WO2019031574A1 - D型アミノ酸脱水素酵素 - Google Patents

D型アミノ酸脱水素酵素 Download PDF

Info

Publication number
WO2019031574A1
WO2019031574A1 PCT/JP2018/029889 JP2018029889W WO2019031574A1 WO 2019031574 A1 WO2019031574 A1 WO 2019031574A1 JP 2018029889 W JP2018029889 W JP 2018029889W WO 2019031574 A1 WO2019031574 A1 WO 2019031574A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
enzyme
seq
activity
acid sequence
Prior art date
Application number
PCT/JP2018/029889
Other languages
English (en)
French (fr)
Inventor
紘長 秋田
優介 中道
真宏 渡邊
昭則 松鹿
友岳 森田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to EP18844724.7A priority Critical patent/EP3666894B8/en
Priority to JP2019535714A priority patent/JP6675519B2/ja
Priority to CN201880050244.7A priority patent/CN111051508A/zh
Priority to US16/637,444 priority patent/US11098288B2/en
Publication of WO2019031574A1 publication Critical patent/WO2019031574A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/99Oxidoreductases acting on the CH-NH2 group of donors (1.4) with other acceptors (1.4.99)
    • C12Y104/99001D-Amino-acid dehydrogenase (1.4.99.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)

Definitions

  • Protein which is one of the important components in the living body, is mainly composed of 20 kinds of ⁇ -amino acids. Among them, since 19 types except glycine have asymmetric carbon, there are 2 types of optical isomers of D-type amino acid and L-type amino acid. Most of the amino acids that make up proteins are known to be L-type amino acids, but with the recent development of analytical techniques, they can be used in cells of higher organisms such as mammals including humans, aquatic animals, and plants. It has been revealed that the type amino acids are also present in trace amounts.
  • D-type amino acids have broad industrial uses as raw materials for producing pharmaceuticals such as ovulation inducers, anticoagulants and analgesics, and as intermediates for industrial products such as insecticides, antibiotics and cosmetics. There is. Therefore, there is a need for an efficient method for producing D-amino acids.
  • Item 1 An enzyme having the following features (a) and (b): (A) A hexamer of a polypeptide having an amino acid sequence having 80% or more identity with the amino acid sequence of (b) SEQ ID NO: 2 having the activity of reversibly dehydrogenating the D-amino acid.
  • Item 2 The enzyme according to Item 1, which has an activity of synthesizing D-aspartic acid from 2-oxobutanedioic acid.
  • Item 3 The enzyme according to Item 1 or 2, further having the following feature (c): (C) Both NADH and NADPH are available as coenzymes.
  • Item 5 The enzyme according to any one of Items 1 to 4, which further has the following feature (e): (E) The optimum pH when using meso -diaminopimelic acid as a substrate is 10.5.
  • Item 6 The enzyme according to item 1, further having the following feature (f): (F) The optimum activity temperature when using meso -diaminopimelic acid as a substrate is 55 ° C. Item 7.
  • Item 1 In an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 2, it has one or more amino acid substitutions selected from the group consisting of Asp94Ser, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn, Item 1 Or the enzyme as described in 2.
  • Item 8. A polynucleotide encoding an enzyme according to any one of Items 1 to 7.
  • Item 9. A vector into which the polynucleotide according to item 8 is incorporated.
  • Item 10. Item 10.
  • a transformant comprising the vector according to item 9.
  • Item 10. A method for producing an enzyme according to any one of Items 1 to 7, which comprises culturing the transformant according to Item 10.
  • Item 8. A method for producing a D-amino acid by causing an enzyme according to any one of items 1 to 7 to act on 2-oxo acid.
  • T The base sequence of the DNA which codes the D-form amino acid dehydrogenase from lipolytica is shown.
  • the underline is a restriction enzyme recognition site for cloning, and bold is a stop codon.
  • T. Fig. 7 shows the amino acid sequence of D-type amino acid dehydrogenase from L. lipolytica . The result of having provided the crude enzyme liquid, the heat processing enzyme liquid, and the active fraction and molecular weight marker obtained after various chromatography to SDS-PAGE is shown.
  • Lane 1 is molecular weight marker
  • lane 2 is crude enzyme solution
  • lane 3 crude enzyme solution after heat treatment
  • lane 4 Ni + -Chelating Sepharose TM Fast Flow chromatography after active fraction
  • lane 5 is Superdex200 gel filtration chromatography after activation The results of the fractions are shown.
  • the results of subjecting the purified enzyme to protein staining and activity staining are shown.
  • Lane 1 shows the result of protein staining
  • lane 2 shows the result of activity staining when NAD + is used as a coenzyme
  • lane 3 shows the result of activity staining when NADP + is used.
  • the result of having measured the pH dependence of the deamination reaction of the enzyme meso- diaminopimelic acid is shown.
  • the relative activity at each pH was calculated with the specific activity in glycine buffer (pH 10.5) as 100%.
  • the horizontal axis is the measured pH (pH), and the vertical axis is the relative activity (%). Indicates a glycine buffer, and ⁇ indicates a carbonate buffer.
  • the result of having measured the temperature dependence of the deamination reaction of the enzyme meso- diaminopimelic acid is shown.
  • the horizontal axis is the measurement temperature (° C.), and the vertical axis is the relative activity (%).
  • the result of having measured the thermostability of the enzyme is shown.
  • the horizontal axis is the heat treatment temperature (° C.), and the vertical axis is the relative activity (%).
  • the result of having measured pH stability of an enzyme is shown.
  • the horizontal axis is the measurement temperature (pH), and the vertical axis is the relative activity (%).
  • Indicates a phosphate buffer ⁇ indicates a formate buffer, ⁇ indicates an acetate buffer, ⁇ indicates a citrate buffer, ⁇ indicates a phosphate buffer, ⁇ indicates a borate buffer, and ⁇ indicates a carbonate buffer.
  • T. 1 shows crystals of D-amino acid dehydrogenase from L. lipolytica .
  • T. 3 shows the three-dimensional structure of D-type amino acid dehydrogenase from L. lipolytica .
  • T. The alignment of the amino acid sequence of D-type amino acid dehydrogenase from L.
  • lipolytica with the amino acid sequences of other four meso -diaminopimelate dehydrogenases is shown.
  • the other four meso -diaminopimelic acid dehydrogenases are those derived from Bacillus sphaericus (SEQ ID NO: 3), those derived from Corynebacterium glutamicum (SEQ ID NO: 4), those derived from Symbiobacterium thermophilum (SEQ ID NO: 5), and Ureibacillus It is from thermosphaericus (SEQ ID NO: 6).
  • T The base sequence of the DNA which codes the amino acid sequence which substituted six amino acid residues of D-form amino acid dehydrogenase from L. lipolytica is shown.
  • the box is the site of mutation and bold is the stop codon.
  • T The amino acid sequence which substituted six amino acid residues of D-form amino acid dehydrogenase from L. lipolytica is shown. Squares are mutation sites.
  • T The base sequence of the DNA which codes the amino acid sequence which substituted five amino acid residues of D-form amino acid dehydrogenase from L. lipolytica is shown.
  • the box is the site of mutation and bold is the stop codon.
  • T The amino acid sequence which substituted five amino acid residues of D-form amino acid dehydrogenase from lipolytica is shown. Squares are mutation sites.
  • the results of subjecting purified D-type amino acid dehydrogenase to protein staining and activity staining are shown. Lane 1 shows the result of protein staining, lane 2 shows the result of activity staining when D-alanine is used as the substrate, and lane 3 shows the result of activity staining when L-alanine is used as the substrate.
  • the enzyme preferably has an activity of reversibly dehydrogenating the D-type amino acid.
  • D-amino acid is also referred to as "D-amino acid” or "D amino acid".
  • the D-amino acid is an optical isomer of an amino acid having an asymmetric carbon.
  • D-type amino acids also include meso- type amino acids having both L-type and D-type structures in the molecule (eg, meso -diaminopimelic acid).
  • the D-amino acid is meso- diaminopimelic acid
  • a reaction to convert meso -diaminopimelic acid to L-2-amino-6-oxopimelic acid, and L-2-amino-6-oxopimelic acid as meso- diaminopimelic acid Catalyzes both reactions that convert to Such an enzyme can also be referred to as " meso- diaminopimelate dehydrogenase”.
  • the enzyme preferably has an activity of catalyzing the conversion of at least oxo acid to D-amino acid. That is, in one embodiment, the enzyme need not necessarily have the activity of converting D-amino acids to oxo acids.
  • the enzyme has an amino acid sequence of SEQ ID NO: 2 or an identity of 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90%, 91% or more, 92% or more, It is preferable to have an amino acid sequence that is 93%, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or more.
  • SEQ ID NO: 2 is the amino acid sequence of D-type amino acid dehydrogenase from Thermosyntropha lipolytica .
  • Amino acid identity can be calculated using commercially available or through analysis tools available through the Internet (eg, software such as FASTA, BLAST, PSI-BLAST, SSEARCH, etc.). For example, in Advanced BLAST 2.1, use blastp for the program, set all Expect values to 10, set Filter all to OFF, use BLOSUM 62 for Matrix, and use Gap existence cost, Per residuegap cost, and Lambdaratio of 11, 1, 0, respectively. The value (%) of the identity of the amino acid sequence can be calculated by performing search with setting various other parameters as default values to 85 (default value).
  • the enzyme is 5th to 17th, 19th, 23rd, 27th to 35th, 37th, 51st, 54th, 56th, 58th, 63rd, 64th in the amino acid sequence of SEQ ID NO: 2 , 67th to 69th, 72th, 74th, 83rd, 89th to 94th, 96th, 99th, 106th, 107th, 109th, 110th, 114th, 116th to 126th, 129 Th, 130th, 132th, 138th, 145th, 146th, 149th, 149th, 151st to 153th, 155th to 157th, 159th, 161st, 163rd, 165th to 171st, 173 to 175, 181, 183, 186, 187, 190, 192 to 194, 19 And 200th, 202th, 206th, 208th, 209th, 212th, 213th, 215th, 218th,
  • one or more amino acid residues means, for example, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 or more, 20 or more, 25 30 or more, 35 or more, 40 or more, 45 or more, 55 or more, 60 or more, 65 or more, 70 or more, 75 or more, 80 or more, 85 or more, 90 or more, 95 or more, 100 or more, 105 or more It is preferable that they are 110 or more, 115 or more, 120 or more, 125 or more, 130 or more, 135 or more, 140 or more, 145 or more, or 150.
  • the enzyme is the sixth, the tenth to the fourteenth, the sixteenth, the seventeenth, the twenty-seventh, the thirty-first, the thirty-first, the fifty-first, the fifty-fourth, the sixty-eight, the sixty-nine in the amino acid sequence of SEQ ID NO: 2 Th, 89th, 91st, 94th, 96th, 110th, 120th, 122th to 126th, 129th, 132nd, 146th, 149th, 151st, 153th, 155th to 157th, 159th, 161st, 165th, 166th, 169th, 173rd, 175th, 181th, 183rd, 187th, 194th, 199th, 204th, 206th, 215th , 229th, 230th, 237th, 255th, 256th, 259th, 265th, 268th, 69 th, 276 th, it preferably has one
  • one or more amino acid residues is one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, ten or more, fifteen or more, twenty or more. 30 or more, 35 or more, 40 or more, 45 or more, 50 or more, 55 or more, 60 or more, or 63 amino acid residues. In one embodiment, it is preferred to have more amino acid residues of said particular amino acid residue.
  • the enzyme further comprises the fifth, the seventh, the ninth, the fifteenth, the twenty-third, the thirty-third, the thirty-fourth, the thirty-seventh, the seventy-seventh, the seventy-seventh, the seventy-second, the seventy-fourth in the amino acid sequence of 83rd, 90th, 92nd, 93rd, 99th, 106th, 107th, 117th to 119th, 130th, 138th, 145th, 148th, 152th, 160th, 161st, 163rd , 167th, 170th, 174th, 186th, 190th, 198th, 202nd, 208th, 212th, 218th, 227th, 233rd, 244th, 245th, 249th, 251 Th, 253rd, 254th, 258th, 260th, 264th, 270th, 272nd, 280th 83 th,
  • amino acid residues means one or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 or more, 20 or more, 25
  • the amino acid residue may be 30 or more, 35 or more, 40 or more, 45 or more, 50 or more, 55 or more, or 58 amino acids. In one embodiment, it is preferred to have more amino acid residues of said particular amino acid residue.
  • the enzyme is further encoded by the eighth, nineteenth, thirty-second, thirty-third, forty-fifth, fifty-sixth, fifty-fourth, ninety-fourth, nineteenth, 114th, 116th amino acids of the amino acid sequence of Th, 121st, 168th, 171st, 192nd, 197th, 200th, 209th, 213th, 218th, 226th, 236th, 240th, 247th, 252nd, 261st, 274th, It is preferable to have one or more amino acid residues selected from the group consisting of 277th, 292nd and 299th.
  • one or more amino acid residues is one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, ten or more, fifteen or more, twenty or more. Or 29 amino acid residues.
  • the enzyme may have one or more of the substitutions of the amino acid residues in Table 1 below in the amino acid sequence of SEQ ID NO: 2.
  • “one or more” means one or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more 35 or more, 45 or more, 50 or more, 55 or more, 65 or more, 65 or more, 70 or more, 75 or more, 80 or more, or 85.
  • position means the position of the amino acid residue in SEQ ID NO: 2.
  • substituted amino acid residue refers to a type of amino acid residue capable of replacing an amino acid residue at a specific position of SEQ ID NO: 2.
  • types of amino acid residues are indicated by single letter alphabetic notation.
  • substitution of amino acid residues is preferably conservative amino acid substitution.
  • Constant amino acid substitution refers to substitution of an amino acid residue for an amino acid residue having a side chain with similar properties.
  • the amino acid residue is a basic side chain (eg, lysine, arginine, histidine), an acidic side chain (eg, aspartic acid, glutamic acid), an uncharged polar side chain (eg, glycine, asparagine, glutamine, serine) depending on its side chain.
  • Threonine, Tyrosine, Cysteine Nonpolar Side Chain (eg, Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Methionine, Tryptophan), Beta Branched Side Chain (eg, Threonine, Valine, Isoleucine), Aromatic Side Chain (eg For example, it is classified into several families, such as tyrosine, phenylalanine, tryptophan, histidine). Thus, substitution between amino acid residues within the same family is preferred.
  • the enzyme is one or more amino acid residues selected from the group consisting of Asp94, Met154, Val158, Thr173, Arg183, and His229 in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith Is preferably substituted with another amino acid residue.
  • the enzyme is one or more amino acid residues selected from the group consisting of Asp94Ser, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith It is preferred to have a substitution of Here, "Met154Leu" means that the methionine residue at position 154 is substituted with a leucine residue.
  • substitutions may be preferably two or more, three or more, four or more, five or more, or six.
  • substitutions of Thr173Ile, Arg183Met, and / or His229Asn it becomes possible to produce corresponding oxo acids and D-amino acids by using a wider variety of D-amino acids and 2-oxo acids as substrates.
  • the enzyme coenzymes NADPH as compared to that before mutation.
  • reaction to convert 2-oxo-4-methylpentanoic acid to D-leucine acid convert 2-oxo-3-methylpentanoic acid to D-isoleucine
  • a reaction a reaction of converting 2-oxo-4- (methylthio) butanoic acid to D-methionine, a reaction of converting 2-oxo-3-phenylpropanoic acid to D-phenylalanine, and a reaction of 2-oxooctanoic acid Reaction to convert to 2-aminooctanoic acid.
  • an enzyme having a substitution of Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith is D-leucine, D-isoleucine, D-methionine, D- Suitable for the production of phenylalanine and D-2-aminooctanoic acid.
  • the enzyme having no mutation such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn has a relatively high activity catalyzing the next reaction :
  • a reaction to convert 2-oxopropanoic acid to D-alanine a reaction to convert 2-oxo-3-methylbutanoic acid to D-valine
  • a reaction to convert 2-oxobutanedioic acid to D-aspartic acid 2-oxoglutaric acid Reaction to convert acid to D-glutamic acid and reaction to convert 2-oxobutanoic acid to D-2-aminobutyric acid. Therefore, enzymes without the above-mentioned specific mutations (substitutions) are suitable for the production of D-alanine, D-valine, D-aspartic acid, D-glutamic acid and D-2-aminobutyric acid.
  • the enzyme preferably has one or more amino acid residues selected from the group consisting of Asp94, Asp124, Met154, Gly155, Thr173, Arg183, and His229 in the amino acid sequence of SEQ ID NO: 2.
  • the "one or more” may be preferably two or more, three or more, four or more, five or more, six or more or seven. By having (maintaining) one or more of these amino acid residues, it is considered that the characteristics relating to k cat (min ⁇ 1 ) and the like described later are suitably satisfied.
  • the enzyme is preferably a hexamer.
  • hexamer means that six polypeptides (monomers) form one integrated structure when the enzyme is in an active form (in an active state).
  • the hexamer may be either homohexamer or heterohexamer, but is preferably homohexamer.
  • the enzyme preferably has the activity of producing D-aspartic acid from 2-oxobutanedioic acid.
  • Such an enzyme may or may not have a mutation such as Asp94Ser, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith. It is good.
  • the enzyme in view of more efficiently producing D-aspartic acid, preferably does not have the mutation.
  • the enzyme preferably has the activity of producing D-glutamic acid from 2-oxoglutaric acid.
  • Such an enzyme preferably has no mutation such as Asp94Ser, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith.
  • the enzyme is preferably capable of utilizing either NADH or NADPH as a coenzyme for catalyzing the reaction of reversibly dehydrogenating the D-type amino acid.
  • NADH is generally cheaper to obtain than NADPH. Therefore, the availability of NADH as a coenzyme is significant in reducing the production cost of D-type amino acids and the like using enzymes.
  • the enzyme preferably has k cat (min ⁇ 1 ) of 1.0 ⁇ 10 3 or more when meso -diaminopimelic acid is used as a substrate.
  • the k cat (min ⁇ 1 ) is preferably 2.0 ⁇ 10 3 or more, 3.0 ⁇ 10 3 or more, 4.0 ⁇ 10 3 or more, or 4.4 ⁇ 10 3 or more.
  • k cat is a parameter indicating how many substrates can be catalyzed per unit time.
  • the enzyme preferably has a K m value of 6.0 mM or less, or 5.7 mM or less when using meso -diaminopimelic acid as a substrate.
  • the K m value is a parameter indicating the affinity between the enzyme and the substrate, and the lower the value, the higher the affinity, and the desired reaction can be efficiently advanced with a small amount of enzyme.
  • the enzyme preferably has meso -diaminopimelic acid as a substrate and NAD + as a coenzyme, and preferably has a K m value of 30 mM or less, 20 mM or less, or 15 mM or less for NAD + .
  • K m value the amount of NAD + required for producing D-amino acid or oxo acid using enzymes can be reduced.
  • K m value By satisfying such a K m value, the amount of NADP + required for producing D-amino acid or oxo acid using enzymes can be reduced.
  • the enzyme preferably has an optimum pH of 10.5 when using meso -diaminopimelic acid as a substrate. As shown in FIG. 5, the optimum activity pH is 10.5 when the pH is 10.5 as compared to when the pH is 9.5 to 10.0 and the pH is 11.0 to 11.5. Means high enzyme activity.
  • the enzyme preferably has an optimum activity temperature of 55 ° C. when using meso -diaminopimelic acid as a substrate.
  • the optimum activity temperature of 55 ° C. means that the enzyme activity at 55 ° C. is higher than that at 40 ° C. to 50 ° C. and 60 ° C., as shown in FIG.
  • the enzyme preferably has a molecular weight of about 36 kDa as measured by SDS-PAGE of its polypeptide moiety (monomer).
  • the term "about 36 kDa” is meant to include a range that a person skilled in the art usually determines that there is a band at the 36 kDa position when molecular weight is measured by SDS-PAGE.
  • polypeptide moiety is meant a polypeptide substantially free of carbohydrate chains.
  • the enzyme is preferably excellent in thermostability.
  • the enzyme preferably has an activity of 95% or more after holding at 65 ° C. for 30 minutes as compared to the activity after holding at 50 ° C. for 30 minutes ( meso -diaminopimelic acid is used as a substrate) .
  • the enzyme is preferably excellent in pH stability.
  • the enzyme has 90% or more of the remaining activity after holding for 30 minutes in a pH 5.5-9.5 buffer compared to the remaining activity after holding for 30 minutes in a pH 9.0 buffer Is preferred.
  • the origin of the enzyme is not particularly limited.
  • the enzyme is a microorganism belonging to the Thermosyntropha genus (e.g., Thermosyntropha lipolytica) are preferably derived from.
  • the enzyme may be in a crystalline state.
  • the enzyme in the crystalline state can be obtained, for example, according to the examples described below.
  • the enzyme in crystalline form is useful for purification at high purity, high density, stable storage with strong protease resistance, and utilization for immobilization.
  • the above-mentioned enzymes can be obtained in any manner.
  • a gene encoding a protein having the amino acid sequence shown in SEQ ID NO: 2 is used as it is (or after mutation of amino acid residues) to transform a host cell, and a protein having the above activity from its culture Can be obtained by collecting Enzymes can also be obtained by chemical synthesis of the polypeptides that constitute them.
  • the structure of the polynucleotide encoding the above-mentioned enzyme is not particularly limited.
  • the polynucleotide has 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more of identity with the base sequence of SEQ ID NO: 1 It is preferable to have a base sequence that is 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, and 99% or more.
  • the homology of the base sequence can be calculated using a commercially available or analysis tool (eg, BLAST etc.) available through a telecommunication link (Internet).
  • BLAST a commercially available or analysis tool
  • Internet a telecommunication link
  • the polynucleotide may be any of DNA, RNA, or DNA-RNA hybrid.
  • the polynucleotide is preferably isolated.
  • the polynucleotide is DNA, it may be cDNA.
  • a polynucleotide can be obtained by any method.
  • it can be produced and obtained by a chemical synthesis method (for example, a solid phase synthesis method by a phosphoramidite method) based on the information of SEQ ID NO: 1.
  • a chemical synthesis method for example, a solid phase synthesis method by a phosphoramidite method
  • they can be easily prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques and the like.
  • the vector preferably incorporates a polynucleotide encoding the above enzyme.
  • the type of vector is not particularly limited, and can be appropriately selected depending on the type of host cell.
  • plasmid vector, cosmid vector, phage vector, virus vector (adenovirus vector, adeno-associated virus vector, retrovirus vector, herpes virus vector etc.) and the like can be mentioned.
  • the configuration of the vector is not limited as long as the polynucleotide can be expressed in the host.
  • the vector preferably contains other base sequences necessary for expression of the polynucleotide.
  • Other base sequences include, for example, a promoter sequence, a leader sequence, a signal sequence, an enhancer sequence, and a ribosome binding sequence.
  • the transformant contains a polynucleotide encoding the above-mentioned enzyme.
  • Such transformants can be obtained by introducing a vector containing the aforementioned polynucleotide into a host.
  • the host cell is not particularly limited as long as it can express the polynucleotide and produce the enzyme. Specific examples thereof include prokaryotic cells such as E. coli and Bacillus subtilis, and eukaryotic cells such as yeast, mold, insect cells, and mammalian cells. Transformation of a host using a vector can be performed according to a conventional method (for example, calcium chloride method, electroporation method, microinjection method, liposome infection method).
  • the above enzymes can be obtained by culturing the above transformants.
  • the culture conditions can be appropriately set according to the type of host and the like. After culture, the enzyme can be recovered from the culture solution or cells.
  • the culture supernatant concentration with an ultrafiltration membrane, salting-out dialysis such as ammonium sulfate precipitation
  • An enzyme can be obtained by performing isolation and purification by appropriately combining various chromatography and the like. In this way, the above-mentioned enzymes can be mass-produced at low cost.
  • the enzyme is excellent in thermostability. Therefore, it is useful and convenient to combine heat treatment in the isolation and purification steps. Host cells and culture supernatants obtained from the culture contain various proteins derived from the host cells. However, heat treatment causes host proteins to denature and condense and precipitate. On the other hand, since the enzyme having excellent heat stability does not cause denaturation, it can be easily separated from the host-derived contaminating protein by centrifugation or the like.
  • the conditions of the heat treatment are not particularly limited, but may be, for example, treatment at about 50 to 65 ° C. for 10 to 30 minutes. By heat-treating the culture solution as it is or the crude extract, other proteins are inactivated, and the target enzyme can be efficiently obtained.
  • D-amino acids can be synthesized by utilizing the above-mentioned enzymes.
  • the synthesis of D-amino acids can be carried out, for example, by amination of the substrate 2-oxoacid.
  • the enzyme can be reacted with a substrate 2-oxo acid to recover D-amino acid generated by the catalytic reaction of the enzyme.
  • Recovery of D-amino acid can be performed by any method (for example, a method using an ion exchange resin).
  • 2-oxo acids can be produced from D-amino acids using the enzymes described above.
  • D-alanine can be obtained by reacting 2-oxopropanoic acid with the above-mentioned enzyme.
  • an enzyme having no mutation such as Asp94Ser, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith It is preferred to use.
  • D-valine can be obtained by reacting 2-oxo-3-methylbutanoic acid with the above-mentioned enzyme.
  • an enzyme having no substitution such as Asp94Ser, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith It is preferred to use.
  • D-leucine can be obtained by reacting 2-oxo-4-methylpentanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto, and in one embodiment, the substitution of Asp94Ser It is preferable not to have.
  • D-isoleucine can be obtained by reacting 2-oxo-3-methylpentanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto, and in one embodiment, the substitution of Asp94Ser It is preferable not to have.
  • D-methionine can be obtained by reacting 2-oxo-4- (methylthio) butanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto, and in one embodiment, the substitution of Asp94Ser It is preferable not to have.
  • D-phenylalanine can be obtained by reacting 2-oxo-3-phenylpropanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto, and in one embodiment, the substitution of Asp94Ser It is preferable not to have.
  • D-aspartic acid can be obtained by reacting 2-oxobutanedioic acid with the above-mentioned enzyme.
  • the above-mentioned enzyme for the production of D-aspartic acid, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn (or even substitution of Asp94Ser) in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith It is preferred to use an enzyme which does not have a substitution.
  • D-glutamic acid can be obtained by reacting 2-oxoglutaric acid with the above-mentioned enzyme.
  • substitution of Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn (or further substitution of Asp94Ser) in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto It is preferred to use an enzyme that does not have
  • D-2-aminobutyric acid can be obtained by reacting 2-oxobutanoic acid with the above-mentioned enzyme.
  • the production of D-2-aminobutyric acid comprises substitution of Asp 94 Ser, Met 154 Leu, Val 158 Gly, Thr 173 Ile, Arg 183 Met, and His 229 Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto. It is preferred to use no enzyme.
  • D-2-aminooctanoic acid can be obtained by reacting 2-oxooctanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith It is preferred to use.
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto, and in one embodiment, the substitution of Asp94Ser It is preferable not to have.
  • D-2-aminoheptanoic acid can be obtained by reacting 2-oxoheptanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity therewith It is preferred to use.
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-norleucine can be obtained by reacting 2-oxohexanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-norvaline can be obtained by reacting 2-oxopentanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto for producing D-norvaline .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-serine can be obtained by reacting 2-oxo-3-hydroxypropionic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-threonine can be obtained by reacting 2-3-hydroxybutanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-cysteine can be obtained by reacting 2-oxo-3-sulfanylpropanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-asparagine can be obtained by reacting 2-oxo-3-carbamoylpropanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-glutamine can be obtained by reacting 2-oxo-4-carbamoylbutanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-Tryptophan can be obtained by reacting 2-oxo-3- (1H-indol-3-yl) propanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-lysine can be obtained by reacting 2-oxo-6-aminocaproic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-arginine can be obtained by reacting 2-oxo-5-guanidinopentanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-tyrosine can be obtained by reacting 2-oxo-3- (4-hydroxyphenyl) propanoic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-histidine can be obtained by reacting 2-oxo-3- (4-imidazolyl) propionic acid with the above-mentioned enzyme.
  • an enzyme having a substitution such as Met154Leu, Val158Gly, Thr173Ile, Arg183Met, and His229Asn in an amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto .
  • the enzyme may or may not have a substitution of Asp94Ser in the amino acid sequence having SEQ ID NO: 2 or 80% or more identity thereto.
  • D-type amino acid dehydrogenase gene can be obtained using a known gene cloning technology.
  • a gene can be synthesized and obtained based on sequence information that can be obtained by searching a known database such as GenBank.
  • a DNA encoding D-type amino acid dehydrogenase from lipolytica was obtained. This was digested with restriction enzymes Nde I and Xho I, separated by agarose gel electrophoresis, and extracted and purified from the gel. The DNA fragment after restriction enzyme treatment is incorporated into the restriction enzyme site ( Nde I and Xho I) of pET-16a (Novagen), a plasmid for protein expression, by ligation to retain the gene for D-type amino acid dehydrogenase An expression vector was constructed.
  • the expression vector has T.7 promoter, downstream of liposome binding site, and T.7 upstream of T7 terminator . It was constructed to incorporate the D-type amino acid dehydrogenase gene from lipolytica .
  • the base sequence (SEQ ID NO: 1) of this D-type amino acid dehydrogenase gene is shown in FIG.
  • the amino acid sequence (SEQ ID NO: 2) encoded by the nucleotide sequence of SEQ ID NO: 1 is shown in FIG.
  • the expression vector contains a histidine-tag.
  • the C-terminal histidine-tag except for the stop codon (using TAA in this example) of the D-type amino acid dehydrogenase gene Can also be granted.
  • Example 2 Synthesis of D-type Amino Acid Dehydrogenase E. using the expression vector obtained in Example 1 above .
  • the cells in the culture solution were collected by centrifugation, and the cells were suspended in 50 mM phosphate buffer (pH 7.2) and sonicated under ice cooling. After ultrasonication, it was centrifuged and the obtained supernatant was used as a crude enzyme solution.
  • the crude enzyme solution was heat-treated at 50 ° C. 30 min, the processing enzyme solution, Ni + -Chelating Sepharose TM Fast Flow ( manufactured by GE Healthcare Japan) chromatography, Superdex200 gel filtration chromatography (GE Healthcare Japan ) And purified.
  • the amount of protein of the obtained D-type amino acid dehydrogenase was measured by the Bradford method.
  • FIG. 3 shows the results of SDS-PAGE of the crude enzyme solution, the heat-treated enzyme solution, and the active fractions and molecular weight markers obtained after various chromatography. From lane 5 of FIG. 1, a single band of protein could be confirmed at the position of 36 kDa, and good purification results could be obtained.
  • Example 3 Confirmation of coenzyme dependency of D-type amino acid dehydrogenase
  • the coenzyme dependency of the D-amino acid dehydrogenase obtained in Example 2 was evaluated.
  • the coenzyme dependency of the enzyme was evaluated by the activity staining method attributable to the catalytic reaction of the enzyme.
  • the appropriate amount of enzyme solution was subjected to disc gel electrophoresis.
  • the gel after electrophoresis was subjected to 200 mM phosphate species buffer (pH 8.0), 10 mM meso -diaminopimelic acid, 0.1 mM 2- (4-iodophenyl) -3- (4-nitrophenyl) -5-phenyl -2 H -Tetrazolium Chloride (INT) (manufactured by Dojin Chemical Co., Ltd.), 0.04 mM 1-methoxy-5-methylphenazinium methyl sulfate (PMS) (manufactured by Dojin Chemical Co., Ltd.) and 1.25 mM of various supplements It was immersed in a reaction solution containing an enzyme and incubated at 50 ° C.
  • FIG. 4 shows the results of subjecting the purified enzyme to protein staining and activity staining. From each lane in FIG. 4, a single band attributed to the enzyme was confirmed. Also, from lanes 2 and 3, it was confirmed that this enzyme utilizes both NAD + and NADP + coenzymes.
  • Example 4 Confirmation of the optimum pH in the catalytic reaction of D-type amino acid dehydrogenase
  • the optimum pH of the D-amino acid dehydrogenase obtained in Example 2 was evaluated.
  • the activity of the enzyme was determined by quantifying NADPH generated by the catalytic reaction of the enzyme by measuring the increase in absorbance at a wavelength of 340 nm, and using this as an index to determine the enzyme activity.
  • reaction solution was prepared by mixing an appropriate amount of the enzyme solution in 200 mM various buffers containing 10 mM meso -diaminopimelic acid, 1.25 mM NADP + . Subsequently, the activity was measured by measuring the increase in absorbance at 340 nm associated with the change from NADP + to NADPH in this reaction solution at a reaction temperature of 50 ° C.
  • the absorbance was measured by an ultraviolet-visible spectrophotometer UV-1800 (manufactured by SHIMADZU).
  • the specific activity of the enzyme was calculated from the amount of protein of the enzyme used and the dilution rate of the enzyme using the obtained absorbance change and the following equation.
  • ⁇ A340 Absorbance change per minute at 340 nm
  • D Enzyme dilution rate 6.22: Molecule molecular absorptivity of NADPH at 340 nm (L ⁇ mmol -1 ⁇ cm -1 )
  • C Protein concentration (mg / mL)
  • d Optical path length (1 cm)
  • Example 5 Confirmation of Optimal Temperature in Catalytic Reaction of D-A Amino Acid Dehydrogenase Similar to Example 4 except that 1.25 mM NADP + was added to the reaction solution heated to a predetermined temperature (50, 55, 60, 65, 70, 75, or 80 ° C.) and the increase in absorbance was immediately measured. The absorbance was measured and the relative activity was calculated. The measurement results are shown in FIG. From this result, it was confirmed that the optimum activity temperature is about 55 ° C.
  • Example 6 Confirmation of the Thermal Stability of D-Type Amino Acid Dehydrogenase
  • the D-form amino acid dehydrogenase purified in Example 2 is treated in 10 mM phosphate buffer (pH 7.2) for 30 minutes under various temperature conditions (50, 55, 60, 65, or 70 ° C.) After heat treatment, the remaining activity after standing for 5 minutes in ice was confirmed.
  • the enzyme activity was evaluated by the method described in Example 4 by the increase in absorbance at 340 nm due to the formation of NADPH when meso -diaminopimelic acid was used as a substrate.
  • the residual activity after treatment at other temperatures was calculated as the relative activity, assuming that the activity in the treatment at 50 ° C. was 100%.
  • Example 7 Confirmation of pH Stability of D-type Amino Acid Dehydrogenase
  • the D-form amino acid dehydrogenase purified in Example 2 was treated with 100 mM of each buffer (pH 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.
  • Heat treatment was carried out at 50 ° C. for 30 minutes in 0 or 11.3), and residual activity after standing for 5 minutes in ice was confirmed.
  • the enzyme activity was evaluated by the method described in Example 4 by the increase in absorbance at 340 nm due to the formation of NADPH when meso -diaminopimelic acid was used as a substrate.
  • the activity in the treatment at pH 9.0 was taken as 100%, and the residual activity after treatment at other pHs was calculated as the relative activity.
  • D-amino acid dehydrogenase retained about 90% or more of residual activity after treatment at pH 5.0 to 9.5.
  • Example 8 Kinetic analysis of D-type amino acid dehydrogenase
  • the activity was measured using meso -diaminopimelic acid as a substrate and NADP + or NAD + as a coenzyme, and kinetic analysis was performed.
  • the kinetic parameters, turnover number (k cat ), Michaeli constant (K m ) value and catalytic efficiency (k cat / K m ), are described in Igor Pro ver.
  • the initial rate of catalysis of D-amino acid dehydrogenase at different substrate and coenzyme concentrations was determined from the plot of generated NAD (P) H against time, using 3.14 (manufactured by WaveMetrics) and ⁇ It was decided based on the Menten equation.
  • the enzyme activity was evaluated by the method described in Example 4 by the increase in absorbance at 340 nm due to the formation of NAD (P) H when meso -diaminopimelic acid was used as a substrate.
  • Table 2 shows the results of kinetic analysis of the purified enzyme. As shown in Table 2, it was shown that the catalytic efficiency of D-type amino acid dehydrogenase is higher when NADP + is used as a coenzyme than NAD + .
  • the k cat , K m and k cat / K m for meso -diaminopimelic acid were determined using NADP + as a coenzyme.
  • Example 9 Crystallization of D-type Amino Acid Dehydrogenase Equal amounts of purified D-type amino acid dehydrogenase (concentration 10.64 mg / mL) solution and crystallization solution consisting of 0.2 M potassium chloride, 20% w / v polyethylene glycerol 3, 350 (each 0. 5 ⁇ L) were mixed. A 96-well plate (Hampton Research) was used, and 50 ⁇ L of the above crystallization solution was used as a mother liquor, and allowed to stand at 20 ° C. using vapor diffusion in a sitting drop method. Crystals precipitated after 1 day, and grew into crystals of measurable size (about 1.5 ⁇ 1.0 ⁇ 1.0 mm) after 3 days (FIG. 9).
  • Example 10 Crystal Structure Analysis of D-type Amino Acid Dehydrogenase Since the crystal of D-type amino acid dehydrogenase is degraded by X-ray damage at normal temperature measurement and its resolution gradually decreases, measurement was performed under low temperature conditions. The crystals were transferred to a crystallization solution containing 30% glycerol and then blown with 90 K nitrogen gas and rapidly cooled. X-ray diffraction data were collected at 2.30 ⁇ resolution using an X-ray diffractometer MX300 HEdetector (manufactured by Raynonix) to determine crystallographic parameters.
  • Example 11 Determination of Steric Structure of D-type Amino Acid Dehydrogenase Using the obtained X-ray diffraction intensity data and the three-dimensional structural coordinates of the D-type amino acid dehydrogenase obtained in Example 10, the molecular replacement method by program PHASER was performed. The molecular replacement method was calculated using the three-dimensional structural coordinates of meso- DAPDH from Symbiobacterium thermophilum as a search model. As a result of calculation using X-ray diffraction intensity data from 50.0 ⁇ to 2.30 ⁇ resolution, one significant solution was obtained.
  • the resulting structural model is refined with a structure factor from 30.0 ⁇ to 2.30 ⁇ resolution by the method of restriction refinement in the program REFMAC5, and as a result, a modified meso -DAPDH consisting of 297 amino acid residues Among them, amino acid residues of Lys4-Val301 were identified in both A and B molecules. In addition, 332 water molecules were identified as atoms other than proteins. At the final stage of refinement, the R factor was 19.3% and the Free-R factor was 24.7%. Further, the bond distance between atoms and the root mean square error from the ideal state of bond angle were 0.01 ⁇ and 1.68 degrees, respectively.
  • Example 12 Synthesis of Mutant D-type Amino Acid Dehydrogenase T. Obtained by synthesis the DNA encoding the polypeptide of the mutant enzyme into which 6 types of mutations (Asp94Ser, Met154Leu, Val158Gly, Thr173Ile, Arg183Met, His229Asn) were introduced to the amino acid sequence of D-type amino acid dehydrogenase from lipolytica did. Using this as a template, the gene of the enzyme was amplified by PCR using "PrimeSTAR Max DNA Polymerase" manufactured by Takara Bio Inc. PCR was performed according to the manufacturer's instructions. The PCR reaction solution was prepared containing 0.3 ⁇ M of each of the following primers and 50 ng of the above-mentioned template DNA.
  • the reaction solution after PCR was purified by Wizard SV Gel and PCR Clean-Up System (manufactured by Promega), and the PCR amplification product was confirmed by agarose gel electrophoresis. As a result, acquisition of the expected amplification product (about 0.9 kbp) could be confirmed.
  • the purified amplification product was incorporated into a pET100 vector (product of Invitrogen) for a protein expression plasmid to construct a 6-mutant D-type amino acid dehydrogenase / pET100.
  • the expression vector contains T7 promoter, downstream of the liposome binding site and upstream of the T7 terminator.
  • li p olytica was constructed to incorporate 6 mutagenesis type D-amino acid dehydrogenase gene derived from.
  • the base sequence (SEQ ID NO: 7) of this 6-mutant D-type amino acid dehydrogenase gene is shown in FIG.
  • the amino acid sequence (SEQ ID NO: 8) encoded by the base sequence of SEQ ID NO: 7 is shown in FIG.
  • the expression vector contains a histidine-tag.
  • the histidine at the C-terminus except for the stop codon (using TAA in this example) of the D-type amino acid dehydrogenase gene Tags can also be attached.
  • the 6-mutant D-type amino acid dehydrogenase / pET100 prepared above is used as a template
  • the expression vector was produced by PCR using "PrimeSTAR Max DNA Polymerase” manufactured by Takara Bio Inc. PCR was performed according to the manufacturer's instructions.
  • the PCR reaction solution was prepared containing 0.3 ⁇ M of each of the following primers and 50 ng of the above-mentioned template DNA.
  • the nucleotide sequence (SEQ ID NO: 13) of this 5-mutant D-type amino acid dehydrogenase gene is shown in FIG.
  • the amino acid sequence (SEQ ID NO: 14) encoded by the nucleotide sequence of SEQ ID NO: 13 is shown in FIG.
  • E. coli. E. coli BL21 (DE3) strains were transformed respectively. These were inoculated into 250 mL of Overnight Express Instant LB medium (Merck Millipore) containing ampicillin and cultured with shaking at 37 ° C. for 16 hours.
  • the cells in the culture solution were collected by centrifugation, and the cells were suspended in 50 mM phosphate buffer (pH 7.2) and sonicated under ice cooling. After ultrasonication, it was centrifuged and the obtained supernatant was used as a crude enzyme solution.
  • the crude enzyme solution was heat-treated at 50 ° C. 30 min, the processing enzyme solution, Ni + -Chelating Sepharose TM Fast Flow ( manufactured by GE Healthcare Japan) chromatography, Superdex200 gel filtration chromatography (GE Healthcare Japan ) And purified.
  • the amount of protein of the obtained D-type amino acid dehydrogenase was measured by the Bradford method.
  • Example 13 Confirmation of Optical Activity of D-Type Amino Acid Dehydrogenase
  • the optical activity of the D-amino acid dehydrogenase obtained in Example 2 was evaluated.
  • the optical activity of the enzyme was evaluated by an activity staining method attributable to the catalytic reaction of the enzyme. More specifically, the appropriate amount of enzyme solution was subjected to disc gel electrophoresis.
  • the gel after electrophoresis was subjected to 200 mM phosphate species buffer (pH 8.0), 10 mM D-alanine or L-alanine, 0.1 mM 2- (4-iodophenyl) -3- (4-nitrophenyl) 5-phenyl -2 H - tetrazolium chloride (INT) (manufactured by Dojin chemical Co., Ltd.), 0.04 mM 1-methoxy-5-methylphenazinium methyl sulfate (PMS) (manufactured by Dojin chemical Co.) and 1. It was immersed in a reaction solution containing 25 mM NADP + and incubated at 50 ° C. for 30 minutes.
  • INT 2- (4-iodophenyl) -3- (4-nitrophenyl) 5-phenyl -2 H - tetrazolium chloride
  • PMS 1-methoxy-5-methylphenazinium methyl sulfate
  • FIG. 16 shows the results of subjecting purified D-type amino acid dehydrogenase to protein staining and activity staining. From lanes 1 and 2 in FIG. 16, a single band attributed to the enzyme was confirmed. Also, from lane 2, it was confirmed that this enzyme selectively acts on D-amino acids. In addition, D-type amino acid dehydrogenase reversibly catalyzes the deamination reaction of D-amino acid. Therefore, it was confirmed that D-amino acid dehydrogenase synthesizes D-amino acid instead of L-amino acid by amination of 2-oxo acid.
  • Example 14 Confirmation of D-Amino Acid Synthesis Activity of Various Enzymes
  • the D-amino acid synthesis activity of the various enzymes obtained in Examples 2 and 12 was measured, and the influence of the introduction of the mutation on the D-amino acid synthesis activity was examined.
  • the activity of the enzyme was quantified by measuring the decrease in absorbance at a wavelength of 340 nm as NADPH or NADH decreased by the catalytic reaction of the enzyme, and using this as an index, it was measured by determining the enzyme activity.
  • the enzyme activity was measured using the obtained absorbance change and the same equation as that used in Example 4, and the specific activity of the enzyme was calculated from the amount of protein of the enzyme used and the dilution rate of the enzyme.
  • Table 3 shows the D-amino acid synthesis activity of each enzyme.
  • D-type amino acid dehydrogenase before mutation introduction uses various 2-oxo acids as a substrate, and a variety of branched D-amino acids, sulfur-containing D-amino acids, acidic D-amino acids, etc. It has been confirmed that various kinds of D-amino acids are synthesized. Moreover, by introducing a mutation into D-type amino acid dehydrogenase, it was confirmed that the NAD (P) H-dependent increase in the synthetic activity of branched D-amino acid was about three times. Furthermore, it was confirmed that NADH-dependent synthetic activity of aromatic D-amino acid was newly detected, which was not detected by the enzyme before mutation introduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

下記(a)及び(b)の特徴を有する酵素: (a)D-アミノ酸を可逆的に脱水素する活性を有する (b)配列番号2のアミノ酸配列との同一性が80%以上であるアミノ酸配列を有するポリペプチドの6量体である。

Description

D型アミノ酸脱水素酵素
 D型アミノ酸脱水素酵素に関連する技術が開示される。
 生体における重要な成分の1つであるタンパク質は、主として20種類のα-アミノ酸から構成されている。そのうちグリシンを除く19種類は不斉炭素を持つため、D型アミノ酸とL型アミノ酸の2種の光学異性体が存在する。タンパク質を構成するアミノ酸はそのほとんどがL型アミノ酸であることが知られているが、近年の分析技術の発展により、ヒトを含めた哺乳類や水生動物、植物等の高等生物の細胞内に、D型アミノ酸も微量に存在することが明らかになっている。
 D型アミノ酸は、排卵誘発剤、血液凝固阻止剤、鎮痛剤などの医薬品の生産原料として、さらには殺虫剤や抗生物質、化粧品などの工業製品の中間体として、広い工業的用途を有している。そこで、D型アミノ酸の効率の良い製造方法が必要とされている。
 D型アミノ酸の効率的な製造に資する技術の提供が1つの課題である。
 斯かる課題の解決のため、日夜研究を重ねた末、下記に代表される発明を提供するに至った。
項1.
下記(a)及び(b)の特徴を有する酵素:
(a)D-アミノ酸を可逆的に脱水素する活性を有する
(b)配列番号2のアミノ酸配列との同一性が80%以上であるアミノ酸配列を有するポリペプチドの6量体である。
項2.
2-オキソブタン二酸からD-アスパラギン酸を合成する活性を有する、項1に記載の酵素。
項3.
更に下記特徴(c)を有する項1又は2に記載の酵素:
(c)NADH及びNADPHの両方を補酵素として利用可能である。
項4.
更に下記特徴(d)を有する項1~3のいずれかに記載の酵素:
(d)meso-ジアミノピメリン酸を基質とし、NADを補酵素とする場合のNADに対するK値が30mM以下である。
項5.
更に下記特徴(e)を有する項1~4のいずれかに記載の酵素:
(e)meso-ジアミノピメリン酸を基質とする場合の至適活性pHが10.5である。
項6.
更に下記特徴(f)を有する項1に記載の酵素:
(f)meso-ジアミノピメリン酸を基質とする場合の至適活性温度が55℃である。
項7.
配列番号2のアミノ酸配列との同一性が80%以上であるアミノ酸配列において、Asp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnからなる群より選択される1つ以上のアミノ酸置換を有する、項1又は2に記載の酵素。
項8.
項1~7のいずれかの酵素をコードするポリヌクレオチド。
項9.
項8に記載のポリヌクレオチドを組み込んだベクター。
項10.
項9に記載のベクターを含む形質転換体。
項11.
項10に記載の形質転換体を培養することを含む、項1~7のいずれかに記載の酵素の製造方法。
項12.
項1~7のいずれかに記載の酵素を2-オキソ酸に作用させ、D-アミノ酸を製造する方法。
 D型アミノ酸及び/又は2-オキソ酸を効率的に合成することが可能である。
T. lipolytica由来のD型アミノ酸脱水素酵素をコードするDNAの塩基配列を示す。下線は、クローニング用の制限酵素認識部位であり、太字は終止コドンである。 T. lipolytica由来のD型アミノ酸脱水素酵素のアミノ酸配列を示す。 粗酵素液、熱処理酵素液、及び各種クロマトグラフィー後に得られる活性画分と分子量マーカーをSDS-PAGEに供した結果を示す。レーン1は分子量マーカー、レーン2は粗酵素液、レーン3は熱処理後粗酵素液、レーン4はNi-Chelating SepharoseTM Fast Flowクロマトグラフィー後活性画分、レーン5はSuperdex200ゲル濾過クロマトグラフィー後活性画分の結果を示す。 精製酵素をタンパク質染色及び活性染色に供した結果を示す。レーン1はタンパク質染色、レーン2は補酵素にNADを用いた場合の活性染色、レーン3はNADPを用いた場合の活性染色の結果を示す。 酵素のmeso-ジアミノピメリン酸の脱アミノ反応のpH依存性を測定した結果を示す。グリシン緩衝液(pH 10.5)における比活性を100%として各pHにおける相対活性を算出した。横軸は測定pH(pH)であり、縦軸は相対活性 (%)である。●はグリシン緩衝液、■は炭酸緩衝液をそれぞれ示す。 酵素のmeso-ジアミノピメリン酸の脱アミノ反応の温度依存性を測定した結果を示す。横軸は測定温度(℃)であり、縦軸は相対活性(%)である。 酵素の熱安定性を測定した結果を示す。横軸は熱処理温度(℃)であり、縦軸は相対活性(%)である。 酵素のpH安定性を測定した結果を示す。横軸は測定温度(pH)であり、縦軸は相対活性 (%)である。●はリン酸緩衝液、■はギ酸緩衝液、◆は酢酸緩衝液、▲はクエン酸緩衝液、▼はリン酸緩衝液、〇はホウ酸緩衝液、□は炭酸緩衝液をそれぞれ示す。 T. lipolytica由来のD型アミノ酸脱水素酵素の結晶を示す。 T. lipolytica由来のD型アミノ酸脱水素酵素の三次元構造を示す。 T. lipolytica由来のD型アミノ酸脱水素酵素のアミノ酸配列と他の4種類のmeso-ジアミノピメリン酸脱水素酵素のアミノ酸配列とのアライメントを示す。他の4種類のmeso-ジアミノピメリン酸脱水素酵素とは、Bacillus sphaericus由来のもの(配列番号3)、Corynebacterium glutamicum由来のもの(配列番号4)、Symbiobacterium thermophilum由来のもの(配列番号5)、及びUreibacillus thermosphaericus由来のもの(配列番号6)である。 T. lipolytica由来のD型アミノ酸脱水素酵素の6つのアミノ酸残基を置換したアミノ酸配列をコードするDNAの塩基配列を示す。四角は変異導入箇所であり、太字は終止コドンである。 T. lipolytica由来のD型アミノ酸脱水素酵素の6つのアミノ酸残基を置換したアミノ酸配列を示す。四角は変異導入箇所である。 T. lipolytica由来のD型アミノ酸脱水素酵素の5つのアミノ酸残基を置換したアミノ酸配列をコードするDNAの塩基配列を示す。四角は変異導入箇所であり、太字は終止コドンである。 T. lipolytica由来のD型アミノ酸脱水素酵素の5つのアミノ酸残基を置換したアミノ酸配列を示す。四角は変異導入箇所である。 精製したD型アミノ酸脱水素酵素をタンパク質染色及び活性染色に供した結果を示す。レーン1はタンパク質染色、レーン2は基質にD-アラニンを用いた場合の活性染色、レーン3は基質にL-アラニンを用いた場合の活性染色の結果を示す。
 酵素は、D型アミノ酸を可逆的に脱水素する活性を有することが好ましい。尚、本書では、D型アミノ酸を「D-アミノ酸」又は「Dアミノ酸」とも表記する。D型アミノ酸とは、不斉炭素を有するアミノ酸の光学異性体である。本書において、D型アミノ酸には、分子内にL型とD型の両方の構造を有するmeso型アミノ酸(例えば、meso-ジアミノピメリン酸)も含まれる。一実施形態において、D型アミノ酸はmeso型ではない(L型が実質的に存在しない)D型アミノ酸であることが好ましい。
 D型アミノ酸を可逆的に脱水素するとは、D型アミノ酸を対応するオキソ酸に変換する反応とオキソ酸を対応するD型アミノ酸に変換する反応の両方を触媒することを意味する。この反応を式で表せば次のとおりである。
 
D-アミノ酸+NAD(P)+HO⇔2-オキソ酸+NH +NAD(P)H+H
 
 例えば、D型アミノ酸がmeso-ジアミノピメリン酸の場合、meso-ジアミノピメリン酸をL-2-アミノ-6-オキソピメリン酸に変換する反応、及び、L-2-アミノ-6-オキソピメリン酸をmeso-ジアミノピメリン酸に変換する反応の両方を触媒する。このような酵素を「meso-ジアミノピメリン酸脱水素酵素」と称することもできる。一実施形態において、酵素は、少なくともオキソ酸のD型アミノ酸への変換を触媒する活性を有することが好ましい。即ち、一実施形態において、酵素は必ずしもD型アミノ酸をオキソ酸に変換する活性を有する必要はない。
 酵素は、配列番号2のアミノ酸配列又はそれとの同一性が60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%、91%以上、92%以上、93%条、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上%以上であるアミノ酸配列を有することが好ましい。配列番号2は、Thermosyntropha lipolytica由来のD型アミノ酸脱水素酵素のアミノ酸配列である。
 アミノ酸の同一性は、市販の又はインターネットを通じて利用可能な解析ツール(例えば、FASTA、BLAST、PSI-BLAST、SSEARCH等のソフトウェア)を用いて計算することができる。例えば、Advanced BLAST 2.1において、プログラムにblastpを用い、Expect値を10、Filterは全てOFFにして、MatrixにBLOSUM62を用い、Gap existencecost、Per residuegap cost、及びLambdaratioをそれぞれ11、1、0.85(デフォルト値)にして、他の各種パラメーターもデフォルト値に設定して検索を行うことにより、アミノ酸配列の同一性の値(%)を算出することができる。
 酵素は、配列番号2のアミノ酸配列における5番目~17番目、19番目、23番目、27~35番目、37番目、49番目、51番目、54番目、56番目、58番目、63番目、64番目、67番目~69番目、72番目、74番目、83番目、89番目~94番目、96番目、99番目、106番目、107番目、109番目、110番目、114番目、116番目~126番目、129番目、130番目、132番目、138番目、145番目、146番目、148番目、149番目、151番目~153番目、155番目~157番目、159番目、161番目、163番目、165番目~171番目、173番目~175番目、181番目、183番目、186番目、187番目、190番目、192番目~194番目、197番目~200番目、202番目、204番目、206番目、208番目、209番目、212番目、213番目、215番目、218番目、226番目、227番目、229番目、230番目、233番目、236番目、237番目、239番目、240番目、244番目、245番目、247番目、249番目、251番目~256番目、258番目~261番目、264番目、265番目、268番目~270番目、272番目、274番目、276番目、277番目、279番目~283番目、292番目、299番目、及び301番目から成る群から選択される1以上のアミノ酸残基を有することが好ましい。ここで、「1以上のアミノ酸残基」とは、例えば、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上、25以上、30以上、35以上、40以上、45以上、50以上、55以上、60以上、65以上、70以上、75以上、80以上、85以上、90以上、95以上、100以上、105以上、110以上、115以上、120以上、125以上、130以上、135以上、140以上、145以上、又は150であることが好ましい。
 一実施形態において、酵素は、配列番号2のアミノ酸配列における6番目、10~14番目、16番目、17番目、27~29番目、31番目、37番目、51番目、54番目、68番目、69番目、89番目、91番目、94番目、96番目、110番目、120番目、122番目~126番目、129番目、132番目、146番目、149番目、151番目、153番目、155番目~157番目、159番目、161番目、163番目、165番目、166番目、169番目、173番目、175番目、181番目、183番目、187番目、193番目、194番目、199番目、204番目、206番目、215番目、229番目、230番目、237番目、255番目、256番目、259番目、265番目、268番目、269番目、276番目、279番目、及び291番目から成る群から選択される1以上のアミノ酸残基を有することが好ましい。ここで「1以上のアミノ酸残基」は、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上、25以上、30以上、35以上、40以上、45以上、50以上、55以上、60以上、又は63のアミノ酸残基であり得る。一実施形態において、前記特定のアミノ酸残基のより多くのアミノ酸残基を有することが好ましい。
 好適な一実施形態において、酵素は、更に配列番号2のアミノ酸配列における5番目、7番目、9番目、15番目、23番目、30番目、34番目、63番目、67番目、72番目、74番目、83番目、90番目、92番目、93番目、99番目、106番目、107番目、117~119番目、130番目、138番目、145番目、148番目、152番目、160番目、161番目、163番目、167番目、170番目、174番目、186番目、190番目、198番目、202番目、208番目、212番目、218番目、227番目、233番目、239番目、244番目、245番目、249番目、251番目、253番目、254番目、258番目、260番目、264番目、270番目、272番目、280番目~283番目、及び301番目から成る群より選択される1以上のアミノ酸残基を有することが好ましい。ここで「1以上のアミノ酸残基」とは、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上、25以上、30以上、35以上、40以上、45以上、50以上、55以上、又は58のアミノ酸残基であり得る。一実施形態において、前記特定のアミノ酸残基のより多くのアミノ酸残基を有することが好ましい。
 より好適な一実施形態において、酵素は、更に配列番号2のアミノ酸配列における8番目、19番目、32番目、33番目、49番目、56番目、58番目、64番目、19番目、114番目、116番目、121番目、168番目、171番目、192番目、197番目、200番目、209番目、213番目、218番目、226番目、236番目、240番目、247番目、252番目、261番目、274番目、277番目、292番目、及び299番目から成る群より選択される1以上のアミノ酸残基を有することが好ましい。ここで「1以上のアミノ酸残基」は、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上、25以上、又は29のアミノ酸残基であり得る。
 一実施形態において、酵素は、配列番号2のアミノ酸配列において、下記表1のアミノ酸残基の置換の1以上を有していてもよい。ここで「1以上」とは、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上、25以上、30以上、35以上、40以上、45以上、50以上、55以上、60以上、65以上、70以上、75以上、80以上、又は85であり得る。
Figure JPOXMLDOC01-appb-T000001
 表1において、「位置」とは、配列番号2におけるアミノ酸残基の位置を意味する。「置換アミノ酸残基」とは、配列番号2の特定の位置のアミノ酸残基を置換することができるアミノ酸残基の種類を意味する。表1において、アミノ酸残基の種類は、アルファベット一文字表記で示されている。
 一実施形態において、アミノ酸残基の置換は、保存的アミノ酸置換が好ましい。「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えば、リシン、アルギニン、ヒスチジン)、酸性側鎖(例えば、アスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えば、グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えば、スレオニン、バリン、イソロイシン)、芳香族側鎖(例えば、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。よって、同一のファミリー内のアミノ酸残基間で置換されることが好ましい。
 一実施形態において、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94、Met154、Val158、Thr173、Arg183、及びHis229から成る群より選択される1以上のアミノ酸残基が他のアミノ酸残基に置換されていることが好ましい。一実施形態において、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnから成る群より選択される1以上のアミノ酸残基の置換を有することが好ましい。ここで、「Met154Leu」とは、154番目のメチオニン残基がロイシン残基に置換されていることを意味する。他の置換についても同様である。また、「1以上」とは、好ましくは2以上、3以上、4以上、5以上、又は6であり得る。Thr173Ile、Arg183Met、及び/又はHis229Asnの置換を有することにより、より幅広い種類のD-アミノ酸及び2-オキソ酸を基質として対応するオキソ酸及びD-アミノ酸を生産することが可能になる。また、Asp94Ser、Met154Leu及び/又はVal158Glyの置換を有することにより、触媒効率をより高めることが可能である。
 例えば、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnの置換を有することにより、酵素は、変異前と比較して、NADPHを補酵素として利用しながら次の反応を触媒する高い活性を有する:2-オキソ-4-メチルペンタン酸をD-ロイシン酸に変換する反応、2-オキソ-3-メチルペンタン酸をD-イソロイシンに変換する反応、2-オキソ-4-(メチルチオ)ブタン酸をD-メチオニンに変換する反応、2-オキソ-3-フェニルプロパン酸をD-フェニルアラニンに変換する反応、及び、2-オキソオクタン酸をD-2-アミノオクタン酸に変換する反応。従って、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnの置換を有する酵素は、D-ロイシン、D-イソロイシン、D-メチオニン、D-フェニルアラニン、及びD-2-アミノオクタン酸の製造に適している。
 一方、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった変異を有さない酵素は、次の反応を触媒する比較的高い活性を有する:2-オキソプロパン酸をD-アラニンに変換する反応、2-オキソ-3-メチルブタン酸をD-バリンに変換する反応、2-オキソブタン二酸をD-アスパラギン酸に変換する反応、2-オキソグルタル酸をD-グルタミン酸に変換する反応、及び2-オキソブタン酸をD-2-アミノ酪酸に変換する反応。従って、上述の特定の変異(置換)を有さない酵素は、D-アラニン、D-バリン、D-アスパラギン酸、D-グルタミン酸、及びD-2-アミノ酪酸の製造に好適である。
 一実施形態において、酵素は、配列番号2のアミノ酸配列において、Asp94、Asp124、Met154、Gly155、Thr173、Arg183、及びHis229から成る群より選択される1以上のアミノ酸残基を有することが好ましい。「1以上」とは、好ましくは2以上、3以上、4以上、5以上、6以上又は7であり得る。これらの1以上のアミノ酸残基を有すること(維持すること)により、後述するkcat(min-1)等に関する特性を好適に満たすと考えられる。
 酵素は、6量体であることが好ましい。6量体であるとは、酵素が活性型(活性を有する状態)のときに6個のポリペプチド(モノマー)が1個の纏まった構造を形成している状態であることを意味する。6量体は、ホモ6量体とヘテロ6量体のいずれでもよいが、ホモ6量体であることが好ましい。
 一実施形態において、酵素は、2-オキソブタン二酸からD-アスパラギン酸を生産する活性を有することが好ましい。このような酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、上述のAsp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった変異を有していても、有していなくても良い。一実施形態において、より効率的にD-アスパラギン酸を生産するという観点で、酵素は、前記変異を有さないことが好ましい。
 一実施形態において、酵素は、2-オキソグルタル酸からD-グルタミン酸を生産する活性を有することが好ましい。このような酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、上述のAsp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった変異を有さないことが好ましい。
 酵素は、D型アミノ酸を可逆的に脱水素する反応を触媒するための補酵素としてNADH及びNADPHのいずれを利用することも可能であることが好ましい。NADHはNADPHよりも一般的に安価に入手できる。よって、NADHを補酵素として利用できることは、酵素を用いたD型アミノ酸等の製造コストを低減する上で有意義である。
 酵素は、meso-ジアミノピメリン酸を基質とする場合のkcat(min-1)が1.0×10以上であることが好ましい。kcat(min-1)は2.0×10以上、3.0×10以上、4.0×10以上又は4.4×10以上であることが好ましい。kcatは単位時間当たりに何個の基質を触媒できるかというパラメーターである。
 酵素は、meso-ジアミノピメリン酸を基質とする場合のK値が6.0 mM以下、又は5.7 mM以下であることが好ましい。K値は、酵素と基質との親和性を示すパラメーターであり、その値が低いほど親和性が高く、少ない量の酵素で効率的に所望の反応を進めることができる。
 酵素は、meso-ジアミノピメリン酸を基質とし、NADを補酵素とする場合のNADに対するK値が30 mM以下、20 mM以下、又は15 mM以下であることが好ましい。このようなK値を満たすことにより、酵素を用いてD-アミノ酸又はオキソ酸を生産するために必要となるNADの量を低減することができる。
 酵素は、meso-ジアミノピメリン酸を基質とし、NADPを補酵素とする場合のNADPに対するK値が20 mM以下、10 mM以下、又は1 mM以下であることが好ましい。このようなK値を満たすことにより、酵素を用いてD-アミノ酸又はオキソ酸を生産するために必要となるNADPの量を低減することができる。
 酵素は、meso-ジアミノピメリン酸を基質とする場合の至適活性pHが10.5であることが好ましい。至適活性pHが10.5とは、図5に示すように、pHが9.5~10.0及びpHが11.0~11.5の場合と比較してpHが10.5の場合の酵素活性が高いことを意味する。
 酵素は、meso-ジアミノピメリン酸を基質とする場合の至適活性温度が55℃であることが好ましい。至適活性温度が55℃とは、図6に示すとおり、40℃~50℃及び60℃における酵素活性と比較して55℃における酵素活性が高いことを意味する。
 酵素は、そのポリペプチド部分(モノマー)のSDS-PAGEで測定した分子量が約36kDaであることが好ましい。「約36kDa」とは、SDS-PAGEで分子量を測定した際に、当業者が、通常36kDaの位置にバンドがあると判断する範囲を含むことを意味する。「ポリペプチド部分」とは、実質的に糖鎖が結合していない状態のポリペプチドを意味する。
 酵素は、熱安定性に優れていることが好ましい。例えば、酵素は、50℃で30分間保持した後の活性(meso-ジアミノピメリン酸を基質とする)と比較して、65℃で30分間保持した後の活性が、95%以上であることが好ましい。
 酵素は、pH安定性に優れていることが好ましい。例えば、酵素は、pH5.5~9.5の緩衝液中で30分間保持した後の残存活性が、pH9.0の緩衝液中で30分間保持した後の残存活性と比較して90%以上であることが好ましい。
 酵素の由来は特に制限されない。例えば、酵素は、Thermosyntropha属に属する微生物(例えば、Thermosyntropha lipolytica)に由来することが好ましい。
 酵素は、結晶状態であってもよい。結晶状態の酵素は、例えば、後述する実施例に従って得ることができる。結晶状の酵素は、高純度での精製、高密度でプロテアーゼ抵抗性の強い安定な保存、固定化への利用に有用である。
 上述の酵素は、任意の手法で得ることができる。例えば、配列番号2に示すアミノ酸配列を有するタンパク質をコードする遺伝子をそのまま(又はアミノ酸残基に変異を加えた上で)利用し、宿主細胞を形質転換し、その培養物から上記活性を有するタンパク質を採取することによって取得することができる。また、酵素はそれを構成するポリペプチドを化学合成することによっても得ることができる。
 上述の酵素をコードするポリヌクレオチドの構造は特に制限されない。例えば、ポリヌクレオチドは、配列番号1の塩基配列との同一性が60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上である塩基配列を有することが好ましい。
 塩基配列の相同性は、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツール(例えば、BLAST等)を用いて算出することができる。BLASTを用いる場合、各種パラメーターは初期条件で計算することができる。
 ポリヌクレオチドは、DNA、RNA、又はDNA-RNAハイブリッド等のいずれでもよい。ポリヌクレオチドは、単離されたものであることが好ましい。ポリヌクレオチドがDNAである場合、cDNAであってもよい。
 ポリヌクレオチドは、任意の手法で得ることができる。例えば、配列番号1の情報を基に化学的合成法(例えば、フォスフォアミダイト法による固相合成法)により製造、取得することができる。また、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって容易に調製することもできる。
 ベクターは、上記酵素をコードするポリヌクレオチドを組み込んでいることが好ましい。ベクターの種類は特に制限されず、宿主細胞の種類に応じて適宜選択することができる。例えば、プラスミドベクター、コスミドベクター、ファージベクター、ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、ヘルペスウイルスベクター等)等を挙げることができる。
 ベクターは、ポリヌクレオチドが宿主において発現できる限りその構成は制限されない。ベクターは、ポリヌクレオチドの発現に必要な他の塩基配列が含んでいることが好ましい。他の塩基配列としては、例えば、プロモーター配列、リーダー配列、シグナル配列、エンハンサー配列、並びにリボソーム結合配列等が挙げられる。
 形質転換体は、上述の酵素をコードするポリヌクレオチドを含むことが好ましい。このような形質転換体は、上述のポリヌクレオチドを含むベクターを宿主に導入することで得ることができる。宿主細胞は、上記ポリヌクレオチドを発現して上記酵素を生産可能である限り、特に制限されない。具体的には、大腸菌、及び枯草菌等の原核細胞、酵母、カビ、昆虫細胞、及び哺乳動物細胞等の真核細胞等を挙げることができる。ベクターを用いた宿主の形質転換は、常法(例えば、塩化カルシウム法、エレクトロポレーション法、マイクロインジェクション法、リポソームフェクション法)に従って行うことができる。
 上記形質転換体を培養することにより上記酵素を得ることができる。培養条件は、宿主の種類等に応じて適宜設定することができる。培養後、培養液又は菌体より酵素を回収することができる。酵素を菌体外に分泌する微生物を用いる場合は、例えば、培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析透析、各種クロマトグラフィーなどを適宜組み合わせて単離、精製を行うことにより酵素を得ることができる。このようにして上述の酵素を低コストで大量生産することができる。
 一実施形態において酵素は熱安定性に優れる。そこで、単離、精製工程において熱処理を併用することが有用かつ便利である。培養物から得られた宿主細胞及び培養上清には、当該宿主細胞由来の様々なタンパク質を含有する。しかし、熱処理を行なうことにより、宿主細胞由来の夾雑タンパク質は変性し凝縮沈殿する。これに対して熱安定性に優れる酵素は変性を生じないことから、遠心分離等により宿主由来の夾雑タンパク質と容易に分離できる。熱処理の条件は、特に限定するものではないが、例えば約50~65℃で10~30分間の処理とすることができる。培養液をそのまま、若しくは粗抽出液の熱処理を行なうことにより、他のタンパク質が失活させ、効率的に目的の酵素を得ることができる。
 上述の酵素を利用することにより、D-アミノ酸を合成することができる。D-アミノ酸の合成は、例えば、基質である2-オキソ酸のアミノ化により行うことができる。NADPH(又はNADH)とアンモニアの存在下で、酵素を基質となる2-オキソ酸と反応させ、当該酵素の触媒反応で生成するD-アミノ酸を回収することができる。D-アミノ酸の回収は任意の手法(例えば、イオン交換樹脂を用いた方法)で行うことができる。同様に、上述の酵素を用いて、D-アミノ酸から2-オキソ酸を製造することができる。
 D-アラニンは、2-オキソプロパン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-アラニンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった変異を有さない酵素を用いることが好ましい。
 D-バリンは、2-オキソ-3-メチルブタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-バリンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有さない酵素を用いることが好ましい。
 D-ロイシンは、2-オキソ-4-メチルペンタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-ロイシンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良く、一実施形態において、Asp94Serの置換を有していないことが好ましい。
 D-イソロイシンは、2-オキソ-3-メチルペンタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-イソロイシンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良く、一実施形態において、Asp94Serの置換を有していないことが好ましい。
 D-メチオニンは、2-オキソ-4-(メチルチオ)ブタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-メチオニンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良く、一実施形態において、Asp94Serの置換を有していないことが好ましい。
 D-フェニルアラニンは、2-オキソ-3-フェニルプロパン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-フェニルアラニンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良く、一実施形態において、Asp94Serの置換を有していないことが好ましい。
 D-アスパラギン酸は、2-オキソブタン二酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-アスパラギン酸の製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asn(又は、更にAsp94Serの置換)といった置換を有さない酵素を用いることが好ましい。
 D-グルタミン酸は、2-オキソグルタル酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-グルタミン酸の製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asn(又は、更にAsp94Serの置換)の置換を有さない酵素を用いることが好ましい。
 D-2-アミノ酪酸は、2-オキソブタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-2-アミノ酪酸の製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnの置換を有さない酵素を用いることが好ましい。
 D-2-アミノオクタン酸は、2-オキソオクタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-2-アミノオクタン酸の製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良く、一実施形態において、Asp94Serの置換を有していないことが好ましい。
 D-2-アミノヘプタン酸は、2-オキソヘプタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-2-アミノヘプタン酸の製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-ノルロイシンは、2-オキソヘキサン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-ノルロイシンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-ノルバリンは、2-オキソペンタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-ノルバリンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-セリンは、2-オキソ-3-ヒドロキシプロピオン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-セリンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-スレオニンは、2-3-ヒドロキシブタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-スレオニンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-システインは、2-オキソ-3-スルファニルプロパン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-システインの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-アスパラギンは、2-オキソ-3-カルバモイルプロパン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-アスパラギンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-グルタミンは、2-オキソ-4-カルバモイルブタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-グルタミンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-トリプトファンは、2-オキソ-3-(1H-インドール-3-イル)プロパン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-トリプトファンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-リジンは、2-オキソ-6-アミノカプロン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-リジンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-アルギニンは、2-オキソ-5-グアニジノペンタン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-アルギニンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-チロシンは、2-オキソ-3-(4-ヒドロキシフェニル)プロパン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-チロシンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 D-ヒスチジンは、2-オキソ-3-(4-イミダゾリル)プロピオン酸に上述の酵素を作用させることにより得ることができる。一実施形態において、D-ヒスチジンの製造には、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnといった置換を有する酵素を用いることが好ましい。ここで、酵素は、配列番号2又はそれと80%以上の同一性を有するアミノ酸配列において、Asp94Serの置換を有しても良く、有していなくても良い。
 以下、実施例により本発明についてさらに詳細に説明するが、本発明はこれらに制限されるものではない。
[実施例1 D型アミノ酸脱水素酵素遺伝子のクローニングと発現ベクターの作製]
 D型アミノ酸脱水素酵素遺伝子は、公知の遺伝子クローニング技術を用いて取得することができる。例えば、GenBank等の公知のデータベースを検索することによって取得可能な配列情報を基に遺伝子を合成して取得できる。
 GENEWIZ社から配列番号1の塩基配列を有するT. lipolytica由来のD型アミノ酸脱水素酵素をコードするDNAを取得した。これを制限酵素NdeIとXhoIで切断し、アガロースゲル電気流動で分離後、ゲルから抽出及び精製を行った。制限酵素処理後のDNA断片を、タンパク質発現用プラスミドのpET-16a(ノバジェン社製)の制限酵素部位(NdeI及びXhoI)にライゲーション反応により組み込み、D型アミノ酸脱水素酵素の遺伝子を保持する発現ベクターを構築した。当該発現ベクターは、T7プロモーター、リポソーム結合部位の下流、T7ターミネーターの上流にT.lipolytica由来のD型アミノ酸脱水素酵素遺伝子を組み込むように構築した。このD型アミノ酸脱水素酵素遺伝子の塩基配列(配列番号1)を図1に示す。また、配列番号1の塩基配列がコードするアミノ酸配列(配列番号2)を図2に示す。
 なお、この発現ベクターには、ヒスチジン-タグが含まれている。また、他の発現ベクターにD型アミノ酸脱水素酵素遺伝子を挿入する際には、D型アミノ酸脱水素酵素遺伝子に終止コドン(本実施例ではTAAを利用)を除けば、C末端のヒスチジン-タグを付与することもできる。
[実施例2 D型アミノ酸脱水素酵素の合成]
 上記実施例1で得られた発現ベクターを利用して、E. coli BL21(DE3)株を形質転換した。これを、抗生物質アンピシリン(最終濃度 100mg/L)を含むLB培地(500 mL)に接種し、A600=0.6程度になるまで37℃で振とう培養し、その後、イソプロピル-β-D(-)-ガラクトピラノシド(和光純薬社製)を最終濃度で0.1 mMとなるように加え、37℃でさらに6時間振とう培養した。
 培養液中の菌体を遠心分離によって集め、この菌体を50 mMリン酸緩衝液(pH7.2)を用いて懸濁し、氷冷下で超音波破砕した。超音波破砕後に遠心分離し、得られた上清を粗酵素液とした。粗酵素液を、50℃で30分間熱処理し、その処理酵素液を、Ni-Chelating SepharoseTM Fast Flowクロマトグラフィー(GEヘルスケア・ジャパン社製)、Superdex200ゲルろ過クロマトグラフィー(GEヘルスケア・ジャパン社製)を用いて精製した。得られたD型アミノ酸脱水素酵素のタンパク質量をブラッドフォード法により測定した。
 図3に、粗酵素液、熱処理酵素液、及び各種クロマトグラフィー後に得られた活性画分と分子量マーカーをSDS-PAGEに供した結果を示す。図1のレーン5より、36 kDaの位置にタンパク質のシングルバンドを確認することができ、良好な精製結果を得ることができた。
[実施例3 D型アミノ酸脱水素酵素の補酵素依存性の確認]
 上記実施例2で取得したD型アミノ酸脱水素酵素について、補酵素依存性を評価した。前記酵素の補酵素依存性は、酵素の触媒反応に起因した活性染色法により評価した。
 より詳細には、適量の酵素溶液を、ディスクゲル電気泳動に供した。泳動後のゲルを、200 mMリン酸種緩衝液(pH8.0)、10 mM meso-ジアミノピメリン酸、0.1mM 2-(4-ヨードフェニル)-3-(4-ニトロフェニル)-5-フェニル-2-テトラゾリウム塩化物 (INT)(同仁化学社製)、0.04 mM1-メトキシ-5-メチルフェナジニウムメチル硫酸塩(PMS)(同仁化学社製)及び1.25 mMの各種補酵素を含む反応液に浸して、50℃で30分間保温した。この反応液中の2-(4-ヨードフェニル)-3-(4-ニトロフェニル)-5-フェニル-2-テトラゾリウム塩化物が還元されて、水溶性ホルマザンを生じる。反応式を以下に示す。尚、下記の反応式では、D型アミノ酸脱水素酵素を「meso-DAPDH」と表記する。
Figure JPOXMLDOC01-appb-C000002
 図4に、精製された酵素をタンパク質染色及び活性染色に供した結果を示す。図4の各レーンより、酵素に起因したシングルバンドが確認された。また、レーン2、3より、本酵素はNADとNADPの両補酵素を利用することが確認された。
[実施例4 D型アミノ酸脱水素酵素の触媒反応における最適pHの確認]
 実施例2で得られたD型アミノ酸脱水素酵素について、最適pHを評価した。前記酵素の活性は、酵素の触媒反応で生成するNADPHを波長340 nmの吸光度の増大を測定することに定量し、これを指標として、酵素活性を求めることにより測定した。
 より詳細には、適量の酵素溶液を、10 mM meso-ジアミノピメリン酸、1.25 mM NADPを含む200 mMの各種緩衝液中で混合することにより反応液を調製した。続いて、この反応液中のNADPからNADPHへの変化に伴う340 nmの吸光度の増大を反応温度50℃で測定することにより活性測定を行った。
 吸光度は、紫外可視分光光度計UV-1800(SHIMADZU社製)により測定した。得られた吸光度変化と下記式を利用して、使用した酵素のタンパク質量と酵素希釈率から酵素の比活性を算出した。
Figure JPOXMLDOC01-appb-M000003
  ΔA340:340 nmにおける1分間あたりの吸光度変化量
  D:酵素希釈率
  6.22:340 nmにおけるNADPHのミリモル分子吸光係数 (L・mmol-1・cm-1
  C:タンパク濃度 (mg/mL)
  d:光路長 (1cm)
 測定結果を図5に示す。この結果から、meso-ジアミノピメリン酸の脱アミノ反応における最適活性pHは10.5であることが示された。
[実施例5 D型アミノ酸脱水素酵素の触媒反応における最適温度の確認]
 所定温度(50、55、60、65、70、75、又は80℃)で加温した反応溶液に1.25 mM NADPを添加し、直ちに吸光度の増大を測定した以外は実施例4と同様にして吸光度を測定し、相対活性を算出した。図6に、測定結果を示す。この結果から至適活性温度は、約55℃であることが確認された。
[実施例6 D型アミノ酸脱水素酵素の熱安定性の確認]
 実施例2で精製したD型アミノ酸脱水素酵素を、10 mMリン酸緩衝液(pH 7.2)中で、様々な温度条件(50、55、60、65、又は70℃)下で30分間熱処理し、氷中に5分間静置後の残存活性を確認した。酵素活性は、実施例4に記載の方法で、meso-ジアミノピメリン酸を基質として利用した場合のNADPHの生成に起因した340 nmにおける吸光度の増大により評価した。50℃での処理における活性を100%として、その他の温度での処理後の残存活性を相対活性として算出した。
 図7に、測定結果を示す。この結果から、当該酵素は70℃熱処理後、約74%の残存活性を保持することが確認された。
[実施例7 D型アミノ酸脱水素酵素のpH安定性の確認]
 実施例2で精製したD型アミノ酸脱水素酵素を、100 mMの各緩衝液(pH 1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、又は11.3)中で、50℃で30分間熱処理し、氷中に5分間静置後の残存活性を確認した。酵素活性は、実施例4に記載の方法で、meso-ジアミノピメリン酸を基質として利用した場合のNADPHの生成に起因した340 nmにおける吸光度の増大により評価した。pH 9.0での処理における活性を100%として、その他のpHでの処理後の残存活性を相対活性として算出した。
 図8に測定結果を示す。図8に示すように、D型アミノ酸脱水素酵素は、pH 5.0から9.5での処理後、約90%以上の残存活性を保持していた。
[実施例8 D型アミノ酸脱水素酵素の速度論的解析]
 実施例2で得られたD型アミノ酸脱水素酵素について、meso-ジアミノピメリン酸を基質に、NADPまたはNADを補酵素に用いて活性の測定を行い、速度論的解析を行った。
 反応速度パラメーターである代謝回転数(kcat)、ミカエリ定数(K)値及び触媒効率(kcat/K)は、Igor Pro ver. 3.14(WaveMetrics社製)を用いて、異なる基質・補酵素濃度におけるD型アミノ酸脱水素酵素の触媒反応の初速度を、生成したNAD(P)Hの時間に対するプロットから決定した後、ミカエリス・メンテン式に基づいて決定した。酵素活性は、実施例4に記載の方法で、meso-ジアミノピメリン酸を基質として利用した場合のNAD(P)Hの生成に起因した340 nmにおける吸光度の増大により評価した。
 表2に、前記精製酵素の速度論的解析結果を示す。表2に示すように、D型アミノ酸脱水素酵素は、NADよりもNADPを補酵素に利用した方が、触媒効率が高くなることが示された。
Figure JPOXMLDOC01-appb-T000004
meso-ジアミノピメリン酸に対するkcat、K、kcat/Kについては、NADPを補酵素に用いて決定した。
[実施例9 D型アミノ酸脱水素酵素の結晶化]
 精製したD型アミノ酸脱水素酵素(濃度10.64 mg/mL)溶液と、0.2 M 塩化カリウム、20%w/vポリエチレングリセロール3,350から成る結晶化溶液を同量ずつ(各々0.5 μL)混合した。96穴プレート(ハンプトン・リサーチ社)を使用して、上記の結晶化溶液50 μLを母液とし、シッティングドロップ法での蒸気拡散を用いて、20℃にて静置した。1日後に結晶が析出し、3日後には測定可能な大きさ(1.5×1.0×1.0 mm程度)の結晶に成長した(図9)。
[実施例10 D型アミノ酸脱水素酵素の結晶構造解析]
 D型アミノ酸脱水素酵素の結晶は、常温測定ではX線損傷により結晶が劣化し、徐々に分解能が下がるため、低温条件下での測定を行った。結晶を、30%のグリセロールを含む結晶化溶液に移した後、90Kの窒素ガスを吹き付け、急速冷却した。X線回折装置 MX300HEdetector(Raynonix社製)を用いて、2.30Å分解能のX線回折データを収集し、結晶学的パラメーターを決定した。空間群は2、格子定数は、=132.88Å、=100.45Å、=83.27Å、α=90°、β=110.01°、γ=90°となった。非対称単位に6つの分子が含まれると仮定すれば、結晶の水分含有率は54.1%となった。
[実施例11 D型アミノ酸脱水素酵素の立体構造決定]
 得られたX線回折強度データと、実施例10で取得したD型アミノ酸脱水素酵素の三次元構造座標を用いて、プログラムPHASERによる分子置換法を行った。Symbiobacterium thermophilum由来のmeso-DAPDHの三次元構造座標をサーチモデルとして分子置換法の計算を行った。50.0Åから2.30Å分解能までのX線回折強度データを用いた計算の結果、1種類の有意な解が得られた。
 得られた構造モデルを、プログラムREFMAC5の中の制限精密化の方法により、30.0Åから2.30Å分解能までの構造因子を用いて精密化した結果、297アミノ酸残基からなる改変型meso-DAPDHのうち、A、B両分子においてLys4-Val301のアミノ酸残基を同定した。またタンパク質以外の原子として、332個の水分子を同定した。精密化の最終段階で、R因子は19.3%、Free-R因子は24.7%であった。更に各原子間の結合距離および結合角の理想状態からの二乗平均平方根誤差は、それぞれ0.01Åおよび1.68度であった。
 以上の解析により、三次元構造座標が得られた。得られた構造座標から、D型アミノ酸脱水素酵素の会合状態は六量体であることが確認された (図10)。
[実施例12 変異型D型アミノ酸脱水素酵素の合成]
 T. lipolytica由来のD型アミノ酸脱水素酵素のアミノ酸配列に対して、6種類の変異(Asp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、His229Asn)が導入された変異酵素のポリペプチドをコードするDNAを合成により取得した。これを鋳型に利用して、タカラバイオ社製の「PrimeSTAR Max DNA Polymerase」を使用し、PCRにより当該酵素の遺伝子を増幅した。PCRは、製造業者の指示に従って実行した。PCR反応液は、以下のプライマーを各0.3 μM、上記の鋳型DNAを50 ng含んで調製した。
 5’-CACCATGGGTGAGAAGATTCGCGTGGCAAT-3’(配列番号9)
 5’-TTAAACCAGTTGGCGGATGATTTCATCCGG-3’(配列番号10)
 PCR後の反応液をWizard SV Gel and PCR Clean-Up System(プロメガ社製)により精製し、アガロースゲル電気泳動によりPCR増幅産物を確認した。その結果、予想される増幅産物(約0.9 kbp)の取得が確認できた。
 製造元のプロトコールに従って、精製後の増幅産物をタンパク質発現用プラスミドのpET100ベクター(Invitrogen社製)に組み込み、6変異導入型D型アミノ酸脱水素酵素/pET100を構築した。当該発現ベクターは、T7プロモーター、及びリポソーム結合部位の下流、且つ、T7ターミネーターの上流にT. liolytica由来の6変異導入型D型アミノ酸脱水素酵素遺伝子を組み込むように構築した。この6変異導入型D型アミノ酸脱水素酵素遺伝子の塩基配列(配列番号7)を図12に示す。また、配列番号7の塩基配列がコードするアミノ酸配列(配列番号8)を図13に示す。
 なお、この発現ベクターには、ヒスチジン-タグが含まれている。また、他の発現ベクターに変異型D型アミノ酸脱水素酵素遺伝子を挿入する際には、D型アミノ酸脱水素酵素遺伝子に終止コドン(本実施例ではTAAを利用)を除けば、C末端のヒスチジンタグを付与することもできる。
 T. lipolytica由来のD型アミノ酸脱水素酵素に対して、5種類の変異が導入された変異酵素の遺伝子を作製するため、上記で作製した6変異導入型D型アミノ酸脱水素酵素/pET100を鋳型に利用して、タカラバイオ社製の「PrimeSTAR Max DNA Polymerase」を使用し、PCRにより当該発現ベクターを作製した。PCRは、製造業者の指示に従って実行した。PCR反応液は、以下のプライマーを各0.3 μM、上記の鋳型DNAを50ng含んで調製した。
  5’-CCGTGGATAGCTATGATATTCACGGCCAGC-3’(配列番号11)
  5’-GCTGGCCGTGAATATCATAGCTATCCACGG-3’(配列番号12)
 PCR後、反応液にDpnIを2μL加えて37℃で1時間処理し、処理後の溶液を用いて、E.coli DH5αを形質転換した。形質転換細胞を、抗生物質アンピシリン(最終濃度 100 mg/L)を含むLB寒天培地プレート上に塗布し、37℃で16時間培養した。生成したコロニーを採取し、アンピシリンを含むLB培地で一晩震とう培養した。遠心分離により、培養液から菌体を回収後、5変異導入型D型アミノ酸脱水素酵素/pET100をAccuPrep Plasmid Mini Extraction Kit (BIONEER)を利用して、製造元のプロトコールに従って回収した。この5変異導入型D型アミノ酸脱水素酵素遺伝子の塩基配列(配列番号13)を図14に示す。また、配列番号13の塩基配列がコードするアミノ酸配列(配列番号14)を図15に示す。
 上記で得られた発現ベクターまたはD型アミノ酸脱水素酵素/pET-16b(+)を利用して、E. coli BL21(DE3)株をそれぞれ形質転換した。これらを、アンピシリンを含むOvernight Express Instant LB 培地(Merck Millipore社製)250 mLに接種し、37℃で16時間振とう培養した。
 培養液中の菌体を遠心分離によって集め、この菌体を50 mMリン酸緩衝液(pH7.2)を用いて懸濁し、氷冷下で超音波破砕した。超音波破砕後に遠心分離し、得られた上清を粗酵素液とした。粗酵素液を、50℃で30分間熱処理し、その処理酵素液を、Ni-Chelating SepharoseTM Fast Flowクロマトグラフィー(GEヘルスケア・ジャパン社製)、Superdex200ゲルろ過クロマトグラフィー(GEヘルスケア・ジャパン社製)を用いて精製した。得られたD型アミノ酸脱水素酵素のタンパク質量をブラッドフォード法により測定した。
[実施例13 D型アミノ酸脱水素酵素の光学活性の確認]
 上記実施例2で取得したD型アミノ酸脱水素酵素について、光学活性を評価した。なお酵素の光学活性は、酵素の触媒反応に起因した活性染色法により評価した。より詳細には、適量の酵素溶液を、ディスクゲル電気泳動に供した。泳動後のゲルを、200 mM リン酸種緩衝液(pH8.0)、10 mM D-アラニンまたはL-アラニン、0.1 mM 2-(4-ヨードフェニル)-3-(4-ニトロフェニル)-5-フェニル-2-テトラゾリウム塩化物 (INT)(同仁化学社製)、 0.04 mM 1-メトキシ-5-メチルフェナジニウムメチル硫酸塩(PMS)(同仁化学社製)及び1.25 mMのNADP+を含む反応液に浸して、50℃で30分間保温した。この反応液中の2-(4-ヨードフェニル)-3-(4-ニトロフェニル)-5-フェニル-2-テトラゾリウム塩化物が還元されて、水溶性ホルマザンを生じる。反応式を以下に示す。尚、下記の反応式では、D型アミノ酸脱水素酵素を「meso-DAPDH」と表記する。
Figure JPOXMLDOC01-appb-C000005
 図16に、精製されたD型アミノ酸脱水素酵素をタンパク質染色及び活性染色に供した結果を示す。図16のレーン1及び2より、酵素に起因したシングルバンドが確認された。また、レーン2より、本酵素はD-アミノ酸に選択的に作用することが確認された。また、D型アミノ酸脱水素酵素は可逆的にD-アミノ酸の脱アミノ反応を触媒する。従って、D型アミノ酸脱水素酵素は、2-オキソ酸のアミノ化により、L-アミノ酸ではなくD-アミノ酸を合成することが確認された。
[実施例14 各種酵素のD-アミノ酸合成活性の確認]
 実施例2及び12で得られた各種酵素のD-アミノ酸合成活性の測定を行い、変異導入が、D-アミノ酸の合成活性に及ぼす影響を検討した。前記酵素の活性は、酵素の触媒反応で減少するNADPHまたはNADHを波長340 nmの吸光度の減少を測定することに定量し、これを指標として、酵素活性を求めることにより測定した。より詳細には、適量の酵素溶液を、5 mM 2-オキソ酸、0.1 mM NAD(P)H、200 mM 塩化アンモニウムを含む200 mMのグリシン緩衝液(pH9.5)中で混合することにより反応液を調製した。続いて、この反応液中のNAD(P)HからNAD(P)への変化に伴う340 nmの吸光度の減少を反応温度50℃で測定することにより活性測定を行った。吸光度は、紫外可視分光光度計 UV-1800(SHIMADZU社製)により測定した。得られた吸光度変化と実施例4で使用した式と同じ式を利用して酵素活性を測定し、使用した酵素のタンパク質量と酵素希釈率から酵素の比活性を算出した。表3に、各酵素のD-アミノ酸合成活性をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000006
 表3の結果から、変異導入前のD型アミノ酸脱水素酵素は、種々の2-オキソ酸を基質に利用して、分岐鎖D-アミノ酸や含硫D-アミノ酸、酸性D-アミノ酸等の様々な種類のD-アミノ酸を合成することが確認された。またD型アミノ酸脱水素酵素に対して変異を導入することで、NAD(P)H依存的な分岐鎖D-アミノ酸の合成活性の3倍程度の上昇が確認された。更に、変異導入前の酵素では活性が検出されなかったNADH依存的な芳香族D-アミノ酸の合成活性の新たな発現が確認された。

Claims (12)

  1. 下記(a)及び(b)の特徴を有する酵素:
    (a)D-アミノ酸を可逆的に脱水素する活性を有する
    (b)配列番号2のアミノ酸配列との同一性が80%以上であるアミノ酸配列を有するポリペプチドの6量体である。
  2. 2-オキソブタン二酸からD-アスパラギン酸を合成する活性を有する、請求項1に記載の酵素。
  3. 更に下記特徴(c)を有する請求項1又は2に記載の酵素:
    (c)NADH及びNADPHの両方を補酵素として利用可能である。
  4. 更に下記特徴(d)を有する請求項1~3のいずれかに記載の酵素:
    (d)meso-ジアミノピメリン酸を基質とし、NADを補酵素とする場合のNADに対するK値が30mM以下である。
  5. 更に下記特徴(e)を有する請求項1~4のいずれかに記載の酵素:
    (e)meso-ジアミノピメリン酸を基質とする場合の至適活性pHが10.5である。
  6. 更に下記特徴(f)を有する請求項1~5のいずれかに記載の酵素:
    (f)meso-ジアミノピメリン酸を基質とする場合の至適活性温度が55度である。
  7. 配列番号2のアミノ酸配列との同一性が80%以上であるアミノ酸配列において、Asp94Ser、Met154Leu、Val158Gly、Thr173Ile、Arg183Met、及びHis229Asnからなる群より選択される1つ以上のアミノ酸置換を有する、項1~3のいずれかに記載の酵素。
  8. 請求項1~7のいずれかの酵素をコードするポリヌクレオチド。
  9. 請求項8に記載のポリヌクレオチドを組み込んだベクター。
  10. 請求項9に記載のベクターを含む形質転換体。
  11. 請求項10に記載の形質転換体を培養することを含む、請求項1~5のいずれかに記載の酵素の製造方法。
  12. 請求項1~7のいずれかに記載の酵素をD-アミノ酸に作用させ、2-オキソ酸を製造する方法。
PCT/JP2018/029889 2017-08-09 2018-08-09 D型アミノ酸脱水素酵素 WO2019031574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18844724.7A EP3666894B8 (en) 2017-08-09 2018-08-09 D type amino acid dehydrogenase
JP2019535714A JP6675519B2 (ja) 2017-08-09 2018-08-09 D型アミノ酸脱水素酵素
CN201880050244.7A CN111051508A (zh) 2017-08-09 2018-08-09 D型氨基酸脱氢酶
US16/637,444 US11098288B2 (en) 2017-08-09 2018-08-09 D-type amino acid dehydrogenase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-154621 2017-08-09
JP2017154621 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019031574A1 true WO2019031574A1 (ja) 2019-02-14

Family

ID=65272485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029889 WO2019031574A1 (ja) 2017-08-09 2018-08-09 D型アミノ酸脱水素酵素

Country Status (5)

Country Link
US (1) US11098288B2 (ja)
EP (1) EP3666894B8 (ja)
JP (1) JP6675519B2 (ja)
CN (1) CN111051508A (ja)
WO (1) WO2019031574A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746061A (zh) * 2021-02-23 2021-05-04 江南大学 内消旋-二氨基庚二酸脱氢酶突变体及其应用
JP2021528956A (ja) * 2018-08-17 2021-10-28 ▲凱▼菜英生命科学技▲術▼(天津)有限公司 アミノ酸デヒドロゲナーゼ突然変異体及びその応用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108740A (ja) * 2015-12-15 2017-06-22 国立研究開発法人産業技術総合研究所 改変型meso−ジアミノピメリン酸脱水素酵素

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2653538A1 (de) * 2012-04-20 2013-10-23 Evonik Industries AG NADP-abhängige Alanindehydrogenase
CN105821014A (zh) * 2015-01-07 2016-08-03 中国科学院天津工业生物技术研究所 嗜热共生杆菌meso-二氨基庚二酸脱氢酶突变体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108740A (ja) * 2015-12-15 2017-06-22 国立研究開発法人産業技術総合研究所 改変型meso−ジアミノピメリン酸脱水素酵素

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKITA, H. ET AL.: "Creation of a thermostable NADP+-dependent D-amino acid dehydrogenase from Ureibacillus thermosphaericus strain Al meso- diaminopimelate dehydrogenase by site-directed mutagenesis", BIOTECHNOL LETT, vol. 34, 2012, pages 1693 - 1699, XP035105215 *
AKITA, HIRONAGA ET AL.: "Thermostable artificial NADP+- dependent D-amino acid dehydrogenase: its creation and application", BITAMIN = VITAMINS, vol. 90, no. 11, 2016, pages 544 - 554, XP009518803, ISSN: 0006-386X *
DATABASE nucleotide [O] 2 December 2016 (2016-12-02), "Thermosyntropha lipolytica DSM 11003 genome assembly, contig:EK14DRAFT_scaffold00009.9, whole genome shotgun sequence.", XP055571789, Database accession no. FQWY01000010 *
See also references of EP3666894A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528956A (ja) * 2018-08-17 2021-10-28 ▲凱▼菜英生命科学技▲術▼(天津)有限公司 アミノ酸デヒドロゲナーゼ突然変異体及びその応用
EP3839045A4 (en) * 2018-08-17 2022-03-16 Asymchem Life Science (Tianjin) Co., Ltd AMINO ACID DEHYDROGENASE MUTANT AND ASSOCIATED APPLICATION
JP7083408B2 (ja) 2018-08-17 2022-06-10 ▲凱▼菜英生命科学技▲術▼(天津)有限公司 アミノ酸デヒドロゲナーゼ突然変異体及びその応用
US11603521B2 (en) 2018-08-17 2023-03-14 Asymchem Life Science (Tianjin) Co., Ltd Amino acid dehydrogenase mutant and use thereof
CN112746061A (zh) * 2021-02-23 2021-05-04 江南大学 内消旋-二氨基庚二酸脱氢酶突变体及其应用

Also Published As

Publication number Publication date
EP3666894B8 (en) 2022-12-21
US11098288B2 (en) 2021-08-24
JP6675519B2 (ja) 2020-04-01
JPWO2019031574A1 (ja) 2020-03-26
CN111051508A (zh) 2020-04-21
EP3666894A1 (en) 2020-06-17
EP3666894B1 (en) 2022-02-16
EP3666894A4 (en) 2020-06-17
US20200248153A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
CN109609474B (zh) 一种氨基酸脱氢酶突变体及其在合成l-草铵膦中的应用
JP5232247B2 (ja) L−サクシニルアミノアシラーゼ、およびこれを用いたl−アミノ酸の製造方法
JP2003000288A (ja) トランスアミナーゼ及びアミノトランスフェラーゼ
CN112280761B (zh) 一种重组转氨酶和所述重组转氨酶的突变体及其应用
JP2009529856A (ja) 新規アルドラーゼ及び4−ヒドロキシ−l−イソロイシンの製造方法
JP2011139667A (ja) プロリンおよびβ−アラニンをN末端に有するジペプチド、及びその環化ジペプチドの酵素合成法
JP6675520B2 (ja) D型アミノ酸脱水素酵素
CN111019982B (zh) 一种利用羟基酸脱氢酶制备l-草铵膦的方法
US11098288B2 (en) D-type amino acid dehydrogenase
JP6853549B2 (ja) 改変型meso−ジアミノピメリン酸脱水素酵素
CN117264935A (zh) 一种苯丙氨酸解氨酶突变体及其用途
US20030175909A1 (en) Novel thermostable galactose isomerase and tagatose production thereby
US20230332116A1 (en) Polypeptide with aspartate kinase activity and use thereof in production of amino acid
CN112921012B (zh) 谷氨酸棒杆菌meso-2,6-二氨基庚二酸脱氢酶突变体及其应用
CN110804602B (zh) 一种L-天冬氨酸β-脱羧酶突变体及其应用
RU2821918C1 (ru) Полипептид с аспартаткиназной активностью и его применение для получения аминокислоты
CN114934038B (zh) 天冬氨酸酶突变体及其应用
TWI756604B (zh) 鳥胺酸脫羧酶變異體、使用其製造丁二胺之方法、聚核苷酸、微生物、聚醯胺的製備方法以及聚醯胺製備用組成物
JP4193986B2 (ja) ガンマグルタミルシステインの生産方法
CN107201355B (zh) 一种高立体选择性苯丙氨酸脱氨酶突变体及其应用
JP2011239707A (ja) ペプチドの製造法
CN118755707A (zh) 特异性腺苷脱氨酶突变体及应用
CN115927229A (zh) 缬氨酸脱氢酶及其突变体在制备手性l-氨基酸中的应用
CN118638759A (zh) 一种烟酰胺磷酸核糖转移酶突变体及其应用
CN116355875A (zh) 甲硫氨酸腺苷基转移酶突变体及其在生产s-腺苷甲硫氨酸中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844724

Country of ref document: EP

Effective date: 20200309