WO2019030911A1 - ハイブリッド車両の制御方法及び制御装置 - Google Patents
ハイブリッド車両の制御方法及び制御装置 Download PDFInfo
- Publication number
- WO2019030911A1 WO2019030911A1 PCT/JP2017/029175 JP2017029175W WO2019030911A1 WO 2019030911 A1 WO2019030911 A1 WO 2019030911A1 JP 2017029175 W JP2017029175 W JP 2017029175W WO 2019030911 A1 WO2019030911 A1 WO 2019030911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- travelable distance
- battery
- output
- driver
- hybrid vehicle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 239000000446 fuel Substances 0.000 claims abstract description 233
- 238000010248 power generation Methods 0.000 claims description 46
- 238000004364 calculation method Methods 0.000 claims description 32
- 238000010586 diagram Methods 0.000 description 16
- 239000002828 fuel tank Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000001172 regenerating effect Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
- B60L50/62—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/75—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/62—Vehicle position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/642—Slope of road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/645—Type of road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/647—Surface situation of road, e.g. type of paving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/68—Traffic data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/16—Driver interactions by display
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/52—Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/54—Energy consumption estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/085—Power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2530/00—Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
- B60W2530/209—Fuel quantity remaining in tank
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/15—Road slope, i.e. the inclination of a road segment in the longitudinal direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/406—Traffic density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/92—Hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/91—Battery charging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the present invention relates to a control method and control device for a hybrid vehicle.
- JP 2012-101616 A discloses a series hybrid vehicle in which a generator is driven by an internal combustion engine. And, in the above-mentioned document, it is based on the electric power which can be generated by using the driving distance calculated based on the current remaining charge amount of the battery and the remaining amount of fuel in the fuel tank to drive the internal combustion engine. The addition value with the calculated travelable distance is taken as the total travelable distance.
- the motor is directly driven by the power generated by the generator.
- the traveling can be continued only by the power generation output of the generator, so the remaining charge amount of the battery and the remaining amount of fuel are added as in the conventional case.
- the travelable distance can be calculated from the total energy amount.
- the travelable distance including high load travel where the required travel output exceeds the power generation output of the generator can not be calculated from the total energy amount simply obtained by adding the remaining charge amount of the battery and the remaining amount of fuel.
- the travelable distance from the present time may change depending on the size of the required travel output on the route to the destination, and depending on which of the energy supply of the battery charge and the fuel supply for the generator generates.
- the extension of the travelable distance may be significantly different.
- a control method of a hybrid vehicle for supplying power of a battery and power generated by a generator to a drive, estimating a traveling load of the drive based on a driver's request, and Based on the charge remaining amount and the fuel remaining amount used for driving the generator, a first travelable distance that can be traveled in a state where the estimated travel load is satisfied is calculated. Then, the required travel distance required by the driver is estimated, and the necessary energy replenishment operation is notified to the driver based on the first travelable distance and the required travel distance.
- FIG. 1 is a system configuration diagram of a series hybrid vehicle.
- FIG. 2A is a first diagram illustrating a type of power supply from a fuel cell system to an external load.
- FIG. 2B is a second diagram illustrating a type of power supply from a fuel cell system to an external load.
- FIG. 2C is a third diagram illustrating a type of power supply from a fuel cell system to an external load.
- FIG. 2D is a fourth diagram illustrating a type of power supply from a fuel cell system to an external load.
- FIG. 3 is a diagram for explaining the relationship between the required output and the total travelable distance.
- FIG. 4 is a diagram showing a change in the travelable distance due to the difference between the remaining amount of fuel and the battery SOC.
- FIG. 5 is a flowchart showing a control routine for notifying the driver of the necessary energy replenishment operation.
- FIG. 6 is a flowchart showing a control routine for calculating the travelable distance.
- FIG. 7 is a graph showing the total travelable distance B calculated from the current battery SOC and the remaining amount of fuel in correspondence with the average vehicle speed to the destination.
- FIG. 8 is a graph showing the required energy replenishment operation.
- FIG. 9 is a diagram for explaining how much the extension of the travelable distance has an error when the energy replenishment operation is mistaken.
- FIG. 10 is a flowchart showing a control routine for calculating the travelable distance in the second embodiment.
- FIG. 11 is a diagram comparing the travelable distance A with the travelable distance B.
- FIG. 12 is a flowchart showing a control routine for calculating the travelable distance in the third embodiment.
- FIG. 1 is a system configuration diagram of a series hybrid vehicle to which a first embodiment of the present invention is applied.
- This hybrid vehicle is a so-called series hybrid vehicle that travels by supplying the electric power of a battery and the electric power generated by a generator to a motor 1 (hereinafter referred to as a "drive motor") which is a drive device.
- a motor 1 hereinafter referred to as a "drive motor”
- This hybrid vehicle includes an external load 100 including a drive motor 1 and a battery 2, a fuel cell system 200 as a generator, and a controller 8.
- the fuel cell system 200 includes a fuel cell stack 3, a compressor 6 for supplying a cathode gas to the fuel cell stack 3, a fuel tank 7 for storing fuel to be supplied to the fuel cell stack 3, and generated power of the fuel cell stack 3. And DC-DC converter 4 for boosting.
- the fuel cell stack 3 (hereinafter also referred to as “fuel cell 3") is a solid oxide fuel cell (SOFC).
- the fuel tank 7 stores a reforming fuel made of, for example, a liquid obtained by mixing ethanol and water.
- the fuel cell system 200 in FIG. 1 is simplified by omitting a reformer, a fuel pump, an evaporator, a heat exchanger, and the like.
- the DC-DC converter 4 boosts the voltage of the fuel cell stack 3 with respect to the voltage of the drive motor 1 and the battery 2 so that the generated power of the fuel cell stack 3 can be taken out to the drive motor 1 and the battery 2 It is a controller.
- the DC-DC converter 4 is connected in parallel to the fuel cell stack 3, boosts the output voltage of the fuel cell stack 3 on the primary side, and supplies generated power to the external load 100 on the secondary side.
- the DC-DC converter 4 raises the voltage of several tens of volts output from the fuel cell stack 3 to the voltage level of several hundreds of volts, for example, so that power is supplied to the external load 100.
- the drive motor 1 is connected to the battery 2 and the DC-DC converter 4 via an inverter (not shown).
- the drive motor 1 is a motive power source for driving a vehicle.
- the drive motor 1 can generate regenerative electric power using a braking force required when braking a vehicle, and can charge the battery 2 with the regenerative electric power.
- the battery 2 is a power supply source for supplying the stored power to the drive motor 1.
- the battery 2 is the main power supply source, and the fuel cell 3 is mainly used to charge the battery 2 when the charge amount of the battery 2 becomes low. Further, the electric power of the fuel cell 3 may be supplied to the drive motor 1.
- the controller 8 includes, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface), and executes a specific program. A process for controlling the fuel cell system 200 and the external load 100 is performed.
- CPU central processing unit
- ROM read only memory
- RAM random access memory
- I / O interface input / output interface
- the controller 8 receives signals output from the current sensor 9, the accelerator opening sensor 10, and other various sensors, and the remaining amount of charge of the battery 2 and the fuel cell 3 can be used for power generation according to these signals.
- the required fuel remaining amount is acquired, the driver's request vehicle speed or the request travel output is acquired, or the travelable distance based on the request vehicle speed or the request travel output is calculated.
- the controller 8 calculates the travelable distance when the battery 2 is charged and at least one of the energy replenishment operations when fuel is supplied. Then, the controller 8 notifies (displays) the travelable distance under each of these conditions to the driver. The details of the method of calculating the possible travel distance and the details of the contents of notification to the driver will be described later.
- the controller 8 at least includes a traveling load estimation unit, a first travelable distance estimation unit, a required traveling distance estimation unit, and a notification unit as functional units for realizing the functions as described above (details will be described later) ). Then, the controller 8 controls the operation state of each of the drive motor 1, the fuel cell system 200, and the like based on the obtained or calculated values.
- the controller 8 is connected to an operation unit (not shown) that outputs a start command signal or a stop command signal of the fuel cell system 200.
- the operation unit includes an EV key, and outputs a start command signal to the controller 8 when the EV key is turned on by the occupant, and outputs a stop command signal to the controller 8 when the EV key is turned off.
- the controller 8 When the controller 8 receives a start command signal from the operation unit, the controller 8 performs start operation for starting the fuel cell system 200, and after completion of the start operation, the controller 8 of the fuel cell stack 3 is operated according to the operation state of the external load 100. Implement power generation operation to control power generation.
- the fuel cell system 200 may be activated when the charge amount of the battery 2 becomes equal to or less than a predetermined value requiring charging.
- the controller 8 obtains the power required of the fuel cell stack 3 in accordance with the operating state of the external load 100. Then, the controller 8 calculates the supply flow rates of the cathode gas and the anode gas necessary for the power generation of the fuel cell stack 3 based on the required power, and calculates the anode gas and the cathode gas of the calculated supply flow rates. Supply to Then, the controller 8 performs switching control of the DC-DC converter 4 to supply the power output from the fuel cell system 200 to the external load 100.
- the controller 8 controls the flow rates of the cathode gas and the anode gas based on the required power to the fuel cell stack 3 to control the amount of power generation of the fuel cell stack 3.
- the required power to the fuel cell stack 3 increases as the depression amount of the accelerator pedal increases. Therefore, the supply flow rate of the cathode gas and the anode gas supplied to the fuel cell stack 3 increases as the depression amount of the accelerator pedal increases.
- the cathode gas supplied to the fuel cell stack 3 may be controlled based on the deviation between the target temperature and the actual temperature of the fuel cell stack 3. When the actual temperature is higher than the target temperature and the deviation is large, the amount of cathode gas supplied is increased compared to when the deviation is small.
- the controller 8 suppresses the power generation of the fuel cell stack 3 and makes the fuel cell suitable for power generation. Implement a self-sustaining operation to maintain the condition.
- the system state in which the power supply from the fuel cell system 200 to the external load 100 is stopped is referred to as an “idle stop (IS) state”, and the self-sustaining operation is referred to as an “IS operation”.
- the controller 8 controls the DC-DC converter 4 to stop the power supply from the fuel cell system 200 to the external load 100.
- the generated power of the fuel cell stack 3 may be supplied to the auxiliary device provided in the fuel cell system 200, or the power supply from the fuel cell stack 3 to the auxiliary device is not performed. It is also good.
- the controller 8 When the controller 8 receives the stop command signal from the operation unit, the controller 8 carries out the stop operation for stopping the operation of the fuel cell system 200.
- FIGS. 2A to 2D are diagrams for explaining the type of power supply to external load 100 in fuel cell system 200 in which the EV key is in the ON state.
- FIG. 2A is a conceptual view showing a state in which the drive motor 1 is in a stopped state and power is supplied from the fuel cell system 200 to the battery 2.
- the state shown in FIG. 2A can occur when the vehicle is in a stopped state and the charge amount of the battery 2 is small.
- FIG. 2B is a conceptual view showing a state where the drive motor 1 is in a power running state and power is supplied to the drive motor 1 from both the fuel cell system 200 and the battery 2.
- the state shown in FIG. 2B may occur when the vehicle is accelerating and the load (output) of the drive motor 1 is high.
- FIG. 2C is a conceptual view showing a state where the drive motor 1 is in the power running state or the regeneration state and the power supply from the fuel cell system 200 to both the drive motor 1 and the battery 2 is stopped.
- the state shown in FIG. 2C may occur when the drive motor 1 is being driven at low or medium load while the vehicle is traveling, and the battery 2 is fully charged. It may also occur when the vehicle is in a decelerating state and there is room to charge the capacity of the battery 2.
- FIG. 2D is a conceptual view showing a state in which the drive motor 1 is in the stop state and the battery 2 is fully charged.
- the state shown in FIG. 2D can occur when the vehicle is at rest and the battery 2 is fully charged.
- the states shown in FIGS. 2C and 2D that is, the system in which the power supply from the fuel cell system 200 to both the drive motor 1 and the battery 2 is stopped.
- the state corresponds to the IS state of the fuel cell system 200.
- the external load 100 When the external load 100 is in the IS state, the external load 100 transmits an IS operation request to the fuel cell system 200.
- the fuel cell system 200 is IS It can be in a state. In such a case, the required power to the fuel cell stack 3 is zero, and the IS operation is performed.
- FIG. 3 is a diagram for explaining the relationship between the required travel output and the total travelable distance.
- Battery SOC in the drawing is a travelable distance by the power of the battery 2
- fuel is a travelable distance by the power generated by the fuel cell stack 3.
- the power that can be used to drive the vehicle is the power of the battery 2 and the power generated by the fuel cell 3. Since the power consumption amount increases as the required travel output increases, the battery SOC and the fuel become shorter. Therefore, it seems that the total travelable distance can be accurately estimated by adding the battery SOC and the fuel.
- the calculated value may not be appropriate as an estimated value of the total travelable distance.
- the fuel cell stack 3 used in the present embodiment is assumed to have a low power generation output of about 10 to 20 kW.
- the output required when the vehicle travels (also referred to as “vehicle required output” or simply “required output”) is equal to or less than the above-described generated power in low load traveling such as traveling in a city area. It is. However, in the case of high load traveling as in the case of traveling on an expressway, the required vehicle output becomes larger than the power generation output of the fuel cell stack 3.
- the required output of the vehicle can not be generated by the fuel cell stack 3 alone, and the traveling under a heavy load can not be continued. That is, in the region where the required output in FIG. 3 is larger than the SOFC maximum output, the travelable distance of the fuel indicated by the broken line is the travelable distance at an output smaller than the required output. Therefore, the value obtained by simply adding the battery SOC and the fuel is a value different from the actual distance at which the vehicle can travel at the required output, so it is not appropriate as an estimate of the total travelable distance. .
- FIG. 4 is a diagram showing the change in the travelable distance due to the difference between the remaining amount of fuel and the battery SOC, on the premise of the characteristics as described above.
- the horizontal axis represents vehicle speed [km / h], and the vertical axis represents travelable distance [km].
- the change in the travelable distance solid line
- the remaining amount of fuel is 10% and the battery SOC is 100% (full charge)
- Line graphs show changes in the travelable distance of the vehicle (broken line) and changes in the travelable distance when the remaining amount of fuel is 100% (fuel full) and the battery SOC is 10%. There is.
- the maximum travelable distance is about 260 [km], but the high load travel exceeds 80 [km / h] It can be seen that the travelable distance of 100 [km] or more can be secured even at the same time. This is because the output of the battery 2 is larger than that of the fuel cell, and the required output to the vehicle at the time of high load traveling can be sufficiently covered.
- the travelable distance may greatly change depending on the magnitude of the required vehicle output on the route to the destination. That is, depending on which of the charging operation to the battery 2 and the fueling to the fuel cell stack 3 is selected, the extension of the travelable distance may be largely changed.
- the travelable distance when fuel is supplied and when both charging and fueling are performed. Calculate each. Then, the driver is notified (displayed) of the calculated travelable distances under each of these conditions so that the driver can appropriately select the necessary refueling operation.
- FIG. 5 is a flowchart showing a control routine until the controller 8 notifies the driver of the necessary energy replenishment operation.
- the control routine is programmed to be repeatedly executed by the controller 8 at intervals of, for example, several milliseconds.
- step S100 the controller 8 estimates the traveling state requested by the driver, that is, the traveling load of the drive motor 1 based on the driver's request.
- the traveling load here is estimated from the required vehicle speed or the required traveling output of the driver.
- the required vehicle speed is acquired from the detection value of the accelerator opening sensor 10 or a vehicle speed sensor (not shown).
- the method of acquiring the required travel output (hereinafter also referred to as “required output”) may be any of the following. In the following, it is assumed that the traveling load here is based on the required output.
- the first method calculates the output requested by the driver, for example, by map search, based on the traveling state, that is, the detected value of the accelerator opening sensor 10 and the detected value of the vehicle speed sensor (not shown). It is a way to
- the second method is a method of using an average value calculated based on accumulated past travel data. For example, the transition of the required output for the last one hour is accumulated as traveling data, and the average value of these is used as the required output.
- working data is not necessarily limited to the last 1 hour, For example, various settings are possible like the last 30 minutes or the present trip start to the present.
- the third method is a method using a preset value. For example, a representative required output for each traveling state is set in advance, and the required output to be used is determined based on the current traveling state.
- the fourth method is a method of using a required output in the case of high load traveling regardless of the current traveling state. In this method, it is necessary to set in advance the required output when traveling with a high load.
- the fifth method is a method of using a required output in the case of low load traveling regardless of the current traveling state. In this method, it is necessary to set in advance the required output for low load traveling.
- the sixth method is a method of performing both the fourth method and the fifth method.
- step S100 the driver may select which of the first to sixth methods to acquire.
- step S200 the controller 8 acquires the travel distance requested by the driver.
- the travel distance here is the travel distance from the current location to the destination.
- the travel distance to the destination is acquired from, for example, a route guidance device (car navigation system, not shown) installed in the vehicle and in which the destination is set by the passenger of the vehicle.
- step S300 based on the current fuel state (battery SOC and fuel remaining amount), the distance that can be traveled in the state where the required output obtained in step S100 is satisfied is calculated. A specific calculation method will be described with reference to FIG.
- FIG. 6 is a process according to step S100 of the flow (hereinafter also referred to as “notification flow”) shown in FIG. 5 and is a flowchart showing a control routine for calculating the travelable distance. Note that this control routine is executed when the start-up operation of the fuel cell stack 3 is completed.
- the total travelable distance is calculated by different methods depending on whether the required output is larger or smaller than the power generation output of the fuel cell stack 3.
- step S10 the controller 8 acquires a request output.
- the method of acquiring the required output is as described in the description of step S100 in the flow shown in FIG.
- this step is omitted.
- step S ⁇ b> 20 the controller 8 calculates the battery outputtable power amount, which is the power amount that can be output by the remaining charge amount of the battery 2.
- the calculation method may be a method of calculating using a mathematical expression using the SOC of the battery 2 as a parameter, or a method of mapping the relationship between the SOC of the battery 2 and the available output power in advance and searching for this.
- the SOC of the battery 2 may be acquired, for example, by detecting and integrating the current value output to and input from the battery 2 by the current sensor 9, or may be acquired by another existing method.
- step S30 the controller 8 acquires an average vehicle speed.
- the average vehicle speed referred to here is an average value of the vehicle speeds when traveling with the required output acquired in step S10.
- the calculation may be executed using a mathematical expression having the required output as a parameter, or the relationship between the required output and the average vehicle speed may be mapped in advance, and this may be searched.
- this step is omitted.
- step S40 the controller 8 determines whether the required output is greater than the power generation output of the fuel cell stack 3.
- the power generation output used here is basically the maximum power generation output of the fuel cell stack 3, but is limited when the power generation output of the fuel cell stack 3 is limited due to, for example, a cold state. Use the value.
- the controller 8 executes the total travelable distance calculation A in step S50 if the determination result is yes, and executes the total travelable distance calculation B in step S60 if the determination result is no.
- the total travelable distance calculation A will be described.
- the total travelable distance is the travel distance until the available output power amount of the battery 2 is used up due to the excess of the required output with respect to the power generation output of the fuel cell stack 3. This is expressed by equation (1).
- the formula 1 for calculating the total travelable distance calculation A is based on the assumption that fuel is continuously supplied to the fuel cell stack 3 during the travel of the distance. A process in the case where the fuel cell runs short to travel the distance will be described later in the second embodiment.
- Ltotal Wbat [kWh] ⁇ (F [kW] ⁇ P [kW]) ⁇ Vave [km / h] (1) Ltotal: Total travelable distance, Wbat: Battery outputable electric energy, F: Required output, P: Fuel cell power output, Vave: Average vehicle speed
- the battery outputable electric energy is based on the current fuel condition. For example, when the required output is 20 kW, the fuel cell power generation output is 15 kW, the current available battery power output is 10 kWh, and the required output is 20 kW, the average vehicle speed is 100 km / km. Assuming that h], equation (1) is as follows.
- the fuel cell power generation output is determined by the specification of the fuel cell stack 3, and the average vehicle speed is also determined if the required output is determined. Therefore, various values are substituted for the battery outputable electric energy and the demand output to calculate the equation (1), and based on the calculation result, a map of the total travelable distance is created, and the acquired battery output
- the total travelable distance can also be determined by searching the map with the available power and the required output. Determining the total travelable distance by map search is also included in "calculate”.
- the total travelable distance calculation B is a calculation method of the above-mentioned document. That is, the electric power obtained by using the travelable distance calculated based on the remaining charge amount of the battery 2 and the current remaining fuel amount of the fuel tank to drive the fuel cell stack 3 (hereinafter referred to as “ It is a method of adding the travelable distance calculated based on the remaining fuel electric energy. If this is a formula, it will become a formula (2).
- Ltotal (Wbat [kWh] + Wfuel [kWh]) ⁇ F [kW] ⁇ Vave [km / h] (2) Ltotal: total travelable distance, Wbat: battery outputable power amount, Wfuel: remaining fuel power amount, F: required output, Vave: average vehicle speed
- the required output is equal to or less than the power generation output of the fuel cell stack 3
- traveling can be performed according to the required output even after the power of the battery 2 is used up.
- the distance can be calculated. Therefore, the calculation method of the above-mentioned document is used as the total travelable distance calculation B.
- the total travelable distance calculation B may be calculated by map search.
- the parameters used for the map search are the battery outputable power amount, the required output and the remaining fuel power amount.
- the total travelable distance calculated by the total travelable distance calculation B is also referred to as “total travelable distance B”.
- the controller 8 stores the calculation result, returns to the notification flow, and executes the processing of the subsequent step S400.
- the total travelable distance A or the total travelable distance B calculated in step S300 of the notification flow will be referred to as a “first travelable distance”.
- the travelable distance in the current fuel state calculated by the process of the above-described steps S10 to S60 (the process of step S300 in the notification flow) can be represented by a graph as shown in FIG.
- FIG. 7 is a graph showing the travelable distance (total travelable distance B) calculated from the current battery SOC and the remaining amount of fuel in correspondence with the average vehicle speed to the destination.
- the horizontal axis represents the average vehicle speed to the destination, and the vertical axis represents the travelable distance.
- the horizontal axis is not limited to the average vehicle speed, and may be an average traveling output.
- the average vehicle speed or the average traveling output here is calculated based on the route information to the destination acquired or stored in advance by the route guidance device (car navigation system) or the like described above.
- the route information is, for example, the ratio of the expressway in the route to the destination, the traveling time zone, the traffic congestion status, the gradient information of the road surface, etc. Is one or more of For example, as the proportion of expressways increases, the average vehicle speed and the average travel output increase.
- the line graph in the figure (hereinafter simply referred to as "graph") represents the travelable distance B in the state where the battery SOC is 10% and the fuel remaining amount is 50%.
- step S400 in the case where the battery SOC is charged in (1) above, the travelable distance is calculated in the state where the required output obtained in step S100 is satisfied.
- the travelable distance here is also calculated based on the flowchart shown in FIG. 4 described above, but differs in the following point from step S300.
- the battery outputable electric energy calculated in step S20 of FIG. 6 is calculated as the electric energy that can be output in the fully charged state of the battery 2.
- the state in which the battery 2 is fully charged is a state in which the battery 2 has reached the target maximum charge amount, and in the present embodiment, for example, the battery SOC is 80%.
- the formula (1) used when calculating the total travelable distance A in step S50, and the equation used when calculating the total travelable distance B in step S60 2) Substitute for the variable Wbat (battery outputable power amount) in 2).
- the total travelable distance A or the total travelable distance B calculated here is hereinafter referred to as a “second travelable distance”.
- the available output power amount used to calculate the travelable distance in step S4 does not necessarily need to be set to full charge as described above, and is appropriately set to 50%, 25%, etc. if charging from the current state good.
- step S500 in the case where the above (2) fuel is supplied, the travelable distance is calculated in the state where the required output obtained in step S1 is satisfied.
- the travelable distance here is also calculated based on the flowchart shown in FIG. 4 described above, but differs in the following point from step S300.
- Wfuel in equation (2) used in the calculation of the total travelable distance B in step S60 of FIG. %) Is the remaining fuel electric energy at that time.
- step S500 it is possible to calculate the total travelable distance B in the case where the remaining fuel amount of the fuel tank 7 is filled to the full from the current fuel state.
- the total travelable distance A and the total travelable distance B calculated here (in step S500) are hereinafter referred to as the "third travelable distance".
- step S600 when the above (3) charging and refueling are performed from the current fuel state, the distance that the vehicle can travel in a state where the required power acquired in step S100 is satisfied is calculated.
- the travelable distance here is also calculated on the basis of the flowchart shown in FIG. 4 described above, but the following points are different from those in step S300.
- the battery outputable power amount calculated in step S20 of FIG. 6 is calculated as the power amount that can be output with the battery 2 fully charged.
- the equation (1) used when calculating the total travelable distance A in step S50 and the equation (2) used when calculating the total travelable distance B in step S60 It substitutes to the variable Wbat (battery outputable electric energy).
- Wbat battery outputable electric energy
- Wfuel in the equation (2) used for calculating the total travelable distance B in step S60 of FIG. 6: remaining fuel electric energy is full of fuel (remaining fuel amount 100%) It is assumed that the remaining fuel electric energy at that time.
- the controller 8 notifies the driver of information that helps determine the energy replenishment operation necessary to reach the destination based on the calculated first to fourth travelable distances. .
- step S700 the controller 8 displays the necessary energy replenishment operation to the driver.
- the display location may be any location where the driver can view. For example, it may be displayed on the LCD screen of the route guidance device (car navigation system) described above.
- the display content is, for example, a graph as shown in FIG.
- FIG. 8 is a diagram showing the energy replenishment operation required to reach the destination displayed to the driver.
- This figure is a graph in which the first to fourth travelable distances are made to correspond to the average vehicle speed to the destination.
- the first travelable distance is represented by a solid line
- the second travelable distance is represented by a broken line
- the third travelable distance is represented by an alternate long and short dashed line
- the fourth travelable distance is represented by an alternate long and two short dashes line.
- the horizontal axis represents the average vehicle speed to the destination
- the vertical axis represents the travelable distance.
- the horizontal axis is not limited to the average vehicle speed, and may be an average traveling output.
- the average vehicle speed or the average traveling output here is calculated based on the route information to the destination acquired or stored in advance by the route guidance device (car navigation system) or the like described above.
- the contents of the route information are as described above with reference to FIG.
- destination points such as Nasu and Ito having coordinates of the average vehicle speed and the travelable distance are plotted in the drawing. Therefore, from FIG. 8, according to the positional relationship between the graph showing the first to fourth travelable distances and the plotted points, it is possible to reach the destination along any route by performing any energy replenishment operation. You can know
- destinations that can be reached using a general road or a freeway are plotted in a region below the travelable distance of each line graph and below the average vehicle speed. Therefore, the driver can easily know from the positional relationship between the graph and the plotted points whether or not the destination can be reached, whether or not the expressway can be used, necessary energy replenishment operation, etc. .
- the first travelable distance (solid line) calculated from the current fuel condition can not make a round trip to the heavy wood using the expressway.
- the necessary energy replenishment operation is determined from the figure.
- the third travelable distance (dashed-dotted line) when refueling it can be seen that even if refueling, it is not possible to go to Nasu or reciprocate atsugi using the expressway. This is because the power generation output of the fuel cell 3 can not meet the required output during high load traveling at 80 km / h, and therefore the travelable distance in the traveling state at an average vehicle speed of 80 km / h or more does not extend.
- the travelable distance during low load travel (less than 80 km / h) is smaller than when fueling, but the travelable distance during high load travel is longer. It can be seen that it is possible to fully return to Atsugi using the expressway. However, although it is possible to travel at high loads, it is understood that it is not possible to go to Nasu by using the expressway, although the travelable distance is extended.
- the display correspondence of the required energy replenishment operation displayed to the driver is not limited to the above-described aspect.
- the energy replenishment operation necessary for reaching the destination and the available route information may be displayed as characters or numbers.
- the controller 8 may determine the necessary energy replenishment operation for the destination set by the driver instead of the information contributing to the determination of the driver, and may notify only the result. At that time, it is also possible to add and display information as to whether or not the expressway can be used or reciprocated.
- the display (notification) method is not limited to the above-described viewable form, and may be voice or the like.
- the timing for notifying the driver of the necessary energy replenishment operation is not limited to the above timing. That is, notification may be made when the first travelable distance according to the current fuel condition is calculated in step S300.
- the information that can be notified at this time can be represented, for example, in FIG. 7 as described above. Also from this information, it can be understood that it is likely to be possible, for example, to reciprocate atsugi using the expressway with a little more fuel.
- the information shown in FIG. 7 indicates that the necessary energy replenishment operation is charging. It can be judged.
- the timing for notifying the driver of the necessary energy replenishment operation is not limited to the timing based on the flow of FIG. 5, and when the first travelable distance according to the current fuel condition is calculated in step S300, steps S400 to S600 are performed. You may omit and announce.
- the first to fourth travelable distances calculated in steps S300 to S600 need to be calculated based on the required vehicle speed or the required travel output of the driver acquired in step S100 as described above. However, it may be calculated based on a predetermined vehicle speed or a required traveling output. Even in that case, the respective travelable distances calculated by calculating the first to fourth travelable distances, for example, with the vehicle speed of every 1 km / h at vehicle speeds from 20 km / h to 140 km / h as the predetermined vehicle speed Can be displayed in association with the average vehicle speed from the current location to the destination, as shown in FIG.
- FIG. 9 is a diagram showing how much the extension of the travelable distance has an error when the energy replenishment operation is mistaken, in other words, the magnitude of the extent to which the distance does not extend contrary to the driver's expectation. From left, vehicle speed [km / h], travelable distance (first travelable distance) in current fuel condition [km], travelable distance extended when charged, traveled [km], travelable when fueling It shows the extension of the distance [km] and the error [%].
- the error is the ratio of the extension [km] when the energy replenishment operation is wrong to the extension [km] when the energy replenishment operation is correct.
- the travelable distance does not extend even if fuel is supplied. Therefore, when continuing high load traveling, it is necessary to select charging as an appropriate energy replenishment operation. That is, if the driver chooses the energy replenishment operation at his / her discretion, and if he / she makes a mistake (if refueling is selected), contrary to expectation, the travelable distance can not be extended at all.
- the travelable distance may greatly change due to the energy replenishment operation, when the energy replenishment operation is selected by mistake, the travelable distance may be extremely short contrary to expectation.
- the power of the battery 2 and the power generated by the generator are supplied to the drive device (drive motor 1).
- the traveling load of the drive motor 1 is estimated based on the driver's request, and the traveling load is satisfied based on the remaining charge amount of the battery 2 and the remaining fuel amount used to drive the fuel cell 3.
- Calculate a possible first travelable distance is estimated based on the driver's request, and the necessary energy replenishment operation is notified to the driver based on the first travelable distance and the required travel distance.
- the driver can know whether it can reach the destination according to the current fuel condition, and which energy replenishment operation should be performed to reach the destination, so that the driver can reach the destination. Can properly determine the energy replenishment operation required for the
- the traveling load of the drive motor 1 is acquired from the required vehicle speed or the required output of the driver. For this reason, since it is possible to acquire the traveling load according to the traveling state desired by the driver, it is possible to notify the driver of an appropriate energy replenishment operation.
- the traveling load of the drive motor 1 is obtained from the average vehicle speed or the average output from the current position to the destination.
- the travelable distance according to the average vehicle speed or the average output to the destination which changes depending on the destination set by the driver.
- the average vehicle speed or the average output from the current position to the destination is calculated based on the route information to the destination.
- the route information means the ratio of the expressway in the route to the destination, the traveling time zone, and the traffic congestion situation. And one or more of road surface gradient information. In this way, the driver is notified of a more accurate necessary energy replenishment operation by calculating the average vehicle speed and the average output in consideration of factors that may change the vehicle speed and the traveling output of the vehicle on the route to the destination. can do.
- the required travel distance is the distance from the current location to the destination. In this way, it is possible to calculate whether the current position or the destination can be reached by the present or assumed fuel condition.
- the control method of the hybrid vehicle of the first embodiment when notifying the driver of the necessary energy replenishment operation, either one of the charging operation of the battery 2 or the fueling operation of the fuel cell 3 or Announce both.
- the driver can easily and appropriately determine whether or not the destination can be reached if either or both of the recharging operation of the battery 2 and the refueling operation of the fuel cell 3 are performed. be able to.
- the control method of the hybrid vehicle of the first embodiment when performing the charging operation of the battery 2 when notifying the necessary energy replenishment operation, a state where the driver's required vehicle speed or the required output is satisfied. Calculate the second travelable distance that can be traveled and calculate the third travelable distance that can travel with the driver's required vehicle speed or required output satisfied when the fuel cell 3 is refueled. When the charging operation of the battery 2 and the fueling operation of the fuel cell 3 are performed, the fourth travelable distance that can be traveled in a state where the driver's required vehicle speed or required output is satisfied is calculated.
- the driver determines the necessary energy replenishment operation by comparing the required travel distance with each of the first to fourth travelable distances corresponding to the average vehicle speed or the average output from the current position to the destination. (Select) Announce available information.
- the driver can appropriately and more easily determine which energy replenishment operation should be performed to reach the destination.
- the first to fourth travelable distances are displayed as a graph corresponding to the average vehicle speed or the average output.
- a point having the average vehicle speed or the average output from the current position to the destination and the required travel distance as coordinates is plotted and displayed on the same display screen as the graph.
- the system configuration of the hybrid vehicle of this embodiment is the same as that of the first embodiment, but a part of the control routine for calculating and displaying the total travelable distance is different from that of the first embodiment. The differences will be mainly described below.
- the control routine of the present embodiment is also executed in the state where the start-up operation of the fuel cell stack 3 is completed, as in the first embodiment.
- FIG. 10 is a flowchart showing a control routine for estimating the total traveling distance in the present embodiment.
- This control routine is repeatedly executed by the controller 8 at intervals of, for example, several milliseconds.
- the control routine of FIG. 10 is the amount of fuel remaining in the fuel tank insufficient for the amount required to travel the total travelable distance A after the controller 8 performs the total travelable distance calculation A (step S50)? This step is different from the control routine shown in FIG.
- the first total travelable distance calculation is premised on that fuel is continuously supplied to the fuel cell stack 3 during the travel of the distance. For example, as in the first embodiment, when the required output is 20 kW, the fuel cell power generation output is 15 kW, the current battery outputable electric energy is 10 kWh, and the required output is 20 kW.
- the average vehicle speed of is 100 [km / h].
- traveling can be performed for 2 hours at an average vehicle speed of 100 km / h, so that the total travelable distance A is 200 km. That is, the total travelable distance A of 200 [km] is a value based on the premise that the fuel has two hours.
- the fuel consumption rate at the time of generating the power generation output of the fuel cell stack 3 in equation (1) is 5 [L / h] and the remaining amount of fuel is 5 [L]
- the fuel is 1 hour As it disappears, it can not travel 200 km.
- the controller 8 determines whether or not the remaining amount of fuel in the fuel tank is insufficient with respect to the amount necessary to travel the total travelable distance A in step S55. Specifically, first, the controller 8 calculates the time until the fuel remaining amount disappears from the fuel consumption rate of the fuel cell stack 3 and the fuel remaining amount. The controller 8 stores in advance the fuel consumption rate for each power generation output of the fuel cell stack 3. Further, the remaining amount of fuel is detected by a known method. For example, a fuel sensor is provided in the fuel tank 7 for detection.
- the controller 8 compares the time until the fuel runs out with the travelable time calculated in the process of the total travelable distance calculation A, and if the time until the fuel runs out is shorter, it is assumed that the fuel runs out. to decide.
- FIG. 11 is a diagram in which the total travelable distance A and the travelable distance B are compared.
- the battery outputable electric energy is 10 kWh
- the remaining fuel electric energy is 15 kWh
- the required outputs are 20 kW, 25 kW and 30 kW.
- the remaining fuel electric energy of 15 [kWh] means that the remaining amount of fuel is 5 [L].
- the total travelable distance calculation A is closer to the actual travelable distance than the total travelable distance calculation B. You can calculate the value. However, in FIG. 11, when the required output is 20 [kW], the total travelable distance A is 200 [km]. However, as described above, the vehicle actually travels 200 [km] due to lack of fuel. I can not do it. That is, the accuracy of the total travelable distance A becomes worse than the total travelable distance B because the premise of the total travelable distance calculation A that the fuel has is broken.
- step S55 determines whether the determination result in step S55 is yes. Therefore, when the determination result in step S55 is yes, the controller 8 executes total travelable distance calculation B in step S60.
- the controller 8 sets the total travelable distance A calculated in step S50 to the first travelable distance, and the notification flow (FIG. 5) Return to
- the driver's required output is smaller than the maximum power generation output of the fuel cell 3, and the time until the power of the battery 2 usable for running disappears is the fuel used for the power generation of the fuel cell 3 If one of the cases is longer than the time until the disappearance of the energy, it is determined from the travelable distance determined from the charge remaining amount of the battery 2 and the amount of power obtained by generating power using all of the remaining amount of fuel. It is calculated by adding the travelable distance.
- the driver's required output is larger than the maximum power generation output of the fuel cell, the time until the electric power of the battery 2 usable for traveling disappears is less than the time until the fuel used for the electric power generation of the fuel cell 3 disappears.
- the travelable distance determined by the shortage of the power generation output of the generator with respect to the travel output and the remaining charge amount of the battery is calculated. According to this, it is possible to calculate the total travelable distance B with higher accuracy than the total travelable distance A when the total travelable distance A can not actually travel because the fuel is depleted earlier than the power of the battery 2 .
- control routine for calculating the total travelable distance in the state where the start-up operation of the fuel cell stack 3 is completed has been described, but in the present embodiment, the fuel cell stack 3 is operated A control routine capable of calculating the total travelable distance with high accuracy even in the non-operation state will be described.
- the system configuration of the hybrid vehicle to which the present embodiment is applied is the same as the configuration of the first embodiment.
- the fuel cell stack 3 used in the present embodiment is an SOFC, and the SOFC takes several tens of minutes or more from the start of the start operation to the end of the start operation.
- the total travelable distance is estimated in consideration of the above change.
- FIG. 12 is a flowchart showing a control routine for estimating the total traveling distance in the present embodiment.
- the controller 8 calculates the total travelable distance by adding the travel distance up to the end of the start-up operation and the travelable distance after the end of the start-up operation. Do.
- the control routine is repeatedly executed by the controller 8 at intervals of, for example, several milliseconds. Steps S10 to S70 are the same as the control routine of FIG. 11 according to the second embodiment.
- step S2 the controller 8 determines whether or not the fuel cell stack 3 is in operation. If it is in operation, the controller 8 executes the processing of step S10 and subsequent steps described in the second embodiment.
- the controller 8 determines in step S2 that the fuel cell stack 3 is not in operation, it estimates the traveling distance until the startup operation ends in step S4. Specifically, the controller 8 stores in advance the time required from the start of the start operation of the fuel cell stack 3 to the end of the start operation, and estimates the traveling distance to the end of the start operation from this time and the above-described average vehicle speed. Do.
- step S6 the controller 8 estimates the SOC of the battery 2 at the end of the startup operation. Specifically, controller 8 calculates the amount of power consumed by traveling the distance estimated in step S2, and based on this amount of power and the SOC of battery 2 at present, the SOC of battery 2 at the end of startup operation. Estimate
- step S8 the controller 8 estimates the remaining amount of fuel at the end of the start-up operation. Specifically, the controller 8 calculates the amount of fuel consumed from the start of the start operation to the end of the start operation, and estimates the remaining amount of fuel at the end of the start operation from the amount of fuel and the current remaining amount of fuel.
- step S8 the controller 8 executes the processes of step S10 and subsequent steps.
- step S20 the controller 8 calculates the battery outputtable power amount which is the power amount that can be output by the battery SOC estimated in step S6.
- step S50 the controller 8 sets a total travelable distance A as a value obtained by adding the travel distance up to the end of the start driving to the value calculated by the above-described first total travelable distance calculation.
- step S60 the controller 8 calculates the total travelable distance using the remaining fuel electric energy Wfuel of equation (2) as the electric energy with the remaining fuel amount at the end of the start operation, and uses this calculated value as the travel distance until the start operation ends.
- the total travelable distance B is obtained by adding.
- the controller 8 determines the traveling distance until the start-up operation of the fuel cell stack 3 ends and the start-up operation ends based on the required output. The remaining charge amount of the battery 2 and the remaining amount of fuel at the time point of time are estimated. Then, the controller 8 is activated by performing the total travelable distance calculation A or the total travelable distance calculation B based on the estimated value of the remaining charge amount of the battery 2 and the estimated value of the remaining amount of fuel at the end of the startup operation. Calculate the total travelable distance after the end of driving. The controller 8 sets a total travelable distance after completion of the start-up driving and a travel distance until completion of the start-up operation as a first total travelable distance. Thus, when the fuel cell stack 3 is not in operation, it is possible to calculate an appropriate total travelable distance according to the change in the SOC of the battery 2 and the change in the remaining amount of fuel while waiting for the end of startup operation. .
- each embodiment can be applied also when using a system including an internal combustion engine and a generator driven by the internal combustion engine to generate electric power. This is because, when the power generation output of the generator that generates power with the internal combustion engine is lower than the required output, the same problems as the problems solved in the first to third embodiments occur.
- the time required from the start to the end of the start-up operation of the internal combustion engine is significantly shorter than that of the SOFC, and the change in SOC and the remaining amount of fuel in the battery 2 between the start and the end of the start-up operation can be ignored. .
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Human Computer Interaction (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Fuel Cell (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
車両の制御装置は、バッテリの電力と発電機で発電した電力とを駆動装置に供給するハイブリッド車両の制御方法において、ドライバの要求に基づいて前記駆動装置の走行負荷を推定し、バッテリの充電残量と発電機の駆動に用いる燃料残量とに基づいて、推定された走行負荷を満足した状態で走行可能な第1走行可能距離を算出する。そして、ドライバの要求に基づいて要求走行距離を推定し、第1走行可能距離と要求走行距離とに基づいて、必要なエネルギ補充操作をドライバに告知する。
Description
本発明は、ハイブリッド車両の制御方法及び制御装置に関する。
従来から、バッテリの電力で負荷としてのモータを駆動することによって走行する電動車両に、いわゆるレンジエクステンダーとして、バッテリを充電し又は直接モータへ電力を供給する発電機を負荷したシリーズハイブリッド車両が知られている。例えば、JP 2012-101616 Aには発電機を内燃機関で駆動するシリーズハイブリッド車両が開示されている。そして、上記文献では、バッテリの現在の残充電量に基づいて算出される走行可能距離と、燃料タンクの燃料残量の全てを内燃機関の駆動に用いて発電させることによって得られる電力に基づいて算出される走行可能距離との加算値を総走行可能距離としている。
ところで、シリーズハイブリッド車両では、バッテリの電力がなくなると、発電機で発電した電力で直接モータを駆動することとなる。この時、要求走行出力が発電機の発電出力より小さい場合は、発電機の発電出力だけで走行を継続することができるので、従来と同様にバッテリの残充電量と燃料残量とを加算した総エネルギ量から走行可能距離を算出することができる。しかしながら、要求走行出力が発電機の発電出力を超える場合は、発電機の発電出力だけでは走行を継続することができない。すなわち、要求走行出力が発電機の発電出力を超える高負荷走行を含む走行可能距離は、バッテリの残充電量と燃料残量とを単に加算した総エネルギ量から算出することは出来ない。
すなわち、現時点からの走行可能距離は、目的地までの経路における要求走行出力の大きさによって変化する場合があり、バッテリ充電および発電機が発電するための燃料補給のいずれのエネルギ補給をするかによって、走行可能距離の延び方が大きく異なる場合がある。
このため、目的地に到達するためにはバッテリ充電および燃料補給のいずれが必要なエネルギ補給なのかをドライバが判断するのは難しい場合があり問題となる。
本発明は、バッテリ充電および燃料補給のいずれが必要なエネルギ補給なのかをドライバに告知する方法及び装置を提供することを目的とする。
本発明のある態様によれば、バッテリの電力と発電機で発電した電力とを駆動装置に供給するハイブリッド車両の制御方法において、ドライバの要求に基づいて駆動装置の走行負荷を推定し、バッテリの充電残量と発電機の駆動に用いる燃料残量とに基づいて、推定された走行負荷を満足した状態で走行可能な第1走行可能距離を算出する。そして、ドライバの要求する要求走行距離を推定し、第1走行可能距離と要求走行距離とに基づいて、必要なエネルギ補充操作をドライバに告知する。
(第1実施形態)
図1は、本発明の第1実施形態を適用するシリーズハイブリッド車両のシステム構成図である。このハイブリッド車両は、バッテリの電力と発電機で発電した電力とを駆動装置であるモータ1(以下「駆動モータ」という)に供給することによって走行する、いわゆるシリーズハイブリッド車両である。
図1は、本発明の第1実施形態を適用するシリーズハイブリッド車両のシステム構成図である。このハイブリッド車両は、バッテリの電力と発電機で発電した電力とを駆動装置であるモータ1(以下「駆動モータ」という)に供給することによって走行する、いわゆるシリーズハイブリッド車両である。
このハイブリッド車両は、駆動モータ1及びバッテリ2からなる外部負荷100と、発電機としての燃料電池システム200と、コントローラ8と、を含んで構成されている。
燃料電池システム200は、燃料電池スタック3と、燃料電池スタック3にカソードガスを供給するコンプレッサ6と、燃料電池スタック3に供給する燃料を貯留する燃料タンク7と、燃料電池スタック3の発電電力を昇圧するDC-DCコンバータ4と、を含んで構成される。
燃料電池スタック3(以下「燃料電池3」ともいう)は、固体酸化物型燃料電池(SOFC:Solid oxide fuel Cell)である。
燃料タンク7には、例えばエタノールと水を混合させた液体からなる改質用の燃料が蓄えられる。なお、図1の燃料電池システム200は、改質器、燃料ポンプ、蒸発器、熱交換器等を省略して簡略化したものである。
DC-DCコンバータ4は、駆動モータ1とバッテリ2との電圧に対し、燃料電池スタック3の電圧を昇圧して、燃料電池スタック3の発電電力を駆動モータ1やバッテリ2へ取り出せるようにする電力制御器である。DC-DCコンバータ4は、燃料電池スタック3に並列に接続され、1次側の燃料電池スタック3の出力電圧を昇圧して2次側の外部負荷100に発電電力を供給する。DC-DCコンバータ4は、例えば、外部負荷100に電力が供給されるように、燃料電池スタック3から出力される数十Vの電圧を数百Vの電圧レベルまで上昇させる。
駆動モータ1は、不図示のインバータを介してバッテリ2とDC-DCコンバータ4とにそれぞれ接続される。駆動モータ1は、車両を駆動する動力源である。また、駆動モータ1は、車両を制動する場合に必要となる制動力を用いて回生電力を発生させ、この回生電力をバッテリ2に充電させることができる。
バッテリ2は、蓄えられた電力を駆動モータ1に供給する電力供給源である。本実施形態では、バッテリ2がメインの電力供給源であり、燃料電池3は、バッテリ2の充電量が低くなったときに、バッテリ2を充電するために主に用いられる。また、燃料電池3の電力を駆動モータ1に供給しても良い。
コントローラ8は、例えば、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、および、入出力インタフェース(I/Oインタフェース)から構成され、特定のプログラムを実行することにより燃料電池システム200及び外部負荷100を制御するための処理を実行する。
コントローラ8は、電流センサ9、アクセル開度センサ10及びその他の各種センサから出力される信号を受信し、これらの信号に応じて、バッテリ2の充電残量や、燃料電池3が発電に利用可能な燃料残量を取得したり、ドライバの要求車速または要求走行出力を取得したり、要求車速または要求走行出力に基づく走行可能距離を算出したりする。
さらに、コントローラ8は、上記の走行可能距離に加えて、バッテリ2を充電した場合、および燃料を給油した場合の少なくとも一方のエネルギ補給操作を行った場合の走行可能距離を算出する。そして、コントローラ8は、これら各条件時の走行可能距離をドライバに告知(表示)する。これらの走行可能距離の算出方法の詳細、およびドライバへの告知内容の詳細については後述する。なお、コントローラ8は、以上のような機能を実現するための機能部として、走行負荷推定部、第1走行可能距離推定部、要求走行距離推定部、告知部とを少なくとも含む(詳細は後述する)。そしてコントローラ8は、これら取得または算出した値に基づいて駆動モータ1及び燃料電池システム200等の各々の作動状態を制御する。
また、コントローラ8には、燃料電池システム200の起動指令信号又は停止指令信号を出力する不図示の操作部が接続されている。操作部は、EVキーを含み、乗員によりEVキーがONに操作されると起動指令信号をコントローラ8に出力し、EVキーがOFFに操作されると停止指令信号をコントローラ8に出力する。
コントローラ8は、操作部から起動指令信号を受信した場合には、燃料電池システム200を起動させる起動運転を実施し、起動運転終了後は、外部負荷100の作動状態に応じて燃料電池スタック3の発電を制御する発電運転を実施する。なお、燃料電池システム200は、バッテリ2の充電量が充電を必要とする所定値以下となったときに、起動しても良い。
発電運転では、コントローラ8は、外部負荷100の作動状態に応じて燃料電池スタック3に要求される電力を求める。そして、コントローラ8は、その要求電力に基づいて、燃料電池スタック3の発電に必要となるカソードガス及びアノードガスの供給流量を算出し、算出した供給流量のアノードガス及びカソードガスを燃料電池スタック3に供給する。そして、コントローラ8は、DC-DCコンバータ4をスイッチング制御して燃料電池システム200から出力される電力を外部負荷100に供給する。
すなわち、コントローラ8は、燃料電池スタック3に対する要求電力に基づいてカソードガス及びアノードガスの流量を制御して、燃料電池スタック3の発電量を制御する。例えば、燃料電池スタック3に対する要求電力は、アクセルペダルの踏込み量が大きくなるほど大きくなる。このため、アクセルペダルの踏込み量が大きくなるほど、燃料電池スタック3に供給されるカソードガス及びアノードガスの供給流量は大きくなる。なお、燃料電池スタック3に供給されるカソードガスは、燃料電池スタック3の目標温度と実温度との偏差に基づき制御されても良い。目標温度より実温度が高い場合であって、偏差が大きい時は、偏差が小さい時に比して、カソードガスの供給量を増加させる。
また、EVキーがON状態で燃料電池システム200から外部負荷100への電力供給が停止されたシステム状態においては、コントローラ8は、燃料電池スタック3の発電を抑制するとともに燃料電池を発電に適した状態に維持する自立運転を実施する。以下では、燃料電池システム200から外部負荷100への電力供給が停止されたシステム状態のことを「アイドルストップ(IS)状態」と称し、自立運転のことを「IS運転」と称する。
燃料電池スタック3に対する要求電力が所定の値、例えばゼロになった場合には、燃料電池システム200の運転状態が発電運転からIS運転に遷移する。そして、コントローラ8がDC-DCコンバータ4を制御して、燃料電池システム200から外部負荷100への電力供給を停止する。
そのため、IS運転中は、燃料電池システム200に設けられた補機に対して、燃料電池スタック3の発電電力を供給してもよいし、燃料電池スタック3から補機に電力供給をしなくてもよい。
操作部から停止指令信号を受信した場合には、コントローラ8は、燃料電池システム200の作動を停止させる停止運転を実施する。
図2A-図2Dは、EVキーがON状態の燃料電池システム200における外部負荷100への電力供給の類型を説明する図である。
図2Aは、駆動モータ1が停止状態であって燃料電池システム200からバッテリ2に電力を供給している状態を示す観念図である。図2Aに示した状態は、車両が停止状態であり、かつ、バッテリ2の充電量が少ないような場合に起り得る。
図2Bは、駆動モータ1が力行状態であって燃料電池システム200及びバッテリ2の両者から駆動モータ1に電力を供給している状態を示す観念図である。図2Bに示した状態は、車両が加速状態であり、駆動モータ1の負荷(出力)が高いような場合に起り得る。
図2Cは、駆動モータ1が力行状態又は回生状態であって燃料電池システム200から駆動モータ1及びバッテリ2の両者への電力供給を停止している状態を示す観念図である。図2Cに示した状態は、車両の走行中に駆動モータ1が低負荷又は中負荷で駆動しているような状態であり、かつ、バッテリ2が満充電となっている場合に起り得る。また、車両が減速状態であり、かつ、バッテリ2の容量に充電する余裕がある場合にも起り得る。
図2Dは、駆動モータ1が停止状態であってバッテリ2が満充電になっている状態を示す観念図である。図2Dに示した状態は、車両が停止状態であり、かつ、バッテリ2が満充電となっている場合に起り得る。
このように、図2Aから図2Dまでに示した状態のうち、図2C及び図2Dに示した状態、すなわち燃料電池システム200から駆動モータ1及びバッテリ2の両者への電力供給が停止されたシステム状態が燃料電池システム200のIS状態に該当する。外部負荷100は、IS状態になると、燃料電池システム200に対してIS運転要求を送信する。
したがって、車両の走行中に駆動モータ1の回生動作によってバッテリ2が満充電になった場合や、バッテリ2が満充電状態で車両が走行又は停止している場合などに、燃料電池システム200がIS状態になり得る。このような場合には、燃料電池スタック3への要求電力はゼロとなり、IS運転が実施される。
ここで、要求走行出力と走行可能距離との関係、および、燃料電池3が発電に要する燃料の残量(燃料残量)と、バッテリ2の残充電量(バッテリSOC)の違いによる走行可能距離の変化について説明する。
図3は、要求走行出力と総走行可能距離との関係を説明するための図である。図中の「バッテリSOC分」はバッテリ2の電力での走行可能距離であり、「燃料分」は燃料電池スタック3で発電した電力での走行可能距離である。
本実施形態にかかるハイブリッド車両において、車両走行に使える電力は、バッテリ2の電力と、燃料電池3で発電された電力である。そして、要求走行出力が大きくなるほど電力消費量が多くなるので、バッテリSOC分及び燃料分は短くなる。したがって、バッテリSOC分と燃料分とを加算すれば、総走行可能距離を精度良く推定できるようにも思われる。
しかし、以下に説明するように、上記算出方法では算出した値は総走行可能距離の推定値として適切でない場合がある。
本実施形態で用いる燃料電池スタック3は、発電出力が10-20kW程度の低出力のものが想定される。
一方、車両が走行する際に必要となる出力(「車両要求出力」または単に「要求出力」ともいう)は、市街地を走行する場合のような低負荷走行では上記の発電電力と同等またはそれ以下である。しかし、高速道路を走行する場合のような高負荷走行では、車両要求出力は燃料電池スタック3の発電出力よりも大きくなる。
このため、例えば高負荷走行をしている最中にバッテリ2の電力を使いきると、燃料電池スタック3だけでは車両要求出力を発生することができないので、高負荷走行を継続できなくなる。つまり、図3における要求出力がSOFC最大出力より大きい領域では、破線で示した燃料分の走行可能距離は要求出力よりも小さい出力での走行可能距離となる。したがって、バッテリSOC分と燃料分とを単純に加算した値は、要求出力での走行が可能な実際の距離とは乖離した値となってしまうので、総走行可能距離の推定値として適切ではない。
図4は、上述のような特性を前提とした、燃料残量とバッテリSOCの違いによる走行可能距離の変化を表す図である。横軸が車速[km/h]、縦軸が走行可能距離[km]を表す。図中には、燃料残量が10%、バッテリSOCが10%の場合での走行可能距離の変化(実線)と、燃料残量が10%、バッテリSOCが100%(フル充電)の場合での走行可能距離の変化(破線)と、燃料残量が100%(燃料満タン)、バッテリSOCが10%の場合での走行可能距離の変化(1点鎖線)とが折れ線グラフによって示されている。
図から、燃料残量が100%バッテリSOCが10%の燃料状態(1点鎖線)では、走行可能距離が車速が80[km/h]を超えたあたりから急激に減少しているのが分かる。これは、上述した通り、車速が80[km/h]を超えるような高負荷走行では、車両への要求出力が燃料電池3の発電出力よりも大きくなり、燃料電池3の発電出力だけでは車両要求出力を発生することができないので、高負荷走行を継続できなくなるからである。
一方で、燃料残量が10%バッテリSOCが100%の燃料状態(破線)では、走行可能距離の最大が260[km]程度であるものの、車速が80[km/h]を超える高負荷走行時でも100[km]以上の走行可能距離を確保できていることが分かる。これは、バッテリ2の出力が燃料電池よりも大きく、高負荷走行時における車両への要求出力を十分賄えるからである。
すなわち、本発明が適用されるシリーズハイブリッド車両では、目的地までの経路における車両要求出力の大小によって走行可能距離が大きく変化する場合がある。つまり、バッテリ2への充電操作と、燃料電池スタック3への燃料給油のいずれを選択するかによって、走行可能距離の延び方が大きく変わり得る。
このため、ドライバは、目的地にたどり着けるのか、高速道路を利用するか否か等を検討する際に、バッテリ2への充電操作と、燃料電池スタック3への燃料給油のいずれのエネルギ補給操作が必要(有効)であるか判断するのが難しい場合がある。
そこで、本実施形態の制御では、現在の燃料電池から求まる走行可能距離に加えて、バッテリ2を充電した場合、燃料を給油した場合、および、充電と給油の両方を行った場合の走行可能距離をそれぞれ算出する。そして、必要な燃料補給操作をドライバが適切に選択できるように、算出されたこれら各条件時の走行可能距離をドライバに告知(表示)する。
以下、コントローラ8が必要なエネルギ補充操作をドライバに告知(表示)するための制御について説明する。
図5は、コントローラ8が、必要なエネルギ補充操作をドライバに告知するまでの制御ルーチンを示すフローチャートである。この制御ルーチンは、コントローラ8によって例えば数ミリ秒程度の間隔で繰り返し実行されるようプログラムされている。
ステップS100では、コントローラ8は、ドライバの要求する走行状態、すなわち、ドライバ要求に基づく駆動モータ1の走行負荷を推定する。ここでの走行負荷は、ドライバの要求車速または要求走行出力から推定される。要求車速は、アクセル開度センサ10の検出値又は不図示の車速センサから取得される。要求走行出力(以下、「要求出力」とも称する)の取得方法は、下記のいずれでもよい。なお、以下では、ここでの走行負荷が要求出力に基づくものとして説明する。
第1の方法は、走行状態、つまりアクセル開度センサ10の検出値及び不図示の車速センサの検出値に基づいて、例えばマップ検索等によって運転者の要求する出力を算出し、これを要求出力とする方法である。
第2の方法は、蓄積しておいた過去の走行データに基づいて算出した平均値を用いる方法である。例えば、直近1時間の要求出力の推移を走行データとして蓄積しておき、これらの平均値を要求出力とする。なお、走行データを蓄積する期間は直近1時間に限られるわけではなく、例えば、直近30分や今回のトリップ開始から現在までのように種々の設定が可能である。
第3の方法は、予め設定しておいた値を用いる方法である。例えば、走行状態毎の代表的な要求出力を予め設定しておき、現在の走行状態に基づいて、使用する要求出力を決定する。
第4の方法は、現在の走行状態によらずに、高負荷走行する場合の要求出力を用いる方法である。この方法では、高負荷走行する場合の要求出力を予め設定しておく必要がある。
第5の方法は、現在の走行状態によらずに、低負荷走行する場合の要求出力を用いる方法である。この方法では、低負荷走行する場合の要求出力を予め設定しておく必要がある。
第6の方法は、第4の方法と第5の方法の両方を行う方法である。
なお、ステップS100において、第1-第6のいずれの方法で取得するのかを運転者が選択するようにしてもよい。
ステップS200では、コントローラ8は、ドライバの要求する走行距離を取得する。ここでの走行距離は、現在地から目的地までの走行距離である。目的地までの走行距離は、例えば、車両に搭載され、車両の搭乗者により目的地が設定された経路案内装置(カーナビゲーションシステム、不図示)から取得される。
ステップS300では、現在の燃料状態(バッテリSOCおよび燃料残量)によって、ステップS100で取得した要求出力を満足した状態で走行可能な距離を算出する。具体的な算出方法は、図6を用いて説明する。
図6は、図5で示すフロー(以下「告知フロー」ともいう)のステップS100に係る処理であって、走行可能距離を算出するための制御ルーチンを示すフローチャートである。なお、この制御ルーチンが実行されるのは、燃料電池スタック3の起動運転が完了している状態である。
本実施形態では、以下に説明する通り、要求出力が燃料電池スタック3の発電出力より大きい場合と小さい場合とで、異なる方法で総走行可能距離を算出する。
ステップS10で、コントローラ8は要求出力を取得する。要求出力の取得方法は、図5で示すフローのステップS100の説明で述べたとおりである。なお、告知フローのステップS100において要求出力を取得した場合は、本ステップは省略される。
ステップS20で、コントローラ8は、バッテリ2の残充電量で出力可能な電力量であるバッテリ出力可能電力量を算出する。算出方法は、バッテリ2のSOCをパラメータとする数式を用いて演算する方法でも、バッテリ2のSOCと出力可能電力量との関係を予めマップ化しておき、これを検索する方法でもよい。
なお、バッテリ2のSOCは、例えば、バッテリ2に出入力される電流値を電流センサ9により検出して積算することによって取得してもよいし、その他の既存の手法によって取得してもよい。
ステップS30で、コントローラ8は、平均車速を取得する。ここでいう平均車速とは、ステップS10で取得した要求出力で走行する場合の車速の平均値である。要求出力をパラメータとする数式を用いた演算を実行してもいいし、要求出力と平均車速との関係を予めマップ化しておき、これを検索してもよい。なお、告知フローのステップS100において要求車速を取得した場合は、本ステップは省略される。
ステップS40で、コントローラ8は、要求出力が燃料電池スタック3の発電出力より大きいか否かを判定する。ここで用いる発電出力は、基本的には燃料電池スタック3の最大発電出力とするが、例えば冷機状態である等の理由により燃料電池スタック3の発電出力が制限される場合には、制限された値を用いる。
コントローラ8は、判定結果がyesの場合はステップS50で総走行可能距離演算Aを実行し、判定結果がnoの場合はステップS60で総走行可能距離演算Bを実行する。
総走行可能距離演算Aについて説明する。
上述した通り、要求出力が燃料電池スタック3の発電出力より大きい場合には、バッテリ2の残充電量がなくなると、つまりバッテリ2の出力可能電力量を使いきると、たとえ燃料が残っていても要求出力での走行ができなくなる。換言すると、燃料電池スタック3の発電出力に対する要求出力の超過分をバッテリ2の出力可能電力量で賄える間は要求出力での走行が可能である。つまり、バッテリ2の出力可能電力量を燃料電池スタック3の発電出力に対する要求出力の超過分で使いきるまでの走行距離が総走行可能距離となる。これを式で表すと式(1)になる。なお、総走行可能距離演算Aを算出する式1は、当該距離を走行する期間中は燃料電池スタック3に燃料が供給され続けることを前提とする。当該距離を走行するのに燃料電池が不足する場合の処理については第2実施形態において後述する。
Ltotal=Wbat[kWh]÷(F[kW]-P[kW])×Vave[km/h] ・・・(1)
Ltotal:総走行可能距離、Wbat:バッテリ出力可能電力量、F:要求出力、P:燃料電池発電出力、Vave:平均車速
Ltotal:総走行可能距離、Wbat:バッテリ出力可能電力量、F:要求出力、P:燃料電池発電出力、Vave:平均車速
なお、本ステップにおける式(1)のWbat:バッテリ出力可能電力量は、現在の燃料状態に基づくものである。例えば、要求出力が20[kW]、燃料電池発電出力が15[kW]、現在のバッテリ出力可能電力量が10[kWh]、要求出力が20[kW]のときの平均車速が100[km/h]とすると、式(1)は下記の通りになる。
Ltotal=10[kWh]÷(20[kW]-15[kW])×100[km/h]
=2[h]×100[km/h]
=200[km]
=2[h]×100[km/h]
=200[km]
なお、燃料電池発電出力は燃料電池スタック3の仕様によって定まるものであり、要求出力が決まれば平均車速も決まる。そこで、予めバッテリ出力可能電力量と要求出力に様々の値を代入して式(1)の演算を行い、その演算結果に基づいて総走行可能距離のマップを作成しておき、取得したバッテリ出力可能電力量と要求出力でマップ検索することによって総走行可能距離を求めることもできる。マップ検索によって総走行可能距離を求めることも、「算出する」に含まれることとする。
次に、総走行可能距離演算Bについて説明する。
総走行可能距離演算Bは上述した文献の算出方法である。つまり、バッテリ2の残充電量に基づいて算出される走行可能距離と、燃料タンクの現在の燃料残量の全てを燃料電池スタック3の駆動に用いて発電させることによって得られる電力(以下、「残燃料電力量」ともいう)に基づいて算出される走行可能距離とを加算する方法である。これを式にすると式(2)になる。
Ltotal=(Wbat[kWh]+Wfuel[kWh])÷F[kW]×Vave[km/h] ・・・(2)
Ltotal:総走行可能距離、Wbat:バッテリ出力可能電力量、Wfuel:残燃料電力量、F:要求出力、Vave:平均車速
Ltotal:総走行可能距離、Wbat:バッテリ出力可能電力量、Wfuel:残燃料電力量、F:要求出力、Vave:平均車速
要求出力が燃料電池スタック3の発電出力と同等またはそれ以下であれば、バッテリ2の電力を使い果たした後も要求出力に応じた走行が可能なので、上述した文献の算出方法でも適切な総走行可能距離を算出できる。そこで、総走行可能距離演算Bとして、上述した文献の算出方法を用いる。
総走行可能距離演算Bも、総走行可能距離Aと同様にマップ検索によって算出してもよい。この場合、マップ検索に用いるパラメータは、バッテリ出力可能電力量、要求出力及び残燃料電力量である。なお、以下の説明においては、総走行可能距離演算Bで算出された総走行可能距離を「総走行可能距離B」ともいう。
このようにして総走行可能距離A、あるいは総走行可能距離Bが演算されると、コントローラ8は、演算結果を記憶して、告知フローに戻り、続くステップS400の処理を実行する。なお、以下では、告知フローのステップS300で算出された総走行可能距離A、あるいは総走行可能距離Bを「第1の走行可能距離」という。
ここで、上述のステップS10~S60の処理(告知フローにおけるステップS300の処理)によって算出された現在の燃料状態における走行可能距離は、図7で示すようなグラフで表すことができる。
図7は、現在のバッテリSOCと燃料残量とから算出した走行可能距離(総走行可能距離B)を、目的地までの平均車速に対応させてグラフ化した図である。横軸は目的地までの平均車速を表し、縦軸は走行可能距離を表している。ただし、横軸は平均車速に限られず、平均走行出力であってもよい。
ここでの平均車速または平均走行出力は、前述の経路案内装置(カーナビゲーションシステム)等が取得した、あるいは予め記憶していた目的地までの経路情報に基づいて算出される。経路情報とは、例えば、目的地までの経路における高速道路の割合、走行時間帯、渋滞状況、および路面の勾配情報等、目的地までの経路において、車両の車速および走行出力を変化させ得る要因のいずれか一つ以上である。例えば、高速道路の割合が高くなるほど、平均車速および平均走行出力は大きくなる。なお、図中の折れ線グラフ(以下単に「グラフ」という)は、バッテリSOCが10%、燃料残量が50%の状態における走行可能距離Bを表している。
そして、図中には、平均車速と走行可能距離とを座標とする那須や伊藤等の目的地点がプロットされている。那須(一般道)は、一般道を利用する場合の座標を示し、那須(高速)は、その経路中において高速道路を利用する場合の座標を示している。同じ那須でも、那須(一般道)と那須(高速)では、平均車速と走行可能距離とが異なっているのが分かる。
同図から、グラフとプロットされた点との位置関係によって、目的地まで到達可能か否かを判別することができる。具体的には、平均車速および走行可能距離がグラフよりも小さい領域にプロットされた地点までは到達することができる。例えば、那須までは一般道を利用すればたどり着くことができることが分かる。一方で、高速道路を利用した場合は、那須までたどり着くことができないことが分かる。これは、現状のバッテリSOC(10%)では、高速道路を走行する際の高負荷走行に要する燃料量をまかなえないからである。
ここで、(1)バッテリSOCを充電した場合、(2)燃料を給油した場合、(3)充電と給油をした場合、それぞれの燃料補充操作を行った場合の走行可能距離をさらに示すことができれば、高速道路を利用するか否かを加味した上で(1)から(3)のいずれの燃料補充操作をすれば目的地に到達できるようになるかを知ることができる。以下、そのための処理について、図5を参照して説明を続ける。
ステップS400では、上記(1)バッテリSOCを充電した場合において、ステップS100で取得した要求出力を満足した状態で走行可能な距離を算出する。ここでの走行可能距離も、前述の図4で示すフローチャートに基づいて算出するが、ステップS300の時とは以下の点が異なる。
すなわち、ステップS400における走行可能距離の算出においては、図6のステップS20において算出するバッテリ出力可能電力量を、バッテリ2をフルに充電した状態で出力可能な電力量として算出する。なお、バッテリ2をフルに充電した状態とは、バッテリ2が目標最大充電量に達した状態であって、本実施形態では例えば、バッテリSOC=80%である。そして、算出したフル充電時の出力可能電力量を、ステップS50において総走行可能距離Aを算出する際に用いる式(1)、およびステップS60において総走行可能距離Bを算出する際に用いる式(2)中の変数Wbat(バッテリ出力可能電力量)に代入する。
これにより、現在の燃料状態からバッテリSOCをフル充電した場合の燃料状態における総走行可能距離Aおよび総走行可能距離Bを算出することができる。ここで算出された総走行可能距離A、あるいは総走行可能距離Bを以下では「第2の走行可能距離」という。なお、ステップS4における走行可能距離の算出に用いる出力可能電力量は、上記のようにフル充電に設定する必要は必ずしもなく、現状から充電するのであれば50%や25%など、適宜設定されて良い。
ステップS500では、上記(2)燃料を給油した場合において、ステップS1で取得した要求出力を満足した状態で走行可能な距離を算出する。ここでの走行可能距離も、前述の図4で示すフローチャートに基づいて算出するが、ステップS300の時とは以下の点が異なる。
すなわち、ステップS500における走行可能距離の算出においては、図6のステップS60における総走行可能距離Bの算出に用いる式(2)中のWfuel:残燃料電力量を燃料満タン(残燃料量=100%)時の残燃料電力量とする。
これにより、現在の燃料状態から燃料タンク7の残燃料量を満タンに給油した場合における総走行可能距離Bを算出することができる。ここで(ステップS500で)算出された総走行可能距離Aおよび総走行可能距離Bを以下では「第3の走行可能距離」という。なお、ステップS500における走行可能距離の算出に用いる残燃料電力量は、上記のとおり満タン(残燃料量=100%)に設定する必要は必ずしもなく、現状から給油するのであれば、50%や25%など適宜設定されて良い。
ステップS600では、現在の燃料状態から上記(3)充電と給油をした場合において、ステップS100で取得した要求電力を満足した状態で走行可能な距離を算出する。ここでの走行可能距離も、前述の図4で示すフローチャートに基づいて算出するが、ステップS300時とは以下の点が異なる。
すなわち、ステップS600における走行可能距離の算出においては、ステップS400と同様に、図6のステップS20において算出するバッテリ出力可能電力量を、バッテリ2をフルに充電した状態で出力可能な電力量として算出し、算出した出力可能電力量を、ステップS50において総走行可能距離Aを算出する際に用いる式(1)、およびステップS60において総走行可能距離Bを算出する際に用いる式(2)中の変数Wbat(バッテリ出力可能電力量)に代入する。これに加えて、ステップS500と同様に、図6のステップS60における総走行可能距離Bの算出に用いる式(2)中のWfuel:残燃料電力量を燃料満タン(残燃料量=100%)時の残燃料電力量とする。
これにより、現在の燃料状態から、バッテリSOCをフル充電し、かつ、残燃料量を満タンに給油した場合の総走行可能距離Aおよび総走行可能距離Bを算出することができる。ここで算出された総走行可能距離A、あるいは総走行可能距離Bを以下では「第4の走行可能距離」という。なお、ステップS600における走行可能距離の算出に用いる出力可能電力量は、上記のとおりフル充電および、満タン(残燃料量=100%)に設定する必要は必ずしもなく、適宜設定されて良い。
以上の処理により、現在の燃料状態から算出される第1の走行可能距離に加えて、(1)バッテリSOCを充電した場合の第2の走行可能距離、(2)燃料を給油した場合の第3の走行可能距離、および、(3)充電と給油の両方を行った場合の第4の走行可能距離をそれぞれ算出することができる。そして、続くステップS700において、コントローラ8は、算出した第1~第4の走行可能距離に基づいて、目的地に到達するために必要なエネルギ補充操作を判断するのに資する情報をドライバに告知する。
ステップS700では、コントローラ8が、必要なエネルギ補充操作をドライバに対して表示する。表示場所はドライバが視認可能な場所であればよい。例えば、上述の経路案内装置(カーナビゲーションシステム)のLCD画面上に表示してよい。表示内容は、例えば図8のようなグラフである。
図8は、ドライバに対して表示される目的地まで到達するのに必要なエネルギ補充操作を表した図である。同図は、第1~第4の走行可能距離を、目的地までの平均車速に対応させてグラフ化した図である。第1の走行可能距離は実線で表され、第2の走行可能距離は破線で表され、第3の走行可能距離は一点鎖線で表され、第4の走行可能距離は2点鎖線で表されている。横軸は目的地までの平均車速を表し、縦軸は走行可能距離を表している。ただし、横軸は平均車速に限られず、平均走行出力であってもよい。
ここでの平均車速または平均走行出力は、前述の経路案内装置(カーナビゲーションシステム)等が取得した、あるいは予め記憶していた目的地までの経路情報に基づいて算出される。経路情報の内容は図7を参照して上述したとおりである。
図7と同様に、図中には、平均車速と走行可能距離とを座標とする那須や伊藤等の目的地点がプロットされている。したがって、図8から、第1~第4の走行可能距離を示すグラフとプロットされた点との位置関係によって、どのエネルギ補充操作を行えば、どのような経路で目的地まで到達することができるかを知ることができる。
具体的には、図8においても、一般道または高速道路を利用して到達することができる目的地が、各折れ線グラフの走行可能距離以下、平均車速以下の領域にプロットされている。したがって、ドライバはグラフとプロットされた点との位置関係から、目的地まで到達可能か否か、高速道路を利用可能か否か、必要なエネルギ補充操作は何か等を容易に知ることができる。
たとえば、現在の燃料状態から算出された第1の走行可能距離(実線)では、高速道路を利用して厚木まで往復することはできないことが分かる。また、那須まで高速道路を利用しては到達することができないことが分かる。ここで、同図から必要なエネルギ補充操作を判断する。給油した場合の第3の走行可能距離(一点鎖線)を見ると、給油したとしても、高速道路を利用しては那須へ行くことも厚木を往復することもできないことが分かる。燃料電池3の発電出力では80km/hの高負荷走行時の要求出力をまかなえないため、平均車速80km/h以上の走行状態での走行可能距離は延びないからである。
充電した場合の第2の走行可能距離を見ると、低負荷走行(80km/h未満)時における走行可能距離の延びは給油した場合より小さいものの、高負荷走行時の走行可能距離が延びており、高速道路を利用して厚木まで十分に往復できるようになることが分かる。ただし、高負荷走行時の走行可能距離が延びるものの、高速道路を利用して那須まで行くことは出来ないことが分かる。
給油と充電の両方を行った場合の第4の走行可能距離(二点鎖線)を見ると、那須まで高速道路を利用して到達可能になることが分かる。すなわち、例えば高速道路を利用して那須まで行きたいと考えたドライバは、そのために必要なエネルギ補充操作は充電と給油の両方であることを図8から容易に正しく判断することができる。
このように、第1~第4の走行可能距離と目的地の情報とを関連付けてドライバに告知することで、目的地までに所望の経路(一般道か高速道路か等)で到達するために必要なエネルギ補充操作をドライバ自身で容易に判断することができる。
なお、ドライバに対して表示される必要なエネルギ補充操作の表示対応は上述の態様に限られない。例えば、図8のようなグラフを表示せずに、目的地に到達するのに必要なエネルギ補充操作や利用可能な経路情報を文字や数字で表示しても良い。また、ドライバの判断に資する情報ではなく、ドライバの設定した目的地に対して必要なエネルギ補充操作をコントローラ8が判断し、その結果のみを告知してもよい。その際、高速道路を利用可能か、往復できるかどうかの情報を加えて表示することもできる。また、表示(告知)方法は、上述したような視認可能な態様に限らず、音声等によってもよい。
また、必要なエネルギ補充操作をドライバに告知するタイミングは上述のタイミングに限られない。すなわち、ステップS300において現在の燃料状態による第1の走行可能距離を算出した時点で告知しても良い。この時点で告知できる情報は、例えば上述したような図7で表せる。この情報からでも、例えば高速道路を利用して厚木を往復することは、あと少しの燃料を補充すれば可能になりそうだということが分かる。この時、80km/h以上の領域における走行可能距離を延ばすためにはバッテリ2への充電が必要であることが分かっていれば、図7の情報から必要なエネルギ補充操作が充電であることを判断することができる。
また、図7に示されてはいないが、一般道を利用しての目的地が80km/h未満の領域における折れ線グラフの上方(走行可能距離が大きい)領域にプロットされていれば、ドライバは、必要なエネルギ補充操作が給油であることを判断し得る。したがって、必要なエネルギ補充操作をドライバに告知するタイミングは図5のフローに基づくタイミングに限られず、ステップS300において現在の燃料状態による第1の走行可能距離を算出した時点で、ステップS400~600を省略して告知しても良い。
また、ステップS300~ステップS600において算出される第1から第4の走行可能距離は、上述の説明のように必ずしもステップS100で取得されたドライバの要求車速または要求走行出力に基づいて算出される必要はなく、所定の車速または要求走行出力に基づいて算出されてもよい。その場合でも、例えば20km/hから140km/hまでの車速における1km/h毎の車速を所定の車速として、第1から第4の走行可能距離を算出することにより、算出したそれぞれの走行可能距離を、図8に示すように、現在地から目的地までの平均車速に対応付けて表示することができる。
以上がドライバに必要なエネルギ補充操作が告知されるまでの制御ルーチンの詳細である。続いて、必要なエネルギ補充操作をドライバに告知することによる効果について説明する。
図9は、エネルギ補充操作を誤った場合に、走行可能距離の延び方がどれくらいの誤差を持つか、換言すると、ドライバの期待に反して距離が延びない度合の大きさを示す図である。左から、車速[km/h]、現在の燃料状態にける走行可能距離(第1の走行可能距離)[km]、充電した場合における走行可能距離の延び[km]、給油した場合における走行可能距離の延び[km]、そして、誤差[%]を示す。誤差は、エネルギ補充操作が正しかった場合の延び[km]に対するエネルギ補充操作を誤った場合の延び[km]の割合である。
同図から、車速が20[km]~80[km]の低負荷走行時は、給油した方が充電した場合よりも走行可能距離の延びが大きいことが分かる。したがって、低負荷走行を続ける場合は、適切なエネルギ補充操作として給油を選択する必要がある。すなわち、ドライバが自己の判断でエネルギ補充操作を選択し、誤った場合(充電を選択した場合)は、給油した場合の67%程度しか走行可能距離を延ばすことができない。
他方、車速が80[km]以上の高負荷走行時は、要求出力が燃料電池スタック3の発電出力を超えるので、燃料を給油しても走行可能距離は延びない。したがって、高負荷走行を続ける場合は、適切なエネルギ補充操作として充電を選択する必要がある。すなわち、ドライバが自己の判断でエネルギ補充操作を選択し、誤った場合(給油を選択した場合)は、期待に反して走行可能距離を全く延ばすことができない。
このように、エネルギ補充操作によって走行可能距離が大きく変化する場合があるので、エネルギ補充操作を誤って選択した場合には走行可能距離が期待に反して極めて短くなる場合がある。上述したような方法により適切なエネルギ補充操作をドライバに告知することによって、ドライバがエネルギ補充操作の選択をミスする虞を抑制することができ、エネルギを補充したにも関わらず、走行可能距離が期待に反して短くなってしまうような事態が生じてしまう可能性を排除することができる。
以上、第1実施形態のハイブリッド車両の制御方法によれば、バッテリ2の電力と発電機(燃料電池3)で発電した電力とを駆動装置(駆動モータ1)に供給するハイブリッド車両の制御方法において、ドライバの要求に基づいて駆動モータ1の走行負荷を推定し、バッテリ2の充電残量と燃料電池3の駆動に用いる燃料残量とに基づいて、推定された走行負荷を満足した状態で走行可能な第1の走行可能距離を算出する。そして、ドライバの要求に基づいて要求走行距離を推定し、第1の走行可能距離と要求走行距離とに基づいて、必要なエネルギ補充操作をドライバに告知する。これにより、ドライバは、現在の燃料状態によって目的地まで到達できるか否か、目的地まで到達するためにはどのエネルギ補充操作をすればよいかを知ることができるので、目的地まで到達するために必要なエネルギ補充操作を適切に判断することができる。
また、第1実施形態のハイブリッド車両の制御方法によれば、駆動モータ1の走行負荷は、ドライバの要求車速または要求出力から取得される。このため、ドライバの望む走行状態に応じた走行負荷を取得することができるので、ドライバに対して適切なエネルギ補充操作を告知することができる。
また、第1実施形態のハイブリッド車両の制御方法によれば、駆動モータ1の走行負荷は、現在地から目的地に到達するまでの平均車速または平均出力から取得される。これにより、ドライバの設定する目的地によって変化する目的地までの平均車速または平均出力に応じた走行可能距離を適切に算出することができる。
さらに、第1実施形態のハイブリッド車両の制御方法によれば、現在地から目的地に到達するまでの平均車速または平均出力は、目的地までの経路情報に基づいて算出される。そして、第1実施形態のハイブリッド車両の制御方法によれば、経路情報とは、目的地までの経路における高速道路の割合、走行時間帯、渋滞状況。および路面の勾配情報のいずれか一つ以上である。このように、平均車速および平均出力を、目的地までの経路において、車両の車速および走行出力を変化させ得る要因を考慮して算出することにより、より正確な必要なエネルギ補充操作をドライバに告知することができる。
また、第1実施形態のハイブリッド車両の制御方法によれば、要求走行距離は、現在地から目的地までの距離である。これにより、現在地から目的地まで、現在あるいは想定する燃料状態によって到達可能かを算出することができる。
また、第1実施形態のハイブリッド車両の制御方法によれば、必要なエネルギ補充操作をドライバに告知する際には、バッテリ2の充電操作または燃料電池3の燃料補給操作のいずれか一方、または、両方を告知する。これにより、ドライバは、バッテリ2の充電操作および燃料電池3の燃料補給操作のいずれか一方、または、両方のどの燃料補充操作を行えば目的地まで到達可能か否かを容易かつ適切に判断することができる。
また、第1実施形態のハイブリッド車両の制御方法によれば、必要なエネルギ補充操作を告知する際には、バッテリ2の充電操作を行った場合において、ドライバの要求車速または要求出力を満足した状態で走行可能な第2の走行可能距離を算出し、燃料電池3の燃料補給操作を行った場合において、ドライバの要求車速または要求出力を満足した状態で走行可能な第3の走行可能距離を算出し、バッテリ2の充電操作と燃料電池3の燃料補給操作を行った場合において、ドライバの要求車速または要求出力を満足した状態で走行可能な第4の走行可能距離を算出する。そして、現在地から目的地に到達するまでの平均車速または平均出力に対応する第1から第4走行可能距離のそれぞれと、要求走行距離とを比較することによって、必要なエネルギ補充操作をドライバが判断(選択)可能な情報を告知する。これにより、ドライバは、目的地まで到達するためにはどのエネルギ補充操作をすればよいかを適切に、かつ、より容易に判断することができる。
また、第1実施形態のハイブリッド車両の制御方法によれば、必要なエネルギ補充操作を告知する際には、第1から第4の走行可能距離を平均車速または平均出力に対応するグラフとして表示するとともに、現在地から目的地に到達するまでの平均車速または平均出力と、要求走行距離とを座標とする点を前記グラフと同じ表示画面上にプロットして表示する。これにより、ドライバは、必要なエネルギ補充操作をグラフ化した情報を視認することによって、目的地に到達するのに必要なエネルギ補充操作をより容易に、素早く判断することができる。
(第2実施形態)
本実施形態は、ハイブリッド車両のシステム構成は第1実施形態と同様であるが、総走行可能距離を算出、表示する制御ルーチンの一部が第1実施形態と異なる。以下、相違点を中心に説明する。なお、本実施形態の制御ルーチンも、第1実施形態と同様に燃料電池スタック3の起動運転が完了している状態で実行される。
本実施形態は、ハイブリッド車両のシステム構成は第1実施形態と同様であるが、総走行可能距離を算出、表示する制御ルーチンの一部が第1実施形態と異なる。以下、相違点を中心に説明する。なお、本実施形態の制御ルーチンも、第1実施形態と同様に燃料電池スタック3の起動運転が完了している状態で実行される。
図10は、本実施形態における総走行距離を推定するための制御ルーチンを示すフローチャートである。この制御ルーチンは、コントローラ8によって、例えば数ミリ秒程度の間隔で繰り返し実行される。図10の制御ルーチンは、コントローラ8が総走行可能距離演算A(ステップS50)の後に、燃料タンクの燃料残量が総走行可能距離Aを走行するのに必要な量に対して不足しているか否かの判定(ステップS55)を実行する点が図6の制御ルーチンと相違する。
第1の総走行可能距離演算は、当該距離を走行する期間中は燃料電池スタック3に燃料が供給され続けることが前提となっている。例えば、第1実施形態と同様に、要求出力が20[kW]、燃料電池発電出力が15[kW]、現在のバッテリ出力可能電力量が10[kWh]、要求出力が20[kW]のときの平均車速が100[km/h]の場合を考える。この場合、第1実施形態と同様に式を変形すると、平均車速100[km/h]で2時間の走行が可能なので総走行可能距離Aは200[km]という結果になる。つまり、200[km]という総走行可能距離Aは、燃料が2時間もつことを前提とした値である。
しかし、例えば、式(1)における燃料電池スタック3の発電出力を発生する際の燃料消費率が5[L/h]で燃料残量が5[L]の場合には、燃料は1時間でなくなるので200[km]を走行することができない。
そこでコントローラ8は、ステップS55において燃料タンクの燃料残量が総走行可能距離Aを走行するのに必要な量に対して不足しているか否かを判定する。具体的には、まず、コントローラ8は燃料電池スタック3の燃料消費率と燃料残量とから、燃料残量がなくなるまでの時間を算出する。なお、コントローラ8は燃料電池スタック3の発電出力毎の燃料消費率を予め記憶している。また、燃料残量は公知の手法で検出する。例えば燃料タンク7に燃料センサを設けて検出する。
そして、コントローラ8は、燃料がなくなるまでの時間と総走行可能距離演算Aの過程において算出される走行可能時間とを比較し、燃料がなくなるまでの時間の方が短い場合に燃料不足であると判断する。
図11は、総走行可能距離Aと走行可能距離Bを対比した図である。バッテリ出力可能電力量は10[kWh]、残燃料電力量は15[kWh]であり、要求出力は20[kW]、25[kW]及び30[kW]である。残燃料電力量が15[kWh]ということは、燃料残量が5[L]であることを意味する。
第1実施形態で説明した通り、要求出力が燃料電池スタック3の発電出力より大きい場合には、総走行可能距離演算Bよりも総走行可能距離演算Aの方が実際に走行可能な距離に近い値を算出できる。しかし、図11において、要求出力が20[kW]の場合には総走行可能距離Aは200[km]になっているが、上述したように実際には燃料不足によって200[km]走行することはできない。すなわち、燃料がもつという総走行可能距離演算Aの前提が崩れるため、総走行可能距離Aの精度は総走行可能距離Bよりも悪化する。
そこで、コントローラ8は、ステップS55の判定結果がyesの場合はステップS60で総走行可能距離演算Bを実行する。
判定結果がnoの場合は、総走行可能距離Aを走行可能ということなので、コントローラ8はステップS50で算出した総走行可能距離Aを第1の走行可能距離に設定して、告知フロー(図5参照)に戻る。
以上のように本実施形態では、ドライバの要求出力が燃料電池3の最大発電出力より小さい場合、および、走行に使用可能なバッテリ2の電力がなくなるまでの時間が燃料電池3の発電に用いる燃料が無くなるまでの時間よりも長い場合のいずれか一方の場合には、バッテリ2の充電残量から定まる走行可能距離と、燃料の残量の全てを用いて発電することによって得られる電力量から定まる走行可能距離と、を加算して算出される。また、ドライバの要求出力が燃料電池の最大発電出力より大きい場合であって、走行に使用可能なバッテリ2の電力がなくなるまでの時間が燃料電池3の発電に用いる燃料が無くなるまでの時間以下である場合には、走行出力に対する発電機の発電出力の不足分と、バッテリの残充電量から定まる走行可能距離が算出される。これによれば、バッテリ2の電力よりも先に燃料が無くなるために実際には総走行可能距離Aを走行できない場合に、総走行可能距離Aよりも精度の高い総走行可能距離Bを算出できる。
(第3実施形態)
第1実施形態及び第2実施形態では、燃料電池スタック3の起動運転が完了している状態で総走行可能距離を算出する制御ルーチンについて説明したが、本実施形態では燃料電池スタック3が稼働していない状態でも精度よく総走行可能距離を算出できる制御ルーチンについて説明する。
第1実施形態及び第2実施形態では、燃料電池スタック3の起動運転が完了している状態で総走行可能距離を算出する制御ルーチンについて説明したが、本実施形態では燃料電池スタック3が稼働していない状態でも精度よく総走行可能距離を算出できる制御ルーチンについて説明する。
本実施形態を適用するハイブリッド車両のシステム構成は第1実施形態の構成と同様である。このハイブリッド車両では、燃料電池スタック3が稼働していない状況ではバッテリ2の電力だけで走行することになる。また、本実施形態で使用する燃料電池スタック3はSOFCであり、SOFCは起動運転開始から起動運転終了までに数十分以上の時間を要する。
したがって、燃料電池スタック3の起動運転が終了していない状態で総走行可能距離を推定する場合には、バッテリ2のSOCや燃料残量が起動運転開始から起動運転終了までに変化することを考慮する必要がある。そこで本実施形態では、上記の変化を考慮して総走行可能距離を推定する。
図12は、本実施形態における総走行距離を推定するための制御ルーチンを示すフローチャートである。以下に説明する通り、燃料電池スタック3が稼働していない場合には、コントローラ8は起動運転終了までの走行距離と、起動運転終了後の走行可能距離とを加算して総走行可能距離を算出する。なお、この制御ルーチンは、コントローラ8によって、例えば数ミリ秒程度の間隔で繰り返し実行される。ステップS10-S70は、第2実施形態にかかる図11の制御ルーチンと同じである。
図12ではステップS10の処理を実行する前に、以下に説明するステップS2-S8の処理を実行する。
ステップS2で、コントローラ8は、燃料電池スタック3が稼働しているか否かを判定し、稼働している場合には第2実施形態で説明したステップS10以下の処理を実行する。
コントローラ8は、ステップS2で燃料電池スタック3が稼働していないと判定した場合には、ステップS4にて起動運転終了までの走行距離を推定する。具体的には、コントローラ8は、燃料電池スタック3の起動運転開始から起動運転終了までに要する時間を予め記憶しておき、この時間と上述した平均車速とから起動運転終了までの走行距離を推定する。
ステップS6で、コントローラ8は、起動運転終了時のバッテリ2のSOCを推定する。具体的には、コントローラ8は、ステップS2で推定した距離を走行することで消費する電力量を算出し、この電力量と現在のバッテリ2のSOCとから、起動運転終了時におけるバッテリ2のSOCを推定する。
ステップS8で、コントローラ8は起動運転終了時の燃料残量を推定する。具体的には、コントローラ8は起動運転開始から起動運転終了までに消費する燃料量を算出し、この燃料量と現在の燃料残量とから、起動運転終了時における燃料残量を推定する。
コントローラ8は、ステップS8の処理が終了したら、ステップS10以降の処理を実行する。その際、ステップS20では、コントローラ8はステップS6で推定したバッテリSOCで出力可能な電力量であるバッテリ出力可能電力量を算出する。ステップS50では、コントローラ8は上述した第1の総走行可能距離演算で算出した値に、起動運転終了までの走行距離を加算したものを総走行可能距離Aとする。ステップS60では、コントローラ8は式(2)の残燃料電力量Wfuelを起動運転終了時の燃料残量での電力量として総走行可能距離を算出し、この算出値に起動運転終了までの走行距離を加算したものを総走行可能距離Bとする。
以上のように本実施形態では、燃料電池スタック3が稼働していない場合にコントローラ8は、要求出力に基づいて、燃料電池スタック3の起動運転が終了するまでの走行距離と、起動運転が終了した時点におけるバッテリ2の残充電量及び燃料残量と、を推定する。そして、コントローラ8は起動運転が終了した時点におけるバッテリ2の残充電量の推定値及び燃料残量の推定値に基づいて総走行可能距離演算Aまたは総走行可能距離演算Bを行うことによって、起動運転終了後の総走行可能距離を算出する。コントローラ8は、起動運転終了後の総走行可能距離と、起動運転が終了するまでの走行距離とを加算したものを第1の総走行可能距離とする。これにより、燃料電池スタック3が稼働していない場合に、起動運転の終了を待つ間のバッテリ2のSOCの変化や燃料残量の変化に応じた適切な総走行可能距離を算出することができる。
なお、第1-第3実施形態では、発電機が燃料電池システム200である場合について説明したが、これに限られるわけではない。例えば、燃料電池システム200に代えて、内燃機関と内燃機関で駆動されて発電する発電機とからなるシステムを用いる場合にも各実施形態を適用できる。内燃機関で発電する発電機の発電出力が要求出力より低い場合には、第1-第3実施形態で解決する課題と同様の課題が生じるからである。また、内燃機関は起動運転の開始から終了までに要する時間がSOFCに比べて大幅に短く、起動運転の開始から終了までの間のバッテリ2のSOC変化量や燃料残量の変化は無視し得る。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
Claims (11)
- バッテリの電力と発電機で発電した電力とを駆動装置に供給するハイブリッド車両の制御方法において、
ドライバの要求に基づいて前記駆動装置の走行負荷を推定し、
前記バッテリの充電残量と前記発電機の駆動に用いる燃料残量とに基づいて、推定された前記走行負荷を満足した状態で走行可能な第1走行可能距離を算出し、
ドライバの要求に基づいて要求走行距離を推定し、
前記第1走行可能距離と前記要求走行距離とに基づいて、必要なエネルギ補充操作をドライバに告知する、
ハイブリッド車両の制御方法。 - 請求項1に記載のハイブリッド車両の制御方法において、
前記走行負荷は、ドライバの要求車速または要求走行出力から取得される、
ハイブリッド車両の制御方法。 - 請求項1に記載のハイブリッド車両の制御方法において、
前記走行負荷は、現在地から目的地に到達するまでの平均車速または平均走行出力から取得される、
ハイブリッド車両の制御方法。 - 請求項1から3のいずれかに記載のハイブリッド車両の制御方法において、
前記要求走行距離は、現在地から目的地までの距離である、
ハイブリッド車両の制御方法。 - 請求項1から4のいずれかに記載のハイブリッド車両の制御方法において、
必要な前記エネルギ補充操作をドライバに告知する際には、前記バッテリの充電操作および前記発電機の燃料補給操作のいずれか一方、または、両方を告知する、
ハイブリッド車両の制御方法。 - 請求項5に記載のハイブリッド車両の制御方法において、
必要な前記エネルギ補充操作を告知する際には、
前記バッテリの充電操作を行った場合において、前記ドライバの要求車速または要求走行出力を満足した状態で走行可能な第2走行可能距離を算出し、
前記発電機の燃料補給操作を行った場合において、前記ドライバの要求車速または要求走行出力を満足した状態で走行可能な第3走行可能距離を算出し、
前記バッテリの充電操作および前記発電機の燃料補給操作の双方を行った場合において、前記ドライバの要求車速または要求出力を満足した状態で走行可能な第4走行可能距離を算出し、
現在地から目的地に到達するまでの平均車速または平均出力に対応する前記第1から第4走行可能距離のそれぞれと、前記要求走行距離とを比較することによって、必要な前記エネルギ補充操作をドライバが選択可能な情報を告知する、
ハイブリッド車両の制御方法。 - 請求項6に記載のハイブリッド車両の制御方法において、
必要な前記エネルギ補充操作を告知する際には、
前記第1から第4走行可能距離を前記平均車速または前記平均出力に対応するグラフとして表示するとともに、現在地から目的地に到達するまでの前記平均車速または前記平均出力と、前記要求走行距離とを座標とする点を前記グラフと同じ表示画面上にプロットして表示する、
ハイブリッド車両の制御方法。 - 請求項3に記載のハイブリッド車両の制御方法において、
現在地から目的地に到達するまでの前記平均車速または前記平均出力は、目的地までの経路情報に基づいて算出される、
ハイブリッド車両の制御方法。 - 請求項8に記載のハイブリッド車両の制御方法において、
前記経路情報は、目的地までの経路における高速道路の割合、走行時間帯、渋滞状況、および路面の勾配情報のいずれか一つ以上である、
ハイブリッド車両の制御方法。 - 請求項1から9のいずれかに記載のハイブリッド車両の制御方法において、
前記第1走行可能距離は、
前記ドライバの前記要求出力が前記発電機の最大発電出力より小さい場合、および、走行に使用可能な前記バッテリの電力がなくなるまでの時間が前記発電機の発電に用いる前記燃料が無くなるまでの時間よりも長い場合の少なくともいずれか一方の場合には、前記バッテリの充電残量から定まる走行可能距離と、前記燃料の残量の全てを用いて発電することによって得られる電力量から定まる走行可能距離と、を加算して算出され、
前記ドライバの前記要求出力が前記発電機の最大発電出力より大きい場合であって、走行に使用可能な前記バッテリの電力がなくなるまでの時間が前記発電機の発電に用いる前記燃料が無くなるまでの時間以下である場合には、前記要求出力に対する前記発電機の発電出力の不足分と、前記バッテリの残充電量から定まる走行可能距離が算出される、
ハイブリッド車両の制御方法。 - バッテリの電力と発電機で発電した電力とを駆動装置に供給するハイブリッド車両の制御装置において、
ドライバの要求に基づいて前記駆動装置の走行負荷を推定する走行負荷推定部と、
前記バッテリの充電残量と前記発電機の駆動に用いる燃料残量とに基づいて、推定された前記走行負荷を満足した状態で走行可能な第1走行可能距離を算出する第1走行可能距離算出部と、
ドライバの要求に基づいて要求走行距離を推定する要求走行距離推定部と、
前記第1走行可能距離と前記要求走行距離とに基づいて、必要なエネルギ補充操作をドライバに告知する告知部と、を備える、
ハイブリッド車両の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780093792.3A CN110997396B (zh) | 2017-08-10 | 2017-08-10 | 混合动力车辆的控制方法及控制装置 |
EP17920824.4A EP3666583B1 (en) | 2017-08-10 | 2017-08-10 | Method and device for controlling hybrid vehicle |
US16/636,368 US10994719B2 (en) | 2017-08-10 | 2017-08-10 | Method and device for controlling hybrid vehicle |
PCT/JP2017/029175 WO2019030911A1 (ja) | 2017-08-10 | 2017-08-10 | ハイブリッド車両の制御方法及び制御装置 |
JP2019535550A JP6922986B2 (ja) | 2017-08-10 | 2017-08-10 | ハイブリッド車両の制御方法及び制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/029175 WO2019030911A1 (ja) | 2017-08-10 | 2017-08-10 | ハイブリッド車両の制御方法及び制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019030911A1 true WO2019030911A1 (ja) | 2019-02-14 |
Family
ID=65271942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029175 WO2019030911A1 (ja) | 2017-08-10 | 2017-08-10 | ハイブリッド車両の制御方法及び制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10994719B2 (ja) |
EP (1) | EP3666583B1 (ja) |
JP (1) | JP6922986B2 (ja) |
CN (1) | CN110997396B (ja) |
WO (1) | WO2019030911A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112224039A (zh) * | 2020-09-18 | 2021-01-15 | 盐城工学院 | 一种电动汽车增程器及控制方法 |
JP2021086650A (ja) * | 2019-11-25 | 2021-06-03 | 日産自動車株式会社 | 車両の制御方法および車両の制御装置 |
CN113335133A (zh) * | 2020-03-03 | 2021-09-03 | 本田技研工业株式会社 | 可行驶距离显示装置 |
EP4067153A4 (en) * | 2020-04-30 | 2023-01-25 | Great Wall Motor Company Limited | METHOD AND APPARATUS FOR VEHICLE RANGE DETERMINATION, AND DEVICE, COMPUTER PROGRAM AND MEDIA |
JP7566812B2 (ja) | 2022-03-29 | 2024-10-15 | 本田技研工業株式会社 | 燃料電池車両および予測方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111937270A (zh) * | 2018-03-29 | 2020-11-13 | 本田技研工业株式会社 | 混合式发动机发电机的控制装置 |
CN109895660B (zh) * | 2019-04-17 | 2024-07-12 | 上海汉翱新能源科技有限公司 | 一种燃料电池汽车多源控制器及控制方法 |
DE102020215679A1 (de) | 2020-12-10 | 2022-06-15 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zur Reichweitenkontrolle für ein Kraftfahrzeug mit einem Verbrennungsantrieb oder zusätzlichem Elektroantrieb |
CN114683876A (zh) * | 2020-12-31 | 2022-07-01 | 宝能汽车集团有限公司 | 增城器的控制方法、装置及增程式电动汽车 |
CN112959922B (zh) * | 2021-02-05 | 2022-09-23 | 浙江吉利控股集团有限公司 | 一种控制方法、装置及计算机存储介质 |
CN113002370B (zh) * | 2021-04-16 | 2022-06-21 | 吉林大学 | 一种燃料电池汽车实时能量管理控制方法 |
US11827110B1 (en) | 2021-05-24 | 2023-11-28 | Mark Ogram | Protective system for a rechargeable battery |
US11220186B1 (en) | 2021-05-24 | 2022-01-11 | Mark Ellery Ogram | Range enhancing mechanism |
US11745602B2 (en) | 2021-05-24 | 2023-09-05 | Mark Ogram | Electric cargo trucks |
US11654781B2 (en) | 2021-05-24 | 2023-05-23 | Mark Ogram | Locomotive assist |
US11858361B2 (en) | 2021-05-24 | 2024-01-02 | Mark Ogram | Supplemental battery for an electric vehicle |
DE102021004752A1 (de) | 2021-09-21 | 2023-03-23 | Daimler Truck AG | Verfahren zur Ermittlung einer Reichweite eines elektrisch angetriebenen Fahrzeugs mit einem Hochvoltenergiespeicher und einem Brennstoffzellensystem |
KR20230160462A (ko) * | 2022-05-17 | 2023-11-24 | 주식회사 에이젠글로벌 | e-모빌리티 배터리 가치 판단 결과를 기반으로 중고 배터리 보증 보험 상품을 제공하는 방법 및 이러한 방법을 수행하는 장치 |
DE102022210297A1 (de) | 2022-09-28 | 2024-03-28 | Psa Automobiles Sa | Verfahren zur Reichweitenvorhersage |
US20240208368A1 (en) * | 2022-12-21 | 2024-06-27 | Wiggins Lift Co., Inc. | Electric vehicle employing fuel cells and rechargeable batteries |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011114486A1 (ja) * | 2010-03-18 | 2011-09-22 | トヨタ自動車株式会社 | 電気駆動式車両 |
JP2012101616A (ja) | 2010-11-09 | 2012-05-31 | Denso Corp | シリーズハイブリッド車両の制御装置 |
JP2013152149A (ja) * | 2012-01-25 | 2013-08-08 | Mitsubishi Motors Corp | ナビゲーション装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004063205A (ja) * | 2002-07-26 | 2004-02-26 | Nissan Motor Co Ltd | 燃料電池車両 |
JP4591487B2 (ja) * | 2007-08-24 | 2010-12-01 | トヨタ自動車株式会社 | ハイブリッド車両、ハイブリッド車両の告知方法およびその告知方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 |
FR2923187B1 (fr) * | 2007-11-05 | 2009-11-13 | Renault Sas | Procede de gestion de l'energie dans un vehicule automobile |
JP2013072804A (ja) * | 2011-09-28 | 2013-04-22 | Equos Research Co Ltd | 電動駆動車両 |
CN103419675B (zh) * | 2013-09-05 | 2015-12-09 | 安徽江淮汽车股份有限公司 | 一种增程式电动汽车的运行方法 |
US9476719B2 (en) * | 2014-08-29 | 2016-10-25 | Ford Global Technologies, Llc | Route-based distance to empty calculation for a vehicle |
EP3173304A1 (de) * | 2015-11-25 | 2017-05-31 | Magna Steyr Fahrzeugtechnik AG & Co KG | Verfahren zur ermittlung einer fahrtroute |
CN106915260B (zh) * | 2017-03-24 | 2019-03-29 | 潍柴动力股份有限公司 | 一种增程式电动汽车续航里程计算及显示系统 |
CN106965684B (zh) * | 2017-03-24 | 2020-06-26 | 潍柴动力股份有限公司 | 一种应用于增程器的控制方法和系统 |
-
2017
- 2017-08-10 JP JP2019535550A patent/JP6922986B2/ja active Active
- 2017-08-10 EP EP17920824.4A patent/EP3666583B1/en active Active
- 2017-08-10 WO PCT/JP2017/029175 patent/WO2019030911A1/ja unknown
- 2017-08-10 CN CN201780093792.3A patent/CN110997396B/zh active Active
- 2017-08-10 US US16/636,368 patent/US10994719B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011114486A1 (ja) * | 2010-03-18 | 2011-09-22 | トヨタ自動車株式会社 | 電気駆動式車両 |
JP2012101616A (ja) | 2010-11-09 | 2012-05-31 | Denso Corp | シリーズハイブリッド車両の制御装置 |
JP2013152149A (ja) * | 2012-01-25 | 2013-08-08 | Mitsubishi Motors Corp | ナビゲーション装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021086650A (ja) * | 2019-11-25 | 2021-06-03 | 日産自動車株式会社 | 車両の制御方法および車両の制御装置 |
JP7371456B2 (ja) | 2019-11-25 | 2023-10-31 | 日産自動車株式会社 | 車両の制御方法および車両の制御装置 |
CN113335133A (zh) * | 2020-03-03 | 2021-09-03 | 本田技研工业株式会社 | 可行驶距离显示装置 |
JP2021141673A (ja) * | 2020-03-03 | 2021-09-16 | 本田技研工業株式会社 | 走行可能距離表示装置 |
JP7010985B2 (ja) | 2020-03-03 | 2022-01-26 | 本田技研工業株式会社 | 走行可能距離表示装置 |
CN113335133B (zh) * | 2020-03-03 | 2024-05-07 | 本田技研工业株式会社 | 可行驶距离显示装置 |
EP4067153A4 (en) * | 2020-04-30 | 2023-01-25 | Great Wall Motor Company Limited | METHOD AND APPARATUS FOR VEHICLE RANGE DETERMINATION, AND DEVICE, COMPUTER PROGRAM AND MEDIA |
CN112224039A (zh) * | 2020-09-18 | 2021-01-15 | 盐城工学院 | 一种电动汽车增程器及控制方法 |
JP7566812B2 (ja) | 2022-03-29 | 2024-10-15 | 本田技研工業株式会社 | 燃料電池車両および予測方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3666583B1 (en) | 2022-02-02 |
EP3666583A1 (en) | 2020-06-17 |
JPWO2019030911A1 (ja) | 2020-08-06 |
CN110997396A (zh) | 2020-04-10 |
US20200164854A1 (en) | 2020-05-28 |
EP3666583A4 (en) | 2020-07-29 |
JP6922986B2 (ja) | 2021-08-18 |
CN110997396B (zh) | 2021-04-27 |
US10994719B2 (en) | 2021-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110997396B (zh) | 混合动力车辆的控制方法及控制装置 | |
JP4906164B2 (ja) | 地図表示装置、地図表示方法及びコンピュータプログラム | |
CN102971169B (zh) | 车辆 | |
RU2434767C1 (ru) | Гибридное транспортное средство, способ уведомления пользователя для гибридного транспортного средства | |
JP5656736B2 (ja) | 車両および車両の制御方法 | |
US10112597B2 (en) | Automatic drive mode selection | |
JP7196527B2 (ja) | ハイブリッド車両の走行距離演算方法及び走行距離演算装置 | |
JP6597592B2 (ja) | 電動車両 | |
CN109532560B (zh) | 混合动力汽车的控制方法、设备、存储介质及装置 | |
KR20220066026A (ko) | 전기자동차의 주행 모드에 따른 주행 가능 거리 예측 장치 및 방법 | |
JP2009254145A (ja) | 燃料電池車両 | |
JP6922985B2 (ja) | ハイブリッド車両の制御方法及び制御装置 | |
JP5930018B2 (ja) | 車両および車両用制御方法 | |
JP2014004912A (ja) | ハイブリッド自動車の制御装置 | |
JP2013207847A (ja) | 車両の制御装置およびそれを備える車両 | |
JP2014108641A (ja) | ハイブリッド車両の制御装置 | |
EP3725576B1 (en) | Fuel economy display control method and fuel economy display control system | |
US11628820B2 (en) | Control system for vehicle | |
JP5472127B2 (ja) | 走行支援装置 | |
JP2023074396A (ja) | 走行支援装置 | |
JP2013139195A (ja) | 車両 | |
JP2014097708A (ja) | 走行環境推定装置およびその方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019535550 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017920824 Country of ref document: EP Effective date: 20200310 |