WO2019030991A1 - 空中映像表示装置 - Google Patents

空中映像表示装置 Download PDF

Info

Publication number
WO2019030991A1
WO2019030991A1 PCT/JP2018/016863 JP2018016863W WO2019030991A1 WO 2019030991 A1 WO2019030991 A1 WO 2019030991A1 JP 2018016863 W JP2018016863 W JP 2018016863W WO 2019030991 A1 WO2019030991 A1 WO 2019030991A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
deflection
optical element
plate
aerial image
Prior art date
Application number
PCT/JP2018/016863
Other languages
English (en)
French (fr)
Inventor
永悟 佐野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2019030991A1 publication Critical patent/WO2019030991A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors

Definitions

  • the present invention relates to an aerial image display apparatus for imaging a real image of an object in the air.
  • the target object includes not only a display (for example, a liquid crystal display (LCD)) but also a three-dimensional object, but in a broad sense also includes an image displayed on the display.
  • a display for example, a liquid crystal display (LCD)
  • LCD liquid crystal display
  • the imaging position of the real image (aerial image) in the air is a position that is plane-symmetrical to the object with respect to the optical plate, so it is far away from the optical plate to provide an easy-to-see aerial image for the observer.
  • the space including the optical plate and the object becomes large, and the aerial image display device becomes large.
  • the incident angle of the light beam to the optical plate becomes extremely larger than the desired angle, the efficiency of reflection decreases due to multiple reflection in the optical plate, and the aerial image becomes dark (the luminance of the aerial image decreases).
  • the above-mentioned inconvenience is reduced by arranging a linear prism as a deflection optical element on the object side with respect to the optical plate.
  • the linear prism is an optical member in which a plurality of structures (prisms) extending in the same shape (for example, a triangular cross section) in one direction are formed in parallel.
  • the desired incident from the linear prism to the optical plate The light beam can be incident close to an angle (for example, 45 ° to 50 °).
  • JP-A-2017-26734 see claim 1, paragraphs [0007], [0019], FIG. 1, etc.
  • the deflection angle by the linear prism is practically limited to about 20 ° to 30 °. Therefore, even in the case where the object is placed on the optical plate so as to make the apparatus thinner, it is possible to set the optical plate to about 25 ° to 15 ° with respect to the imaging efficiency (brightness) of the aerial image. In order to make the device thinner, it is possible to lay it down only until it lays it down (as it will not be possible to make it enter from the linear prism to the optical plate at the desired incident angle (eg 45 °) if it is placed further) There is a limit.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to suppress the decrease in luminance of an aerial image while reducing the thickness of the device by devising the configuration of the deflection optical element used.
  • An aerial image display device includes an optical plate having a plurality of reflecting surfaces orthogonal to each other in plan view, and reflects light from an object with the plurality of reflecting surfaces, thereby the optical plate
  • An aerial image display apparatus for guiding a light image of the object to the air, the light being guided to the air on the opposite side to the incident side of the light, and deflecting the light from the object to form the real image of the object;
  • the optical device further includes a deflection optical element for guiding to an optical plate, and the deflection optical element is disposed between the light transmitting flat plate member and the flat plate member so as to be separated from each other. It has a plurality of reflection / deflecting surfaces for deflecting the light from the object that has entered from one surface by reflection and emitting the light from the other surface.
  • the object is fixed to the optical plate Even in parallel arrangement, light from the object can be incident on the optical plate through the deflection optical element at a desired angle. As a result, it is possible to suppress the decrease in luminance of the aerial image while achieving thinning of the device.
  • FIG. 6 is an explanatory view showing an optical path of light emitted from the display device when the deflection optical element is disposed to be inclined with respect to the display device. It is explanatory drawing which shows typically the optical path of each light ray which injects into the said deflection
  • FIG. 7 is a cross-sectional view showing a schematic configuration of the aerial image display device of Comparative Example 1;
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an aerial image display apparatus according to a first embodiment.
  • FIG. 6 is a cross sectional view schematically showing another configuration of the aerial image display device of the first embodiment. It is a sectional view showing the detailed composition of the diffusion limiting member with which the above-mentioned aerial image display device is provided. It is explanatory drawing which shows angular distribution of the light ray radiate
  • FIG. 25 is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of an aerial image display device of Comparative Example 2;
  • FIG. 7 is a cross-sectional view showing a schematic configuration of the aerial image display device of Example 2;
  • FIG. 33 is a cross-sectional view showing a state in which the positioning portion of the housing of FIG. 32 is brought close to the plate holding portion.
  • FIG. 36 is a cross-sectional view taken along line B-B 'in FIG. It is a perspective view which shows the other structure of the said airborne image display apparatus.
  • FIG. 38 is a cross-sectional view taken along the line C-C 'in FIG.
  • FIG. 1 is a cross-sectional view schematically showing the entire configuration of the aerial image display device 1 of the present embodiment.
  • the aerial image display device 1 forms a real image of an object in the air as an image M (aerial image), and includes a display 2, an optical plate 3, and a deflection optical element 4.
  • the display 2 is a device that displays an image, and is configured by, for example, a liquid crystal display (LCD) or an organic electro luminescence (EL) display.
  • LCD liquid crystal display
  • EL organic electro luminescence
  • an image displayed on the display 2 itself or the display surface 2 a of the display 2 constitutes an object. Therefore, in the present embodiment, the real image of the object refers to the real image of the image displayed on the display surface 2 a of the display 2.
  • the display 2 is positioned so as to be parallel to the optical plate 3, that is, so that the display surface 2 a is parallel to a plane perpendicular to the thickness direction of the optical plate 3 (for example, the plane 3 a on the light incident side).
  • the deflection optical element 4 is disposed on the display 2 side with respect to the optical plate 3, and is housed in the housing 5 together with the display 2.
  • the deflection optical element 4 is disposed in parallel to the display surface 2 a which is a light exit surface of the display 2.
  • the deflection optical element 4 is disposed apart from the display 2 in FIG. 1, the deflection optical element 4 is in contact with the display 2 from the viewpoint of improving the light capture efficiency from the display 2 to the deflection optical element 4. It is desirable to arrange them (see FIG. 14). The details of the deflection optical element 4 will be described later.
  • the optical plate 3 is located at the opening 5 a of the housing 5.
  • the optical plate 3 may be accommodated inside the housing 5.
  • at least a portion of the housing 5 facing the optical plate 3 may be made transparent.
  • the optical plate 3 internally reflects light incident from the display 2 through the deflection optical element 4 to form an image M in the air.
  • FIG. 2 is a perspective view showing a schematic configuration of the optical plate 3.
  • the optical plate 3 is configured by laminating two optical panels 20 and 30.
  • the optical panel 20 has a plurality of plate members 21 as adhesive layers in one of two directions (for example, the X direction) perpendicular to each other in a plane perpendicular to the laminating direction of the optical panels 20 and 30 (for example, the Z direction). It is formed by arranging through.
  • the optical panel 30 is formed by arranging a plurality of plate-like members 31 in the other direction (for example, the Y direction) of the above two directions via an adhesive layer.
  • Each plate-like member 21 has a transparent substrate 21a formed in a long shape in the Y direction, and a reflective surface 21b formed on at least one of two surfaces of the transparent substrate 21a facing in the X direction.
  • each plate-like member 31 includes a transparent substrate 31a elongated in the X direction, and a reflective surface 31b formed on at least one of two surfaces of the transparent substrate 31a opposed to the Y direction. have.
  • the optical plate 3 has a single-layer structure in which reflecting surfaces (V-shaped (L-shaped) in plan view) are arranged in an array on the same plane, in addition to the two-layered structure described above. It can also be used.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the aerial image display device 1 'of the first reference example. If the incident angle of the light beam with respect to the optical plate 3 deviates from a desired angle (for example, 45 ° to 50 °), the multiple reflection in the optical plate 3 reduces the efficiency of reflection and the aerial image becomes dark. The thing is as above-mentioned. Therefore, for example, when a general display device such as an LCD is used as the object (display 2), the display 2 has the highest front luminance as shown in FIG. It is desirable to arrange at an angle of 45 °.
  • a desired angle for example, 45 ° to 50 °
  • the size (depth D2) of the aerial image display device 1 'itself is determined by the size of the display 2 (specifically, the depth D2 is (The length of the display surface) needs to be larger than (1 / ⁇ 2). This limits the reduction in thickness of the aerial image display apparatus 1 ′.
  • the display 2 parallel to the optical plate 3 it is desirable to arrange the display 2 parallel to the optical plate 3 as shown in FIG. In this case, it is possible to reduce the thickness by setting the depth of the aerial image display device 1 to D1 smaller than D2.
  • the optical plate 3 and the display 2 are arranged in parallel, if the light beam from the display 2 can be incident on the optical plate 3 at an optimal angle (for example, 45 °) Both thinning and high brightness of the aerial image can be achieved. Therefore, while arranging the display 2 parallel to the optical plate 3 as much as possible, the deflection optical element 4 is arranged between the display 2 and the optical plate 3 to optimize the light beam from the display 2 to the optical plate 3 Consider a configuration in which the light is deflected to a proper angle and incident.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a prism plate 100 of a reference example 2 which is an example of the optical element.
  • the prism plate 100 is an optical element corresponding to the linear prism used in Patent Document 1, and is configured by integrating a plurality of prisms 101a and a flat plate portion 101b.
  • a plurality of prisms 101a is a sectional right-angled triangle, as the slope 101a 1 of each prism 101a are parallel to each other, are arranged in parallel on a flat plate portion 101b.
  • each prism 101a and the flat plate portion 101b are formed of the same material (for example, resin).
  • the light is deflected by refraction at the interface between the flat plate portion 101 b and the prism 101 a and the air layer, and the optical plate 3 is Incident to
  • the angle formed between the inclined surface 101a 1 and the flat plate portion 101b of the prism 101a referred to as a prism angle ⁇ (°).
  • the prism angle ⁇ is also referred to as a rising angle.
  • the deflection angle of incident light at the prism plate 100 is determined by the refractive index of the material of the prism plate 100 and the prism angle ⁇ .
  • the material of the prism plate 100 is PMMA (polymethyl methacrylate resin) having a refractive index of 1.49
  • the prism angle ⁇ is 40 °
  • a light beam vertically incident on the flat plate portion 101b Is deflected approximately 22 ° when emitted from the prism plate 100.
  • the deflection optical element 4 an optical element which deflects light using not reflection but reflection.
  • the deflection optical element 4 of the present embodiment details of the deflection optical element 4 of the present embodiment will be described.
  • FIG. 5 is a cross-sectional view showing the detailed configuration of the deflection optical element 4 of the present embodiment.
  • the deflection optical element 4 of the present embodiment has a translucent flat plate member 41 and a plurality of reflective deflection surfaces 42.
  • the flat plate member 41 is a transparent base material made of, for example, glass or resin, and has a surface 41a and a surface 41b as two surfaces facing each other.
  • the surfaces 41 a and 41 b are surfaces perpendicular to the thickness direction of the flat plate member 41.
  • the reflective deflection surface 42 is formed of a metallic reflective surface (mirror, louver) that deflects light from an object incident from one surface 41 a of the flat plate member 41 by reflection and emits the light from the other surface 41 b. , And spaced apart from each other inside the flat plate member 41.
  • a metallic reflective surface mirror, louver
  • the plurality of reflective deflection surfaces 42 are inclined with respect to at least one (here, both) of two surfaces (surface 41 a and surface 41 b) of the flat plate member 41.
  • the inclination angle of each reflection deflection surface 42 (strictly, the inclination angle of each reflection deflection surface 42 with respect to the normal of at least one of the two surfaces) is hereinafter also referred to as a louver angle.
  • the plurality of reflection deflection surfaces 42 are incident light rays (for example, light beam La) incident on an arbitrary reflection deflection surface 42 from an object in a plane parallel to the paper surface of FIG. In the plane including the outgoing light beam (for example, the light beam Lb) when the light is reflected and deflected by the surface 42, it is spaced apart at a predetermined pitch in one direction perpendicular to the thickness direction of the flat plate member 41.
  • incident light rays for example, light beam La
  • the outgoing light beam for example, the light beam Lb
  • the incident light is deflected by reflection at each of the reflection deflection surfaces 42, so that the deflection direction (emission direction) of incident light according to the inclination angle (louver angle) of each reflection deflection surface 42 ) Can be adjusted. Therefore, by appropriately setting the material of the flat plate member 41 of the deflection optical element 4 and the louver angle of each of the reflection deflection surfaces 42, the light beam from the display 2 is arranged parallel to the optical plate 3. It becomes easy to deflect by the deflection optical element 4 so as to be incident at an optimum angle with respect to the optical plate 3.
  • the louver angle is set to 13.9 ° to be perpendicular to the surface 41 a of the deflection optical element 4
  • the light beam La (a light beam with an incident angle of 0 °) incident on the light is reflected by the reflective deflection surface 42, deflected so that the emission angle is 45 ° with respect to the surface 41b, and can be emitted as a light beam Lb.
  • the light beam Lb can be incident on the optical plate 3 at an optimal angle (45 °).
  • the flat plate member 41 is made of PMMA resin having a refractive index of 1.49
  • the light beam vertically incident on the surface 41 a of the deflection optical element 4 by setting the louver angle to 14.2 °.
  • La can be reflected by the reflective deflection surface 42 and emitted from the surface 41b as a light beam Lb with an emission angle of 45 °, and also in this case, the light beam Lb is incident at an optimal angle (45 °) to the optical plate 3 It can be done.
  • the deflection optical element 4 having the above configuration can be manufactured, for example, as follows.
  • FIG. 6 schematically shows the manufacturing process of the deflection optical element 4 of the present embodiment.
  • a glass substrate 51 having a predetermined thickness is prepared (step (A)).
  • the reflective film 52 is coated on both surfaces of the glass substrate 51 (step (B)).
  • the coating of the reflective film 52 can be performed, for example, by vapor deposition of aluminum.
  • the reflective film 52 is a film that forms the reflective deflection surface 42 described above.
  • a plurality of (for example, several hundred) glass substrates 51 coated with the reflective film 52 are laminated via an adhesive and adhered to form a glass block 53 (step (C)).
  • the obtained glass block 53 is cut at a predetermined pitch from the oblique direction with respect to the reflective film 52 (step (D)).
  • the thin flat deflection optical element 4 can be obtained by shaping the cut pieces into a predetermined shape (for example, a thin rectangular solid shape).
  • the direction in which the glass block 53 is cut (the cut angle with respect to the reflective film 52) may be appropriately adjusted in accordance with the desired louver angle of the deflection optical element 4 to be obtained.
  • the deflection optical element 4 can be manufactured by the same method as described above.
  • the deflection optical element 4 can be manufactured at lower cost than when the glass substrate 51 is used.
  • the display 2 is disposed completely parallel to the optical plate 3 by arranging the deflection optical element 4 having the flat plate member 41 and the plurality of reflection deflection surfaces 42 on the display 2 side of the optical plate 3.
  • the light beam from the display 2 can be reflected and deflected by the deflection optical element 4 so as to be incident on the optical plate 3 at an optimal angle. Therefore, the parallel arrangement of the display 2 with respect to the optical plate 3 can achieve thinning of the aerial image display device 1.
  • light rays from the display 2 are incident on the optical plate 3 at an optimal angle, multiple reflection on the optical plate 3 is reduced. As a result, it is possible to suppress the reduction in brightness of the aerial image and the generation of ghost images due to the multiple reflection at the optical plate 3.
  • the above-described effect of thinning the aerial image display device 1 is the highest, but it is slightly (for example, several degrees to about 15 degrees) off parallel It may be an arrangement. Even in this case, as compared with the configuration in which the display 2 is inclined 45 ° with respect to the optical plate 3 as shown in FIG. 3 or the refractive type prism plate 100 is used and the display 2 is inclined and disposed. Since the inclination angle of the display 2 with respect to is sufficiently small, the effect of thinning the aerial image display device 1 remains to be obtained.
  • the plurality of reflective deflection surfaces 42 of the deflection optical element 4 are inclined with respect to at least one of the surfaces 41 a and 41 b facing each other of the flat plate member 41.
  • the plurality of reflective deflection surfaces 42 are in one direction perpendicular to the thickness direction of the flat plate member 41 in a plane including an incident light beam (for example, light beam La) and an output light beam (for example light beam Lb) They are spaced apart.
  • an incident light beam for example, light beam La
  • an output light beam for example light beam Lb
  • the deflection optical element 4 is disposed in parallel with the display surface 2 a which is the light exit surface of the display 2 (see FIG. 1). Thereby, the deterioration of the quality of the real image formed in the air can be suppressed. More specifically, it is as follows.
  • FIG. 7 shows an optical path of light emitted from the display 2 when the deflecting optical element 4 is disposed at an angle to the display 2.
  • the distance (optical path length) between the display surface 2 a of the display 2 and the deflecting optical element 4 differs depending on the position on the display surface 2 a. Therefore, in a configuration in which the light emitted from the display 2 is reflected and deflected in one direction (direction parallel to the sheet of FIG. 7) on the reflective deflection surface 42 (see FIG. 5) of the deflection optical element 4, the display 2 is displayed.
  • the real image of the image which stretched the said image to said one direction will be observed as an aerial image.
  • the distance between the display surface 2 a of the display 2 and the deflection optical element 4 is a position on the display surface 2 a
  • the optical path length between the display surface 2a and the deflecting optical element 4 does not differ depending on the position on the display surface 2a regardless of the distance.
  • FIG. 8 schematically shows the optical paths of the light beams L1 to L3 incident on the deflection optical element 4 at various angles.
  • the light beam L1 is a light beam (desirable light beam) which is perpendicularly incident on the surface 41a of the deflection optical element 4 and reflected and deflected by the reflection deflection surface 42 and then emitted from the surface 41b in a 45 ° direction.
  • the light beam L2 is a light beam (non-reflecting light beam) which enters the surface 41a of the deflection optical element 4 in an oblique direction, is not reflected and deflected by the reflection deflection surface 42, passes through the flat plate member 41 as it is, and exits the surface 41b.
  • the light ray L3 is a light ray (reflected light ray) which is incident on the surface 41a of the deflection optical element 4 in an oblique direction, is reflected and deflected by the plurality of reflection deflection surfaces 42, and is emitted from the surface 41b.
  • the light beams L1 to L3 are illustrated with their respective incident positions shifted, but even in the same block (flat plate member 41) between the two reflective deflection surfaces 42, these light beams L1 to L3 are also shown. There is a possibility that L3 exists.
  • the transmission amounts of the light beams L 1 to L 3 change depending on the location of the deflection optical element 4. For example, where the pitch of the plurality of reflective deflection surfaces 42 is wide, the transmission amount of the light beam L2 is increased. On the other hand, where the pitch of the plurality of reflective deflection surfaces 42 is narrow, the transmission amount of the light beam L3 may increase and the transmission amount of the light beam L1 may decrease.
  • the light plate 3 is The light quantity of incident light changes with places. Note that the light ray L2 and the light ray L3 do not contribute to image formation as an airborne image (because they are not incident on the optical plate 3 in a desired angle range), but for the airborne image formed by the light ray L1, The influence of unevenness (depending on the place) of the transmitted light amounts of the light beam L2 and the light beam L3 is reflected, and as a result, uneven brightness occurs in the aerial image formed in the air via the optical plate 3.
  • the plurality of reflective deflection surfaces 42 of the deflection optical element 4 are disposed at a constant pitch in the one direction in which they are disposed apart.
  • the plurality of reflection deflection surfaces 42 are arranged at a pitch of 0.5 mm in the one direction.
  • FIG. 9 is a cross-sectional view showing another configuration of the deflection optical element 4 of the present embodiment.
  • the deflection optical element 4 have a non-reflection layer 43 on the back surface side of the plurality of reflection deflection surfaces 42. That is, the non-reflecting layer 43 is provided between one of the two reflective deflection surfaces 42 in the positional relationship sandwiching the transparent medium 41 c of the flat plate member 41 and the transparent medium 41 c. Is desirable.
  • adhesion is made by adding a black pigment (for example, carbon black) when laminating and bonding a plurality of glass substrates 51 coated with the reflection film 52 in the manufacturing process shown in FIG. It can be realized by using an agent. That is, the adhesive to which the black pigment is added absorbs the incident light without reflecting it, and thus can function as the above-mentioned non-reflective layer 43 (light absorbing layer).
  • a black pigment for example, carbon black
  • the adhesive to which the black pigment is added absorbs the incident light without reflecting it, and thus can function as the above-mentioned non-reflective layer 43 (light absorbing layer).
  • one side of the reflective film 52 applied on both sides of the glass substrate 51 is further blackened to form a blacked surface, or one side of the glass substrate 51 is coated with the reflective film 52, and the other side is blacked out.
  • a plurality of glass substrates 51 may be laminated and adhered by an adhesive. In this case, the sanitized surface constitutes the non-
  • the non-reflecting layer 43 on the back side of the plurality of reflective deflection surfaces 42, the light beam L3 incident on the optional reflective deflection surface 42 is reflected and deflected there in the deflection optical element 4 Even when the light beam L 3 is directed to another reflection deflection surface 42 adjacent via 41 c, the light ray L 3 is absorbed by the non-reflection layer 43 immediately before the other reflection deflection surface 42 so that the light beam L 3 is not emitted from the deflection optical element 4. Can. That is, it is possible to reduce the light beam L3 reflected by the plurality of reflective deflection surfaces 42 and incident on the optical plate 3 other than the desired angle. As a result, it is possible to suppress the generation of a ghost image caused by the light ray L3.
  • FIG. 10 is a cross-sectional view schematically showing the main part of the aerial image display device 1 of the present embodiment.
  • the object is the display 2 for displaying an image
  • the light from the display 2 is made to the optical plate 3 at the optimum angle ⁇ by the arrangement angle of the display 2 with respect to the optical plate 3 (corresponding to the angle Dd described later).
  • the deflection angle at the deflection optical element 4 for incidence is changed. Therefore, it is desirable for the aerial image display device 1 of the present embodiment to satisfy the following conditional expression (1). That is, 35 ° ⁇ Dd + sin ⁇ 1 (nsin (2 ⁇ Ld)) ⁇ 55 ° ...
  • Dd angle (°) between display surface 2a of display 2 and optical plate 3
  • n Refractive index of d-line (wavelength 587.56 nm) of medium 41 c of the flat plate member 41 through which light from the display 2 reflected and deflected by each reflection deflection surface 42 of the deflection optical element 4
  • Ld of the deflection optical element 4
  • Conditional expression (1) defines conditions for causing light from the display 2 to be incident on the optical plate 3 at the optimum angle ⁇ via the deflection optical element 4.
  • sin ⁇ 1 (nsin (2 ⁇ Ld)) is a light beam incident perpendicularly to the surface 41 a of the deflection optical element 4 among the light beams included in the light emitted from the display 2
  • the angle of incidence at which the incident angle is 0 °) is reflected by the reflective deflection surface 42 and then emitted from the surface 41b, and is derived from Snell's law.
  • the conditional expression (1) can be rewritten as the following conditional expression (1a). 35 ° ⁇ Dd + ⁇ ⁇ 55 ° (1a)
  • FIG. 12 is a cross-sectional view showing an enlarged main part of the deflection optical element 4 used in the present embodiment. It is desirable that the aerial image display device 1 of the present embodiment satisfies the following conditional expression (2).
  • the light ray incident perpendicularly to the deflecting optical element 4 is reflected a plurality of times by the plurality of reflecting deflecting surfaces 42 to be ghost light
  • the conditions for reducing the incidence on the optical plate 3 are defined. That is, as shown in FIG. 12, among the light rays contained in the light emitted from the display 2, the light ray L incident perpendicularly to the surface 41 a of the deflection optical element 4 is on the side of the surface 41 a of the reflective deflection surface 42.
  • the expression (E) becomes equivalent to the conditional expression (2). That is, by satisfying the conditional expression (2), it is possible to reduce the incidence of the light beam L to the deflection optical element 4 and being reflected a plurality of times by the plurality of reflection deflection surfaces 42 and to be incident on the optical plate 3 as ghost light. And the occurrence of ghost images can be reduced.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of the aerial image display device 1a of Comparative Example 1.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of the aerial image display device 1 of Example 1.
  • the aerial image display apparatus 1 according to the first embodiment is configured such that the display 2 is disposed parallel to the optical plate 3 and the deflection optical element 4 is disposed in contact with the display 2.
  • the aerial image display device 1a of Comparative Example 1 has a configuration in which the deflection optical element 4 is omitted from the aerial image display device 1 of Example 1 and the display 2 is inclined 45 ° with respect to the optical plate 3 (Optical In order to make a light beam enter at an optimal angle with respect to the plate 3).
  • illustration of members mechanical members of the apparatus, a support substrate of the display 2, and the like
  • the size of the optical plate 3 used is 244 mm long ⁇ 244 mm wide, and the size of the display surface 2a of the display 2 is 10 inches diagonal (221 mm long
  • the projection amount of the aerial image (image M) from the optical plate 3 was 100 mm.
  • the amount of projection of the aerial image refers to the distance from the center of the aerial image to the optical plate 3 with respect to the optical plate 3 in the 45 ° direction.
  • the thickness t1 (mm) and t2 (mm) of the housing 5 for housing the display 2 are respectively in the depth direction
  • the thickness t1 was 115 mm
  • the thickness t2 was 71 mm in the aerial image display device 1 of the first embodiment. Therefore, according to the aerial image display device 1 of Example 1 using the deflection optical element 4, the thickness can be significantly reduced compared to the aerial image display device 1 a of Comparative Example 1 not using the deflection optical element 4. I understand.
  • the angle between the display surface 2 a and the optical plate 3 is Dd (°)
  • the refractive index of the d line of the medium 41 c of the flat plate member 41 is n
  • Dd + sin ⁇ 1 (nsin (2 ⁇ Ld)) 45 °, which satisfied the conditional expression (1).
  • the arrangement pitch of the reflection deflection surfaces 42 of the deflection optical element 4 is P (mm), and the thickness of the flat plate member 41 of the deflection optical element 4 is t (mm).
  • FIG. 15 is a cross-sectional view schematically showing another configuration of the aerial image display device 1 of the present embodiment.
  • the aerial image display apparatus 1 may further include a diffusion limiting member 6 in addition to the configuration of FIG. 1.
  • the diffusion limiting member 6 is disposed on the object side (display 2 side) with respect to the deflection optical element 4 and restricts (narrows) light (diffuse light) from the object to a diffusion angle within a predetermined range. ) Is a flat optical member that emits light.
  • FIG. 16 is a cross-sectional view showing the detailed configuration of diffusion limiting member 6.
  • the diffusion limiting member 6 includes a light transmitting member 61 and a plurality of light shielding plates 62 which are spaced apart from each other in the light transmitting member 61 and arranged at a predetermined pitch.
  • the arrangement pitch of the light shielding plates 62 is preferably identical to the arrangement pitch of the reflection polarizing plates 42 of the deflection optical element 4, but may be different from each other.
  • the light shielding plate 62 is preferably provided perpendicular to the surface 61 a perpendicular to the thickness direction of the flat diffusion limiting member 6, but the incident light is limited to a diffusion angle within a predetermined range to be emitted. If possible, it may be inclined with respect to the surface 61a.
  • a privacy filter manufactured by Sumitomo 3M Co., Ltd. can be used as the diffusion limiting member 6 for limiting incident light to a diffusion angle within a predetermined range and emitting the light.
  • the light emitted from the display 2 generally has a certain spread. If only perfect parallel light is emitted from the display 2, the light beam deflected and emitted by the deflection optical element 4 cleanly only a desired angular component (for example, a component incident at 45 ° to the optical plate 3) It becomes a ray of light. However, when light of an angular component having a spread is incident on the deflection optical element 4, there will be light rays which are deflected at an angle other than a desired angle by the deflection optical element 4 and emitted. When such a light beam is incident on the optical plate 3, as described above, the multiple reflection on the optical plate 3 causes a decrease in luminance and the generation of a ghost image.
  • a desired angular component for example, a component incident at 45 ° to the optical plate 3
  • the diffusion limiting member 6 By disposing the diffusion limiting member 6 on the object side with respect to the deflecting optical element 4 as in the present embodiment, even when light having a spread from the display 2 enters the diffusion limiting member 6, Among the light beams diffused at an angle larger than the angle ⁇ , the light beams absorbed by the light shielding plate 62 and diffused at an angle less than the angle ⁇ are emitted from the diffusion limiting member 6 without being absorbed by the light shielding plate 62, The light is incident on the element 4. That is, the light entering the diffusion limiting member 6 is emitted with its diffusion angle limited within a predetermined range (in the above example, the angle ⁇ or less) narrower than the incident light, and enters the deflection optical element 4.
  • a predetermined range in the above example, the angle ⁇ or less
  • FIG. 17 shows the angular distribution (relationship between emission direction and intensity) of light rays emitted from a light source with a half-value angle of 90 °
  • FIG. 18 shows the angular distribution of light rays emitted from a light source with a half-value angle of 40 ° Relationship between direction and strength).
  • the half-value angle refers to an angle at which the intensity is halved as compared to the intensity of light in the front (the emission direction is the direction of 0 °).
  • the outgoing direction 0 ° corresponds to the direction (incident direction at the time of vertical incidence) incident on the deflecting optical element 4 at an incident angle 0 °
  • the direction going outward in the radial direction from the center of the concentric circle is light It corresponds to the direction in which the strength increases.
  • 19 and 20 show the angular distribution (the relationship between the emission direction and the intensity) of the light beam emitted from the deflection optical element 4, and FIG. 19 shows a light source having the angular distribution of FIG. 17 as an example.
  • FIG. 20 shows, as an example, the case where light from a light source having the angular distribution of FIG. 18 is made incident on the deflecting optical element 4.
  • the diffusion limiting member 6 is disposed to limit the diffusion angle of the light from the object, and light having a narrow diffusion angle is made to enter the deflection optical element 4. It can be said that light incident at a desired angle with respect to the optical plate 3 can be increased to reduce multiple reflection at the optical plate 3 and to suppress the reduction in luminance and the generation of ghost images resulting from the multiple reflection.
  • the optical plate 3 From the angle distributions in FIG. 19 and FIG. 20, it is desirable for the optical plate 3 that the half value angle of light incident on the deflection optical element 4 is 60.degree. (Between 40.degree. And 90.degree.) Or less. It is desirable from the viewpoint of increasing the light incident at the angle of, and suppressing the reduction in luminance and the occurrence of ghosting due to multiple reflection, and it is more desirable that the half angle is 40 ° or less.
  • a full angle of 60 ° or less (vertical incidence (0 ° direction)
  • ⁇ 30 ° or less is desirable, and it is further desirable that the full angle is 40 ° or less ( ⁇ 20 ° or less for normal incidence (0 ° direction)).
  • the deflection optical element 4 may be provided at any position as long as it is between the optical plate 3 and the object (display 2), but the efficiency of capturing light from the object to the deflection optical element 4 ( From the viewpoint of preventing the leakage of incident light, it is desirable that the light source is disposed closer to the object than the intermediate position between the optical plate 3 and the object.
  • the deflection optical element 4 When the deflection optical element 4 is disposed at an angle with respect to the display 2, the inclination of the plurality of reflective deflection surfaces 42 is from the end closer to the display 2 in the deflection optical element 4 toward the end farther from the end
  • the deflection optical element 4 may be configured such that the angle (the angle Ld in FIG. 12) is large. In this case, the fact that the real image of the image displayed on the display 2 is stretched in one direction due to the tilt of the deflection optical element 4 with respect to the display 2 is canceled by the reflection deflection of the plurality of reflection deflection surfaces 42 at different angles. be able to. Thereby, the deterioration of the quality of the real image formed in the air can be suppressed.
  • FIG. 21 is a cross-sectional view schematically showing the structure of an aerial image display apparatus 1 according to a second embodiment of the present invention.
  • the aerial image display apparatus 1 of the present embodiment further includes a transmission control member 7 in addition to the configuration shown in FIG. 1 of the first embodiment.
  • the transmission control member 7 is arrange
  • the configuration in which the transmission control member 7 is provided is, of course, applicable to the configuration in FIG. 16 in which the diffusion limiting member 6 is provided.
  • portions different from the first embodiment will be described.
  • FIG. 22 is a cross-sectional view showing a schematic configuration of the permeation control member 7.
  • the transmission control member 7 is a flat optical member that transmits light from the deflection optical element 4 (see FIG. 21) with a diffusion angle within a predetermined range and transmits the light, and between the deflection optical element 4 and the optical plate 3 Located in the light path of The transmission control member 7 includes a light transmitting flat plate member 71 and a plurality of light shielding plates 72 disposed apart from each other in the flat plate member 71.
  • the flat plate member 71 is made of, for example, a transparent resin (for example, silicone rubber), and has a surface 71 a on the light incident side and a surface 71 b on the light emission side.
  • the plurality of light shielding plates 72 are made of, for example, a resin containing a black pigment (for example, silicone rubber), formed in a band shape, and arranged inside the flat plate member 71 at a predetermined pitch. It is arrange
  • FIG. 23 shows the transmittance distribution of the transmittance control member 7.
  • the plurality of light shielding plates 72 are inclined with respect to the normal N, depending on the incident direction of the light beam incident on the surface 71 a of the transmission control member 7 (transmission direction of the transmission control member 7)
  • the transmittance of the light beam transmitted through the transmission control member 7 has a characteristic of changing in accordance with the angle based on the thickness direction of the flat plate member 71.
  • the transmittance of light passing through the transmission control member 7 is the normal N With respect to the direction inclined by about 45 ° ( ⁇ ⁇ 45 °), the maximum value (80%) is obtained, and the light transmittance is reduced as the angle difference with respect to the direction of the maximum transmittance becomes larger.
  • the transmission control member 7 of the present embodiment has the characteristic that the transmittance is maximized in the direction different from the thickness direction.
  • the transmittance of light passing through the transmission control member 7 is equal to the normal N.
  • the transmittance of light passing through the transmission control member 7 is maximum when the plurality of light shielding plates 72 are inclined, for example, by about 20 ° with respect to the normal N. Is found to be maximum in the direction inclined about 20 ° with respect to the normal N. Further, depending on the inclination angles of the plurality of light shielding plates 72, the direction in which the transmittance is maximized in the transmission control member 7 may be completely parallel to each light shielding plate 72.
  • the plurality of light shielding plates 72 are arranged in a state of being inclined with respect to the thickness direction of the flat plate member 71 so as to be parallel or substantially parallel to the direction of maximum transmittance. it can.
  • the state of being inclined with respect to the thickness direction does not include the state in which the inclination angle with respect to the thickness direction is 0 ° (parallel to the thickness direction).
  • substantially parallel indicates that the angle difference is, for example, 10 ° or less, but is preferably 5 ° or less (also in the following description, “approximately parallel” is the above Shall be interpreted in the same way as
  • the plurality of light shielding plates 72 in an inclined manner inside the flat plate member 71, when light is incident on the transmission control member 7 from the display 2 via the deflection optical element 4, Of the light emitted from the element 4, light rays diffused at an angle larger than the angle ⁇ (see FIG. 22) are absorbed by the light shielding plate 72, and light rays diffused at an angle smaller than the angle ⁇ are absorbed by the light shielding plate 72
  • the light is emitted from the transmission control member 7 without incident and is incident on the optical plate 3. That is, the light incident on the transmission control member 7 is emitted with its diffusion angle limited within a predetermined range narrower than the incident light (in the above example, the angle ⁇ or less), and is incident on the optical plate 3.
  • the transmission control member 7 having the characteristic that the light from the deflection optical element 4 is transmitted while limiting the diffusion angle within the predetermined range and the transmission is maximum in the direction different from the thickness direction
  • a view angle control film VCF; View Control Film
  • Shin-Etsu Polymer Co., Ltd. can be used.
  • the transmission control member 7 is such that light beams emitted from the deflection optical element 4 and transmitted inside in the direction of maximum transmittance enter the optical plate 3 in a desired angular range. It is arranged. For example, in a configuration in which the display 2 is arranged parallel or substantially parallel to the optical plate 3 and the deflection optical element 4 emits a light beam vertically incident from the display 2 at an emission angle of 45 °, as shown in FIG.
  • the transmission control member 7 is disposed in contact with the deflection optical element 4 (parallel to the deflection optical element 4).
  • the transmission control member 7 on the optical plate 3 side of the deflection optical element 4, the optical plate 3 among the light rays emitted from the display 2 and contained in the light deflected by the deflection optical element 4. While the ray directed toward the incident direction in the desired angle range is transmitted with high transmittance by the transmission control member 7, the travel of the ray deflected in the direction other than the above angle range by the deflection optical element 4 is This can be suppressed by limitation of the diffusion angle in the transmission control member 7 (light absorption by the light shielding plate 72). As a result, it is possible to suppress the reduction in the luminance of the aerial image formed by the optical plate 3 and to suppress the generation of the ghost due to the light beam deflected in the direction other than the above-mentioned angle range.
  • the transmission control member 7 has a light transmitting flat plate member 71 and a plurality of light shielding plates 72 disposed apart from each other inside the flat member 71, and the plurality of light shielding plates 72 transmit light. It is disposed in a state of being inclined with respect to the thickness direction of the flat plate member 71 so as to be parallel or substantially parallel to the direction in which the ratio is maximum.
  • the transmission control member 7 by forming the transmission control member 7 by combining the flat plate member 71 and the plurality of light shielding plates 72, the light from the deflection optical element 4 is transmitted with the diffusion angle within a predetermined range being transmitted. Can reliably realize the transmission control member 7 having the maximum transmission in different directions.
  • FIG. 24 is a perspective view schematically showing the structure of the aerial image display 1 of the third embodiment of the present invention
  • FIG. 25 is a sectional view taken along the line AA 'in FIG.
  • the aerial image display apparatus 1 of the present embodiment may be configured to include the housing 8 in place of the housing 5 described in the first embodiment. Hereinafter, the details of the housing 8 will be described.
  • the housing 8 holds the optical plate 3 and the deflection optical element 4 so as to be parallel to or substantially parallel to each other.
  • the housing 8 has a shape in which the side opposite to the optical plate 3 with respect to the deflection optical element 4 is open, and the housing 8 can be covered on the object from the opening side. ing. That is, the housing 8 partially has an opening 8a, and the object can be inserted into and removed from the housing 8 through the opening 8a.
  • the flat display 2 existing image display element
  • the installation surface Q is mentioned as an example as an object, and it mentions as an example here, even if it is a display with a touch panel Good.
  • the housing 8 includes a plate holding portion 81, an element holding portion 82, a positioning portion 83, and a frame 84.
  • the frame 84 is a frame-shaped support that supports the plate holding portion 81, the element holding portion 82, and the positioning portion 83 from the outer peripheral edge side thereof.
  • the opening 8 a is formed at one end of the frame 84.
  • the plate holding portion 81, the element holding portion 82 and the positioning portion 83 are all arranged parallel to one another in this order so as to fit inside the frame 84, and are each formed in a frame shape in plan view However, these shapes are not particularly limited.
  • the plate holding part 81, the element holding part 82, the positioning part 83, and the frame 84 are comprised with resin, such as a plastics, such materials are not specifically limited, either.
  • the plate holder 81 holds the optical plate 3.
  • maintenance of the optical plate 3 is not specifically limited.
  • the plate holding portion 81 may hold the optical plate 3 by clamping (pinching) the peripheral portion of the optical plate 3.
  • the plate holding portion 81 may be configured to hold the optical plate 3 by screwing the plate holding portion 81 and the peripheral portion of the optical plate 3 with a pressing member or bonding with an adhesive.
  • the element holding unit 82 holds the deflection optical element 4 so as to be parallel or substantially parallel to the optical plate 3.
  • the manner of holding the deflection optical element 4 is not particularly limited.
  • the element holding unit 82 may hold the deflection optical element 4 by clamping the peripheral portion of the deflection optical element 4.
  • the element holding portion 82 may be configured to hold the deflection optical element 4 by screwing the element holding portion 82 and the peripheral portion of the deflection optical element 4 with a pressing member or bonding with an adhesive.
  • the element holding unit 82 may simultaneously hold not only the deflection optical element 4 but also at least one of the diffusion limiting member 6 (see FIG. 16) and the transmission control member 7 (see FIG. 22) described above.
  • the positioning unit 83 is in a housing such that the optical plate 3 is parallel or substantially parallel to the display 2 by contacting the display 2 when the housing 8 is put on the display 2 from the opening side of the housing 8. Position body 8 Therefore, the positioning portion 83 is also an abutting portion that can abut on the display 2.
  • the positioning portion 83 is supported by the frame 84 at a position opposite to the plate holding portion 81 with respect to the element holding portion 82.
  • FIG. 26 is a cross-sectional view showing a schematic configuration of the aerial image display device 1 b of Comparative Example 2.
  • the aerial image display apparatus 1b of the second comparative example replaces the housing 5 of the aerial image display apparatus 1a of the first comparative example shown in FIG. 13 with the housing 8 ′ cut at the arrangement position of the display 2 and extends along the vertical direction.
  • the housing 8 'to the display 2 so that light beams emitted perpendicularly from the display 2 attached to the mounting surface Q enter the optical plate 3 at a desired angle (here, 45.degree.). It is a configuration that is covered.
  • the optical plate 3 is held by the housing 8 ′ and the deflection optical element 4 is not held. It is apparent from FIG. 26 that, in Comparative Example 2 in which the deflection optical element 4 is not used, the display 2 and the optical plate 3 intersect at 45 °.
  • FIG. 27 is a cross-sectional view showing a schematic configuration of the aerial image display device 1 of the second embodiment.
  • the aerial image display apparatus 1 of the second embodiment is configured such that the display 8 attached to the installation surface Q along the vertical direction is covered with the housing 8 shown in FIG. 25 from the opening side.
  • the deflection optical element 4 is configured to deflect an incident light beam so that a light beam vertically incident from the display 2 is incident on the optical plate 3 at an incident angle of 45 °. Since the positioning portion 83 described above is provided in the housing 8, when the housing 8 is put on the flat display 2, the positioning portion 83 abuts on a part of the surface of the display 2. The position of the housing 8 relative to the display 2 is fixed such that the optical plate 3 is parallel to the display 2.
  • the optical plate 3 and the deflection optical element 4 are held in advance by the casing 8 (plate holding unit 81, element holding unit 82) in parallel, the optical plate 3, the deflection optical element 4, and the display 2 are eventually obtained.
  • the three parties are parallel to each other.
  • the size of the optical plate 3 used is the same as that of the first embodiment and the first comparative example.
  • X 244 mm the size of the display surface 2a of the display 2 is 10 inches diagonal (221 mm long x 124 mm wide), and the projection amount of the aerial image (image M) from the optical plate 3 is 100 mm Do.
  • the optical plate 3, the deflection optical element 4 and the display 2 are in parallel to one another, so the amount of protrusion of the apparatus from the installation surface Q (the thickness of the housing 8) can be minimized.
  • the same 71 mm as the thickness t2 of the first embodiment can be realized as the protrusion amount.
  • the amount of projection of the apparatus from the installation surface Q (case The thickness of the body 8 'is 162.6 mm which is ⁇ 2 times the thickness t1 of the first comparative example.
  • the above ⁇ 2 times is derived from the geometrical positional relationship between the display 2 and the optical plate 3 intersecting at 45 °. That is, in the configuration of the second embodiment, as compared with the configuration of the second comparative example, the amount of protrusion of the device from the installation surface Q can be significantly reduced to half or less.
  • the optical plate 3 and the display are brought into contact by the positioning portion 83 contacting the display 2.
  • the three members of the optical plate 3, the deflection optical element 4 and the display 2 are in a parallel or substantially parallel positional relationship.
  • the object is an object in the vertical direction.
  • the imaging position (display screen) of the image M in the air is horizontal as shown in FIG. Located along.
  • the normal observation direction of the image M refers to the direction opposite to the direction from the optical plate 3 toward the imaging position of the image M, and in FIG. That is, in the configuration of FIG. 26, the image M can not be observed unless it is from directly above.
  • the three members of the optical plate 3, the deflection optical element 4, and the display 2 have a parallel or substantially parallel positional relationship with each other to form an imaging position (display Screen) is positioned along the vertical direction (parallel to the display 2).
  • the observer can observe the image M from the normal observation direction described above, and it becomes easy to observe the image M. That is, the visibility of the image M can be improved.
  • the actual image of the target (for example, the display 2) can be obtained only by covering the existing object (display 2 or display with touch panel) installed on the installation surface Q. Can easily be imaged in the air.
  • the input person observer of the image M
  • a desired position of the image M can be specified and input with the hand or finger while observing from the upper side, so that input operation is facilitated (operability by input is improved).
  • the housing 8 further includes a plate holding portion 81, an element holding portion 82, and a frame 84.
  • the positioning portion 83 corresponds to the element holding portion 82 with the plate holding portion 81. It is supported by the frame 84 at the opposite position. Thereby, when the housing 8 is put on the display 2, the positioning portion 83 can first be brought into contact with the display 2 to make the optical plate 3 and the display 2 parallel or substantially parallel. Further, since the plate holding portion 81, the element holding portion 82 and the positioning portion 83 are supported by the same frame 84, the optical plate 3, the deflection optical element 4 and the display 2 simultaneously when the positioning portion 83 abuts the display 2. The positional relationship among the three can be parallel or substantially parallel to each other.
  • At least one of the plate holding portion 81 and the positioning portion 83 described above may be supported by the frame 84 so as to change the distance between them.
  • the element holding portion 82 is supported by the frame 84 so as to change a distance from the plate holding portion 81 or the positioning portion 83, but is fixed to the frame 84. May be
  • FIG. 28 is a perspective view showing a mechanism for displacing the plate holding portion 81.
  • a convex portion 81a that protrudes to the side of the frame 84 is formed.
  • the number of the convex portions 81a is not particularly limited, and may be one or more. Further, the position where the convex portion 81 a is formed is not particularly limited as long as it is a position facing the frame 84 in the plate holding portion 81.
  • the inner surface of the frame 84 is formed with a recess 84 a into which the projection 81 a of the plate holding portion 81 is fitted.
  • the recess 84 a extends in the direction in which the distance between the plate holding portion 81 and the positioning portion 83 changes (in the vertical direction in FIG. 28).
  • the number of the concave portions 84 a is not particularly limited, but may be the same as the number of the convex portions 81 a.
  • the position where the concave portion 84 a is formed is not particularly limited as long as the convex portion 81 a of the plate holding portion 81 fits in the frame 84.
  • the convex portion 81a is formed in the plate holding portion 81
  • the concave portion 84a is formed in the frame 84
  • the convex portion 81a and the concave portion 84a slide by fitting the convex portion 81a into the concave portion 84a.
  • the plate holding portion 81 can be moved (displaced) in the direction, that is, the direction in which the separation distance changes with respect to the positioning portion 83.
  • the optical plates 3 held by the plate holding unit 81 can be moved (displaced) in the direction in which the separation distance changes with respect to the display 2 in contact with the positioning unit 83.
  • FIG. 29 schematically shows the state before and after the plate holding portion 81 is moved relative to the positioning portion 83.
  • a position where the plate holding portion 81 is most separated from the positioning portion 83 is P1
  • a position of the plate holding portion 81 closer to the positioning portion 83 than the position P1 is P2.
  • the imaging position of the image M imaged in the air via the optical plate 3 Changes from the position M2 to the position M1, and the imaging position of the image M moves away from the display 2.
  • FIG. 30 is a perspective view showing a mechanism for displacing the positioning portion 83.
  • the plate holding portion 81 and the element holding portion 82 are not shown in order to avoid complication of the illustration.
  • a convex portion 83a that protrudes to the side of the frame 84 is formed.
  • the number of the convex portions 83 is not particularly limited, and may be one or more.
  • the position where the convex portion 83 a is formed is not particularly limited as long as it is a position facing the frame 84 in the positioning portion 83.
  • the convex portion 83 a of the positioning portion 83 is formed in the same shape as the convex portion 81 a of the plate holding portion 81. And the convex part 83a is inserted in the recessed part 84a of the frame 84 similarly to the convex part 81a.
  • the frame 84 may be provided with a recess into which the projection 83a is fitted, separately from the recess 84a into which the projection 81a is fitted.
  • the positioning portion 83 can be moved (displaced) in the direction in which the separation distance changes with respect to 81.
  • the imaging position of the image M to be imaged can be adjusted.
  • FIG. 31 shows an example of a method of attaching the display 2 to the installation surface Q.
  • the display 2 is attached to the mounting surface Q via the mounting jig R, the display 2 is positioned so as to float from the mounting surface Q by the height from the mounting surface Q of the mounting jig R.
  • the positioning portion 83 moves from the initial position W1 to the position W2 on the plate holding portion 81 side while maintaining the contact with the display 2.
  • the imaging position of the image M imaged in the air via the optical plate 3 changes from the initial position M1 to a position M2 closer to the display 2.
  • the positioning unit 83 is moved from the position W2 to the position W1 (assuming that there is no attachment jig R)
  • the imaging position of the image M imaged in the air via the optical plate 3 is the position M2
  • the position of the image M is moved away from the display 2.
  • the plate holding portion 81 and the positioning portion 83 is supported by the frame 84 so that the distance between the plate holding portion 81 and the positioning portion 83 changes.
  • the imaging position of the image M can be adjusted in the direction perpendicular to the display 2, it becomes possible to provide an easy-to-observe image M for each individual observer who observes the image M. .
  • the frame 84 may be provided with a convex portion
  • the plate holding portion 81 may be provided with a concave portion into which the convex portion is fitted.
  • a convex portion may be provided on the frame body 84, and a concave portion in which the convex portion is fitted may be provided on the positioning portion 83.
  • one of the plate holding portion 81, the positioning portion 83, and the frame 84 has a protrusion (for example, a protrusion 81a or 83a), and the other has a recess (for example, a recess) in which the protrusion fits. 84a), and the recess extends along the direction in which the separation distance between the plate holding portion 81 and the positioning portion 83 changes, thereby moving the plate holding portion 81 and the positioning portion 83 to separate them from each other.
  • the distance can be changed.
  • FIG. 32 is a cross-sectional view schematically showing another configuration of the housing 8 described above.
  • the positioning portion 83 also serves as an element holding portion for holding the deflection optical element 4, and may hold the deflection optical element 4 so as to be parallel or substantially parallel to the optical plate 3 .
  • the plate holding portion 81 and the positioning portion 83 may be supported by the frame 84. That is, the housing 8 may have a configuration in which the positioning of the element holding portion 82 is omitted by providing the positioning portion 83 with the function of the element holding portion 82 of FIG. 25.
  • deviation optical element 4 is not specifically limited.
  • the positioning unit 83 may hold the deflection optical element 4 by clamping the peripheral portion of the deflection optical element 4.
  • the positioning portion 83 may be configured to hold the deflection optical element 4 by screwing the positioning portion 83 and the peripheral portion of the deflection optical element 4 with a pressing member or by bonding with an adhesive.
  • the positioning unit 83 may simultaneously hold not only the deflection optical element 4 but also at least one of the diffusion limiting member 6 (see FIG. 16) and the transmission control member 7 (see FIG. 22) described above.
  • At least one of the plate holding portion 81 and the positioning portion 83 may be supported by the frame 84 so that the distance between the plate holding portion 81 and the positioning portion 83 changes. That is, in the case 8 of FIG. 32, the plate holding portion 81 is provided with the convex portion 81a, the positioning portion 83 is provided with the convex portion 83a, the frame 84 is provided with the concave portion 84a, and the plate holding portion 81 and the positioning portion 83 are provided. The mutual separation distance may be changed.
  • the plate holding portion 81 By sliding the convex portion 81a and the concave portion 84a, as shown in FIG. 33, the plate holding portion 81 can be moved relative to the positioning portion 83 so as to change the separation distance.
  • the imaging position of the image M in the air can be changed in the direction perpendicular to the display 2.
  • M1 be the imaging position of the image M when the separation distance between the plate holding portion 81 and the positioning portion 83 is relatively large
  • M2 be the imaging position of the image M when the separation distance is relatively small.
  • the positioning portion 83 can be moved relative to the plate holding portion 81 so that the separation distance changes.
  • the imaging position of the image M in the air can be changed in the direction perpendicular to the display 2.
  • the imaging position of the image in the air can be changed from M1 to M2 (close to the display 2 side) by bringing the positioning part 83 closer to the plate holding part 81 (by reducing the separation distance).
  • At least one of the plate holding portion 81 and the positioning portion 83 is supported by the frame 84 so that the distance between the plate holding portion 81 and the positioning portion 83 changes.
  • FIG. 35 is a perspective view showing a configuration of the aerial image display 1 of the fourth embodiment of the present invention
  • FIG. 36 is a cross-sectional view taken along the line BB 'in FIG.
  • the aerial image display apparatus 1 of the present embodiment has an input detection unit 9 in addition to the configuration of the third embodiment.
  • the input detection unit 9 is a sensing device that detects an input position designated by an object on a display screen of a real image of an object imaged in the air without touching the object.
  • a stylus pen that the observer has in his hand can be assumed.
  • the input detection unit 9 is installed, for example, on the housing 8, but may be installed at a position other than the housing 8 as long as the input detection unit 9 can be detected at an input position on the display screen.
  • the input detection unit 9 emits infrared light toward the display screen of a real image, for example, and based on an image obtained by receiving infrared light reflected by an object designating an input position on the display screen by the camera, Detect the input position.
  • an input detection part 9 can be comprised with the sensing apparatus which employ
  • a sensing device that adopts the Light Coding method includes an IR projector that projects an infrared pattern, and an IR camera that reads the projected infrared pattern, and images the infrared pattern projected onto the object with the IR camera, The depth (position) of each point on the image is calculated by triangulation using parameters (calibrated at factory shipment).
  • a sensing device adopting the TOF method is provided with a projector that emits pulse-modulated infrared light and an infrared camera, and measures the time when the infrared light projected onto the object is reflected and returned, The distance (positional information) to each point of the object is obtained from the time and the moving speed of infrared light.
  • the three-dimensional position of the object in the space can be detected without contact with the object by either the Light Coding method or the TOF method, and the input position designated by the object on the display screen of the real image It can be detected without contact.
  • Kinect registered trademark manufactured by Microsoft Corporation can be used as a sensing device that adopts the light coding method or the TOF method.
  • the input detection unit 9 calculates a three-dimensional space shielded by the outer shape of an object (for example, a finger) from images captured by each camera using a plurality of light sources emitting infrared rays and a plurality of cameras.
  • the sensing device may be configured to detect the position of the cross-sectional shape as the position of the object when the cross-sectional shape of the object (e.g., an elliptical shape when the object is a finger is fitted) in the three-dimensional space. Even in this case, since the three-dimensional position of the object in the space can be detected without contact with the object, the input position designated by the object on the display screen of the real image is detected without contact with the object. be able to.
  • a LEAP MOTION (registered trademark) controller manufactured by Leap Motion can be used as the sensing device.
  • the aerial image display apparatus 1 has the above-described input detection unit 9, and the input detection unit 9 detects the input position of the object on the display screen of the real image without touching the object.
  • the aerial image display device 1 can be used as a noncontact touch panel.
  • the surface of the touch panel may become dirty or wet due to contact with an object, or the touch of a touch panel used by many unspecified persons may cause infection of the object. .
  • the non-contact type touch panel there is no such a concern, no cleaning for removing dirt and moisture on the surface is required, and the hygiene aspect is also improved.
  • the non-contact type A touch panel can be realized. This makes it very easy to make a touch panel using the existing target object.
  • the input detection unit 9 emits infrared light toward the display screen of a real image, and detects an input position based on an image obtained by receiving infrared light reflected by an object with a camera. It becomes possible to reliably realize the configuration for detecting by contact.
  • FIG. 37 is a perspective view showing another configuration of the aerial image display device 1 of the present embodiment
  • FIG. 38 is a cross-sectional view taken along the line C-C 'in FIG.
  • the input detection unit 9 includes an infrared light emitting unit and a light receiving unit, outputs infrared light from the light emitting unit in parallel with the display screen of a real image, and detects infrared light reflected from the object by the light receiving unit, thereby obtaining an input position by the object. May be detected.
  • Airbar (trade name) manufactured by Neonode can be used as the input detection unit 9 described above.
  • the laser emitted from the light emission unit is scanned to generate a laser curtain, and the position where the laser is blocked by the object is detected, thereby making the input position by the object contactless.
  • a sensing device that detects can also be used.
  • the aerial image display device of each embodiment described above can be expressed as follows.
  • the aerial image display apparatus described above includes an optical plate having a plurality of reflecting surfaces orthogonal to each other in plan view, and reflects light from an object on the plurality of reflecting surfaces, and the optical plate And an aerial image display apparatus for guiding a real image of the object to the air by guiding the light to the air on the opposite side to the incident side of the light, and deflecting the light from the object to the optical system.
  • the optical device further comprises a deflecting optical element for guiding to the plate, wherein the deflecting optical element is disposed between the light transmitting flat plate member and the flat plate member apart from each other, and one of two opposing surfaces of the flat plate member. The light from the object which is incident from the surface of the light source is reflected and deflected, and a plurality of reflection deflection surfaces which are emitted from the other surface are provided.
  • the plurality of reflection deflection surfaces of the deflection optical element be inclined with respect to at least one of the two surfaces of the flat plate member.
  • the plurality of reflection deflection surfaces of the deflection optical element are an incident light beam which is incident on the arbitrary reflection deflection surface from the object, and an emission when the incident light beam is reflected and deflected by the reflection deflection surface. It is desirable to be spaced apart in one direction perpendicular to the thickness direction of the flat plate member in the plane including the light beam.
  • the plurality of reflective deflection surfaces of the deflection optical element be arranged at a constant pitch in the one direction.
  • the above-described aerial image display apparatus further includes a diffusion limiting member which is disposed on the target object side with respect to the deflection optical element and which emits light from the target object with a diffusion angle within a predetermined range. It is desirable to have.
  • the diffusion limiting member preferably includes a light transmitting member, and a plurality of light shielding plates disposed apart from each other in the light transmitting member.
  • the deflection optical element be disposed in parallel with the light exit surface of the object.
  • the deflection optical element has a non-reflection layer on the back side of the plurality of reflective deflection surfaces.
  • the object is a display that displays an image
  • the above-described aerial image display device desirably satisfies the following conditional expression (1). That is, 35 ° ⁇ Dd + sin ⁇ 1 (nsin (2 ⁇ Ld)) ⁇ 55 ° ... (1) here, Dd: an angle (°) between the display surface of the display and the optical plate n: refractive index of the d line of the medium of the flat member through which light from the display reflected and deflected by each reflective deflection surface of the deflection optical element Ld: respective reflective deflection surface of the deflection optical element, and the flat plate An angle (°) with the normal to one of the two faces of the member It is.
  • the above-described aerial image display device satisfies the following conditional expression (2). That is, P ⁇ t (tan (2 ⁇ Ld) -tan (Ld)) (2) here, P: arrangement pitch (mm) of each reflection deflection surface of the deflection optical element t: thickness (mm) of the flat member of the deflection optical element Ld: an angle (°) between each reflection deflection surface of the deflection optical element and a normal to any one of the two surfaces of the flat plate member It is.
  • the above-described aerial image display apparatus further includes a transmission control member which transmits the light from the deflection optical element while limiting the light to a diffusion angle within a predetermined range and having the maximum transmittance in the direction different from the thickness direction.
  • the transmission control member may be arranged such that light rays transmitted in the direction of maximum transmittance enter the optical plate in a desired angular range.
  • the transmission control member includes a light transmitting flat plate member and a plurality of light blocking plates disposed apart from each other in the flat plate member, and the plurality of light blocking members
  • the plate may be disposed in an inclined state with respect to the thickness direction of the flat plate member so as to be parallel or substantially parallel to the direction of maximum transmittance.
  • the above-described aerial image display apparatus further includes a housing for holding the optical plate and the deflection optical element so as to be parallel or substantially parallel to each other, and the housing is provided for the deflection optical element.
  • the optical plate is open at the side opposite to the optical plate, and when the casing is placed on the object from the opening side, the optical system is brought into contact with the object by contacting the object. You may have a positioning part which positions this housing
  • the casing includes a plate holding unit that holds the optical plate, an element holding unit that holds the deflection optical element, the plate holding unit, the element holding unit, and the positioning unit.
  • the positioning unit may further be supported by the frame at a position opposite to the plate holding unit with respect to the element holding unit.
  • the housing further includes a plate holding portion that holds the optical plate, and a frame that supports the plate holding portion and the positioning portion, and the positioning portion is It may also serve as an element holding unit for holding the deflection optical element.
  • At least one of the plate holding portion and the positioning portion may be supported by the frame so that the mutual separation distance changes relatively.
  • one of the plate holding portion, the positioning portion, and the frame has a convex portion, and the other has a concave portion into which the convex portion fits.
  • the recess may extend along the direction in which the separation distance between the plate holding portion and the positioning portion changes.
  • the above-described aerial image display apparatus may further include an input detection unit that detects an input position designated by an object on the display screen of the real image of the object imaged in the air without contact with the object. Good.
  • the input detection unit emits infrared light toward the display screen, and the input position is determined based on an image obtained by receiving the infrared light reflected by the object by a camera. It may be detected.
  • the input detection unit outputs the infrared ray in parallel to the display screen of the real image of the object, and detects the input position by detecting the infrared ray reflected by the object.
  • the present invention is applicable to an aerial image display apparatus for imaging an image in the air using an optical plate.
  • aerial image display device 2 display device (object) 2a Display surface (light exit surface) Reference Signs List 3 optical plate 4 deflection optical element 6 diffusion limiting member 7 transmission control member 8 housing 9 input detection unit 21 b reflection surface 31 b reflection surface 41 flat surface member 41 a surface 41 a surface 42 reflection deflection surface 43 non-reflection layer 61 light transmission member 62 light shielding Plate 71 Flat plate member 72 Light shielding plate 81 Plate holding portion 82 Element holding portion 83 Positioning portion 84 Frame body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

空中映像表示装置は、平面視で互いに直交する複数の反射面を有する光学プレートと、被対象物からの光を偏向して光学プレートに導く偏向光学素子4とを備える。偏向光学素子4は、透光性の平板部材41と、平板部材41の内部に互いに離間して配置される複数の反射偏向面42とを有している。複数の反射偏向面42は、平板部材41の互いに対向する2面のうちの一方の面41aから入射した被対象物からの光を反射によって偏向して、他方の面41bから出射させる。

Description

空中映像表示装置
 本発明は、被対象物の実像を空中に結像させる空中映像表示装置に関するものである。
 近年、特殊な光学プレートを使用して被対象物の実像を空中に結像させ、その実像を観察者に観察させる空中映像表示装置が提案されてきている。ここで、被対象物には、ディスプレイ(例えば液晶表示装置(LCD))のほか、3次元的な物体も含まれるが、広義には、ディスプレイに表示される画像も含まれるものとする。
 通常、空中における実像(空中像)の結像位置は、光学プレートに対して被対象物と面対象となる位置であるため、観察者に見やすい空中像を提供すべく、光学プレートから大きく離れた位置に空中像を結像させる場合には、光学プレートに対して被対象物を大きく離す必要がある。そのため、光学プレートと被対象物とを含む空間が大きくなり、空中映像表示装置が大型化してしまう。また、光学プレートに対して光線の入射角度が所望の角度よりも極端に大きくなると、光学プレート内での多重反射によって反射の効率が低下し、空中像が暗くなる(空中像の輝度が低下する)。
 そこで、例えば特許文献1では、光学プレートに対して被対象物側に、偏向光学素子として、リニアプリズムを配置することで、上記の不都合を低減するようにしている。リニアプリズムは、一方向に同一形状(例えば断面直角三角形)で延びる複数の構造体(プリズム)を複数並列に形成した光学部材である。被対象物からの光をリニアプリズムによって屈折させて光学プレートに入射させることにより、光学プレートに対して被対象物を寝かせた配置であっても、リニアプリズムから光学プレートに対しては所望の入射角度(例えば45°~50°)に近づけて光線を入射させることができる。これにより、装置の薄型化を実現しつつ、上記の多重反射を低減して輝度低下を抑えるようにしている。
特開2017-26734号公報(請求項1、段落〔0007〕、〔0019〕、図1等参照)
 ところが、偏向光学素子として、光の屈折を利用したリニアプリズムを用いる構成では、偏向角度を大きくするのに限界があり、装置の薄型化に限界がある。すなわち、装置を薄型化すべく、リニアプリズムによる偏向角度を大きくしようとすると、周期的に並んだ各プリズムの傾斜面を立てていく(各プリズムの頂角を鋭角にしていく)必要がある。しかし、各プリズムの傾斜面が立ちすぎると、リニアプリズムを例えば樹脂材料で成形する場合に、各プリズムの頂角の部分(角部)をきれいに成形することができず、角部が丸みを帯びてしまう。また、各プリズムの傾斜面が立ちすぎることで、成形時に金型が抜けにくくなり、プリズム面精度が低くなる可能性がある。いずれにしても、リニアプリズムの製造誤差に起因して、所望の偏向特性が得られなくなる可能性がある。
 そのため、リニアプリズムによる偏向角度は、実際には20°~30°程度が限界である。したがって、装置の薄型化を図るべく、被対象物を光学プレートに対して寝かせて配置する場合でも、空中像の結像効率(輝度)を考慮すると、光学プレートに対して25°~15°程度までしか寝かせて配置することができず(それ以上寝かせて配置すると、リニアプリズムから光学プレートに対して所望の入射角度(例えば45°)で入射させることができなくなるため)、装置の薄型化に限界がある。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、用いる偏向光学素子の構成を工夫することにより、装置の薄型化を図りつつ、空中像の輝度低下を抑えることができる空中映像表示装置を提供することにある。
 本発明の一側面に係る空中映像表示装置は、平面視で互いに直交する複数の反射面を有する光学プレートを備え、被対象物からの光を前記複数の反射面で反射させて、該光学プレートに対して前記光の入射側とは反対側の空中に導き、前記被対象物の実像を前記空中に結像させる空中映像表示装置であって、前記被対象物からの光を偏向して前記光学プレートに導く偏向光学素子をさらに備え、前記偏向光学素子は、透光性の平板部材と、前記平板部材の内部に互いに離間して配置され、前記平板部材の互いに対向する2面のうちの一方の面から入射した前記被対象物からの光を反射によって偏向して、他方の面から出射させる複数の反射偏向面とを有している。
 上記の構成によれば、複数の反射偏向面を平板部材の内部に有する反射型の偏向光学素子を用い、被対象物からの光を反射によって偏向するため、光学プレートに対して被対象物を平行に配置しても、被対象物からの光を光学プレートに対して所望の角度で偏向光学素子を介して入射させることが可能となる。これにより、装置の薄型化を図りつつ、空中像の輝度低下を抑えることが可能となる。
本発明の実施の形態1に係る空中映像表示装置の全体の構成を模式的に示す断面図である。 上記空中映像表示装置の光学プレートの概略の構成を示す斜視図である。 参考例の空中映像表示装置の概略の構成を示す断面図である。 参考例の偏向光学素子としてのプリズム板の概略の構成を示す断面図である。 上記実施の形態1の偏向光学素子の詳細な構成を示す断面図である。 上記偏向光学素子の製造工程を模式的に示す説明図である。 上記偏向光学素子が表示装置に対して傾いて配置されている場合において、上記表示装置から出射される光の光路を示す説明図である。 上記偏向光学素子に様々な角度で入射する各光線の光路を模式的に示す説明図である。 上記偏向光学素子の他の構成を示す断面図である。 上記実施の形態1の空中映像表示装置の主要部を模式的に示す断面図である。 図10で示した各パラメータ間の幾何学的関係を模式的に示す説明図である。 上記実施の形態1の偏向光学素子の主要部を拡大して示す断面図である。 比較例1の空中映像表示装置の概略の構成を示す断面図である。 実施例1の空中映像表示装置の概略の構成を示す断面図である。 上記実施の形態1の空中映像表示装置の他の構成を模式的に示す断面図である。 上記空中映像表示装置が備える拡散制限部材の詳細な構成を示す断面図である。 半値角90°の光源から出射される光線の角度分布を示す説明図である。 半値角40°の光源から出射される光線の角度分布を示す説明図である。 図17の角度分布を有する光源からの光を偏向光学素子に入射させた場合において、上記偏向光学素子から出射される光線の角度分布を示す説明図である。 図18の角度分布を有する光源からの光を偏向光学素子に入射させた場合において、上記偏向光学素子から出射される光線の角度分布を示す説明図である。 本発明の実施の形態2の空中映像表示装置の構成を模式的に示す断面図である。 上記空中映像表示装置が備える透過制御部材の概略の構成を示す断面図である。 上記透過制御部材の透過率分布を示すグラフである。 本発明の実施の形態3の空中映像表示装置の構成を模式的に示す斜視図である。 図24のA-A’線矢視断面図である。 比較例2の空中映像表示装置の概略の構成を示す断面図である。 実施例2の空中映像表示装置の概略の構成を示す断面図である。 実施の形態3の空中映像表示装置が備える筐体のプレート保持部を変位させる機構を示す斜視図である。 上記プレート保持部を移動させる前後の様子を模式的に示す断面図である。 上記筐体の位置決め部を変位させる機構を示す斜視図である。 被対象物としてのディスプレイの設置面に対する取り付け手法の一例を示す断面図である。 上記筐体の他の構成を模式的に示す断面図である。 図32の筐体のプレート保持部を移動させる前後の様子を模式的に示す断面図である。 図32の筐体の位置決め部をプレート保持部に近づけた状態を示す断面図である。 本発明の実施の形態4の空中映像表示装置の構成を示す斜視図である。 図35のB-B’線矢視断面図である。 上記空中映像表示装置の他の構成を示す斜視図である。 図37のC-C’線矢視断面図である。
 〔実施の形態1〕
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、本明細書において、数値範囲をa~bと表記した場合、その数値範囲に下限aおよび上限bの値は含まれるものとする。また、本発明は、以下の内容に限定されるものではない。
 (空中映像表示装置の全体構成)
 図1は、本実施形態の空中映像表示装置1の全体の構成を模式的に示す断面図である。空中映像表示装置1は、被対象物の実像を空中に映像M(空中像)として結像させるものであり、ディスプレイ2と、光学プレート3と、偏向光学素子4とを備えている。
 ディスプレイ2は、画像を表示するデバイスであり、例えば液晶表示装置(LCD)や有機EL(Electro Luminescence)表示装置で構成される。本実施形態では、ディスプレイ2自体またはディスプレイ2の表示面2aに表示される画像が被対象物を構成している。したがって、本実施形態において、被対象物の実像とは、ディスプレイ2の表示面2aに表示される画像の実像を指す。ディスプレイ2は、光学プレート3と平行となるように、つまり、表示面2aが光学プレート3の厚み方向に垂直な面(例えば光入射側の面3a)と平行となるように位置している。
 偏向光学素子4は、光学プレート3に対してディスプレイ2側に配置されており、ディスプレイ2とともに筐体5内に収容されている。偏向光学素子4は、ディスプレイ2の光出射面である表示面2aと平行に配置されている。図1では、偏向光学素子4は、ディスプレイ2と離間して配置されているが、ディスプレイ2から偏向光学素子4への光の取り込み効率を向上させる観点では、偏向光学素子4はディスプレイ2と接して配置されていることが望ましい(図14参照)。なお、偏向光学素子4の詳細については後述する。
 光学プレート3は、筐体5の開口部5aに位置している。なお、光学プレート3は、筐体5の内部に収容されていてもよい。この場合、光学プレート3から出射される光を透過させるために、筐体5において、少なくとも光学プレート3と対向する部分を透明にすればよい。この光学プレート3は、ディスプレイ2から偏向光学素子4を介して入射する光を内部で反射させて、空中に映像Mを結像する。
 図2は、光学プレート3の概略の構成を示す斜視図である。本実施形態では、光学プレート3は、2枚の光学パネル20・30を積層して構成されている。光学パネル20は、光学パネル20・30の積層方向(例えばZ方向)に垂直な面内で互いに垂直な2方向のうちの一方向(例えばX方向)に、複数の板状部材21を接着層を介して並べることによって形成されている。光学パネル30は、上記2方向のうちの他の方向(例えばY方向)に、複数の板状部材31を接着層を介して並べることによって形成されている。
 各板状部材21は、Y方向に長尺状に形成される透明基板21aと、該透明基板21aにおけるX方向に対向する2面のうちの少なくとも一方に形成される反射面21bとを有している。同様に、各板状部材31は、X方向に長尺状に形成される透明基板31aと、該透明基板31aにおけるY方向に対向する2面のうちの少なくとも一方に形成される反射面31bとを有している。
 上記の構成において、ディスプレイ2からの光は、偏向光学素子4にて偏向された後、光学プレート3に入射し、光学プレート3の複数の反射面(反射面21b・31b)で反射された後、光学プレート3に対して上記光の入射側とは反対側の空中に導かれる。これにより、ディスプレイ2の表示面2aに表示された画像の実像が映像(空中像)Mとして空中に結像される。なお、光学プレート3によって空中に実像が結像される原理については、特許文献1と同様であるため、その詳細な説明を省略する。
 なお、光学プレート3としては、上記の2層構造のほか、互いに直交する反射面(平面視でV字型(L字型))を同一面上にアレイ状に並べた1層構造のものを用いることもできる。
 (課題についての補足説明)
 次に、本実施形態の偏向光学素子4の詳細について説明する前に、前述した課題について説明を補足しておく。
 図3は、参考例1の空中映像表示装置1’の概略の構成を示す断面図である。光学プレート3に対して光線の入射角度が所望の角度(例えば45°~50°)から乖離していると、光学プレート3内での多重反射によって反射の効率が低下し、空中像が暗くなることは前述の通りである。そこで、例えば被対象物(ディスプレイ2)として、LCDなどの一般的な表示装置を用いる場合、上記表示装置は正面輝度が最も高いため、図3のように、光学プレート3に対してディスプレイ2を45°だけ傾斜させて配置することが望ましい。しかし、ディスプレイ2が上記のように傾斜していると、空中映像表示装置1’自体の大きさ(奥行きD2)がディスプレイ2の大きさによって決定してしまい(具体的には、奥行きD2を、(表示面の長さ)×(1/√2)よりも大きくすることが必要となり)、空中映像表示装置1’の薄型化に限界が生じてしまう。
 したがって、理想的には、図1で示したように、光学プレート3に対してディスプレイ2を平行に配置にすることが望ましい。この場合、空中映像表示装置1の奥行きをD2よりも小さいD1にして、薄型化を図ることができる。しかも、光学プレート3とディスプレイ2とを平行に配置した構成で、ディスプレイ2からの光線を光学プレート3に対して最適な角度(例えば45°)で入射させることができれば、空中映像表示装置1の薄型化と空中像の高輝度とを両立させることができる。そこで、できるだけディスプレイ2を光学プレート3に対して平行に配置にしつつ、ディスプレイ2と光学プレート3との間に偏向光学素子4を配置して、ディスプレイ2からの光線を光学プレート3に対して最適な角度に偏向し、入射させる構成について検討する。
 ここで、上記の偏向光学素子4として、屈折によって光を偏向する光学素子を用いる場合について考える。図4は、上記光学素子の一例である参考例2のプリズム板100の概略の構成を示す断面図である。プリズム板100は、特許文献1で用いられるリニアプリズムに対応する光学素子であり、複数のプリズム101aと平板部101bとを一体化して構成されている。複数のプリズム101aは、断面直角三角形状であり、各プリズム101aの斜面101a1が互いに平行となるように、平板部101b上に並列に配置されている。また、各プリズム101aおよび平板部101bは、同一材料(例えば樹脂)で形成されている。プリズム板100に対して、被対象物からの光が平板部101b側から入射すると、上記光は、平板部101bおよびプリズム101aのそれぞれと空気層との界面での屈折によって偏向され、光学プレート3に入射する。
 ここで、プリズム101aの斜面101a1と平板部101bとのなす角度を、プリズム角α(°)と呼ぶ。なお、このプリズム角αは、立ち上がり角とも呼ばれる。プリズム板100での入射光の偏向角度は、プリズム板100の材質の屈折率と、プリズム角αとによって決まる。例えば、プリズム板100の材質が、屈折率1.49のPMMA(ポリメタクリル酸メチル樹脂)であるとすると、プリズム角αが40°である場合、平板部101bに対して垂直方向から入射した光線は、プリズム板100から出射されるときに、約22°偏向される。
 空中映像表示装置1を薄型化すべく、図1のように、ディスプレイ2を光学プレート3に対して完全に平行となるように配置する場合、空中像の画像品質を最も良好にすることを考えると、偏向光学素子4での偏向角度として、45°を実現する必要がある。しかし、偏向光学素子4として、上記したPMMA製のプリズム板100を用いた場合、このプリズム板100で偏向角度45°を実現しようとすると、プリズム角αを約66°にすることが必要となる。このようにプリズム角αが大きいと、前述の通り、各プリズム101の頂角部分をきれいに成形することができず、頂角部分が丸みを帯びてしまう。また、プリズム101aの斜面101a1が平板部101bに対して立ちすぎることで、成形時に金型が抜けづらくなり、プリズム面精度が低くなる可能性がある。その結果、良好な偏向特性を得ることが困難となる。
 そこで、本実施形態では、偏向光学素子4として、屈折ではなく、反射を利用して光を偏向する光学素子を用いる。以下、本実施形態の偏向光学素子4の詳細について説明する。
 (偏向光学素子の詳細について)
 図5は、本実施形態の偏向光学素子4の詳細な構成を示す断面図である。本実施形態の偏向光学素子4は、透光性の平板部材41と、複数の反射偏向面42とを有している。平板部材41は、例えばガラスや樹脂などからなる透明基材であり、互いに対向する2面として、面41aおよび面41bを有している。なお、これらの面41aおよび面41bは、平板部材41の厚み方向に垂直な面である。反射偏向面42は、平板部材41の一方の面41aから入射した被対象物からの光を反射によって偏向して、他方の面41bから出射させる金属反射面(ミラー、ルーバー)で構成されており、平板部材41の内部に互いに離間して配置されている。
 複数の反射偏向面42は、平板部材41の2面(面41a、面41b)の少なくとも一方(ここでは両方)に対して傾斜している。なお、各反射偏向面42の傾き角度(厳密には、上記2面の少なくとも一方の面の法線に対する各反射偏向面42の傾斜角度)のことを、以下では、ルーバー角度とも称する。
 また、複数の反射偏向面42は、図5の紙面に平行な面内、つまり、被対象物から任意の反射偏向面42に入射する入射光線(例えば光線La)と、該入射光線が反射偏向面42で反射偏向されて出射されるときの出射光線(例えば光線Lb)とを含む面内で、平板部材41の厚み方向に垂直な一方向に所定のピッチで離間して配置されている。
 上記構成の偏向光学素子4では、入射光を各反射偏向面42での反射によって偏向するため、各反射偏向面42の傾斜角度(ルーバー角度)に応じて、入射する光の偏向方向(出射方向)を調整することができる。したがって、偏向光学素子4の平板部材41の材質および各反射偏向面42のルーバー角度を適切に設定することにより、ディスプレイ2を光学プレート3に対して平行に配置にしつつ、ディスプレイ2からの光線を、光学プレート3に対して最適な角度で入射するように、偏向光学素子4によって偏向することが容易となる。
 例えば、平板部材41をガラス(屈折率1.517のBK7(Schott社製))で構成した場合、ルーバー角度を13.9°に設定することで、偏向光学素子4の面41aに対して垂直に入射した光線La(入射角0°の光線)を、反射偏向面42で反射させ、面41bに対して出射角が45°となるように偏向して光線Lbとして出射することができ、これによって、光学プレート3に対して最適な角度(45°)で光線Lbを入射させることができる。
 また、例えば、平板部材41を、屈折率1.49のPMMA樹脂で構成した場合、ルーバー角度を14.2°に設定することで、偏向光学素子4の面41aに対して垂直に入射した光線Laを、反射偏向面42で反射させ、面41bから出射角45°の光線Lbとして出射することができ、この場合も、光学プレート3に対して最適な角度(45°)で光線Lbを入射させることができる。
 なお、ディスプレイ2から出射される光に含まれる光線のうち、偏向光学素子4の面41aに対して垂直以外の角度で入射する光線については、面41aでの屈折、反射偏向面42での反射、面41bでの屈折を経て光学プレート3に導かれ、光学プレート3に対して最適な角度(45°)に近い角度で入射することになる。
 上記構成の偏向光学素子4は、例えば以下のようにして製造することができる。図6は、本実施形態の偏向光学素子4の製造工程を模式的に示している。まず、所定の厚みのガラス基板51を用意する(工程(A))。そして、ガラス基板51の両面に反射膜52をコーティングする(工程(B))。この反射膜52のコーティングは、例えばアルミニウムの蒸着によって行うことができる。なお、この反射膜52は、上述した反射偏向面42を形成する膜である。次に、反射膜52をコーティングしたガラス基板51を、接着剤を介して複数枚(例えば数百枚)積層して接着し、ガラスブロック53を形成する(工程(C))。その後、得られたガラスブロック53を、反射膜52に対して斜め方向から、所定のピッチで切断する(工程(D))。切断した個片を所定の形状(例えば薄い直方体形状)に整形することにより、薄い平板状の偏向光学素子4を得ることができる。なお、工程Dにおいて、ガラスブロック53を切断する向き(反射膜52に対する切断角度)は、得ようとする偏向光学素子4の所望のルーバー角度に応じて適宜調整されればよい。
 なお、ガラス基板51の代わりに樹脂基板(例えばPMMAからなる基板)を用いても、上記と同様の手法で偏向光学素子4を製造することができる。樹脂基板を用いた場合は、ガラス基板51を用いた場合よりも安価に偏向光学素子4を製造することができる。
 以上のように、光学プレート3のディスプレイ2側に、平板部材41および複数の反射偏向面42を有する偏向光学素子4を配置することにより、光学プレート3に対してディスプレイ2を完全に平行に配置しつつ、ディスプレイ2からの光線を、偏向光学素子4で反射偏向させて、光学プレート3に対して最適な角度で入射させることができる。したがって、光学プレート3に対するディスプレイ2の平行配置により、空中映像表示装置1の薄型化を達成することができる。しかも、ディスプレイ2からの光線が光学プレート3に対して最適な角度で入射することで、光学プレート3での多重反射が低減される。これにより、光学プレート3での多重反射に起因する空中像の輝度低下およびゴースト像の発生を抑えることができる。
 なお、光学プレート3に対してディスプレイ2を完全に平行に配置した場合、上述した空中映像表示装置1の薄型化の効果が最も高いが、平行から若干(例えば数°~15°程度)ずれた配置であってもよい。この場合でも、図3のようにディスプレイ2を光学プレート3に対して45°傾ける構成や、屈折型のプリズム板100を用い、かつ、ディスプレイ2を傾けて配置する構成に比べると、光学プレート3に対するディスプレイ2の傾き角度は十分に小さいため、空中映像表示装置1の薄型化の効果が得られることに変わりはない。
 また、偏向光学素子4の複数の反射偏向面42は、平板部材41の互いに対向する面41aおよび面41bの少なくとも一方に対して傾斜している。これにより、ディスプレイ2に対して偏向光学素子4を平行またはそれに近い状態で配置しつつ、ディスプレイ2からの入射光を複数の反射偏向面42で反射偏向して光学プレート3に入射させる構成を確実に実現することができる。
 また、複数の反射偏向面42は、任意の反射偏向面42に対する入射光線(例えば光線La)と出射光線(例えば光線Lb)とを含む面内で平板部材41の厚み方向に垂直な一方向に離間して配置されている。これにより、ディスプレイ2からの入射光を各反射偏向面42での反射によってほぼ同じ方向に偏向することができ、光学プレート3に対して最適な角度またはこれに近い角度範囲で光を確実に入射させることができる。
 (偏向光学素子と被対象物との位置関係について)
 本実施形態では、上述のように、偏向光学素子4は、ディスプレイ2の光出射面である表示面2aと平行に配置されている(図1参照)。これにより、空中に結像される実像の品位の低下を抑えることができる。より詳しくは、以下の通りである。
 図7は、偏向光学素子4がディスプレイ2に対して傾いて配置されている場合において、ディスプレイ2から出射される光の光路を示している。偏向光学素子4がディスプレイ2に対して傾いて配置されていると、ディスプレイ2の表示面2aと偏向光学素子4との距離(光路長)が、表示面2a上の位置によって異なる。このため、ディスプレイ2から出射された光を偏向光学素子4の反射偏向面42(図5参照)で一方向(図7の紙面に平行な方向)に反射偏向する構成では、ディスプレイ2に表示された画像を上記一方向に引き伸ばした画像の実像が空中像として観察されてしまう。これは、ディスプレイ2から偏向光学素子4を介して光学プレート3に入射する光の光路を展開したときに、ディスプレイ2が、破線で示すディスプレイ2Vに対応することになり、図7の紙面に平行な面内において、ディスプレイ2の長さ(表示画像の長さ)H1よりも、ディスプレイ2Vの長さ(表示画像の長さ)H2のほうが長くなることから容易に理解できる。
 本実施形態のように、偏向光学素子4がディスプレイ2の表示面2aと平行に配置されている構成では、ディスプレイ2の表示面2aと偏向光学素子4との距離が、表示面2a上の位置に関係なく一定となり、表示面2a上の位置によって、表示面2aと偏向光学素子4との間の光路長に差が生じることがなくなる。これにより、ディスプレイ2から出射された光を偏向光学素子4の反射偏向面42で一方向に反射偏向する構成であっても、ディスプレイ2に表示された画像の実像を、上記画像と同じ縦横比で(一方向に引き伸ばされることなく)空中に結像することができる。その結果、空中に結像される実像の品位の低下を抑えることができる。
 (反射偏向面のピッチと輝度ムラについて)
 図8は、偏向光学素子4に様々な角度で入射する光線L1~L3の光路を模式的に示している。光線L1は、偏向光学素子4の面41aに対して垂直に入射し、反射偏向面42で反射偏向された後、面41bから45°方向に出射される光線(望ましい光線)である。光線L2は、偏向光学素子4の面41aに斜め方向から入射し、反射偏向面42で反射偏向されずに平板部材41をそのまま透過して面41bから出射される光線(無反射光線)である。光線L3は、偏向光学素子4の面41aに斜め方向から入射し、複数の反射偏向面42で反射偏向されて、面41bから出射される光線(複数回反射光線)である。なお、図8では、光線L1~L3をそれぞれの入射位置をずらして図示しているが、2枚の反射偏向面42・42の間の同じブロック(平板部材41)でも、これらの光線L1~L3が存在する可能性はある。
 偏向光学素子4の複数の反射偏向面42のピッチが異なると、光線L1~L3の各透過量が、偏向光学素子4の場所によって変化する。例えば、複数の反射偏向面42のピッチが広い場所では、光線L2の透過量が増大する。一方、複数の反射偏向面42のピッチが狭い場所では、光線L3の透過量が増大し、光線L1の透過量が減少する場合がある。このように、光線L1~L3の各透過量が偏向光学素子4の場所によって変化し、各透過量のバランスが偏向光学素子4の場所によって変化すると、偏向光学素子4を介して光学プレート3に入射する光の光量が場所によって変化する。なお、光線L2および光線L3は、空中像としては結像に寄与しないが(光学プレート3に対して所望の角度範囲で入射しないため)、光線L1によって結像される空中像に対しては、光線L2および光線L3の透過光量の(場所による)ムラの影響が反映されてしまい、結果として、光学プレート3を介して空中に結像される空中像に輝度ムラが生じてしまう。
 以上のことを考慮し、本実施形態では、偏向光学素子4の複数の反射偏向面42は、これらが離間して配置される上記一方向に一定のピッチで配置されている。例えば、偏向光学素子4(平板部材41)の厚み2mmに対して、複数の反射偏向面42は、上記一方向に0.5mmピッチで配置されている。これにより、偏向光学素子4の場所によって光線L1~L3の各透過量が変化するのを抑えて、偏向光学素子4を介して光学プレート3に入射する光の光量の分布にムラが生じるのを抑えることができる。その結果、光学プレート3を介して空中に結像される空中像に輝度ムラが生じるのを抑えることができる。
 (複数回反射光線を低減する構成)
 図9は、本実施形態の偏向光学素子4の他の構成を示す断面図である。同図に示すように、偏向光学素子4は、複数の反射偏向面42の裏面側に無反射層43を有していることが望ましい。つまり、平板部材41の透明な媒質41cを挟む位置関係にある2つの反射偏向面42のうち、一方の反射偏向面42と、透明な媒質41cとの間に無反射層43が設けられていることが望ましい。
 なお、上記の無反射層43は、図6で示した製造工程において、反射膜52をコーティングしたガラス基板51を複数枚積層して接着する際に、黒色顔料(例えばカーボンブラック)を添加した接着剤を用いることによって実現することができる。すなわち、黒色顔料を添加した接着剤は、入射光を反射させずに吸収するため、上記の無反射層43(光吸収層)として機能することができる。また、ガラス基板51の両面に塗布された反射膜52の一方にさらに墨塗りを行って墨塗り面とするか、ガラス基板51の片面に反射膜52を塗布し、もう片方に墨塗りを行って墨塗り面とし、複数枚のガラス基板51を接着剤によって積層接着するようにしてもよい。この場合は、墨塗り面が無反射層43を構成する。
 上記のように、複数の反射偏向面42の裏面側に無反射層43を設けることにより、偏向光学素子4の内部で、任意の反射偏向面42に入射した光線L3がそこで反射偏向され、媒質41cを介して隣り合う他の反射偏向面42に向かう場合でも、その光線L3を他の反射偏向面42の直前の無反射層43で吸収して、偏向光学素子4から出射されないようにすることができる。つまり、複数の反射偏向面42で反射され、所望の角度以外で光学プレート3に入射する光線L3を減らすことができる。その結果、光線L3に起因するゴースト像の発生を抑えることができる。
 (光学プレートに最適な角度で光を入射させるための条件)
 図10は、本実施形態の空中映像表示装置1の主要部を模式的に示す断面図である。被対象物が、画像を表示するディスプレイ2である場合において、光学プレート3に対するディスプレイ2の配置角度(後述する角度Ddに対応する)によって、ディスプレイ2からの光を光学プレート3に最適角度θで入射させるための、偏向光学素子4での偏向角度は変わってくる。そこで、本実施形態の空中映像表示装置1は、以下の条件式(1)を満足することが望ましい。すなわち、
  35°<Dd+sin-1(nsin(2×Ld))<55°
                           ・・・(1)
 ここで、
  Dd:ディスプレイ2の表示面2aと光学プレート3とのなす角度(°)
  n :偏向光学素子4の各反射偏向面42で反射偏向されるディスプレイ2からの光が通過する平板部材41の媒質41cのd線(波長587.56nm)の屈折率
  Ld:偏向光学素子4の各反射偏向面42と、平板部材41の面41aまたは面41bの法線Nとのなす角度(°)
である。
 条件式(1)は、ディスプレイ2からの光を、偏向光学素子4を介して光学プレート3に最適角度θで入射させるための条件を規定している。条件式(1)において、sin-1(nsin(2×Ld))は、ディスプレイ2から出射される光に含まれる光線のうち、偏向光学素子4の面41aに対して垂直に入射する光線(入射角0°)が反射偏向面42で反射された後、面41bから出射されるときの出射角を指し、スネルの法則より導かれる。上記出射角をφ(°)とすると、条件式(1)は、以下の条件式(1a)のように書き換えることができる。
  35°<Dd+φ<55°   ・・・(1a)
 一方、図11は、図10で示した最適角度θと、角度Ddと、出射角φとの間の幾何学的関係を模式的に示している。図11より、最適角度θは、以下の式(A)で表されることがわかる。
  θ=90°-(Dd+φ)   ・・・(A)
 条件式(1)または(1a)を満足すると、式(A)より、
  35°<θ<55°   ・・・(B)
が成り立つ。
 つまり、条件式(1)を満足するように、ディスプレイ2の配置角度(角度Dd)および偏向光学素子4の各反射偏向面42の傾斜角度(角度Ld)を設定することにより、ディスプレイ2からの光は、偏向光学素子4を介して、光学プレート3に対して、式(B)を満足する最適な角度範囲(45°に近い入射角度)で入射することになる。これにより、光学プレート3での多重反射が確実に低減されるため、光学プレート3によって空中に結像される空中像の輝度を確実に向上させることができるとともに、ゴースト像の発生を確実に低減することができる。
 (偏向光学素子の反射偏向面のピッチに関する条件)
 図12は、本実施形態で用いる偏向光学素子4の主要部を拡大して示す断面図である。本実施形態の空中映像表示装置1は、以下の条件式(2)を満足することが望ましい。すなわち、
  P<t(tan(2×Ld)-tan(Ld))   ・・・(2)
 ここで、
  P :偏向光学素子4の各反射偏向面42の配列ピッチ(mm)
  t :偏向光学素子4の平板部材41の厚み(mm)
  Ld:偏向光学素子4の各反射偏向面42と、平板部材41の面41aまたは面41bの法線Nとのなす角度(°)
である。
 条件式(2)は、ディスプレイ2から出射される光に含まれる光線のうち、偏向光学素子4に対して垂直に入射した光線が、複数の反射偏向面42で複数回反射されてゴースト光として光学プレート3に入射するのを低減するための条件を規定している。すなわち、図12で示すように、ディスプレイ2から出射される光に含まれる光線のうち、偏向光学素子4の面41aに対して垂直に入射する光線Lが、反射偏向面42の面41a側の端部で反射されて進行する場合を考える。このとき、光線Lが一方の反射偏向面42で反射された後、隣り合う他方の反射偏向面42またはこれと同一面に到達するまで進行するときの、偏向光学素子4の厚み方向に垂直な方向の進行距離S2は、以下の式で表される。
  S2=t・tan(2×Ld)   ・・・(C)
 また、図12の幾何学的関係により、距離S1は、以下の式で表される。
  S1=t・tan(Ld)   ・・・(D)
 S2-S1の値が、複数の反射偏向面42の配列ピッチP以下であると、光線Lが隣り合う反射偏向面42で複数回反射されて偏向光学素子4から出射され、光学プレート3に対して最適な角度範囲以外の角度で入射することになる。このような光線Lは、ゴースト像を生じさせる原因となる。したがって、ゴースト像を生じさせる光線Lを低減するためには、
  P<S2-S1   ・・・(E)
を満足することが必要となる。
 式(C)(D)を式(E)に代入すると、式(E)は、条件式(2)と等価となる。すなわち、条件式(2)を満足することにより、光線Lが偏向光学素子4に入射して複数の反射偏向面42で複数回反射され、ゴースト光として光学プレート3に入射するのを低減することができ、ゴースト像の発生を低減することができる。
 (シミュレーションについて)
 次に、本実施形態の空中映像表示装置1の薄型化の効果を確認するため、以下のシミュレーションを行った。その結果について説明する。
 図13は、比較例1の空中映像表示装置1aの概略の構成を示す断面図であり、図14は、実施例1の空中映像表示装置1の概略の構成を示す断面図である。実施例1の空中映像表示装置1は、光学プレート3に対してディスプレイ2を平行に配置し、偏向光学素子4をディスプレイ2と接するように配置して構成されている。一方、比較例1の空中映像表示装置1aは、実施例1の空中映像表示装置1から偏向光学素子4を省き、ディスプレイ2を光学プレート3に対して45°傾けて配置した構成である(光学プレート3に対して最適な角度で光線を入射させるため)。なお、図13および図14では、説明に関係のない部材(装置のメカ部材やディスプレイ2の支持基板等)の図示を省略している。
 ここで、いずれの空中映像表示装置1・1aにおいても、用いた光学プレート3のサイズは、縦244mm×横244mmであり、ディスプレイ2の表示面2aのサイズは、対角10インチ(縦221mm×横124mm)であり、光学プレート3からの空中像(映像M)の飛び出し量は、100mmであった。なお、空中像の飛び出し量とは、空中像の中心から光学プレート3までの、光学プレート3に対して45°方向の距離を指す。
 空中映像表示装置1a・1において、ディスプレイ2を収容する筐体5の厚みを、それぞれ奥行方向の厚みt1(mm)およびt2(mm)としたとき、比較例1の空中映像表示装置1aでは、厚みt1が115mmであったのに対して、実施例1の空中映像表示装置1では、厚みt2が71mmであった。したがって、偏向光学素子4を用いた実施例1の空中映像表示装置1によれば、偏向光学素子4を用いない比較例1の空中映像表示装置1aに比べて、大幅に薄型化できていることがわかる。
 また、実施例1の空中映像表示装置1では、表示面2aと光学プレート3とのなす角度をDd(°)とし、平板部材41の媒質41cのd線の屈折率をnとし、偏向光学素子4において、面41bの法線に対する各反射偏向面42の傾斜角度をLd(°)としたとき、Dd=0°、n=1.517、Ld=13.9°であった。この場合、Dd+sin-1(nsin(2×Ld))=45°となり、条件式(1)を満足していた。
 また、実施例1の空中映像表示装置1では、偏向光学素子4の各反射偏向面42の配列ピッチをP(mm)とし、偏向光学素子4の平板部材41の厚みをt(mm)としたとき、P=0.5、t=2.0、Ld=13.9°であり(上述した条件式(2)の右辺は0.56であり)、条件式(2)を満足していた。
 (空中映像表示装置の他の構成)
 図15は、本実施形態の空中映像表示装置1の他の構成を模式的に示す断面図である。同図に示すように、空中映像表示装置1は、図1の構成に加えて、拡散制限部材6をさらに備えていてもよい。拡散制限部材6は、偏向光学素子4に対して被対象物側(ディスプレイ2側)に配置され、被対象物からの光(拡散光)を、所定範囲内の拡散角度に制限して(狭めて)出射する平板状の光学部材である。
 図16は、拡散制限部材6の詳細な構成を示す断面図である。拡散制限部材6は、透光性部材61と、透光性部材61の内部で互いに離間して所定のピッチで配置される複数の遮光板62とを有している。遮光板62の配列ピッチは、偏向光学素子4の反射偏光板42の配列ピッチと一致していることが望ましいが、互いに異なっていてもよい。また、遮光板62は、平板状の拡散制限部材6の厚み方向に垂直な面61aに対して垂直に設けられていることが望ましいが、入射光を所定範囲内の拡散角度に制限して出射できるのであれば、面61aに対して傾いていてもよい。
 上記のように、入射光を所定範囲内の拡散角度に制限して出射する拡散制限部材6としては、例えば住友スリーエム社製のプライバシーフィルターを用いることができる。
 被対象物として、例えばLCDなどのディスプレイ2を用いた場合、ディスプレイ2から出射される光は、一般的にある広がりを有している。ディスプレイ2から完全な平行光だけが出射されれば、偏向光学素子4で偏向されて出射される光線は、きれいに所望の角度成分(例えば光学プレート3に対して45°で入射する成分)だけを持つ光線となる。しかし、広がりを持った角度成分の光が偏向光学素子4に入射すると、偏向光学素子4にて所望の角度以外の角度で偏向されて出射される光線が存在してしまう。そして、このような光線が光学プレート3に入射すると、上述のように光学プレート3での多重反射によって輝度低下やゴースト像の発生が起こる。
 本実施形態のように、偏向光学素子4に対して被対象物側に拡散制限部材6を配置することにより、ディスプレイ2から広がりを持つ光が拡散制限部材6に入射した場合でも、入射光のうちで角度βよりも大きい角度で拡散する光線については遮光板62で吸収され、角度β以下の角度で拡散する光線は、遮光板62で吸収されずに拡散制限部材6から出射され、偏向光学素子4に入射する。つまり、拡散制限部材6に入射した光は、拡散角度が入射光よりも狭い所定範囲内(上記の例では角度β以下)に制限されて出射され、偏向光学素子4に入射する。これにより、偏向光学素子4にて所望の角度以外の角度で偏向されて光学プレート3に入射する光線を減らすことができる。その結果、光学プレート3での多重反射を低減して、輝度低下やゴースト像の発生を抑えることができる。
 ここで、偏向光学素子4に入射する光の広がりと、偏向光学素子4から出射される光の角度分布との関係について考察する。図17は、半値角90°の光源から出射される光線の角度分布(出射方向と強度との関係)を示し、図18は、半値角40°の光源から出射される光線の角度分布(出射方向と強度との関係)を示している。ここで、半値角とは、正面(出射方向は0°の方向とする)の光の強度に比べて、強度が半分になるときの角度を指す。なお、出射方向0°は、偏向光学素子4に対して入射角0°で入射する方向(垂直入射のときの入射方向)に対応し、同心円の中心から半径方向外側に向かう方向は、光の強度が増大する方向に対応する。また、図19および図20は、偏向光学素子4から出射される光線の角度分布(出射方向と強度との関係)を示しており、図19は、一例として、図17の角度分布を有する光源からの光を偏向光学素子4に入射させた場合を示し、図20は、一例として、図18の角度分布を有する光源からの光を偏向光学素子4に入射させた場合を示している。
 各光源からの光を偏向光学素子4にて反射偏向させる場合、図19および図20より、半値角90°の光源よりも半値角40°の光源を用いたほうが、つまり、光線の広がり(拡散角度)のより小さい光源を用いたほうが、偏向光学素子4にて反射偏向されて出射され、光学プレート3に対して所望の角度(例えば45°方向)で入射する光の強度が高いことがわかる。これは、偏向光学素子4に入射する光線の広がりが大きいと、偏向光学素子4での反射偏向により、光学プレート3に対して所望の角度以外の角度で入射する光が増大し、光学プレート3に対して所望の角度で入射する光が減少するためである。したがって、このような考察からも、拡散角度の狭い光を偏向光学素子4に入射させるほうが、光学プレート3に対して所望の角度で入射する光を増大させるのに有利であることがわかる。
 よって、本実施形態のように、拡散制限部材6を配置して被対象物からの光の拡散角度を制限し、拡散角度の狭い光を偏向光学素子4に入射させることにより、偏向光学素子4から光学プレート3に対して所望の角度で入射する光を増大させて、光学プレート3での多重反射を低減し、多重反射に起因する輝度低下やゴースト像の発生を抑えることができると言える。
 なお、図19および図20の角度分布より、偏向光学素子4に入射する光の半値角は、60°(40°と90°との間)以下であることが、光学プレート3に対して所望の角度で入射する光を増大させて、多重反射に起因する輝度低下やゴーストの発生を抑える点で望ましく、半値角40°以下であることがさらに望ましいと言える。したがって、拡散制限部材6が、被対象物からの光を所定範囲の拡散角度に制限して出射する際の上記所定範囲(角度β)としては、全角60°以下(垂直入射(0°方向)に対して±30°以下)であることが望ましく、全角40°以下(垂直入射(0°方向)に対して±20°以下)であることがさらに望ましいと言える。
 (その他)
 偏向光学素子4は、光学プレート3と被対象物(ディスプレイ2)との間であれば、どの位置に設けられてもよいが、被対象物から偏向光学素子4への光の取り込み効率向上(入射光の漏れ防止)の観点から、光学プレート3と被対象物との中間位置よりも、被対象物側に配置されていることが望ましい。
 偏向光学素子4をディスプレイ2に対して傾けて配置する場合、偏向光学素子4においてディスプレイ2との距離が近い側の端部から遠い側の端部に向かうにつれて、複数の反射偏向面42の傾斜角度(図12の角度Ld)が大きくなるように、偏向光学素子4を構成してもよい。この場合、ディスプレイ2に対する偏向光学素子4の傾きに起因して、ディスプレイ2に表示された画像の実像が一方向に引き伸ばされるのを、複数の反射偏向面42の異なる角度での反射偏向によって打ち消すことができる。これにより、空中に結像される実像の品位の低下を抑えることができる。
 〔実施の形態2〕
 図21は、本発明の実施の形態2の空中映像表示装置1の構成を模式的に示す断面図である。同図に示すように、本実施形態の空中映像表示装置1は、実施の形態1の図1で示した構成に加えて、透過制御部材7をさらに備えている。なお、図21では、透過制御部材7は、偏向光学素子4と接して配置されているが、離間して配置されてもよい。また、透過制御部材7を設ける構成は、拡散制限部材6を設ける図16の構成にも勿論適用可能である。以下、実施の形態1と異なる部分について説明する。
 図22は、透過制御部材7の概略の構成を示す断面図である。透過制御部材7は、偏向光学素子4(図21参照)からの光を所定範囲内の拡散角度に制限して透過させる平板状の光学部材であり、偏向光学素子4と光学プレート3との間の光路中に配置されている。透過制御部材7は、透光性の平板部材71と、平板部材71の内部で互いに離間して配置される複数の遮光板72とを有している。平板部材71は、例えば透明な樹脂(例えばシリコーンゴム)で構成されており、光入射側の面71aおよび光出射側の面71bを有している。これらの面71a・71bは、平板部材71の厚み方向に垂直な面であり、互いに対向している。複数の遮光板72は、例えば黒色顔料を含有する樹脂(例えばシリコーンゴム)で構成されており、帯状に形成され、平板部材71の内部に所定のピッチで並んで配置されているとともに、平板部材71の厚み方向(面71a・71bの法線Nの方向)に対して傾斜した状態で配置されている。本実施形態では、複数の遮光板72は、法線Nに対して約45°傾斜しているが、この傾斜角度は適宜変更可能である。
 図23は、透過制御部材7の透過率分布を示している。上記のように複数の遮光板72が法線Nに対して傾斜していることにより、透過制御部材7の面71aに入射する光線の入射方向(透過制御部材7の透過方向)によっては、遮光板72で吸収される光線や、遮光板72で吸収されずに面71bから出射される光線が存在する。その結果、透過制御部材7を透過する光線の透過率は、平板部材71の厚み方向を基準とする角度に応じて変化する特性となっている。具体的には、複数の遮光板72が法線Nに対して約45°傾斜している場合、透過制御部材7(例えば1.0mm厚)を透過する光線の透過率は、法線Nに対して約45°傾斜した方向(γ≒45°)において最大(80%)となり、上記透過率が最大の方向に対する角度差が大きくなるにしたがって、光線の透過率が減少する特性となっている。このように、本実施形態の透過制御部材7は、厚み方向とは異なる方向に透過率が最大となる特性を有している。
 なお、複数の遮光板72が法線Nに対して例えば約10°傾斜している場合、透過制御部材7(例えば1.0mm厚)を透過する光線の透過率は、法線Nに対して約10°傾斜した方向において最大となり、複数の遮光板72が法線Nに対して例えば約20°傾斜している場合、透過制御部材7(例えば1.0mm厚)を透過する光線の透過率は、法線Nに対して約20°傾斜した方向において最大となることがわかっている。また、複数の遮光板72の傾斜角度によっては、透過制御部材7において透過率が最大となる方向と各遮光板72とが完全に平行となる場合もあり得る。以上のことから、複数の遮光板72は、透過率が最大となる方向と平行または略平行となるように、平板部材71の厚み方向に対して傾斜した状態で配置されていると言うことができる。なお、厚み方向に対して傾斜した状態には、厚み方向に対する傾斜角度が0°(厚み方向と平行)となる状態は含まれない。また、本明細書において、「略平行」とは、角度差が例えば10°以下であることを指すが、5°以下であることが望ましい(以下での説明においても、「略平行」は上記と同様に解釈するものとする)。
 このように、複数の遮光板72が平板部材71の内部で傾斜して設けられていることにより、ディスプレイ2から偏向光学素子4を介して透過制御部材7に光が入射する際に、偏向光学素子4から出射される光のうちで角度ψ(図22参照)よりも大きい角度で拡散する光線については遮光板72で吸収され、角度ψ以下の角度で拡散する光線は、遮光板72で吸収されずに透過制御部材7から出射され、光学プレート3に入射する。つまり、透過制御部材7に入射した光は、拡散角度が入射光よりも狭い所定範囲内(上記の例では角度ψ以下)に制限されて出射され、光学プレート3に入射することになる。
 上記のように、偏向光学素子4からの光を所定範囲内の拡散角度に制限して透過させるとともに、厚み方向とは異なる方向に透過率が最大である特性を有する透過制御部材7としては、例えば信越ポリマー株式会社製の視野角制御フィルム(VCF;View Control Film)を用いることができる。
 本実施形態では、透過制御部材7は、偏向光学素子4から出射されて、透過率が最大である方向に内部を透過する光線が、光学プレート3に対して所望の角度範囲で入射するように配置されている。例えば、ディスプレイ2が光学プレート3と平行または略平行となるように配置され、偏向光学素子4が、ディスプレイ2から垂直に入射する光線を出射角45°で出射させる構成では、図21のように、透過制御部材7は、偏向光学素子4と接して(偏向光学素子4と平行に)配置される。このような配置により、ディスプレイ2から出射され、偏向光学素子4にて約45°偏向されて透過制御部材7に入射する光線は、透過率が最大である約45°方向に効率よく透過し、光学プレート3に対して所望の角度範囲(例えば45°~50°)で入射することになる。
 以上のように、偏向光学素子4の光学プレート3側に透過制御部材7を配置することにより、ディスプレイ2から出射され、偏向光学素子4で偏向される光に含まれる光線のうち、光学プレート3に対して所望の角度範囲で入射する方向に向かう光線を、透過制御部材7によって高い透過率で透過させる一方、偏向光学素子4にて上記角度範囲以外の方向に偏向される光線の進行を、透過制御部材7での拡散角度の制限(遮光板72での光吸収)によって抑えることができる。これにより、光学プレート3によって結像される空中像の輝度低下を抑えつつ、上記角度範囲以外の方向に偏向される光線に起因するゴーストの発生を抑えることができる。
 また、透過制御部材7は、透光性の平板部材71と、平板部材71の内部で互いに離間して配置される複数の遮光板72とを有しており、複数の遮光板72は、透過率が最大となる方向と平行または略平行となるように、平板部材71の厚み方向に対して傾斜した状態で配置されている。このように平板部材71と複数の遮光板72とを組み合わせて透過制御部材7を構成することにより、偏向光学素子4からの光を所定範囲内の拡散角度に制限して透過させ、厚み方向とは異なる方向に透過率が最大である透過制御部材7を確実に実現することができる。
 〔実施の形態3〕
 (空中映像表示装置の構成)
 図24は、本発明の実施の形態3の空中映像表示装置1の構成を模式的に示す斜視図であり、図25は、図24のA-A’線矢視断面図である。本実施形態の空中映像表示装置1は、実施の形態1で示した筐体5の代わりに、筐体8を備えた構成であってもよい。以下、筐体8の詳細について説明する。
 筐体8は、光学プレート3および偏向光学素子4を、互いに離間して平行または略平行となるように保持する。この筐体8は、図25に示すように、偏向光学素子4に対して光学プレート3とは反対側が開口した形状であり、開口側から筐体8を被対象物に被せることが可能となっている。すなわち、筐体8は、一部に開口部8aを有しており、この開口部8aを介して、被対象物を筐体8に対して相対的に挿抜することが可能となっている。なお、ここでは、被対象物として、設置面Qに予め設置された、タッチパネルのない平板状のディスプレイ2(既設画像表示素子)を例に挙げて説明するが、タッチパネル付きのディスプレイであってもよい。
 筐体8は、プレート保持部81と、素子保持部82と、位置決め部83と、枠体84とを有している。枠体84は、プレート保持部81、素子保持部82および位置決め部83を、これらの外周縁側から支持する枠状の支持体である。上記の開口部8aは、枠体84の一方の端部に形成される。プレート保持部81、素子保持部82および位置決め部83は、いずれも、枠体84の内側に収まるように、この順で互いに平行に配置されるとともに、平面視でそれぞれ枠状に形成されているが、これらの形状は特に限定されない。また、プレート保持部81、素子保持部82、位置決め部83および枠体84は、プラスチックなどの樹脂で構成されるが、これらの材質も特に限定されない。
 プレート保持部81は、光学プレート3を保持する。なお、光学プレート3の保持の仕方は、特に限定されない。例えば、プレート保持部81は、光学プレート3の周縁部をクランプする(挟み込む)ことによって光学プレート3を保持してもよい。また、プレート保持部81と光学プレート3の周縁部とを押さえ部材を介してねじ止めしたり、接着剤で接着することにより、プレート保持部81が光学プレート3を保持する構成としてもよい。
 素子保持部82は、光学プレート3と平行または略平行となるように、偏向光学素子4を保持する。なお、偏向光学素子4の保持の仕方も特に限定されない。例えば、素子保持部82は、偏向光学素子4の周縁部をクランプすることによって偏向光学素子4を保持してもよい。また、素子保持部82と偏向光学素子4の周縁部とを押さえ部材を介してねじ止めしたり、接着剤で接着することにより、素子保持部82が偏向光学素子4を保持する構成としてもよい。なお、素子保持部82は、偏向光学素子4のみならず、上述した拡散制限部材6(図16参照)および透過制御部材7(図22参照)の少なくとも一方を同時に保持してもよい。
 位置決め部83は、筐体8の開口側から筐体8をディスプレイ2に被せたときに、ディスプレイ2と当接することによって、ディスプレイ2に対して光学プレート3が平行または略平行となるように筐体8を位置決めする。したがって、位置決め部83は、ディスプレイ2と当接可能な当接部でもある。この位置決め部83は、素子保持部82に対してプレート保持部81とは反対側の位置で、枠体84によって支持されている。
 図26は、比較例2の空中映像表示装置1bの概略の構成を示す断面図である。比較例2の空中映像表示装置1bは、図13で示した比較例1の空中映像表示装置1aの筐体5を、ディスプレイ2の配置位置で切断した筐体8’に置き換え、鉛直方向に沿った設置面Qに取り付けられたディスプレイ2から垂直に出射される光線が、光学プレート3に対して所望の角度(ここでは45°とする)で入射するように、筐体8’をディスプレイ2に被せた構成である。なお、筐体8’には、光学プレート3が保持されており、偏向光学素子4は保持されていないとする。偏向光学素子4を用いない比較例2では、ディスプレイ2と光学プレート3とが45°で交差する位置関係にあることが、図26より明らかである。
 一方、図27は、実施例2の空中映像表示装置1の概略の構成を示す断面図である。実施例2の空中映像表示装置1は、鉛直方向に沿った設置面Qに取り付けられたディスプレイ2に、図25で示した筐体8を開口側から被せた構成である。なお、偏向光学素子4は、ディスプレイ2から垂直に入射する光線が光学プレート3に対して入射角45°で入射するように、入射光線を偏向する構成であるとする。筐体8には、上述した位置決め部83が設けれているため、筐体8を平板状のディスプレイ2に被せたときに、位置決め部83がディスプレイ2の表面の一部と当接し、これによって、ディスプレイ2に対して光学プレート3が平行となるように、ディスプレイ2に対する筐体8の位置が固定される。光学プレート3および偏向光学素子4は、筐体8(プレート保持部81、素子保持部82)によって予め平行となるように保持されているため、結局、光学プレート3、偏向光学素子4、ディスプレイ2の3者は、互いに平行な位置関係となる。
 ここで、実施例2の空中映像表示装置1および比較例2の空中映像表示装置1bのいずれにおいても、用いた光学プレート3のサイズは、先の実施例1および比較例1と同じ、縦244mm×横244mmであり、ディスプレイ2の表示面2aのサイズは、対角10インチ(縦221mm×横124mm)であり、光学プレート3からの空中像(映像M)の飛び出し量は、100mmであるとする。実施例2の空中映像表示装置1では、光学プレート3、偏向光学素子4およびディスプレイ2が互いに平行な位置関係となるため、設置面Qからの装置の突出量(筐体8の厚み)を極力抑えることができ、上記突出量として、実施例1の厚みt2と同じ71mmを実現することができる。これに対して、比較例2の空中映像表示装置1bでは、偏向光学素子4を配置しないため、部分的に切断した筐体8’を用いても、設置面Qからの装置の突出量(筐体8’の厚み)は、比較例1の厚みt1の√2倍である162.6mmとなる。なお、上記の√2倍は、45°で交差するディスプレイ2と光学プレート3との幾何学的な位置関係から導出される。つまり、実施例2の構成では、比較例2の構成に比べて、設置面Qからの装置の突出量を半分以下に大幅に低減することが可能となる。
 以上のように、上述した構成の筐体8を用いる空中映像表示装置1では、筐体8をディスプレイ2に被せたときに、位置決め部83がディスプレイ2と当接することによって、光学プレート3とディスプレイ2とが平行または略平行となり、最終的に、光学プレート3、偏向光学素子4、ディスプレイ2の3者が互いに平行または略平行な位置関係となる。これにより、ディスプレイ2の設置面Qに対する装置の突出量を小さくすることが可能となり、装置を薄型化することが可能となる。
 また、被対象物の実像(映像M)は、原理上、光学プレート3に対して被対象物と面対称となる空中の位置に結像されるため、被対象物として、鉛直方向に沿った設置面Qに設置されたディスプレイ2を利用する場合、偏向光学素子4を用いない比較例2の構成では、図26のように、空中における映像Mの結像位置(表示画面)が水平方向に沿って位置する。この場合、観察者は、映像Mを正規の観察方向からずれた方向から観察することになり、映像Mを観察しにくくなる。なお、映像Mの正規の観察方向とは、光学プレート3から映像Mの結像位置に向かう方向とは逆方向を指し、図26では、鉛直下向きの方向を指す。つまり、図26の構成では、映像Mを真上からでないと観察することができない。
 これに対して、実施例2の構成では、光学プレート3、偏向光学素子4、ディスプレイ2の3者が互いに平行または略平行な位置関係となることで、空中における映像Mの結像位置(表示画面)が鉛直方向に沿って(ディスプレイ2と平行に)位置する。この場合、観察者は、映像Mを上記した正規の観察方向から観察することが可能となり、映像Mを観察しやすくなる。つまり、映像Mの視認性を向上させることができる。
 また、筐体8の上記構成により、設置面Qに設置された既設の被対象物(ディスプレイ2またはタッチパネル付きディスプレイ)に、筐体8を被せるだけで、被対象物の実像(例えばディスプレイ2の表示映像)を簡単に空中映像化することができる。
 また、後述する入力検知部9(図35等参照)を用いて、映像Mに対する入力位置を検知するタッチパネルを実現する場合でも、入力者(映像Mの観察者)は、映像Mを例えば斜め45°上方から観察しながら、手や指で映像Mの所望の位置を指定し、入力することができるため、入力操作もしやすくなる(入力による操作性が向上する)。
 また、上述した筐体8は、プレート保持部81と、素子保持部82と、枠体84とをさらに有しており、位置決め部83は、素子保持部82に対してプレート保持部81とは反対側の位置で、枠体84によって支持されている。これにより、筐体8をディスプレイ2に被せたときに、位置決め部83をまずディスプレイ2と当接させて、光学プレート3とディスプレイ2とを平行または略平行にすることができる。また、プレート保持部81、素子保持部82および位置決め部83が同じ枠体84で支持されているため、位置決め部83がディスプレイ2と当接すると同時に、光学プレート3、偏向光学素子4、ディスプレイ2の3者の位置関係を、互いに平行または略平行にすることができる。
 (変位機構について)
 上記したプレート保持部81および位置決め部83の少なくとも1つは、相互の離間距離が変化するように、枠体84に支持されていてもよい。なお、本実施形態では、素子保持部82は、プレート保持部81または位置決め部83との離間距離が変化するように、枠体84に支持されているが、枠体84に対して固定されていてもよい。
 図28は、プレート保持部81を変位させる機構を示す斜視図である。プレート保持部81の枠体84側の端面には、枠体84側に突出する凸部81aが形成されている。凸部81aの数は特に限定されず、1個であってもよいし、複数個であってもよい。また、凸部81aが形成される位置は、プレート保持部81において枠体84と対向する位置であればよく、特に限定されない。
 一方、枠体84の内面には、プレート保持部81の凸部81aが嵌まり込む凹部84aが形成されている。凹部84aは、プレート保持部81および位置決め部83の離間距離が変化する方向(図28では上下方向)に延びている。凹部84aの数は特に限定されないが、凸部81aの数と一致していればよい。また、凹部84aが形成される位置は、枠体84においてプレート保持部81の凸部81aが嵌る位置であればよく、特に限定されない。
 上記のように、プレート保持部81に凸部81aを形成し、枠体84に凹部84aを形成し、凸部81aを凹部84aに嵌め込むことにより、凸部81aと凹部84aとが摺動する方向、つまり、位置決め部83に対して離間距離が変化する方向にプレート保持部81を移動(変位)させることができる。これにより、位置決め部83と当接しているディスプレイ2に対して、プレート保持部81で保持されている光学プレート3を、相互の離間距離が変化する方向に移動(変位)させることができる。その結果、光学プレート3を介して空中に結像される映像Mの結像位置を調整することが可能となる。
 図29は、プレート保持部81を位置決め部83に対して移動させる前後の様子を模式的に示している。例えば、プレート保持部81が位置決め部83から最も離れた位置をP1とし、位置P1よりも位置決め部83側のプレート保持部81の位置を、P2とする。プレート保持部81を位置P1からP2に(位置決め部83との離間距離が小さくなる方向に)移動させると、上記プレート保持部81で保持されている光学プレート3を介して空中に結像される映像Mの結像位置は、位置M1から位置M2に変化し、映像Mの結像位置がディスプレイ2に近づく。逆に、プレート保持部81を位置P2から位置P1に(位置決め部83との離間距離が大きくなる方向に)移動させると、光学プレート3を介して空中に結像される映像Mの結像位置は、位置M2から位置M1に変化し、映像Mの結像位置がディスプレイ2から遠ざかる。
 また、図30は、位置決め部83を変位させる機構を示す斜視図である。なお、同図では、図示の複雑化を避けるために、プレート保持部81および素子保持部82の図示を省略している。位置決め部83の枠体84側の端面には、枠体84側に突出する凸部83aが形成されている。凸部83の数は特に限定されず、1個であってもよいし、複数個であってもよい。また、凸部83aが形成される位置は、位置決め部83において枠体84と対向する位置であればよく、特に限定されない。
 ここでは、位置決め部83の凸部83aは、プレート保持部81の凸部81aと同一形状で形成されている。そして、凸部83aは、凸部81aと同様に、枠体84の凹部84aに嵌まり込んでいる。なお、凸部81aが嵌まり込む凹部84aとは別に、凸部83aが嵌まり込む凹部を枠体84に設けるようにしてもよい。
 上記のように、位置決め部83に凸部83aを形成し、凸部83aを枠体84の凹部84aに嵌め込むことにより、凸部83aと凹部84aとが摺動する方向、つまり、プレート保持部81に対して離間距離が変化する方向に位置決め部83を移動(変位)させることができる。これにより、プレート保持部81で保持されている光学プレート3と、位置決め部83と当接しているディスプレイ2との相互の離間距離を変化させることができるため、光学プレート3を介して空中に結像される映像Mの結像位置を調整することができる。
 例えば、図31は、ディスプレイ2の設置面Qに対する取り付け手法の一例を示している。ディスプレイ2が取付治具Rを介して設置面Qに取り付けられる場合、ディスプレイ2は、取付治具Rの設置面Qからの高さ分だけ、設置面Qから浮き上がって位置する。この場合、筐体8を開口側からディスプレイ2に被せると、位置決め部83がディスプレイ2との当接を保ったまま、初期の位置W1から、プレート保持部81側の位置W2に移動する。これにより、光学プレート3を介して空中に結像される映像Mの結像位置は、初期の位置M1から、ディスプレイ2により近い位置M2に変化する。逆に、位置決め部83を位置W2から位置W1に移動させると(取付治具Rがない場合を想定)、光学プレート3を介して空中に結像される映像Mの結像位置は、位置M2から位置M1に変化し、映像Mの結像位置がディスプレイ2から遠ざかる。
 以上のように、プレート保持部81および位置決め部83の少なくとも1つが、相互の離間距離が変化するように枠体84に支持されている。これにより、ディスプレイ2に垂直な方向に、映像Mの結像位置を調整することができるため、映像Mを観察する個々の観察者ごとに、観察しやすい映像Mを提供することが可能となる。
 なお、以上では、プレート保持部81および位置決め部83の離間距離を変化させるにあたって、プレート保持部81に凸部81aを設け、枠体84に凸部81aが嵌まり込む凹部84aを設ける例について説明したが、枠体84に凸部を設け、プレート保持部81に上記凸部が嵌まり込む凹部を設けてもよい。同様に、枠体84に凸部を設け、位置決め部83に上記凸部が嵌まり込む凹部を設けてもよい。
 つまり、プレート保持部81および位置決め部83と、枠体84とのうち、一方は、凸部(例えば凸部81aまたは83a)を有し、他方は、上記凸部が嵌まり込む凹部(例えば凹部84a)を有し、上記凹部は、プレート保持部81と位置決め部83との離間距離が変化する方向に沿って延びていることにより、プレート保持部81および位置決め部83を移動させて相互の離間距離を変化させることができる。これにより、位置決め部83が当接するディスプレイ2と、プレート保持部81によって保持される光学プレート3との距離を変化させて、上述のように、映像Mの結像位置を調整することが可能となる。
 (筐体の他の構成)
 図32は、上記した筐体8の他の構成を模式的に示す断面図である。筐体8において、上記した位置決め部83は、偏向光学素子4を保持する素子保持部を兼ねており、光学プレート3と平行または略平行となるように、偏向光学素子4を保持してもよい。そして、プレート保持部81および位置決め部83が枠体84で支持されていてもよい。つまり、筐体8は、図25の素子保持部82の機能を位置決め部83に持たせることによって、素子保持部82の配置を省略した構成であってもよい。
 なお、位置決め部83が偏向光学素子4を保持するときの保持の仕方は特に限定されない。例えば、位置決め部83は、偏向光学素子4の周縁部をクランプすることによって偏向光学素子4を保持してもよい。また、位置決め部83と偏向光学素子4の周縁部とを押さえ部材を介してねじ止めしたり、接着剤で接着することにより、位置決め部83が偏向光学素子4を保持する構成としてもよい。また、位置決め部83は、偏向光学素子4のみならず、上述した拡散制限部材6(図16参照)および透過制御部材7(図22参照)の少なくとも一方を同時に保持してもよい。
 図32の構成であっても、筐体8をディスプレイ2に被せたときに、位置決め部83がディスプレイ2と当接することによって、光学プレート3とディスプレイ2とが平行または略平行となる。また、プレート保持部81および位置決め部83によって、光学プレート3と偏向光学素子4とは、平行または略平行に保持されるため、位置決め部83がディスプレイ2と当接したときには、光学プレート3、偏向光学素子4、ディスプレイ2の3者が互いに平行または略平行な位置関係となる。これにより、図25の構成と同様に、ディスプレイ2の設置面Qに対する装置の突出量を小さくすることが可能となり、装置を薄型化することが可能となる(図27参照)。しかも、図25の素子保持部82を省略した構成で、つまり、筐体8を簡素化した構成で、上記の効果を得ることができる。
 また、図32の筐体8においても、プレート保持部81および位置決め部83の少なくとも1つが、相互の離間距離が変化するように枠体84に支持される構成としてもよい。つまり、図32の筐体8において、プレート保持部81に凸部81aを設け、位置決め部83に凸部83aを設け、枠体84に凹部84aを設けて、プレート保持部81および位置決め部83の相互の離間距離を変化させるようにしてもよい。
 凸部81aと凹部84aとを摺動させることにより、図33に示すように、プレート保持部81を位置決め部83に対して離間距離が変化するように移動させることができる。これにより、空中における映像Mの結像位置を、ディスプレイ2と垂直な方向に変化させることができる。例えば、プレート保持部81と位置決め部83との離間距離が相対的に大きい場合の映像Mの結像位置をM1とし、離間距離が相対的に小さい場合の映像Mの結像位置をM2とすると、プレート保持部81を位置決め部83に近づけることにより(離間距離を小さくすることにより)、空中における映像の結像位置をM1からM2に変更する(ディスプレイ2側に近づける)ことができる。
 また、凸部83aと凹部84aとを摺動させることにより、図34に示すように、位置決め部83をプレート保持部81に対して離間距離が変化するように移動させることができ、これによって、空中における映像Mの結像位置を、ディスプレイ2と垂直な方向に変化させることができる。例えば、位置決め部83をプレート保持部81に近づけることにより(離間距離を小さくすることにより)、空中における映像の結像位置をM1からM2に変更する(ディスプレイ2側に近づける)ことができる。
 このように、図32の構成においても、プレート保持部81および位置決め部83の少なくとも1つが、相互の離間距離が変化するように、枠体84に支持されていることにより、ディスプレイ2に垂直な方向に映像Mの結像位置を調整して、観察者ごとに、観察しやすい映像Mを提供することが可能となる。
 〔実施の形態4〕
 図35は、本発明の実施の形態4の空中映像表示装置1の構成を示す斜視図であり、図36は、図35のB-B’線矢視断面図である。本実施形態の空中映像表示装置1は、実施の形態3の構成に加えて、入力検知部9を有している。入力検知部9は、空中に結像される被対象物の実像の表示画面において物体によって指定される入力位置を、物体と非接触で検知するセンシング機器である。なお、上記の物体としては、例えば実像の観察者の手や指のほか、観察者が手に持つスタイラスペンなどを想定することができる。入力検知部9は、例えば筐体8上に設置されるが、上記表示画面における入力位置を検知できる位置に設置されていればよく、筐体8以外の位置に設置されてもよい。
 上記の入力検知部9は、例えば、実像の表示画面に向けて赤外線を照射し、表示画面上で入力位置を指定する物体で反射される赤外線をカメラで受光して得られる画像に基づいて、入力位置を検知する。このような入力検知部9は、Light Coding方式(パターン照射方式とも呼ばれる)またはTOF(Time of Flight)方式を採用したセンシング機器で構成することができる。
 Light Coding方式を採用したセンシング機器は、赤外線パターンを投光するIRプロジェクタと、投光された赤外線パターンを読み取るIRカメラとを備えており、物体に投光した赤外線パターンをIRカメラで撮影し、(工場出荷時にキャリブレーションしておいた)パラメータを用いて、三角測量により画像上の各点のデプス(位置)を算出する。
 すなわち、Light Coding方式では、「キャリブレーション(準備)」と「テスト(実際の撮影)」との2段階で位置検知が行われる。「キャリブレーション」では、既知のパターンについて「パターン中の各点がどれだけ移動(シフト)すると、デプスがどれだけ変化するか」というパラメータを、単純で正確な物体(平面や立方体など)を撮影することによって予め求めておく。そして、「テスト」では、撮影した画像の各点が既知パターンのどの位置に相当するかを画像処理(テンプレートマッチングなど)によって求め、あとは「キャリブレーション」で求めておいたパラメータから、その画素のデプスを計算する。
 一方、TOF方式が採用されたセンシング機器は、パルス変調された赤外線を投光するプロジェクタと、赤外線カメラとを備えており、物体に投光した赤外線が反射して戻ってくる時間を計測し、上記時間と赤外線の移動速度とから、物体の各点までの距離(位置情報)を得る。
 つまり、Light Coding方式およびTOF方式のいずれによっても、空間中の物体の三次元的な位置を、物体と非接触で検知することができ、実像の表示画面上で物体によって指定される入力位置を非接触で検知することができる。なお、Light Coding方式またはTOF方式を採用したセンシング機器としては、例えば、マイクロソフト社のKinect(登録商標)を用いることができる。
 また、入力検知部9は、赤外線を出射する複数の光源と、複数のカメラとを用い、各カメラで撮影された画像から、物体(例えば指)の外形によって遮蔽された3次元空間を算出し、物体の断面形状(例えば物体が指である場合が楕円形状)が上記3次元空間内でフィットした場合に、その断面形状の位置を物体の位置として検知するセンシング機器で構成されてもよい。この場合でも、空間中の物体の三次元的な位置を、物体と非接触で検知することができるため、実像の表示画面上で物体によって指定される入力位置を、物体と非接触で検知することができる。なお、上記センシング機器としては、例えば、リープモーション社のLEAP MOTION(登録商標)コントローラを用いることができる。
 本実施形態のように、空中映像表示装置1が上記した入力検知部9を有し、入力検知部9によって、実像の表示画面における物体による入力位置を、物体と非接触で検知することにより、空中映像表示装置1を非接触式のタッチパネルとして用いることができる。通常の接触式のタッチパネルでは、タッチパネルの表面が物体との接触によって汚れたり、濡れたりすることがあり、また、不特定多数の人が利用するタッチパネルとの接触によって、物体が感染することもある。非接触式のタッチパネルでは、そのような心配が全くなく、表面の汚れや水分を除去する清掃も全く不要となり、衛生面も向上する。
 特に、壁等の設置面Qに設置された既設の被対象物(ディスプレイ2またはタッチパネル付きディスプレイ)に、本実施形態の空中映像表示装置1(筐体8)を被せるだけで、非接触式のタッチパネルを実現することができる。これにより、既設の被対象物を利用したタッチパネル化が非常に容易となる。
 また、入力検知部9が、実像の表示画面に向けて赤外線を照射し、物体で反射される赤外線をカメラで受光して得られる画像に基づいて、入力位置を検知するため、入力位置を非接触で検知する構成を確実に実現することが可能となる。
 ところで、入力検知部9による入力検知の手法は、上記の例には限定されない。図37は、本実施形態の空中映像表示装置1の他の構成を示す斜視図であり、図38は、図37のC-C’線矢視断面図である。入力検知部9は、赤外線の発光部および受光部を備え、発光部から赤外線を実像の表示画面と平行に出力し、物体で反射される赤外線を受光部で検出することによって、物体による入力位置を検知する構成であってもよい。この構成であっても、物体の三次元的な位置を、物体と非接触で検知することができるため、物体による入力位置を物体と非接触で確実に検知することが可能となる。なお、上記の入力検知部9としては、例えばNeonode社のAirBar(商品名)を用いることができる。
 その他にも、入力検知部9としては、発光部から出射されるレーザを走査してレーザーカーテンを生成し、物体によってレーザが遮られた位置を検知することによって、物体による入力位置を非接触で検知するセンシング機器を用いることもできる。
 〔その他〕
 以上で説明した各実施の形態の構成を適宜組み合わせて、空中映像表示装置を構成することも勿論可能である。
 以上で説明した各の実施形態の空中映像表示装置は、以下のように表現することができる。
 すなわち、以上で説明した空中映像表示装置は、平面視で互いに直交する複数の反射面を有する光学プレートを備え、被対象物からの光を前記複数の反射面で反射させて、該光学プレートに対して前記光の入射側とは反対側の空中に導き、前記被対象物の実像を前記空中に結像させる空中映像表示装置であって、前記被対象物からの光を偏向して前記光学プレートに導く偏向光学素子をさらに備え、前記偏向光学素子は、透光性の平板部材と、前記平板部材の内部に互いに離間して配置され、前記平板部材の互いに対向する2面のうちの一方の面から入射した前記被対象物からの光を反射によって偏向して、他方の面から出射させる複数の反射偏向面とを有している。
 前記偏向光学素子の前記複数の反射偏向面は、前記平板部材の前記2面の少なくとも一方に対して傾斜していることが望ましい。
 前記偏向光学素子の前記複数の反射偏向面は、前記被対象物から任意の前記反射偏向面に入射する入射光線と、該入射光線が前記反射偏向面で反射偏向されて出射されるときの出射光線とを含む面内で、前記平板部材の厚み方向に垂直な一方向に離間して配置されていることが望ましい。
 前記偏向光学素子の前記複数の反射偏向面は、前記一方向に一定のピッチで配置されていることが望ましい。
 上記の空中映像表示装置は、前記偏向光学素子に対して前記被対象物側に配置され、前記被対象物からの光を、所定範囲内の拡散角度に制限して出射する拡散制限部材をさらに備えていることが望ましい。
 前記拡散制限部材は、透光性部材と、前記透光性部材の内部で互いに離間して配置される複数の遮光板とを有していることが望ましい。
 前記偏向光学素子は、前記被対象物の光出射面と平行に配置されていることが望ましい。
 前記偏向光学素子は、前記複数の反射偏向面の裏面側に無反射層を有していることが望ましい。
 前記被対象物は、画像を表示するディスプレイであり、上記の空中映像表示装置は、以下の条件式(1)を満足することが望ましい。すなわち、
  35°<Dd+sin-1(nsin(2×Ld))<55°
                           ・・・(1)
 ここで、
  Dd:前記ディスプレイの表示面と、前記光学プレートとのなす角度(°)
  n :前記偏向光学素子の各反射偏向面で反射偏向される前記ディスプレイからの光が通過する前記平板部材の媒質のd線の屈折率
  Ld:前記偏向光学素子の各反射偏向面と、前記平板部材の前記2面のいずれかの面の法線とのなす角度(°)
である。
 上記の空中映像表示装置は、以下の条件式(2)を満足することが望ましい。すなわち、
  P<t(tan(2×Ld)-tan(Ld))   ・・・(2)
 ここで、
  P :前記偏向光学素子の各反射偏向面の配列ピッチ(mm)
  t :前記偏向光学素子の前記平板部材の厚み(mm)
  Ld:前記偏向光学素子の各反射偏向面と、前記平板部材の前記2面のいずれかの面の法線とのなす角度(°)
である。
 上記の空中映像表示装置は、前記偏向光学素子からの光を所定範囲内の拡散角度に制限して透過させ、厚み方向とは異なる方向に透過率が最大である透過制御部材をさらに備え、前記透過制御部材は、透過率が最大である方向に透過する光線が、前記光学プレートに対して所望の角度範囲で入射するように配置されていてもよい。
 上記の空中映像表示装置において、前記透過制御部材は、透光性の平板部材と、前記平板部材の内部で互いに離間して配置される複数の遮光板とを有しており、前記複数の遮光板は、透過率が最大となる方向と平行または略平行となるように、前記平板部材の厚み方向に対して傾斜した状態で配置されていてもよい。
 上記の空中映像表示装置は、前記光学プレートおよび前記偏向光学素子を、互いに離間して平行または略平行となるように保持する筐体をさらに備え、前記筐体は、前記偏向光学素子に対して前記光学プレートとは反対側が開口した形状であり、前記開口側から該筐体を前記被対象物に被せたときに、前記被対象物と当接することによって、前記被対象物に対して前記光学プレートが平行または略平行となるように該筐体を位置決めする位置決め部を有していてもよい。
 上記の空中映像表示装置において、前記筐体は、前記光学プレートを保持するプレート保持部と、前記偏向光学素子を保持する素子保持部と、前記プレート保持部、前記素子保持部および前記位置決め部を支持する枠体とをさらに有しており、前記位置決め部は、前記素子保持部に対して前記プレート保持部とは反対側の位置で、前記枠体によって支持されていてもよい。
 上記の空中映像表示装置において、前記筐体は、前記光学プレートを保持するプレート保持部と、前記プレート保持部および前記位置決め部を支持する枠体とをさらに有しており、前記位置決め部は、前記偏向光学素子を保持する素子保持部を兼ねていてもよい。
 上記の空中映像表示装置において、前記プレート保持部および前記位置決め部の少なくとも1つは、相互の離間距離が相対的に変化するように、前記枠体に支持されていてもよい。
 上記の空中映像表示装置において、前記プレート保持部および前記位置決め部と、前記枠体とのうち、一方は、凸部を有し、他方は、前記凸部が嵌まり込む凹部を有し、前記凹部は、前記プレート保持部と前記位置決め部との離間距離が変化する方向に沿って延びていてもよい。
 上記の空中映像表示装置は、空中に結像される前記被対象物の実像の表示画面において物体によって指定される入力位置を、前記物体と非接触で検知する入力検知部をさらに備えていてもよい。
 上記の空中映像表示装置において、前記入力検知部は、前記表示画面に向けて赤外線を照射し、前記物体で反射される前記赤外線をカメラで受光して得られる画像に基づいて、前記入力位置を検知してもよい。
 上記の空中映像表示装置において、前記入力検知部は、赤外線を前記被対象物の実像の表示画面と平行に出力し、前記物体で反射される前記赤外線を検出することによって前記入力位置を検知してもよい。
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で拡張または変更して実施することができる。
 本発明は、光学プレートを用いて空中に映像を結像させる空中映像表示装置に利用可能である。
   1   空中映像表示装置
   2   表示装置(被対象物)
   2a  表示面(光出射面)
   3   光学プレート
   4   偏向光学素子
   6   拡散制限部材
   7   透過制御部材
   8   筐体
   9   入力検知部
  21b  反射面
  31b  反射面
  41   平板部材
  41a  面
  41b  面
  42   反射偏向面
  43   無反射層
  61   透光性部材
  62   遮光板
  71   平板部材
  72   遮光板
  81   プレート保持部
  82   素子保持部
  83   位置決め部
  84   枠体

Claims (20)

  1.  平面視で互いに直交する複数の反射面を有する光学プレートを備え、被対象物からの光を前記複数の反射面で反射させて、該光学プレートに対して前記光の入射側とは反対側の空中に導き、前記被対象物の実像を前記空中に結像させる空中映像表示装置であって、
     前記被対象物からの光を偏向して前記光学プレートに導く偏向光学素子をさらに備え、
     前記偏向光学素子は、
     透光性の平板部材と、
     前記平板部材の内部に互いに離間して配置され、前記平板部材の互いに対向する2面のうちの一方の面から入射した前記被対象物からの光を反射によって偏向して、他方の面から出射させる複数の反射偏向面とを有している、空中映像表示装置。
  2.  前記偏向光学素子の前記複数の反射偏向面は、前記平板部材の前記2面の少なくとも一方に対して傾斜している、請求項1に記載の空中映像表示装置。
  3.  前記偏向光学素子の前記複数の反射偏向面は、前記被対象物から任意の前記反射偏向面に入射する入射光線と、該入射光線が前記反射偏向面で反射偏向されて出射されるときの出射光線とを含む面内で、前記平板部材の厚み方向に垂直な一方向に離間して配置されている、請求項1または2に記載の空中映像表示装置。
  4.  前記偏向光学素子の前記複数の反射偏向面は、前記一方向に一定のピッチで配置されている、請求項3に記載の空中映像表示装置。
  5.  前記偏向光学素子に対して前記被対象物側に配置され、前記被対象物からの光を、所定範囲内の拡散角度に制限して出射する拡散制限部材をさらに備えている、請求項1から4のいずれかに記載の空中映像表示装置。
  6.  前記拡散制限部材は、
     透光性部材と、
     前記透光性部材の内部で互いに離間して配置される複数の遮光板とを有している、請求項5に記載の空中映像表示装置。
  7.  前記偏向光学素子は、前記被対象物の光出射面と平行に配置されている、請求項1から6のいずれかに記載の空中映像表示装置。
  8.  前記偏向光学素子は、前記複数の反射偏向面の裏面側に無反射層を有している、請求項1から7のいずれかに記載の空中映像表示装置。
  9.  前記被対象物は、画像を表示するディスプレイであり、
     以下の条件式(1)を満足する、請求項1から8のいずれかに記載の空中映像表示装置;
      35°<Dd+sin-1(nsin(2×Ld))<55°
                             ・・・(1)
     ここで、
      Dd:前記ディスプレイの表示面と、前記光学プレートとのなす角度(°)
      n :前記偏向光学素子の各反射偏向面で反射偏向される前記ディスプレイからの光が通過する前記平板部材の媒質のd線の屈折率
      Ld:前記偏向光学素子の各反射偏向面と、前記平板部材の前記2面のいずれかの面の法線とのなす角度(°)
    である。
  10.  以下の条件式(2)を満足する、請求項1から9のいずれかに記載の空中映像表示装置;
      P<t(tan(2×Ld)-tan(Ld))
                             ・・・(2)
     ここで、
      P :前記偏向光学素子の各反射偏向面の配列ピッチ(mm)
      t :前記偏向光学素子の前記平板部材の厚み(mm)
      Ld:前記偏向光学素子の各反射偏向面と、前記平板部材の前記2面のいずれかの面の法線とのなす角度(°)
    である。
  11.  前記偏向光学素子からの光を所定範囲内の拡散角度に制限して透過させ、厚み方向とは異なる方向に透過率が最大である透過制御部材をさらに備え、
     前記透過制御部材において、透過率が最大である方向に透過する光線が、前記光学プレートに対して所望の角度範囲で入射するように配置されている、請求項1から10のいずれかに記載の空中映像表示装置。
  12.  前記透過制御部材は、
     透光性の平板部材と、
     前記平板部材の内部で互いに離間して配置される複数の遮光板とを有しており、
     前記複数の遮光板は、透過率が最大となる方向と平行または略平行となるように、前記平板部材の厚み方向に対して傾斜した状態で配置されている、請求項11に記載の空中映像表示装置。
  13.  前記光学プレートおよび前記偏向光学素子を、互いに離間して平行または略平行となるように保持する筐体をさらに備え、
     前記筐体は、前記偏向光学素子に対して前記光学プレートとは反対側が開口した形状であり、前記開口側から該筐体を前記被対象物に被せたときに、前記被対象物と当接することによって、前記被対象物に対して前記光学プレートが平行または略平行となるように該筐体を位置決めする位置決め部を有している、請求項1から12のいずれかに記載の空中映像表示装置。
  14.  前記筐体は、
     前記光学プレートを保持するプレート保持部と、
     前記偏向光学素子を保持する素子保持部と、
     前記プレート保持部、前記素子保持部および前記位置決め部を支持する枠体とをさらに有しており、
     前記位置決め部は、前記素子保持部に対して前記プレート保持部とは反対側の位置で、前記枠体によって支持されている、請求項13に記載の空中映像表示装置。
  15.  前記筐体は、
     前記光学プレートを保持するプレート保持部と、
     前記プレート保持部および前記位置決め部を支持する枠体とをさらに有しており、
     前記位置決め部は、前記偏向光学素子を保持する素子保持部を兼ねている、請求項13に記載の空中映像表示装置。
  16.  前記プレート保持部および前記位置決め部の少なくとも1つは、相互の離間距離が変化するように、前記枠体に支持されている、請求項14または15に記載の空中映像表示装置。
  17.  前記プレート保持部および前記位置決め部と、前記枠体とのうち、一方は、凸部を有し、他方は、前記凸部が嵌まり込む凹部を有し、
     前記凹部は、前記プレート保持部と前記位置決め部との離間距離が変化する方向に沿って延びている、請求項16に記載の空中映像表示装置。
  18.  空中に結像される前記被対象物の実像の表示画面において物体によって指定される入力位置を、前記物体と非接触で検知する入力検知部をさらに備えている、請求項1から17のいずれかに記載の空中映像表示装置。
  19.  前記入力検知部は、前記表示画面に向けて赤外線を照射し、前記物体で反射される前記赤外線をカメラで受光して得られる画像に基づいて、前記入力位置を検知する、請求項18に記載の空中映像表示装置。
  20.  前記入力検知部は、赤外線を前記表示画面と平行に出力し、前記物体で反射される前記赤外線を検出することによって前記入力位置を検知する、請求項18に記載の空中映像表示装置。
PCT/JP2018/016863 2017-08-07 2018-04-25 空中映像表示装置 WO2019030991A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-152566 2017-08-07
JP2017152566 2017-08-07
JP2017200391 2017-10-16
JP2017-200391 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019030991A1 true WO2019030991A1 (ja) 2019-02-14

Family

ID=65272140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016863 WO2019030991A1 (ja) 2017-08-07 2018-04-25 空中映像表示装置

Country Status (1)

Country Link
WO (1) WO2019030991A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240137A1 (ja) * 2018-06-12 2019-12-19 凸版印刷株式会社 空中表示装置
WO2022080173A1 (ja) * 2020-10-12 2022-04-21 凸版印刷株式会社 空中表示装置
WO2023112617A1 (ja) * 2021-12-14 2023-06-22 マクセル株式会社 空間浮遊映像表示システム
WO2024070702A1 (ja) * 2022-09-27 2024-04-04 Toppanホールディングス株式会社 空中表示装置
EP4231085A4 (en) * 2020-10-19 2024-06-12 Toppan Inc. AIR INDICATOR

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257529A (ja) * 2012-05-18 2013-12-26 Sharp Corp 光学システム
JP2014145936A (ja) * 2013-01-29 2014-08-14 Nitto Denko Corp 表示装置
WO2016199917A1 (ja) * 2015-06-12 2016-12-15 日本カーバイド工業株式会社 画像表示装置
WO2016199540A1 (ja) * 2015-06-11 2016-12-15 コニカミノルタ株式会社 空中映像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257529A (ja) * 2012-05-18 2013-12-26 Sharp Corp 光学システム
JP2014145936A (ja) * 2013-01-29 2014-08-14 Nitto Denko Corp 表示装置
WO2016199540A1 (ja) * 2015-06-11 2016-12-15 コニカミノルタ株式会社 空中映像表示装置
WO2016199917A1 (ja) * 2015-06-12 2016-12-15 日本カーバイド工業株式会社 画像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240137A1 (ja) * 2018-06-12 2019-12-19 凸版印刷株式会社 空中表示装置
JPWO2019240137A1 (ja) * 2018-06-12 2021-07-26 凸版印刷株式会社 空中表示装置
JP7338623B2 (ja) 2018-06-12 2023-09-05 凸版印刷株式会社 空中表示装置
WO2022080173A1 (ja) * 2020-10-12 2022-04-21 凸版印刷株式会社 空中表示装置
EP4227729A4 (en) * 2020-10-12 2024-05-15 Toppan Inc. AERIAL DISPLAY DEVICE
JP7547914B2 (ja) 2020-10-12 2024-09-10 Toppanホールディングス株式会社 空中表示装置
EP4231085A4 (en) * 2020-10-19 2024-06-12 Toppan Inc. AIR INDICATOR
WO2023112617A1 (ja) * 2021-12-14 2023-06-22 マクセル株式会社 空間浮遊映像表示システム
WO2024070702A1 (ja) * 2022-09-27 2024-04-04 Toppanホールディングス株式会社 空中表示装置

Similar Documents

Publication Publication Date Title
WO2019030991A1 (ja) 空中映像表示装置
US10473947B2 (en) Directional flat illuminators
JP6376065B2 (ja) 空中映像表示装置
JP5427961B2 (ja) デスクトップディスプレイシステム
KR20170092518A (ko) 반투과형 반사 시트, 도광판 및 표시 장치
US20140153090A1 (en) Projection system
WO2018154849A1 (ja) 空中映像出力装置
US20150370156A1 (en) Screen for reflective projector
JP2017211454A (ja) スクリーン、映像表示装置
JP6361828B2 (ja) 空中映像表示装置
CN113419354A (zh) 空中成像设备及其调节方法
EP3301510B1 (en) Projection system
JP2019032404A (ja) 空中映像表示装置
JP2019056737A (ja) 空中映像表示装置
WO2023112617A1 (ja) 空間浮遊映像表示システム
JP6812757B2 (ja) 映像表示装置
JP6852329B2 (ja) 立体画像表示装置
JP2018013634A (ja) 透過型スクリーン、背面投射型表示装置
JP4622509B2 (ja) 液晶表示装置
JP6805515B2 (ja) 透過型スクリーン及び表示装置
JP7310364B2 (ja) 透過型スクリーン、表示装置及び陳列棚
WO2023199685A1 (ja) 空間浮遊映像表示システムおよび空間浮遊映像処理システム
JP7322511B2 (ja) 透過型スクリーン、映像表示装置
WO2023228530A1 (ja) 空間浮遊映像情報表示システム
CN216792494U (zh) 导光构件和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP