WO2019033185A1 - Sistema de monitoramento de pesagem dinâmica e de velocidade de veículos em pista - Google Patents

Sistema de monitoramento de pesagem dinâmica e de velocidade de veículos em pista Download PDF

Info

Publication number
WO2019033185A1
WO2019033185A1 PCT/BR2018/050114 BR2018050114W WO2019033185A1 WO 2019033185 A1 WO2019033185 A1 WO 2019033185A1 BR 2018050114 W BR2018050114 W BR 2018050114W WO 2019033185 A1 WO2019033185 A1 WO 2019033185A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
sensor
weight
optical
monitoring system
Prior art date
Application number
PCT/BR2018/050114
Other languages
English (en)
French (fr)
Inventor
Sergio Machado GONÇALVES
Original Assignee
Velsis Sistemas E Tecnologia Viaria S/A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Velsis Sistemas E Tecnologia Viaria S/A filed Critical Velsis Sistemas E Tecnologia Viaria S/A
Priority to PE2019002629A priority Critical patent/PE20200225A1/es
Priority to CN201880051914.7A priority patent/CN111094654B/zh
Priority to MX2018007532A priority patent/MX2018007532A/es
Priority to EP18732232.6A priority patent/EP3670750A4/en
Priority to CA3008080A priority patent/CA3008080A1/en
Priority to US16/065,984 priority patent/US10861328B2/en
Priority to CR20200017A priority patent/CR20200017A/es
Priority to CONC2018/0007371A priority patent/CO2018007371A2/es
Publication of WO2019033185A1 publication Critical patent/WO2019033185A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/03Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/02Detecting movement of traffic to be counted or controlled using treadles built into the road
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F11/00Road engineering aspects of Embedding pads or other sensitive devices in paving or other road surfaces, e.g. traffic detectors, vehicle-operated pressure-sensitive actuators, devices for monitoring atmospheric or road conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/03Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion
    • G01G19/035Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion using electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/125Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing wherein the weighing element is an optical member
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/022Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing wheeled or rolling bodies in motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • G01G23/37Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting
    • G01G23/3728Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting with wireless means

Definitions

  • the present invention relates to a dynamic vehicle weighing monitoring system, track speed, applied to the monitoring of road traffic variables such as, but not limited to, vehicle detection, wheel counting, identification of single and / or double wheels, individual and average vehicle speed measurement and acceleration measurement, and performs calculations for axle counting, vehicle classification, vehicle counting, wheel weight measurement, axle weight measurement , measurement of the weight of groups of axles, measurement of total weight of the vehicles, that is, monitoring traffic parameters employed in the areas of road safety, traffic control, maintenance and infrastructure, diagnosis of traffic problems, on toll roads and in the application of fines in irregular traffic situations, among other situations.
  • road traffic variables such as, but not limited to, vehicle detection, wheel counting, identification of single and / or double wheels, individual and average vehicle speed measurement and acceleration measurement, and performs calculations for axle counting, vehicle classification, vehicle counting, wheel weight measurement, axle weight measurement , measurement of the weight of groups of axles, measurement of total weight of the vehicles, that is, monitoring traffic parameters employed in the areas of road safety, traffic control, maintenance and infrastructure, diagnosis of traffic problems, on
  • the information generated is used by various agents of society, such as government agencies responsible for the road sector, regulatory agencies, public safety entities, highway concessionaires and, in some cases, highway users themselves, bringing benefits to society and advantages of having a lower cost and extended service life of this type of sensor compared to the others, sensors can be multiplexed, have high spatial resolution across the pavement, and manufacturing technology is simple and inexpensive and transferable due to associated costs.
  • Magnetic Detection is based on the fact that the current vehicles are constructed with metallic materials, the measurement is made through magnetic field disturbance generated by means of inductive loop, or through the magnetic signature of the vehicles that is detected by inductive sensors. With the evolution of composite materials and their use in the automotive industry, it is possible that this methodology of detection is no longer feasible in the future.
  • Image Detection employs the capture and processing of images for the detection of vehicles and also for the detection of vehicle parameters such as plate data.
  • Detection by optical sensors the use of optical sensors, with the most commonly used technologies being LADAR (Laser Detection And Ranging) or "LIDAR" (Light Detection and Ranging), which usually use the upper infrared band .
  • LADAR Laser Detection And Ranging
  • LIDAR Light Detection and Ranging
  • Radio Detection And Ranging employing continuous waves in the microwave range, transmits and receives, operating on the Doppler principle, which is the phenomenon of changing the frequency of the wave after reflection as a function of the speed between the emitter and the object monitored.
  • vibration sensors usually piezoelectric, are used to detect the mechanical vibrations generated by the vehicle's operation and displacement transmitted to the pavement.
  • the velocity and weight of the vehicles can be correlated with the amplitude and frequency spectrum of the vibration and the mechanical pressure on them.
  • Temperature sensors are installed on the floor to detect the temperature variation produced on the pavement by the tires of vehicles that heat as a function of the friction.
  • a road traffic monitoring system employs a combination of two or more of the methodologies described above to generate as much information as possible, or even to reduce the uncertainties inherent in a particular technology by combining the data captured.
  • the measurement of dynamically weight of vehicle on the floor occurs by measuring deformation or vibration. These are induced to the floor and / or the sensor with the presence or passage of the vehicle.
  • the main differences between the different measurement methodologies are those reported in the literature in the form of patents or technical articles and those claimed in this document are the sensor element and its encapsulation. The first one can be based on the measurement of intensity, frequency and / or phase of the optical wave.
  • the encapsulation consists of a protection element and, above all, a mechanical transducer element responsible for transforming and / or amplifying force components relating to the weight of the vehicle.
  • the optical fiber is attached to the substrate, deflection plate, which deforms with the passage of vehicles and the detection of the deformation of the optical fiber is based on interferometric measurement.
  • the US patent US5260520 discloses a moving vehicle weighing device which is supplied by a plurality of elongated optical fiber sensors defined by an optical fiber embedded in an encapsulation of elastomeric material and arranged in parallel to one another on the road in the vehicle path in motion.
  • Each fiber optic sensor is provided with gridded contact means which can be selectively changed to have adequate sensitivity to each vehicle weight range.
  • Switch systems are used in conjunction with fiber optic sensors to provide signals indicative of vehicle speed, weight distribution, tire position and wheelbase.
  • the use of an N-shaped switch configuration also provides determination of the number of tires on each axle, and the tire mark on the ground.
  • Chinese utility model patent CN200962255 discloses a fiber vehicle detector which includes a light source, fiber optic sensor unit, detector, data acquisition unit and processing unit, wherein the sensor unit fiber optics comprises two Mach-Zehnder interferometric sensors that include a stainless steel bar and a lighter plastic sheet of standardized format and the lighter plastic sheet can detect the road vibration signal than by the stainless steel bar that connects with the reinforcing steel bar under the road surface.
  • the beneficial effects are the improvement of the sensitivity and blocking of electromagnetic interference on the detector, without effect of the environment and improvement of the signal-to-noise ratio, by the addition of the stainless steel bar and the lighter plastic sheet in the interferometric sensors, where always one arm of the sensor is reference arm and another is signal arm, in addition the reference arm is immobile and corresponding to the protective enclosure, just as there is common mode rejection of the differential amplifier in the electronic circuit when the steel bar stainless steel and the lighter plastic sheet vibrate together.
  • Romanian patent RO 127980 relates to a method for determining the weight of moving motor vehicles without in any way restricting the traffic of the vehicles to be weighed and to a device applying the method.
  • the method measures the variation of the optical power transmitted by a variable weight-dependent optical fiber using an opto-electronic device with a single-mode or multi-mode optical fiber when there is propagation of a light radiation with the infrared spectral gamma wave emitted in the optical fiber is mounted on a mechanical device which ensures its curvature depending on the weight to be measured.
  • the claimed device comprises a source of radiation in the near infrared spectrum which may be a laser diode or an LED, said laser diode or LED emitting the infrared radiation by a curved optical fiber under the weight of the motor vehicle to be weighed, -bending of the fiber caused by the weight causes a change in the transmission of the light emitted through the fiber, proportional to the weight of the vehicle on the asphalt.
  • a source of radiation in the near infrared spectrum which may be a laser diode or an LED, said laser diode or LED emitting the infrared radiation by a curved optical fiber under the weight of the motor vehicle to be weighed, -bending of the fiber caused by the weight causes a change in the transmission of the light emitted through the fiber, proportional to the weight of the vehicle on the asphalt.
  • US 11425392 measurement methodologies employ mechanical deflection plate-based mechanical transducers to transform the weight force into mechanical deformation of the optical fiber.
  • this type of sensor has large dimensions, is highly intrusive to the pavement, has geometry requirements that are highly demanding in terms of installation and are complex to manufacture.
  • the patents GB2056672A and RO127980 employ the measurement of the variation of the light intensity of the light that travels through the optical fiber as a measurement method.
  • the variation of the intensity occurs through the strangulation of the optical fiber by means of mechanism with the passage of vehicle on the fiber.
  • This technique is susceptible to fluctuations of the optical source and the detection components being, in addition to cables and connections, thus imprecise and not usable in metrological systems.
  • US patent 10467075 reports the use of distributed acoustic measurement system for the monitoring of road parameters. This technique is based on measurements of the acoustic emissions from vehicles and the interaction of vehicles with the pavement.
  • US5260520 reports the encapsulation of the optical fiber by elastomeric material, which is the transducing element.
  • elastomeric material which is the transducing element.
  • One of the great problems of this type of material is the dependence with the temperature that changes the rates of deformation. At higher temperatures, such as those encountered in decks, the material may saturate before the end of the measurement range, thereby restricting the sensor operating range.
  • the CN patent 20096255 uses mechanical transducer based on stainless steel plate and polymer bar to detect vibration. This design presents high mechanical complexity, high temperature dependence in addition to having large dimensions and therefore, being highly intrusive to the pavement.
  • TRACK VEHICLE SPEED "object of the present patent has been developed to overcome the limitations, drawbacks and drawbacks of existing technologies for dynamic weighing and taxiway speed by using fiber optic technology in single mount configurations with point sensors and quasi-distributions, which allow fast response, to use pulsed or continuous diffractive, spectrometric, interferometric and scatter techniques in the pulsed or continuous time or frequency domain, be employed for measurement of deformation, vibration, temperature and pressure, be encapsulated to facilitate the installation process and / or protect the optical fiber sensor, to use specific materials such as synthetic fibers, among them the carbon fibers, kevlar and glass fibers, resins and polymer of different chemical compositions with epoxy or vinyl base, for example, and is still rigid metal-made slots and can be installed with advanced optical network configurations such as ring networks; with advantages of having a lower cost and an extended service life compared to the others; the sensors can be multiplexed; have high spatial resolution across the pavement; the manufacturing technology is simple and cheap and transferable due to associated costs
  • the monitoring system described in this document deformation, vibration, pressure and temperature measurements with a reduced number of sensors installed on or on the floor.
  • the fiber optic sensors are miniaturized and, in many cases, there are very few intrusive intruders with integrated nature and the ability to do simultaneously and are installed, and incorporated, on the floor quickly and easily.
  • the sensors can optionally be applied to the floor without the need of being introduced into the floor, simply being inside structures that guarantee their physical protection against shock and friction with the rolling stock (only to prevent their displacement) and that they are fixed or adhered to the surface of the floor. It presents the possibility of installing the sensors at very long distances from the measuring unit (of the order of kilometers if necessary) without the slightest degradation of the measured parameters.
  • Fiber optic sensors are immune to interference electromagnetic and are not susceptible to corrosion in the presence of water. The degradation temperature is greater than 100 ° C, reaching more than 1000 ° C, and the tensile strength is higher than that of steel.
  • the system is applied to the monitoring of road traffic variables such as, but not limited to, vehicle detection, wheel counting, identification of single and / or double wheels, measurement of individual and average speed of vehicles and measurement acceleration, and with calculation execution obtains axle counting, vehicle classification, vehicle counting, wheel weight measurement, axle weight measurement, axle group weight measurement and total vehicle weight measurement.
  • the monitoring of traffic parameters is employed in the areas of road safety, traffic control, maintenance and infrastructure, diagnosis of traffic problems, charging on toll roads and the application of fines in irregular traffic situations, among many others situations.
  • the information generated is used by various agents of society, such as government agencies responsible for the road sector, regulatory agencies, public security entities, highway concessionaires and, in some cases, highway users themselves.
  • the sensor reading and interrogation system consists of an optoelectronic system that transforms optical signals into electrical signals containing amplitude, frequency and phase information. This signal is transmitted to an electronic processor that processes it for determination of deformation, vibration and temperature parameters that, resolved in time, can be converted into information of weight, speed, number of axes among other vehicle parameters.
  • the optoelectronic system employs optical broadband sources such as,
  • LEDs and SLEDs or narrowband such as continuous or pulsed, static or scanning lasers, high and low temporal and spatial coherences, and lamps of various types, as well as, singular photodetectors such as pin and avalanche photodiodes, among others, or CCDs and detector arrays.
  • narrowband such as continuous or pulsed, static or scanning lasers, high and low temporal and spatial coherences, and lamps of various types, as well as, singular photodetectors such as pin and avalanche photodiodes, among others, or CCDs and detector arrays.
  • CCDs and detector arrays singular photodetectors
  • it can have different configurations depending on the parameter of interest to be measured, its location and the uncertainty in the measurement value.
  • the sensors installed on the floor detect deformation, vibration and temperature in a continuous way allowing the detection and measurement of traffic parameters related to traffic of vehicles on the sensors.
  • the signals from the sensors are driven to the optoelectronic reading and interrogation system which convert them to electronic signals that are sequentially processed and the traffic information is generated.
  • the sensors are installed inside or on the floor, the latter being considered as non-intrusive, as it does not require the infrastructure of the road (asphalt or pavement) to be modified for the installation of the sensors, and may simultaneously or no, to measure variation of temperature, pressure, vibration and deformation induced to the pavement with the passage of vehicles.
  • the processing of these variables allows to generate simultaneously and in real time numerous parameters of traffic, such as: counting, classification, speed, weight, vibration, wear, but not limited to them.
  • the system for monitoring, detecting, sorting, measuring (including calculating speed, size, weight, number and distance of the axles, single or double wheeled type etc.) of moving vehicles (low and high speed) or stopped, object of the present patent, is based on optical fiber sensors.
  • Fiber optic sensors consist of a technology that exploits the full potential of optical fibers for the measurement of physical and chemical variables.
  • Optical fibers consist of excellent means of signal transmission, have very small dimensions and are most often made of glass, thus they can be used for the development of remote sensing systems, miniaturized and immune to all types of interference electromagnetic,
  • the novelty of the present invention lies in the transducers and in the configuration of the installation.
  • Model I consists of a braided sensor made up of optical fiber and synthetic fibers of high mechanical and thermal performance material such as carbon, kevlar or glass.
  • the fibers is to protect the optical fiber from shear stresses and to promote anchoring of the optical fiber to the pavement.
  • Any type of braid between the optical fiber and the synthetic fibers is possible, as is the simultaneous use of more than one type of synthetic fiber or more than one optical fiber of the same type or not.
  • the sensor can be directly incorporated into the floor, integrating perfectly with the bitumen, or can be installed on the surface of the floor in shallow channel, less than 10 mm deep, with addition of bitumen. In addition to the ease of installation, this sensor is minimally intrusive and very sensitive, easily detecting light vehicles such as motorcycles and bicycles and also heavy vehicles such as cargo trucks.
  • Model II consists of a sensor in the shape of a thin bar, with thickness of the order of 3 mm, more specifically less than 5 mm, width of the order of 10 mm, more specifically less than 20 mm and with a length that may vary according to the need of the installation, from a few centimeters to subway units.
  • the bar is composed of a composite material that contains the optical fiber inside. Resins of epoxy, vinyl and other bases can be used in the manufacture of bars as well as high performance synthetic fibers such as carbon, kevlar and glass. Similar to the model I sensor, the bar-shaped sensor can also be installed in shallow channel, being minimally intrusive. Another possibility, unique to this sensor model, is the ability to be installed directly on the pavement surface and is therefore characterized as non-intrusive.
  • the measured optical signals may contain frequency and phase information of the optical wave contained in the optical fiber.
  • diffractive elements are present within the constituent fiber of the sensor. The amount and density of diffractive elements depends on variables such as applications, measured uncertainty among others, and can range from a single element to tens to hundreds per sensor.
  • Model III consists of a metal housing sensor responsible for isolating and transforming the vertical components of the force (weight) into horizontal components that deform parts of the metal housing and are monitored by optical fibers. The deformation of these parts can be measured by the frequency or phase of the optical wave within the fiber. The most important feature of this sensor model is the very low uncertainty.
  • Model IV consists of a sensor composed of a miniaturized deflection plate installed inside a power transducer and allowing indirect measurement of the weight of the vehicle.
  • the deflection of the plate can be measured by the frequency or phase of the optical wave within the fiber. This type of measurement may have very low uncertainty when integrated into a power transducer.
  • FIGURE 1 which shows a schematic diagram of the system of the present patent.
  • FIGURE 2 showing the block diagram of the constructive modules constituting the system object of the present patent
  • FIGURE 3 showing the exploded perspective view of the configuration of the encapsulated model I sensor in accordance with the present invention
  • FIGURE 4 showing the perspective view of the model II sensor configuration showing transparent encapsulation for better understanding, in accordance with the present invention
  • FIGURE 5 showing the perspective view of the configuration of the encapsulated model III sensor in accordance with the present invention
  • FIGURE 6 showing the perspective view of the configuration of the deflection-driven model IV sensor in accordance with the present invention
  • FIGURE 7 showing the perspective view of a particular embodiment of the model I sensor embedded within the floor of a vehicle traffic lane;
  • FIGURE 8 which shows a block diagram of the system's fiber optic network with sensor detection, transmission and reading
  • FIGURE 9 shows a block diagram of the fiber optic network of the sensor reading system operating in transmission
  • FIGURE 10 which shows a block diagram of the optical fiber network of the sensor reading system, interconnected in the form of a ring optical network;
  • FIGURE 11 which shows a block diagram of the dynamic weight measurement process of the present invention.
  • the monitoring system of the present patent monitors the vehicle (V) on the runway (PI), using weight and speed measurement sensors (1-A), signal communication channel ( 1-B), optical reader (2-A) and processing unit (2-B) with recorded analysis software (SA), communication unit (2-C) and power supply (2-D).
  • the monitoring system of the present patent is comprised of a sensor and signal transmission module (1) with weight and speed measurement sensors (1-A) having one or one fiber optic network with diffractive, spectrometric, interferometric and optical scattering techniques in the pulsed or continuous time and / or frequency domain, mounted in configurations models I, II, III and IV and connected bidirectionally to the signal communication channel ( 1-B) and installed on the floor (PI), and signal communication channel (1-B) endowed with fiber or optical fiber network of the single-mode or multimode type or of complex geometry and connections mounted in reflection and transmission configurations and connected bi-directionally to the optical reader (2-A) of the reading, processing and communication module (2) and to the weight and velocity measurement sensors (1-A); (2-A) of the laser-type or refractive or interferometric type or similar, with laser (2-Al) type light sources, LED, superluminescent LED, ASE (2-A-2) of the type photodiodes, valves, thermopiles, pyroelectric sensors, CCDs and
  • Weight and velocity measurement sensors (1-A) consist of measuring elements employing fiber-optic sensing technology, with diffractive, spectrometric, interferometric and optical scattering techniques in the time domain and / or frequency, pulsed or continuous and other techniques that are developed to be compatible with the application, in order to obtain precision in the measurement of deformation, vibration, temperature and pressure, which allow to calculate the weight and speed of the vehicles and positioned on the pavement for the measurement of vehicle weight and / or speed.
  • the signal communication channel (1-B) consists of all cables and connections necessary to establish a reliable, efficient and secure communication channel between the sensor and signal transmission module (1) and the reading module, processing and communication (2).
  • the optical reader (2-A) consists of equipment responsible for reading the optical signal from the sensors and transforming it into electrical signals that can be interpreted by computer.
  • the processing unit (2-B) consists of a computing unit, which may be an industrial computer or a dedicated circuit or board responsible for processing, storing and sending data over the communication network.
  • SA The Analysis Software
  • the Analysis Software consists of a dedicated algorithm for processing the optical signals from the excitations received with vehicle traffic on the pavement and sensors, for converting the measured values into weight and speed.
  • dedicated algorithm for self-diagnostics, data recovery and fault and process control.
  • the communication unit 2c consists of the electronic circuit responsible for communication between the reading, processing and communication module 2 and other communication equipment or networks for the sending and receiving of traffic processing data. For example, communication by wireless networks wifi, nfc, wsn among others or wired with twisted pair cables, coaxial, optical fibers among others.
  • the Power Supply (2-D) consists of electronic power circuit for powering all the active and passive components present in the reading, processing and communication module (2).
  • the optical fiber assembly 1-A-1 and synthetic fibers 1-A-2, 1-A-3, and (1-A-4) are surrounded by resins, asphalt bitumen or other material of interest.
  • FIG. 4 there is shown the sensor "1" model " ⁇ " where the optical fiber 1-Al is incorporated in an encapsulation (1A-5) with a cross section (1-A) -5-A) of varying dimensions, which may be polygonal, oval or circular prismatic or irregularly shaped.
  • This part can be hollow or filled with different materials such as synthetic fibers, resins, polymers, liquids and gels, to increase the response to measurement of interest as well as protect the optical fiber.
  • a fiber optic cable of the signal communication channel (1-B) is used to connect the sensor to the reading unit.
  • the "III" sensor (1-A) which consists of a metal encapsulation (1A-6) with polygonal prismatic anchorage and cylindrical or prismatic central shell angles that maximize sensitivity and accuracy in weight and velocity measurement, concatenator of mechanical forces whose function is to increase the sensitivity in the measurement of transverse force components.
  • One or more optical sensor fibers (1-A-7) are fixed within the housing in order to measure the distribution of mechanical and temperature voltages.
  • the dimensions of the anchoring elements and cylinder are related to the type of floor where the sensors are installed, the type of vehicles to be monitored, the metal used and the variable to be monitored.
  • the sensor (1-A) model IV consisting of a miniaturized deflection plate (1A-8), set in a holder (1A-10), which transforms the weight force in motion (MV), generated from the flow of vehicles on the sensor installed inside a force transducer positioned on the pavement.
  • the sensing optical fiber (1-Al) is fixed in the region of greater deformation of the plate with the use of adhesive (1A-10).
  • the overall dimensions of this mechanical system are proportional to the dimensions of an optical fiber and can therefore be positioned inside the encapsulation similar to the "III" model sensor.
  • I positioned within a channel (CA), the dimensions of which are proportional to the dimensions of the sensor and are in the order of units of millimeters, made on the floor surface (PI), which may be rigid or flexible.
  • the sensor (1-A) models “ ⁇ ” and “ ⁇ ” are incorporated or on the floor (PI) and covered with resin or asphalt bitumen. in the interior of the pavement (PI) and covered with resin or asphalt bitumen application This process guarantees the diffusion of the resin or bitumen between the sensor fibers and in the same way inside the pores of the floor. This guarantees the integration of the sensor to the pavement and enables the measurement of deformation, vibration or temperature accurately and with high sensitivity.
  • the reading of the signals from the optical sensors is performed with a system capable of interrogating the optical fiber in various ways and independently measuring deformation, vibration and temperature.
  • a system capable of interrogating the optical fiber in various ways and independently measuring deformation, vibration and temperature.
  • Sensors can also be interconnected in the form of an optical network exploiting the potential of optical telecommunications technology.
  • FIG. 8 there is shown a first fiber optic network alternative for reading the sensors, wherein the configuration of sensors (1-A) can be distributed and / or quasi- distributed and / or point , operating in reflection.
  • FIG. 9 there is shown a second fiber optic network alternative for reading the sensors, wherein the configuration of sensors (1-A) can be distributed and / or quasi- distributed and / or point , operating in transmission.
  • FIGURE 10 there is shown a third fiber optic network alternative for reading the sensors, wherein the configuration of sensors (1-A) can be distributed and / or quasi- distributed and / or point , operating in a ring network.
  • Fiber optic sensors can be encapsulated for measurement of deformation, vibration and floor temperature.
  • the encapsulation of the optical fiber sensors can have different objectives, enhance the sensitivity to the variables of interest, facilitate the installation process and / or protect the optical fiber sensor.
  • the design and manufacture of the encapsulations employ specific materials such as synthetic fibers, among them carbon, kevlar and glass fibers, resins and polymer of different chemical compositions based on epoxy or vinyl, for example, and rigid structures made of metal.
  • sensors 1A measure frequency, amplitude, or phase signals of the mechanical forces produced by vehicles and vehicle traffic on the pavement (PI) and the sensors (1-A) THE) ;
  • Weight and speed information is stored and shared with local or remote computers via the communication system (2-C) using wireless or wired networks.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)

Abstract

1/1 RESUMO "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA" Refere-se a patente de invenção de sistema de monitoramento de pesagem dinâmica de veículos e velocidade de veículos em pistas, para monitoramento de variáveis de tráfego rodoviário, de controle de tráfego, de manutenção e infraestrutura, de diagnóstico de problemas de tráfego, de tarifação em rodovias pedagiadas e na aplicação de multas, através de tecnologia de fibra ótica com sensores pontuais e quasi-distribuídos, que permitem resposta rápida, ser encapsulados, facilitar o processo de instalação e/ou proteger a fibra ótica sensora, empregar materiais específicos podendo serem instalados com configurações avançadas de redes óticas e com vantagens de possuir custo inferior e vida útil prolongada se comparada aos demais; os sensores poderem ser multiplexados; possuírem alta resolução espacial transversalmente ao pavimento; a tecnologia de fabricação ser simples e barata e transferível em função de custos associados.

Description

"SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA"
[01] Refere-se a presente patente a sistema de monitoramento de pesagem dinâmica de veículos, velocidade de veículos em pistas, aplicado no monitoramento de variáveis de tráfego rodoviário como, mas não se limitando, à detecção de veículos, contagem de rodas, identificação de rodados simples e/ou duplos, medição da velocidade individual e média dos veículos e medição de aceleração, e com execução de cálculos obtém contagem de eixos, classificação de veículos, contagem de veículos, medição de peso por roda, medição de peso por eixo, medição do peso de grupos de eixos, medição de peso total dos veículos, ou seja, monitoramento de parâmetros de tráfego empregado nas áreas de segurança rodoviária, de controle de tráfego, de manutenção e infraestrutura, de diagnóstico de problemas de tráfego, de tarifação em rodovias pedagiadas e na aplicação de multas em situações irregulares de tráfego, entre outras situações. As informações geradas são utilizadas por vários agentes da sociedade, como, os órgãos governamentais responsáveis pelo setor rodoviário, as agências regulatórias, as entidades de segurança pública, as concessionárias de rodovias e, em alguns casos os próprios usuários das rodovias, trazendo benefícios à sociedade e vantagens de possuir custo inferior e vida útil prolongada desse tipo de sensor se comparada aos demais, os sensores poderem ser multiplexados, possuir alta resolução espacial transversalmente ao pavimento, e a tecnologia de fabricação ser simples e barata e transferível em função de custos associados.
[02] Como é do conhecimento do inventor, de um modo geral, a presença de um veículo sobre o pavimento pode ser monitorada empregando distintos fenómenos físicos que geram informações sobre características do veículo. Essas características estão relacionadas aos aspectos construtivos do veículo, como o peso, as dimensões, o número de eixos e rodas, entre outros, e à utilização do veículo que está se deslocando sobre o pavimento, incluindo a velocidade, a aceleração, a carga, o número de passageiros, entre outros.
[03] Abaixo são listadas algumas metodologias de detecção e medição de parâmetros físicos para entre outras finalidade a medição de velocidade que envolvem o tráfego de veículos:
[04] i. Detecção magnética: é baseada no fato dos veículos atuais serem construídos com materiais metálicos, a medição é feita através da perturbação de campo magnético gerado por meio, normalmente, de laço indutivo, ou através da assinatura magnética dos veículos que é detectada por sensores indutivos. Com a evolução dos materiais compósitos e sua utilização na indústria automotiva, é possível que essa metodologia de detecção não seja mais viável no futuro.
[05] ii. Detecção por imagem: emprega a captura e o processamento de imagens para a detecção de veículos e também para a detecção de parâmetros dos veículos como os dados de placa.
[06] iii. Detecção por sensores óticos: a utilização de sensores óticos, sendo as tecnologias mais adotadas nesses casos a "LADAR" (Laser Detection And Ranging) ou "LIDAR" (Light Detection and Ranging) que, normalmente, utilizam a banda superior do infra-vermelho.
[07] iv. Detecção por Radar (Radio Detection And Ranging): empregando ondas continuas na faixa de microondas, transmite e recebe, operando pelo princípio Doppler, que é o fenómeno da mudança da frequência da onda após a reflexão em função da velocidade entre o emissor e o objeto monitorado.
[08] v. Detecção por vibração: sensores de vibração, geralmente piezoelétricos, são empregados na detecção das vibrações mecânicas, geradas pelo funcionamento e deslocamento do veículo, transmitidas ao pavimento. A velocidade e o peso dos veículos podem ser correlacionados com a amplitude e o espectro de frequência da vibração e a pressão mecânica sobre eles.
[09] vi. Detecção por deformação: a presença do veículo, estático ou em movimento, sobre o pavimento gera deformações no pavimento que podem ser detectadas e medidas com sensores de deformação e células de carga. Os sinais de deformação são diretamente proporcionais ao peso dos veículos, sendo possível a determinação de número de eixos e de rodas.
[010] vii. Detecção por temperatura: sensores de temperatura são instalados no pavimento para detecção da variação de temperatura produzida no pavimento pelos pneus dos veículos que aquecem em função do atrito.
[011] Em alguns casos, um sistema de monitoramento de tráfego rodoviário emprega combinação de duas ou mais das metodologias descritas acima para gerar o máximo de informações possíveis, ou mesmo para reduzir as incertezas intrínsecas a determinada tecnologia com a combinação dos dados captados.
[012] Para garantir a medição com baixa incerteza de determinada variável de interesse, a técnica mais comum adotada, em qualquer que seja a tecnologia aplicada, é ter o maior numero possível de leituras dos dados, de modo que se possa ter uma amostragem maior e consequentemente maior precisão.
[013] A principal tecnologia existente para medição de peso corresponde aos sensores piezoelé tricôs. Esses sensores apresentam as seguintes desvantagens em relação aos sensores baseados em fibra óticas:
[014] 1. Não podem ser multiplexados no mesmo canal de medição;
[015] 2. Possuem baixa resolução espacial transversalmente ao pavimento;
[016] 3. Na média são mais caros quando comparados relativamente à capacidade de medição por sensor; e
[017] 4. A tecnologia de fabricação é complexa e cara e dificilmente transferível em função de custos associados.
[018] Como explicado anteriormente, as soluções atualmente usadas necessitam conjugar diferentes tipos de sensores com tecnologias variadas para obter a precisão no processo de pesagem. Soluções com essas características têm alto custo de fabricação, instalação, calibração, manutenção e operação, uma vez que exigem técnicas diversas e estão muito sujeitas à necessidade de ajustes e calibração, pois os componentes têm comportamentos físicos diversos entre si, gerando grande possibilidade de desalinhamento funcional levando a erros de medição.
[019] No caso da pesagem em movimento, empregam-se comumente duas premissas: a combinação de sensores diferentes (em geral laços indutivos em combinação com piezoselétricos ou com células de carga) e a instalação de maior quantidade de sensores quando se pretende atingir alta precisão.
[020] De uma maneira geral a medição de peso dinamicamente de veículo sobre o pavimento, que emprega tecnologia com sensores a fibra ótica, ocorre mediante a medição de deformação ou vibração. Estes induzidos ao pavimento e/ou ao sensor com a presença ou passagem do veículo. As diferenças principais entre as distintas metodologias de medição, sejam as reportadas na literatura na forma de patentes ou artigos técnicos e as reinvindicadas nesse documento, são, o elemento sensor e o seu encapsulamento. O primeiro podendo ser baseado na medição de intensidade, frequência e/ou fase da onda ótica. O encapsulamento consistente em elemento de proteção e, sobretudo, em elemento de transdução mecânica responsável por transformar e/ou amplificar componentes de força relativas ao peso do veículo.
[021] Nos bancos de patentes são encontrados alguns registros de patentes na área de monitoramento de tráfego com sensores a fibra ótica.
[022] Na patente australiana WO2001027569A1 a fibra ótica é fixada a substrato, placa de deflexão, que se deforma com a passagem de veículos e a detecção da deformação da fibra ótica é baseada em medição interferométrica.
[023] Na patente britânica GB2056672A a fibra ótica é colocada ao lado e transversalmente ao caminho por onde passa o veículo. [024] Na patente estadunidense US 12376875 dispositivo strain gauge composto por um interferômetro de Fabry Perot a fibra ótica é empregado.
[025] Na patente europeia EP20110160916 placa flexível com redes difrativas em fibra óticas é empregada para a medição de peso.
[026] Na patente estadunidense US07410764 a fibra ótica é instalada entre placa rígidas e semi-rígidas para medição da pressão através da deformação/curvatura das placas.
[027] Na patente estadunidense US 11425392 redes difrativas são conectadas a estrutura mecânica.
[028] Na patente estadunidense US 10467075 sensor é instalado na rodovia com detecção interferométrica por retro-espalhamento Rayleigh.
[029] A patente estadunidense US5260520 revela dispositivo para pesar veículo em movimento que é suprido por pluralidade de sensores de fibra ótica elongados definidos por uma fibra ótica embutida em um encapsulamento de material elastomérico e dispostos em paralelo um ao outro na estrada no caminho dos veículos em movimento. Cada sensor de fibra ótica é provido com meios de contato dispostos em grade que podem ser seletivamente alterados para ter sensibilidade adequada a cada faixa de peso de veículos. Sistemas de comutadores são utilizados em conjunto com os sensores de fibra ótica para fornecer sinais indicativos da velocidade do veículo, distribuição de peso, posição do pneu e distância entre eixos. O uso de uma configuração de comutadores em formato de N também fornece a determinação do número de pneus em cada eixo, e a marca do pneu no solo. Quando os comutadores nesta configuração são formados por fibras óticas, a extensão da transmissão de luz pelas fibras em contato com os pneus do veículo é indicativa do peso do veículo.
[030] A patente de modelo de utilidade chinesa CN200962255 revela um detector de veículos por fibras que inclui uma fonte luminosa, unidade de sensores de fibra ótica, detector, unidade de aquisição de dados e unidade de processamento, sendo que a unidade de sensores de fibra ótica compreende dois sensores interferométricos Mach-Zehnder que incluem uma barra de aço inoxidável e uma folha de plástico mais leve de formato padronizado e a folha de plástico mais leve pode detectar o sinal da vibração da estrada que pela barra de aço inoxidável que conecta com a barra de aço de reforço sob a superfície da estrada. Os efeitos benéficos são a melhoria da sensibilidade e do bloqueio da interferência eletromagnética sobre o detector, sem efeito do meio ambiente e melhoria da relação sinal- ruído, pela adição da barra de aço inoxidável e da folha de plástico mais leve nos sensores interferométricos, onde sempre um braço do sensor é braço de referência e outro é braço de sinal, além disso o braço de referência é imóvel e correspondente ao invólucro de proteção, assim como há a rejeição do modo comum do amplificador diferencial no circuito eletrônico quando a barra de aço inoxidável e a folha de plástico mais leve vibram em conjunto.
[031] A patente romena RO 127980 refere-se a um método para determinar o peso dos veículos a motor em movimento sem restringir de qualquer maneira o tráfego dos veículos a serem pesados e a um dispositivo que aplica o método. O método mede a variação da potência ótica transmitida por uma fibra ótica dependente do peso variável aplicado, utilizando um dispositivo opto-eletrônico com uma fibra ótica de modo único ou de modo múltiplo quando há propagada uma radiação luminosa com a onda gama espectral infravermelha emitida em regime de ondas contínuas por um diodo laser ou um LED, a fibra ótica está montada em um dispositivo mecânico que garante a sua curvatura dependendo do peso a ser medido. O dispositivo reivindicado compreende uma fonte de radiação no espectro infravermelho próximo que pode ser um diodo laser ou um LED, dito diodo laser ou LED emitindo a radiação infravermelha por uma fibra óptica curvada sob o peso do veículo motor a ser pesado, sendo que a micro-curvatura da fibra causada pelo peso causa uma mudança na transmissão da luz emitida através da fibra, proporcional ao peso do veículo sobre o asfalto.
[032] As tecnologias reveladas pelas patentes atualmente existentes, em relação à tecnologia da presente patente, apresentam limitações, inconvenientes e desvantagens de: [033] Nas patentes WO2001027569A1, EP20110160916, US07410764 e
US 11425392 as metodologias de medição empregam transdutores mecânicos baseados em placas de deflexão para transformar a força peso em deformação mecânica da fibra ótica. De uma maneira geral esse tipo de sensor tem dimensões grandes, são altamente intrusivos ao pavimento, têm requerimentos de geometria altamente exigentes no que tange à instalação e, ainda, são complexos para serem manufaturados.
[034] As patentes GB2056672A e RO127980 empregam a medição da variação da intensidade luminosa da luz que trafega pela fibra ótica como método de medição. A variação da intensidade ocorre através do estrangulamento da fibra ótica por meio de mecanismo com a passagem de veículo sobre a fibra. Essa técnica é susceptível a flutuações da fonte ótica e dos componentes de detecção sendo, além de cabos e conexões, assim, imprecisa e não utilizável em sistemas metrológicos.
[035] A patente US 10467075 reporta o emprego de sistema de medição acústica distribuída para o monitoramento de parâmetros rodoviários. Essa técnica é baseada em medições das emissões acústicas oriundas dos veículos e da interação dos veículos com o pavimento.
[036] A patente US5260520 reporta o encapsulamento da fibra ótica por material elastomérico, sendo este o elemento de transdução. Um dos grandes problemas desse tipo de material é a dependência com a temperatura que altera as taxas de deformação. Em temperaturas mais elevadas, como aquelas encontradas em pavimentos, o material pode saturar antes do fim da escala de medição, restringindo, assim, a faixa de operação do sensor.
[037] A patente CN 20096255 utiliza transdutor mecânico baseado em placa de aço inoxidável e barra polimérica para detectar vibração. Esse projeto apresenta alta complexidade mecânica, alta dependência com a temperatura além de ter dimensões grandes e ser, logo, altamente intrusivo ao pavimento.
[038] "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E
VELOCIDADE DE VEÍCULOS EM PISTA", objeto da presente patente, foi desenvolvido para superar as limitações, inconvenientes e desvantagens das tecnologias existentes para pesagem dinâmica e velocidade em pistas de rodagem, por utilizar tecnologia de fibra ótica em configurações de montagem únicas com sensores pontuais e quasi-distribuídos, que permitem resposta rápida, utilizar técnicas difrativas, espectrométricas, interferométricas e de espalhamentos óticos, no domínio do tempo ou da frequência, pulsados ou contínuos, ser empregadas para a medição de deformação, vibração, temperatura e pressão, ser encapsulados de modo a realçar a sensibilidade às variáveis de interesse, facilitar o processo de instalação e/ou proteger a fibra ótica sensora, empregar materiais específicos como fibras sintéticas, entre elas as fibras de carbono, kevlar e vidro, resinas e polímero de diferentes composições químicas com base epóxi ou vinílica, por exemplo, e ainda estruturas rígidas feitas em metal; podendo serem instalados com configurações avançadas de redes óticas como redes em anel; com vantagens de possuir custo inferior e vida útil prolongada se comparada aos demais; os sensores poderem ser multiplexados; possuírem alta resolução espacial transversalmente ao pavimento; a tecnologia de fabricação ser simples e barata e transferível em função de custos associados.
[039] O sistema de monitoramento descrito neste documento medições de deformação, vibração, pressão e temperatura com número reduzido de sensores instalados no pavimento, ou sobre ele. Os sensores a fibra ótica são miniaturizados e, em muitos casos, são pouquíssimos intrusivos tem natureza integrada e a capacidade de fazer de forma simultânea e são instalados, e incorporados, no pavimento de forma rápida e fácil. Os sensores podem eventualmente ser aplicados sobre o pavimento sem a necessidade de serem introduzidos no mesmo, bastando estarem dentro de estruturas que garantam sua proteção física contra choque e atrito com o material rodante (apenas para evitar o seu deslocamento) e que estejam fixadas ou aderidas à superfície do pavimento. Apresenta a possibilidade de instalar os sensores a distâncias bastante longas da unidade de medição (da ordem de quilómetros se necessário) sem a menor degradação dos parâmetros medidos. Os sensores a fibra ótica são imunes a interferências eletromagnéticas e não são susceptíveis à corrosão na presença de água. A temperatura de degradação é superior a 100 ° C, podendo chegar a mais de 1000 ° C, e a resistência à tração é superior a do aço.
[040] O sistema é aplicado no monitoramento de variáveis de tráfego rodoviário tais como, mas não se limitando, à detecção de veículos, contagem de rodas, identificação de rodados simples e/ou duplos, medição da velocidade individual e média dos veículos e medição de aceleração, e com execução de cálculos obtém contagem de eixos, classificação de veículos, contagem de veículos, medição de peso por roda, medição de peso por eixo, medição do peso de grupos de eixos e medição de peso total dos veículos. O monitoramento de parâmetros de tráfego é empregado nas áreas de segurança rodoviária, de controle de tráfego, de manutenção e infraestrutura, de diagnóstico de problemas de tráfego, de tarifação em rodovias pedagiadas e na aplicação de multas em situações irregulares de tráfego, entre muitas outras situações. As informações geradas são utilizadas por vários agentes da sociedade, como, os órgãos governamentais responsáveis pelo setor rodoviário, as agências regulatórias, as entidades de segurança pública, as concessionárias de rodovias e, em alguns casos os próprios usuários das rodovias.
[041] As tecnologias atuais apresentam os seguintes problemas técnicos que o invento da presente patente resolveu:
[042] A. Os sistemas atuais de monitoramento de pesagem e de velocidade utilizam diversas técnicas ao mesmo tempo (deformação, magnética, piezo, imagem, vibração, temperatura, radar) que ao serem agrupados geram dificuldades de ajustes e calibrações e desalinhamento funcional, resolvido pela presente patente através de única base que utiliza fibra ótica que monitora múltiplos parâmetros de forma integrada e obtém resultados precisos, ajustes e calibrações e alinhamento funcional;
[043] B. Os sistemas atuais de monitoramento de pesagem e de velocidade que utilizam detecção magnética apresentam limitação operacional devido às interferências eletromagnéticas, resolvido pela presente patente através de única base que utiliza fibra ótica que não sofre interferência eletromagnética;
[044] C. Os sistemas atuais de monitoramento de pesagem e de velocidade que utilizam placa de deflexão ou placa flexível ou placa rígida ou semi-rígida necessitam de grandes obras civis que geram fragilizações no pavimento e consequentemente gerando necessidade de manutenção periódica do mesmo, resolvido pela presente patente através do uso de fibra ótica que leva à miniaturização de componentes e consequentemente mínima intervenção sobre o pavimento que não sofre fragilizações;
[045] D. Os sistemas atuais de monitoramento de pesagem e de velocidade que utilizam placa de deflexão ou placa flexível ou placa rígida ou semi-rígida apresentam imprecisões nas medições em alta velocidade, resolvido pela presente patente através de fibra ótica que monitora múltiplos parâmetros de forma integrada e obtém resultados precisos em qualquer velocidade;
[046] E. Os sistemas atuais de monitoramento de pesagem e de velocidade, piezoelétricos ou que utilizam placa de deflexão ou placa flexível ou placa rígida ou semi-rígida não permitem a contagem de rodas, identificação de rodados simples e/ou duplos, resolvido pela presente patente através de fibra ótica que monitora múltiplos parâmetros de forma integrada;
[047] F. Baixa resolução espacial ao longo da rodovia: os sensores atuais para medição dinâmica de peso têm grandes limitações no que tange à capacidade de discretizar espacialmente a medição de peso ao longo da rodovia seja longitudinalmente ou transversalmente ao tráfego, tipicamente os melhores sensores conseguem discernir o peso sobre um comprimento de lm. Este problema foi resolvido pela presente patente através de sensores propostos que podem ter resolução da ordem de milímetros. Essa característica gera ganhos na caracterização dos veículos uma vez que permite medir o peso em cada roda, identificar características como o perfil da roda, pneus cheios ou vazios entre outros. Adicionalmente, diminui a incerteza das medições de peso de veículos;
[048] G. Tamanho dos sensores e impacto sobre a estrutura do pavimento: os sensores atuais têm dimensões maiores do que os propostos e por isso ocasionam maior degradação ao pavimento. A conservação dos pavimentos é um dos parâmetros mais importantes na concessão de rodovias e cortes grandes para a instalação de sensores e cabos diminuem a vida útil dos pavimentos. Resolvido pela presente patente pelos sensores propostos que podem ser tão estreitos como alguns milímetros e podem necessitar de cortes de poucos milímetros de profundidade para serem instalados;
[049] H. Complexidade do sistema de leitura: as tecnologias atuais são baseadas em sensores elétricos que geram sinais elétricos de baixa potência e por isso requerem sistema de leitura complicados com muitos estágios eletrônicos e digitais de amplificação e condicionamento de sinais, além disso são limitados do ponto de vista de comprimento dos cabos de conexão dos sensores. Assim, os equipamentos de leitura têm dimensões grandes e precisam de proteções contra interferências eletromagnéticas e utilizam processamento de sinais complexo e com alta demanda computacional, isso eleva as dimensões físicas e o peso dos equipamentos de leitura. Resolvido pela presente patente por sensores alimentados por sistemas de leituras altamente eficientes uma vez que operam no domínio ótico, que são altamente multiplexáveis e são infinitamente menos susceptíveis a interferências externas. Além disso, os sinais óticos não sofrem com problemas de variação de intensidade, pois são codificados em frequência ou fase, portanto o hardware eletrônico é relativamente simples e mais robusto, podendo ser aplicados a vários tipos de medições físicas;
[050] I. Grande quantidade de cabos: os sensores atuais não tem potencial de multiplexação significativo e por isso cada sensor necessita de um cabo e um canal de leitura no sistema de leitura. Resolvido pela presente patente por sensores propostos altamente multiplexáveis e em uma mesma fibra ótica dezenas a centenas de sensores podem ser interligados e lidos por único sistema de leitura;
[051] J. Grandes dimensões das instalações: a quantidade de equipamentos, de cabos bem como o tamanho dos sensores e o impacto sobre a estrutura do pavimento são alguns dos problemas dos sistemas existentes. Como consequência destes problemas estão a complexidade do sistema de leitura, a baixa capacidade de multiplexação, as dimensões dos sensores e as dimensões da instalação que são consideravelmente maiores, impactando na poluição visual e na necessidade de espaço entre outros. Resolvido pela presente patente pela elegância do sistema proposto que mitiga todos esses problemas;
[052] K. Distância limite para instalação dos sensores em relação aos equipamentos de leitura: os sensores atuais baseados em eletricidade não podem ficar a distâncias muito elevadas dos equipamentos de leitura em função de atenuação dos sinais dos sensores, susceptibilidade a interferências eletromagnéticas entre outros. Resolvido pela presente patente, por sensores que têm a característica de poderem ser instalados a dezenas de quilómetros da unidade de leitura sem qualquer limitação para a qualidade de leitura da informação de peso e velocidade, ou qualquer outra variável física medida;
[053] L. Complexidade de manutenção: devido à quantidade e complexidade de hardware eletrônico, cabos e proteções dos sistemas atuais, as operações de manutenção tornam-se complexas, demoradas e dispendiosas. Resolvido pela presente patente por utilizar de sistema com menor quantidade e simplicidade de hardware, reduzindo, simplificando e barateando as operações de manutenção;
[054] M. Suscetibilidade dos cabos usados nas tecnologias atuais que sofrem corrosão na presença de água, resolvido pela presente patente por utilizar fibra ótica que não corrói, pois a sua temperatura de degradação é superior a 100 ° C, podendo chegar a mais de 1000 ° C, e a resistência à tração é superior a do aço; e [055] N. Instalação intrusiva ao pavimento: os sensores atuais, bem como aqueles reportados na revisão de patentes supramencionada nesse documento, são intrusivos e precisam estar no interior do pavimento, quer parcialmente ou em sua totalidade; os sensores propostos podem ser pouquíssimo intrusivos ou ainda não serem intrusivos, sendo instalados na superfície do pavimento.
[056] O sistema de monitoramento de veículos objeto da presente patente foi obtido após pesquisas e desenvolvimentos de processos e de dispositivos que visaram resolver os problemas técnicos identificados nas tecnologias atualmente disponíveis. [057] De uma maneira geral os sensores a fibra ótica são muito sensíveis a qualquer alteração nas dimensões ou no índice de refração das fibras óticas sensoras. Assim, simplesmente movimentar a fibra ótica a partir do repouso pode causar grandes alterações de sinal medido. Da mesma forma no que tange a pequenas variações térmicas. Partindo dessa compreensão e da capacidade de realizar o sistema de interrogação, a medição do peso em movimento (bem como a medição de todos os outros sinais oriundos do tráfego de veículos conforme mencionado acima) requer atenção sobre o possível excesso de sensibilidade da fibra ótica. Outro ponto relevante é o fato do vidro ser muito resistente à tração e compressão mecânicas e também muito estável termicamente, porém apresentar grande sensibilidade aos esforços cisalhantes, que devem sempre ser evitados ou mitigados. Assim, as metodologias de instalação dos sensores no pavimento de acordo com o sistema objeto da presente patente levaram em consideração as premissas acima sem perder a capacidade de medição das variáveis de interesse.
[058] O sistema de leitura e interrogação dos sensores consiste em um sistema optoeletronico que transforma os sinais óticos em sinais elétricos contendo informações de amplitude, frequência e fase. Esse sinal é transmitido a um processador eletronico que o processa para determinação dos parâmetros de deformação, vibração e temperatura que, resolvidos no tempo, podem ser convertidos em informações de peso, velocidade, número de eixos entre outros parâmetros dos veículos.
[059] O sistema optoeletronico emprega fontes óticas de banda larga como,
LEDs e SLEDs, ou de banda estreita como Lasers contínuos ou pulsados, estáticos ou de varredura, de alta e baixa coerências temporais e espaciais, e lâmpadas de vários tipos, bem como, fotodetectores singulares como, fotodiodos pin e avalanche, entre outros, ou CCDs e arrays de detectores. Além disso, ele pode ter distintas configurações em função do parâmetro de interesse a ser medido, de seu local e da incerteza no valor da medição.
[060] De uma maneira geral os sensores instalados no pavimento detectam deformação, vibração e temperatura de forma contínua possibilitando a detecção e medição de parâmetros de tráfego relacionados ao trânsito de veículos sobre os sensores. Os sinais dos sensores são conduzidos até o sistema optoeletronico de leitura e interrogação que os convertem para sinais eletrônicos que são em sequência processados e as informações de tráfego são geradas.
[061] Os sensores são instalados no interior do pavimento, ou sobre ele, sendo esse último considerado como não intrusivo, pois não necessita que a infraestrutura da via (asfalto ou calçamento) seja modificada para a instalação dos sensores, e podem simultaneamente, ou não, medir variação de temperatura, pressão, vibração e deformação induzidas ao pavimento com a passagem de veículos. O processamento dessas variáveis permite gerar simultaneamente e em tempo real inúmeros parâmetros de tráfego, como: contagem, classificação, velocidade, peso, vibração, desgaste, mas não limitados a estes.
[062] O sistema de monitoramento, detecção, classificação, medição (incluindo cálculo de velocidade, tamanho, peso, numero e distancia dos eixos, tipo de rodado simples ou duplo, etc.) de veículos em movimento (em baixa e alta velocidade) ou parados, objeto da presente patente, é baseado em sensores a fibra ótica. Os sensores a fibra ótica consistem em uma tecnologia que explora todo o potencial das fibras óticas para a medição de variáveis físicas e químicas. As fibras óticas consistem em excelentes meios de transmissão de sinais, têm dimensões muito pequenas e, na maioria das vezes, são feitas de vidro, assim, podem ser usadas para o desenvolvimento de sistemas sensores remotos, miniaturizados e imunes a todos os tipos de interferências eletromagnética,
[063] A novidade do presente invento está nos transdutores e na configuração da instalação.
[064] Três configurações de elemento de transdução são apresentadas. Essas configurações são descritas como modelo I, modelo II e modelo III.
[065] O modelo I consiste em um sensor no formato de trança constituído por fibra ótica e fibras sintéticas de material de alto desempenho mecânico e térmico, como carbono, kevlar ou vidro. As fibras sintéticas tem por função proteger a fibra ótica de esforços cisalhantes e promover a ancoragem da fibra ótica ao pavimento. Qualquer tipo de trança entre a fibra ótica e as fibras sintéticas é possível, assim como a utilização simultânea de mais de um tipo de fibra sintética ou de mais de uma fibra ótica de mesmo tipo ou não. O sensor pode ser diretamente incorporado ao pavimento, se integrando perfeitamente ao betume, ou pode ser instalado na superfície do pavimento em canaleta rasa, com menos de 10 mm de profundidade, com adição de betume. Além da facilidade instalação, esse sensor é minimamente intrusivo e muito sensível, detectando facilmente veículos leves como motos e bicicletas e, também, veículos pesados como caminhões de carga.
[066] O modelo II consiste em um sensor no formato de barra delgada, com espessura da ordem de 3 mm, mais especificamente menor que 5 mm, largura da ordem de 10 mm, mais especificamente menor que 20 mm e com comprimento que pode variar de acordo com a necessidade da instalação, desde poucos centímetros até unidades de metro. A barra é constituída de material compósito que contém a fibra ótica em seu interior. Resinas de bases epoxy, vinilicas entre outras podem ser empregadas na fabricação das barras assim como fibras sintéticas de alto desempenho como de carbono, kevlar e vidro. Similarmente ao sensor do modelo I, o sensor no formato de barra também pode ser instalado em canaleta rasa, sendo minimamente intrusivo. Outra possibilidade, única a esse modelo de sensor, é a capacidade de ser instalado diretamente na superfície do pavimento se caracterizando, portanto, como não intrusivo.
[067] Tanto no modelo I como no modelo II os sinais óticos medidos podem conter informações de frequência e fase da onda ótica confinada na fibra ótica. Para o caso de detecção de frequência, elementos difrativos estão presentes no interior da fibra constituinte do sensor. A quantidade e a densidade de elementos difrativos depende de variáveis como aplicações, incerteza de medição almejada entre outros, e pode varia desde um único elemento até dezenas a centenas por sensor.
[068] O modelo III consiste em sensor composto por invólucro metálico responsável por isolar e transformar as componentes verticais da força (peso) em componentes horizontais que deformam partes do invólucro metálico e que são monitoradas por fibras óticas. A deformação dessas partes pode ser medida através da frequência ou da fase da onda ótica no interior da fibra. A característica mais importante desse modelo de sensor é a baixíssima incerteza.
[069] O modelo IV consiste em sensor composto por uma placa de deflexão miniaturizada instalada no interior de um transdutor de força e que permite a medição indireta do peso do veículo. A deflexão da placa pode ser medida através da frequência ou da fase da onda ótica no interior da fibra. Esse tipo de medição pode ter baixíssima incerteza quando integrada a um transdutor de força.
[070] Após diversos ensaios e atividades de pesquisa e desenvolvimento, chegou-se às construtividades que constituem o sistema objeto da presente invenção, e descrito em pormenores em seguida.
[071] Para melhor compreensão do sistema de monitoramento de variáveis de veículos em pista, objeto da presente invenção, são anexadas as seguintes figuras:
[072] FIGURA 1., que mostra um diagrama de esquemático do sistema da presente patente.
[073] FIGURA 2., que mostra o diagrama de blocos dos módulos construtivos constituintes do sistema objeto da presente patente;
[074] FIGURA 3., que mostra a vista em perspectiva explodida da configuração do sensor modelo I encapsulado, de acordo com a presente invenção;
[075] FIGURA 4., que mostra a vista em perspectiva da configuração do sensor modelo II mostrando encapsulamento transparente para melhor entendimento, de acordo com a presente invenção; [076] FIGURA 5., que mostra a vista em perspectiva da configuração do sensor modelo III encapsulado, de acordo com a presente invenção;
[077] FIGURA 6., que mostra a vista em perspectiva da configuração do sensor modelo IV acionada por deflexão, de acordo com a presente invenção;
[078] FIGURA 7., que mostra a vista em perspectiva de uma realização particular do sensor do modelo I embutido no interior do pavimento de uma via de tráfego de veículos;
[079] FIGURA 8., que mostra um diagrama de blocos da rede de fibra ótica do sistema com detecção, transmissão e leitura dos sensores;
[080] FIGURA 9., que mostra um diagrama de blocos da rede de fibra ótica do sistema de leitura dos sensores operando em transmissão;
[081] FIGURA 10., que mostra um diagrama de blocos da rede de fibra ótica do sistema de leitura dos sensores, interconectados na forma de rede ótica em anel; e
[082] FIGURA 11., que mostra um diagrama de blocos do processo de medição dinâmica de peso da presente patente.
[083] De acordo com a Figura 1, o sistema de monitoramento da presente patente monitora o veiculo (V) na pista (PI), utilizando sensores de medição de peso e de velocidade (1-A), canal de comunicação de sinal (1-B), leitor ótico (2-A) e unidade de processamento (2-B) com software de análise (SA) gravado, unidade de comunicação (2-C) e fonte de alimentação (2-D).
[084] De acordo com a Figura 2, o sistema de monitoramento da presente patente é constituído por módulo de sensorização e de transmissão de sinal (1) com sensores de medição de peso e de velocidade (1-A) dotado de uma ou uma rede de fibra ótica com técnicas difrativas, espectrométricas, interferométricas e de espalhamentos óticos no domínio do tempo e/ou da frequência, pulsados ou contínuos, montada em configurações modelos I, II, III e IV e ligada bidirecionalmente ao canal de comunicação de sinal (1-B) e instalado no pavimento (PI), e canal de comunicação de sinal (1-B) dotado de fibra ou rede de fibras óticas do tipo monomodo ou multimodo ou ainda de geometria complexa e conexões montada em configurações de reflexão e transmissão e ligado bidireccionalmente ao leitor ótico (2-A) do módulo de leitura, processamento e comunicação (2) e aos sensores de medição de peso e velocidade (1-A); e por módulo de leitura e processamento e comunicação (2) dotado de leitor ótico (2-A) do tipo varredura laser ou refrativo ou interferométrico ou similar, com fontes luminosas (2-A-l) do tipo laser, LED, LED superluminescente, ASE ou similar, com detectores (2-A-2) do tipo fotodiodos, válvulas, termopilha, sensores piroelétricos, CCDs e similares e com acoplador e/ou multiplexador (2-A-3) do tipo circulador ou multiplexador por comprimento de onda ou com acopladores com razões de acoplamento variadas 1x99, 10x90 ou 50x50, com três ou mais portas ou similar, ligado unidirecionalmente a fonte de alimentação (2-D) e bidireccionalmente a unidade de processamento (2-B) e ao canal de comunicação de sinal (1-B) do módulo de sensorização e de transmissão de sinal (1), unidade de processamento (2-B) com processador modelo Intel i3 ou similar e com software de análise (SA) gravado, ligado unidirecionalmente a fonte alimentação (2-D) e bidireccionalmente a unidade de comunicação (2-C) e ao leitor ótico (2-A), unidade de comunicação (2-C) com redes wireless ou cabeadas ligadas unidirecionalmente a fonte de alimentação (2-D) e bidireccionalmente a unidade de processamento (2-B) e fonte da alimentação (2-D) do tipo linear ou chaveada ou similar ligada unidirecionalmente ao leitor ótico (2-A), a unidade de processamento (2-B) e a unidade de comunicação (2-C).
[085] Os sensores de medição de peso e de velocidade (1-A) consistem nos elementos de medição empregando tecnologia de sensoriamento com fibras ópticas, com técnicas difrativas, espectrométricas, interferométricas e de espalhamentos óticos, no domínio do tempo e/ou da frequência, pulsados ou contínuos e outras técnicas que venham a ser desenvolvidas compatíveis com a aplicação, a fim de obter a precisão na medição de deformação, vibração, temperatura e pressão, as quais permitem calcular o peso e velocidade dos veículos e posicionados no pavimento para a medição do peso e/ou da velocidade dos veículos. Conforme descrito nas figuras 3, 4, 5 e 6 com as configurações dos sensores que podem ter os modelos "Γ, "II", "III" e "IV".
[086] O canal de comunicação de sinal (1-B) consiste em todos os cabos e conexões necessárias para estabelecer canal de comunicação confiável, eficiente e seguro entre módulo de sensorização e de transmissão de sinal (1) e módulo de leitura, processamento e comunicação (2).
[087] O leitor ótico (2-A) consiste em equipamento responsável por ler o sinal ótico proveniente dos sensores e transformá-lo em sinais elétricos que possam ser interpretados por computador.
[088] A Unidade de processamento (2-B) consiste em unidade computacional, que pode ser computador industrial ou placa ou circuito dedicado responsável por processar, armazenar e enviar dados via rede de comunicação.
[089] O Software de análise (SA) consiste em algoritmo dedicado de processamento dos sinais óticos oriundos das excitações recebidas com o tráfego de veículos sobre o pavimento e sensores, para conversão dos valores medidos em peso e velocidade. Bem como algoritmo dedicado de auto-diagnóstico, recuperação de dados e falhas e de controle do processo.
[090] A Unidade de comunicação (2-C) consiste no circuito eletrônico responsável pela comunicação entre o módulo de leitura, processamento e comunicação (2) e outros equipamentos ou redes de comunicação para o envio e recebimento de dados de processamento de tráfego. Por exemplo, comunicação por redes wireless wifi, nfc, wsn entre outras ou cabeadas com cabos de par trançado, coaxiais, fibras óticas entre outras.
[091] A Fonte de alimentação (2-D) consiste em circuito eletrônico de potência para alimentação de todos os componentes ativos e passivos presentes no módulo de leitura, processamento e comunicação (2).
[092] De acordo com a Figura 3., o sensor (1-A) na configuração modelo "I" onde a fibra ótica (1-A-l) é envolvida fisicamente por fibras sintéticas (l-A-2), (l-A-3), e (l-A-4) de forma trançada, que podem ser constituídas de um único tipo de fibra ou de mais de um tipo de fibra, como fibras de carbono, kevlar e vidro, a quantidade de fios de fibra sintética também pode ser variada em quantidade acima de três. Existe ainda a possibilidade do conjunto fibra ótica (1-A-l) e fibras sintéticas (l-A-2), (l-A-3), e (l-A-4) serem envolvidas por resinas, betume asfáltico ou outro material de interesse.
[093] De acordo com a Figura 4., é mostrado o sensor (1-A) modelo "Π" onde a fibra ótica (1-A-l) é incorporada em uma encapsulamento (l-A-5) com seção transversal (1-A-5-A) de dimensões variadas podendo ser prismática poligonal, oval ou circular, ou ainda ter formato irregular. Esta peça pode ser oca ou preenchida com diferentes materiais como fibras sintéticas, resinas, polímeros, líquidos e géis, para ampliar a resposta à medição de interesse bem como proteger a fibra ótica. Um cabo de fibra ótica do canal de comunicação de sinal (1-B) é utilizado para conectar o sensor à unidade de leitura.
[094] De acordo com a Figura 5., é mostrado o sensor (1-A) modelo "III", que consiste em um encapsulamento (l-A-6) metálico com ancoragem de formato prismático poligonal e invólucro central de formato cilíndrico ou prismático losangular que maximize a sensibilidade e a precisão na medição de peso e velocidade, concatenador de forças mecânicas cuja função é aumentar a sensibilidade na medição de componentes transversais de força. Uma ou mais fibras óticas sensoras (l-A-7) são fixadas no interior do invólucro de forma a medir a distribuição de tensões mecânicas e de temperatura. As dimensões dos elementos de ancoragem e do cilindro estão relacionadas ao tipo do pavimento onde os sensores são instalados, ao tipo de veículos que se deseja monitorar, ao metal empregado e à variável que se deseja monitorar.
[095] De acordo com a Figura 6., é mostrado o sensor (1-A) modelo IV que consiste em placa de deflexão miniaturizada (l-A-8), engastada em uma apoio (l-A-10), que transforma a força peso no movimento (MV), gerada a partir do fluxo de veículos sobre o sensor instalado no interior de um transdutor de força posicionado no pavimento. A fibra ótica sensora ( 1-A-l) é fixada na região de maior deformação da placa com o emprego de adesivo (l-A-10). As dimensões totais desse sistema mecânico são proporcionais às dimensões de uma fibra ótica podendo, assim, ser posicionado no interior de encapsulamento similar ao sensor modelo "III".
[096] De acordo com a Figura 7., é mostrada a instalação dos sensores modelo
"I" posicionados no interior de uma canaleta (CA), cujas dimensões são proporcionais às dimensões do sensor e está na ordem de unidades de milímetros, feita na superfície do pavimento (PI), que pode ser rígido ou flexível. O sensor ( 1-A) modelos "Γ e "Π" é incorporado ou sobre o pavimento (PI) e coberto com aplicação de resina ou betume asfáltico. O sensor (1-A) modelos "III" e "IV" é incorporado no interior do pavimento (PI) e coberto com aplicação de resina ou betume asfáltico Esse processo garante a difusão da resina ou do betume entre as fibras do sensor e da mesma forma no interior dos poros do pavimento. Isto garante a integração do sensor ao pavimento e possibilita a medição da deformação, vibração ou temperatura de forma precisa e com alta sensibilidade.
[097] A leitura dos sinais dos sensores óticos é realizada com um sistema capaz de interrogar a fibra ótica de maneiras variadas e de forma independente medindo deformação, vibração e temperatura. Multiplexando-se sinais óticos, no tempo, no comprimento de onda, na frequência e na fase, chaveando-se entre fontes óticas e detectores sintonizados para a leitura de determinadas variáveis é possível ampliar a capacidade detecção do sistema e também explorar o potencial dos sensores instalados no pavimento. Logo, o sistema de leitura é flexível e pode ler simultaneamente qualquer modalidade de sensor descrita anteriormente ou ainda individualmente conforme necessidade.
[098] Os sensores podem também ser interconectados na forma de uma rede ótica explorando o potencial da tecnologia ótica de telecomunicações.
[099] De acordo com a Figura 8., é representada uma primeira alternativa de rede de fibra ótica para leitura dos sensores, em que a configuração de sensores (1-A) podem ser distribuídos e/ou quasi- distribuídos e/ou pontuais, operando em reflexão. Uma ou mais fontes (2-A-l) e um ou mais canais de comunicação de sinal (1-B) que são ligados a que são ligados através de acopladores (2-A-3) um ou mais detectores (2-A-2) provendo o sistema alta capacidade de multiplexação.
[0100] De acordo com a Figura 9., é representada uma segunda alternativa de rede de fibra ótica para leitura dos sensores, em que a configuração de sensores (1-A) podem ser distribuídos e/ou quasi- distribuídos e/ou pontuais, operando em transmissão. Uma ou mais fontes (2-A-l) e um ou mais canais de comunicação de sinal (1-B) que são ligados a um ou mais detectores (2-A-2) ligados através de acopladores (2-A-3) provendo o sistema alta capacidade de multiplexação.
[0101] De acordo com a FIGURA 10., é representada uma terceira alternativa de rede de fibra ótica para leitura dos sensores, em que a configuração de sensores (1-A) podem ser distribuídos e/ou quasi- distribuídos e/ou pontuais, operando em uma rede em anel. Um ou mais leitores óticos (2-A), um ou mais canais de comunicação de sinal (1-B) que são ligados através de acopladores (2-A-3) a rede em anel (3) obtém uma continuidade de operação com o rompimento de um ou mais canais de comunicação de sinal (1-B).
[0102] Além da configuração em anel outras configurações, tradicionais ou não, empregadas em sistemas de telecomunicações óticas podem ser empregadas em sistemas sensores a fibra ótica para o monitoramento rodoviário. Esse tipo de oportunidade é especialmente valiosa em instalações com grande quantidade pontos de monitoramento, como é o caso de praças de pedágio e de cruzamentos em centros urbanos, ou rodovias com muitas vias etc.
[0103] Existem inúmeras técnicas de medição empregando fibras óticas, em específico aqui, as medições de deformação, vibração, temperatura e pressão, fazem uso dos sensores pontuais e quasi- distribuídos. Técnicas difrativas, espectrométricas, interferométricas e de espalhamentos óticos, no domínio do tempo ou da frequência, pulsados ou contínuos, são empregadas para a medição de deformação, vibração, temperatura e pressão. [0104] Os sensores a fibra ótica podem ser encapsulados para a medição de deformação, vibração e temperatura do pavimento. O encapsulamento dos sensores a fibra ótica pode ter diferentes objetivos, realçar a sensibilidade às variáveis de interesse, facilitar o processo de instalação e/ou proteger a fibra ótica sensora. O projeto e a fabricação dos encapsulamentos empregam materiais específicos como fibras sintéticas, entre elas as fibras de carbono, kevlar e vidro, resinas e polímero de diferentes composições químicas com base epóxi ou vinílica, por exemplo, e ainda estruturas rígidas feitas em metal.
[0105] De acordo com a Figura 11., o processo de medição dinâmica de peso de um veículo em movimento ocorre na seguinte sequência operacional:
[0106] A) A partir da iluminação fornecida pela fonte luminosa (2-A- l) ao canal ótico, a luz é guiada aos sensores (1-A) e deles é guiada aos detectores (2-A-2);
[0107] B) Os veículos se posicionam ou passam sobre os sensores (1-A), gerando vibração e deformação no pavimento (PI) e nos sensores que são detectadas de forma independente ou simultaneamente;
[0108] B) As medições são realizadas em altas frequências, superiores a 100 Hz, são detectadas as deformações e as vibrações induzidas ao pavimento (PI) e ao sensor (1-A);
[0109] C) Nas medições de vibração e deformações, os sensores (1-A) medem sinais de frequência, amplitude ou fase das forças mecânicas produzidas pelos veículos e pelo tráfego dos veículos sobre o pavimento (PI) e os sensores (1-A) ;
[0110] D) Os sinais óticos provenientes dos sensores (1-A), com as informações de vibração e deformação, são lidos pelo leitor ótico (2- A) e convertidos em sinais elétricos para posterior processamento;
[0111] E) Os sinais elétricos são processados por algoritmos dedicados gerando informações de peso por eixo, peso por roda, peso bruto total e velocidade pelo software (SA); e
[0112] F) As informações de peso e velocidade são armazenadas e ou compartilhadas com computadores locais ou remotos via o sistema de comunicação (2-C) empregando redes sem fio ou cabeadas.

Claims

REIVINDICAÇÕES
1. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", caracterizado por, sensor (1-A) na configuração modelo "I" onde a fibra ótica (1-A-l) é envolvida fisicamente por fibras sintéticas (l -A-2), (l-A-3), e (l-A-4) de forma trançada, constituídas de um único tipo de fibra ou de mais de um tipo de fibra escolhidas entre fibras de carbono, kevlar e vidro em quantidade de fios de fibra sintética acima de três.
2. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", caracterizado por, sensor (1-A) modelo "II" onde a fibra ótica (1-A- 1) é incorporada em uma encapsulamento (l-A-5) em barra delgada com seção transversal (1-A-5-A) de formato prismático poligonal, oval ou circular, ou ainda ter formato irregular, oca ou preenchida com diferentes materiais como fibras sintéticas, resinas, polímeros, líquidos e géis e de espessura de menor que 5 mm e largura menor que 20 mm.
3. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", caracterizado por, sensor (1-A) modelo "III", que consiste em um encapsulamento (l-A-6) metálico com ancoragem de formato prismático poligonal e invólucro central de formato cilíndrico ou prismático losangular com uma ou mais fibras óticas sensoras (l-A-7) fixadas no interior do invólucro.
4. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", caracterizado por, sensor (1-A) modelo "IV" que consiste em placa de deflexão miniaturizada (l-A-8), engastada em uma apoio (l-A-10) com fibra ótica sensora (1-A-l) fixada na região de maior deformação da placa com o emprego de adesivo (l -A-10) instalada no interior de um transdutor de força.
5. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com a reivindicação 1 e 2, caracterizado por, sensor (1-A) incorporado ou sobre o pavimento (PI) e coberto com aplicação de resina ou betume asfáltico.
6. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com a reivindicações 3 e 4, caracterizado por, sensor (1- A) incorporado no interior do pavimento (PI) e coberto com aplicação de resina ou betume asfáltico.
7. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com as reivindicações 1, 2, 3 e 4, caracterizado por, módulo de sensorização e de transmissão de sinal (1) com sensores de medição de peso e de velocidade (1-A) dotado de uma ou uma rede de fibra ótica com técnicas difrativas, espectrométricas, interferométricas e de espalhamentos óticos no domínio do tempo e/ou da frequência, pulsados ou contínuos, montada em configurações modelos I, II, III e IV e ligada bidirecionalmente ao canal de comunicação de sinal (1-B) e instalado no pavimento (PI), e canal de comunicação de sinal (1-B) dotado de fibra ou rede de fibras óticas do tipo monomodo ou multimodo ou ainda de geometria complexa e conexões montada em configurações de reflexão e transmissão e ligado bidireccionalmente ao leitor ótico (2-A) do módulo de leitura, processamento e comunicação (2) e aos sensores de medição de peso e velocidade (1-A); e por módulo de leitura e processamento e comunicação (2) dotado de leitor ótico (2-A) do tipo varredura laser ou refrativo ou interferométrico ou similar, com fontes luminosas (2-A-l) do tipo laser, LED, LED superluminescente, ASE ou similar, com detectores (2-A-2) do tipo fotodiodos, válvulas, termopilha, sensores piroelétricos, CCDs e similares e com acoplador e/ou multiplexador (2-A-3) do tipo circulador ou multiplexador por comprimento de onda ou com acopladores com razões de acoplamento variadas 1x99, 10x90 ou 50x50, com três ou mais portas ou similar, ligado unidirecionalmente a fonte de alimentação (2-D) e bidireccionalmente a unidade de processamento (2-B) e ao canal de comunicação de sinal (1-B) do módulo de sensorização e de transmissão de sinal (1), unidade de processamento (2-B) com processador modelo Intel i3 ou similar e com software de análise (SA) gravado, ligado unidirecionalmente a fonte alimentação (2-D) e bidireccionalmente a unidade de comunicação (2-C) e ao leitor ótico (2-A), unidade de comunicação (2-C) com redes wireless ou cabeadas ligadas unidirecionalmente a fonte de alimentação (2-D) e bidireccionalmente a unidade de processamento (2-B) e fonte da alimentação (2-D) do tipo linear ou chaveada ou similar ligada unidirecionalmente ao leitor ótico (2- A), a unidade de processamento (2-B) e a unidade de comunicação (2-C).
8. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com as reivindicações 1, 2, 3 e 4, caracterizado por, uma primeira alternativa de rede de fibra ótica para leitura dos sensores, em que a configuração de sensores (1-A) podem ser distribuídos e/ou gwasi-distribuídos e/ou pontuais, operando em reflexão com uma ou mais fontes (2-A-l) e um ou mais canais de comunicação de sinal (1-B) que são ligados a que são ligados através de acopladores (2-A-3) um ou mais detectores (2-A-2).
9. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com as reivindicações 1, 2, 3 e 4, caracterizado por, uma segunda alternativa de rede de fibra ótica para leitura dos sensores, em que a configuração de sensores (1 -A) podem ser distribuídos e/ou quasi-distúbuídos e/ou pontuais, operando em transmissão com uma ou mais fontes (2-A-l) e um ou mais canais de comunicação de sinal (1-B) que são ligados a um ou mais detectores (2-A-2) ligados através de acopladores (2-A-3).
10. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com as reivindicações 1, 2, 3 e 4, caracterizado por, uma terceira alternativa de rede de fibra ótica para leitura dos sensores, em que a configuração de sensores (1 -A) podem ser distribuídos e/ou quasi-distúbuídos e/ou pontuais, operando em uma rede em anel com um ou mais leitores óticos (2- A), um ou mais canais de comunicação de sinal (1-B) que são ligados através de acopladores (2-A-3) a rede em anel (3) .
11. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com as reivindicações le 2, , caracterizado por, sensores (1-A) miniaturizados não intrusivos ou quando intrusivos em canaleta com menos de 10 mm de profundidade no pavimento.
12. "SISTEMA DE MONITORAMENTO DE PESAGEM DINÂMICA E DE VELOCIDADE DE VEÍCULOS EM PISTA", de acordo com as reivindicações 1, 2, 3 e 4, caracterizado por, processo de medição dinâmica de peso de um veículo em movimento ocorre na seguinte sequência operacional:
A) A partir da iluminação fornecida pela fonte luminosa (2-A- l) ao canal ótico, a luz é guiada aos sensores (1-A) e deles é guiada aos detectores (2-A-2);
B) Os veículos se posicionam ou passam sobre os sensores (1 -A), gerando vibração e deformação no pavimento (PI) e nos sensores que são detectadas de forma independente ou simultaneamente;
C) As medições são realizadas em altas frequências, superiores a 100 Hz, são detectadas as deformações e as vibrações induzidas ao pavimento (PI) e ao sensor (1-A);
D) Nas medições de vibração e deformações, os sensores (1-A) medem sinais de frequência, amplitude ou fase das forças mecânicas produzidas pelos veículos e pelo tráfego dos veículos sobre o pavimento (PI) e os sensores (1-A) ;
E) Os sinais óticos provenientes dos sensores (1-A), com as informações de vibração e deformação, são lidos pelo leitor ótico (2-A) e convertidos em sinais elétricos para posterior processamento;
F) Os sinais elétricos são processados por algoritmos dedicados gerando informações de peso por eixo, peso por roda, peso bruto total e velocidade pelo software (SA); e
G) As informações de peso e velocidade são armazenadas e ou compartilhadas com computadores locais ou remotos via o sistema de comunicação (2-C) empregando redes sem fio ou cabeadas.
PCT/BR2018/050114 2017-08-16 2018-04-18 Sistema de monitoramento de pesagem dinâmica e de velocidade de veículos em pista WO2019033185A1 (pt)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PE2019002629A PE20200225A1 (es) 2017-08-16 2018-04-18 Sistema de monitoreo de pesaje dinamico y de velocidad de vehiculos en pista
CN201880051914.7A CN111094654B (zh) 2017-08-16 2018-04-18 用于监测道路上的车辆的动态重量和速度的系统
MX2018007532A MX2018007532A (es) 2017-08-16 2018-04-18 Sistema de monitoreo de pesaje dinamico y de velocidad de vehiculos en pista.
EP18732232.6A EP3670750A4 (en) 2017-08-16 2018-04-18 DYNAMIC WEIGHING AND ROAD VEHICLE SPEED MONITORING SYSTEM
CA3008080A CA3008080A1 (en) 2017-08-16 2018-04-18 System for monitoring dynamic weighing and speed of vehicles on lanes
US16/065,984 US10861328B2 (en) 2017-08-16 2018-04-18 System for monitoring dynamic weighing and speed of vehicles on lanes
CR20200017A CR20200017A (es) 2017-08-16 2018-04-18 Sistema de monitoreo de pesaje dinámico y de velocidad de vehículos en pista
CONC2018/0007371A CO2018007371A2 (es) 2017-08-16 2018-07-13 Sistema de monitoreo de pesaje dinámico y de velocidad de vehículos en pista

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102017017613-4A BR102017017613B1 (pt) 2017-08-16 2017-08-16 Sistema de monitoramento de pesagem dinâmica e de velocidade de veículos em pista
BRBR1020170176134 2017-08-16

Publications (1)

Publication Number Publication Date
WO2019033185A1 true WO2019033185A1 (pt) 2019-02-21

Family

ID=65361680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050114 WO2019033185A1 (pt) 2017-08-16 2018-04-18 Sistema de monitoramento de pesagem dinâmica e de velocidade de veículos em pista

Country Status (10)

Country Link
US (1) US10861328B2 (pt)
EP (1) EP3670750A4 (pt)
CN (1) CN111094654B (pt)
BR (1) BR102017017613B1 (pt)
CA (1) CA3008080A1 (pt)
CO (1) CO2018007371A2 (pt)
CR (1) CR20200017A (pt)
MX (1) MX2018007532A (pt)
PE (1) PE20200225A1 (pt)
WO (1) WO2019033185A1 (pt)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487371A (zh) * 2019-09-19 2019-11-22 深圳和通天下科技有限公司 一种动态公路车辆自动衡器
CN113805478A (zh) * 2021-09-15 2021-12-17 深圳市道通智能汽车有限公司 车辆pid参数的调试方法及车辆
EP3992939A1 (en) * 2020-10-27 2022-05-04 Kabushiki Kaisha Toshiba Vehicle information estimation system, vehicle information estimation method, and computer program
WO2022187922A1 (pt) * 2021-03-10 2022-09-15 Velsis Sistemas E Tecnologia Viaria S.A. Sistema de pesagem em movimento para veículos automotores baseado em sensores flexíveis e a fibra ótica

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187291A1 (ja) * 2018-03-29 2019-10-03 日本電気株式会社 情報処理装置、道路分析方法、及びプログラムが格納された非一時的なコンピュータ可読媒体
MX2021006516A (es) * 2018-12-06 2021-10-26 Nec Corp Sistema de monitoreo de carreteras, dispositivo de monitoreo de carreteras, metodo de monitoreo de carreteras y medio no transitorio legible por computadora.
CN110440889B (zh) * 2019-09-04 2023-08-29 广东泓胜科技股份有限公司 一种石英晶体传感器组合的不停车称重检测装置及方法
CN112763045A (zh) * 2019-11-06 2021-05-07 东北大学秦皇岛分校 车辆自载重检测云端标定预测方法
US11619541B2 (en) * 2020-04-14 2023-04-04 Nec Corporation Vehicle speed, direction, and size measurement using temporal distributed fiber optic sensing
CN111854921A (zh) * 2020-07-28 2020-10-30 武汉理工光科股份有限公司 一种分布式光纤减速带振动预警系统及方法
CN111735523B (zh) * 2020-08-27 2020-12-15 湖南大学 基于视频识别的车重检测方法、装置及存储介质
CN112763039B (zh) * 2020-12-30 2023-07-18 北京万集科技股份有限公司 一种动态称重装置及其称重方法
CN112729509B (zh) * 2020-12-30 2023-05-09 北京万集科技股份有限公司 一种动态称重装置以及称重方法
CN112781701A (zh) * 2020-12-30 2021-05-11 北京万集科技股份有限公司 一种对称重信息进行可信度评分的方法及系统
CN112796249A (zh) * 2020-12-30 2021-05-14 北京科技大学 一种分布式光纤应变传感器的封装填埋结构及方法
CN112729508A (zh) * 2020-12-30 2021-04-30 北京万集科技股份有限公司 一种动态称重装置及其称重方法
CN112781700A (zh) * 2020-12-30 2021-05-11 北京万集科技股份有限公司 一种动态称重装置及其称重方法
CN112781551B (zh) * 2020-12-30 2023-03-21 北京万集科技股份有限公司 路面状况监测系统及其监测方法
US20220341729A1 (en) * 2021-04-21 2022-10-27 Saudi Arabian Oil Company Fiber optic sensor network for subsurface impact protection system
CN113295248B (zh) * 2021-04-28 2022-11-29 广州铁路职业技术学院(广州铁路机械学校) 一种基于分布式光纤监测汽车超载的方法
CN113107786B (zh) * 2021-05-24 2022-06-14 河北振创电子科技有限公司 风电塔筒法兰盘安全监测方法、装置和设备
CN113235343A (zh) * 2021-05-31 2021-08-10 江西省宏顺建筑工程有限公司 一种基于装配式修复的建筑称重平台高精度搭建方法
US11823567B2 (en) * 2021-08-04 2023-11-21 Xerox Corporation Traffic monitoring using optical sensors
US11782231B2 (en) 2021-08-04 2023-10-10 Xerox Corporation Installation of optical sensors for use in traffic monitoring
US20230152150A1 (en) * 2021-11-17 2023-05-18 Nec Laboratories America, Inc Road surface conditions detection by distributed optic fiber system
CN114279549A (zh) * 2021-12-23 2022-04-05 广东科达计量科技有限公司 一种安全可靠的防作弊智能称重系统
CN114485878B (zh) * 2022-01-26 2024-04-09 何剑虹 基于动态能谱分析进行车辆动态重量测量方法及其系统
CN114578081A (zh) * 2022-03-04 2022-06-03 安徽省公路桥梁工程有限公司 一种行车测速方法
WO2023188015A1 (en) * 2022-03-29 2023-10-05 Nec Corporation Sensing system, sensing method and computer readable medium
CN115050189B (zh) * 2022-04-26 2024-02-13 清华大学 基于分布式光纤传感的车辆识别与车道定位方法及系统
CN115014475A (zh) * 2022-05-30 2022-09-06 同济大学 一种用于监测车辆轴载信息的光纤传感器及监测结构
CN117705248B (zh) * 2024-02-06 2024-04-26 中大智能科技股份有限公司 一种车载式检测超载联网报警系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2056672A (en) 1979-08-01 1981-03-18 Gec Traffic Automation Optical fibre sensor
US5260520A (en) 1992-04-02 1993-11-09 Martin Marietta Energy Systems, Inc. Apparatus for weighing and identifying characteristics of a moving vehicle
FR2703451A1 (fr) * 1993-04-02 1994-10-07 Alcatel Cable Dispositif de mesure interférométrique en lumière polarisée.
EP0620321A1 (fr) * 1993-04-01 1994-10-19 ETAT FRANCAIS Représenté par le Ministère de l'Equipement, du Logement, des Transports et de l'Espace Procédé de conditionnement d'un detécteur de la circulation routière et detécteur à poser en travers d'une chaussé de route
FR2753530A1 (fr) * 1996-09-18 1998-03-20 Alcatel Contracting Sa Dispositif de mesure interferometrique en lumiere polarisee
US5883585A (en) * 1996-06-27 1999-03-16 Toyota Jidosha Kabushiki Kaisha On-road object detecting system
WO2001027569A1 (en) 1999-10-12 2001-04-19 Future Fibre Technologies Pty Ltd Vehicle weigh-in-motion method and system
US20040080432A1 (en) * 2001-02-15 2004-04-29 Hill David J Road traffic monitoring system
CN200962255Y (zh) 2006-10-16 2007-10-17 天津市金飞博光通讯技术有限公司 新型光纤车辆检测器
US7410764B2 (en) 1996-03-15 2008-08-12 The Penn State Research Foundation Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays
US20110127090A1 (en) * 2009-12-02 2011-06-02 Krishna Vijayaraghavan Weigh-In-Motion (WIM) Sensor
JP2013104701A (ja) * 2011-11-11 2013-05-30 Japan Atomic Energy Agency 光ファイバセンサとこれを用いた測定方法、および光ファイバセンサを備えたコンクリート構造物
RO127980B1 (ro) 2011-04-21 2017-10-30 Institutul Naţional De Cercetare-Dezvoltare Pentru Optoelectronică - Inoe 2000 Dispozitiv pentru determinarea greutăţii autovehiculelor aflate în mişcare

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2058394B (en) * 1979-08-30 1984-01-04 Marconi Co Ltd Pressure sensitive optical fibre cable
FR2637080B1 (fr) 1988-09-27 1990-11-09 Labo Electronique Physique Capteur de pression a fibre optique
JPH04263209A (ja) * 1990-10-15 1992-09-18 W L Gore & Assoc Inc 光ファイバーケーブルおよびその末端処理方法
GB2377027B (en) * 2002-01-18 2003-06-11 Golden River Traffic Ltd Assessing the accuracy of road-side systems
US20070031084A1 (en) 2005-06-20 2007-02-08 Fibera, Inc. Trafic monitoring system
US7668692B2 (en) * 2005-10-11 2010-02-23 Tatom Frank B Method for weighing vehicles crossing a bridge
KR100579008B1 (ko) * 2006-02-13 2006-05-12 한국유지관리 주식회사 빔거동 측정형식의 축중량 측정장치
US20070192010A1 (en) * 2006-02-16 2007-08-16 Carlstrom Kevin R Adaptive deceleration control for commercial truck
WO2008017158A1 (en) 2006-08-09 2008-02-14 Universite Laval Retrofitable pavement strain gauge
NL2004500C2 (nl) 2010-04-01 2011-10-04 Konink Bam Groep Nv Systeem en werkwijze voor het bepalen van aslast en/of totaalgewicht van een voertuig, alsmede sensorinrichting.
CN102322029A (zh) * 2011-07-30 2012-01-18 白士良 防止过载车辆通行的限重秤
US20170023397A1 (en) * 2015-07-22 2017-01-26 Mark Belloni i1-SCALE
US9738125B1 (en) * 2016-05-17 2017-08-22 Horizon Global Americas Inc. Communication device, system, and method for active control of external vehicle components

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2056672A (en) 1979-08-01 1981-03-18 Gec Traffic Automation Optical fibre sensor
US5260520A (en) 1992-04-02 1993-11-09 Martin Marietta Energy Systems, Inc. Apparatus for weighing and identifying characteristics of a moving vehicle
EP0620321A1 (fr) * 1993-04-01 1994-10-19 ETAT FRANCAIS Représenté par le Ministère de l'Equipement, du Logement, des Transports et de l'Espace Procédé de conditionnement d'un detécteur de la circulation routière et detécteur à poser en travers d'une chaussé de route
FR2703451A1 (fr) * 1993-04-02 1994-10-07 Alcatel Cable Dispositif de mesure interférométrique en lumière polarisée.
US7410764B2 (en) 1996-03-15 2008-08-12 The Penn State Research Foundation Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays
US5883585A (en) * 1996-06-27 1999-03-16 Toyota Jidosha Kabushiki Kaisha On-road object detecting system
FR2753530A1 (fr) * 1996-09-18 1998-03-20 Alcatel Contracting Sa Dispositif de mesure interferometrique en lumiere polarisee
WO2001027569A1 (en) 1999-10-12 2001-04-19 Future Fibre Technologies Pty Ltd Vehicle weigh-in-motion method and system
US20040080432A1 (en) * 2001-02-15 2004-04-29 Hill David J Road traffic monitoring system
CN200962255Y (zh) 2006-10-16 2007-10-17 天津市金飞博光通讯技术有限公司 新型光纤车辆检测器
US20110127090A1 (en) * 2009-12-02 2011-06-02 Krishna Vijayaraghavan Weigh-In-Motion (WIM) Sensor
RO127980B1 (ro) 2011-04-21 2017-10-30 Institutul Naţional De Cercetare-Dezvoltare Pentru Optoelectronică - Inoe 2000 Dispozitiv pentru determinarea greutăţii autovehiculelor aflate în mişcare
JP2013104701A (ja) * 2011-11-11 2013-05-30 Japan Atomic Energy Agency 光ファイバセンサとこれを用いた測定方法、および光ファイバセンサを備えたコンクリート構造物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANIEL LEANDRO GONZALEZ: "New multiplexing structures for fiber optic sensors", PHD DISSERTATION, 1 January 2016 (2016-01-01), pages 1 - 2, XP055613614 *
See also references of EP3670750A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487371A (zh) * 2019-09-19 2019-11-22 深圳和通天下科技有限公司 一种动态公路车辆自动衡器
EP3992939A1 (en) * 2020-10-27 2022-05-04 Kabushiki Kaisha Toshiba Vehicle information estimation system, vehicle information estimation method, and computer program
WO2022187922A1 (pt) * 2021-03-10 2022-09-15 Velsis Sistemas E Tecnologia Viaria S.A. Sistema de pesagem em movimento para veículos automotores baseado em sensores flexíveis e a fibra ótica
CN113805478A (zh) * 2021-09-15 2021-12-17 深圳市道通智能汽车有限公司 车辆pid参数的调试方法及车辆
CN113805478B (zh) * 2021-09-15 2024-02-23 深圳市塞防科技有限公司 车辆pid参数的调试方法及车辆

Also Published As

Publication number Publication date
BR102017017613A2 (pt) 2019-03-19
US20190206240A1 (en) 2019-07-04
MX2018007532A (es) 2019-12-09
CA3008080A1 (en) 2019-02-16
CR20200017A (es) 2020-05-02
CO2018007371A2 (es) 2019-04-30
US10861328B2 (en) 2020-12-08
EP3670750A1 (en) 2020-06-24
BR102017017613B1 (pt) 2023-12-26
EP3670750A4 (en) 2021-05-12
CN111094654A (zh) 2020-05-01
PE20200225A1 (es) 2020-01-29
CN111094654B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2019033185A1 (pt) Sistema de monitoramento de pesagem dinâmica e de velocidade de veículos em pista
Gholamzadeh et al. Fiber optic sensors
CN201983767U (zh) 一种桥梁形变检测系统
Bao et al. Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings
CN104390685A (zh) 便携式光纤动态称重系统
CN110476042A (zh) 用于测量车辆和集装箱中的重量和其他物理变量的嵌入式系统
CN107131938A (zh) 一种车辆动态称重系统及其监控方法
CN103063872A (zh) 具有自温补功能的高可靠光纤光栅加速度传感器
CN110006562B (zh) 一种基于模式耦合的分布式光纤传感系统
Zhang et al. Multi-scale load identification system based on distributed optical fiber and local FBG-based vibration sensors
WO2001027569A1 (en) Vehicle weigh-in-motion method and system
Alamandala et al. Cost-effective load measurement system for health monitoring using long-period grating as an edge filter
Mimbela et al. Applications of fiber optics sensors in weigh-in-motion (WIM) systems for monitoring truck weights on pavements and structures.
Liu et al. Optical fiber sensors for landslide monitoring
CN203231735U (zh) 一种基于波长可调谐激光器的高空间分辨率光纤传感系统
Chen et al. Evaluating innovative sensors and techniques for measuring traffic loads
Fahad et al. Pavement Sensing Systems: Literature Review
Al-Tarawneh et al. In-Pavement Fiber Bragg Grating Sensor for Vehicle Counting
Dai et al. Landslide monitoring based on high-resolution distributed fiber optic stress sensor
WO2023004484A1 (pt) Sistema de pesagem em movimento para veículos automotores baseado em sensores rígidos e a fibra ótica
Sravanthi et al. Study of bridge weigh-in-motion using FBG sensors
Ben Salah Fiber optics for Weight-in-Motion (WiM)
Rofianingrum et al. Vehicle Speed Calculation Using Weigh-in-Motion Sensor Based on Fiber Optic
US20230039117A1 (en) Traffic monitoring using optical sensors
Meller et al. Optical fiber sensors for vehicle detection

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3008080

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18732232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018732232

Country of ref document: EP

Effective date: 20200316