WO2019031155A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2019031155A1
WO2019031155A1 PCT/JP2018/026436 JP2018026436W WO2019031155A1 WO 2019031155 A1 WO2019031155 A1 WO 2019031155A1 JP 2018026436 W JP2018026436 W JP 2018026436W WO 2019031155 A1 WO2019031155 A1 WO 2019031155A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
protrusion
extension
air
exchanger according
Prior art date
Application number
PCT/JP2018/026436
Other languages
English (en)
French (fr)
Inventor
石井 裕
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2019031155A1 publication Critical patent/WO2019031155A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus

Definitions

  • the present invention relates to a heat exchanger.
  • An object of the present invention is to suppress the blockage of the air passage due to frost formation and to improve the heat exchange efficiency.
  • the heat exchanger is Let directions orthogonal to each other be a first direction, a second direction, and a third direction, A plurality of piping members extending in the first direction and spaced in the second direction, and through which the heat medium flows; A plurality of plate members fixed between adjacent piping members, extending in a third direction and spaced apart in the first direction; Heat exchange is performed between the heat medium flowing inside the piping member and the air flowing around the piping member and around the plate member, An area surrounded by the piping member and the plate member is a ventilation passage for flowing air in the third direction, and the plate member is an extension which is extended on the windward side relative to the ventilation passage along the third direction. Equipped with The piping member is provided with a protrusion that protrudes to the windward side relative to the air passage along the third direction.
  • the extension in the fin by providing the extension in the fin, it is possible to suppress blockage of the air passage even if frost is formed on the tip of the extension.
  • frost when frost is formed on the tip of the extension and air is diverted there and flows into the air passage, heat exchange is performed via the protrusion of the piping member, and frost is formed on the protrusion Since the dehumidified air flows into the downwind side and the blocking of the air passage due to frost formation can be suppressed, the heat exchange efficiency can be improved.
  • FIG. 1 is a diagram showing a heat exchanger.
  • the heat exchanger 11 functions as an evaporator in a heat pump cycle and a refrigeration circuit, such as a car air conditioner and a showcase.
  • the aluminum heat exchanger 11 includes a pair of upper and lower headers 12, a plurality of tubes 13 (pipe members), and a plurality of fins 14 (plate members).
  • the pair of headers 12 extend in the lateral direction and are spaced apart in the longitudinal direction.
  • the header 12 is formed by a cylindrical pipe whose both ends are closed, and the inside is divided by the partition wall 17 into compartments aligned in the lateral direction.
  • the upper header 12 is internally divided into a section 12A at one end in the lateral direction and a section 12B at the other end in the lateral direction, and an inlet 15 is provided in the section 12A at the one end in the lateral direction.
  • the lower header 12 is internally divided into a section 12C at one end in the lateral direction and a section 12D at the other end in the lateral direction, and a discharge port 16 is provided in the section 12D at the other end in the lateral direction.
  • Each tube 13 extends in the longitudinal direction, and the upper end and the lower end are respectively connected to the header 12 and provided at equal intervals along the lateral direction.
  • the tube 13 has a laterally thin flat shape, and both ends thereof are in communication with the inside of the header 12 and brazed to the header 12.
  • 13a to 13l are sequentially arranged from one end in the lateral direction to the other end.
  • the tube 13 d and the tube 13 e are partitioned by the partition wall 17, and in the lower header 12, the tube 13 h and the tube 13 i are partitioned by the partition wall 17.
  • Each fin 14 is fixed by brazing between adjacent tubes 13.
  • a flow path is formed by the header 12 and the tube 13, through which a refrigerant (heat medium) flows. That is, first, it flows into the section 12A on one end side in the lateral direction of the upper header 12 through the inflow port 15, is distributed to the tubes 13a to 13d, and then flows into the section 12C on one end side in the lateral direction of the lower header 12. Next, after being distributed to the tubes 13e to 13h, they flow into the section 12B on the other end side in the lateral direction in the upper header 12 and then are distributed to the tubes 13i to 13l and then to the other end side in the lateral direction on the lower header 12. It flows into the compartment 12 D and is discharged through the discharge port 16. Thus, as the coolant flows through each tube 13, it exchanges heat with the air flowing around the tubes 13 and the fins 14. That is, the refrigerant evaporates and evaporates to raise the temperature by heat absorption, whereby one air is cooled.
  • a refrigerant heat medium
  • FIG. 2 is a view showing details of the tube and the fin.
  • (A) in the figure is a view of the tube 13 and the fins 14 as viewed from the windward side in the width direction.
  • the fin 14 is a corrugated fin formed by folding a thin plate into a wavy shape. Thereby, it becomes possible to integrate and form a plurality of thin plates provided at intervals in the longitudinal direction.
  • Each region surrounded by the fins 14 and the tube 13 serves as a ventilation passage 21 for flowing air in the width direction.
  • (B) in the figure is a view of the tube 13 and the fins 14 as viewed from the longitudinal direction, and the tube 13 is shown in cross section.
  • the tube 13 is formed with a plurality of through holes 22 extending in the longitudinal direction and aligned along the width direction, and the coolant flows through the through holes 22.
  • the fin 14 is formed with an extended portion 23 extending on the windward side of the air passage 21 along the width direction. The amount of extension (length) of each extension 23 is uniform. There is no extension on the leeward side in the width direction of the fins 14.
  • the tube 13 is formed with a protruding portion 24 which protrudes to the windward side more than the air passage 21 along the width direction.
  • the amount of protrusion (length) of each protrusion 24 is uniform.
  • the tube 13 is integrally formed with the protrusion 24 by extrusion molding. There is no protrusion on the downwind side in the width direction of the tube 13.
  • the projecting portion 24 is formed in a plate shape having the longitudinal direction and the width direction as the surface direction, is thinner than the dimension in the lateral direction of the tube 13, and is in a noncontact state with the extension 23 of the fin 14. When viewed from the windward side, the tip of the protrusion 24 is on the back side of the tip of the extension 23, and the tip of the extension 23 protrudes more windward than the tip of the protrusion 24.
  • FIG. 3 is a view schematically showing the state of frost formation.
  • frost 25 first adheres to the tip side of the fins 14 as shown in (a) in the figure in order to cool the ambient air.
  • the fin 14 is formed with an extension 23 which extends on the windward side of the air passage 21 along the width direction. Therefore, even if frost is generated at the tip of the extending portion 23, the ventilation passage 21 is not blocked, so that the heat exchange efficiency can be prevented from being lowered.
  • the protrusion part 24 which protrudes on windward rather than the ventilation path 21 is formed in the tube 13 along the width direction. Therefore, when frost is formed on the tip of the extension 23, air will flow around to bypass the air passage 21 (arrow in the figure), but at this time, heat exchange is performed via the protrusion 24. Therefore, the heat exchange efficiency can be improved.
  • the projections 24 are provided on all the tubes 13a to 13l, so that each tube 13 can be made common. The protrusion 24 is not in contact with the extension 23 of the fin 14. Therefore, the inflow of air into the air passage 21 is not blocked.
  • the projecting portion 24 is formed in a plate shape having the longitudinal direction and the width direction as a surface direction. As described above, with the simple shape, manufacture is easy, and an increase in manufacturing cost can be suppressed. Thereafter, as shown in (b) of the figure, although the frost 26 adheres to the tip of the projecting part 24 as well, the air passage 21 is not blocked again and the inflow of air is maintained (see FIG. Arrows in) can reduce the decrease in heat exchange efficiency. That is, by allowing frost formation on the tip end of the protruding portion 24, it is possible to suppress frost formation at a position of the fins 14 that bypasses the frost 25 attached at the initial stage. Thereby, the use time of the heat exchanger 11 can be extended.
  • FIG. 4 is the figure which showed typically the mode of the frost formation in a comparative example.
  • the extension 23 is formed on the fin 14, and the protrusion 24 is not formed on the tube 13.
  • the frost 25 adheres to the front end side of the fin 14 first.
  • the ventilation path 21 is not obstructed again, the fall of heat exchange efficiency can be controlled.
  • frost is formed on the tip of the extension portion 23, air which has not been dehumidified flows into the air passage 21 bypassing the frost (arrow in the figure).
  • FIG. 5 is a view showing a modified example of the protrusion.
  • A in the figure is an example made into a triangular shape which becomes thinner toward the tip. According to this, the rigidity of the protrusion 24 can be enhanced.
  • B in the figure is an example in which the tip is made arrow-like while being plate-like. According to this, it becomes easy to guide air to the ventilation path 21 by the rectification action.
  • (C) in the figure is an example in which the tip end is T-shaped while being plate-shaped. According to this, it is possible to positively tolerate frost formation on the tip, and to suppress frost formation on a position of the fins 14 that bypasses the frost 25 adhering in the initial stage.
  • (D) in the figure is an example in which a plate is formed, the tip is T-shaped, and the side surface is further provided with asperities. According to this, not only the tip but also frost formation on the side face can be positively permitted, and it can be suppressed that frost formation occurs at a position of the fins 14 that bypasses the frost 25 attached at the initial stage.
  • (E) in the figure is an example in which a wave plate is used. According to this, not only the tip but also frost formation on the side face can be positively permitted, and it can be suppressed that frost formation occurs at a position of the fins 14 that bypasses the frost 25 attached at the initial stage.
  • the projections 24 are provided on all the tubes 13a to 13l, but the present invention is not limited to this.
  • the frost formation tends to occur on the upstream side of the tubes 13a to 13l through which the refrigerant flows. Therefore, the projecting portion 24 may be provided only on the upstream side of the tubes 13a to 13l through which the refrigerant flows.
  • FIG. 6 is a view showing a modified example of the heat exchanger.
  • the protrusions 24 are provided only on the upstream tubes 13a to 13d, and the protrusions 24 are omitted on the downstream tubes 13e to 13l.
  • conventional products without the projecting portion 24 can be diverted, and weight increase can also be suppressed.
  • FIG. 7 is a view showing details of the tube and the fin in the second embodiment.
  • the protrusion 24 is protruded on the windward side by the same length as the extension 23 so that the tip of the protrusion 24 and the tip of the extension 23 are flush with each other.
  • the fins 14 have a thickness of only about 0.1 mm, and are easily deformed when receiving an external force. Therefore, the protrusion 24 is protruded to the windward side by the same length as the extension 23. Thereby, even if an external force is applied to the fins 14 from the windward side during manufacturing, transportation, and use, the external force is received by the projecting portion 24 having rigidity higher than that of the fins 14, so that deformation of the fins 14 can be suppressed. .
  • the tip of the fin 14 is deformed and the air passage 21 is partially closed, the heat exchange efficiency is reduced. Therefore, by suppressing the deformation of the fin 14, desired heat exchange performance can be maintained.
  • the shape of the protruding portion 24 can be any shape as shown in (a) to (e) of FIG. In addition, about the part common to 1st Embodiment mentioned above, the same effect shall be obtained and detailed explanation is omitted.
  • FIG. 8 is a view showing a modified example of the tube and the fin.
  • the tip of the extension 23 is on the back side of the tip of the protrusion 24, and the tip of the protrusion 24 protrudes more windward than the tip of the extension 23.
  • the tip of the projecting portion 24 abuts first of all the tip of the extending portion 23, so that deformation of the fin 14 can be further suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】着霜による通風路の閉塞を抑制すると共に、熱交換効率の向上を図る。 【解決手段】チューブ13とフィン14とで囲まれた領域を、幅方向に空気を流すための通風路21とし、フィン14は、幅方向に沿って通風路21よりも風上側に延長させた延長部23を備える。チューブ13は、幅方向に沿って通風路21よりも風上側へ突出する突出部24を備える。

Description

熱交換器
 本発明は、熱交換器に関するものである。
 冷媒管を流れる冷媒とフィンを通過する空気との間で熱交換を行なう熱交換器では、フィンの先端に着霜して通風路が塞がれると、熱交換効率が低下してしまう。特許文献1では、着霜によって通風路が塞がれることを抑制するために、フィンを冷媒管よりも風上側に延長させることを提案している。
特開2012-163323号公報
 フィンの先端に着霜すると、空気はそこを迂回するようにして延長部の横から通風路へ除湿されない空気が流入することになり、迂回した箇所において容易に通風量の閉塞を引き起こす。
 本発明の課題は、着霜による通風路の閉塞を抑制すると共に、熱交換効率の向上を図ることである。
 本発明の一態様に係る熱交換器は、
 互いに直交する方向を、第一の方向、第二の方向、及び第三の方向とし、
 第一の方向に延び、第二の方向に間隔を空けて設けられ、内部を熱媒体が流れる複数の配管部材と、
 隣り合う配管部材同士の間に固定され、第三の方向に延び、第一の方向に間隔を空けて設けられた複数の板部材と、を備え、
 配管部材の内部を流れる熱媒体と、配管部材の周囲及び板部材の周囲を流れる空気と、の間で熱交換を行なうものであり、
 配管部材と板部材とで囲まれた領域を、第三の方向に空気を流すための通風路とし、板部材は、第三の方向に沿って通風路よりも風上側に延長させた延長部を備え、
 配管部材は、第三の方向に沿って通風路よりも風上側へ突出する突出部を備える。
 本発明によれば、フィンに延長部を設けたことで、延長部の先端に着霜が生じても、通風路が閉塞されることを抑制できる。また、延長部の先端に着霜し、そこを迂回して通風路へと空気が流入する際には、配管部材の突出部を介して熱交換が行なわれ、突出部に着霜することで、除湿された空気が風下側に流入し、着霜による通風路の閉塞が抑制できるため、熱交換効率の向上を図ることができる。
熱交換器を示す図である。 チューブ及びフィンの詳細を示した図である。 着霜の様子を模式的に示した図である。 比較例における着霜の様子を模式的に示した図である。 突出部の変形例を示す図である。 熱交換器の変形例を示す図である。 第2実施形態におけるチューブ及びフィンの詳細を示した図である。 チューブ及びフィンの変形例を示した図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
《第1実施形態》
 《構成》
 以下の説明では、互いに直交する三方向を、便宜的に、縦方向(第一の方向)、横方向(第二の方向)、及び幅方向(第三の方向)とする。
 図1は、熱交換器を示す図である。
 熱交換器11は、カーエアコンやショーケース等、ヒートポンプサイクル及び冷凍回路において、蒸発器として機能するものである。アルミ製の熱交換器11は、上下一対のヘッダ12と、複数のチューブ13(配管部材)と、複数のフィン14(板部材)と、を備える。
 一対のヘッダ12は、横方向に延び、縦方向に間隔を空けて設けられている。ヘッダ12は、両端が閉塞された円筒状の配管によって形成されており、内部は隔壁17によって横方向に並んだ区画に仕切られている。上方のヘッダ12は、内部が横方向一端側の区画12Aと横方向他端側の区画12Bとに分けられており、横方向一端側の区画12Aには流入口15が設けられている。下方のヘッダ12は、内部が横方向一端側の区画12Cと横方向他端側の区画12Dとに分けられており、横方向他端側の区画12Dには排出口16が設けられている。
 各チューブ13は、縦方向に延び、上端及び下端の夫々がヘッダ12に接続され、横方向に沿って等間隔に設けられている。チューブ13は横方向に薄い扁平形状であり、両端をヘッダ12の内部に連通させてヘッダ12にろう付けされている。ここでは12本ある場合を示してあり、夫々を識別する場合は、横方向の一端から他端に向かって順に13a~13lとする。上方のヘッダ12では、チューブ13dとチューブ13eとの間が隔壁17によって仕切られており、下方のヘッダ12では、チューブ13hとチューブ13iとの間が隔壁17によって仕切られている。
 各フィン14は、隣り合うチューブ13同士の間にろう付けによって固定されている。
 ヘッダ12及びチューブ13によって、流路が形成されており、そこを冷媒(熱媒体)が流れる。すなわち、先ず流入口15を介して上方のヘッダ12における横方向一端側の区画12Aへ流入し、チューブ13a~13dに分配されてから下方のヘッダ12における横方向一端側の区画12Cへ流入する。次にチューブ13e~13hに分配されてから上方のヘッダ12における横方向他端側の区画12Bへ流入し、次にチューブ13i~13lに分配されてから下方のヘッダ12における横方向他端側の区画12Dへ流入し、排出口16を介して排出される。こうして、冷媒は各チューブ13を流れるときに、チューブ13及びフィン14の周囲を流れる空気との間で熱交換を行なう。すなわち、冷媒は蒸発気化することで吸熱によって昇温され、一方の空気が冷やされる。
 次に、チューブ13及びフィン14の詳細について説明する。
 図2は、チューブ及びフィンの詳細を示した図である。
 図中の(a)はチューブ13及びフィン14を幅方向の風上側から見た図である。
 フィン14は、薄板を波状のつづら折りにして形成されたコルゲートフィンである。これにより、縦方向に間隔を空けて設けられた複数の薄板を一体化して形成することが可能となる。このフィン14とチューブ13とで囲まれた各領域が、幅方向に空気を流すための通風路21となる。
 図中の(b)はチューブ13及びフィン14を縦方向から見た図であり、チューブ13についてはその断面を示す。
 チューブ13には、縦方向に延び、幅方向に沿って並んだ複数の貫通孔22が形成されており、各貫通孔22に冷媒が流れる。
 フィン14には、幅方向に沿って通風路21よりも風上側に延長させた延長部23が形成されている。各延長部23の延長量(長さ)は統一されている。なお、フィン14における幅方向の風下側に延長部はない。
 チューブ13には、幅方向に沿って通風路21よりも風上側へ突出する突出部24が形成されている。各突出部24の突出量(長さ)は統一されている。チューブ13は、突出部24と共に押し出し成形によって一体的に形成されている。なお、チューブ13における幅方向の風下側に突出部はない。
 突出部24は、縦方向及び幅方向を面方向とする板状に形成されており、チューブ13における横方向の寸法よりも薄く、フィン14の延長部23とは非接触状態である。風上側から見て、突出部24の先端は、延長部23の先端よりも奥側にあり、延長部23の先端の方が、突出部24の先端よりも風上側に張り出している。
 《作用》
 次に、第1実施形態の主要な作用効果について説明する。
 図3は、着霜の様子を模式的に示した図である。
 例えば、暖房運転時に熱交換器11を蒸発器として使用する場合、周囲の空気を冷却するため、図中の(a)に示すように、まずフィン14の先端側に霜25が付着してゆく。しかしながら、フィン14には、幅方向に沿って通風路21よりも風上側に延長させた延長部23が形成されている。したがって、延長部23の先端に着霜が生じるとしても、通風路21が閉塞されることがないため、熱交換効率の低下を抑制することができる。
 また、チューブ13には、幅方向に沿って通風路21よりも風上側へ突出する突出部24が形成されている。したがって、延長部23の先端に着霜すると、そこを迂回して通風路21へと空気が流入することになるが(図中の矢印)、このとき突出部24を介して熱交換が行なわれるため、熱交換効率の向上を図ることができる。突出部24は、チューブ13a~13lの全てに設けられているため、各チューブ13を共通化できる。
 突出部24は、フィン14の延長部23とは非接触である。したがって、通風路21への空気の流入を阻むことがない。
 突出部24は、縦方向及び幅方向を面方向とする板状に形成されている。このように、シンプルな形状とすることで、製造も容易であり、製造コストの増加も抑制することができる。
 その後、図中の(b)に示すように、さらに突出部24の先端にも霜26が付着するものの、やはり通風路21が閉塞されることはなく、空気の流入が維持されるため(図中の矢印)、熱交換効率の低下を抑制することができる。すなわち、突出部24の先端への着霜を許容することで、フィン14のうち初期段階で付着した霜25を迂回した位置に着霜が生じることを抑制することができる。これにより、熱交換器11の使用時間を延長することができる。
 次に、比較例について説明する。
 図4は、比較例における着霜の様子を模式的に示した図である。
 ここでは、フィン14に延長部23が形成されているだけで、チューブ13に突出部24は形成されていない。図中の(a)に示すように、まずフィン14の先端側に霜25が付着してゆく。そして、やはり通風路21が閉塞されることがないため、熱交換効率の低下を抑制することができる。しかしながら、延長部23の先端に着霜すると、そこを迂回して通風路21へと除湿されていない空気が流入する(図中の矢印)。
 その後、図中の(b)に示すように、迂回した先のチューブ13やフィン14にもさらに霜27が付着してゆくと、通風路21が徐々に閉塞されてゆき、熱交換効率の低下を招いてしまう。そして、最終的に通風路21は閉塞されてしまう。
 《変形例》
 第1実施形態では、突出部24が単なる板状である構成について説明したが、これに限定されるものではなく、任意の形状とすることができる。
 図5は、突出部の変形例を示す図である。
 図中の(a)は、先端に向かって細くなる三角形状にした例である。これによれば、突出部24の剛性を高めることができる。
 図中の(b)は、板状にすると共に、先端を矢じり状にした例である。これによれば、整流作用により、通風路21へと空気を案内しやすくなる。
 図中の(c)は、板状にすると共に、先端をT字状にした例である。これによれば、先端への着霜を積極的に許容し、フィン14のうち初期段階で付着した霜25を迂回した位置に着霜が生じることを抑制できる。
 図中の(d)は、板状にすると共に、先端をT字状にし、さらに側面に凹凸を設けた例である。これによれば、先端のみならず、側面への着霜も積極的に許容し、フィン14のうち初期段階で付着した霜25を迂回した位置に着霜が生じることを抑制できる。
 図中の(e)は、波板にした例である。これによれば、先端のみならず、側面への着霜も積極的に許容し、フィン14のうち初期段階で付着した霜25を迂回した位置に着霜が生じることを抑制できる。
 第1実施形態では、チューブ13a~13lの全てに突出部24を設けているが、これに限定されるものではない。着霜が生じやすいのは、各チューブ13a~13lのうち、冷媒が流れる上流側である。したがって、チューブ13a~13lのうち、冷媒が流れる上流側だけに突出部24を設けてもよい。
 図6は、熱交換器の変形例を示す図である。
 ここでは、上流側となるチューブ13a~13dにだけ突出部24を設けてあり、下流側となるチューブ13e~13lには突出部24を省略している。これにより、下流側となるチューブ13e~13lについては、突出部24のない従来品を流用でき、重量増加も抑制できる。
《第2実施形態》
 《構成》
 第2実施形態は、突出部24の長さを変更したものである。
 前述した第1実施形態と共通する部分については、詳細な説明を省略する。
 図7は、第2実施形態におけるチューブ及びフィンの詳細を示した図である。
 ここでは、突出部24の先端と延長部23の先端とが面一になるように、突出部24を延長部23と同じ長さだけ風上側に突出させている。
 《作用》
 次に、第2実施形態の主要な作用効果について説明する。
 一般に、フィン14は0.1mm程度の厚さしかなく、外力を受けると容易に変形してしまう。そこで、突出部24を延長部23と同じ長さだけ風上側に突出させている。これにより、製造時、輸送時、使用時に、風上側からフィン14に外力が加わるとしても、フィン14よりも剛性の高い突出部24で外力を受けるので、フィン14の変形を抑制することができる。フィン14の先端が変形して、一部の通風路21が閉塞すると、熱交換効率が低下してしまうため、フィン14の変形を抑制することで、所望の熱交換性能を維持することができる。
 なお、突出部24の形状については、図5の(a)~(e)に示すように、任意の形状とすることができる。その他、前述した第1実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
 《変形例》
 第2実施形態では、チューブ13の突出部24を、フィン14の延長部23と同じ長さだけ風上側に突出させているが、これに限定されるものではなく、延長部23よりも風上側に突出させてもよい。
 図8は、チューブ及びフィンの変形例を示した図である。
 風上側から見て、延長部23の先端は、突出部24の先端よりも奥側にあり、突出部24の先端の方が、延長部23の先端よりも風上側に張り出している。これにより、風上側から外力を受ける際、延長部23の先端よりも突出部24の先端がまず当接するので、フィン14の変形を、さらに抑制することができる。
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。
 11 熱交換器
 13 チューブ(配管部材)
 14 フィン(板部材)
 21 通風路
 23 延長部
 24 突出部

Claims (6)

  1.  互いに直交する方向を、第一の方向、第二の方向、及び第三の方向とし、
     前記第一の方向に延び、前記第二の方向に間隔を空けて設けられ、内部を熱媒体が流れる複数の配管部材と、
     隣り合う前記配管部材同士の間に固定され、前記第三の方向に延び、前記第一の方向に間隔を空けて設けられた複数の板部材と、を備え、
     前記配管部材の内部を流れる前記熱媒体と、前記配管部材の周囲及び前記板部材の周囲を流れる空気と、の間で熱交換を行なうものであり、
     前記配管部材と前記板部材とで囲まれた領域を、前記第三の方向に空気を流すための通風路とし、前記板部材は、前記第三の方向に沿って前記通風路よりも風上側に延長させた延長部を備え、
     前記配管部材は、前記第三の方向に沿って前記通風路よりも風上側へ突出する突出部を備えることを特徴とする熱交換器。
  2.  前記突出部は、前記延長部とは非接触であることを特徴とする請求項1に記載の熱交換器。
  3.  前記突出部は、前記第一の方向及び前記第三の方向を面方向とする板状に形成されることを特徴とする請求項1又は2に記載の熱交換器。
  4.  前記突出部は、複数の前記配管部材のうち前記熱媒体が流れる上流側だけに設けられることを特徴とする請求項1~3の何れか一項に記載の熱交換器。
  5.  前記突出部は、前記第三の方向に沿って前記延長部と同じ長さだけ風上側に突出していることを特徴とする請求項1~4の何れか一項に記載の熱交換器。
  6.  前記突出部は、前記第三の方向に沿って前記延長部よりも風上側に突出していることを特徴とする請求項1~4の何れか一項に記載の熱交換器。
PCT/JP2018/026436 2017-08-08 2018-07-13 熱交換器 WO2019031155A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-153549 2017-08-08
JP2017153549A JP2019032119A (ja) 2017-08-08 2017-08-08 熱交換器

Publications (1)

Publication Number Publication Date
WO2019031155A1 true WO2019031155A1 (ja) 2019-02-14

Family

ID=65272292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026436 WO2019031155A1 (ja) 2017-08-08 2018-07-13 熱交換器

Country Status (2)

Country Link
JP (1) JP2019032119A (ja)
WO (1) WO2019031155A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195085A1 (ja) * 2022-04-06 2023-10-12 三菱電機株式会社 熱交換器および空調冷熱装置
WO2024023908A1 (ja) * 2022-07-26 2024-02-01 三菱電機株式会社 熱交換器および冷凍サイクル装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190352A (en) * 1962-08-23 1965-06-22 Modine Mfg Co Radiator tube protector
JPH02284715A (ja) * 1989-04-24 1990-11-22 Showa Alum Corp 薄肉扁平チューブの製造方法
JP2000234888A (ja) * 1999-02-15 2000-08-29 Nissan Motor Co Ltd 熱交換器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190352A (en) * 1962-08-23 1965-06-22 Modine Mfg Co Radiator tube protector
JPH02284715A (ja) * 1989-04-24 1990-11-22 Showa Alum Corp 薄肉扁平チューブの製造方法
JP2000234888A (ja) * 1999-02-15 2000-08-29 Nissan Motor Co Ltd 熱交換器

Also Published As

Publication number Publication date
JP2019032119A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP5071597B2 (ja) 熱交換器および空気調和機
WO2013161802A1 (ja) 熱交換器、及び空気調和機
EP3415854A1 (en) Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
US10508862B2 (en) Heat exchanger for air-cooled chiller
US20060237178A1 (en) Heat exchanger
JP2012163328A5 (ja)
JP2007278558A (ja) 冷媒放熱器
JP5936297B2 (ja) 熱交換器
US11268769B2 (en) Heat exchanger
WO2014038038A1 (ja) 空気熱交換器
EP3224565B1 (en) Frost tolerant microchannel heat exchanger
WO2019031155A1 (ja) 熱交換器
JP2005106328A (ja) 熱交換装置
US20240200886A1 (en) Heat Exchanger
JP2008215737A (ja) フィンチューブ型熱交換器及び冷凍サイクル
JPH11230638A (ja) 熱交換器
KR100606332B1 (ko) 공조기기의 열교환기용 납작튜브
JP2007187435A (ja) 熱交換器
WO2019058848A1 (ja) 熱交換器
JP5815128B2 (ja) 熱交換器、及び空気調和機
US20240060722A1 (en) Heat exchanger and refrigeration cycle apparatus
WO2016036732A1 (en) Frost tolerant microchannel heat exchanger for heat pump and refrigeration applications
JP2020153606A (ja) 熱交換器
WO2019058847A1 (ja) 熱交換器
JP2005257094A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843372

Country of ref document: EP

Kind code of ref document: A1