical communication system includes at least one transmitter, and the method includes: determining a transmitter to be adjusted, and turning off the optical communication. The remaining transmitters in the system except the transmitter to be adjusted, wherein the transmitter to be adjusted includes a pre-filter; determining a tap coefficient that causes the first spectral signal to satisfy the first preset condition, the first preset condition includes the first The signal power of the spectral signal outside the preset signal interval is less than the preset threshold value, and the tap coefficient of the pre-filter may be used as the tap coefficient of the pre-filter by making the first spectral signal meet the first preset condition.
  • the first spectrum signal is a spectrum signal of the transmitting end or the receiving end.
  • the signal power of the spectrum signal transmitted in the optical communication system outside the preset signal interval is less than a certain threshold value, and the bandwidth of the transmission signal is lower than the bandwidth of the transmission channel.
  • the bandwidth of the transmission signal is effectively adjusted, crosstalk between adjacent channels of the channel can be reduced, thereby improving the performance of the optical communication system.
  • the first preset condition further includes at least one of the following conditions:
  • the minimum Euclidean distance in the error sequence corresponding to the first spectral signal is maximum; the information rate of the first spectral signal is the maximum; the gain flatness of the first spectral signal is maximum; and the inter-symbol crosstalk of the first spectral signal
  • the minimum Euclidean distance is maximum and/or the information rate of the first spectral signal is maximum, and the receiving quality of the receiving end can be effectively obtained.
  • the gain flatness of the first spectral signal is maximum and/or the inter-symbol crosstalk is maximum, which can be effectively Reducing the burden on the receiving end in the optical communication system can, for example, effectively reduce the burden on the receiver.
  • determining a tap coefficient that causes the first spectral signal to satisfy the first preset condition includes: determining that the first spectral signal satisfies the first preset condition, and causing the second spectral signal to satisfy the second a tap coefficient of the preset condition; wherein the second spectral signal is a spectral signal different from the first spectral signal in the transmitting end or the receiving end, and the second preset condition includes at least one of the following conditions: the error sequence corresponding to the second spectral signal The minimum Euclidean distance is the largest; the information rate of the second spectral signal is the largest; the gain flatness of the second spectral signal is the maximum; the tap coefficient of the first spectral signal conforming to the first preset condition is used as the prefilter
  • the tap coefficient includes: a tap coefficient that causes the first spectral signal to satisfy the first preset condition, and causes the second spectral signal to satisfy the second preset condition as the tap coefficient of the pre-filter.
  • the spectral signal is a spect
  • the optical communication system further includes a receiver, a multiplexer, a demultiplexer, and a transmission channel
  • the transmitter is connected to the multiplexer
  • the multiplexer is connected to the demultiplexer through the transmission channel
  • the solution is The multiplexer is connected to the receiver
  • the first spectral signal is a spectral signal transmitted between the multiplexer and the demultiplexer or a spectral signal at any position of the signal output by the prefilter in the transmitter.
  • the second spectral signal is a spectral signal transmitted between the multiplexer and the demultiplexer or a spectral signal of any position passed by the signal output by the prefilter in the receiver. That is to say, in the present implementation, a plurality of specific locations for acquiring the first spectral signal and the second spectral signal are proposed, which increases the diversity of the scheme.
  • the second spectral signal is a spectral signal of any position at which the signal output by the prefilter passes, in short, the second The spectral signal can be a spectral signal at various locations in the receiver.
  • the preset signal interval is:
  • f 0 is the center frequency of the optical communication system and w is the channel spacing of the optical communication system.
  • the signal power of the first spectral signal outside the preset signal interval accounts for less than the preset threshold value:
  • H A ( ⁇ ) is the spectral function of the baseband signal corresponding to the first spectral signal
  • B( ⁇ ) is the Fourier transform corresponding to the correlation function corresponding to the tap coefficient of the prefilter
  • C% is the preset gate Limit
  • C% is less than 100%, The total power of the signal.
  • the minimum Euclidean distance in the error sequence corresponding to the first spectral signal is maximum:
  • H A ( ⁇ ) is the spectral function of the baseband signal corresponding to the first spectral signal
  • b 1 , b 2 , ..., b L is the tap coefficient of the pre-filter
  • B( ⁇ ) is b 1 , b 2 ,..., b L corresponds to the Fourier transform corresponding to the correlation function
  • E( ⁇ ) is the Fourier transform corresponding to the correlation function corresponding to all the error sequences in the optical communication system
  • d is the first The minimum Euclidean distance in the error sequence corresponding to the spectrum signal is the largest value.
  • H B ( ⁇ ) is the spectral function of the baseband signal corresponding to the second spectral signal
  • d′ is the value of the smallest Euclidean distance in the error sequence corresponding to the second spectral signal.
  • the first spectral signal is caused to satisfy the first preset condition
  • the second spectral signal satisfies the tap coefficient of the second predetermined condition as the tap coefficient of the pre-filter, including:
  • the one-spectrum signal satisfies the first predetermined condition, and causes the second spectral signal to satisfy the second predetermined condition, and causes the optical communication system to be the tap coefficient of the minimum phase system as the tap coefficient of the pre-filter.
  • the prefilter is a finite impulse response filter.
  • the embodiment of the present application provides a device for adjusting a filter tap coefficient, and the device has a function for implementing the behavior implemented in the foregoing method.
  • the foregoing functions may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the foregoing apparatus includes a memory, a processor, and a computer program stored on the memory and operable on the processor, when the processor executes the computer program The method described in the foregoing first aspect / each implementation of the first aspect.
  • the embodiment of the present application provides a device for determining a filter tap coefficient, which is applied to an optical communication system, where the optical communication system includes at least one transmitter, and the device includes: a first determining module, a transmitter for determining a single one to be adjusted from the at least one transmitter, wherein the transmitter to be adjusted includes a pre-filter; and the second determining module is configured to determine that the first spectrum signal satisfies the first preset condition
  • the first preset condition includes a preset threshold value of the signal power of the first spectrum signal outside the preset signal interval as a percentage of the total power of the signal, wherein the first spectrum signal is a spectrum signal of the transmitting end of the optical communication system Or the spectral signal of the receiving end;
  • the third determining module is configured to make the tap coefficient of the first spectral signal conforming to the first preset condition as the tap coefficient of the pre-filter.
  • the component modules of the above apparatus may also perform the steps described in the various possible implementations of the foregoing first aspect, as described in the foregoing various possible implementations of the first aspect or the first aspect. The description in the details will not be repeated here.
  • an embodiment of the present application provides a computer device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, where the first aspect is implemented when the processor executes the computer program/ The first aspect each implements the steps or functions described.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores an instruction, when the instruction is run on a computer, causing the computer to perform the first aspect/
  • the first aspect each implements the steps or functions described.
  • the signal power of the signal of the transmission signal is less than a certain threshold value of the signal power outside the preset signal interval, the crosstalk between the adjacent channels of the channel can be reduced, and the first spectrum signal corresponds to The minimum Euclidean distance in the error sequence is the maximum or the information rate of the first spectral signal is the largest. Therefore, the signal power of the transmitted signal is outside the preset signal interval, and the percentage of the signal power is less than a certain threshold.
  • the tap coefficient of the value is used as the tap coefficient of the pre-filter, and the bandwidth of the transmission signal is lower than the bandwidth of the transmission channel, and the bandwidth of the transmission signal is effectively adjusted, thereby effectively reducing adjacent channel interference, thereby improving the optical communication system. Performance.
  • FIG. 1 is a schematic structural diagram of an optical communication system applied to a method for determining a filter tap coefficient according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a transmitter in an optical communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a signal processor in a transmitter
  • FIG. 4 is another schematic structural diagram of a signal processor in a transmitter
  • Figure 5 is another schematic structural diagram of a signal processor in a transmitter
  • FIG. 6 is a schematic structural diagram of a pre-filter used in an optical communication system according to an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of an embodiment of a method for determining a tap coefficient of a wave filter according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a position of acquiring a spectrum signal obtained in a method for determining a filter tap coefficient according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of another acquisition location of a spectral signal obtained in a method for determining a filter tap coefficient according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another acquisition location of a spectral signal obtained in a method for determining a filter tap coefficient according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an apparatus for determining a filter tap coefficient according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another embodiment of an apparatus for determining a filter tap coefficient according to an embodiment of the present application.
  • Embodiments of the present application provide a method and apparatus for determining filter tap coefficients, which can improve performance of the entire optical communication system.
  • the method and apparatus for determining filter tap coefficients provided by the embodiments of the present application are applicable to various optical communication systems including prefilters in the transmitter, and the optical communication system may include, but is not limited to, In the polarization multiplexing optical communication system and/or the wavelength division multiplexing optical communication system, the optical communication system may be a coherent optical communication system.
  • the optical communication system to which the embodiments of the present application are applied may also be a short-wavelength optical communication system or a long-wavelength optical communication system; when the transmission medium is in the optical communication system, the optical communication system is applicable to the optical communication system.
  • the optical communication system may be a multimode optical fiber optical communication system or a single mode optical fiber optical communication system.
  • the optical communication system used in the embodiment may also be a fiber optic analog system or a fiber optic digital system, wherein the fiber optic analog system refers to a system that modulates a light source of an optical communication system by using an analog signal, and the optical fiber digital system refers to using a digital signal to illuminate the light.
  • a system for modulating a light source of a communication system; classifying the rate at which the signal is transmitted in the fiber; the optical communication system used in the embodiment of the present application may be a low-speed fiber-optic communication system or a high-speed fiber-optic communication system, wherein the transmission signal of the low-speed fiber-optic communication system
  • the rate is generally 2Mbit/S (megabits per second), or 8Mbit/s, etc. is less than 10M.
  • the optical communication system of the bit/S, the transmission rate of the high-speed optical fiber communication system is generally 34 Mbit/s, or an optical communication system of 34 Mbit/s or more, for example, an optical communication system of 140 Mbit/s; the range to which the optical communication system is applied
  • the optical communication system to which the embodiments of the present application are applied may also be a public optical communication system or a dedicated optical communication system, wherein the public optical communication system generally refers to a fiber-optic communication system applied by the telecommunication department, including a fiber-optic local-time relay communication system, and an optical fiber. Long-distance communication system and fiber-optic subscriber loop communication system; and dedicated optical communication system refers to optical communication systems applied by various departments outside the telecommunications department, such as electric power, railway, transportation, petroleum, broadcasting, banking, military, etc. system.
  • FIG. 1 is a schematic diagram of a system framework of an optical communication system used for determining a filter tap coefficient according to an embodiment of the present application.
  • the optical communication system shown in FIG. 1 includes at least one polarization multiplexed signal transmission.
  • the at least one polarization multiplexed signal transmitter 110 is connected to the multiplexer 120, and the multiplexer 120 is connected to the demultiplexer 140 through the transmission channel 130.
  • the demultiplexer 140 is connected to the receiver 150.
  • the foregoing transmission channel 130 may be a fiber link.
  • the at least one polarization multiplexed signal transmitter 110 corresponds to different wavelengths.
  • the polarization multiplexed signal transmitter 110 corresponds to different frequency bands for transmitting transmission signals of different wavelengths, and the polarization multiplexed signal transmitter 110 transmits different signals.
  • the wavelength transmission signal is multiplexed by the multiplexer 120 and transmitted on the transmission channel 130. After the multiplexed transmission signal passes through the demultiplexer 140, the demultiplexer splits the transmission signals corresponding to different wavelengths. The demultiplexed transmission signal is received by the receiver 150.
  • FIG. 2 is a schematic diagram of an internal structure of a polarization multiplexed signal transmitter, including a signal processor 111, a digital to analog converter 112, a modulator 113, and a polarization coupler 114.
  • the signal processor 111 includes a constellation mapping module, a pre-filter, and a waveform shaping module.
  • the signal processor is configured to receive a data sequence converted by the information to be transmitted (the data sequence carries information to be transmitted), and after receiving the data sequence, the data sequence is divided into The two paths are processed and sent to different constellation mapping modules for constellation mapping processing to obtain corresponding constellation point data streams.
  • the data sequence is "01010010101010”
  • the first data sequence is "01001010”
  • the second data sequence is "01101010”
  • the separated two-way data sequence is sent to the constellation mapping module for mapping processing to obtain a corresponding constellation point data stream.
  • the split mode of the above example is only an example here, and there may be other split modes in the actual application, which are not limited, and are not exemplified herein.
  • the constellation mapping module After receiving the first and second data sequences, the constellation mapping module respectively maps the first and second data sequences into corresponding constellation point data streams according to a preset modulation format.
  • the preset modulation format includes, but is not limited to, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), and quadrature amplitude.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • Modulation quadrature amplitude, modulation, QAM
  • modulation formats for various non-standard lattice points such as modulation formats that are not equal probability distribution.
  • the “00” mapping can be shot to the constellation point 1+j in the constellation diagram, and “01” is mapped to the constellation point- 1+j, maps "10" to constellation point -1-j and "11" to constellation point 1-j.
  • the first data sequence is “01001010”, and is respectively projected onto “-1+j, 1+j, -1-j” to obtain a constellation point data stream corresponding to the first data sequence.
  • the real part and the imaginary part of the constellation point data stream corresponding to the first data sequence are opened as two outputs, and the first path mapping signal of the real part of the output is obtained as "-1, 1, -1, -1 ", and the second path mapping signal of the imaginary part of the output is "1, 1, -1, -1".
  • the corresponding third way mapping signal and the fourth way mapping signal can be obtained. Therefore, the first and second data sequences can obtain a four-way mapping signal.
  • there are many ways to map the constellation The foregoing examples are only exemplified by a group of 2 bits. In other embodiments, the group of 3 bits or 4 bits can also be used. Constellation mapping, etc., here are not examples.
  • the pre-filter is used to filter the four-way mapping signal transmitted by the constellation mapping module to obtain four filtered signals.
  • the first data sequence can be directly output as "-1+j, 1+j, -1-j, -1-j".
  • Road mapping signal After the second data sequence is mapped by the constellation, the second mapping signal is also output in the plural form.
  • the two-way data sequence can obtain the corresponding two-way mapping signals.
  • the pre-filter is used to filter the two mapping signals transmitted by the constellation mapping module to obtain four filtered signals.
  • the data sequence may be a data sequence obtained by forward error correction (FEC) technology of the to-be-transmitted information, that is, may be interleaved.
  • FEC forward error correction
  • the constellation point data stream output after the constellation mapping can be input into the pre-filter after interleaving. This is not limited here.
  • the pre-filter adopts a finite impulse response (FIR).
  • FIR finite impulse response
  • FIG. 6 is a schematic structural diagram of a finite impulse response filter in a transmitter according to an embodiment of the present application.
  • the waveform forming module is configured to perform shaping filtering on the four filtered signals output by the pre-filter according to a preset molding shape to obtain a corresponding four-way shaping signal output to the corresponding digital-to-analog converter.
  • the preset shape includes, but is not limited to, a configured root raised cosine wave, a Gaussian wave, a high-order Gaussian wave, an extended Gaussian wave, etc., which can be configured according to actual application conditions, and is not limited.
  • a damage compensation module may be further included for compensating for signal loss of the polarization signal transmitter.
  • the digital signal processor 111 is configured to generate four digital signals to be transmitted (ie, the above-mentioned four-way shaped signals), and send the four digital signals to corresponding digital-to-analog conversions.
  • the digital-to-analog converter performs digital-to-analog conversion on the four channels of digital signals to obtain four analog signals IX, QX, IY, and QY.
  • the IX and QX signals are supplied to one of the modulators 113 for modulation to obtain a high frequency X-channel modulated signal, and the IY and QY signals are supplied to another modulator 113 for modulation to obtain a high-frequency Y-way modulated signal.
  • the X-way modulation signal and the Y-way modulation signal are sent to the polarization coupler 114 for coupling-output polarization-multiplexed transmission signals.
  • the multiplexer 120 multiplexes the polarization multiplexed transmission signals of each channel and transmits them to the transmission channel for transmission, and the demultiplexer 140 can demultiplex the multiplexed channels to obtain a corresponding polarization multiplexed transmission signal.
  • Receiver is then received by receiver 150.
  • the prefilter described in the above is a finite impulse response filter whose tap coefficients are b 1 , b 2 , ..., b L , L are the finite impulse response filters Tap length.
  • a method for determining a tap coefficient of a pre-filter is proposed, which is applied to the above-described optical communication system including at least one transmitter, such as the polarization complex shown in FIG. In the use of optical communication systems.
  • a unique one of the to-be-tuned transmitters is determined from the at least one transmitter, wherein the to-be-tuned transmitter includes a pre-filter to determine a tap that causes the first spectral signal to satisfy the first preset condition.
  • the first position is a spectral signal of the transmitting end or the receiving end of the optical communication system, and the spectral signal refers to an electrical spectrum signal or an optical spectrum signal corresponding to the optical signal, depending on the actual spectrum, the first spectrum signal is light.
  • the spectral signal of the location in the communication system is not limited herein.
  • the signal power of the spectrum signal transmitted in the optical communication system outside the preset signal interval is less than a certain threshold value, and the bandwidth of the transmission signal is lower than the bandwidth of the transmission channel.
  • the bandwidth of the transmission signal is effectively adjusted, crosstalk between adjacent channels of the channel can be reduced, thereby improving the performance of the optical communication system.
  • the tap coefficient that makes the first spectral signal conform to the first preset condition is used as the tap coefficient of the pre-filter, which can effectively ensure that the bandwidth of the transmission signal can be effectively adjusted in the optical communication system, thereby effectively improving
  • the spectral efficiency of an optical communication system improves the performance of the entire optical communication system.
  • the first preset condition further includes at least one of the following conditions: the first The minimum Euclidean distance in the error sequence corresponding to the spectral signal is maximum; the information rate of the first spectral signal is maximum; the gain flatness of the first spectral signal is maximum; and the inter-symbol crosstalk of the first spectral signal is minimum .
  • the signal processor 110 in the process of performing constellation mapping modulation on the data sequence in the signal processor 111, there may be multiple modulation modes, such as BPSK, QPSK, etc., in which different modulation modes may appear.
  • the data output by the signal processor 110 has different combinations of error sequences.
  • Each signal output by the waveform shaping module in the signal processor 11 may have different error sequences for each channel due to different modulation modes used, for example, When the QPSK modulation mode is adopted, the error codes corresponding to the I and Q paths may be 2, -2, and 0, and the error sequence in the optical communication system is the arrangement of the above 3 possible errors (excluding all 0 errors).
  • the tap coefficient with the largest Euclidean distance is the condition that the minimum Euclidean distance in the error sequence corresponding to the spectral signal is the largest. In fact, even if the same minimum Euclidean distance is used, the tap coefficient is not unique.
  • the tap coefficients of a set of optimal pre-filters can be optimized by gain flatness or definition of cross-code crosstalk.
  • the above is only taking QPSK as an example, and the error sequence of length 3 is described, and all possible combinations are listed, but the above are only examples, and all errors in this application file.
  • the code sequence is not limited to the length of the error sequence.
  • all possible error sequences in the modulation mode must satisfy the condition that the minimum Euclidean distance in the error sequence corresponding to the spectrum signal is the largest.
  • determining a tap coefficient that causes the first spectral signal to satisfy the first preset condition includes:
  • the spectral signal of the terminal or the receiving end, the first spectral signal is different from the first spectral signal
  • the second predetermined condition includes at least one of the following conditions: a minimum Euclidean distance in the error sequence corresponding to the second spectral signal
  • the maximum information rate of the second spectral signal is the maximum; the gain flatness of the second spectral signal is the maximum; and the inter-symbol interference corresponding to the second spectral signal is the smallest.
  • the tap coefficient that makes the first spectral signal meet the first preset condition is used as the tap coefficient of the pre-filter, and includes:
  • the first spectral signal is caused to satisfy the first predetermined condition, and the second spectral signal satisfies a tap coefficient of the second predetermined condition as a tap coefficient of the pre-filter.
  • the optical communication system further includes a receiver, a multiplexer, a demultiplexer, and a transmission channel, where the transmitter is connected to the multiplexer, and the multiplexer passes through the The transport channel is connected to the demultiplexer, and the demultiplexer is connected to the receiver, as shown in FIG.
  • the first spectrum signal is the multiplexer and the a spectral signal transmitted between the transmission channels or a spectral signal of any position passed by the signal output by the pre-filter in the transmitter;
  • the second spectral signal is the multiplexer and the Describe the multiplexer, different
  • the spectral signal that passes through the first arbitrary position is the spectral signal of any position where the signal output by the pre-filter passes.
  • the first spectral signal is a spectral signal at a transmitting end
  • the second spectral signal is a spectral signal at the receiving end.
  • the first spectral signal is a spectral signal near an output of the multiplexer.
  • the second spectral signal is a spectral signal at the receiving end.
  • FIG. 7 is a schematic flowchart of an apparatus for adjusting a filter coefficient according to an embodiment of the present application.
  • the optical communication system includes at least one transmitter, and the schematic flowchart of the embodiment includes:
  • the transmitter to be adjusted includes a pre-filter.
  • a polarization multiplexed signal transmitter in which the tap coefficients need to be adjusted is selected as the transmitter to be adjusted, and the remaining transmitters of the optical communication system except the transmitter to be adjusted are turned off.
  • the spectrum signal of the position at the terminal A can be transmitted as the first spectrum signal.
  • the first spectral signal may be obtained by a standard spectrum estimation device, or the first spectral signal may be directly obtained by a spectrometer, or may be calculated by using a transfer function provided by the transmitter device manual, specifically Not limited.
  • the spectrum signal of the first spectrum signal in any one of the transmitting ends of the optical communication system can be obtained by the foregoing manner, and is not limited to the one shown in FIG. 8 . Acquisition of the first spectral signal at position A.
  • the first spectrum signal is a spectrum signal of the transmitting end in the optical communication system, specifically as shown by the A position
  • the second signal is the spectrum signal of the receiving end, as shown by the B position. That is to say, the A position and the B position are two different positions in the optical communication system, the A position is a position close to the multiplexer, and the B position is a position close to the demultiplexer, wherein the second spectrum signal is acquired.
  • the manner is the same as the method of obtaining the spectrum signal of the first spectrum signal. For details, refer to the description of step 102, and details are not described herein again.
  • step 102 there is no sequential order limitation between step 102 and step 103.
  • the first preset condition is that the signal power of the first spectrum signal outside the preset signal interval accounts for less than the preset threshold value (condition 1); the second preset condition is The minimum Euclidean distance in the error sequence corresponding to the second spectral signal is maximum (Condition 2); the information rate of the second spectral signal is the largest (Condition 3); the gain flatness of the second spectral signal is maximum .
  • the signal power of the first spectrum signal outside the preset signal interval is a percentage of the total power of the signal less than a preset threshold.
  • the preset signal interval is:
  • f 0 is a center frequency of the optical communication system
  • w is a channel spacing of the optical communication system.
  • the center frequency f 0 of the optical communication system is the frequency at which the respective wavelengths of the transmission signals in the optical communication system are aligned.
  • f 0 corresponds to the center frequency of the baseband signal, and is usually 0.
  • the channel spacing refers to the difference between the nominal carrier frequencies of the two adjacent channels in the optical communication system.
  • the optical communication system may adopt a fixed channel spacing, for example, 50G.
  • the tunable channel spacing may also be used, where the channel spacing of the optical communication system may be 50G, 62.5G, 75G, 37.5G, etc., which is not limited herein, and may be The actual configuration of the optical communication system is determined.
  • the preset signal interval may be determined by using a center frequency of the optical communication system and a channel interval.
  • the H A ( ⁇ ) is a spectral function of a baseband signal corresponding to the first spectral signal
  • the B( ⁇ ) is a corresponding function of a correlation function corresponding to a tap coefficient of the finite impulse response filter.
  • the C# is the preset threshold value, and the C% is less than 100%.
  • the C% can be configured according to actual conditions. For example, the value of C can be 98 or 99. Said The total power of the signal. In some embodiments of the present application, by normalizing the total power of the signal The above conditions can be simplified to
  • the tap coefficients of the impulse-limited response filter are b 1 , b 2 , . . . , b L .
  • the correlation function corresponding to b 1 , b 2 , . . . , b L is 2*L-
  • the sequence of 1 is as follows:
  • c -1 b 1 *(b 2 ) * +b 2 *(b 3 ) * +b 3 *(b 4 ) * +...b L-1 *(b L ) * ;
  • c 0 b 1 *(b 1 ) * +b 2 *(b 2 ) * +b 3 *(b 3 ) * +...b L *(b L ) * ;
  • c 1 b 2 *(b 1 ) * +b 3 *(b 2 ) * +b 4 *(b 3 ) * +...b L *(b L-1 ) * ;
  • c L-2 b L-1 * (b 1 ) * + b L * (b 2 ) * ;
  • B( ⁇ ) is the Fourier transform corresponding to the above error sequences c - L+1 , c - L + 2 , ..., c L-1 .
  • the minimum Euclidean distance in the error sequence corresponding to the second spectral signal is the maximum:
  • H B ( ⁇ ) is a spectral function of a baseband signal corresponding to the second spectral signal
  • b 1 , b 2 , . . . , b L are tap coefficients of the pre-filter
  • B( ⁇ ) is a Fourier transform corresponding to a correlation function corresponding to b 1 , b 2 , . . . , b L
  • the E( ⁇ ) corresponds to all error sequences in the optical communication system.
  • the tap coefficients of the finite impulse response filter used in the embodiments of the present application are such that the minimum Euclidean distance corresponding to the second spectrum signal is the largest.
  • the correlation function of the error sequence of length M is a sequence of length 2*M-1 , as follows:
  • c - M-3 e 1 * (e M-2 ) * - e 2 * (e M-1 ) * - e 3 * (e M ) * ;
  • c -1 e 1 *(e 2 ) * +e 2 *(e 3 ) * +e 3 *(e 4 ) * +...e M-1 *(e M ) * ;
  • c 0 e 1 *(e 1 ) * +e 2 *(e 2 ) * +e 3 *(e 3 ) * +...e M *(e M ) * ;
  • c 1 e 2 *(e 1 ) * +e 3 *(e 2 ) * +e 4 *(e 3 ) * +...e M *(e M-1 ) * ;
  • c M-3 e M-2 *(e 1 ) * +e M-1 *(e 2 ) * +e M *(e 3 ) * ;
  • c M-2 e M-1 *(e 1 ) * +e M *(e 2 ) * ;
  • E( ⁇ ) is the Fourier transform corresponding to the above error sequences c - M+1 , c - L + 2, ..., c L-1 .
  • the calculation manner may be adopted to determine the error corresponding to the first spectral signal.
  • the condition that the minimum Euclidean distance in the code sequence is the largest as follows:
  • the H A ( ⁇ ) is a spectral function corresponding to a base frequency corresponding to the first spectral signal moving to a baseband signal of the optical communication system
  • the b 1 , b 2 , . . . , b L a tap coefficient of the prefilter
  • the B( ⁇ ) is a Fourier transform corresponding to the correlation function of the b 1 , b 2 , . . . , b L
  • the E( ⁇ ) is In the optical communication system, a Fourier transform corresponding to a correlation function corresponding to all the error sequences
  • d is a value in which the minimum Euclidean distance in the error sequence corresponding to the first spectral signal is the largest.
  • Condition 3 the information rate of the second spectrum signal is the maximum
  • Condition 4 The gain flatness of the second spectral signal is maximum.
  • the first spectral signal is caused to satisfy the first preset condition, and the second spectral signal satisfies the tap coefficient of the second preset condition as the tap coefficient of the pre-filter.
  • the tap coefficient adjustment of the pre-filter of the filter to be adjusted is completed, and the tap coefficients satisfying the conditions 1, 2, 3, and 4 described in the above step 104 are configured as the filter to be adjusted. Set the coefficient of the filter.
  • the prefilter of the remaining transmitters in the optical communication system can be determined.
  • the details of the pre-filters of all the transmitters in the optical communication system can be configured by the apparatus of the embodiment of the present application to make the optical communication system meet the required requirements. It can be seen that by adjusting the tap coefficients of the pre-filter, the signal power of the transmitted signal in the optical communication system is less than a certain threshold value of the signal power outside the preset signal interval, and the adjacent channel can be reduced. Crosstalk between the two, and the minimum Euclidean distance in the error sequence corresponding to the first spectral signal is the maximum or the information rate of the first spectral signal is the largest, and the bandwidth of the transmission signal can be lower than the bandwidth of the transmission channel. When the bandwidth of the transmission signal is effectively adjusted, the performance of the optical communication system is improved.
  • the first spectrum signal may be replaced by a spectral signal of any position where the signal output by the pre-filter passes.
  • the first spectrum signal shown in FIG. 9 may be replaced by the A1 or A2 or A3 spectrum signal in FIG. 10 to implement the embodiment of the present application, which is not limited herein.
  • the second spectrum signal shown in FIG. 9 may also be used by the receiver, the pre-filter.
  • the spectral signal of any position where the output signal passes is replaced.
  • the second spectrum signal may also be replaced by the position signal of each position in the receiver to implement the embodiment of the present application. No restrictions are imposed.
  • the first spectral signal is caused to satisfy the first preset condition
  • the second spectral signal is made to satisfy the tap coefficient of the second preset condition as the front Set the tap coefficients of the filter, including:
  • the corresponding tap coefficients of the pre-filter can be calculated, but only the amplitude information of the forming function is limited, and the shaping function of the same amplitude, the phase information is not determined.
  • the minimum phase system is obtained under a given amplitude response condition, which makes it easy for the receiver side to recover the signal received from the demultiplexer, thereby further improving the performance of the entire optical communication system.
  • FIG. 11 is a schematic structural diagram of an apparatus for determining a filter tap coefficient according to an embodiment of the present application.
  • the optical communication system includes at least one transmitter, and the apparatus includes:
  • a first determining module 101 configured to determine, from the at least one transmitter, a unique one of the to-be-tuned transmitters, where the to-be-tuned transmitter includes a pre-filter;
  • a second determining module 102 configured to determine a tap coefficient that causes the first spectral signal to satisfy a first preset condition, where the first preset condition includes a signal power of the first spectral signal outside the preset signal interval. a percentage of the total power preset threshold value, wherein the first spectral signal is a spectral signal of the transmitting end of the optical communication system or a spectral signal of the receiving end;
  • the third determining module 103 is configured to use a tap coefficient that matches the first spectral signal to the first preset condition as a tap coefficient of the pre-filter.
  • the first preset condition further includes at least one condition that a minimum Euclidean distance in the error sequence corresponding to the first spectral signal is maximum; and an information rate of the first spectral signal is the largest.
  • the gain flatness of the first spectral signal is maximum.
  • the second determining module 102 is specifically configured to:
  • the second spectral signal is a spectral signal different from the first spectral signal in the transmitting end or the receiving end, and the second preset condition includes at least one condition: the second spectral signal
  • the minimum Euclidean distance in the corresponding error sequence is the maximum; the information rate of the second spectral signal is the maximum; and the gain flatness of the second spectral signal is the maximum;
  • the third determining module 103 is specifically configured to: cause the first spectral signal to satisfy the first preset condition, and cause the second spectral signal to satisfy a tap coefficient of the second preset condition as the The tap coefficient of the prefilter.
  • the optical communication system further includes a receiver, a multiplexer, a demultiplexer, and a transmission channel, where the transmitter is connected to the multiplexer, and the multiplexer passes through the transmission channel Demultiplexer connection, the demultiplexer is connected to the receiver, the first spectral signal is a spectral signal transmitted between the multiplexer and the demultiplexer or is the transmission In the machine, the spectral signal of any position where the signal output by the pre-filter passes;
  • the second spectral signal is a spectral signal transmitted between the multiplexer and the demultiplexer or any position of a signal output by the prefilter in the receiver. Spectral signal.
  • the second spectral signal is a spectral signal of any position at which the signal output by the pre-filter passes.
  • the preset signal interval is:
  • f 0 is a center frequency of the optical communication system
  • w is a channel spacing of the optical communication system
  • the second determining module 102 is further configured to:
  • the first spectrum signal satisfies the following formula, it is determined that the first determining that the first spectrum signal has a signal power outside the preset signal interval as a percentage of the total signal power is less than the preset threshold:
  • H A ( ⁇ ) is the spectral function of the baseband signal corresponding to the first spectral signal
  • B( ⁇ ) is the Fourier transform corresponding to the correlation function corresponding to the tap coefficient of the prefilter
  • C% is the preset gate Limit
  • C% is less than 100%, The total power of the signal.
  • the second determining module 102 is further configured to:
  • H A ( ⁇ ) is the spectral function of the baseband signal corresponding to the first spectral signal
  • b 1 , b 2 , ..., b L is the tap coefficient of the pre-filter
  • B( ⁇ ) is b 1 , b 2 ,..., b L corresponds to the Fourier transform corresponding to the correlation function
  • E( ⁇ ) is the Fourier transform corresponding to the correlation function corresponding to all the error sequences in the optical communication system
  • d is the first The minimum Euclidean distance in the error sequence corresponding to the spectrum signal is the largest value.
  • H B ( ⁇ ) is the spectral function of the baseband signal corresponding to the second spectral signal
  • d′ is the value of the smallest Euclidean distance in the error sequence corresponding to the second spectral signal.
  • H B ( ⁇ ) is a spectral function of a baseband signal corresponding to the second spectral signal
  • b 1 , b 2 , . . . , b L are tap coefficients of the pre-filter
  • B( ⁇ ) is a Fourier transform corresponding to a correlation function corresponding to b 1 , b 2 , . . . , b L
  • the E( ⁇ ) corresponds to all error sequences in the optical communication system.
  • the third determining module 103 is specifically configured to:
  • the apparatus 200 mainly includes a processor 201 (wherein the number of processors 201 in the apparatus 200 may be one or more, FIG. A processor is exemplified in FIG. 12, a memory 202, and a computer program 203 stored on the memory 202 and executable by the processor 201.
  • the device may be located in the transmitter or outside the transmitter, which is not limited.
  • the device 200 may also include an operating system or the like installed on the hardware, which is not specifically listed in FIG. 12, but does not limit the device in the embodiment of the present application.
  • the processor 201 and the memory 202 may be connected by using a bus or other manner, which is not limited herein.
  • FIG. 12 is exemplified by a bus connection as an example.
  • the memory 202 which may include a ROM and a RAM, may also be other memories or storage media, and provides instructions and data to the processor 201. A portion of memory 202 may also include NVRAM.
  • the memory 202 stores an operating system and operating instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions may include various operational instructions for implementing various operations. .
  • the operating system can include a variety of systems Programs for implementing various basic services and handling hardware-based tasks.
  • the memory 202 also stores data and the like related to the embodiments of the present application.
  • the processor 201 is used to control the operation of the device 200, which may also be referred to as a CPU.
  • the various components of the device 200 are coupled together by a bus system.
  • the bus system may include a power bus, a control bus, a status signal bus, etc. in addition to the data bus, but for clarity of description, in FIG.
  • the various buses are called bus systems.
  • the method for determining the filter tap coefficients disclosed in the embodiments of the present application may be applied to the processor 201 or implemented by the processor 201.
  • the processor 201 can be an integrated circuit chip with signal processing capabilities.
  • the steps performed by the server side in the embodiment of the present application may be implemented by the processor 201 executing a computer program stored on the memory 202.
  • the processor 201 may be a general-purpose processor, a digital signal processing (DSP), an application-specific integrated circuit (ASIC), or a field-programmable gate array (FPGA). Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 202, and the processor 201 reads the information in the memory 202 and combines the hardware to complete the steps in the method for determining the filter tap coefficients of the embodiment of the present application.
  • the embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a program, and when the program is executed by the computer, some or all of the steps described in the foregoing method embodiments can be implemented.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium such as a solid state disk (SSD) or the like.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • the disclosed systems, modules, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • U disk U disk
  • mobile hard disk read only memory
  • random access memory disk or optical disk, etc.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种确定滤波器抽头系数的方法和装置,用于光通信系统中,可以有效地解决导致通信系统的整体性能较差的问题。本申请实施例方法部分包括:确定待调整发射机,并关闭光通信系统中除待调整发射机外的其余发射机,其中,待调整发射机包括前置滤波器;调整前置滤波器的抽头系数,以确定出使得第一谱信号满足第一预设条件的抽头系数,第一预设条件包括第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于预设门限值,并且所述第一谱信号对应的误码序列中的最小欧式距离为最大或所述第一谱信号的信息率为最大;可以通过将使得第一谱信号符合第一预设条件的抽头系数作为前置滤波器的抽头系数。

Description

确定滤波器抽头系数的方法和装置 技术领域
本申请涉及光通信领域,尤其涉及到一种确定滤波器抽头系数的方法以及装置。
背景技术
光通信系统是以光为载波,利用光导纤维等传输介质作为传输信道,通过光电变换,用光来传输信息的通信系统,如常见的波分复用光通信系统,一般包括发射机、接收机、复用器、解复用器和传输信道。其一般的工作原理大致为:通过复用器将发射机所发射的承载有信息的不同波长的光信号复用至传输信道进行传输,解复用器接传输信道传输过来的光信号,再由接收机恢复出不同波长的光信号,从而得到不同波长的光信号所承载的信息。
随着光通信系统波特率的提升,单波信号所占用的带宽越来越大,而发射机和接收机的受硬件所限制,光通信系统所能提供的带宽有限,导致传输信号受损,从而降低光通信系统整体性能。在现有技术中,发射机常利用前置滤波器对传输信号进行压缩传输信号以降低传输信号带宽,以改善由于硬件所能提供的带宽受限而导致信号出现损失的情况,从而提高光通信系统的整体性能。由此可见,前置滤波器的抽头系数的配置对系统整体性能影响比较大。
然而,现有技术中,当光通信系统的硬件确定时,由于前置滤波器的抽头系数通常由经验数据来确定,未考虑实际系统运用时其他因素,从而导致前置滤波器的抽头系数的设计未能满足光通信系统对传输信号带宽的实际需求,造成传输信号带宽高于光通信系统所提供的带宽,导致出现邻道干扰,传输信号出现损失,最终导致通信系统的整体性能较差。
发明内容
本申请提供了一种确定滤波器抽头系数的方法以及装置,应用于光通信系统中,用于有效地解决传输信号带宽高于光通信系统所提供的带宽,导致出现邻道干扰,传输信号出现损失,最终导致通信系统的整体性能较差的问题。
为了解决上述问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种确定滤波器抽头系数的方法,应用于光通信系统中,该光通信系统至少包括一个发射机,该方法包括:确定待调整发射机,并关闭光通信系统中除待调整发射机外的其余发射机,其中,待调整发射机包括前置滤波器;确定出使得第一谱信号满足第一预设条件的抽头系数,第一预设条件包括第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于预设门限值,可以通过将使得第一谱信号符合第一预设条件的抽头系数作为前置滤波器的抽头系数,其中,第一谱信号为发射端或接收端的谱信号。
由此可见,确定使得光通信系统中传输信号的谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于一定门限值,可以在满足传输信号的带宽低于传输信道的带宽, 传输信号的带宽得到有效的调整的情况下,可以减少信道邻道之间的串扰,从而提升光通信系统的性能。
在一种可能的实现中,第一预设条件还包括至少一个以下条件:
所述第一谱信号对应的误码序列中的最小欧式距离为最大;所述第一谱信号的信息率为最大;第一谱信号的增益平坦度为最大;第一谱信号的码间串扰为最小,也就是说,第一谱信号除了满足第一方面所提及的条件外,还需要满足上述条件中的任意一个或多个,其中,所述第一谱信号对应的误码序列中的最小欧式距离为最大和/或所述第一谱信号的信息率为最大可以有效地接收端的接收质量,第一谱信号的增益平坦度为最大和/或码间串扰为最大,可以有效地减少光通信系统中接收端的负担,例如可以有效地减少接收机的负担。
在一种可能的实现中,确定出使得第一谱信号满足第一预设条件的抽头系数,包括:确定出使得第一谱信号满足第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数;其中,第二谱信号为发射端或接收端中不同于第一谱信号的谱信号,第二预设条件包括以下至少一个条件:第二谱信号对应的误码序列中的最小欧式距离为最大;第二谱信号的信息率为最大;第二谱信号的增益平坦度为最大;将使得第一谱信号符合第一预设条件的抽头系数作为前置滤波器的抽头系数,包括:将使得第一谱信号满足第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数作为前置滤波器的抽头系数。在本实现中,通过获取的两处不同位置的谱信号共同进行约束,从而确定出所需的抽头系数,确定出的抽头系数能更加满足光通信系统的性能要求。
在一种可能的实现中,光通信系统还包括接收机、复用器、解复用器以及传输信道,发射机与复用器连接,复用器通过传输信道与解复用器连接,解复用器与接收机连接,第一谱信号为复用器与解复用器之间传输的谱信号或为发射机中,前置滤波器输出的信号所经过的任意一处位置的谱信号;第二谱信号为复用器与解复用器之间传输的谱信号或为接收机中,前置滤波器输出的信号所经过的任意一处位置的谱信号。也就是说,在本实现中,提出了多种获取第一谱信号和第二谱信号方式的具体位置,增加了方案的多样性。
在一种可能的实现中,当传输信道包括窄带器件时,第二谱信号为接收机中,前置滤波器输出的信号所经过的任意一处位置的谱信号,简而言之,第二谱信号可以为接收机中各处位置的谱信号。
在一种可能的实现中,预设信号间隔为:
Figure PCTCN2017097415-appb-000001
其中,f0为光通信系统的中心频率,w为光通信系统的信道间隔。
在一种可能的实现中,当第一谱信号满足以下公式时,则确定第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于预设门限值:
Figure PCTCN2017097415-appb-000002
其中,HA(ω)为第一谱信号对应的基带信号的谱函数,B(ω)为前置滤波器的抽头系数对应的相关函数所对应的傅里叶变换,C%为预设门限值,C%小于100%,
Figure PCTCN2017097415-appb-000003
为信号总功率。
在一种可能的实现中,当第一谱信号满足以下公式时,则确定第一谱信号对应的误码序列中的最小欧式距离为最大:
Figure PCTCN2017097415-appb-000004
约束条件为:
Figure PCTCN2017097415-appb-000005
其中,HA(ω)为第一谱信号对应的基带信号的谱函数,b1,b2,...,bL为前置滤波器的抽头系数,B(ω)为b1,b2,...,bL对应的相关函数所对应的傅里叶变换,E(ω)为所述光通信系统中所有误码序列对应的相关函数所对应的傅里叶变换,d为第一谱信号对应的误码序列中的最小欧式距离为最大的值。
当第二谱信号满足以下公式时,则确定第二谱信号对应的误码序列中的最小欧式距离为最大:
Figure PCTCN2017097415-appb-000006
约束条件为:
Figure PCTCN2017097415-appb-000007
其中,HB(ω)为第二谱信号对应的基带信号的谱函数,d'为第二谱信号对应的误码序列中的最小欧式距离为最大的值。
在一种可能的实现中,将使得第一谱信号满足第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数作为前置滤波器的抽头系数,包括:将使得第一谱信号满足第一预设条件,并且使得第二谱信号满足第二预设条件,并且使得光通信系统为最小相位系统的抽头系数作为前置滤波器的抽头系数。
在一种可能的实现中,前置滤波器为有限冲激响应滤波器。
第二方面,本申请实施例对应提供调整滤波器抽头系数的装置,该装置具有实现上述方法中所实现的行为的功能,上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现中,上述装置的结构中包括存储器、处理器,以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现前述第一方面/第一方面各实现中所述的方法。
在一种可能的实现中,本申请实施例对应提供一种确定滤波器抽头系数的装置,应用于光通信系统中,光通信系统包括至少一个发射机,其该装置包括:第一确定模块,用于从至少一个发射机中确定唯一一个开启的待调整发射机,其中,待调整发射机包括前置滤波器;第二确定模块,用于确定出使得第一谱信号满足第一预设条件的抽头系数,第一预设条件包括第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比预设门限值,其中,第一谱信号为光通信系统中发射端的谱信号或接收端的谱信号;第三确定模块,将使得第一谱信号符合第一预设条件的抽头系数作为前置滤波器的抽头系数。
在本申请的第二方面中,上述装置的组成模块还可以执行前述第一方面各种可能的实现方式中所描述的步骤,详见前述对第一方面或第一方面各种可能的实现方式中的说明,具体此处不再做赘述。
第三方面、本申请实施例提供了一种计算机设备,包括存储器、处理器,以及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述第一方面/ 第一方面各实现所描述的步骤或功能。
第四方面、本申请实施例提供了一种计算机可读存储介质,其特征在于,计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得所述计算机执行上述第一方面/第一方面各实现所描述的步骤或功能。
由此可见,由于传输信号的谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于一定门限值,可以减少信道邻道之间的串扰,并且所述第一谱信号对应的误码序列中的最小欧式距离为最大或所述第一谱信号的信息率为最大,因此,将传输信号的谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于一定门限值的抽头系数作为前置滤波器的抽头系数,可以在满足传输信号的带宽低于传输信道的带宽,传输信号的带宽得到有效的调整下,从而有效地降低邻道干扰,从而提升光通信系统的性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例一种确定滤波器抽头系数的方法所应用的光通信系统一个架构示意图;
图2为本申请实施例所应用的光通信系统中发射机的一个结构示意图;
图3为发射机中信号处理器的一个结构示意图;
图4为发射机中信号处理器的另一个结构示意图;
图5为发射机中信号处理器的另一个结构示意图;
图6为本申请实施例所应用的光通信系统所采用的前置滤波器一个结构示意图;
图7为本申请实施例一种确定波器抽头系数的方法一个实施例流程示意图;
图8为本申请实施例一种确定滤波器抽头系数的方法中所获取的谱信号的获取位置示意图;
图9为本申请实施例一种确定滤波器抽头系数的方法中所获取的谱信号的另一获取位置示意图;
图10为本申请实施例一种确定滤波器抽头系数的方法中所获取的谱信号的另一获取位置示意图;
图11为本申请实施例一种确定滤波器抽头系数的装置一个实施例结构示意图;
图12为本申请实施例一种确定滤波器抽头系数的装置另一实施例结构示意图。
具体实施方式
本申请实施例提供了一种确定滤波器抽头系数的方法以及装置,可以提高整个光通信系统的性能。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以 除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例所提供的确定滤波器抽头系数的方法以及装置,适用于各种各样的,发射机中包括有前置滤波器的光通信系统中,上述光通信系统可以包括,但不局限于偏振复用光通信系统和/或波分复用光通信系统,上述光通信系统可以是相干光通信系统。其中,以光通信系统中传输的光信号的波长大小进行分类,本申请实施例所适用的光通信系统还可以为短波长光通信系统或长波长光通信系统;当光通信系统中的传输介质为光纤时,以光纤的模式进行分类,本申请实施例所适用的光通信系统还可以是多模光纤光通信系统或单模光纤光通信系统;以光纤中传输信号的类型进行分类,本申请实施例所使用的光通信系统还可以是光纤模拟系统或光纤数字系统,其中,光纤模拟系统是指利用模拟信号对光通信系统的光源进行调制的系统,光纤数字系统是指利用数字信号对光通信系统的光源进行调制的系统;以光纤中传输信号的速率进行分类,本申请实施例所使用的光通信系统可以是低速光纤通信系统或高速光纤通信系统,其中,低速光纤通信系统的传输信号的速率一般2Mbit/S(兆比特每秒),或8Mbit/S等低于10Mbit/S的光通信系统,高速光纤通信系统的传输信号的速率一般为34Mbit/S,或34Mbit/S以上的光通信系统,例如140Mbit/S的光通信系统;以光通信系统所应用的范围分类,本申请实施例所适用的光通信系统还可以是公用光通信系统或专用光通信系统,其中,公用光通信系统一般指电信部门应用的光纤通信系统,包括光纤市话中继通信系统,光纤长途通信系统和光纤用户环路通信系统;而专用光通信系统是指电信部门以外的各部门应用的光通信系统,例如电力、铁路、交通、石油、广播、银行、军事等方面所应用光通信系统。
为了便于理解,下面将偏振复用相干光通信系统为例,结合图1,对本申请实施例所适用的光通信系统进行介绍。请参阅图1,图1为本申请实施例一种确定滤波器抽头系数的方法所使用的光通信系统一个系统框架示意图,图1所示的光通信系统中,包括至少一个偏振复用信号发射机110、复用器120、传输信道130、解复用器140以及接收机150。其中,上述至少一个偏振复用信号发射机110与所述复用器120连接,复用器120通过传输信道130与解复用器140连接,解复用器140与接收机150连接,其中,可选地,上述传输信道130可以为光纤链路。
其中,上述至少一个偏振复用信号发射机110对应不同的波长,换言之,偏振复用信号发射机110对应不同频段,用于发射不同波长的传输信号,偏振复用信号发射机110所发射的不同波长的传输信号,通过复用器120进行合波,在传输信道130进行传输,合波后的传输信号通过解复用器140后,解复用器将对应不同波长的传输信号进行分波,分波后的传输信号通过接收机150接收。
为了进一步了解图1所适用的光通信系统,接下来将对偏振复用信号发射机进行一个介绍。如图2所示,图2为偏振复用信号发射机的一个内部结构示意图,包括信号处理器111、数模转换器112、调制器113以及偏振耦合器114。
其中,如图3所示,信号处理器111包括星座映射模块、前置滤波器、波形成型模块。在该偏振复用相干光通信系统工作过程中,信号处理器用于接收由待传送信息转换而来的数据序列(该数据序列携带有待传送信息),当接收到数据序列后,数据序列被分为两路进行处理,分别送入不同的星座映射模块进行星座映射处理以得到对应的星座点数据流。示例性的,假设有数据序列为“0101001010101010”,则进入信号处理器111后,被分为第一、第二数据序列两路数据序列,第一数据序列为“01001010”,第二数据序列为“01101010”,分出来的两路数据序列分别送至星座映射模块进行映射处理以得到对应的星座点数据流。需要说明的是,上述示例的分路方式在这里只是举例说明,实际应用中可以有其他分路方式,具体不做限定,这里不一一举例。星座映射模块接收到第一、第二数据序列后,按照预设的调制格式,分别将第一、第二数据序列映射成对应的星座点数据流。其中,上述预设的调制格式包括,但不局限于标准格点的二进制相移键控(binary phase shift keying,BPSK),正交相移键控(quadrature phase shift keyin,QPSK),正交幅度调制(quadrature amplitude,modulation,QAM),例如16QAM;以及各种非标准格点的调制格式,例如非等概率分布的调制格式。
示例性的,请参阅图4所示,仍以数据序列为上述“01001010101010”为例,可将“00”映射射到星座图中的星座点1+j,将“01”映射到星座点-1+j,将“10”映射到星座点-1-j,将“11”投射到星座点1-j。对此,第一路数据序列为“01001010”,分别投射到“-1+j,1+j,-1-j”上得到第一路数据序列对应的星座点数据流。其次,将第一路数据序列对应的星座点数据流的实部和虚部分开作为两路输出,可得到输出的实部的第一路映射信号为“-1,1,-1,-1”,以及输出的虚部的第二路映射信号为“1,1,-1,-1”。同理,第二路数据序列经过星座映射后,可得到对应的第三路映射信号以及第四路映射信号。所以,第一、二数据序列可得到四路映射信号。这里需要说明的是,星座映射的方式有很多种,前面示例仅以2比特位为一组进行了举例说明,在其它的实施方式中,也可以以3个比特或4个比特为一组进行星座映射等等,此处不一一举例。前置滤波器用于对星座映射模块传送过来四路映射信号进行滤波得到四路滤波后信号。
示例性的,请参阅图5所示,第一路数据序列经过星座映射后,可以直接以“-1+j,1+j,-1-j,-1-j”的复数形式输出第一路映射信号。第二路数据序列经过星座映射后,同样以复数形式输出第二路映射信号。两路数据序列可得到对应的两路映射信号。前置滤波器用于对星座映射模块传送过来两路映射信号进行滤波得到四路滤波后信号。
另外需要说明的是,可选地,在实际应用中,数据序列可以是上述待传送信息经过前向纠错编码(forward error correction,FEC)技术获得的数据序列,也就是说,可以是经过交织后的数据序列。更进一步,星座映射后所输出的星座点数据流,可以通过交织后,再输入前置滤波器。具体此处不做限定。
可选地,在本申请实施例中,该前置滤波器采用有限冲激响应滤波器(finite impulse response,FIR)。可选地,请参阅图6,图6是本申请实施例发射机中有限冲激响应滤波器的结构示意图,该有限冲激响应滤波器的实现公式为D(k)=b0C(k)+b1C(k-1)+…+bN-1C(k-N+1),其中,k为时间序列号,D(k)为该有限冲激响应滤波器输出的滤波后信号, C(k)经过星座映射后的映射信号,0≤i≤N-1,N-1为基于时间单位的最大延时数量,bi为第i个有限冲激响应滤波器的抽头系数,C(k-i)为C(k)延时i个时间单位所得到的信号,Z-1为该有限冲激响应滤波器的传递函数。
另外,波形成型模块,用于按照预设的成型形状对上述前置滤波器输出的四路滤波后信号进行成型滤波得到对应的四路整形信号输出至对应的数模转换器。需要说明的而是,预设的成型形状包括但不限于配置的根升余弦波、高斯波、高阶高斯波、扩展高斯波等,可以根据实际应用情况进行配置,具体不做限定。另外需要说明的是,在信号处理器111中,还可以包括损伤补偿模块,用于补偿偏振信号发射机的信号损失。
请再参阅图2,由上述介绍可得,数字信号处理器111用于生成待传输的四路数字信号(即上述四路整形信号),并将四路数字信号分别送至对应的数模转换器112,数模转换器分别对四个通道的数字信号进行数模转换得到四路模拟信号IX、QX、IY和QY。其中,IX和QX信号被输送到其中一个调制器113进行调制以获得高频的X路调制信号,IY和QY信号被输送到另一个调制器113进行调制以获得高频的Y路调制信号。然后,X路调制信号和Y路调制信号被发送到偏振耦合器114中进行耦合输出偏振复用发射信号。复用器120将各通道的偏振复用发射信号进行复用后输送至传输信道进行传输,解复用器140可以对复用后的信道进行解复用,得到对应的偏振复用发射信号,再由接收机150进行接收。
需要说明的是,图1所介绍的光通信系统,在这里只是举例进行说明,并不对本申请实施例所提出的方法所适用的光通信系统造成限定,另外,为了便于理解,本申请实施例中所描述的前置滤波器为有限冲激响应滤波器,该有限冲激响应滤波器的抽头系数为b1,b2,...,bL,L为该有限冲激响应滤波器的抽头长度。
在本申请实施例中,提出了一种可以确定前置滤波器的抽头系数的方法,应用于上述所描述的,包括有至少一个发射机的光通信系统中,例如图1所示的偏振复用光通信系统中。在本申请实施例中,从至少一个发射机中确定唯一一个开启的待调整发射机,其中,待调整发射机包括前置滤波器,确定出使得第一谱信号满足第一预设条件的抽头系数,第一预设条件包括第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于预设门限值,可以通过将使得第一谱信号符合第一预设条件的抽头系数作为前置滤波器的抽头系数。其中,第一位置为光通信系统中,发射端或接收端的谱信号,谱信号是指光信号所对应的电频谱信号还是光频谱信号,具体取决于在实际应用中,第一谱信号为光通信系统中何处位置的谱信号,具体此处不做限定。
由此可见,确定使得光通信系统中传输信号的谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于一定门限值,可以在满足传输信号的带宽低于传输信道的带宽,传输信号的带宽得到有效的调整的情况下,可以减少信道邻道之间的串扰,从而提升光通信系统的性能。
因此,将使得第一谱信号符合第一预设条件的抽头系数作为前置滤波器的抽头系数,可以有效地确保光通信系统中,传输信号的带宽能够得到有效地的调整,从而有效地提高光通信系统的频谱效率,提高整个光通信系统的性能。
可选地,在本申请实施例中,所述第一预设条件还包括至少一个以下条件:所述第一 谱信号对应的误码序列中的最小欧式距离为最大;所述第一谱信号的信息率为最大;所述第一谱信号的增益平坦度为最大;第一谱信号的码间串扰为最小。
应理解,由前面的描述可以知道,在信号处理器111中对数据序列进行星座映射调制的过程中,可以有多种调制方式,例如BPSK、QPSK等调制方式,其中,不同的调制方式可能出现信号处理器110输出的数据存在不同的误码序列组合,信号处理器11中波形成型模块所输出的每一路信号由于所采用的调制方式不同,每一路都可能出现不同的误码序列,例如,当采用QPSK调制方式时,I、Q路各自对应的误码可能是2、-2、0,则光通信系统中的误码序列为上述3个可能误码(除去全0误码)的排列组合,以长度为3的误码序列为例,对应26种误码序列,分别为e1={2 2 2},e2={2 2 0},e3={2 2 -2},e4={2 0 2},e5={2 0 0},e6={2 0 -2},e7={2 -2 2},e8={2 -2 0},e9={6 -2 -2},e10={0 2 2},e11={0 2 0},e12={0 2 -2},e13={0 0 2},e14={0 0 -2},e15={0 -2 2},e16={0 -2 0},e17={0 -2 -2},e18={-2 2 2},e19={-2 2 0},e20={-2 2-2},e21={-2 0 2},e22={-2 0 0},e23={-2 0 -2},e24={-2 -2 2},e25={-2 -2 0},e26={-2 -2 -2}。各种可能的误码序列,各自都唯一对应一个欧式距离,对于任意其中一组前置滤波器的抽头系数,通过所有可能的误码序列,会对应得到一个最小的欧氏距离,使得这个最小欧式距离最大的抽头系数,即为满足谱信号对应的误码序列中的最小欧式距离为最大的条件。实际上即便对应相同的最小欧式距离,抽头系数取值不唯一。可选地,可以通过增益平坦度或者码间串扰的限定优化出一组最优前置滤波器的抽头系数。这里需要说明的,这里为了便于叙述,上述只是以QPSK为例,以长度为3的误码序列进行说明,并且列出了所有可能的组合,但是以上仅为举例,本申请文件中对于所有误码序列,不限误码序列的长度,对于不同的调制方式,该调制方式下所有可能的误码序列,都要满足上述谱信号对应的误码序列中的最小欧式距离为最大的条件。
可选地,确定出使得第一谱信号满足第一预设条件的抽头系数,包括:
确定出使得所述第一谱信号满足所述第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数;其中,所述第二谱信号为所述光通信系统中发射端或接收端的谱信号,第一谱信号与第一谱信号为不同的信号,所述第二预设条件包括以下至少一个条件:所述第二谱信号对应的误码序列中的最小欧式距离为最大;所述第二谱信号的信息率为最大;所述第二谱信号的增益平坦度为最大;第二谱信号对应的码间串扰为最小。
将使得所述第一谱信号符合所述第一预设条件的抽头系数作为所述前置滤波器的抽头系数,包括:
将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件的抽头系数作为所述前置滤波器的抽头系数。
可选地,在本申请实施例中,光通信系统还包括接收机、复用器、解复用器以及传输信道,所述发射机与所述复用器连接,所述复用器通过所述传输信道与所述解复用器连接,所述解复用器与所述接收机连接,具体可以如图1所示,其中,所述第一谱信号为所述复用器与所述传输信道之间传输的谱信号或为所述发射机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号;所述第二谱信号为所述复用器与所述解复用器之间,不同 于第一任意一处位置所经过的谱信号或为,所述接收机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号。
可选地,所述第一谱信号为发射端的谱信号,所述第二谱信号为所述接收端的谱信号,示例性的,所述第一谱信号为靠近复用器输出口的谱信号,所述第二谱信号为接收端的谱信号。
为了便于理解,将以所述第一谱信号发射端的谱信号,所述第二谱信号为接收端的谱信号为例,结合图1,对本申请实施例进行一个详细的叙述,请参阅图7,图7为本申请实施例一种调整滤波器系数的装置一种实施例流程示意图,应用与光通信系统中,该光通信系统包括至少一个发射机,该实施例流程示意图包括:
101、从至少一个发射机中确定唯一一个开启的待调整发射机。
其中,该待调整发射机包括前置滤波器。如图1所示的光通信系统,选取其中需要调整抽头系数的偏振复用信号发射机作为上述待调整发射机,并关闭光通信系统中除了上述待调整发射机的其余发射机。
102、获取发射端的谱信号作为第一谱信号。
具体的,如图8所示,在本申请实施中,可以发射端A处位置的谱信号作为第一谱信号。可选地,可以通过标准的谱估计装置获取第一谱信号,也可以通过光谱仪直接获取第一谱信号,或者通过该发射机器件手册所提供的传递函数进行计算得到该第一谱信号,具体不做限定。
需要说明的是,在本申请实施例中,第一谱信号为光通信系统中发射端中的任意一处位置的谱信号,都可以通过上述方式获取得到,而不局限于图8所示的A位置的第一谱信号的获取。
103、获取接收端的谱信号作为第二谱信号。
如图9所示,第一谱信号为光通信系统中,发射端的谱信号,具体如A位置所示,而第二信号是接收端的谱信号,具体如B位置所示。也就是说,A位置与B位置为光通信系统中,不同的两处位置,A位置为靠近复用器的位置,B位置为靠近解复用器的位置,其中,第二谱信号的获取方式与获取第一谱信号的谱信号的方式相同,具体可以参阅步骤102的描述,这里不再赘述。
另外需要说明的是,步骤102与步骤103之间并无执行先后循序限定。
104、确定出使得第一谱信号满足第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数。
其中,所述第一预设条件为所述第一谱信号在预设信号间隔以外的信号功率占信号总功率百分比小于预设门限值(条件1);所述第二预设条件为所述第二谱信号对应的误码序列中的最小欧式距离为最大(条件2);所述第二谱信号的信息率为最大(条件3);所述第二谱信号的增益平坦度为最大。
为了便于理解,下面对上述预设条件分别展开进行描述:
条件1:所述第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于预设门限值。
可选地,在本申请实施例中,所述预设信号间隔为:
Figure PCTCN2017097415-appb-000008
其中,所述f0为所述光通信系统的中心频率,所述w为所述光通信系统的信道间隔。其中,光通信系统的中心频率f0是光通信系统中传输信号各个波长所对准的频率,可选地,在本申请实施例中,f0对应是基带信号的中心频率,通常是0。信道间隔是指光通信系统中,相邻两个信道标称载频之间的差值,在本申请实施例中,光通信系统可以采取固定的信道间隔,例如50G。也可以采用可调的信道间隔,其中,当信号间隔的调谐粒度可以为12.5G时,光通信系统的信道间隔可以为50G、62.5G、75G、37.5G等,具体这里不做限定,可以根据光通信系统的实际配置确定。在本申请实施例中,可以利用光通信系统的中心频率以及信道间隔确定上述预设信号间隔。
在本申请实施例中,当所述第一谱信号满足以下公式时,则确定所述第一谱信号在所述预设信号间隔以外的信号功率占信号总功率百分比小于预设门限值:
Figure PCTCN2017097415-appb-000009
其中,所述HA(ω)为所述第一谱信号对应的基带信号的谱函数,所述B(ω)为所述有限冲激响应滤波器的抽头系数对应的相关函数所对应的傅里叶变换,所述C%为上述预设门限值,所述C%小于100%,所述C%可以根据实际情况进行配置,示例性的,C的取值可以为98或99。所述
Figure PCTCN2017097415-appb-000010
为所述信号总功率。在本申请的一些实施例中,通过归一化信号总功率
Figure PCTCN2017097415-appb-000011
上述条件可以简化为
Figure PCTCN2017097415-appb-000012
其中,设有限冲激响应滤波器的抽头系数为b1,b2,...,bL,则b1,b2,...,bL对应的相关函数是长度为2*L-1的序列,具体如下所示:
c-L+1=b1*(bL)*
c-L+2=b1*(bL-1)*+b2*(bL)*
c-L+3=b1*(bL-2)*+b2*(bL-1)*+b3*(bL)*
……
c-1=b1*(b2)*+b2*(b3)*+b3*(b4)*+...bL-1*(bL)*
c0=b1*(b1)*+b2*(b2)*+b3*(b3)*+...bL*(bL)*
c1=b2*(b1)*+b3*(b2)*+b4*(b3)*+...bL*(bL-1)*
……
cL-3=bL-2*(b1)*+bL-1*(b2)*+bL*(b3)*
cL-2=bL-1*(b1)*+bL*(b2)*
cL-1=bL*(b1)*
而B(ω)为上述误码序列c-L+1,c-L+2,...,cL-1对应的傅里叶变换。
条件2:所述第二谱信号对应的误码序列中的最小欧式距离为最大。
在本申请实施例中,当所述第二谱信号满足以下公式时,则确定所述第二谱信号对应的误码序列中的最小欧式距离为最大:
Figure PCTCN2017097415-appb-000013
Figure PCTCN2017097415-appb-000014
的约束条件为:
Figure PCTCN2017097415-appb-000015
其中,所述HB(ω)为所述第二谱信号对应的基带信号的谱函数,所述b1,b2,...,bL为所述前置滤波器的抽头系数,所述B(ω)为所述b1,b2,...,bL对应的相关函数所对应的傅里叶变换,所述E(ω)所述光通信系统中所有误码序列对应的相干函数所对应的傅里叶变换,所述d'为所述第二谱信号对应的误码序列中的最小欧式距离。简而言之,本申请实施例所采用的有限冲激响应滤波器的抽头系数使得第二谱信号对应的最小欧氏距离为最大。
其中,B(ω)与上述条件1的相同,这里不再赘述。
这里假设以长度为M的误码序列为例:{e1,e2,...,eM},则该长度为M的误码序列的相关函数为长度为2*M-1的序列,具体如下所示:
c-M-1=e1*(eM)*
c-M+2=e1*(e)*-e2*(eM)*
c-M-3=e1*(eM-2)*-e2*(eM-1)*-e3*(eM)*
……
c-1=e1*(e2)*+e2*(e3)*+e3*(e4)*+...eM-1*(eM)*
c0=e1*(e1)*+e2*(e2)*+e3*(e3)*+...eM*(eM)*
c1=e2*(e1)*+e3*(e2)*+e4*(e3)*+...eM*(eM-1)*
……
cM-3=eM-2*(e1)*+eM-1*(e2)*+eM*(e3)*
cM-2=eM-1*(e1)*+eM*(e2)*
cM-1=eM*(e1)*
E(ω)是上述误码序列c-M+1,c-L+2,...,cL-1对应的傅里叶变换。
这里需要说明的是,当第一预设条件包括所述第一谱信号对应的误码序列中的最小欧式距离为最大时,也可以采取上述计算方式进确定所述第一谱信号对应的误码序列中的最小欧式距离为最大的条件,如下所示:
Figure PCTCN2017097415-appb-000016
约束条件为:
Figure PCTCN2017097415-appb-000017
其中,所述HA(ω)为所述第一谱信号对应的中心频率挪动到所述光通信系统的基带信号时对应的谱函数,所述b1,b2,...,bL为所述前置滤波器的抽头系数,所述B(ω)为所述b1,b2,...,bL对应相关函数所对应的傅里叶变换,所述E(ω)为所述光通信系统中,所有误码序列对应的相关函数所对应的傅里叶变换,所述d为所述第一谱信号对应的误码序列中的最小欧式距离为最大的值。
条件3:所述第二谱信号的信息率为最大;
条件4:所述第二谱信号的增益平坦度为最大。
105、将使得第一谱信号满足第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数作为前置滤波器的抽头系数。
这样,待调整滤波器的前置滤波器的抽头系数调整完成,将同时满足上述步骤104中所描述的条件1、条件2、条件3以及条件4的抽头系数配置为上述待调整滤波器的前置滤波器的系数。
需要说明的是,通过上述方法,可以确定光通信系统中其余发射机的前置滤波器的系 数,具体这里不再一一赘述,通过本申请实施例的装置,可以配置光通信系统中所有发射机的前置滤波器的系数,以使得光通信系统满足所需要求。由此可见,通过调整前置滤波器的抽头系数,使得光通信系统中传输信号的谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于一定门限值,可以减少相邻信道之间的串扰,并且所述第一谱信号对应的误码序列中的最小欧式距离为最大或所述第一谱信号的信息率为最大,可以在满足传输信号的带宽低于传输信道的带宽,传输信号的带宽得到有效的调整的情况下,提升光通信系统的性能。
可选地,结合上述实施例,在本申请实施中,第一谱信号还可以是所述发射机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号代替,具体地,图9所示的第一谱信号可以由如图10中的A1或A2或A3谱信号替换以实现本申请实施例,具体此处不做限定。
可选地,结合上述实施例,在本申请实施例中,当所述传输信道包括窄带器件时,图9所示的第二谱信号还可以由所述接收机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号进行替换,简而言之,第二谱信号还可以是所述接收机中各处位置谱信号进行替换,以实现本申请实施例,具体此处不做限定。
可选地,结合上述实施例中,将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件的抽头系数作为所述前置滤波器的抽头系数,包括:
将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件,并且使得所述光通信系统为最小相位系统的抽头系数作为所述前置滤波器的抽头系数。
可以理解,当经过上述步骤101-105后,可以计算得到对应的得到前置滤波器的抽头系数,但只限定了成型函数的幅度信息,同样幅度的成型函数,相位信息并不确定。按照最小相位系统原则,在给定幅度响应条件下,求得最小相位系统,可以使得接收机侧容易恢复从解复用器接收的信号,从而更进一步地提高了整个光通信系统的性能。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于示例性实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请上述实施例中所描述的方案,下面还提供用于实施上述方案的相关装置。
请参阅图11,图11为本申请实施例一种确定滤波器抽头系数的装置一个实施结构示意图,应用于光通信系统中,所述光通信系统包括至少一个发射机,所述装置包括:
第一确定模块101,用于从所述至少一个发射机中确定唯一一个开启的待调整发射机,其中,所述待调整发射机包括前置滤波器;
第二确定模块102,用于确定出使得第一谱信号满足第一预设条件的抽头系数,所述第一预设条件包括所述第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比预设门限值,其中,所述第一谱信号为所述光通信系统中发射端的谱信号或接收端的谱信号;
第三确定模块103,将使得所述第一谱信号符合所述第一预设条件的抽头系数作为所述前置滤波器的抽头系数。
其中,可选地,所述第一预设条件还包括至少一个以下条件:所述第一谱信号对应的误码序列中的最小欧式距离为最大;所述第一谱信号的信息率为最大;所述第一谱信号的增益平坦度为最大。
可选地,在本申请的一些实施例中,所述第二确定模块102具体用于:
确定出使得所述第一谱信号满足所述第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数;
其中,所述第二谱信号为所述发射端或所述接收端中不同于所述第一谱信号的谱信号,所述第二预设条件包括以下至少一个条件:所述第二谱信号对应的误码序列中的最小欧式距离为最大;所述第二谱信号的信息率为最大;所述第二谱信号的增益平坦度为最大;
所述第三确定模块103具体用于:将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件的抽头系数作为所述前置滤波器的抽头系数。
可选地,所述光通信系统还包括接收机、复用器、解复用器以及传输信道,所述发射机与所述复用器连接,所述复用器通过所述传输信道与所述解复用器连接,所述解复用器与所述接收机连接,所述第一谱信号为所述复用器与所述解复用器之间传输的谱信号或为所述发射机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号;
所述第二谱信号为所述复用器与所述解复用器之间传输的谱信号或为所述接收机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号。
可选地,当所述传输信道包括窄带器件时,所述第二谱信号为所述接收机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号。
可选地,所述预设信号间隔为:
Figure PCTCN2017097415-appb-000018
其中,所述f0为所述光通信系统的中心频率,所述w为所述光通信系统的信道间隔。
结合图11,请参阅图12,在本申请的一些实施例中,所述第二确定模块102还用于:
当所述第一谱信号满足以下公式时,则确定所述第一确定所述第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于所述预设门限值:
Figure PCTCN2017097415-appb-000019
其中,HA(ω)为第一谱信号对应的基带信号的谱函数,B(ω)为前置滤波器的抽头系 数对应的相关函数所对应的傅里叶变换,C%为预设门限值,C%小于100%,
Figure PCTCN2017097415-appb-000020
为信号总功率。
所述第二确定模块102还用于:
当所述第一谱信号满足以下公式时,则确定所述第一谱信号对应的误码序列中的最小欧式距离为最大:
Figure PCTCN2017097415-appb-000021
约束条件为:
Figure PCTCN2017097415-appb-000022
其中,HA(ω)为第一谱信号对应的基带信号的谱函数,b1,b2,...,bL为前置滤波器的抽头系数,B(ω)为b1,b2,...,bL对应的相关函数所对应的傅里叶变换,E(ω)为所述光通信系统中所有误码序列对应的相关函数所对应的傅里叶变换,d为第一谱信号对应的误码序列中的最小欧式距离为最大的值。
当所述第二谱信号满足以下公式时,则确定所述第二谱信号对应的误码序列中的最小欧式距离为最大:
Figure PCTCN2017097415-appb-000023
约束条件为:
Figure PCTCN2017097415-appb-000024
其中,HB(ω)为第二谱信号对应的基带信号的谱函数,d'为第二谱信号对应的误码序列中的最小欧式距离为最大的值。
其中,所述HB(ω)为所述第二谱信号对应的基带信号的谱函数,所述b1,b2,...,bL为所述前置滤波器的抽头系数,所述B(ω)为所述b1,b2,...,bL对应的相关函数所对应的傅里叶变换,所述E(ω)所述光通信系统中所有误码序列对应的相干函数所对应的傅里叶变换,所述d'为所述第二谱信号对应的误码序列中的最小欧式距离。
可选地,在本申请的一些实施例中,所述第三确定模块103具体用于:
将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件,并且使得所述光通信系统为最小相位系统的抽头系数作为所述前置滤波器的抽头系数。
请参阅图12,本申请实施例还提供了另一种确定滤波器抽头系数的装置,该装置200主要包括处理器201(其中,装置200中的处理器201的数量可以一个或多个,图12中以一个处理器为例)、存储器202、以及存储在存储器202上并可被处理器201执行的计算机程序203。其中,该装置可以位于发射机中,也可以位于发射机外部,具体不做限定。
装置200还可以包括安装在硬件上的操作系统等部分,具体在图12中未一一列举出来,但并不对本申请实施例中的装置构成限定。在本申请的一些实施例中,处理器201、存储器202可通过总线或其它方式进行连接,具体此处不做限定。其中,图12中以通过总线连接为例进行示例说明。
存储器202,可以包括ROM和RAM,还可以其他存储器或者是存储介质,并向处理器201提供指令和数据。存储器202的一部分还可以包括NVRAM。存储器202存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,各种操作指令用于实现各种操作。操作系统可包括各种系统 程序,用于实现各种基础业务以及处理基于硬件的任务。存储器202还存储有本申请实施例所涉及的数据等。
处理器201用于控制装置200的操作,处理器201还可以称为CPU。具体的应用中,装置200的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等,但是为了清楚说明起见,在图12中将各种总线都称为总线系统。
本申请实施例揭示的确定滤波器抽头系数方法可以应用于处理器201中,或者由处理器201实现。处理器201可以是一种集成电路芯片,具有信号的处理能力。在本申请实施例实现过程中,本申请实施例中服务器侧所执行的各步骤可以通过处理器201执行存储在存储器202上的计算机程序来实现。上述的处理器201可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器202,处理器201读取存储器202中的信息,结合其硬件完成本申请实施例确定滤波器抽头系数的方法中的步骤。
同样需要说明的是,上述装置各模块/间的信息交互、执行过程等内容,由于与本申请实施例中的方法实施例基于同一构思,具体的更多细节可以参阅方法实施例部分,其带来的技术效果也与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序被计算机执行时能实现上述方法实施例中记载的部分或全部步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质,例如固态硬盘(solid state disk,SSD)等。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,模块和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种确定滤波器抽头系数的方法,应用于光通信系统中,所述光通信系统包括至少一个发射机,其特征在于,所述方法包括:
    从所述至少一个发射机中确定一个开启的待调整发射机,其中,所述待调整发射机包括前置滤波器,所述至少一个发射机中除所述待调整发射机以外的其他发射机未开启;
    确定使得第一谱信号满足第一预设条件的抽头系数,所述第一预设条件包括所述第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于预设门限值,其中,所述第一谱信号为所述光通信系统中发射端或接收端的谱信号;
    将使得所述第一谱信号符合所述第一预设条件的抽头系数作为所述前置滤波器的抽头系数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预设条件还包括至少一个以下条件:所述第一谱信号对应的误码序列中的最小欧式距离为最大;所述第一谱信号的信息率为最大;所述第一谱信号的增益平坦度为最大。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定出使得第一谱信号满足第一预设条件的抽头系数,包括:
    确定出使得所述第一谱信号满足所述第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数;
    其中,所述第二谱信号为所述发射端或所述接收端中不同于所述第一谱信号的谱信号,所述第二预设条件包括以下至少一个条件:所述第二谱信号对应的误码序列中的最小欧式距离为最大;所述第二谱信号的信息率为最大;所述第二谱信号的增益平坦度为最大;
    将使得所述第一谱信号符合所述第一预设条件的抽头系数作为所述前置滤波器的抽头系数,包括:
    将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件的抽头系数作为所述前置滤波器的抽头系数。
  4. 根据权利要求3所述的方法,其特征在于,所述光通信系统还包括接收机、复用器、解复用器以及传输信道,所述发射机与所述复用器连接,所述复用器通过所述传输信道与所述解复用器连接,所述解复用器与所述接收机连接,所述第一谱信号为所述复用器与所述解复用器之间传输的谱信号或为所述发射机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号;
    所述第二谱信号为所述复用器与所述解复用器之间传输的谱信号或为所述接收机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号。
  5. 根据权利要求4所述的方法,其特征在于,当所述传输信道包括窄带器件时,所述第二谱信号为所述接收机中,所述前置滤波器输出的信号所经过的任意一处位置的谱信号。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述预设信号间隔为:
    Figure PCTCN2017097415-appb-100001
    其中,所述f0为所述光通信系统的中心频率,所述w为所述光通信系统的信道间隔。
  7. 根据权利要求6所述的方法,其特征在于,当所述第一谱信号满足以下公式时,则 确定所述第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于所述预设门限值:
    Figure PCTCN2017097415-appb-100002
    其中,所述HA(ω)为所述第一谱信号对应的基带信号的谱函数,所述B(ω)为所述前置滤波器的抽头系数对应的相关函数所对应的傅里叶变换,所述C%为所述预设门限值,所述C%小于100%,所述
    Figure PCTCN2017097415-appb-100003
    为所述信号总功率。
  8. 根据权利要求1-7任意一项所述的方法,其特征在于,当所述第一谱信号满足以下公式时,则确定所述第一谱信号对应的误码序列中的最小欧式距离为最大:
    Figure PCTCN2017097415-appb-100004
    的约束条件为:
    Figure PCTCN2017097415-appb-100005
    其中,所述HA(ω)为所述第一谱信号对应的基带信号的谱函数,所述b1,b2,...,bL为所述前置滤波器的抽头系数,所述B(ω)为所述b1,b2,...,bL对应的相关函数所对应的傅里叶变换,所述E(ω)为所述光通信系统中所有误码序列对应的相关函数所对应的傅里叶变换,所述d为所述第一谱信号对应的误码序列中的最小欧式距离为最大的值;
    当所述第二谱信号满足以下公式时,则确定所述第二谱信号对应的误码序列中的最小欧式距离为最大:
    Figure PCTCN2017097415-appb-100006
    的约束条件为:
    Figure PCTCN2017097415-appb-100007
    其中,所述HB(ω)为所述第二谱信号对应的基带信号的谱函数,所述d'为所述第二谱信号对应的误码序列中的最小欧式距离为最大的值。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述计算机设备将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件的抽头系数作为所述前置滤波器的抽头系数,包括:
    将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件,并且使得所述光通信系统为最小相位系统的抽头系数作为所述前置滤波器的抽头系数。
  10. 根据权利要求1-9所述的方法,其特征在于,所述前置滤波器为有限冲激响应滤波器。
  11. 一种确定滤波器抽头系数的装置,应用于光通信系统中,所述光通信系统包括至少一个发射机,其特征在于,所述装置包括:
    第一确定模块,用于从所述至少一个发射机中确定一个开启的待调整发射机,其中,所述待调整发射机包括前置滤波器,所述至少一个发射机中除所述待调整发射机以外的其他发射机未开启;
    第二确定模块,用于确定出使得第一谱信号满足第一预设条件的抽头系数,所述第一预设条件包括所述第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比预设 门限值,其中,所述第一谱信号为所述光通信系统中发射端的谱信号或接收端的谱信号;
    第三确定模块,用于将所述第三确定模块确定的使得所述第一谱信号符合所述第一预设条件的抽头系数作为所述第一确定模块确定的发射机的所述前置滤波器的抽头系数。
  12. 根据权利要求11所述的装置,其特征在于,所述第一预设条件还包括至少一个以下条件:所述第一谱信号对应的误码序列中的最小欧式距离为最大;所述第一谱信号的信息率为最大;所述第一谱信号的增益平坦度为最大。
  13. 根据权利要求11或12所述的装置,其特征在于,所述第二确定模块具体用于:
    确定出使得所述第一谱信号满足所述第一预设条件,并且使得第二谱信号满足第二预设条件的抽头系数;
    其中,所述第二谱信号为所述发射端或所述接收端中不同于所述第一谱信号的谱信号,所述第二预设条件包括以下至少一个条件:所述第二谱信号对应的误码序列中的最小欧式距离为最大;所述第二谱信号的信息率为最大;所述第二谱信号的增益平坦度为最大;
    所述第三确定模块具体用于:将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件的抽头系数作为所述前置滤波器的抽头系数。
  14. 根据权利要求11-13任意一项所述的装置,其特征在于,所述预设信号间隔为:
    Figure PCTCN2017097415-appb-100008
    其中,所述f0为所述光通信系统的中心频率,所述w为所述光通信系统的信道间隔。
  15. 根据权利要求14所述的装置,其特征在于,所述第二确定模块还用于:
    当所述第一谱信号满足以下公式时,则确定所述第一确定所述第一谱信号在预设信号间隔以外的信号功率占信号总功率的百分比小于所述预设门限值:
    Figure PCTCN2017097415-appb-100009
    其中,所述HA(ω)为所述第一谱信号对应的基带信号的谱函数,所述B(ω)为所述前置滤波器的抽头系数对应的相关函数所对应的傅里叶变换,所述C%为所述预设门限值,所述C%小于100%,所述
    Figure PCTCN2017097415-appb-100010
    为所述信号总功率。
  16. 根据权利要求11-15任意一项所述的装置,其特征在于,所述第二确定模块还用于:
    当所述第一谱信号满足以下公式时,则确定所述第一谱信号对应的误码序列中的最小欧式距离为最大:
    Figure PCTCN2017097415-appb-100011
    的约束条件为:
    Figure PCTCN2017097415-appb-100012
    其中,所述HA(ω)为所述第一谱信号对应的基带信号的谱函数,所述b1,b2,...,bL为所述前置滤波器的抽头系数,所述B(ω)为所述b1,b2,...,bL对应的相关函数所对应的傅里叶变换,所述E(ω)为所述第一谱信号所述光通信系统中所有误码序列对应的相关函数所对应的傅里叶变换,所述d为所述第一谱信号对应的误码序列中的最小欧式距离为最大的值;
    当所述第二谱信号满足以下公式时,则确定所述第二谱信号对应的误码序列中的最小欧式距离为最大:
    Figure PCTCN2017097415-appb-100013
    约束条件为:
    Figure PCTCN2017097415-appb-100014
    其中,所述HB(ω)为所述第二谱信号对应的基带信号的谱函数,所述d'为所述第二谱信号对应的误码序列中的最小欧式距离为最大的值。
  17. 根据权利要求11-16任一项所述的装置,其特征在于,所述第三确定模块具体用于:
    将使得所述第一谱信号满足所述第一预设条件,并且使得所述第二谱信号满足所述第二预设条件,并且使得所述光通信系统为最小相位系统的抽头系数作为所述前置滤波器的抽头系数。
  18. 一种计算机设备,包括存储器、处理器,以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-10中任意一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-10中任意一项所述的方法。
PCT/CN2017/097415 2017-08-14 2017-08-14 确定滤波器抽头系数的方法和装置 WO2019033242A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780072363.8A CN109997322B (zh) 2017-08-14 2017-08-14 确定滤波器抽头系数的方法和装置
PCT/CN2017/097415 WO2019033242A1 (zh) 2017-08-14 2017-08-14 确定滤波器抽头系数的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097415 WO2019033242A1 (zh) 2017-08-14 2017-08-14 确定滤波器抽头系数的方法和装置

Publications (1)

Publication Number Publication Date
WO2019033242A1 true WO2019033242A1 (zh) 2019-02-21

Family

ID=65361660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097415 WO2019033242A1 (zh) 2017-08-14 2017-08-14 确定滤波器抽头系数的方法和装置

Country Status (2)

Country Link
CN (1) CN109997322B (zh)
WO (1) WO2019033242A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417702B (zh) * 2019-07-23 2021-06-15 三维通信股份有限公司 滤波器系数生成方法、系统和降低信号峰均比的系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028355A1 (en) * 2007-07-25 2009-01-29 Oki Electric Industry Co., Ltd. Double-talk detector with accuracy and speed of detection improved and a method therefor
CN101414731A (zh) * 2007-10-08 2009-04-22 Jds尤尼弗思公司 用于平坦光放大器增益谱的装置和方法
CN105282064A (zh) * 2014-07-16 2016-01-27 中兴通讯股份有限公司 用于光通信的自适应后数字滤波器和符号间干扰均衡器
CN105591656A (zh) * 2015-12-24 2016-05-18 三维通信股份有限公司 一种收发信机的增益平坦度补偿方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7974534B2 (en) * 2006-08-11 2011-07-05 Purdue Research Foundation Wideband microwave and millimeter wave filters using photonic spectral filtering
EP2688232B1 (en) * 2012-07-19 2017-06-14 Alcatel Lucent Optical transmitter for transmitting a multilevel amplitude-shift-keying modulated signal
US8884649B1 (en) * 2013-04-22 2014-11-11 Ciena Corporation System and method for stationary finite impulse response filters in programmable microelectronic circuits
US9071363B2 (en) * 2013-09-12 2015-06-30 Futurewei Technologies, Inc. Optical transmitters with unbalanced optical sidebands separated by gaps
CN104467966B (zh) * 2014-12-31 2017-10-24 中国人民解放军信息工程大学 一种基于可见光通信的led调制方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028355A1 (en) * 2007-07-25 2009-01-29 Oki Electric Industry Co., Ltd. Double-talk detector with accuracy and speed of detection improved and a method therefor
CN101414731A (zh) * 2007-10-08 2009-04-22 Jds尤尼弗思公司 用于平坦光放大器增益谱的装置和方法
CN105282064A (zh) * 2014-07-16 2016-01-27 中兴通讯股份有限公司 用于光通信的自适应后数字滤波器和符号间干扰均衡器
CN105591656A (zh) * 2015-12-24 2016-05-18 三维通信股份有限公司 一种收发信机的增益平坦度补偿方法

Also Published As

Publication number Publication date
CN109997322B (zh) 2021-03-30
CN109997322A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US10250333B2 (en) Optical communication system and optical transmitter
CN107113059B (zh) 利用多调制的离散多音调传输方法和系统
US10171200B2 (en) Optical communication using super-nyquist signals
WO2019042371A1 (zh) 光信号传输系统及光信号传输方法
JP6301478B2 (ja) 信号を送信及び受信するための方法、並びに対応する装置及びシステム
US10014954B2 (en) Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation
WO2021190607A1 (zh) 基带处理单元、模拟前传系统、信号处理方法
CN114422038A (zh) 一种基于副载波ofdm的光子太赫兹无线通讯方法及系统
WO2019033242A1 (zh) 确定滤波器抽头系数的方法和装置
US10819443B2 (en) Optical communications system and optical frequency control method
US11444694B2 (en) Optical transmission system
CN114144999B (zh) 子信道编解码方法、装置和子信道复用光通信系统
US10390116B1 (en) Optical modem line timing
US9900106B2 (en) Signal modulation method, signal demodulation method, signal modulation apparatus, signal demodulation apparatus and signal transmission system
CN113542177B (zh) 解决脉冲幅度调制信号频偏混叠的方法及系统
JP2013016978A (ja) 光通信システムおよび光通信方法
CN104702542A (zh) 信号产生装置和数据恢复装置及其方法
CN105578316A (zh) 一种ocdma和ofdm混合的无源光网络系统
JP6503624B2 (ja) 光送信機及び光受信機
CN114424470B (zh) 光通信系统中的超符号信令
US20220173923A1 (en) Copper backhaul for hybrid fiber coaxial networks
US10673534B2 (en) Signal processing method, apparatus, and optical fiber transmission system
EP3051722A1 (en) An optical regenerator, an optical transceiver, and an associated optical regeneration system
US20120020667A1 (en) Data stream upgrade apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921572

Country of ref document: EP

Kind code of ref document: A1