WO2019031383A1 - ガス検知エレメント - Google Patents

ガス検知エレメント Download PDF

Info

Publication number
WO2019031383A1
WO2019031383A1 PCT/JP2018/029036 JP2018029036W WO2019031383A1 WO 2019031383 A1 WO2019031383 A1 WO 2019031383A1 JP 2018029036 W JP2018029036 W JP 2018029036W WO 2019031383 A1 WO2019031383 A1 WO 2019031383A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
spacer
layer
gas detection
gas sensing
Prior art date
Application number
PCT/JP2018/029036
Other languages
English (en)
French (fr)
Inventor
凡子 鈴木
樋口 浩之
中村 公一
正也 西川原
ナヒード モハジェリ
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018145006A external-priority patent/JP7017994B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020207003420A priority Critical patent/KR102649650B1/ko
Priority to EP18844276.8A priority patent/EP3667300A4/en
Priority to US16/637,451 priority patent/US11530992B2/en
Priority to CN201880050841.XA priority patent/CN111033239A/zh
Publication of WO2019031383A1 publication Critical patent/WO2019031383A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the present application relates to gas sensing elements.
  • Hydrogen gas is used in a variety of applications, such as energy generation means such as batteries, energy storage means, and energy delivery means.
  • hydrogen gas is a flammable gas which is colorless and odorless and has a wide explosion limit in the atmosphere. Therefore, in an environment and / or apparatus that handles hydrogen gas, it is necessary for safety to properly detect the leak of hydrogen gas.
  • the method using soapy water is complicated in preparation for measurement, and when the amount of leaked hydrogen gas is very small, it is difficult to determine whether or not bubbles are generated, and there is a problem that detection accuracy is poor. Further, in the method using a hydrogen sensor, there is a problem that the reliability is lowered due to the influence of the air flow in the measurement environment, and there is a problem that it is difficult to accurately identify the leakage location.
  • the hydrogen detection tape is provided with a chemochromic pigment whose color changes upon contact with hydrogen gas, and the presence of hydrogen gas can be detected by the color change of the chemochromic pigment (for example, Patent Documents 1-7) .
  • the hydrogen detection tape is used by being installed on a member to be inspected such as piping which may leak hydrogen gas.
  • a member to be inspected such as piping which may leak hydrogen gas.
  • discoloration occurs in the area of the hydrogen detection tape corresponding to the leak point. Thereby, the leak of hydrogen gas can be detected.
  • the discolored area produced in the hydrogen detection tape is also minute.
  • the hydrogen station which is expected to be widely used in the future, has a leak port for detecting a leak of hydrogen gas
  • the opening of this port is expected to have a small diameter of about 1 mm to 3 mm. Ru.
  • the present invention has been made in view of such background, and an object of the present invention is to provide a gas detection element capable of significantly enhancing the visibility of the gas to be measured against leakage.
  • a gas detection element for detecting a gas to be measured, the gas detection element comprising: A gas detection layer containing a chemochromic pigment, A spacer, Have The spacer is permeable to the gas to be measured, The gas sensing element is provided, wherein the spacer is disposed on the first surface of the gas sensing layer and has a smaller area than the gas sensing layer.
  • the gas detection element is for detecting a gas to be measured, Having a gas sensing layer containing a chemochromic pigment,
  • the gas detection layer has a space filled with the gas to be measured on the first surface,
  • the space is provided with a gas sensing element having a smaller area than the gas sensing layer.
  • the present invention it is possible to provide a gas detection element capable of significantly enhancing the visibility for the leakage of the gas to be measured.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of a gas detection element according to an embodiment of the present invention. It is sectional drawing which showed the application example of the conventional hydrogen detection tape typically. It is sectional drawing which showed typically the usage form of the gas detection element by one Embodiment of this invention.
  • FIG. 5 is a top view schematically showing one form of a spacer used for a gas detection element according to one embodiment of the present invention.
  • FIG. 6 is a top view schematically showing another form of the spacer used for the gas sensing element according to one embodiment of the present invention.
  • FIG. 8 is a top view schematically showing still another form of the spacer used for the gas detection element according to one embodiment of the present invention.
  • FIG. 5 is a top view schematically showing one form of a spacer used for a gas detection element according to one embodiment of the present invention.
  • FIG. 6 is a top view schematically showing another form of the spacer used for the gas sensing element according to one embodiment of the present invention.
  • FIG. 8 is a top view schematically showing still another form of the spacer used for the gas detection element according to one embodiment of the present invention.
  • FIG. 8 is a top view schematically showing still another form of the spacer used for the gas detection element according to one embodiment of the present invention.
  • FIG. 8 is a top view schematically showing still another form of the spacer used for the gas detection element according to one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically illustrating an example of a multilayer structure spacer used for a gas sensing element according to an embodiment of the present invention. It is the figure which showed typically an example of the laminated body comprised by laminating
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of a strip-shaped gas detection element according to an embodiment of the present invention. It is a sectional view showing typically an example of 1 composition of another gas sensing element by one embodiment of the present invention.
  • FIG. 6 is a top view schematically illustrating a first surface of a gas sensing layer in another gas sensing element according to an embodiment of the present invention.
  • FIG. 6 is a top view schematically illustrating a first surface of a gas sensing layer in another gas sensing element according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a usage of another gas sensing element according to an embodiment of the present invention. It is a figure showing typically an example of the flow of the manufacturing method of the gas sensing element by one embodiment of the present invention.
  • a gas detection element for detecting hydrogen gas will be described as an application example of an embodiment of the present invention.
  • the present invention is also applicable to gas detection elements for detecting reducing gases other than hydrogen gas.
  • reducing gas means a gas containing at least one of hydrogen, hydrogen sulfide, carbon monoxide, methane, formaldehyde, acetylene, sulfur dioxide and nitrous oxide.
  • FIG. 1 schematically shows an example of the configuration of a gas detection element (hereinafter referred to as “first gas detection element”) according to an embodiment of the present invention.
  • the first gas sensing element 100 has a first side 102 and a second side 104.
  • the first gas sensing element 100 also includes a support 110, a gas sensing layer 120, a spacer 140, and a release liner 150.
  • the support 110 constitutes the second side 104 of the first gas sensing element 100.
  • the release liner 150 also constitutes the first side 102 of the first gas sensing element 100. However, at least one of the support 110 and the release liner 150 may be omitted.
  • the support 110 has a role of supporting members after the gas detection layer 120 disposed on the top.
  • Gas sensing layer 120 has a first surface 122 and a second surface 124.
  • the second surface 124 of the gas detection layer 120 is the surface closer to the support 110, and the first surface 122 is the surface farther from the support 110.
  • the second surface 124 of the gas detection layer 120 may be the second side 104 of the first gas detection element 100.
  • the gas detection layer 120 has a role of detecting hydrogen gas. More specifically, the gas detection layer 120 changes its color upon contact with hydrogen gas, whereby the presence of hydrogen gas can be detected.
  • the first gas detection element 100 may further have an adhesive layer (undercoat layer) between the support 110 and the gas detection layer 120.
  • the adhesion layer has a role of enhancing the adhesion between the support 110 and the gas detection layer 120.
  • an adhesive layer may be omitted if it is not necessary.
  • the gas detection layer 120 has a resin matrix 130 and a chemochromic pigment 135 added to the resin matrix 130.
  • the chemochromic pigment 135 has a material whose color changes upon contact with hydrogen gas.
  • a material whose color changes upon contact with hydrogen gas For example, palladium oxide is known to change color upon contact with hydrogen gas. Therefore, the chemochromic pigment 135 may contain palladium oxide.
  • the gas detection layer 120 has adhesiveness.
  • the spacer 140 is disposed on the side of the first surface 122 of the gas sensing layer 120.
  • the spacer 140 has hydrogen gas permeability. Thus, when hydrogen gas is introduced into the spacer 140, the hydrogen gas diffuses relatively quickly across the spacer 140.
  • the spacer 140 is configured to have an area smaller than the area of the gas detection layer 120 when viewed from the second side 104.
  • the spacer 140 is configured to be surrounded by the gas sensing layer 120 when viewed from the second side 104.
  • the spacer 140 has a substantially circular shape in top view.
  • the shape of the spacer 140 is not limited to a substantially circular shape.
  • the release liner 150 has a role of covering the gas detection layer 120 and a member (for example, the spacer 140 or the like) provided on the first surface 122 thereof.
  • the gas detection layer 120 has adhesiveness, and therefore, in the state where the first surface 122 is exposed, the handling property of the first gas detection element 100 is deteriorated.
  • the presence of the release liner 150 can prevent the first surface 122 of the gas sensing layer 120 from being exposed, and the first gas sensing element 100 can be easily handled.
  • the release liner 150 is not an essential component of the present invention, and may be omitted if it is not necessary.
  • the first surface 122 of the gas sensing layer 120 and the spacer 140 constitute the first side 102 of the first gas sensing element 100.
  • the release liner 150 may have a protrusion 154 at at least one end.
  • the protrusion 154 is formed by reducing the thickness of the release liner 150.
  • the protrusion 154 may be configured by extending the release liner 150 outward as it is or by processing the shape of the end of the release liner 150.
  • release liner 150 is facilitated.
  • FIG. 2 the state which affixed the conventional hydrogen detection tape to the to-be-tested member is shown typically.
  • the conventional hydrogen detection tape 1 has a support 10, a hydrogen gas detection layer 20 and an adhesive layer 29 in this order.
  • the inspected member 180 has a first surface 181 and a second surface 183.
  • the member 180 to be inspected has a space on the second surface 183 side, and a hole 185 penetrating from the first surface 181 to the second surface 183 is formed in part.
  • the hole 185 is in communication with the space.
  • the second surface 183 of the member 180 to be inspected is formed with an opening 187 of diameter ⁇ 1 corresponding to the hole 185.
  • the case where the conventional hydrogen detection tape 1 is installed in the to-be-inspected member 180 is assumed.
  • the hydrogen gas detection layer 20 of the hydrogen detection tape 1 is discolored at the portion facing the opening 187 of the hole 185. Therefore, the leakage of hydrogen gas can be detected from the side of the support 10 by the discolored area 21.
  • the color-changed area 21 of the hydrogen gas detection layer 20 has a diameter ⁇ 2 that is equal to or somewhat larger than the diameter ⁇ 1 of the opening 187 of the hole 185.
  • FIG. 3 the state which installed the 1st gas detection element 100 which has the above-mentioned structure in the to-be-inspected member 180 is shown typically.
  • the chemochromic pigment 135 contained in the gas detection layer 120 is not shown in FIG. 3 in order to make the drawing easy to see.
  • the release liner 150 When actually using the first gas detection element 100 with respect to the member 180 to be inspected, first, the release liner 150 is peeled off and removed from the first gas detection element 100 configured as shown in FIG. Ru. At this time, a protrusion 154 provided on the release liner 150 may be used. By holding the projection 154 and peeling the release liner 150 from the first gas sensing element 100, the release liner 150 can be easily separated from the rest.
  • the first gas detection element 100 is attached to the member 180 to be inspected.
  • the first gas sensing element 100 is brought into contact with the inspection member 180 such that the first surface 122 of the gas sensing layer 120 and the spacer 140 exposed by the removal of the release liner 150 come into contact with the member 180 It is attached to the inspected member 180.
  • the spacer 140 is disposed on the opening 187 of the member 180 to be inspected.
  • the region of the spacer 140 facing the opening 187 is particularly referred to as the “contact portion (142)”.
  • the first gas detection element 100 is fixed to the inspection target member 180 by the adhesion of the gas detection layer 120.
  • the spacer 140 is surrounded by the gas detection layer 120, the position of the spacer 140 with respect to the inspection member 180 is fixed.
  • a gap 149 may be formed between the gas detection layer 120 and the spacer 140 along the periphery of the spacer 140.
  • the spacer 140 has permeability to hydrogen gas as described above. Therefore, the hydrogen gas that has entered the first gas sensing element 100 from the contact portion 142 of the spacer 140 diffuses quickly and laterally above the spacer 140, and then on the first surface 122 of the gas sensing layer 120. It spreads over the entire contact surface with the spacer 140. Also, due to the presence of the spacer 140, the hydrogen gas also flows around the spacer 140. Furthermore, if a gap 149 exists around the spacer 140, the gap 149 is also filled with hydrogen gas quickly.
  • the first surface 122 of the gas detection layer 120 comes into contact with the hydrogen gas in a wide area.
  • a larger discolored area 121 can be obtained.
  • discolored region 121 of larger diameter phi 2 sufficiently obtained.
  • each member constituting the gas detection element according to the embodiment of the present invention will be described in more detail.
  • components of the first gas detection element 100 described above will be described by way of example. Therefore, when referring to each member, the reference numerals shown in FIGS. 1 and 3 are used.
  • the support 110 has a role of supporting a member such as the gas detection layer 120 on the top, as described above. However, the support 110 may be omitted.
  • the support 110 is transparent and it is necessary to be able to see the change in color of the gas sensing layer 120 from the side opposite to the gas sensing layer 120, ie the second side 104 of the first gas sensing element 100.
  • Such materials include, but are not limited to, for example, polyimide, polyethylene (PE), polypropylene (PP), fluorinated ethylene propylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polyvinylidene fluoride (PVDF), and the like.
  • PE polyethylene
  • PP polypropylene
  • FEP fluorinated ethylene propylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PTFE polytetrafluoroethylene
  • PET polyethylene terephthalate
  • PVDF polyvinylidene fluoride
  • the thickness of the support 110 is not particularly limited, but if it is too thick, the color change of the gas detection layer 120 may become unclear. Therefore, the thickness of the support 110 is in the range of 10 ⁇ m to 1000 ⁇ m, for example, in the range of 20 ⁇ m to 200 ⁇ m, and preferably in the range of 25 ⁇ m to 100 ⁇ m.
  • the support 110 does not cause deterioration or discoloration even when used for a long time in an environment irradiated with ultraviolet light.
  • the first gas sensing element 100 can be used outdoors for a long time.
  • the period during which the support 110 does not change color is, for example, one month or more, and preferably six months or more.
  • the support 110 may contain a weathering agent such as an ultraviolet light absorber and a light stabilizer.
  • the gas detection layer 120 has the resin matrix 130 and the chemochromic pigment 135 added in the resin matrix 130 as described above.
  • the chemochromic pigment 135 is preferably dispersed in the resin matrix 130.
  • the resin matrix 130 has no reactivity with hydrogen gas and functions as a medium for holding the chemochromic pigment 135.
  • the resin matrix 130 is configured not to significantly inhibit the diffusion of hydrogen gas. Otherwise, the hydrogen gas can not reach the chemochromic pigment 135, and rapid hydrogen gas detection can not be performed.
  • the resin matrix 130 is made of a material that allows the user to visually recognize the color change that occurs when the chemochromic pigment 135 is in contact with the hydrogen gas.
  • the resin matrix 130 is made of a material having adhesiveness.
  • Such materials include, for example, acrylic resins, silicone resins, urethane resins, rubbers, and olefins.
  • the resin matrix 130 includes a silicone resin
  • silicone resin may have a phenylmethyl group or a dimethyl group.
  • the chemochromic pigment 135 has a material whose color changes upon contact with hydrogen gas (hereinafter, referred to as "discoloring material").
  • discoloring material a material whose color changes upon contact with hydrogen gas.
  • palladium oxide is known to change color upon contact with hydrogen gas. Therefore, the chemochromic pigment 135 may contain palladium oxide as a color change material.
  • the color-changing material may change its color irreversibly upon contact with hydrogen gas.
  • the chemochromic pigment 135 may be in the form of particles.
  • particles is not necessarily limited to a substance having a substantially spherical shape.
  • the “particles” may have various forms such as, for example, cylindrical, prismatic, rod-like, fibrous, conical, pyramidal, and hemispherical.
  • the chemochromic pigment 135 may have a noble metal catalyst in order to enhance the reactivity with hydrogen gas.
  • noble metal catalysts include noble metals other than palladium, such as platinum and platinum alloys.
  • the noble metal catalyst is introduced into the chemochromic pigment 135, for example, by loading or doping a noble metal on the surface of the color-change material.
  • the noble metal may be composed of fine particles of nanometer order.
  • the chemochromic pigment 135 may have a form in which a color changing material is disposed on the surface of the carrier particle.
  • the color changing material may be supported or doped with a noble metal catalyst as described above.
  • the color change material is disposed, for example, to cover at least a portion of the carrier particles.
  • the carrier particles may be made of, for example, an oxide such as titanium oxide.
  • the particles of the chemochromic pigment 135 may for example have a maximum dimension in the range of 0.1 ⁇ m to 20 ⁇ m, in particular in the range of 0.2 ⁇ m to 10 ⁇ m.
  • the “maximum dimension” means the diameter of the particles when the particles are approximately spherical or hemispherical, and the maximum length when the particles are approximately cylindrical or other shapes.
  • the content of the chemochromic pigment 135 with respect to the resin matrix 130 is, for example, in the range of 1% by mass to 10% by mass.
  • the thickness (substantially equal to that of the resin matrix 130) of the gas detection layer 120 is not particularly limited, but is, for example, in the range of 5 ⁇ m to 200 ⁇ m, preferably in the range of 10 ⁇ m to 100 ⁇ m, and more preferably 30 ⁇ m to It is in the range of 80 ⁇ m.
  • the spacer 140 is made of a material having permeability to hydrogen gas.
  • the permeability includes both the permeability in the thickness direction of the spacer 140 and the permeability in the plane direction of the spacer 140.
  • the permeability in the surface direction may be limited to only the upper and lower surfaces of the spacer 140.
  • the spacer 140 is not limited to this, for example, (1) Pulp paper (including cardboard and kraft paper), (2) Non-woven fabric or woven fabric containing fibers of inorganic material fibers such as glass, ceramic or metal, or polymer materials such as synthetic resin, (3) Thermal diffusion sheet containing inorganic material such as glass, ceramic or metal, or polymer material such as synthetic resin (4) A porous sheet containing an inorganic material such as glass, ceramic or metal, or a polymer material such as synthetic resin, or (5) a foam having communicating holes, And so on.
  • Pulp paper including cardboard and kraft paper
  • Non-woven fabric or woven fabric containing fibers of inorganic material fibers such as glass, ceramic or metal, or polymer materials such as synthetic resin
  • Thermal diffusion sheet containing inorganic material such as glass, ceramic or metal, or polymer material such as synthetic resin
  • a porous sheet containing an inorganic material such as glass, ceramic or metal, or a polymer material such as synthetic resin or (5) a foam having communicating holes, And so on.
  • the thickness of the spacer 140 is not particularly limited, but is, for example, in the range of 5 ⁇ m to 1000 ⁇ m, preferably in the range of 50 ⁇ m to 700 ⁇ m, and more preferably in the range of 60 ⁇ m to 400 ⁇ m.
  • FIG. 4 schematically shows an example of a top view of the first gas detection element 100.
  • the support 110 and the release liner 150 are omitted for clarity of the description.
  • the gas detection layer 120 is shown by a broken line.
  • an example of the opening 187 of the inspection member 180 in which the first gas detection element 100 is installed is also shown by a broken line.
  • the first gas detection element 100 is used such that the opening 187 of the member 180 to be inspected is disposed substantially at the center of the spacer 140.
  • this is merely an example, and the relative positional relationship between the spacer 140 and the opening 187 is not particularly limited as long as the opening 187 overlaps the spacer 140.
  • the user of the first gas sensing element 100 will use the first gas sensing element 100 in such a way that the opening 187 is located approximately in the center of the spacer 140.
  • the spacer 140 has a substantially circular shape and is disposed substantially at the center of the gas detection layer 120.
  • the shape of the spacer 140 and the relative positional relationship between the gas detection layer 120 and the spacer 140 are not particularly limited.
  • the spacer 140 may be substantially elliptical, substantially rectangular, substantially trapezoidal, substantially polygonal, or the like.
  • the spacers 140 may be in the form of symbols and / or letters, or in the form of a grid.
  • printing or the like may be performed on the spacer 140 so that the characters are exposed when the gas detection layer 120 is colored.
  • FIG. 5 and 6 schematically show another form of the spacer used for the first gas sensing element 100.
  • FIG. 5 and 6 schematically show another form of the spacer used for the first gas sensing element 100.
  • the spacer 140-1 has a ring shape and is disposed substantially at the center of the gas detection layer 120.
  • the spacer 140-1 is arranged, for example, such that the central hole of the ring surrounds the opening 187 of the inspected member 180. That is, the space formed by the central hole of the ring-shaped spacer 140-1 is disposed above the opening 187.
  • the spacers 140-2 and 140-3 have a substantially rectangular shape and are disposed to be spaced apart from each other by a predetermined distance.
  • the gap formed between the two spacers 140-2 and 140-3 forms an area including the central portion of the gas detection layer 120.
  • the spacers 140-2, 140-3 are disposed such that the opening 187 of the member 180 to be inspected is disposed in the gap between the two spacers 140-2, 140-3.
  • a space formed between the spacer 140-2 and the spacer 140-3 is disposed above the opening 187.
  • the spacers (140, 140-1, 140-2, 140-3) are all surrounded by the gas detection layer 120 in a top view.
  • this is merely an example, and at least a part of the end face of the spacer (140, 140-1, 140-2, 140-3) may be exposed to the outside.
  • FIG. 6 in each of the spacers 140-2 and 140-3, it is assumed that the upper side and the lower side extend to the end of the gas detection layer 120.
  • the spacers may be arranged in a manner as shown in FIG.
  • a single substantially rectangular spacer 140-4 is disposed approximately at the center of the gas detection layer 120 so as to cover the opening 187 in a top view. Also, in the spacer 140-4, the top side 146U and the bottom side 146D respectively extend to corresponding ends of the gas detection layer 120. However, in the spacer 140-4, one of the top side 146U or the bottom side 146D may extend to the corresponding end of the gas detection layer 120.
  • the spacer when a part of the spacer extends to the end of the gas detection layer 120, the spacer may have an aspect as shown in FIG. 8 or FIG.
  • the spacer 140-5 has a central rectangular portion 143A and an extending portion 144A in a top view.
  • the spacer 140-5 is disposed substantially at the center of the gas detection layer 120 so that the central rectangular portion 143A covers the opening 187 in a top view.
  • the extended portion 144A extends to the corresponding end (the side 146S in the example of FIG. 8) of the gas detection layer 120 in the spacer 140-5.
  • the spacer 140-6 has a central rectangular portion 143B and an extending portion 144B in a top view.
  • the spacer 140-6 is disposed substantially at the center of the gas detection layer 120 so that the central rectangular portion 143B covers the opening 187 in a top view.
  • the extended portion 144B of the spacer 140-6 extends to the corresponding end (the corner 146C in the example of FIG. 9) of the gas detection layer 120.
  • the gas detection layer 120 may be a release liner 150. It can be easy to peel off.
  • the area of the gas detection layer 120 when the area of the gas detection layer 120 is S g and the area of the spacers 140 is S s in top view, the area of the gas detection layer 120 It is preferable that the ratio S s / S g of the area of the spacer 140 to that of S is in the range of 0.02 to 0.9, and more preferably in the range of 0.05 to 0.8. More preferably, it is in the range of .7.
  • the spacer 140 does not necessarily have the above-mentioned function from the beginning (before being attached to the inspected member 180 and used).
  • a layer not having hydrogen permeability is provided on a part of the first surface 122 of the gas detection layer 120, and converted to the spacer 140 in a later stage, for example, in use. Also good.
  • this layer is foamed by applying heat to the foamable layer previously placed on the first surface 122 of the gas sensing layer 120 to Permeability may be expressed.
  • the spacer 140 may have adhesiveness. In such an embodiment, as described below, the spacer 140 can be used independently of other members (for example, the gas detection layer 120 and the support 110).
  • the spacer 140 is installed at a necessary place of the inspected member 180. Since the spacer 140 has adhesiveness, it can be easily adhered to the necessary portion of the inspection member 180. Thereafter, the gas detection layer 120 (and the support 110, if present) is installed on the inspected member 180 so as to cover the spacer 140 at the necessary timing.
  • the gas detection element according to one embodiment of the present invention may be configured only at the timing when the actual gas detection test is performed.
  • the spacer 140 used in such a mode needs to have an adhesive force to the inspected member 180. Therefore, the spacer 140 may be composed of a plurality of layers.
  • FIG. 10 schematically shows an example of a cross section of a spacer (hereinafter, referred to as “multilayer structure spacer”) 340 configured by laminating such a plurality of layers.
  • the multilayer structured spacer 340 has a body layer 352 and an adhesive layer 362.
  • the body layer 352 has a first surface 354 and a second surface 356, and the adhesive layer 362 is disposed on the side of the second surface 356 of the body layer 352.
  • Multilayer spacer 340 also has a first side 342 and a second side 344.
  • the first side 342 of the multilayer spacer 340 is on the side of the first surface 354 of the body layer 352, and the second side 344 of the multilayer spacer 340 is on the side of the adhesive layer 362.
  • the first side of the multilayer spacer 340 corresponds to the side of the gas sensing layer 120 and the second side 344 of the multilayer spacer 340 is the member under test 180 Correspond to the side of.
  • the main body layer 352 may be made of the above-described member having permeability to hydrogen gas, for example, the above (1) to (5).
  • the body layer 352 may be made of, for example, non-porous resin.
  • the thickness of the main layer 352 is not particularly limited, but may be, for example, in the range of 2 ⁇ m to 1000 ⁇ m.
  • the adhesive layer 362 is provided to make the body layer 352 tacky.
  • the adhesive layer 362 may be a single layer or a plurality of layers.
  • the adhesive layer 362 is composed of three layers of the first layer 364, the second layer 366, and the third layer 368 in order of proximity to the main body layer 352.
  • the first layer 364 is tacky and is used to bond the layers disposed on both sides of the first layer 364.
  • the first layer 364 has a role of adhering the body layer 352 and the second layer 366 to each other.
  • the third layer 368 has the same function as the first layer 364. That is, the third layer 368 is adhesive, and has a role of adhering the second layer 366 and the member to be inspected to each other.
  • the second layer 366 is used to provide the adhesive layer 362 with rigidity.
  • the first layer 364 may be made of, for example, acrylic resin, silicone resin, urethane resin, rubber, or olefin. If the first layer 364 comprises a silicone resin, such silicone resin may have phenylmethyl or dimethyl groups.
  • the first layer 364 may have a thickness of, for example, 1 ⁇ m to 200 ⁇ m.
  • the thickness of the first layer 364 is preferably in the range of 5 ⁇ m to 100 ⁇ m, and more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • the second layer 366 is made of, for example, polyimide, polyethylene (PE), polypropylene (PP), fluorinated ethylene propylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), polytetrafluoroethylene PTFE), polyethylene terephthalate (PET), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), or polyvinylidene fluoride (PVDF).
  • PE polyethylene
  • PP polypropylene
  • FEP fluorinated ethylene propylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PETFE polyethylene terephthalate
  • PVDF polyvinylidene fluoride
  • the thickness of the second layer 366 is, for example, in the range of 1 ⁇ m to 100 ⁇ m, preferably in the range of 5 ⁇ m to 75 ⁇ m, and more preferably in the range of 10 ⁇ m to 50 ⁇ m.
  • the thickness of the adhesive layer 362 may be adjusted to be, for example, in the range of 3 ⁇ m to 500 ⁇ m.
  • the adhesive layer 362 is not disposed on the entire second surface 356 of the main body layer 352. That is, the adhesive layer 362 is partially disposed on the second surface 356 of the body layer 352, and as a result, the non-installation portion 370 of the adhesive layer 362 is present on the second surface 356 of the body layer 352. .
  • the adhesive layer 362 is on the second surface 356 of the body layer 352. It may be installed throughout.
  • the multilayer spacer 340 When the multilayer spacer 340 is used, the multilayer spacer 340 is placed on the inspected member 180 such that the second side 344 of the multilayer spacer 340, ie, the adhesive layer 362, is adhered to the inspected member 180. Will be installed.
  • the multilayer structured spacer 340 does not necessarily have to be prepared in a state in which the main body layer 352 and the adhesive layer 362 are integrated. For example, only the adhesive layer 362 of the multilayer spacer 340 is first installed on the inspection member 180, and then the main layer 352 of the multilayer spacer 340 is installed on the adhesive layer 362 The multi-layered spacer 340 may be completed.
  • the remaining part of the gas sensing element according to an embodiment of the present invention e.g. gas sensing layer 120 and support 110
  • the remaining part of the gas sensing element according to an embodiment of the present invention e.g. gas sensing layer 120 and support 110
  • one embodiment of the present invention A gas sensing element according to
  • release liner 150 As the release liner 150, a conventional release paper etc. can be used, and it is not particularly limited. For example, low adhesion of a release liner having a release-treated layer on the surface of a resin film such as PET or a liner substrate such as paper, low adhesion of a fluorine-based polymer (polytetrafluoroethylene or the like) or a polyolefin resin (PE, PP or the like) A release liner or the like made of a material can be used.
  • the release treatment layer may be formed, for example, by surface treatment of the liner base material with a release treatment agent such as silicone, long chain alkyl, fluorine, or molybdenum sulfide.
  • the thickness (total thickness) of the release liner 150 is not particularly limited, but is preferably about 10 to 500 ⁇ m (eg, 15 to 100 ⁇ m) from the viewpoint of peeling workability, handleability, strength and the like.
  • the release liner 150 may have various release means so as to facilitate the release of the first gas detection element 100 during use.
  • Such stripping means may be the protrusions 154 as described above.
  • the release means may be one or more cuts formed on a portion of the surface of release liner 150. By separating the release liner 150 along the incisions, the release liner 150 can be easily removed. In this case, some of the divided portions constituting the release liner 150 may overlap with each other.
  • the color change degree ⁇ L * is preferably 10 or more in an area of 5 cm 2 .
  • the degree of color change ⁇ L * can be evaluated by the following method.
  • the chromaticity of the used gas sensing element is measured.
  • the absolute value of the difference from the chromaticity of the standard white board is determined, and is taken as ⁇ L final .
  • the form of the first gas detection element 100 is not particularly limited.
  • the first gas detection element 100 may be, for example, in the form of a patch (piece) or a strip (hereinafter, referred to as an “already cut form”).
  • the form may be various forms, such as substantially circular shape, substantially elliptical shape, substantially triangular shape, substantially rectangular shape, or substantially polygonal shape.
  • the diameter may for example be in the range 2 mm to 30 mm, in particular in the range 3 mm to 10 mm.
  • the maximum side length may be, for example, in the range of 2 mm to 30 mm, in particular in the range of 3 mm to 25 mm.
  • the first gas detection element 100 When the first gas detection element 100 is patch-shaped, the first gas detection element 100 may be provided as a laminate in which a plurality of first gas detection elements 100 are stacked in the stacking direction.
  • FIG. 11 an example of the laminated body 190 comprised by laminating
  • this stack 190 is configured by stacking five first gas detection elements 100 in the stacking direction (the direction of the arrow F).
  • the number of laminations may be, for example, two times, three times, four times, six times, seven times, eight times, or nine times or more.
  • each first gas detection element 100 has the configuration as shown in FIG. 1. However, in each first gas sensing element 100, the support 110 or the release liner 150 may be omitted.
  • the support 110 in the lowermost portion (upstream of the arrow F) of the first gas detection element 100 and the release liner 150 in the uppermost portion (downstream of the arrow F) of the first gas detection element 100 are not omitted. Is preferred. This is to prevent the gas detection layer 120 and the spacer 140 from being exposed.
  • the top or bottom first gas sensing element 100 is separated from the stack 190.
  • the protrusion 154 provided on the release liner 150 of the first gas sensing element 100 may be lifted or depressed to separate one first gas sensing element 100.
  • the length LL in the longitudinal direction may be selected to conform to the circumferential dimension of a circular test object such as a flange or a pipe.
  • the longitudinal length LL may be in the range of 250 mm to 600 mm.
  • FIG. 12 schematically shows a cross section of the strip-shaped first gas detection element.
  • the strip-shaped first gas detection element 100A includes a support 110A, a gas detection layer 120A, a spacer 140A, and a release liner 150A. As described above, at least one of the support 110A and the release liner 150A may be omitted.
  • Gas sensing layer 120A has a first surface 122A and a second surface 124A.
  • the first surface 122A of the gas detection layer 120A is the surface far from the support 110A, and the second surface 124A is the surface near the support 110A.
  • the gas detection layer 120A has a resin matrix 130A and a chemochromic pigment 135A added to the resin matrix 130A. Moreover, the gas detection layer 120 has adhesiveness.
  • the strip-shaped first gas detection element 100A has a tab portion 160A at one end in the longitudinal direction of the first surface 122A of the gas detection layer 120A.
  • the tab portion 160A is made of, for example, paper, plastic resin, film, release liner or the like.
  • the tab portion 160A may be a non-adhesive material.
  • the tab portion 160A is not necessarily required to be provided on the first surface 122A of the gas detection layer 120A.
  • the tab portion 160A may be configured by removing adhesiveness from the gas detection layer 120A at one end of the gas detection layer 120A.
  • the tab portion 160A may be configured by extending one end of the support 110A to the outside of another member (in particular, the gas detection layer 120A).
  • the first gas detection element 100A can be easily peeled off from the inspected member 180 after the first gas detection element 100A is attached. That is, when peeling off the first gas detection element 100A from the inspection member 180 after use, the first gas detection element is grasped by grasping the tab portion 160A and pulling the gas detection layer 120A away from the inspection member 180. 100A can be peeled off from the member to be inspected.
  • Such a tab portion 160A can also be applied to the first gas detection element 100 in the form of a patch.
  • FIG. 13 schematically shows an example of the configuration of another gas sensing element (hereinafter referred to as “second gas sensing element”) according to an embodiment of the present invention.
  • the second gas sensing element 200 has a first side 202 and a second side 204.
  • the second gas detection element 200 also includes a support 210, a gas detection layer 220, and a release liner 250.
  • the release liner 250 constitutes the first side 202 of the second gas sensing element 200.
  • the support 210 also constitutes the second side 204 of the second gas sensing element 200. However, at least one of the support 210 and the release liner 250 may be omitted.
  • Gas sensing layer 220 has a first surface 222 and a second surface 224.
  • the first surface 222 of the gas sensing layer 220 is the surface remote from the support 210, and the second surface 224 is the surface near the support 210.
  • the gas detection layer 220 has a resin matrix 230 and a chemochromic pigment 235 added in the resin matrix 230.
  • the chemichromic pigment 235 may comprise a material that changes color upon contact with hydrogen gas, such as palladium oxide.
  • the gas detection layer 220 has adhesiveness.
  • the second gas detection element 200 may further have an adhesive layer (undercoat layer) between the support 210 and the gas detection layer 220.
  • the gas detection layer 220 has a surface processed portion 243 substantially at the center of the first surface 222.
  • the surface processing unit 243 is provided to form a space in which the hydrogen gas can be filled in the first surface 222 of the gas detection layer 220.
  • the surface processing portion 243 is formed of a plurality of concave portions 245, and these concave portions 245 form a space. Adjacent concave portions 245 are separated by thin wall portions 247.
  • each recess 245 forming the surface processed portion 243 is not particularly limited, and the shape of each recess 245 is not particularly limited.
  • the recess 245 may have a form as shown in FIGS. 14 and 15.
  • the surface processed portion 243 has a plurality of stripe-shaped grooves 248 A spaced apart via the thin wall 247. That is, the recess 248 shown in FIG. 13 is formed by the groove 248A.
  • the surface processed portion 243 has a plurality of disc-shaped depressions 248B spaced apart via the thin wall portion 247. That is, the recess 248 B shown in FIG. 13 is formed by the recess 248 B.
  • Such a surface processed portion 243 can be formed, for example, by performing embossing on the first surface 222 of the gas detection layer 220.
  • FIG. 16 schematically shows a state in which the second gas detection element 200 is installed on the member 180 to be inspected.
  • the chemochromic pigment 235 contained in the gas detection layer 220 is not shown in FIG. 16 in order to make the drawing easy to see.
  • the release liner 250 is peeled and removed from the second gas detection element 200.
  • a protrusion (not shown in FIG. 13) provided on the release liner 150 may be used.
  • the second gas detection element 200 is attached to the inspected member 180. At this time, the second gas detection element 200 is brought into contact with the inspection target member 180 such that the first surface 222 of the gas detection layer 220 exposed by the removal of the release liner 250 contacts the inspection member 180. It is pasted to 180.
  • the concave portion 245 (that is, the space portion where the gas detection layer 220 does not exist) of the surface processing unit 243 provided on the first surface 222 of the gas detection layer 220 is a member to be inspected Preferably, it is placed over the 180 openings 187. In this case, compared to the case where the wall portion 247 of the surface processed portion 243 is disposed above the opening 187, it is possible to perform the evaluation of the leakage of hydrogen gas described later more quickly.
  • the gas detection layer 220 can be installed on the inspected member 180 in the state as shown in FIG.
  • the gas detection layer 220 has adhesiveness
  • the second gas detection element 200 is fixed on the inspection target member 180 by the adhesion of the gas detection layer 220.
  • the region in contact with hydrogen gas is significantly increased, and a large discolored region 221 can be obtained.
  • discolored region 221 of larger dimension L 2 sufficiently obtained.
  • the second gas detection element 200 even if the opening 187 of the hole 185 is fine, the visibility is lowered, making it difficult for the inspector to properly detect the leak of hydrogen gas. , Can be suppressed significantly.
  • the surface processed portion 243 shown in FIGS. 13 to 15 is merely an example, and the surface processed portion 243 has any form as long as it constitutes a space in which hydrogen gas can be filled. It may be
  • the surface processed portion 243 may be formed by a single recess 245.
  • the surface processed portion 243 may be one or more convex portions formed on the second surface 224.
  • the surface processed portion 243 may be a combination of one or more recesses and one or more protrusions.
  • FIG. 17 an example of the flow of the manufacturing method of the gas detection element by one Embodiment of this invention is shown typically.
  • the method for manufacturing a gas detection member is (I) preparing a coating mixture for a gas detection layer (S110); (Ii) applying the coating mixture to a support (S120); (Iii) forming a gas detection layer from the coating mixture (S130); (Iv) installing a spacer on the gas detection layer (S140); Have.
  • Step S110 First, a coating mixture that will later become the gas detection layer 120 is prepared.
  • the application mixture is produced, for example, by mixing a dispersion containing a chemochromic pigment and a treatment liquid to be the resin matrix 130 of the gas detection layer 120 later.
  • the dispersion containing the chemochromic pigment is prepared, for example, as follows.
  • the palladium salt is added to the slurry containing the carrier particles and thoroughly mixed.
  • the slurry may contain water.
  • the carrier particles may also be titanium dioxide.
  • the palladium salt may be, for example, chloride, sulfide, nitrate, or acetate.
  • the palladium salt may also be added to the slurry in the form of a solution.
  • a noble metal such as platinum may be further installed on the surface of the obtained composite particles.
  • a platinum compound is added to the slurry of the composite particles.
  • the solvent of the slurry may be an organic solvent such as ethanol.
  • the platinum compound may also be, for example, a solution containing chloride, sulfide, nitrate or acetate.
  • a chemochromic pigment in which platinum is deposited on the surface of the composite particle can be obtained.
  • the chemochromic pigment is suspended in an organic solvent such as a ketone to form a dispersion.
  • organic solvent such as a ketone
  • the organic solvent may be butyl acetate, methyl ethyl ketone or methyl isobutyl ketone.
  • the treatment liquid contains, for example, a siloxane precursor and an initiator.
  • the treatment liquid may further contain a solvent.
  • the siloxane precursor may include, for example, organosiloxane and / or oligosiloxane.
  • the organosiloxane may be monomeric or polymeric (linear or cyclic) methyl siloxane.
  • the oligosiloxane may have a silicone resin, such as MQ resin.
  • the initiator may have peroxide.
  • the initiator may be benzoyl peroxide or 2,4-dichlorobenzoyl peroxide.
  • the initiator may be added to the treatment liquid at a concentration ranging from 0.1% by weight to 3.0% by weight.
  • the solvent may comprise an alkylbenzene, such as methylbenzene and ethylbenzene.
  • alkylbenzene such as methylbenzene and ethylbenzene.
  • methylbenzene include xylene and toluene.
  • the xylene may be, for example, 1,2-dimethylbenzene, 1,3-dimethylbenzene, 1,4-dimethylbenzene, or any combination thereof.
  • the coating mixture is prepared by mixing the aforementioned dispersion with the processing liquid.
  • Step S120 Next, the coating mixture prepared in step S110 is applied to the surface of the support 110.
  • the application method of the application mixture is not particularly limited.
  • the application mixture may be placed on the surface of the support 110 by various methods, such as, for example, brushing, spray application, or printing.
  • an adhesion layer may be provided in advance on the surface of the support 110.
  • the adhesion layer may be, for example, a phenylmethyl resin.
  • Step S130 Next, a gas sensing layer is formed from the coating mixture disposed on the support 110.
  • the coating mixture is cured to form the gas detection layer 120 in which the chemochromic pigment 135 is dispersed in the resin matrix 130 of the siloxane polymer.
  • the heating temperature for removing the solvent is, for example, in the range of 25 ° C. to 100 ° C.
  • the coating mixture may be heated to a temperature at which the initiator is fully active.
  • the initiator crosslinks the siloxane precursor contained in the coating mixture to form the resin matrix 130 of the gas detection layer 120.
  • the heating temperature for activating the initiator may be, for example, in the range of 120 ° C. to 250 ° C.
  • Step S140 Next, the spacer 140 is installed on the gas detection layer 120 formed in step S130.
  • the installation method of the spacer 140 is not particularly limited.
  • the spacer 140 may be manually installed on the gas detection layer 120.
  • the type of spacer is not limited to the one described above, and any material can be used as long as it has permeability to hydrogen gas.
  • the spacer 140 does not necessarily have to be permeable to hydrogen gas at the installation stage.
  • the non-foamable layer which can be foamed may be provided on the gas detection layer 120, and the spacer 140 may be formed by applying heat to the non-foamed layer to foam it in use.
  • the first gas detection element 100 as shown in FIG. 1 can be manufactured.
  • the first manufacturing method is merely an example, and the first gas detection element 100 may be manufactured by another manufacturing method.
  • the spacer 140 is first installed on the inspection target member 180, and then, a member such as the gas detection layer 120 is installed on the spacer 140 to form the first gas detection element 100. May be configured.
  • the first and second gas detection elements 100, 100A, and 200 capable of detecting hydrogen gas have been described as examples of the configuration and features of the gas detection element according to the present invention.
  • the gas detection element according to the present invention may be configured to be able to detect a reducing gas other than hydrogen gas.
  • a gas detection element having sensitivity to various reducing gases by properly selecting the color-changing material contained in the chemochromic pigment contained in the gas detection layer.
  • Example 1 A gas sensing element was manufactured by the following method.
  • the gas detection element was configured to have a support, a subbing layer, a gas detection layer containing a chemochromic pigment, and a spacer in this order.
  • a non-woven fabric (HOP-60HCF (170); manufactured by Ayase Paper Co., Ltd.) having dimensions of 10 mm long and 10 mm wide was prepared.
  • the thickness of the non-woven fabric is about 164 ⁇ m.
  • the air permeability of this spacer was evaluated using the Gurley method.
  • a Gurley-type densometer No. 323-AUTO; manufactured by Yasuda Seiki Co., Ltd. was used for the measurement, and the measurement was performed according to JIS P8117.
  • the air permeability of this spacer was 0.06 sec / 100 cm 3 .
  • a coating solution for the undercoat layer was prepared by the following method.
  • chemochromic pigment was prepared by the following method.
  • the mixture was then stirred and heated for 1 hour. Thereby, PdO was deposited on the surface of the TiO 2 particles.
  • the obtained solid was filtered and washed. Thereafter, it was dried at 110 ° C. for 3 hours.
  • C-1 PdO / TiO 2 particles
  • the slurry was then thoroughly stirred by sonication and the resulting product was filtered and washed with ethanol. The product was then allowed to dry at room temperature.
  • CC-1 chemochromic pigment
  • a coating mixture for a gas sensing layer was prepared using the chemochromic pigment CC-1 prepared as described above, as follows.
  • a dispersion liquid of a chemochromic pigment was prepared by sufficiently dispersing 2.39 g of the chemochromic pigment CC-1 in 10.4 g of methyl ethyl ketone.
  • the gas detection element was produced as follows.
  • a coating solution U-1 for undercoat layer having a thickness of about 1 ⁇ m was coated on a support. Thereafter, it was dried at 120 ° C. to form an undercoat layer.
  • a coating mixture CM-1 was coated on the undercoat layer using a bar coater (SA-210; manufactured by Tester Sangyo Co., Ltd.).
  • the undercoat layer and the coating mixture CM-1 coated support were dried at 25 ° C. to remove the solvent.
  • the support was then held at 177 ° C. for 3 minutes in an oven. Thereby, a gas detection layer was formed on the undercoat layer.
  • the thickness of the gas detection layer was about 35 ⁇ m.
  • the assembly comprised of the support / primer / gas sensing layer was cut to dimensions of 20 mm ⁇ 20 mm.
  • the above-mentioned non-woven fabric was installed as a spacer at substantially the center of the gas detection layer side of the assembly.
  • Example 1 a patch type gas detection element (hereinafter, referred to as “sample 1”) was obtained.
  • Example 2 A patch-type gas sensing element (hereinafter referred to as “sample 2”) was produced in the same manner as in Example 1.
  • the air permeability of the spacer was 0.11 sec / 100 cm 3 .
  • Example 3 A gas sensing element was manufactured in the same manner as Example 1.
  • a silicone thermal diffusion sheet (EX40015DS; manufactured by Dexerials) having a thickness of about 150 ⁇ m was used as a spacer.
  • Example 3 a patch type gas detection element
  • Example 4 A patch-type gas sensing element (hereinafter referred to as “sample 4”) was produced in the same manner as in Example 1.
  • a polytetrafluoroethylene (PTFE) -based porous sheet (NTF 1131; manufactured by Nitto Denko Corporation) was used as a spacer.
  • the thickness of this porous sheet is 70 ⁇ m.
  • the air permeability of the spacer was measured by the above-mentioned method, the air permeability of this spacer was 4.1 s / 100 cm 3 .
  • Example 5 A patch-type gas sensing element (hereinafter referred to as “sample 5”) was produced in the same manner as in Example 4.
  • a polytetrafluoroethylene (PTFE) -based porous sheet (NTF 1133; manufactured by Nitto Denko Corporation) was used as a spacer.
  • the thickness of this porous sheet is 75 ⁇ m.
  • the air permeability of the spacer was 1.5 seconds / 100 cm 3 .
  • Example 6 A gas sensing element was manufactured in the same manner as Example 1.
  • a kraft paper with a thickness of 120 ⁇ m (Rigami kraft PE laminated paper; manufactured by Komatsu Ltd.) was used as a spacer.
  • Example 6 a patch type gas detection element
  • Example 7 A patch-type gas sensing element (hereinafter referred to as “sample 7") was manufactured in the same manner as in Example 1.
  • the air permeability of the spacer was measured by the above-mentioned method, the air permeability of this spacer was 220 seconds / 100 cm 3 .
  • Example 8 A gas sensing element was manufactured in the same manner as Example 1.
  • Example 8 a gas detection element having a configuration of support / undercoat layer / gas detection layer was produced.
  • Table 1 summarizes the specifications of the spacers in the samples manufactured in each example.
  • a syringe with an inner diameter of 10 mm ⁇ (volume 24 ml) was prepared. Opening and closing valves are provided at both ends (inlet end and outlet end) of this syringe, and one open hole (through hole) with a diameter of 2 mm ⁇ is formed substantially in the center of the side of the syringe.
  • the sample was attached to the side of the syringe so as to close the opening of the through hole of the syringe.
  • the sample was placed so that the opening of the through hole of the syringe was in contact with the substantially central portion of the sample spacer.
  • the sample 8 was installed such that the substantially central portion of the gas detection layer was in contact with the opening of the through hole.
  • a hydrogen gas source was connected to the inlet end of the syringe. Further, at room temperature, the on-off valves at the inlet end and the outlet end were opened to allow hydrogen gas to flow from the inlet end of the syringe.
  • the flow rate of hydrogen gas was 6 ml / min, and the flow time was 3 minutes.
  • color-change area the area of the color-changed area of the sample (hereinafter referred to as “color-change area”) S c is measured from the side of the support, and the ratio S c / S r of the color-change area S c to the area S r of the opening of the through hole the ratio S c / S s discoloration area S c to the area S s of the spacer were evaluated respectively.
  • the ratio S c / S r is significantly increased in each of the samples 1 to 7 provided with the spacer. Also, it is understood that the ratio S c / S s also shows a significantly large value.
  • the ratio S c / S r is at least 428% (Sample 1 and Sample 2), and it can be seen that the discolored area is spread over four times the area of the opening of the through hole. Further, the ratio S c / S s is 121% (Sample 1 and Sample 2) even in the smallest case, and it can be seen that the hydrogen gas extends beyond the region of the spacer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

測定対象ガスを検知するガス検知エレメントであって、ケモクロミックピグメントを含有するガス検知層と、スペーサと、を有し、前記スペーサは、前記測定対象ガスに対する透過性を有し、前記スペーサは、前記ガス検知層の第1の表面上に配置され、該ガス検知層よりも小さな面積を有する、ガス検知エレメント。

Description

ガス検知エレメント
 本願は、ガス検知エレメントに関する。
 水素ガスは、例えば電池のようなエネルギー生成手段、エネルギー貯蔵手段、およびエネルギー搬送手段など、様々な用途に使用されている。
 一方、水素ガスは、無色無臭であり、大気中では広い爆発限界を有する可燃性ガスである。従って、水素ガスを取り扱う環境および/または装置においては、水素ガスの漏洩を適正に検出することが安全上必要となる。
 これまで、水素ガスの漏洩を検知する際には、例えば、石けん水による検査、および水素センサによる測定が実施されてきた。
 このうち、石けん水による方法は、測定の準備が煩雑である上、水素ガス漏洩量が微量の場合、泡の発生有無が判定し難く、検出精度が劣るという問題がある。また、水素センサによる方法では、測定環境の気流の影響を受け、信頼性が低下するという問題、および正確な漏洩場所の特定が難しい等の問題がある。
 そこで、より正確かつ簡便に水素ガスの漏洩を検出するため、水素検知テープを使用することが提案されている。
 水素検知テープは、水素ガスとの接触によって色が変化するケモクロミックピグメントを備えており、このケモクロミックピグメントの色変化により、水素ガスの存在を検知ことができる(例えば、特許文献1-7)。
米国特許第8,048,384号明細書 米国特許第8,591,818号明細書 米国特許第8,652,993号明細書 米国特許第8,703,642号明細書 米国特許第8,293,178号明細書 米国特許第8,920,730号明細書 米国特許第8,945,473号明細書
 水素検知テープは、水素ガスの漏洩の可能性がある配管等の被検査部材に設置して使用される。部材に水素ガスの漏洩が生じると、漏洩箇所に対応する水素検知テープの領域に変色が生じる。これにより、水素ガスの漏洩を検知することができる。
 ここで、被検査部材における水素ガスの漏洩箇所が微小な場合、水素検知テープに生じる変色領域も、微小なものとなる。
 しかしながら、そのような微小な領域の変色では、視認性が劣り、検査員が水素ガスの漏洩を適正に判断することができなくなる可能性が生じ得る。
 例えば、今後普及が期待されている水素ステーションでは、水素ガスの漏れを検知するための漏洩ポートが設けられているが、このポートの開口は、1mm~3mm程度の小さな直径であることが予想される。このような水素ステーションの微細な漏洩ポートに水素検知テープを適用した場合、前述のような変色領域の視認性の問題が生じ得る可能性がある。
 本発明は、このような背景に鑑みなされたものであり、本発明では、測定対象ガスの漏洩に対する視認性を有意に高めることが可能な、ガス検知エレメントを提供することを目的とする。
 本発明では、測定対象ガスを検知するガス検知エレメントであって、
 ケモクロミックピグメントを含有するガス検知層と、
 スペーサと、
 を有し、
 前記スペーサは、前記測定対象ガスに対する透過性を有し、
 前記スペーサは、前記ガス検知層の第1の表面上に配置され、該ガス検知層よりも小さな面積を有する、ガス検知エレメントが提供される。
 また、本発明では、測定対象ガスを検知するガス検知エレメントであって、
 ケモクロミックピグメントを含有するガス検知層を有し、
 前記ガス検知層は、第1の表面に、前記測定対象ガスが充満する空間を有し、
 前記空間は、前記ガス検知層よりも小さな面積を有する、ガス検知エレメントが提供される。
 本発明では、測定対象ガスの漏洩に対する視認性を有意に高めることが可能な、ガス検知エレメントを提供することができる。
本発明の一実施形態によるガス検知エレメントの一構成例を模式的に示した断面図である。 従来の水素検知テープの適用例を模式的に示した断面図である。 本発明の一実施形態によるガス検知エレメントの使用形態を模式的に示した断面図である。 本発明の一実施形態によるガス検知エレメントに使用されるスペーサの一形態を模式的に示した上面図である。 本発明の一実施形態によるガス検知エレメントに使用されるスペーサの別の形態を模式的に示した上面図である。 本発明の一実施形態によるガス検知エレメントに使用されるスペーサのさらに別の形態を模式的に示した上面図である。 本発明の一実施形態によるガス検知エレメントに使用されるスペーサのさらに別の形態を模式的に示した上面図である。 本発明の一実施形態によるガス検知エレメントに使用されるスペーサのさらに別の形態を模式的に示した上面図である。 本発明の一実施形態によるガス検知エレメントに使用されるスペーサのさらに別の形態を模式的に示した上面図である。 本発明の一実施形態によるガス検知エレメントに使用される、多層構造スペーサの一例を模式的に示した断面図である。 複数のガス検知エレメントが積層されて構成される積層体の一例を、模式的に示した図である。 本発明の一実施形態による短冊状のガス検知エレメントの一構成例を模式的に示した断面図である 本発明の一実施形態による別のガス検知エレメントの一構成例を模式的に示した断面図である。 本発明の一実施形態による別のガス検知エレメントにおけるガス検知層の第1の表面を模式的に示した上面図である。 本発明の一実施形態による別のガス検知エレメントにおけるガス検知層の第1の表面を模式的に示した上面図である。 本発明の一実施形態による別のガス検知エレメントの使用形態を模式的に示した断面図である。 本発明の一実施形態によるガス検知エレメントの製造方法のフローの一例を模式的に示した図である。
 以下、図面を参照して、本発明の一実施形態について説明する。
 なお、以下の説明では、本発明の一実施形態の一適用例として、水素ガスを検出するためのガス検知エレメントについて説明する。ただし、本発明は、水素ガス以外の還元性ガスを検出するためのガス検知エレメントにも適用可能であることに留意する必要がある。
 本願において、「還元性ガス」とは、水素、硫化水素、一酸化炭素、メタン、ホルムアルデヒド、アセチレン、二酸化硫黄、および亜酸化窒素の少なくとも一つを含むガスを意味する。
 (本発明の一実施形態によるガス検知エレメント)
 図1には、本発明の一実施形態によるガス検知エレメント(以下、「第1のガス検知エレメント」と称する)の一構成例を模式的に示す。
 図1に示すように、第1のガス検知エレメント100は、第1の側102および第2の側104を有する。
 また、第1のガス検知エレメント100は、支持体110と、ガス検知層120と、スペーサ140と、剥離ライナー150とを有する。支持体110は、第1のガス検知エレメント100の第2の側104を構成する。また、剥離ライナー150は、第1のガス検知エレメント100の第1の側102を構成する。ただし、支持体110および剥離ライナー150の少なくとも一つは、省略されても良い。
 支持体110は、上部に設置されるガス検知層120以降の部材を支持する役割を有する。
 ガス検知層120は、第1の表面122および第2の表面124を有する。ガス検知層120の第2の表面124は、支持体110に近い側の表面であり、第1の表面122は、支持体110から遠い側の表面である。なお、支持体110が省略された場合、ガス検知層120の第2の表面124が、第1のガス検知エレメント100の第2の側104となっても良い。
 ガス検知層120は、水素ガスを検知する役割を有する。より具体的には、ガス検知層120は、水素ガスとの接触により、色が変化し、これにより水素ガスの存在を検出することができる。
 なお、図1には示されていないが、第1のガス検知エレメント100は、さらに、支持体110と、ガス検知層120との間に、密着層(下塗り層)を有しても良い。密着層は、支持体110とガス検知層120との間の密着力を高める役割を有する。ただし、不要な場合、そのような密着層は、省略しても良い。
 ガス検知層120は、樹脂マトリクス130と、該樹脂マトリクス130に添加されたケモクロミックピグメント135とを有する。
 ケモクロミックピグメント135は、水素ガスとの接触により、色が変化する材料を有する。例えば、酸化パラジウムは、水素ガスとの接触により、色が変化することが知られている。従って、ケモクロミックピグメント135は、酸化パラジウムを含んでも良い。
 ガス検知層120は、粘着性を有する。
 スペーサ140は、ガス検知層120の第1の表面122の側に設置される。スペーサ140は、水素ガス透過性を有する。従って、水素ガスがスペーサ140に導入された場合、水素ガスは、比較的速やかに、スペーサ140全体にわたって拡散する。
 スペーサ140は、第2の側104から見たとき、ガス検知層120の面積よりも小さな面積となるように構成される。例えば、スペーサ140は、第2の側104から見たとき、ガス検知層120に周囲が取り囲まれるように構成される。
 ここでは一例として、スペーサ140は、上面視、略円形の形状を有するものと仮定する。ただし、スペーサ140の形状が、略円形に限られないことは明らかである。
 剥離ライナー150は、ガス検知層120、およびその第1の表面122に設置された部材(例えばスペーサ140等)を被覆する役割を有する。
 すなわち、ガス検知層120は粘着性を有し、このため第1の表面122が露出された状態では、第1のガス検知エレメント100のハンドリング性が悪くなる。しかしながら、剥離ライナー150の存在により、ガス検知層120の第1の表面122が露出することを回避することができ、第1のガス検知エレメント100を容易にハンドリングすることができるようになる。
 ただし、前述のように、剥離ライナー150は、本発明にとって必須の構成ではなく、不要な場合、省略しても良い。その場合、ガス検知層120の第1の表面122およびスペーサ140が、第1のガス検知エレメント100の第1の側102を構成する。
 図1に示すように、剥離ライナー150は、少なくとも一つの端部に、突出部154を有しても良い。
 なお、図1に示した例では、突出部154は、剥離ライナー150の厚さを薄くすることにより形成されている。ただし、これとは別に、突出部154は、剥離ライナー150をそのまま外方に延在させることにより、または剥離ライナー150の端部の形状を加工することにより、構成されても良い。
 突出部154を設けることにより、第1のガス検知エレメント100から剥離ライナー150を剥離することが容易となる。
 あるいは、剥離ライナー150の外表面側から切り込みを入れることによっても、剥離ライナー150の剥離が容易となる。
 ここで、本発明の一実施形態によるガス検知エレメントの特徴および効果をより良く理解するため、図2を参照して、従来の水素テープの適用例について説明する。
 図2には、従来の水素検知テープを被検査部材に貼り付けた状態を模式的に示す。
 図2に示すように、従来の水素検知テープ1は、支持体10と、水素ガス検知層20と、粘着剤層29とを、この順に有する。
 なお、ここでは、被検査部材180は、第1の面181および第2の面183を有すると仮定する。また、被検査部材180は、第2の面183の側に空間を有し、一部に第1の面181から第2の面183まで貫通する孔185が形成されていると仮定する。この孔185は、前記空間と連通されている。被検査部材180の第2の面183には、孔185に対応する、直径φの開口187が形成されている。
 図2に示すように、従来の水素検知テープ1を被検査部材180に設置した場合を想定する。この状態で、被検査部材180の孔185から水素ガスが漏洩すると、水素検知テープ1の水素ガス検知層20は、孔185の開口187に対面する部分が変色する。従って、この変色領域21により、支持体10の側から、水素ガスの漏洩を検知することができる。
 通常、水素ガス検知層20の変色領域21は、孔185の開口187の直径φと同等か、あるいはそれよりも幾分大きな直径φを有する。
 しかしながら、このような水素検知テープ1を用いた水素ガス検知方法では、孔185の開口187の直径φが小さくなると、それに応じて、水素検知テープに生じる変色領域21の直径φも小さくなってしまう。このため、微細な開口187では、検査員が水素ガスの漏洩を適正に検出することが難しくなると言う問題が生じ得る。
 これに対して、本発明の一実施形態では、このような問題を有意に軽減、または解消することができる。
 以下、図3を参照して、このような効果について詳しく説明する。
 図3には、前述のような構成を有する第1のガス検知エレメント100を、被検査部材180に設置した状態を模式的に示す。なお、図3には、図面を見やすくするため、ガス検知層120に含まれるケモクロミックピグメント135は、示されていない。
 被検査部材180に対して第1のガス検知エレメント100を実際に使用する際には、まず、図1に示したような構成の第1のガス検知エレメント100から、剥離ライナー150が剥離除去される。この際には、剥離ライナー150に設けられた突出部154を利用しても良い。突出部154を持って、第1のガス検知エレメント100から剥離ライナー150を引き剥がすことにより、剥離ライナー150を残りの部分から容易に分離することができる。
 次に、第1のガス検知エレメント100が、被検査部材180に貼り付けられる。この際には、第1のガス検知エレメント100は、剥離ライナー150の除去により露出された、ガス検知層120の第1の表面122およびスペーサ140が、被検査部材180に接触するようにして、被検査部材180に貼り付けられる。
 これにより、図3に示すように、被検査部材180の開口187の上に、スペーサ140が配置される。以降、開口187と対面するスペーサ140の領域を、特に「接触部(142)」と称する。
 また、ガス検知層120は粘着性を有するため、ガス検知層120の粘着力により、第1のガス検知エレメント100が被検査部材180に固定される。同時に、スペーサ140は、ガス検知層120によって周囲が取り囲まれるため、被検査部材180に対するスペーサ140の位置が固定される。
 なお、図3に示すように、ガス検知層120とスペーサ140との間には、スペーサ140の周囲に沿って、隙間149が生じても良い。
 この状態で、被検査部材180の孔185から水素ガスが漏洩すると、この漏洩した水素ガスは、第1のガス検知エレメント100の開口187に対応する部分、すなわちスペーサ140の接触部142から、第1のガス検知エレメント100内に進入する。
 ここで、スペーサ140は、前述のように、水素ガスに対する透過性を有する。従って、スペーサ140の接触部142から第1のガス検知エレメント100内に進入した水素ガスは、速やかにスペーサ140の上方および横方向に拡散し、その後、ガス検知層120の第1の表面122のスペーサ140との接触面全体に広がるようになる。また、スペーサ140の存在によって、水素ガスは、スペーサ140の周囲にも回り込むようになる。さらに、スペーサ140の周囲に隙間149が存在する場合、この隙間149にも、水素ガスが速やかに充満する。
 その結果、ガス検知層120の第1の表面122は、水素ガスと広い領域で接するようになる。特に、図2を参照して示した従来の水素検知テープ1と比較した場合、より大きな変色領域121が得られるようになる。例えば、図3に示した例では、孔185の開口187の直径φに比べて、十分に大きな直径φの変色領域121が得られる。
 また、これにより、仮に孔185の開口187の直径φが微細になっても、視認性の低下により、検査員が水素ガスの漏洩を適正に検出することが難しくなると言う問題を、有意に抑制することが可能になる。
 (各構成部材について)
 次に、本発明の一実施形態によるガス検知エレメントを構成する各部材について、より詳しく説明する。なお、ここでは、前述の第1のガス検知エレメント100を例に、その構成部材について説明する。従って、各部材を参照する際には、図1および図3に示した参照符号を使用する。
 (支持体110)
 支持体110は、前述のように、上部にガス検知層120等の部材を支持する役割を有する。ただし、支持体110は、省略されても良い。
 支持体110は、透明であり、ガス検知層120とは反対の側、すなわち第1のガス検知エレメント100の第2の側104から、ガス検知層120の色の変化を視認できる必要がある。
 そのような材料としては、これに限られるものではないが、例えば、ポリイミド、ポリエチレン(PE)、ポリプロピレン(PP)、フッ化エチレンプロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンテレフタレート(PET)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、またはポリフッ化ビニリデン(PVDF)等が挙げられる。
 支持体110の厚さは、特に限られないが、あまりに厚くなると、ガス検知層120の色の変化が不明瞭になる可能性がある。従って、支持体110の厚さは、10μm~1000μmの範囲、例えば20μm~200μmの範囲であり、25μm~100μmの範囲であることが好ましい。
 なお、支持体110は、紫外線が照射される環境において長期間使用しても、劣化や変色が生じないことが好ましい。支持体110がこのような特徴を有する場合、第1のガス検知エレメント100を屋外で長期間使用することができる。紫外線照射環境において、支持体110が変色しない期間は、例えば、1ヶ月以上であり、6ヶ月以上であることが好ましい。支持体110には、紫外線吸収剤および光安定剤等の耐候剤が含まれていても良い。
 (ガス検知層120)
 ガス検知層120は、前述のように、樹脂マトリクス130と、該樹脂マトリクス130内に添加されたケモクロミックピグメント135とを有する。ケモクロミックピグメント135は、樹脂マトリクス130内に分散していることが好ましい。
 樹脂マトリクス130は、水素ガスとの反応性を有さず、ケモクロミックピグメント135を保持するための媒体として機能する。
 ただし、樹脂マトリクス130は、水素ガスの拡散をあまり阻害しないように構成される。そうでなければ、水素ガスのケモクロミックピグメント135への到達が妨害され、迅速な水素ガス検出ができなくなるからである。
 また、樹脂マトリクス130は、ユーザが、ケモクロミックピグメント135が水素ガスと接した際に生じる変色を視認できるような材料で構成される。
 また、ガス検知層120に粘着性を発現させるため、樹脂マトリクス130は、粘着性を有する材料で構成される。
 そのような材料としては、例えば、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ゴム、およびオレフィン等が挙げられる。樹脂マトリクス130がシリコーン樹脂を含む場合、そのようなシリコーン樹脂は、フェニルメチル基またはジメチル基を有しても良い。
 一方、ケモクロミックピグメント135は、水素ガスとの接触により、色が変化する材料(以下、「変色材料」と称する)を有する。例えば、酸化パラジウムは、水素ガスとの接触により、色が変化することが知られている。従って、ケモクロミックピグメント135は、変色材料として酸化パラジウムを含んでも良い。
 変色材料は、水素ガスとの接触により、色が不可逆的に変化しても良い。
 ケモクロミックピグメント135は、粒子の形態であっても良い。
 なお、本願において、「粒子」とは、必ずしも略球形の形状を有する物質には限られない。「粒子」は、例えば、円柱状、角柱状、ロッド状、繊維状、円錐状、角錐状、および半球状など、各種形態を有しても良い。
 また、ケモクロミックピグメント135は、水素ガスとの反応性を高めるため、貴金属触媒を有しても良い。そのような貴金属触媒としては、パラジウム以外の貴金属、例えば白金および白金合金等が挙げられる。貴金属触媒は、例えば、変色材料の表面に貴金属を担持したり、ドーピングしたりすることにより、ケモクロミックピグメント135に導入される。貴金属は、ナノメートルオーダの微粒子で構成されても良い。
 また、例えば、ケモクロミックピグメント135は、担体粒子の表面に、変色材料が配置された形態を有しても良い。この変色材料には、前述のように貴金属触媒が担持またはドーピングされていても良い。また、この態様では、変色材料は、例えば、担体粒子の少なくとも一部を覆うように配置される。
 担体粒子は、例えば、酸化チタン等の酸化物で構成されても良い。
 ケモクロミックピグメント135の粒子は、例えば0.1μm~20μmの範囲、特に0.2μm~10μmの範囲の最大寸法を有しても良い。ここで、「最大寸法」とは、粒子が略球形または半球状の場合は、その直径を意味し、粒子が略円柱状など、その他の形状場合は、最大長さを意味する。
 ケモクロミックピグメント135の樹脂マトリクス130に対する含有量は、例えば、1質量%~10質量%の範囲である。
 ガス検知層120の厚さ(実質的に樹脂マトリクス130と等しい)は、特に限られないが、例えば、5μm~200μmの範囲であり、好ましくは10μm~100μmの範囲であり、より好ましくは30μm~80μmの範囲である。
 (スペーサ140)
 スペーサ140は、水素ガスに対する透過性を有する材料で構成される。透過性には、スペーサ140の厚み方向における透過性と、スペーサ140の面方向における透過性との両方が含まれる。また、面方向における透過性は、スペーサ140の上下両面のみに限定される場合もあり得る。
 スペーサ140は、これに限られるものではないが、例えば、
(1)パルプからなる紙(ボール紙およびクラフト紙を含む)、
(2)ガラス、セラミック、もしくは金属などの無機材料繊維、または合成樹脂などの高分子材料の繊維を含む不織布もしくは織布、
(3)ガラス、セラミック、もしくは金属などの無機材料、または合成樹脂などの高分子材料を含む熱拡散シート、
(4)ガラス、セラミック、もしくは金属などの無機材料、または合成樹脂などの高分子材料を含む多孔質シート、または
(5)連通孔を有する発泡体、
等で構成されても良い。
 スペーサ140の厚さは、特に限られないが、例えば、5μm~1000μmの範囲であり、好ましくは50μm~700μmの範囲であり、より好ましくは60μm~400μmの範囲である。
 図4には、第1のガス検知エレメント100の上面図の一例を概略的に示す。なお、図4では、説明の明確化のため、支持体110および剥離ライナー150は、省略されている。また、ガス検知層120は、破線で示されている。さらに、参考のため、第1のガス検知エレメント100が設置される被検査部材180の開口187の一例も、破線で示されている。
 なお、この図4では、第1のガス検知エレメント100は、被検査部材180の開口187が、スペーサ140の略中央に配置されるようにして使用されている。しかしながら、これは単なる一例であって、開口187がスペーサ140と重なっていれば、スペーサ140と開口187の相互位置関係は、特に限られない。ただし、通常の場合、第1のガス検知エレメント100のユーザは、開口187がスペーサ140の略中央に配置されるような態様で、第1のガス検知エレメント100を使用するであろう。
 また、図4では、スペーサ140は、略円形の形状を有し、ガス検知層120の略中央に配置されている。
 しかしながら、これは単なる一例に過ぎず、スペーサ140の形状、およびガス検知層120とスペーサ140の相対位置関係は、特に限られない。例えば、スペーサ140は、略楕円形、略矩形、略台形または略多角形などであっても良い。また、スペーサ140は、記号および/または文字の形態、あるいは格子状であっても良い。さらに、ガス検知層120の呈色の際に文字が浮き出るように、スペーサ140には印刷等がされていても良い。
 図5および図6には、第1のガス検知エレメント100に使用されるスペーサの別の形態を模式的に示す。
 図5に示した例では、スペーサ140-1は、リング状の形態を有し、ガス検知層120の略中央に配置される。使用の際には、スペーサ140-1は、例えば、リングの中央孔が、被検査部材180の開口187を取り囲むように配置される。すなわち、開口187の上部には、リング状のスペーサ140-1の中央孔によって形成される空間が配置される。
 一方、図6に示した例では、スペーサ140-2およびスペーサ140-3の2つのスペーサが使用される。各スペーサ140-2、140-3は、略矩形状であり、相互に一定の距離だけ離間するようにして、配置される。両スペーサ140-2、140-3の間に生じる隙間は、ガス検知層120の中央部分を含む領域を形成する。換言すれば、両スペーサ140-2、140-3の間の隙間に、被検査部材180の開口187が配置されるようにして、スペーサ140-2、140-3が配置される。開口187の上部には、スペーサ140-2とスペーサ140-3の間に形成される空間が配置される。
 なお、以上の例では、スペーサ(140、140-1、140-2、140-3)は、いずれも、上面視、ガス検知層120に周囲が囲まれている。しかしながら、これは単なる一例であって、スペーサ(140、140-1、140-2、140-3)の端面の少なくとも一部は、外部に露出されていても良い。例えば、図6において、スペーサ140-2と140-3のそれぞれにおいて、上辺側および底辺側がガス検知層120の端部にまで延在している形態などが想定される。
 あるいは、スペーサは、図7に示すような態様で、配置されても良い。
 この例では、単一の略矩形状のスペーサ140-4が、上面視、開口187を覆うように、ガス検知層120の略中央に配置される。また、スペーサ140-4は、上辺146Uおよび底辺146Dが、それぞれ、ガス検知層120の対応する端部にまで延在している。ただし、スペーサ140-4は、上辺146Uまたは底辺146Dの一方が、ガス検知層120の対応する端部にまで延在していても良い。
 なお、上面視、スペーサの一部がガス検知層120の端部にまで延在する場合、スペーサは、図8または図9のような態様を有しても良い。
 このうち、図8に示した例では、スペーサ140-5は、上面視、中央矩形部143Aと、延伸部144Aとを有する。スペーサ140-5は、上面視、中央矩形部143Aが開口187を覆うように、ガス検知層120の略中央に配置される。また、スペーサ140-5は、延伸部144Aがガス検知層120の対応する端部(図8の例では、側辺146S)にまで延在している。
 一方、図9に示した例では、スペーサ140-6は、上面視、中央矩形部143Bと、延伸部144Bとを有する。スペーサ140-6は、上面視、中央矩形部143Bが開口187を覆うように、ガス検知層120の略中央に配置される。また、スペーサ140-6は、延伸部144Bがガス検知層120の対応する端部(図9の例では、コーナー146C)にまで延在している。
 図7~図9のような、上面視、スペーサがガス検知層120の端部にまで延在する構成では、第1のガス検知エレメント100を使用する際に、ガス検知層120を剥離ライナー150からはがし易くすることができる。
 この他にも、当業者には、各種スペーサの形状および配置形態が想定される。
 また、図4~図7に示したいずれのスペーサ140の態様においても、上面視、ガス検知層120の面積をSとし、スペーサ140の面積をSとしたとき、ガス検知層120の面積に対するスペーサ140の面積の比S/Sは、0.02~0.9の範囲であることが好ましく、0.05~0.8の範囲であることがより好ましく、0.1~0.7の範囲であることがさらに好ましい。
 ところで、スペーサ140は、必ずしも最初(被検査部材180に貼り付けて使用する前)から、前述のような機能を有する必要はない。例えば、ガス検知層120の第1の表面122の一部に、水素透過性を有さない層を設置しておき、後の段階、例えば使用の際などに、これをスペーサ140に変換しても良い。
 例えば、第1のガス検知エレメント100の使用の際に、予めガス検知層120の第1の表面122に設置された発泡可能な層に熱を加えることにより、この層を発泡させ、水素ガスに対する透過性を発現させても良い。
 なお、スペーサ140は、粘着性を有しても良い。そのような態様では、以下に示すように、スペーサ140を、その他の部材(例えば、ガス検知層120および支持体110)から独立した状態で、利用することが可能となる。
 この場合、例えば、最初に、被検査部材180の必要な箇所に、スペーサ140が設置される。スペーサ140は、粘着性を有するため、被検査部材180の必要な箇所に容易に接着することができる。その後、必要なタイミングで、スペーサ140を覆うようにして、被検査部材180にガス検知層120(および存在する場合、支持体110)が設置される。
 このようにして、実際のガス検出検査を実施するタイミングで初めて、本発明の一実施形態によるガス検知エレメントが構成されても良い。
 なお、このような態様で使用されるスペーサ140は、被検査部材180に対して接着力を有する必要がある。そのため、スペーサ140は、複数の層で構成されても良い。
 図10には、そのような複数の層を積層することにより構成されたスペーサ(以下、「多層構造スペーサ」と称する)340の断面の一例を、模式的に示す。
 図10に示すように、多層構造スペーサ340は、本体層352と、接着層362とを有する。本体層352は、第1の表面354および第2の表面356を有し、接着層362は、本体層352の第2の表面356の側に設置される。
 また、多層構造スペーサ340は、第1の側342および第2の側344を有する。多層構造スペーサ340の第1の側342は、本体層352の第1の表面354の側であり、多層構造スペーサ340の第2の側344は、接着層362の側である。多層構造スペーサ340が実際に使用される状況では、多層構造スペーサ340の第1の側は、ガス検知層120の側に対応し、多層構造スペーサ340の第2の側344は、被検査部材180の側に対応する。
 本体層352は、水素ガスに対する透過性を有する前述のような部材、例えば、前述の(1)~(5)等で構成されても良い。あるいは、本体層352は、例えば、非多孔性の樹脂などで構成されても良い。
 本体層352の厚さは、特に限られないが、例えば、2μm~1000μmの範囲であっても良い。
 一方、接着層362は、本体層352に粘着性を付与するために設けられる。
 接着層362は、単層であっても、複数の層で構成されても良い。例えば、図10に示す例では、接着層362は、本体層352に近い順に、第1の層364、第2の層366、および第3の層368の3層で構成されている。
 第1の層364は、粘着性を有し、該第1の層364の両側に配置される層同士を接着するために使用される。例えば、図10に示した例では、第1の層364は、本体層352と、第2の層366とを相互に接着する役割を有する。
 第3の層368は、第1の層364と同様の機能を有する。すなわち、第3の層368は、粘着性を有し、第2の層366と、被検査部材とを相互に接着する役割を有する。
 一方、第2の層366は、接着層362に剛性を付与するために使用される。
 第1の層364は、例えば、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ゴム、またはオレフィン等で構成されても良い。第1の層364がシリコーン樹脂を含む場合、そのようなシリコーン樹脂は、フェニルメチル基またはジメチル基を有しても良い。
 また、第1の層364は、例えば1μm~200μmの厚さを有しても良い。第1の層364の厚さは、5μm~100μmの範囲であることが好ましく、10μm~60μmの範囲であることがより好ましい。
 第3の層368についても、第1の層364と同様のことが言える。
 第2の層366は、例えば、ポリイミド、ポリエチレン(PE)、ポリプロピレン(PP)、フッ化エチレンプロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンテレフタレート(PET)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、またはポリフッ化ビニリデン(PVDF)で構成される。
 第2の層366の厚さは、例えば、1μm~100μmの範囲であり、5μm~75μmの範囲であることが好ましく、10μm~50μmの範囲であることがより好ましい。
 なお、接着層362が単層で構成される場合、接着層362の仕様として、前述の第1の層364(または第3の層368)の記載が参照される。ただし、接着層362の厚さは、例えば、3μm~500μmの範囲となるように調整されても良い。
 なお、図10に示した例では、接着層362は、本体層352の第2の表面356の全体には設置されていない。すなわち、接着層362は、本体層352の第2の表面356に、部分的に設置され、その結果、本体層352の第2の表面356には、接着層362の非設置部分370が存在する。
 これは、接着層362によって、本体層352に向かう水素ガスの流れが遮断されることを防止するためである。しかしながら、例えば、接着層362が有意に薄い場合など、接着層362により、本体層352に向かう水素ガスの流れが遮断されない場合には、接着層362は、本体層352の第2の表面356の全体にわたって設置されても良い。
 多層構造スペーサ340を使用する場合、多層構造スペーサ340は、該多層構造スペーサ340の第2の側344、すなわち接着層362が被検査部材180と接着されるようにして、被検査部材180上に設置される。
 ここで、多層構造スペーサ340は、必ずしも、本体層352と接着層362とが一体化された状態で準備しておく必要はない。例えば、多層構造スペーサ340のうち、接着層362の部分のみを、先に被検査部材180上に設置しておき、その後、接着層362の上に、多層構造スペーサ340の本体層352を設置して、多層構造スペーサ340を完成させても良い。
 その後、多層構造スペーサ340の第1の側342に、本発明の一実施形態によるガス検知エレメントの残りの部分(例えば、ガス検知層120および支持体110)が設置され、本発明の一実施形態によるガス検知エレメントが構成されても良い。
 (剥離ライナー150)
 剥離ライナー150としては、慣用の剥離紙等を使用することができ、特に限定されない。例えば、PET等の樹脂フィルムや紙等のライナー基材の表面に剥離処理層を有する剥離ライナーや、フッ素系ポリマー(ポリテトラフルオロエチレン等)やポリオレフィン系樹脂(PE、PP等)の低接着性材料からなる剥離ライナー等を用いることができる。上記剥離処理層は、例えば、シリコーン系、長鎖アルキル系、フッ素系、硫化モリブデン等の剥離処理剤により上記ライナー基材を表面処理して形成されたものであり得る。剥離ライナー150の厚さ(総厚さ)は特に限定されないが、剥離作業性や取扱い性、強度等の観点から、10~500μm(例えば15~100μm)程度とすることが好ましい。
 なお、剥離ライナー150は、第1のガス検知エレメント100の使用の際の剥離が容易となるように、各種剥離手段を有しても良い。そのような剥離手段は、前述のような突出部154であっても良い。あるいは、剥離手段は、剥離ライナー150の表面の一部に形成された、1または2以上の切り込みであっても良い。この切り込みに沿って、剥離ライナー150を分断することにより、剥離ライナー150を容易に剥離することができる。この場合、剥離ライナー150を構成する被分断部分のいくつかは、相互に重なり合っていても良い。
 (第1のガス検知エレメント100)
 第1のガス検知エレメント100を、実際に水素ガスの検知に使用した場合、色変化度ΔLは、5cmの領域で、10以上であることが好ましい。
 色変化度ΔLは、以下の方法により評価することができる。
 色彩計を用いて、標準白板の色度を測定する。また、ガス検知エレメントの使用前の色度を測定する。なお、色度は、L表色系(CIE 1976)の明度指数で表される。両者の測定色度の差の絶対値を求め、ΔLinitialとする。
 同様に、使用後のガス検知エレメントの色度を測定する。前記標準白板の色度との差の絶対値を求め、ΔLfinalとする。
 これらの結果から、ΔL=|ΔLinitial-ΔLfinal|として、ガス検知エレメントの色変化度ΔLを評価することができる。
 第1のガス検知エレメント100の形態は、特に限られない。
 第1のガス検知エレメント100は、例えば、パッチ状(小片)または短冊状の形態(以下、「既切断形態」と称する)であっても良い。
 既切断形態の場合、テープの形態とは異なり、使用の度に第1のガス検知エレメント100を作業員が切断する必要がなくなり、第1のガス検知エレメント100を被検査部材180に貼り付ける作業を効率的に行うことができる。
 なお、第1のガス検知エレメント100がパッチ状の場合、その形態は、略円形、略楕円形、略三角形、略矩形、または略多角形など、各種形態であっても良い。略円形の場合、直径は、例えば、2mm~30mmの範囲、特に3mm~10mmの範囲であっても良い。また、略矩形の場合、最大辺の長さは、例えば、2mm~30mmの範囲、特に3mm~25mmの範囲であっても良い。
 また、第1のガス検知エレメント100がパッチ状の場合、第1のガス検知エレメント100は、複数の第1のガス検知エレメント100が積層方向に積層された積層体として、提供されても良い。
 図11には、複数の第1のガス検知エレメント100が順次積層されて構成される積層体190の一例を、模式的に示す。
 図11に示すように、この積層体190は、第1のガス検知エレメント100を5つ積層方向(矢印Fの方向)に積層することにより構成される。ただし、これは単なる一例であって、積層数(繰り返し回数)は、例えば、2回、3回、4回、6回、7回、8回、または9回以上であっても良い。
 また、図11に示した例では、各第1のガス検知エレメント100は、図1に示したような構成を有する。しかしながら、それぞれの第1のガス検知エレメント100において、支持体110または剥離ライナー150は、省略されても良い。
 ただし、最下部(矢印Fの上流)の第1のガス検知エレメント100における支持体110と、最上部の(矢印Fの下流)の第1のガス検知エレメント100における剥離ライナー150とは、省略しないことが好ましい。ガス検知層120およびスペーサ140を露出させないためである。
 第1のガス検知エレメント100を使用する際には、積層体190から、最上部または最下部の第1のガス検知エレメント100を分離させる。この際には、第1のガス検知エレメント100の剥離ライナー150に設けられた突出部154を持ち上げ、または押し下げて、一つの第1のガス検知エレメント100を分離させても良い。
 一方、第1のガス検知エレメント100が短冊状の形態の場合、その長手方向の長さLLは、フランジやパイプなどの円形状の被検査部材の周寸法に適合するように選定されても良い。例えば、長手方向の長さLLは、250mm~600mmの範囲であっても良い。
 図12には、短冊状の第1のガス検知エレメントの断面を模式的に示す。
 図12に示すように、短冊状の第1のガス検知エレメント100Aは、支持体110Aと、ガス検知層120Aと、スペーサ140Aと、剥離ライナー150Aとを有する。なお、前述のように、支持体110Aおよび剥離ライナー150Aの少なくとも一つは、省略されても良い。
 ガス検知層120Aは、第1の表面122Aおよび第2の表面124Aを有する。ガス検知層120Aの第1の表面122Aは、支持体110Aから遠い側の表面であり、第2の表面124Aは、支持体110Aに近い側の表面である。
 ガス検知層120Aは、樹脂マトリクス130Aと、該樹脂マトリクス130Aに添加されたケモクロミックピグメント135Aとを有する。また、ガス検知層120は、粘着性を有する。
 なお、これらの部材の構成は、前述の通りである。
 ここで、短冊状の第1のガス検知エレメント100Aは、ガス検知層120Aの第1の表面122Aの長手方向の一端に、タブ部160Aを有する。
 このタブ部160Aは、例えば、紙、プラスチック樹脂、フィルム、剥離ライナー等で構成される。タブ部160Aは、非粘着の材料であっても良い。
 なお、タブ部160Aは、必ずしもガス検知層120Aの第1の表面122A上に設置する必要はない。例えば、タブ部160Aは、ガス検知層120Aの一端部において、ガス検知層120Aから粘着性を除去することにより、構成されても良い。あるいは、タブ部160Aは、支持体110Aの一端部を、他の部材(特にガス検知層120A)よりも外側に延伸させることにより、構成されても良い。
 このようなタブ部160Aを設けることにより、第1のガス検知エレメント100Aの貼り付け後に、被検査部材180から、第1のガス検知エレメント100Aを容易に剥離することができる。すなわち、使用後に、被検査部材180から第1のガス検知エレメント100Aを剥離する際には、タブ部160Aをつまみ、ガス検知層120Aを被検査部材180から引き離すことにより、第1のガス検知エレメント100Aを被検査部材から剥離させることができる。
 なお、このようなタブ部160Aは、パッチ状の形態の第1のガス検知エレメント100にも適用することができる。
 (本発明の一実施形態による別のガス検知エレメント)
 次に、図13を参照して、本発明の一実施形態による別のガス検知エレメントについて説明する。
 図13には、本発明の一実施形態による別のガス検知エレメント(以下、「第2のガス検知エレメント」と称する)の一構成例を模式的に示す。
 図13に示すように、第2のガス検知エレメント200は、第1の側202および第2の側204を有する。
 また、第2のガス検知エレメント200は、支持体210と、ガス検知層220と、剥離ライナー250とを有する。剥離ライナー250は、第2のガス検知エレメント200の第1の側202を構成する。また、支持体210は、第2のガス検知エレメント200の第2の側204を構成する。ただし、支持体210および剥離ライナー250の少なくとも一つは、省略されても良い。
 なお、支持体210および剥離ライナー250の役割は、それぞれ、前述の第1のガス検知エレメント100における支持体110および剥離ライナー150と同様である。従って、ここではこれ以上説明しない。
 ガス検知層220は、第1の表面222および第2の表面224を有する。ガス検知層220の第1の表面222は、支持体210から遠い側の表面であり、第2の表面224は、支持体210に近い側の表面である。
 また、ガス検知層220は、樹脂マトリクス230と、該樹脂マトリクス230内に添加されたケモクロミックピグメント235とを有する。
 ケモクロミックピグメント235は、水素ガスとの接触により、色が変化する材料、例えば酸化パラジウムを含んでも良い。
 ガス検知層220は、粘着性を有する。
 なお、図13には示されていないが、第2のガス検知エレメント200は、さらに、支持体210と、ガス検知層220との間に、密着層(下塗り層)を有しても良い。
 ここで、ガス検知層220は、第1の表面222の略中央に、表面加工部243を有する。表面加工部243は、ガス検知層220の第1の表面222に、水素ガスが充満できる空間を形成するために設けられる。
 例えば図13に示した例では、表面加工部243は、複数の凹部245で形成されており、これらの凹部245によって、空間が構成される。なお、隣接する凹部245同士は、薄い壁部247で仕切られている。
 なお、図13からは明確ではないが、表面加工部243を形成する各凹部245の奥行き方向の形状は、特に限られず、各凹部245の形状は、特に限られない。
 例えば、凹部245は、図14および図15に示すような形態であっても良い。
 図14に示した例では、表面加工部243は、薄い壁部247を介して離間された、複数のストライプ状の溝248Aを有する。すなわち、溝248Aにより、図13に示した凹部245が形成される。
 一方、図15に示した例では、表面加工部243は、薄い壁部247を介して離間された、複数のディスク状の窪み248Bを有する。すなわち、窪み248Bにより、図13に示した凹部245が形成される。
 この他にも、凹部245の形態として、各種構造が想定される。
 なお、このような表面加工部243は、例えば、ガス検知層220の第1の表面222に対してエンボス加工を実施することなどにより、形成することができる。
 次に、図16を参照して、第2のガス検知エレメント200の適用例について説明する。
 図16には、第2のガス検知エレメント200を、被検査部材180に設置した状態を模式的に示す。なお、図16には、図面を見やすくするため、ガス検知層220に含まれるケモクロミックピグメント235は、示されていない。
 被検査部材180に対して、第2のガス検知エレメント200を実際に使用する際には、まず、第2のガス検知エレメント200から、剥離ライナー250が剥離除去される。この際には、剥離ライナー150に設けられた突出部(図13には示されていない)を利用しても良い。
 次に、第2のガス検知エレメント200が、被検査部材180に貼り付けられる。この際には、第2のガス検知エレメント200は、剥離ライナー250の除去により露出された、ガス検知層220の第1の表面222が、被検査部材180に接触するようにして、被検査部材180に貼り付けられる。
 第2のガス検知エレメント200は、ガス検知層220の第1の表面222に設けられた表面加工部243のうち、凹部245(すなわち、ガス検知層220の存在しない空間部分)が、被検査部材180の開口187の上に配置されるようにして、設置されることが好ましい。この場合、表面加工部243の壁部247が開口187の上に配置された場合に比べて、以降に示す水素ガスの漏洩の評価を、より迅速に行うことが可能になる。
 ただし、表面加工部243の壁部247が十分に薄い場合には、そのような設置状態をあまり意識する必要はない。
 これにより、図16に示すような状態で、被検査部材180上に、ガス検知層220を設置することができる。なお、ガス検知層220は粘着性を有するため、ガス検知層220の粘着力により、第2のガス検知エレメント200は、被検査部材180上に固定される。
 この状態で、被検査部材180の孔185から水素ガスが漏洩すると、この漏洩した水素ガスは、第2のガス検知エレメント200の表面加工部243、特に凹部245に充満する。さらに、水素ガスは、薄い壁部247および別の凹部245を介して、表面加工部243全体に、比較的容易に拡散する。
 その結果、ガス検知層220の第2の表面224において、水素ガスと接する領域が有意に増大し、大きな変色領域221を得ることができる。例えば、図16に示した例では、孔185の開口187の直径φに比べて、十分に大きな寸法Lの変色領域221が得られる。
 従って、第2のガス検知エレメント200では、孔185の開口187が微細な場合であっても、視認性の低下により、検査員が水素ガスの漏洩を適正に検出することが難しくなると言う問題を、有意に抑制することが可能になる。
 なお、第2のガス検知エレメント200において、図13~図15に示した表面加工部243は、単なる一例であって、表面加工部243は、水素ガスが充満できる空間を構成する限り、いかなる形態であっても良い。
 例えば、図13において、表面加工部243は、単一の凹部245で形成されても良い。あるいは、表面加工部243は、第2の表面224に形成された1または2以上の凸部であっても良い。あるいは、表面加工部243は、1または2以上の凹部と、1または2以上の凸部との組み合わせであっても良い。
 その他にも各種構成が想定され得る。
 (本発明の一実施形態によるガス検知エレメントの製造方法)
 次に、図17を参照して、前述のような特徴を有する本発明の一実施形態によるガス検知エレメントの製造方法の一例について説明する。
 図17には、本発明の一実施形態によるガス検知エレメントの製造方法のフローの一例を模式的に示す。
 図17に示すように、本発明の一実施形態によるガス検知部材の製造方法(以下、「第1の製造方法」と称する)は、
(i)ガス検知層用の塗布混合物を調製する工程(S110)と、
(ii)前記塗布混合物を支持体に塗布する工程(S120)と、
(iii)前記塗布混合物からガス検知層を形成する工程(S130)と、
(iv)ガス検知層の上にスペーサを設置する工程(S140)と、
 を有する。
 以下、各工程について説明する。なお、ここでは、一例として、前述の第1のガス検知エレメント100を例に、その製造方法について説明する、従って、各部材を参照する際には、図1に示した参照符号を使用する。
 (工程S110)
 まず、後にガス検知層120となる塗布混合物が調製される。
 塗布混合物は、例えば、ケモクロミックピグメントを含む分散液と、後にガス検知層120の樹脂マトリクス130となる処理液体とを混合することにより、作製される。
 以下、ケモクロミックピグメントを含む分散液、および処理液体を調製する方法の一例について説明する。
 (分散液の調製方法)
 ケモクロミックピグメントを含む分散液は、例えば、以下のように調製される。
 まず、担体粒子を含むスラリーに、パラジウム塩を添加し、十分に混合する。スラリーは、水を含んでも良い。また、担体粒子は、二酸化チタンであっても良い。パラジウム塩は、例えば、塩化物、硫化物、硝酸塩、または酢酸塩等であっても良い。また、パラジウム塩は、溶液の形態で、スラリーに添加されても良い。
 次に、このスラリーに、酸またはアルカリを添加し、スラリーを中和する。この中和反応の際に、担体粒子の表面に微細な酸化パラジウム粒子が堆積し、表面に酸化パラジウムが設置された複合粒子を得ることができる。
 得られた複合粒子の表面には、さらに白金などの貴金属(パラジウムを除く)を設置しても良い。複合粒子の表面に白金を設置する場合、複合粒子のスラリーに、白金化合物が添加される。スラリーの溶媒は、エタノールのような有機溶媒であっても良い。また、白金化合物は、例えば、塩化物、硫化物、硝酸塩、または酢酸塩を含む溶液であっても良い。
 この混合液を十分に撹拌することにより、複合粒子の表面に白金が堆積されたケモクロミックピグメントを得ることができる。
 ケモクロミックピグメントは、ケトンのような有機溶媒に懸濁され、分散液が形成される。有機溶媒は、ブチルアセテート、メチルエチルケトン、またはメチルイソブチルケトンなどであっても良い。
 (処理液体の調製方法)
 処理液体は、例えば、シロキサン前駆体および開始剤を含む。処理液体は、さらに溶媒を含んでも良い。
 シロキサン前駆体は、例えば、オルガノシロキサンおよび/またはオリゴシロキサンを含んでも良い。
 オルガノシロキサンは、モノマーまたはポリマー(直鎖または環状)のメチルシロキサンであっても良い。
 オリゴシロキサンは、MQレジンのようなシリコーン樹脂を有しても良い。
 開始剤は、パーオキサイドを有しても良い。例えば、開始剤は、ベンゾイルパーオキサイド、または2,4-ジクロロベンゾイルパーオキサイドであっても良い。
 開始剤は、0.1質量%~3.0質量%の範囲の濃度で、処理液体中に添加されても良い。
 溶媒は、メチルベンゼンおよびエチルベンゼンのような、アルキルベンゼンを含んでも良い。メチルベンゼンとしては、例えばキシレンやトルエンが挙げられる。キシレンは、例えば、1,2-ジメチルベンゼン、1,3-ジメチルベンゼン、1,4-ジメチルベンゼン、またはこれらの任意の組み合わせであっても良い。
 前述の分散液と、処理液体とを混合することにより、塗布混合物が調製される。
 (工程S120)
 次に、工程S110で調製された塗布混合物が、支持体110の表面に塗布される。
 塗布混合物の塗布方法は、特に限られない。塗布混合物は、例えば、刷毛塗り、スプレー塗布、または印刷など、各種方法により、支持体110の表面に設置されても良い。
 なお、工程S130で得られるガス検知層120と支持体110との間の密着力を高めるため、支持体110の表面に、予め密着層を設置しておいても良い。
 密着層は、例えば、フェニルメチル系樹脂であっても良い。
 (工程S130)
 次に、支持体110の上に設置された塗布混合物から、ガス検知層が形成される。
 例えば、塗布混合物に含まれる溶媒を除去した後、塗布混合物を硬化させることにより、シロキサンポリマーの樹脂マトリクス130中にケモクロミックピグメント135が分散された、ガス検知層120を形成することができる。溶媒を除去するための加熱温度は、例えば25℃~100℃の範囲である。
 塗布混合物を硬化する際には、開始剤が十分に活性になる温度まで、塗布混合物を加熱しても良い。開始剤により、塗布混合物に含まれるシロキサン前駆体が架橋され、ガス検知層120の樹脂マトリクス130が形成される。
 開始剤を活性化するための加熱温度は、例えば、120℃~250℃の範囲であっても良い。
 (工程S140)
 次に、工程S130で形成されたガス検知層120の上に、スペーサ140が設置される。
 スペーサ140の設置方法は、特に限られない。例えば、スペーサ140は、手作業により、ガス検知層120の上に設置しても良い。
 また、スペーサの種類は、前述のものに限られず、水素ガスに対する透過性を有する限り、いかなる材料も使用可能である。
 なお、前述のように、スペーサ140は、必ずしも設置段階で、水素ガスに対する透過性を有する必要はない。例えば、発泡が可能な未発泡層をガス検知層120の上に設置しておき、使用の際に、この未発泡層に熱を加えて発泡させることにより、スペーサ140を形成しても良い。
 以上の工程により、図1に示したような第1のガス検知エレメント100を製造することができる。なお、この第1の製造方法は、単なる一例であって、第1のガス検知エレメント100は、その他の製造方法で製造されても良い。
 例えば、前述のように、スペーサ140のみを先に被検査部材180に設置しておき、その後、スペーサ140の上にガス検知層120などの部材を設置することにより、第1のガス検知エレメント100を構成しても良い。
 以上、水素ガスを検知することが可能な、第1および第2のガス検知エレメント100、100A、200を例に、本発明によるガス検知エレメントの構成例および特徴等について説明した。しかしながら、本発明によるガス検知エレメントは、水素ガス以外の還元性ガスを検知することができるように構成されても良いことは、当業者には明らかである。
 すなわち、本発明によるガス検知エレメントでは、ガス検知層に含まれるケモクロミックピグメントに含まれる変色材料を適正に選定することにより、種々の還元性ガスに対して感度を有するガス検知エレメントを提供することができる。
 以下、本発明の実施例について説明する。
 (例1)
 以下の方法により、ガス検知エレメントを製造した。
 ガス検知エレメントは、支持体、下塗り層、ケモクロミックピグメントを含むガス検知層、およびスペーサを、この順に有する構成とした。
 (支持体およびスペーサの準備)
 支持体として、厚さ25μmのポリイミド(Kapton)(Dupont High Performance Films Circleville,OH,USA)を準備した。
 また、スペーサとして、縦10mm×横10mmの寸法の不織布(HOP-60HCF(170);廣瀬製紙社製)を準備した。この不織布の厚さは、約164μmである。
 ガーレー法を用いて、このスペーサの通気性を評価した。測定にはガーレー式デンソメータ(No.323-AUTO;安田精機社製)を使用し、JIS P8117に準拠して、測定を実施した。
 測定の結果、このスペーサの通気度は、0.06秒/100cmであった。
 (下塗り層用の塗布液の調製)
 下塗り層用の塗布液を、以下の方法で調製した。
 15.06gのフェニルメチルシロキシ基を有するポリシロキサン(SS4195A-D1:Momentive社製)を、室温でキシレン96.61gに溶解させた後、十分に撹拌して、均一な溶液を得た。撹拌状態で、この溶液に、0.34gの架橋剤(SS4191B:Momentive社製)を添加し、さらに数分間撹拌した。次に、0.567gの促進剤(SS4259c:Momentive社製)、および0.567gの触媒(SS4192C:Momentive社製)を順次添加し、数分間撹拌した。これにより、下塗り層用の塗布液(「U-1」と称する)が得られた。
 (ケモクロミックピグメントの調製)
 次に、以下の方法で、ケモクロミックピグメントを調製した。
 100mLの水に、2.5gのTiO粒子(平均粒径5μm未満、ルチル型)を加え、スラリーを調製した。NaOH溶液を用いて、このスラリーのpHを10.6に調整した状態で、70℃で1時間撹拌した。
 次に、NaOH溶液を用いて、スラリーのpHを10.6に維持した状態で、2.50mLのPdCl溶液(0.281M)を追加した。その後、HCl溶液(3N)を用いて、混合液体のpHを8に調整した。
 次に、この混合液体を撹拌し、1時間加熱した。これにより、TiO粒子の表面にPdOが堆積された。得られた固体を濾過後、洗浄した。その後、110℃で3時間乾燥した。
 これにより、3.3質量%のPdOを含むPdO/TiO粒子(以下、「C-1」と称する)が得られた。
 100mLのエタノール中に、得られたPdO/TiO粒子(C-1)を2.5g懸濁させ、スラリーを調製した。このスラリーに、0.019gのNaPtCl・6HO(Aldrich社製)を添加した。スラリーのpHは、NaOHを用いて6に維持した。
 次に、このスラリーを超音波処理により十分に撹拌した後、得られた生成物を濾過し、エタノールで洗浄した。その後、生成物を室温で乾燥させた。
 次に、生成物を110℃で3時間熱処理した。これにより、0.26質量%のPtが担持されたケモクロミックピグメント(以下、「CC-1」と称する)が得られた。
 (ガス検知層用の塗布混合物の調製)
 以下のように、前述の方法で調製したケモクロミックピグメントCC-1を使用して、ガス検知層用の塗布混合物を調製した。
 まず、10.4gのメチルエチルケトンに、2.39gのケモクロミックピグメントCC-1を十分に分散させることにより、ケモクロミックピグメントの分散液を作製した。
 次に、10gのトルエンに、1.0gのベンゾイルパーオキサイド(97%、Luperox(登録商標)A98、Aldrich)を添加した。得られた溶液を1分間撹拌し、ベンゾイルパーオキサイドを完全に溶解させた。
 次に、この溶液全てと、18gのトルエンとを、75gのシロキサン前駆体(PSA518,Momentive Performance Materials,Waterford,NY USA)に添加し、3分間撹拌した。これにより、シリコーン系樹脂を含む処理液体が作製された。
 次に、得られた処理液体中に、前述のケモクロミックピグメントの分散液を12.79g添加し、均一になるまで十分に撹拌した。
 これにより、塗布混合物(「CM-1」と称する)が得られた。
 (ガス検知エレメントの作製)
 ガス検知エレメントは、以下のように作製した。
 まず支持体の上に、厚さ約1μmの下塗り層用の塗布液U-1をコーティングした。その後、120℃で乾燥させ、下塗り層を形成した。
 次に、バーコーター(SA-210;テスター産業株式会社製)を用いて、この下塗り層の上に、塗布混合物CM-1をコーティングした。
 次に、この下塗り層および塗布混合物CM-1がコーティングされた支持体を、25℃で乾燥させ、溶媒を除去した。次に、支持体を、オーブン内で177℃に3分間保持した。これにより、下塗り層の上に、ガス検知層が形成された。ガス検知層の厚さは、約35μmであった。
 次に、支持体/下塗り層/ガス検知層で構成された組立体を、20mm×20mmの寸法に切断した。
 また、組立体のガス検知層側の略中央に、スペーサとして、前述の不織布を設置した。
 これにより、パッチタイプのガス検知エレメント(以下、「サンプル1」と称する)が得られた。
 (例2)
 例1と同様の方法により、パッチタイプのガス検知エレメント(以下、「サンプル2」と称する)を製造した。
 ただし、この例2では、スペーサとして、前述の不織布を2枚重ねたものを使用した。従って、スペーサの厚さは、328μmである。
 前述の方法で、スペーサの通気度を測定したところ、このスペーサの通気度は、0.11秒/100cmであった。
 (例3)
 例1と同様の方法により、ガス検知エレメントを製造した。
 ただし、この例3では、スペーサとして、厚さが約150μmのシリコーン系熱拡散シート(EX40015DS;デクセリアルズ社製)を使用した。
 これにより、パッチタイプのガス検知エレメント(以下、「サンプル3」と称する)が得られた。
 (例4)
 例1と同様の方法により、パッチタイプのガス検知エレメント(以下、「サンプル4」と称する)を製造した。
 ただし、この例3では、スペーサとして、ポリテトラフルオロエチレン(PTFE)系の多孔質シート(NTF1131;日東電工株式会社製)を使用した。この多孔質シートの厚さは、70μmである。
 前述の方法で、スペーサの通気度を測定したところ、このスペーサの通気度は、4.1秒/100cmであった。
 (例5)
 例4と同様の方法により、パッチタイプのガス検知エレメント(以下、「サンプル5」と称する)を製造した。
 ただし、この例5では、スペーサとして、ポリテトラフルオロエチレン(PTFE)系の多孔質シート(NTF1133;日東電工株式会社製))を使用した。この多孔質シートの厚さは、75μmである。
 前述の方法で、スペーサの通気度を測定したところ、このスペーサの通気度は、1.5秒/100cmであった。
 (例6)
 例1と同様の方法により、ガス検知エレメントを製造した。
 ただし、この例6では、スペーサとして、厚さが120μmのクラフト紙(両更クラフトPEラミネート紙;株式会社小松社製)を使用した。
 これにより、パッチタイプのガス検知エレメント(以下、「サンプル6」と称する)が得られた。
 (例7)
 例1と同様の方法により、パッチタイプのガス検知エレメント(以下、「サンプル7」と称する)を製造した。
 ただし、この例7では、スペーサとして、厚さが680μmのボール紙(白色)を使用した。
 前述の方法で、スペーサの通気度を測定したところ、このスペーサの通気度は、220秒/100cmであった。
 (例8)
 例1と同様の方法により、ガス検知エレメントを製造した。
 ただし、この例8では、スペーサを使用しなかった。すなわち、支持体/下塗り層/ガス検知層の構成を有するガス検知エレメント(以下、「サンプル8」と称する)を製造した。
 以下の表1には、各例において製造されたサンプルにおけるスペーサの仕様を、まとめて示した。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 前述の方法で製造した各サンプル1~8を用いて、以下の試験を実施した。
 内径10mmφ(容積24ml)のシリンジを準備した。このシリンジの両端(入口端および出口端)には、開閉バルブが設けられており、シリンジの側面の略中央部分には、直径2mmφの開放孔(貫通孔)が一つ形成されている。
 次に、このシリンジの貫通孔の開口を塞ぐようにして、シリンジの側面に、サンプルを貼り付けた。この際には、シリンジの貫通孔の開口が、サンプルのスペーサの略中央部分と接するようにして、サンプルを設置した。なお、サンプル8においては、ガス検知層の略中央部分が貫通孔の開口と接するようにして、サンプル8を設置した。
 次に、シリンジの入口端に水素ガス源を接続した。また、室温において、入口端および出口端の開閉バルブを開にして、シリンジの入口端から水素ガスを流通させた。水素ガスの流量は6ml/分であり、流通時間は3分間とした。
 3分経過後に、水素ガスの流通を停止し、両開閉バルブを閉止した。また、サンプルを支持体の側から観察した。
 このような試験を各サンプルについて実施した。また、支持体の側からサンプルの変色領域の面積(以下、「変色面積」という)Sを測定し、貫通孔の開口の面積Sに対する変色面積Sの割合S/S、およびスペーサの面積Sに対する変色面積Sの割合S/Sを、それぞれ評価した。
 以下の表2には、各サンプル1~8において得られた結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 この表2から、スペーサを有さないサンプル8では、割合S/Sが178%となっていることがわかる。このことから、サンプル8では、貫通孔の開口から漏洩する水素ガスは、サンプル8のガス検知層内に、あまり拡散されないことがわかる。
 これに対して、スペーサを備えるサンプル1~サンプル7では、いずれも、割合S/Sが有意に上昇していることがわかる。また、割合S/Sも、有意に大きな値を示すことがわかる。
 例えば、割合S/Sは、最も小さい場合でも428%(サンプル1およびサンプル2)となっており、変色領域は、貫通孔の開口の面積の4倍以上に広がっていることがわかる。また、割合S/Sは、最も小さい場合でも121%(サンプル1およびサンプル2)となっており、水素ガスは、スペーサの領域を超えて広がっていることがわかる。
 なお、サンプル1~サンプル7において、前述の方法で、変色領域の色変化度ΔLを評価した。その結果、色変化度ΔLは、いずれのサンプルにおいても10以上であった。
 このように、ガス検知層と被検査部材との間にスペーサを設けることにより、変色領域が広がり、色変化の視認性が向上することが確認された。
 本願は、2017年8月8日に出願した日本国特許出願2017-153596号、および2018年8月1日に出願した日本国特許出願2018-145006号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 1     従来の水素検知テープ
 10    支持体
 20    水素ガス検知層
 21    変色領域
 29    粘着剤層
 100   第1のガス検知エレメント
 100A  短冊状の第1のガス検知エレメント
 102   第1の側
 104   第2の側
 110、110A 支持体
 120、120A ガス検知層
 121   変色領域
 122、122A 第1の表面
 124、124A 第2の表面
 130、130A 樹脂マトリクス
 135、135A ケモクロミックピグメント
 140、140-1、140-2、140-3、140-4、140-5、140-6、140A スペーサ
 142   接触部
 143A、143B 中央矩形部
 144A、144B 延伸部
 146C  コーナー部
 146D  底辺
 146S  コーナー部
 146U  上辺
 149   隙間
 150、150A 剥離ライナー
 154   突出部
 160A  タブ部
 180   被検査部材
 181   第1の面
 183   第2の面
 185   孔
 187   開口
 190   積層体
 200   第2のガス検知エレメント
 202   第1の側
 204   第2の側
 210   支持体
 220   ガス検知層
 221   変色領域
 222   第1の表面
 224   第2の表面
 230   樹脂マトリクス
 235   ケモクロミックピグメント
 243   表面加工部
 245   凹部
 247   壁部
 248A  溝
 248B  窪み
 250   剥離ライナー
 340   多層構造スペーサ
 342   第1の側
 344   第2の側
 352   本体層
 354   第1の表面
 356   第2の表面
 362   接着層
 364   第1の層
 366   第2の層
 368   第3の層
 370   非設置部分

Claims (18)

  1.  測定対象ガスを検知するガス検知エレメントであって、
     ケモクロミックピグメントを含有するガス検知層と、
     スペーサと、
     を有し、
     前記スペーサは、前記測定対象ガスに対する透過性を有し、
     前記スペーサは、前記ガス検知層の第1の表面上に配置され、該ガス検知層よりも小さな面積を有する、ガス検知エレメント。
  2.  前記スペーサは、
    ・パルプからなる紙、
    ・ガラス、セラミック、もしくは金属などの無機材料繊維、または合成樹脂などの高分子材料の繊維を含む不織布もしくは織布、
    ・ガラス、セラミック、もしくは金属などの無機材料、または合成樹脂などの高分子材料を含む熱拡散シート、
    ・ガラス、セラミック、もしくは金属などの無機材料、または合成樹脂などの高分子材料を含む多孔質シート、または
    ・連通孔を有する発泡体、
    からなる群から選択される、請求項1に記載のガス検知エレメント。
  3.  前記スペーサは、端面の少なくとも一部が外部に露出されている、請求項1または2に記載のガス検知エレメント。
  4.  前記スペーサは、上面視、前記ガス検知層に周囲が囲まれている、請求項1または2に記載のガス検知エレメント。
  5.  前記スペーサは、5μm~1000μmの範囲の厚さを有する、請求項1乃至4のいずれか一つに記載のガス検知エレメント。
  6.  上面視、前記ガス検知層の面積をSとし、前記スペーサの面積をSとしたとき、比S/Sは、0.02~0.9の範囲である、請求項1乃至5のいずれか一つに記載のガス検知エレメント。
  7.  測定対象ガスを検知するガス検知エレメントであって、
     ケモクロミックピグメントを含有するガス検知層を有し、
     前記ガス検知層は、第1の表面に、前記測定対象ガスが充満する空間を有し、
     前記空間は、前記ガス検知層よりも小さな面積を有する、ガス検知エレメント。
  8.  前記ガス検知層は、前記第1の表面に凹部および/または凸部を有し、該凹部および/または凸部により、前記空間が形成される、請求項7に記載のガス検知エレメント。
  9.  さらに、前記ガス検知層の前記第1の表面の側に、剥離ライナーを有する、請求項1乃至8のいずれか一つに記載のガス検知エレメント。
  10.  さらに、前記ガス検知層の前記第1の表面とは反対の側に、支持体を有する、請求項1乃至9のいずれか一つに記載のガス検知エレメント。
  11.  前記支持体は、ポリイミド、ポリエチレン(PE)、ポリプロピレン(PP)、フッ化エチレンプロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンテレフタレート(PET)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、またはポリフッ化ビニリデン(PVDF)で構成される、請求項10に記載のガス検知エレメント。
  12.  前記ケモクロミックピグメントは、還元性ガスとの接触によって変色する、請求項1乃至11のいずれか一つに記載のガス検知エレメント。
  13.  前記ケモクロミックピグメントは、担体粒子の表面に、パラジウム以外の貴金属が担持またはドープされた酸化パラジウムを有する、請求項1乃至12のいずれか一つに記載のガス検知エレメント。
  14.  前記担体粒子は、酸化チタンを有する、請求項13に記載のガス検知エレメント。
  15.  前記ガス検知層は、シリコーン樹脂を含む、請求項1乃至14のいずれか一つに記載のガス検知エレメント。
  16.  前記シリコーン樹脂は、フェニルメチル基またはジメチル基を有する、請求項15に記載のガス検知エレメント。
  17.  当該ガス検知エレメントは、パッチ状または短冊状の形態である、請求項1乃至16のいずれか一つに記載のガス検知エレメント。
  18.  前記測定対象ガスは、水素ガスである、請求項1乃至17のいずれか一つに記載のガス検知エレメント。
PCT/JP2018/029036 2017-08-08 2018-08-02 ガス検知エレメント WO2019031383A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207003420A KR102649650B1 (ko) 2017-08-08 2018-08-02 가스 검지 요소
EP18844276.8A EP3667300A4 (en) 2017-08-08 2018-08-02 GAS DETECTION ELEMENT
US16/637,451 US11530992B2 (en) 2017-08-08 2018-08-02 Gas detection element
CN201880050841.XA CN111033239A (zh) 2017-08-08 2018-08-02 气体检测元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017153596 2017-08-08
JP2017-153596 2017-08-08
JP2018145006A JP7017994B2 (ja) 2017-08-08 2018-08-01 ガス検知エレメント
JP2018-145006 2018-08-01

Publications (1)

Publication Number Publication Date
WO2019031383A1 true WO2019031383A1 (ja) 2019-02-14

Family

ID=65272168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029036 WO2019031383A1 (ja) 2017-08-08 2018-08-02 ガス検知エレメント

Country Status (1)

Country Link
WO (1) WO2019031383A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721759A (zh) * 2019-03-22 2020-09-29 台湾奈米碳素股份有限公司 呈色气体感测芯片
CN112649161A (zh) * 2020-11-27 2021-04-13 宝武清洁能源有限公司 气敏色变传感器及基于气敏色变传感的加氢站安全盾系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233740A (ja) * 2004-02-19 2005-09-02 Hitachi Ltd 光検知式水素検出素子及び水素検出装置
JP2005345338A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 水素ガス検知用塗膜顔料、水素ガス検知用塗膜、及び水素ガス検知テープ
US20070089989A1 (en) * 2005-09-02 2007-04-26 William Hoagland Conformable hydrogen indicating wrap to detect leaking hydrogen gas
JP2008082980A (ja) * 2006-09-28 2008-04-10 Toppan Forms Co Ltd ガス感知体
JP2011013079A (ja) * 2009-07-01 2011-01-20 Daikin Industries Ltd ガス検出素子及びガス検出装置
JP2011013080A (ja) * 2009-07-01 2011-01-20 Daikin Industries Ltd ガス検出素子及びガス検出装置
US8048384B1 (en) 2010-08-31 2011-11-01 University Of Central Florida Research Foundation, Inc. Chemochromic hydrogen sensors
US8293178B2 (en) 2007-11-06 2012-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Chemochromic detector for sensing gas leakage and process for producing the same
US8591818B2 (en) 2005-04-29 2013-11-26 Gary Bokerman Gas permeable chemochromic compositions for hydrogen sensing
US8652993B2 (en) 2011-08-18 2014-02-18 University Of Central Florida Research Foundation, Inc. Doped palladium containing oxidation catalysts
JP2016161507A (ja) * 2015-03-04 2016-09-05 国立研究開発法人産業技術総合研究所 水素ガス感応性膜及びその製造方法
JP2017153596A (ja) 2016-02-29 2017-09-07 株式会社ジェイ・エム・エス ステント
JP2018145006A (ja) 2017-03-09 2018-09-20 株式会社日立ビルシステム ドアレール清掃器及びドアレール清掃方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233740A (ja) * 2004-02-19 2005-09-02 Hitachi Ltd 光検知式水素検出素子及び水素検出装置
JP2005345338A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 水素ガス検知用塗膜顔料、水素ガス検知用塗膜、及び水素ガス検知テープ
US8591818B2 (en) 2005-04-29 2013-11-26 Gary Bokerman Gas permeable chemochromic compositions for hydrogen sensing
US20070089989A1 (en) * 2005-09-02 2007-04-26 William Hoagland Conformable hydrogen indicating wrap to detect leaking hydrogen gas
JP2008082980A (ja) * 2006-09-28 2008-04-10 Toppan Forms Co Ltd ガス感知体
US8945473B2 (en) 2007-11-06 2015-02-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Chemochromic detector for sensing gas leakage and process for producing the same
US8293178B2 (en) 2007-11-06 2012-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Chemochromic detector for sensing gas leakage and process for producing the same
US8920730B2 (en) 2007-11-06 2014-12-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Chemochromic detector for sensing gas leakage and process for producing the same
JP2011013080A (ja) * 2009-07-01 2011-01-20 Daikin Industries Ltd ガス検出素子及びガス検出装置
JP2011013079A (ja) * 2009-07-01 2011-01-20 Daikin Industries Ltd ガス検出素子及びガス検出装置
US8048384B1 (en) 2010-08-31 2011-11-01 University Of Central Florida Research Foundation, Inc. Chemochromic hydrogen sensors
US8652993B2 (en) 2011-08-18 2014-02-18 University Of Central Florida Research Foundation, Inc. Doped palladium containing oxidation catalysts
US8703642B2 (en) 2011-08-18 2014-04-22 University Of Central Florida Research Foundation, Inc. Method of forming supported doped palladium containing oxidation catalysts
JP2016161507A (ja) * 2015-03-04 2016-09-05 国立研究開発法人産業技術総合研究所 水素ガス感応性膜及びその製造方法
JP2017153596A (ja) 2016-02-29 2017-09-07 株式会社ジェイ・エム・エス ステント
JP2018145006A (ja) 2017-03-09 2018-09-20 株式会社日立ビルシステム ドアレール清掃器及びドアレール清掃方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667300A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721759A (zh) * 2019-03-22 2020-09-29 台湾奈米碳素股份有限公司 呈色气体感测芯片
CN112649161A (zh) * 2020-11-27 2021-04-13 宝武清洁能源有限公司 气敏色变传感器及基于气敏色变传感的加氢站安全盾系统

Similar Documents

Publication Publication Date Title
JP7017994B2 (ja) ガス検知エレメント
KR102412393B1 (ko) 가스 센싱 요소
JP5898803B2 (ja) 防水通気フィルタおよびその製造方法
WO2019031383A1 (ja) ガス検知エレメント
US9227382B2 (en) Release sheet
KR920003795B1 (ko) 차광성 마스킹 막
JP4629455B2 (ja) シート状汚染範囲検知紙
US20150045504A1 (en) Release sheet
KR102279476B1 (ko) 열전사 시트와 시일형 인화 시트의 조합, 및 열전사 시트
JP2007293287A (ja) インジケーター
KR20220034204A (ko) 전해질 막 또는 막 전극 어셈블리의 제조에 사용하기 위한 이형 필름
JP2013254909A (ja) 防水通気部材及び通気構造
JP4770623B2 (ja) 検知紙
JP2021020722A (ja) 包装容器、容器本体、蓋部材
CN113039068A (zh) 便于视觉检查的防水传声片材
KR20200044563A (ko) 통기 필터
JP2021020727A (ja) 包装袋、包装体
JP2021020720A (ja) 包装袋、包装体
JP2008026155A (ja) 検知シートおよび検知シートロール
JPH039239A (ja) 検査シート
JP2005291989A (ja) 湿度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844276

Country of ref document: EP

Effective date: 20200309