WO2019029745A1 - 一种编码方法、译码方法、装置和设备 - Google Patents

一种编码方法、译码方法、装置和设备 Download PDF

Info

Publication number
WO2019029745A1
WO2019029745A1 PCT/CN2018/100224 CN2018100224W WO2019029745A1 WO 2019029745 A1 WO2019029745 A1 WO 2019029745A1 CN 2018100224 W CN2018100224 W CN 2018100224W WO 2019029745 A1 WO2019029745 A1 WO 2019029745A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polarized
bit position
polarized channels
bit
Prior art date
Application number
PCT/CN2018/100224
Other languages
English (en)
French (fr)
Inventor
陈莹
张公正
罗禾佳
李榕
周悦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18844853.4A priority Critical patent/EP3657708B1/en
Publication of WO2019029745A1 publication Critical patent/WO2019029745A1/zh
Priority to US16/786,488 priority patent/US11265101B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/618Shortening and extension of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for rate matching.
  • Polar codes proposed by Turkish professor Arikan are the first codes that theoretically demonstrate Shannon capacity and have low coding and decoding complexity.
  • the Polar code is a linear block code whose coding matrix is G N and the encoding process is among them Is a binary line vector with a length of N (ie, the length of the mother code);
  • G N is an N ⁇ N matrix, and Defined as the Kronecker product of log 2 N matrices F 2 .
  • GN(A) is a submatrix obtained in the GN by those rows corresponding to the indices in the set A
  • GN(AC) is a submatrix obtained in the GN by those rows corresponding to the indices in the set AC.
  • the number of frozen bits is (NK), which is a known bit.
  • NK which is a known bit.
  • These freeze bits are usually set to 0, but the freeze bits can be arbitrarily set as long as the transceiver end pre-agreed.
  • the encoded output of the Polar code can be simplified to: Is a K ⁇ N matrix.
  • the construction process of the Polar code is a collection
  • the selection process determines the performance of the Polar code.
  • the construction process of the Polar code is generally: according to the mother code length N, it is determined that there are a total of N polarization channels, corresponding to N rows of the coding matrix, and the reliability of the polarization channel is calculated, and the top K polarization channels with the highest reliability are obtained.
  • the index is the element of set A, and the index corresponding to the remaining (NK) polarized channels is used as the index set of the frozen bits.
  • Set A determines the position of the information bits, the set The position of the frozen bit is determined.
  • the original Polar code (parent code) has a code length of 2, which is an integer power of 2, and in practice, a Polar code of arbitrary code length needs to be implemented by rate matching.
  • the prior art implements rate matching using a puncture or shortening scheme.
  • the mother code exceeding the target code length is always punctured or shortened to reach the target code length, and the padding is restored to the mother code length.
  • the rate matching method of directly punching/shortening the mother code may result in performance loss.
  • the present application provides a rate matching method and apparatus for overcoming performance loss caused by the punching/shortening process.
  • the present invention provides a method for rate matching, comprising: a transmitting device that uses a polar code Polar encoding to obtain a first encoding sequence of length N, wherein the serial number of the polarized channel may be 0 to N-1;
  • the transmitting device determines the P1 bit positions that are punctured, and performs puncturing at the P1 bit positions in the first coding sequence to obtain a coded bit after the rate matching; wherein the punctured P1
  • the present invention provides a transmitting apparatus, including: an encoding unit, configured to obtain a first encoding sequence of length N by using a polar code Polar encoding, where the serial number of the polarized channel may be 0 to N-1.
  • a rate matching unit configured to determine a P1 bit position to be punctured, and perform puncturing at the P1 bit positions in the first coding sequence to obtain a coded bit after the rate matching; wherein the being beaten
  • the P1 bit positions of the holes belong to bit positions 0 to P T1 -1, P T1 to 3N/8-1, and/or N/2 to 5N/8-1 polarization channels, and P T1 is punctured.
  • a bit position number threshold, P T1 ⁇ N/4;
  • a transmitting unit configured to transmit the coded bit after the rate matching.
  • the sending device may be a chip or an integrated circuit.
  • the sending device comprises: a memory for storing a program; a processor, the program for executing the memory, when When the program is executed, the transmitting device may implement the method as described in the first aspect and any of the possible designs of the first aspect.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the transmitting device when some or all of the functions are implemented by software, the transmitting device includes a processor.
  • a memory for storing a program is located outside the transmitting device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • P T1 is N/16, N/8, 3N/16, 7N/32, 5N/32, or 3N/32.
  • the punctured P1 bit positions are bit positions corresponding to the 0th to P T1 -1 polarized channels, and the P T1 ⁇ 3N/8 -1, and/or the bit position corresponding to the P1-P T1 polarized channel with the lowest polarization channel reliability in the N/2 ⁇ 5N/8-1 polarized channel; or, the punctured P1 bit
  • the bit position corresponding to the 0th to P T1 -1 polarized channel, and the S1 group polarized channel including the P T1 to 3N/8-1, and/or N/2 to 5N/8-1 polarized channels a bit position corresponding to the P1-P T1 polarized channel included in the K1 group with the lowest reliability; or the P1 bit position of the punctured bit is the bit position corresponding to the 0th to P T1 -1 polarized channel
  • the number of polarized channels included in each group of the S1 group is (N/2-P T1 /S1; or, if the value (N/2-P T1 ) is not divisible by S1, the number of sets of polarized channels in the S1 group is: (N/2-P T1 )-floor ((N/2-P T1 )/S1)*(S1-1) or (N/2-P T1 )-ceil((N/2-P T1 )/S1)*(S1-1), other S1
  • the number of polarized channels included in each group of -1 group is: floor((N/2-P T1 )/S1) or ceil((N/2-P T1 )/S1), floor(i) Rounding i down, ceil(j) means rounding up j; or, if the value (N/2-P T1 ) is not divisible by S1, the polarized
  • the punctured bit position is a bit position corresponding to the 0th to P T1 -1 polarized channels, and all polarizations in the K1 - K n1 group having the lowest reliability among the K1 groups a bit position corresponding to the channel, and a bit position corresponding to (P1-P T1 -P n1 ) polarized channels in the most reliable K n1 group in the K1 group; wherein the K n1 is greater than or equal to 0 and less than or equal to In the K1, the P n1 is the number of all the polarized channels in the K1-K n1 group, and the (P1-P T1 -P n1 ) polarized channels are in accordance with the K n1 group.
  • the punctured P1 bit positions are bit positions corresponding to the 0th to P1-1th polarized channels.
  • an embodiment of the present invention provides a method for rate matching, including: a transmitting device uses a polar code Polar coding to obtain a first coding sequence of length N, where a sequence number of the polarized channel may be 0 to N-1.
  • the transmitting device determines the shortened P2 bit positions, and performs shortening to obtain the rate-matched coded bits in the P2 bit positions in the first coding sequence; wherein the shortened P2 bits
  • the sending device may be a chip or an integrated circuit.
  • the sending device comprises: a memory for storing a program; a processor, the program for executing the memory, when When the program is executed, the transmitting device may implement the method as described in the first aspect and any of the possible designs of the first aspect.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the transmitting device when some or all of the functions are implemented by software, the transmitting device includes a processor.
  • a memory for storing a program is located outside the transmitting device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • P T2 is N/16, N/8, 3N/16, 7N/32, 5N/32, or 3N/32.
  • the shortened P2 bit positions are bit positions corresponding to the N-1th to NP T2 polarized channels, and the NP T2 -1 to 5N/ 8, and/or the bit position corresponding to the P2-P T2 polarized channel with the highest polarization channel reliability in the N/2-1 ⁇ 3N/8 polarized channel; or the shortened P2 bit position is The bit position corresponding to the N-1 to NP T2 polarized channel and the S3 group polarized channel including the NP T2 -1 to 5N/8, and/or N/2-1 to 3N/8 polarized channels are reliable The bit position corresponding to the P2-P T2 polarization channels included in the highest K3 group; or the shortened P2 bit positions are bit positions corresponding to the N-1 to NP T2 polarization channels, and Corresponding to P2-P T2 polarized channels included in the K4 group with the highest code among the S4 group polarized channels of the NP T2
  • the number of polarized channels included in each group of the S3 group is (N/2-P T2 /S3; or, if the value (N/2-P T2 ) is not divisible by the S3, the number of sets of polarized channels in the S3 group is: (N/2-P T2 )-floor ((N/2-P T2 )/S3)*(S3-1) or (N/2-P T2 )-ceil((N/2-P T2 )/S3)*(S3-1), other S3
  • the number of polarized channels included in each group of -1 group is: floor((N/2-P T2 )/S3) or ceil((N/2-P T2 )/S3), floor(i) Rounding down i, ceil(j) means rounding up j; or, if the value (N/2-P T2 ) is not divisible by S3, the polar
  • the shortened bit position is a bit position corresponding to the N-1 ⁇ NP T2 polarized channel, and all the polarized channels in the K3-K n3 group with the highest reliability in the K3 group.
  • the P n3 is the number of all polarized channels in the K3-K n3 group, and the (P2-P T2 -P n3 ) polarized channels are selected from the K n3 group in a certain order.
  • the shortened bit position is the Nth a bit position corresponding to a -1 to NP T2 polarized channel, a bit position corresponding to all polarized channels in the K4-K n4 group having the highest code weight in the K4 group, and a K n4 having the lowest code weight in the K4 group a bit position corresponding to (P2-P T2 -P n4 ) polarized channels in the group, wherein the K n4 is greater than or equal to 0 and less than or equal to K4, and the P n4 is all polarizations in the K4-K n4 group channel
  • the number of (P2-P T2 - P n4 ) polarized channels may be selected from the K n4 group according to the polarization channel number from high to low, or
  • a communication system comprising a transmitting device and a receiving device, the transmitting device being capable of performing the method as described in the first aspect above and its possible design, or performing the third aspect as described above It is possible to design the method described.
  • a sixth aspect a computer storage medium storing a computer program comprising instructions for performing the method of any of the first aspect and any of the possible aspects of the first aspect, or The instructions of the method of any of the third aspect and any of the possible aspects of the second aspect are performed.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the method described in the above aspects.
  • FIG. 1 is a schematic diagram of a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic diagram of a basic process of wireless communication according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of a Polar code according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a CA Polar code according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a PC Polar code according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of polar code encoding and rate matching according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a rate matching method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a sending apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another sending apparatus according to an embodiment of the present invention.
  • FIGS. 10a and 10b are schematic diagrams of another transmitting apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the wireless communication system may include at least one network device 11 that communicates with one or more terminals 10.
  • the network device may be a base station, or may be a device integrated with a base station controller, or may be another device having similar communication functions.
  • the network device can be connected to a core network device.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrowband Internet of Things system (English: Narrow Band-Internet of Things, referred to as NB-IoT), and a global mobile communication system (English: Global System) For Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (English: Code Division Multiple Access, CDMA2000 for short), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution ( English: Long Term Evolution (LTE) and the three major application scenarios of next-generation 5G mobile communication systems, eMBB, URLLC and eMTC.
  • GSM Global System
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • eMBB next-generation 5
  • the network device is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the network device may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In the system (English: 3rd Generation, 3G for short), it is called Node B (English: Node B).
  • the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a network device or a base station or a BS.
  • the terminals involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal may be an MS (English: Mobile Station), a subscriber unit (English: subscriber unit), a cellular phone (English: cellular phone), a smart phone (English: smart phone), a wireless data card, a personal digital assistant (English: Personal Digital Assistant, referred to as: PDA) computer, tablet computer, wireless modem (English: modem), handheld device (English: handset), laptop (English: laptop computer), machine type communication (English: Machine Type Communication , referred to as: MTC) terminal.
  • MS International: Mobile Station
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • tablet computer tablet computer
  • wireless modem English: modem
  • handheld device English: handset
  • laptop English: laptop computer
  • machine type communication English: Machine Type Communication
  • the network device in FIG. 1 communicates with the terminal using wireless technology.
  • the network device sends a signal, it is the transmitting end.
  • the network device receives the signal, it is the receiving end; the terminal is also the same.
  • the terminal sends a signal, it is the transmitting end.
  • the terminal receives the signal, it is the receiving end. .
  • the 2 is a basic flow of wireless communication.
  • the source is sequentially transmitted after source coding, channel coding, rate matching, and modulation mapping.
  • the information is outputted by demapping demodulation, de-rate matching, channel decoding, and source decoding.
  • the channel coding code can use a Polar code. Since the code length of the original Polar code (parent code) is an integer power of 2, in practical applications, a Polar code of arbitrary code length needs to be implemented by rate matching.
  • the sender performs rate matching after channel coding to achieve an arbitrary target code length, and performs de-rate matching on the receiving end before channel decoding.
  • the basic process of the wireless communication also includes additional processes (for example, precoding and interleaving), and since these additional processes are common knowledge to those skilled in the art, they are not enumerated.
  • Polar coding includes: Airkan traditional Polar encoding, CRC (Chinese: Cyclic Redundancy Check), Polar (CRC-aided polar) encoding, PC (Chinese: Parity, English: Parity Check) Polar encoding and PC-CRC assisted Polar encoding (PC-CA polar).
  • CRC Cyclic Redundancy Check
  • PC Choinese: Parity, English: Parity Check
  • PC-CA polar PC-CA polar
  • the Polar coding and decoding method and the coding and decoding apparatus involved in the present application may be conventional Polar coding, CA Polar coding or PC Polar coding.
  • ⁇ u1, u2, u3, u5 ⁇ is set as a frozen bit set
  • ⁇ u4, u6, u7, u8 ⁇ is set as a set of information bits
  • 4 bits in the information vector of length 4 are set.
  • the information bits are encoded into 8-bit coded bits.
  • ⁇ u1, u2 ⁇ is set as a set of frozen bits
  • ⁇ u3, u4, u5, u6 ⁇ is set as a set of information bits
  • ⁇ u7, u8 ⁇ is a set of CRC bits.
  • the value of ⁇ u7, u8 ⁇ is obtained by CRC of ⁇ u3, u4, u5, u6 ⁇ .
  • ⁇ u1, u2, u5 ⁇ is set as a frozen bit set
  • ⁇ u3, u4, u6, u7 ⁇ is set as a set of information bits
  • ⁇ u7 ⁇ is a set of freeze bits of the PC.
  • the value of ⁇ u7 ⁇ is obtained by X0, u6 ⁇ XOR.
  • the most basic decoding method of the Polar code is SC (Successive Cancellation) decoding, but the performance of the algorithm is not ideal under a limited code length.
  • the subsequent SCL (Successive Cancellation List) decoding algorithm improves the decoding performance of short codes by the method of horizontal path expansion and CRC check selection.
  • the decoding algorithm can be obtained under the condition of considerable complexity.
  • the decoding method used in the embodiment of the present invention may be CA-SCL (English: CRC-Aided Successive Cancellation List), which is superior to the Turbo code, the LDPC code (Low-Density Parity-Check code, low-density parity check code). , Chinese: CRC-assisted serial offset list) decoding.
  • the CA-SCL decoding algorithm selects the path through which the CRC passes as the decoding output in the candidate path of the SCL decoding output by the CRC check.
  • FIG. 6 is a schematic flowchart of polar code encoding and rate matching according to an embodiment of the present invention.
  • the construction of the polar code is performed based on the code rate, the target code length, and the length of the information bits. That is, the index of the K most polarized channels having the highest reliability except the punctured or shortened position is determined as an element of the set A by the polar code constructing module according to the code rate, the target code length, and the length of the information bits.
  • the information bits are encoded according to the polar code coding matrix and the set A to generate a mother code. Then determine the appropriate rate matching method and perform rate matching operation on the mother codeword to obtain the target codeword.
  • factors such as the target code length, the encoding matrix of the polar code, or the set A may be considered.
  • the manner of determining the rate matching may be repeated. If the mother code length N is greater than the target code length M, the manner of determining the rate matching may be puncturing or shortening.
  • the rate matching manner in the embodiment of the present invention is: punching or shortening.
  • the code length of the mother code is N
  • the sequence number of the polarized channel may be 0 to N-1. If numbering starts from 1, the number of the polarized channel is 1 to N.
  • the embodiment of the present invention is described by taking the serial number of the polarized channel as 0 to N-1 as an example.
  • the information bits to be transmitted by the transmitting device are subjected to polar code encoding, the coded bits are punctured or shortened, and the punctured or shortened coded bits are transmitted to the receiving device.
  • the receiving device performs de-rate matching on the received soft information according to a rate matching manner.
  • Soft information is a probability value, that is, the probability that a coded bit passes a certain noise, is judged to be 0 at the receiving end, and has a probability of 1. If the punching method is used, the 0 is inserted after the corresponding punching position, and if the shorting method is used, a larger value (the specific symbol is decoded according to the actually encoded symbol) is inserted at the position of the corresponding short.
  • the puncturing or shortening of the coded bits by the transmitting device includes: determining a bit position that is punctured or shortened, and puncturing or shortening the determined punctured or shortened bit position.
  • the bit position to be punctured belongs to bit positions corresponding to 0th to P T1 -1, P T1 to 3N/8-1, and/or N/2 to 5N/8-1 polarization channels.
  • the shortened bit positions belong to bit positions corresponding to N-1 to NP T2 , NP T2 -1 to 5N/8, and/or N/2-1 to 3N/8 polarization channels.
  • the rate matching method is used for punching as an example.
  • the bit position of the punched bits is the bit position corresponding to the 0 to P T1 -1 polarized channel, and the P T1 to 3N/8-1, and/or N/2 to 5N/ 8-1 The bit position corresponding to the P1-P T1 polarized channel with the lowest polarization channel reliability in the polarized channel.
  • bit positions corresponding to the 0-7th polarized channel are punctured, and the remaining corresponding puncturing areas are P T1 ⁇ 3N/8-1, and/or N/2 ⁇ 5N/8- 1
  • the bit position corresponding to the polarized channel that is, the bit position corresponding to the ⁇ 8-11, 16-19 ⁇ polarized channel, and the reliability order of the ⁇ 8-11, 16-19 ⁇ polarized channel is ⁇ 8, 16,9,10,17,18,11,19 ⁇ .
  • the punch priority order is ⁇ 0,1,2...,7,8,16,9,10,17,18,11,19 ⁇
  • the bit position of the hole is ⁇ 0,1,2..., 7,8,16,9,10,17,18,11,19 ⁇
  • the bit position to be punched is the bit position corresponding to the 0 to P T1 -1 polarized channel, and includes the P T1 to 3N/8-1, and/or N/2 to 5N. /8-1
  • the reliability of the polarized channel of the S1 group corresponds to the reliability of the polarized channel of the 0th to S1-1 in the reliability of the polarized channel whose code length is the value of the 2 integer power closest to S1. If S1 is equal to 2 integer power, the value of 2 integer power closest to S1 is S1.
  • N/2-P T1 the number of polarized channels included in each group in the S1 group is (N/2-P T1 )/S1.
  • N 32
  • the number of sets of polarized channels in the S1 group is: (N/2-P T1 )-floor((N/2-P T1) ) /S1)*(S1-1) or (N/2-P T1 )-ceil((N/2-P T1 )/S1)*(S1-1); corresponding to each of the other S1-1 groups
  • the number of polarized channels included in the group is: floor((N/2-P T1 )/S1) or ceil((N/2-P T1 )/S1).
  • Floor(i) means rounding down i
  • ceil(j) means rounding up j.
  • the number of polarized channels included in each group in the S1' group is ceil((N/2-P T1 )/S1), S1"
  • N 32
  • the number of polarized channels included in the K1 group is greater than or equal to P1-P T1 .
  • the punctured bit position is a bit position corresponding to the 0th to P T1 -1 polarized channel, and a bit position corresponding to all the polarized channels in the K1 - K n1 group having the lowest reliability among the K1 groups, and the K1 group The bit position corresponding to (P1-P T1 -P n1 ) polarized channels in the most reliable K n1 group.
  • K n1 is greater than or equal to 0 and less than or equal to K1. If the reliability of the K1 group is not repeated, K n1 may be equal to 1.
  • P1-P T1 - P n1 the number of polarized channels included in the K1 group.
  • K n1 the number of polarized channels included in the K1 group with the lowest reliability.
  • the (P1-P T1 -P n1 ) polarized channels may be selected in a certain order from the most reliable K n1 group in the K1 group, or randomly selected.
  • the bit position to be punched is the bit position corresponding to the 0 to P T1 -1 polarized channel, and includes the P T1 to 3N/8-1, and/or N/2 to 5N. /8-1
  • the number of polarized channels included in the S2 group is similar to that of S1. See the previous description, which is not repeated here.
  • the number of polarized channels included in the K2 group is greater than or equal to P1-P T1
  • the bit position of the punched bits is the bit position corresponding to the 0th to P T1 -1 polarized channel
  • the K-2 of the K2 group has the lowest code weight.
  • the bit positions corresponding to all the polarized channels in the K n2 group, and the bit positions corresponding to the (P1-P T1 -P n2 ) polarized channels in the K n2 group having the highest code weight in the K2 group.
  • K n2 is greater than or equal to 0 and less than or equal to K2.
  • P n2 is the number of all polarized channels in the K2-K n2 group with the lowest code weight.
  • the (P1-P T1 -P n2 ) polarized channels may be selected in a certain order from the K n2 group having the highest code weight in the K2 group, for example, selected from low to high according to the polarization channel number, or randomly selected.
  • the code weight is the row weight of the corresponding coding matrix.
  • the coded weights of the polarized channels ⁇ 0, 1, 2, 4, 3, 5, 6, 7 ⁇ are the same, and the code weights of these polarized channels are ⁇ 1, 2, 2, 4, 2, 4, 4 , 8 ⁇ , the priority order for punching is ⁇ 0, 1, 2, 4, 3, 5, 6, 7 ⁇ . If the number of polarized channels included in the K2 group is equal to P1-P T1 , the punctured bit position is the bit position corresponding to the 0th to P T1 -1 polarized channel, and all polarizations included in the K2 group The bit position corresponding to the channel.
  • the rate matching method is shortened as an example.
  • P T2 can be N/16, N/8, 3N/16, 7N/32, 5N/32, 3N/32. If the shortened number P2 is less than or equal to P T2 , the shortened bit position is the bit position corresponding to the N-1 -N-P2 polarized channel.
  • the shortened bit position is the bit position corresponding to the N-1 - NP T2 polarized channel, and the N/8 - NP T2 , and / or 3N / 8 ⁇ N / 2-1 pole
  • the shortened bit position is a bit position corresponding to the N-1 to NP T2 polarized channel, and includes the NP T2 -1 to 5N/8, and/or N/2-1 to 3N.
  • the reliability of the S3 group polarization channel corresponds to the reliability of the polarization channel of the 0th to S3-1 in the reliability of the polarization channel whose code length is the value of the 2 integer power closest to S3.
  • the number of polarized channels included in each group in the S3 group is (N/2-P T2 )/S3. If the value (N/2-P T2 ) is not divisible by S3, the number of sets of polarized channels in the S3 group is: (N/2-P T2 )-floor((N/2-P T2 )/ S3)*(S3-1) or (N/2-P T2 )-ceil((N/2-P T2 )/S3)*(S3-1); each of the corresponding other S3-1 groups includes The number of polarized channels is: floor((N/2-P T2 )/S3) or ceil((N/2-P T2 )/S3).
  • the number of polarized channels included in the K3 group is greater than or equal to P2-P T2 .
  • the shortened bit position is the bit position corresponding to the N-1th to NP T2 polarized channels, and the bit position corresponding to all the polarized channels in the K3-K n3 group with the highest reliability among the K3 groups, and the reliable in the K3 group.
  • K n3 is greater than or equal to 0 and less than or equal to K3.
  • the (P2-P T2 -P n3 ) polarized channels may be selected in a certain order from the least reliable K n3 group in the K3 group, or randomly selected.
  • the shortened bit position is a bit position corresponding to the N-1 to NP T2 polarized channel, and all the polarized channels included in the K3 group Corresponding bit position. or,
  • the shortened bit position is a bit position corresponding to the N-1 ⁇ NP T2 polarized channel, and includes the P T 2 ⁇ 3N/8-1, and/or N/2 ⁇ 5N/8 -1 bit position corresponding to P2-P T2 polarization channels included in the K4 group of the highest code of the S4 group polarization channel of the polarization channel.
  • the number of polarized channels included in the S4 group is described in the previous section and is not repeated here.
  • the number of polarized channels included in the K4 group is greater than or equal to P2-P T2 .
  • the shortened bit position is a bit position corresponding to the N-1th to NP T2 polarized channels, and a bit position corresponding to all the polarized channels in the K4- Kn4 group having the highest code weight in the K4 group, and the K4 group medium code
  • P n4 is the number of all polarized channels in the K4-K n4 group with the highest code weight.
  • the (P2-P T2 - P n4 ) polarized channels may be selected in a certain order from the K n4 group having the lowest code weight in the K4 group, for example, selected according to the polarization channel number from high to low, or randomly selected.
  • the code weight is the row weight of the corresponding coding matrix. If the number of polarized channels included in the K4 group is equal to P2-P T2 , the shortened bit position is a bit position corresponding to the N-1 to NP T2 polarized channel, and all the polarized channels included in the K4 group Corresponding bit position.
  • the embodiment of the present invention provides a rate matching method, as shown in FIG. 7, based on the description of the method for determining the bit position or the shortened bit position.
  • the method for rate matching provided by the implementation of the present invention includes:
  • Step 701 The transmitting device uses the polarity code Polar code to obtain a first code sequence of length N, where the sequence number of the polarized channel may be 0 to N-1;
  • serial number of the polarization signal is numbered from 0 as an example. It can also be numbered starting from 1, and will not be detailed here.
  • Step 703 The transmitting device determines a P1 bit position or a shortened P2 bit position, and performs punching or P2 in the P1 bit position in the first coding sequence.
  • the bit position is shortened to obtain a coded bit after the rate matching.
  • the P1 bit positions of the punctured bits belong to bit positions corresponding to 0th to P T1 -1, P T1 to 3N/8-1, and/or N/2 to 5N/8-1 polarization channels
  • the shortened P2 bit positions belong to the N-1th to NP T2 , NP T2 -1 to 5N/8, and / Or the bit position corresponding to the N/2-1 ⁇ 3N/8 polarization channel
  • Step 705 Send the coded bits after the rate matching.
  • the receiving device performs de-rate matching on the received soft information according to a rate matching manner.
  • the receiving device determines to determine the P1 bit positions that are punctured or the P2 bit positions that are shortened.
  • the specific determination manner is the same as the sending device, and the description is not repeated here. If the rate matching mode is a punching mode, the receiving device decodes after inserting 0 in the corresponding punched position; if the rate matching mode is shortened, the receiving device inserts a larger value in the corresponding shortened position (specific The symbols are decoded according to the actually encoded symbols).
  • the rate matching scheme provided by the embodiment of the present invention does not need to recalculate the reliability of the polarization channel corresponding to the coded bit after the rate matching, thereby reducing the complexity, overcoming the performance loss caused by the punching/shortening process, and improving the performance of the rate matching. .
  • a sending apparatus 800 for implementing a rate matching function according to an embodiment of the present invention.
  • the sending apparatus 800 includes:
  • the encoding unit 802 is configured to obtain a first encoding sequence of length N by using a polar code Polar encoding, where the serial number of the polarized channel may be 0 to N-1;
  • the rate matching unit 804 is configured to determine the P1 bit positions or the shortened P2 bit positions, and perform puncturing or P2 at the P1 bit positions in the first coding sequence.
  • the bit position is shortened to obtain a coded bit after the rate matching.
  • the sending unit 806 is configured to send the coded bits after the rate matching.
  • the method for transmitting the apparatus 800 is used to perform the method of the foregoing embodiment.
  • the foregoing coding unit and rate matching unit may be a chip or an integrated circuit, or the transmitting device may be a chip or an integrated circuit.
  • the embodiment of the present invention further provides a sending device, which may be implemented by hardware or by software.
  • a sending device When implemented by hardware, as shown in FIG. 9, the sending device includes:
  • An input interface circuit 9142 configured to acquire a bit to be encoded
  • Logic unit 9144 used to obtain a first code sequence of length N by using polar code Polar coding, where the sequence number of the polarized channel may be 0-N-1; for determining P1 bit positions of the punctured Or shortened P2 bit positions, punctured at the P1 bit positions in the first coding sequence or shortened at the P2 bit positions to obtain rate-matched coded bits;
  • Input interface circuit 9146 for transmitting the coded bits after the rate matching.
  • the foregoing sending apparatus may be used to perform the rate matching method shown in the method implementation.
  • the above sending device may be a chip or an integrated circuit.
  • the transmitting device When the transmitting device is implemented by software, as shown in Figures 10a and 10b, the transmitting device includes:
  • a memory 10042 configured to store a program
  • a processor 10044 configured to execute the program stored by the memory, when the program is executed,
  • the above memory 10042 may be a physically separate unit or may be integrated with the processor 10044.
  • the foregoing processor 10042 may be used to perform the method for performing rate matching as shown in the method embodiment.
  • the foregoing processor 10042 may be used to perform the method for performing rate matching as shown in the method embodiment.
  • the above sending device may be a terminal or a network device.
  • the terminal may further include a power source 1112 for providing power to various devices or circuits in the terminal; the terminal may further include an antenna 1110 for transmitting and receiving The uplink data output by the device is transmitted through a wireless signal, or the received wireless signal is output to the transceiver.
  • the terminal may further include one or more of an input unit 1114, a display unit 1116, an audio circuit 1118, a camera 1120 and a sensor 1122, and the audio circuit may include a speaker. 11182, microphone 11184 and so on.
  • the above functions are implemented in the form of software and sold or used as stand-alone products, they can be stored in a computer readable storage medium.
  • the part of the technical solution of the present application which contributes in essence or to the prior art, or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种速率匹配的方法和装置,用于克服打孔/缩短过程中导致的性能损失。该方法包括:发送装置采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;所述发送装置确定被打孔的P1个比特位置,在所述的第一编码序列中在所述P1个比特位置进行打孔得到速率匹配后的编码比特;其中,所述被打孔的P1个比特位置属于第0~PT1-1,PT1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,PT1为被打孔比特位置数目阈值,PT1<=N/4;发送所述速率匹配后的编码比特。

Description

一种编码方法、译码方法、装置和设备
本申请要求于2017年08月11日提交中国专利局、申请号为201710687048.8、申请名称为“一种速率匹配的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种速率匹配的方法和装置。
背景技术
通信系统通常采用信道编码提高数据传输的可靠性,以保证通信的质量。土耳其教授Arikan提出的极化码(Polar codes)是第一个理论上证明可以达到香农容量且具有低编译码复杂度的码。Polar码是一种线性块码,其编码矩阵为G N,编码过程为
Figure PCTCN2018100224-appb-000001
其中
Figure PCTCN2018100224-appb-000002
是一个二进制的行矢量,长度为N(即母码长度);G N是一个N×N的矩阵,且
Figure PCTCN2018100224-appb-000003
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。上述矩阵
Figure PCTCN2018100224-appb-000004
Polar码的编码过程中,
Figure PCTCN2018100224-appb-000005
中的一部分比特用来携带信息,称为信息比特,这些比特的索引的集合记作
Figure PCTCN2018100224-appb-000006
另外的一部分比特设置为收发端预先约定的固定值,称之为固定比特或冻结比特(frozen bits),其索引的集合用
Figure PCTCN2018100224-appb-000007
的补集
Figure PCTCN2018100224-appb-000008
表示。Polar码的编码过程相当于:
Figure PCTCN2018100224-appb-000009
这里,GN(A)是GN中由集合A中的索引 对应的那些行得到的子矩阵,GN(AC)是GN中由集合AC中的索引对应的那些行得到的子矩阵。
Figure PCTCN2018100224-appb-000010
Figure PCTCN2018100224-appb-000011
中的信息比特集合,信息比特个数为K;
Figure PCTCN2018100224-appb-000012
Figure PCTCN2018100224-appb-000013
中的冻结比特集合,冻结比特个数为(N-K),是已知比特。这些冻结比特通常被设置为0,但是只要收发端预先约定,冻结比特可以被任意设置。冻结比特设置为0时,Polar码的编码输出可简化为:
Figure PCTCN2018100224-appb-000014
是一个K×N的矩阵。
Polar码的构造过程即集合
Figure PCTCN2018100224-appb-000015
的选取过程,决定了Polar码的性能。Polar码的构造过程通常是,根据母码码长N确定共存在N个极化信道,分别对应编码矩阵的N个行,计算极化信道可靠度,将可靠度最高的前K个极化信道的索引作为集合A的元素,剩余(N-K)个极化信道对应的索引作为冻结比特的索引集合
Figure PCTCN2018100224-appb-000016
的元素。集合A决定了信息比特的位置,集合
Figure PCTCN2018100224-appb-000017
决定了冻结比特的位置。
从编码矩阵可以看出,原始Polar码(母码)的码长为2的整数次幂,在实际应用中需要通过速率匹配实现任意码长的Polar码。
现有技术采用打孔(puncture)或缩短(shorten)的方案实现速率匹配。现有技术在编码时总是通过对超过目标码长的母码进行打孔或缩短达到目标码长,译码时填充恢复至母码码长。对于母码中信息比特较多的情形,直接对母码进行打孔/缩短的速率匹配方式,会出现性能损失。
发明内容
有鉴于此,本申请提供一种速率匹配的方法和装置,用于克服打孔/缩短过程中导致的性能损失。
第一方面,本发明实施提供一种速率匹配的方法,包括:发送装置采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;所述发送装置确定被打孔的P1个比特位置,在所述的第一编码序列中在所述P1个比特 位置进行打孔得到速率匹配后的编码比特;其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;发送所述速率匹配后的编码比特。
第二方面,本发明实施提供一种发送装置,包括:编码单元,用于采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;速率匹配单元,用于确定被打孔的P1个比特位置,在所述的第一编码序列中在所述P1个比特位置进行打孔得到速率匹配后的编码比特;其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;发送单元,用于发送所述速率匹配后的编码比特。
可选的,所述发送装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述发送装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述发送装置可以实现如上述第一方面和第一方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述发送装置包括处理器。用于存储程序的存储器位于所述发送装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
在一种可能的设计中,P T1为N/16,N/8,3N/16,7N/32,5N/32,或者3N/32。
在一种可能的设计中,如果所述P1大于P T1,所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及第P T1~3N/8-1,和/或N/2~5N/8-1极化信道中极化信道可靠度最低的P1-P T1个极化信道对应的比特位置;或者,所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和 /或N/2~5N/8-1极化信道的S1组极化信道中可靠度最低的K1组中包含的P1-P T1个极化信道对应的比特位置;或者,所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S2组极化信道中码重最低的K2组中包含的P1-P T1个极化信道对应的比特位置。
在一种可能的设计中,如果值(N/2-P T1)可以被所述S1整除,所述S1组中每一组中包含的极化信道的个数为(N/2-P T1)/S1;或者,如果值(N/2-P T1)不可以被所述S1整除,所述S1组中一组包含极化信道的个数为:(N/2-P T1)-floor((N/2-P T1)/S1)*(S1-1)或(N/2-P T1)-ceil((N/2-P T1)/S1)*(S1-1),其他S1-1组中每一组包含的极化信道的个数为:floor((N/2-P T1)/S1)或ceil((N/2-P T1)/S1),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,如果值(N/2-P T1)不可以被所述S1整除,S1'组中每一组包含的极化信道的个数为ceil((N/2-P T1)/S1),S1"组中每一组包含的极化信道个数为floor((N/2-P T1)/S1),其中S2"=ceil((N/2-P T1)/S1)*S1-(N/2-P T1),S1'=S1-S1"。
在一种可能的设计中,所述被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和所述K1组中可靠度最低的K1-K n1组中全部极化信道对应的比特位置,以及所述K1组中可靠度最高的K n1组中的(P1-P T1-P n1)个极化信道对应的比特位置;其中,所述K n1大于等于0小于等于所述K1,所述P n1为所述K1-K n1组中全部极化信道的个数,所述(P1-P T1-P n1)个极化信道为从所述K n1组中按照一定顺序选取,或者随机选择,如果K1组中包含的极化信道的个数等于P1-P T1,K n1等于0,(P1-P T1-P n1)=0;或者,所述被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和所述K2组中码重最低的K2-K n2组中全部极化信道对应的比特位置,以及所述K2组中码重最高的K n2组中的(P1-P T1-P n2)个极化信道对应的比特位置;其中,所述K n2大于等于0小于等于所述K2,所述P n2为所述K2-K n2组中全部极化信道的个数,所述(P1-P T1-P n2)个极化信道为从所述 K n2组中按照按照极化信道序号从低到高选取的,或者随机选择,如果K2组中包含的极化信道的个数等于P1-P T1,K n2等于0,(P1-P T1-P n2)=0。
在一种可能的设计中,如果所述P1小于等于P T1,所述被打孔的P1个比特位置为第0~P1-1极化信道对应的比特位置。
第三方面,本发明实施例提供一种速率匹配的方法,包括:发送装置采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;所述发送装置确定被缩短的P2个比特位置,在所述的第一编码序列中在所述P2个比特位置进行缩短得到速率匹配后的编码比特;其中,所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4;发送所述速率匹配后的编码比特。
第四方面,本发明实施例提供一种发送装置,包括:编码单元,用于采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;速率匹配单元,用于确定被缩短的P2个比特位置,在所述的第一编码序列中在所述P2个比特位置进行缩短得到速率匹配后的编码比特;其中,所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4;发送单元,用于发送所述速率匹配后的编码比特。
可选的,所述发送装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述发送装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述发送装置可以实现如上述第一方面和第一方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述发送装置包括处理器。用于存储程序的存储器位于所述发送装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
在一种可能的设计中,P T2为N/16,N/8,3N/16,7N/32,5N/32,或者3N/32。
在一种可能的设计中,如果所述P2大于P T2,所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道中极化信道可靠度最高的P2-P T2个极化信道对应的比特位置;或者,所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S3组极化信道中可靠度最高的K3组中包含的P2-P T2个极化信道对应的比特位置;或者,所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S4组极化信道中码最最高的K4组中包含的P2-P T2个极化信道对应的比特位置。
在一种可能的设计中,如果值(N/2-P T2)可以被所述S3整除,所述S3组中每一组中包含的极化信道的个数为(N/2-P T2)/S3;或者,如果值(N/2-P T2)不可以被所述S3整除,所述S3组中一组包含极化信道的个数为:(N/2-P T2)-floor((N/2-P T2)/S3)*(S3-1)或(N/2-P T2)-ceil((N/2-P T2)/S3)*(S3-1),其他S3-1组中每一组包含的极化信道的个数为:floor((N/2-P T2)/S3)或ceil((N/2-P T2)/S3),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,如果值(N/2-P T2)不可以被所述S3整除,S3'组中每一组包含的极化信道的个数为ceil((N/2-P T2)/S3),S3"组中每一组包含的极化信道个数为floor((N/2-P T2)/S3),其中S3"=ceil((N/2-P T2)/S3)*S3-(N/2-P T2),S3'=S3-S3"。
在一种可能的设计中,所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K3组中可靠度最高的K3-K n3组中全部极化信道对应的比特位置,以及 所述K3组中可靠度最低的K n3组中的(P2-P T2-P n3)个极化信道对应的比特位置,其中,所述K n3大于等于0小于等于K3,所述P n3为所述K3-K n3组中全部极化信道的个数,所述(P2-P T2-P n3)个极化信道为从所述K n3组中按照一定顺序选取,或者随机选择,如果K3组中包含的极化信道的个数等于P2-P T2,K n3等于0,(P2-P T2-P n3)=0;或者,所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K4组中码重最高的K4-K n4组中全部极化信道对应的比特位置,以及所述K4组中码重最低的K n4组中的(P2-P T2-P n4)个极化信道对应的比特位置,其中,所述K n4大于等于0小于等于K4,所述P n4为所述K4-K n4组中全部极化信道的个数,所述(P2-P T2-P n4)个极化信道可以从所述K n4组中按照按照极化信道序号从高到低选取的,或者随机选择,如果K4组中包含的极化信道的个数等于P2-P T2,K n4于等于0,(P2-P T2-P n4)=0。
在一种可能的设计中,如果所述P2小于等于P T2,所述被缩短的P2个比特位置为第N-1~N-P2极化信道对应的比特位置。第五方面,提供了一种通信系统,该通信系统包括发送装置和接收装置,所述发送装置可以执行如上述第一方面及其可能的设计所述的方法,或者执行如上述第三方面及其可能的设计所述的方法。
第六方面,提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行第一方面和第一方面的任一可能设计中任一种所述的方法的指令,或者用于执行第三方面和第二方面的任一可能设计中任一种所述的方法的指令。
第七方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本发明实施例适用的无线通信系统的示意图。
图2为本发明实施例的无线通信的基本流程示意图。
图3为本发明实施例的Polar码的构造示图。
图4为本发明实施例的CA Polar码的构造示图。
图5为本发明实施例的PC Polar码的构造示图。
图6为本发明实施例中polar码编码和速率匹配的流程示意图。
图7为本发明实施例提供一种的速率匹配方法流程图。
图8为本发明实施例提供一种的发送装置示意图。
图9为本发明实施例提供另一种的发送装置示意图。
图10a和10b为本发明实施例提供另一种的发送装置示意图。
图11为本发明实施例的终端结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
图1本申请实施例所适用的无线通信系统,该无线通信系统中可以包括至少一个网络设备11,该网络设备11与一个或多个终端10进行通信。该网络设备可以是基站,也可以是基站与基站控制器集成后的设备,还可以是具有类似通信功能的其它设备。该网络设备可以连接到核心网设备。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(英文:Narrow Band-Internet of Things,简称:NB-IoT)、全球移动通信系统(英文:Global System for Mobile Communications,简称:GSM)、增强型数据速率GSM演进系统(英文:Enhanced Data rate for GSM Evolution,简称:EDGE)、宽带码分多址系统(英文:Wideband Code Division Multiple Access,简称:WCDMA)、码分多址2000系统(英文:Code Division Multiple Access,简称:CDMA2000)、时分同步码分多址系统(英文:Time Division-Synchronization Code Division Multiple Access,简称:TD-SCDMA),长期演进系统(英文:Long Term Evolution,简称:LTE)以 及下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC。
本申请实施例中,所述网络设备是一种部署在无线接入网中为终端提供无线通信功能的装置。所述网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(英文:3rd Generation,简称:3G)系统中,称为节点B(英文:Node B)等。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为网络设备或基站或BS。
本申请实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端可以是MS(英文:Mobile Station)、用户单元(英文:subscriber unit)、蜂窝电话(英文:cellular phone)、智能电话(英文:smart phone)、无线数据卡、个人数字助理(英文:Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(英文:modem)、手持设备(英文:handset)、膝上型电脑(英文:laptop computer)、机器类型通信(英文:Machine Type Communication,简称:MTC)终端等。
图1中的网络设备与终端之间采用无线技术进行通信。当网络设备发送信号时,其为发送端,当网络设备接收信号时,其为接收端;终端也是一样的,当终端发送信号时,其为发送端,当终端接收信号时,其为接收端。
图2是无线通信的基本流程,在发送端,信源依次经过信源编码、信道编码、速率匹配和调制映射后发出。在接收端,依次通过解映射解调、解速率匹配、信道译码和信源译码输出信宿。信道编译码可以采用Polar码,由于原始Polar码(母码)的码长为2的整数次幂,在实际应用中需要通过速率匹配实现任意码长的Polar码。发送 端在信道编码后进行速率匹配实现任意的目标码长,在接收端,信道解码之前先进行解速率匹配。需要说明的是,无线通信的基本流程还包括额外流程(例如:预编码和交织),鉴于这些额外流程对于本领域技术人员而言是公知常识,不再一一列举。
为了提升Polar码的性能,通常对信息比特集合先进行校验预编码,再进行Polar编码。目前,Polar编码包括:Airkan传统Polar编码,CRC(中文:循环冗余校验,英文:Cyclic Redundancy Check)辅助Polar(CRC-aided polar)编码,PC(中文:奇偶校验,英文:Parity Check)Polar编码和PC-CRC辅助的Polar编码(PC-CA polar)。本申请中涉及的Polar编码译码方法和编码译码装置,可以采用传统Polar编码、CA Polar编码或PC Polar编码。
对图3中传统Polar编码说明,{u1,u2,u3,u5}设置为冻结比特集合,{u4,u6,u7,u8}设置为信息比特集合,将长度为4的信息向量中的4位信息比特编码成8位编码比特。
对图4中CA Polar编码说明,{u1,u2}设置为冻结比特集合,{u3,u4,u5,u6}设置为信息比特集合,{u7,u8}为CRC比特集合。其中,{u7,u8}的值由{u3,u4,u5,u6}做CRC得到。
对图5中PC Polar编码说明,{u1,u2,u5}设置为冻结比特集合,{u3,u4,u6,u7}设置为信息比特集合,{u7}为PC冻结比特集合。其中,{u7}的值由{u3,u6}异或得到。
Polar码最基本的译码方法是SC(Successive Cancellation,串行抵消)译码,但该算法在有限码长下性能并不理想。后续提出的SCL(Successive Cancellation List,串行抵消列表)译码算法通过横向路径扩展以及CRC校验选择的方法提高了短码的译码性能,该译码算法能够在复杂度相当的情况下获得比Turbo码、LDPC码(Low-Density Parity-Check码,低密度奇偶校验码)更优的性能,本发明实施例采用的译码方法可以为CA-SCL(英文:CRC-Aided Successive Cancellation List,中文:CRC辅助的串行抵消列表)译码。CA-SCL译码算法通过CRC校验在SCL译码输出 的候选路径中选择CRC通过的路径作为译码输出。
图6为本发明实施例中polar码编码和速率匹配的流程示意图。首先,根据码率,目标码长以及信息比特的长度进行polar码的构造。也就是,根据根据码率,目标码长以及信息比特的长度通过polar码构造模块确定除打孔或缩短位置之外的可靠度最高的K个极化信道的索引作为集合A的元素。根据polar码编码矩阵以及集合A对信息比特进行编码,生成母码。然后确定的合适的速率匹配方式,并对母码码字进行速率匹配操作得到目标码字。确定速率匹配方式时,可以考虑目标码长,polar码的编码矩阵或集合A等因素。
如果母码码长N小于目标码长M时,确定速率匹配的方式可以为重复。如果母码码长N大于目标码长M时,确定速率匹配的方式可以为打孔或缩短(shorten)。本发明实施例中的速率匹配方式为:打孔或缩短(shorten)。
本发明实施例中母码码长为N,极化信道的序号可以为0~N-1。如果从1开始编号,极化信道的序号为1~N。本发明实施例以极化信道的序号为0~N-1为例进行说明。本发明实施例中,发送装置对待发送的信息比特进行polar码编码,对编码比特进行打孔或缩短,将打孔或缩短后的编码比特发送给接收装置。接收装置根据速率匹配方式对接收到的软信息进行解速率匹配。软信息是一种概率值,就是编码比特经过一定的噪声,在接收端被判为0的概率和1的概率。若采用打孔的方式则在相应的打孔位置插入0后进行译码,若采用shorten的方式则在相应shorten的位置插入一个较大的值(具体符号根据实际编码的符号)进行译码。
本发明实施例中,发送装置对对编码比特进行打孔或缩短包括:确定被打孔或被缩短的比特位置,对该确定的被打孔或被缩短的比特位置进行打孔或缩短。其中,被打孔的比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置。其中,P T1为被打孔比特位置数目阈值,该阈值可以为预设的。比如,P T1<=N/4。 被缩短的比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置。其中,P T2为被缩短比特位置数目阈值,该阈值可以为预设的。比如,P T2<=N/4。下边对被打孔比特位置,或者被缩短比特位置的确定过程具体进行说明。
以速率匹配方式为打孔为例进行说明。其中,P T1可以为N/16,N/8,3N/16,7N/32,5N/32,3N/32。如果打孔数目P1小于等于P T1,被打孔比特位置为第0~P1-1极化信道对应的比特位置。比如,码长N=32,P T1=N/4=8,当打孔数目P1小于等于8时,打孔优先级顺序为{0,1,2…,7},被打孔的比特位置为第{0,1,2…,7}极化信道对应的比特位置。
如果打孔数目P1大于P T1,被打孔比特位置为第0~P T1-1极化信道对应的比特位置,以及第P T1~3N/8-1,和/或N/2~5N/8-1极化信道中极化信道可靠度最低的P1-P T1个极化信道对应的比特位置。比如,码长N=32,P T1=N/4=8,极化信道的可靠度从低到高的排序为Q32={0,1,2,4,8,16,3,5,6,9,10,17,12,18,20,7,24,11,13,19,14,21,22,25,26,28,15,23,27,29,30,31}。当P1大于8时,除第0-7极化信道对应的比特位置被打孔外,剩余对应打孔区域为第P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,也就是第{8-11,16-19}极化信道对应的比特位置,第{8-11,16-19}极化信道的可靠度排序为{8,16,9,10,17,18,11,19}。打孔优先级顺序为{0,1,2…,7,8,16,9,10,17,18,11,19},则被打孔的比特位置为第{0,1,2…,7,8,16,9,10,17,18,11,19}中极化信道可靠度最低的P1个极化信道对应的比特位置。或者,
如果打孔数目P1大于P T1,被打孔比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S1组极化信道中可靠度最低的K1组中包含的P1-P T1个极化信道对应的比特位置。其中,S1组极化信道的可靠度对应于码长为最接近S1的2整数次幂的值的极化信道的可靠度中第0到S1-1 的极化信道的可靠度。如果S1等于2整数次幂,最接近S1的2整数次幂的值为S1。
其中,如果值(N/2-P T1)可以被S1整除,S1组中每一组中包含的极化信道的个数为(N/2-P T1)/S1。比如,N=32,P T1=N/4=8,S1=4,每组极化信道的数目为2。可以按照{8,16},{9,10},{17,18},{11,19}进行分组。码长为4的极化信道可靠度排序Q4={0,1,2,3},可以得到4组打孔组的优先级排序为{{8,16},{9,10},{17,18},{11,19}}。
或者,如果值(N/2-P T1)不可以被S1整除,S1组中一组包含极化信道的个数为:(N/2-P T1)-floor((N/2-P T1)/S1)*(S1-1)或(N/2-P T1)-ceil((N/2-P T1)/S1)*(S1-1);对应的其他S1-1组中每一组包含的极化信道的个数为:floor((N/2-P T1)/S1)或ceil((N/2-P T1)/S1)。floor(i)表示对i向下取整,ceil(j)表示对j向上取整。或者,如果值(N/2-P T1)不可以被S1整除,S1'组中每一组包含的极化信道的个数为ceil((N/2-P T1)/S1),S1"组中每一组包含的极化信道个数为floor((N/2-P T1)/S1)。其中S2"=ceil((N/2-P T1)/S1)*S1-(N/2-P T1),S1'=S1-S1"。比如,N=32,P T1=N/4=8,S1=5,则可以按照{8,16},{9,10},{17,16},{17},{18}进行分组。5对应最接近S1的2整数次幂的值为8,码长为8的极化信道可靠度排序为Q8={0,1,2,4,3,6,7},极化信道0~4的排序为{0,1,2,4,3},可以得到5组打孔组的优先级排序为{{8,16},{9,10},{17,16},{18},{17}}。
K1组中包含的极化信道的个数大于等于P1-P T1。被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和该K1组中可靠度最低的K1-K n1组中全部极化信道对应的比特位置,以及该K1组中可靠度最高的K n1组中的(P1-P T1-P n1)个极化信道对应的比特位置。其中,K n1大于等于0小于等于K1。如果K1组可靠度没有重复的,K n1可以等于1。如果K1组中包含的极化信道的个数等于P1-P T1,K n1等于0,(P1-P T1-P n1)=0。其中,P n1为可靠度最低的K1-K n1组中全部极化信道的个数。该 (P1-P T1-P n1)个极化信道可以从K1组中可靠度最高的K n1组中按照一定顺序选取,或者随机选择。如果K1组中包含的极化信道的个数等于P1-P T1,则被打孔比特位置为第0~P T1-1极化信道对应的比特位置,以及该K1组中包含的全部极化信道对应的比特位置。比如,N=32,P T1=N/4=8,S1=4,每组极化信道的数目为2。按照{8,16},{9,10},{17,18},{11,19}进行分组。码长为4的极化信道可靠度排序Q4={0,1,2,3},可以得到4组打孔组的优先级排序为{{8,16},{9,10},{17,18},{11,19}}。若打孔数目为10,K1=1,则被打孔比特位置对应的序号为{0,1,2…,7,8,16}。比如,N=32,P T1=N/4=8,S1=4,每组极化信道的数目为2。按照{8,16},{9,10},{17,18},{11,19}进行分组。码长为4的极化信道可靠度排序Q4={0,1,2,3},可以得到4组打孔组的优先级排序为{{8,16},{9,10},{17,18},{11,19}}。若打孔数目为11,K1=2,打孔比特位置为{0,1,2…,7,8,16,9}或{0,1,2…,7,8,16,10}。或者,
如果打孔数目P1大于P T1,被打孔比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S2组极化信道中码最最低的K2组中包含的P1-P T1个极化信道对应的比特位置。其中,S2组包含的极化信道的数量跟S1类似,参见前边的描述,这里不再重复。K2组中包含的极化信道的个数大于等于P1-P T1,被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和该K2组中码重最低的K2-K n2组中全部极化信道对应的比特位置,以及该K2组中码重最高的K n2组中的(P1-P T1-P n2)个极化信道对应的比特位置。其中,K n2大于等于0小于等于K2。如果K2组中包含的极化信道的个数等于P1-P T1,K n2等于0,(P1-P T1-P n2)=0。其中,P n2为码重最低的K2-K n2组中全部极化信道的个数。该(P1-P T1-P n2)个极化信道可以从K2组中码重最高的K n2组中按照一定顺序选取,比如按照极化信道序号从低到高选取的,或者随机选择。其中,码重为对应的编码矩阵的行重。比如,极化信道{0,1,2,4,3,5,6,7}的码重相同,这些极化信道对应的码重为{1,2,2,4,2,4,4,8},则 作为打孔的优先级排序为{0,1,2,4,3,5,6,7}。如果K2组中包含的极化信道的个数等于P1-P T1,则被打孔比特位置为第0~P T1-1极化信道对应的比特位置,以及该K2组中包含的全部极化信道对应的比特位置。
以速率匹配方式为缩短为例进行说明。其中,P T2可以为N/16,N/8,3N/16,7N/32,5N/32,3N/32。如果缩短数目P2小于等于P T2,被缩短比特位置为第N-1~N-P2极化信道对应的比特位置。
如果缩短数目P2大于P T2,被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,以及第N/8~N-P T2,和/或3N/8~N/2-1极化信道中极化信道可靠度最高的P2-P T2个极化信道对应的比特位置。或者,
如果缩短数目P2大于P T2,被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S3组极化信道中可靠度最高的K3组中包含的P2-P T2个极化信道对应的比特位置。其中,S3组极化信道的可靠度对应于码长为最接近S3的2整数次幂的值的极化信道的可靠度中第0到S3-1的极化信道的可靠度。其中,如果值(N/2-P T2)可以被S3整除,S3组中每一组中包含的极化信道的个数为(N/2-P T2)/S3。如果值(N/2-P T2)不可以被S3整除,S3组中一组包含极化信道的个数为:(N/2-P T2)-floor((N/2-P T2)/S3)*(S3-1)或(N/2-P T2)-ceil((N/2-P T2)/S3)*(S3-1);对应的其他S3-1组中每一组包含的极化信道的个数为:floor((N/2-P T2)/S3)或ceil((N/2-P T2)/S3)。floor(i)表示对i向下取整,ceil(j)表示对j向上取整。或者,如果值(N/2-P T2)不可以被S3整除,其中,S3=S3'+S3"。其中,S3'组中每一组包含的极化信道的个数为ceil((N/2-P T2)/S3),S3"组中每一组包含的极化信道个数为floor((N/2-P T2)/S3)。其中S3"=ceil((N/2-P T2)/S3)*S3-(N/2-P T2),S3'=S3-S3"。
K3组中包含的极化信道的个数大于等于P2-P T2。被缩短比特位置为第N-1~N-P T2 极化信道对应的比特位置,和该K3组中可靠度最高的K3-K n3组中全部极化信道对应的比特位置,以及该K3组中可靠度最低的K n3组中的(P2-P T2-P n3)个极化信道对应的比特位置。其中,K n3大于等于0小于等于K3。如果K3组中包含的极化信道的个数等于P2-P T2,K n3等于0,(P2-P T2-P n3)=0。如果K3组可靠度没有重复的,K n3等于1。其中,P n3为可靠度最高的K3-K n3组中全部极化信道的个数。该(P2-P T2-P n3)个极化信道可以从K3组中可靠度最低的K n3组中按照一定顺序选取,或者随机选择。如果K3组中包含的极化信道的个数等于P2-P T2,则被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,以及该K3组中包含的全部极化信道对应的比特位置。或者,
如果缩短数目P2大于P T2,被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第P T2~3N/8-1,和/或N/2~5N/8-1极化信道的S4组极化信道中码最最高的K4组中包含的P2-P T2个极化信道对应的比特位置。其中,S4组包含的极化信道的数量参见前边的描述,这里不重复。K4组中包含的极化信道的个数大于等于P2-P T2。被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和该K4组中码重最高的K4-K n4组中全部极化信道对应的比特位置,以及该K4组中码重最低的K n4组中的(P2-P T2-P n4)个极化信道对应的比特位置。其中,K n4大于等于0小于等于K4。如果K4组中包含的极化信道的个数等于P2-P T2,K n4于等于0,(P2-P T2-P n4)=0。其中,P n4为码重最高的K4-K n4组中全部极化信道的个数。该(P2-P T2-P n4)个极化信道可以从K4组中码重最低的K n4组中按照一定顺序选取,比如按照极化信道序号从高到低选取的,或者随机选择。其中,码重为对应的编码矩阵的行重。如果K4组中包含的极化信道的个数等于P2-P T2,则被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,以及该K4组中包含的全部极化信道对应的比特位置。
基于上述被打孔比特位置或被缩短比特位置的确定方法的描述,本发明实施例提供一种速率匹配方法,如图7所示。本发明实施提供的速率匹配的方法包括:
步骤701、发送装置采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;
本发明实施例以极化信号的序号从0开始编号为例。也可以从1开始编号,这里不再详述。
步骤703、所述发送装置确定被打孔的P1个比特位置或者被缩短的P2个比特位置,在所述的第一编码序列中在所述P1个比特位置进行打孔或者在所述P2个比特位置进行缩短得到速率匹配后的编码比特。
其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;其中,所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4。
被打孔的P1个比特或者被缩短的P2个比特的确定,可以前边的描述,这里不再重复。
步骤705、发送所述速率匹配后的编码比特。
接收装置根据速率匹配方式对接收到的软信息进行解速率匹配。接收装置确定确定被打孔的P1个比特位置或者被缩短的P2个比特位置。具体确定方式跟发送装置相同,这里不再重复描述。若速率匹配方式为打孔的方式,接收装置在相应的被打孔位置插入0后进行译码;若速率匹配方式为缩短的方式,接收装置在相应缩短的位置插入一个较大的值(具体符号根据实际编码的符号)进行译码。
本发明实施例提供的速率匹配方案,不用重新计算速率匹配后的编码比特对应的极化信道的可靠性,从而降低复杂度,克服打孔/缩短过程中导致的性能损失,提高速率匹配的性能。
参见图8所示,为本发明实施例提供的一种发送装置800,用于实现速率匹配的 功能,该发送装置800包括:
编码单元802,用于采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;
速率匹配单元804,用于确定被打孔的P1个比特位置或者被缩短的P2个比特位置,在所述的第一编码序列中在所述P1个比特位置进行打孔或者在所述P2个比特位置进行缩短得到速率匹配后的编码比特。
其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4。
被打孔的P1个比特或者被缩短的P2个比特的确定,可以前边的描述,这里不再重复。
发送单元806,用于发送所述速率匹配后的编码比特。
该法送装置800用于执行上述实施例的方法,相关的论述,具体请见前面方法实施例中的描述,此处不再赘述。在具体实现时,上述编码单元和速率匹配单元可以是芯片或者集成电路,或者该发送装置可以是芯片或者集成电路。
本发明实施例还提供了一种发送装置,该发送装置可以通过硬件实现也可以通过软件实现,当通过硬件实现时,参见图9所示,该发送装置包括:
输入接口电路9142,用于获取待编码比特;
逻辑单元9144:用于采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;用于用于确定被打孔的P1个比特位置或者被缩短的P2个比特位置,在所述的第一编码序列中在所述P1个比特位置进行打孔或者在所述P2个比特位置进行缩短得到速率匹配后的编码比特;
其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4。
被打孔的P1个比特或者被缩短的P2个比特的确定,可以前边的描述,这里不再重复。
输入接口电路9146:用于发送所述速率匹配后的编码比特。
上述发送装置可以用于执行方法实施所示的速率匹配方法,具体请见前面方法实施例中的描述,此处不再赘述。在具体实现时,上述发送装置可以是芯片或者集成电路。
当该发送装置通过软件实现时,参见图10a和10b所示,该发送装置包括:
存储器10042,用于存储程序;
处理器10044,用于执行所述存储器存储的所述程序,当所述程序被执行时,
上述存储器10042可以是物理上独立的单元,也可以与处理器10044集成在一起。
上述处理器10042可以用于执行方法实施例所示的速率匹配的方法,具体请见前面方法实施例中的描述,此处不再赘述。
上述发送装置可以是终端,也可以是网络设备。当该发送装置是终端之时,参见图11所示,该终端还可以包括电源1112、用于给终端中的各种器件或电路提供电源;该终端还可以可以包括天线1110,用于将收发器输出的上行数据通过无线信号发送出去,或者将收到的无线信号输出给收发器。
除此之外,为了使得终端的功能更加完善,该终端还可以包括输入单元1114,显示单元1116,音频电路1118,摄像头1120和传感器1122等中的一个或多个,所述音频电路可以包括扬声器11182,麦克风11184等。
结合前面的描述,本领域的技术人员可以意识到,本文实施例的方法,可以通过硬件(例如,逻辑电路),或者软件,或者硬件与软件的结合来实现。这些方法究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当上述功能通过软件的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。在这种情况下,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种速率匹配的方法,其特征在于,包括:
    发送装置采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;
    所述发送装置确定被打孔的P1个比特位置,在所述的第一编码序列中在所述P1个比特位置进行打孔得到速率匹配后的编码比特;其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;
    发送所述速率匹配后的编码比特。
  2. 如权利要求1所述速率匹配的方法,其特征在于,P T1为N/16,N/8,3N/16,7N/32,5N/32,或者3N/32。
  3. 如权利要求1或者2所述速率匹配的方法,其特征在于,如果所述P1大于P T1
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及第P T1~3N/8-1,和/或N/2~5N/8-1极化信道中极化信道可靠度最低的P1-P T1个极化信道对应的比特位置;或者,
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S1组极化信道中可靠度最低的K1组中包含的P1-P T1个极化信道对应的比特位置;或者,
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S2组极化信道中码重最低的K2组中包含的P1-P T1个极化信道对应的比特位置。
  4. 如权利要求3所述速率匹配的方法,其特征在于,
    如果值(N/2-P T1)可以被所述S1整除,所述S1组中每一组中包含的极化信道的个数为(N/2-P T1)/S1;或者,
    如果值(N/2-P T1)不可以被所述S1整除,所述S1组中一组包含极化信道的个数为:(N/2-P T1)-floor((N/2-P T1)/S1)*(S1-1)或(N/2-P T1)-ceil((N/2-P T1)/S1)*(S1-1),其他S1-1组中每一组包含的极化信道的个数为:floor((N/2-P T1)/S1)或ceil((N/2-P T1)/S1),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,
    如果值(N/2-P T1)不可以被所述S1整除,S1'组中每一组包含的极化信道的个数为ceil((N/2-P T1)/S1),S1"组中每一组包含的极化信道个数为floor((N/2-P T1)/S1),其中S2"=ceil((N/2-P T1)/S1)*S1-(N/2-P T1),S1'=S1-S1"。
  5. 如权利要求3或者4所述速率匹配的方法,其特征在于,所述被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和所述K1组中可靠度最低的K1-K n1组中全部极化信道对应的比特位置,以及所述K1组中可靠度最高的K n1组中的(P1-P T1-P n1)个极化信道对应的比特位置;其中,所述K n1大于等于0小于等于所述K1,所述P n1为所述K1-K n1组中全部极化信道的个数,所述(P1-P T1-P n1)个极化信道为从所述K n1组中按照一定顺序选取,或者随机选择,如果K1组中包含的极化信道的个数等于P1-P T1,K n1等于0,(P1-P T1-P n1)=0;或者,
    所述被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和所述K2组中码重最低的K2-K n2组中全部极化信道对应的比特位置,以及所述K2组中码重最高的K n2组中的(P1-P T1-P n2)个极化信道对应的比特位置;其中,所述K n2大于等于0小于等于所述K2,所述P n2为所述K2-K n2组中全部极化信道的个数,所述(P1-P T1-P n2)个极化信道为从所述K n2组中按照按照极化信道序号从低到高选取的,或者随机选择,如果K2组中包含的极化信道的个数等于P1-P T1,K n2等于0,(P1-P T1-P n2)=0。
  6. 如权利要求1-5任一项所述速率匹配的方法,其特征在于,
    如果所述P1小于等于P T1,所述被打孔的P1个比特位置为第0~P1-1极化信道对应的比特位置。
  7. 一种发送装置,其特征在于,包括:
    编码单元,用于采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;
    速率匹配单元,用于确定被打孔的P1个比特位置,在所述的第一编码序列中在所述P1个比特位置进行打孔得到速率匹配后的编码比特;其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;
    发送单元,用于发送所述速率匹配后的编码比特。
  8. 如权利要求7所述的发送装置,其特征在于,
    P T1为N/16,N/8,3N/16,7N/32,5N/32,或者3N/32。
  9. 如权利要求7或者8所述的发送装置,其特征在于,如果所述P1大于P T1
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及第P T1~3N/8-1,和/或N/2~5N/8-1极化信道中极化信道可靠度最低的P1-P T1个极化信道对应的比特位置;或者,
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S1组极化信道中可靠度最低的K1组中包含的P1-P T1个极化信道对应的比特位置;或者,
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S2组极化信道中码重最低的K2组中包含的P1-P T1个极化信道对应的比特位置。
  10. 如权利要求9所述的发送装置,其特征在于,
    如果值(N/2-P T1)可以被所述S1整除,所述S1组中每一组中包含的极化信道的个数为(N/2-P T1)/S1;或者,
    如果值(N/2-P T1)不可以被所述S1整除,所述S1组中一组包含极化信道的个数为:(N/2-P T1)-floor((N/2-P T1)/S1)*(S1-1)或(N/2-P T1)-ceil((N/2-P T1)/S1)*(S1-1),其他S1-1组中每一组包含的极化信道的个数为:floor((N/2-P T1)/S1)或ceil((N/2-P T1)/S1),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,
    如果值(N/2-P T1)不可以被所述S1整除,S1'组中每一组包含的极化信道的个数为ceil((N/2-P T1)/S1),S1"组中每一组包含的极化信道个数为floor((N/2-P T1)/S1),其中S2"=ceil((N/2-P T1)/S1)*S1-(N/2-P T1),S1'=S1-S1"。
  11. 如权利要求9或10所述的发送装置,其特征在于,
    所述被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和所述K1组中可靠度最低的K1-K n1组中全部极化信道对应的比特位置,以及所述K1组中可靠度最高的K n1组中的(P1-P T1-P n1)个极化信道对应的比特位置;其中,所述K n1大于等于0小于等于所述K1,所述P n1为所述K1-K n1组中全部极化信道的个数,所述(P1-P T1-P n1)个极化信道为从所述K n1组中按照一定顺序选取,或者随机选择,如果K1组中包含的极化信道的个数等于P1-P T1,K n1等于0,(P1-P T1-P n1)=0;或者,
    所述被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和所述K2组中码重最低的K2-K n2组中全部极化信道对应的比特位置,以及所述K2组中码重最高的K n2组中的(P1-P T1-P n2)个极化信道对应的比特位置;其中,所述K n2大于等于0小于等于所述K2,所述P n2为所述K2-K n2组中全部极化信道的个数,所述(P1-P T1-P n2)个极化信道为从所述K n2组中按照按照极化信道序号从低到高选取的,或者随机选择,如果K2组中包含的极化信道的个数等于P1-P T1,K n2等于0,(P1-P T1-P n2)=0。
  12. 如权利要求7-11任一项所述的发送装置,其特征在于,
    如果所述P1小于等于P T1,所述被打孔的P1个比特位置为第0~P1-1极化信道对应的比特位置。
  13. 一种速率匹配的方法,其特征在于,包括:
    发送装置采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;
    所述发送装置确定被缩短的P2个比特位置,在所述的第一编码序列中在所述P2个比特位置进行缩短得到速率匹配后的编码比特;其中,所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4;
    发送所述速率匹配后的编码比特。
  14. 如权利要求13所述速率匹配的方法,其特征在于,
    P T2为N/16,N/8,3N/16,7N/32,5N/32,或者3N/32。
  15. 如权利要求13或者14所述速率匹配的方法,其特征在于,如果所述P2大于P T2
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道中极化信道可靠度最高的P2-P T2个极化信道对应的比特位置;或者,
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S3组极化信道中可靠度最高的K3组中包含的P2-P T2个极化信道对应的比特位置;或者,
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S4组极化信道中码最最高的K4组中包含的P2-P T2个极化信道对应的比特位置
  16. 如权利要求15所述速率匹配的方法,其特征在于,
    如果值(N/2-P T2)可以被所述S3整除,所述S3组中每一组中包含的极化信道的个数为(N/2-P T2)/S3;或者,
    如果值(N/2-P T2)不可以被所述S3整除,所述S3组中一组包含极化信道的个数为:(N/2-P T2)-floor((N/2-P T2)/S3)*(S3-1)或(N/2-P T2)-ceil((N/2-P T2)/S3)*(S3-1),其他S3-1组中每一组包含的极化信道的个数为:floor((N/2-P T2)/S3)或ceil((N/2-P T2)/S3),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,
    如果值(N/2-P T2)不可以被所述S3整除,S3'组中每一组包含的极化信道的个数为ceil((N/2-P T2)/S3),S3"组中每一组包含的极化信道个数为floor((N/2-P T2)/S3),其中S3"=ceil((N/2-P T2)/S3)*S3-(N/2-P T2),S3'=S3-S3"。
  17. 如权利要求15或者16所述速率匹配的方法,其特征在于,
    所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K3组中可靠度最高的K3-K n3组中全部极化信道对应的比特位置,以及所述K3组中可靠度最低的K n3组中的(P2-P T2-P n3)个极化信道对应的比特位置,其中,所述K n3大于等于0小于等于K3,所述P n3为所述K3-K n3组中全部极化信道的个数,所述(P2-P T2-P n3)个极化信道为从所述K n3组中按照一定顺序选取,或者随机选择,如果K3组中包含的极化信道的个数等于P2-P T2,K n3等于0,(P2-P T2-P n3)=0;或者,
    所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K4组中码重最高的K4-K n4组中全部极化信道对应的比特位置,以及所述K4组中码重最低的K n4组中的(P2-P T2-P n4)个极化信道对应的比特位置,其中,所述K n4大于等于0小于等于K4,所述P n4为所述K4-K n4组中全部极化信道的个数,所述(P2-P T2-P n4)个极化信道可以从所述K n4组中按照按照极化信道序号从高到低选取的,或者随机选择,如果K4组中包含的极化信道的个数等于P2-P T2,K n4于等于0,(P2-P T2-P n4)=0。
  18. 如权利要求13-17任一项所述速率匹配的方法,其特征在于,
    如果所述P2小于等于P T2,所述被缩短的P2个比特位置为第N-1~N-P2极化信道对应的比特位置。
  19. 一种发送装置,其特征在于,包括:
    编码单元,用于采用极性码Polar编码得到长度为N的第一编码序列,其中,极化信道的序号可以为0~N-1;
    速率匹配单元,用于确定被缩短的P2个比特位置,在所述的第一编码序列中在所述P2个比特位置进行缩短得到速率匹配后的编码比特;其中,所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4;
    发送单元,用于发送所述速率匹配后的编码比特。
  20. 如权利要求19所述的发送装置,其特征在于,
    P T2为N/16,N/8,3N/16,7N/32,5N/32,或者3N/32。
  21. 如权利要求19或者20所述的发送装置,其特征在于,如果所述P2大于P T2
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道中极化信道可靠度最高的P2-P T2个极化信道对应的比特位置;或者,
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S3组极化信道中可靠度最高的K3组中包含的P2-P T2个极化信道对应的比特位置;或者,
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S4组极化信道中码最最高的K4组中包含的P2-P T2个极化信道对应的比特位置。
  22. 如权利要求21所述的发送装置,其特征在于,
    如果值(N/2-P T2)可以被所述S3整除,所述S3组中每一组中包含的极化信道的个数为(N/2-P T2)/S3;或者,
    如果值(N/2-P T2)不可以被所述S3整除,所述S3组中一组包含极化信道的个数为:(N/2-P T2)-floor((N/2-P T2)/S3)*(S3-1)或(N/2-P T2)-ceil((N/2-P T2)/S3)*(S3-1),其他S3-1组中每一组包含的极化信道的个数为:floor((N/2-P T2)/S3)或ceil((N/2-P T2)/S3),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,
    如果值(N/2-P T2)不可以被所述S3整除,S3'组中每一组包含的极化信道的个数为ceil((N/2-P T2)/S3),S3"组中每一组包含的极化信道个数为floor((N/2-P T2)/S3),其中S3"=ceil((N/2-P T2)/S3)*S3-(N/2-P T2),S3'=S3-S3"。
  23. 如权利要求21或22所述的发送装置,其特征在于,
    所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K3组中可靠度最高的K3-K n3组中全部极化信道对应的比特位置,以及所述K3组中可靠度最低的K n3组中的(P2-P T2-P n3)个极化信道对应的比特位置,其中,所述K n3大于等于0小于等于K3,所述P n3为所述K3-K n3组中全部极化信道的个数,所述(P2-P T2-P n3)个极化信道为从所述K n3组中按照一定顺序选取,或者随机选择,如果K3组中包含的极化信道的个数等于P2-P T2,K n3等于0,(P2-P T2-P n3)=0;或者,
    所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K4组中码重最高的K4-K n4组中全部极化信道对应的比特位置,以及所述K4组中码重最低的K n4组中的(P2-P T2-P n4)个极化信道对应的比特位置,其中,所述K n4大于等于0小于等于K4,所述P n4为所述K4-K n4组中全部极化信道的个数,所述(P2-P T2-P n4)个极化信道可以从所述K n4组中按照按照极化信道序号从高到低选取的,或者随机选择,如果K4组中包含的极化信道的个数等于P2-P T2,K n4于等于0,(P2-P T2-P n4)=0。
  24. 如权利要求19-23任一项所述的发送装置,其特征在于,
    如果所述P2小于等于P T2,所述被缩短的P2个比特位置为第N-1~N-P2极化信道对应的比特位置。
  25. 一种发送装置,其特征在于,用于执行权利要求1-6或者13-18任意一项所述的方法。
  26. 一种发送装置,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求1-6或者13-18中任一所述的方法。
  27. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-6或者13-18中任一所述的方法。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-6或者13-18中任一所述的方法。
  29. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如权利要求1-6或者13-18中任一所述的方法。
  30. 一种速率匹配的方法,其特征在于,包括:
    接收装置接收速率匹配后的编码比特;
    若所述编码比特采用打孔的方式进行的编码,则在被打孔的P1个比特位置插入0后进行译码,其中,所述被打孔的P1个比特位置属于第0~P T1-1,P T1~3N/8-1,和/或N/2~5N/8-1极化信道对应的比特位置,P T1为被打孔比特位置数目阈值,P T1<=N/4;
    发送译码后的比特。
  31. 如权利要求30所述速率匹配的方法,其特征在于,P T1为N/16,N/8,3N/16,7N/32,5N/32,或者3N/32。
  32. 如权利要求30或者31所述速率匹配的方法,其特征在于,如果所述P1大于P T1
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及第P T1~3N/8-1,和/或N/2~5N/8-1极化信道中极化信道可靠度最低的P1-P T1个极化信道对应的比特位置;或者,
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S1组极化信道中可靠度最低的K1组中包含的P1-P T1个极化信道对应的比特位置;或者,
    所述被打孔的P1个比特位置为第0~P T1-1极化信道对应的比特位置,以及包含第P T1~3N/8-1,和/或N/2~5N/8-1极化信道的S2组极化信道中码重最低的K2组中包含的P1-P T1个极化信道对应的比特位置。
  33. 如权利要求32所述速率匹配的方法,其特征在于,
    如果值(N/2-P T1)可以被所述S1整除,所述S1组中每一组中包含的极化信道的个数为(N/2-P T1)/S1;或者,
    如果值(N/2-P T1)不可以被所述S1整除,所述S1组中一组包含极化信道的个数为:(N/2-P T1)-floor((N/2-P T1)/S1)*(S1-1)或(N/2-P T1)-ceil((N/2-P T1)/S1)*(S1-1),其他S1-1组中每一组包含的极化信道的个数为:floor((N/2-P T1)/S1)或ceil((N/2-P T1)/S1),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,
    如果值(N/2-P T1)不可以被所述S1整除,S1'组中每一组包含的极化信道的个数为ceil((N/2-P T1)/S1),S1"组中每一组包含的极化信道个数为floor((N/2-P T1)/S1),其中S2"=ceil((N/2-P T1)/S1)*S1-(N/2-P T1),S1'=S1-S1"。
  34. 如权利要求32或者33所述速率匹配的方法,其特征在于,所述被打孔比特位置 为第0~P T1-1极化信道对应的比特位置,和所述K1组中可靠度最低的K1-K n1组中全部极化信道对应的比特位置,以及所述K1组中可靠度最高的K n1组中的(P1-P T1-P n1)个极化信道对应的比特位置;其中,所述K n1大于等于0小于等于所述K1,所述P n1为所述K1-K n1组中全部极化信道的个数,所述(P1-P T1-P n1)个极化信道为从所述K n1组中按照一定顺序选取,或者随机选择,如果K1组中包含的极化信道的个数等于P1-P T1,K n1等于0,(P1-P T1-P n1)=0;或者,
    所述被打孔比特位置为第0~P T1-1极化信道对应的比特位置,和所述K2组中码重最低的K2-K n2组中全部极化信道对应的比特位置,以及所述K2组中码重最高的K n2组中的(P1-P T1-P n2)个极化信道对应的比特位置;其中,所述K n2大于等于0小于等于所述K2,所述P n2为所述K2-K n2组中全部极化信道的个数,所述(P1-P T1-P n2)个极化信道为从所述K n2组中按照按照极化信道序号从低到高选取的,或者随机选择,如果K2组中包含的极化信道的个数等于P1-P T1,K n2等于0,(P1-P T1-P n2)=0。
  35. 如权利要求30-34任一项所述速率匹配的方法,其特征在于,
    如果所述P1小于等于P T1,所述被打孔的P1个比特位置为第0~P1-1极化信道对应的比特位置。
  36. 一种速率匹配的方法,其特征在于,包括:
    接收装置接收速率匹配后的编码比特;
    若所述编码比特采用缩短shorten的方式进行的编码,则接收装置在被缩短的P2个比特位置插入一个较大的值进行译码,其中,所述被缩短的P2个比特位置属于第N-1~N-P T2,N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道对应的比特位置,P T2为被缩短比特位置数目阈值,P T2<=N/4;
    接收装置发送译码后的比特。
  37. 如权利要求36所述速率匹配的方法,其特征在于,P T2为N/16,N/8,3N/16, 7N/32,5N/32,或者3N/32。
  38. 如权利要求36或者37所述速率匹配的方法,其特征在于,如果所述P2大于P T2
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道中极化信道可靠度最高的P2-P T2个极化信道对应的比特位置;或者,
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S3组极化信道中可靠度最高的K3组中包含的P2-P T2个极化信道对应的比特位置;或者,
    所述被缩短的P2个比特位置为第N-1~N-P T2极化信道对应的比特位置,以及包含第N-P T2-1~5N/8,和/或N/2-1~3N/8极化信道的S4组极化信道中码最最高的K4组中包含的P2-P T2个极化信道对应的比特位置
  39. 如权利要求38所述速率匹配的方法,其特征在于,
    如果值(N/2-P T2)可以被所述S3整除,所述S3组中每一组中包含的极化信道的个数为(N/2-P T2)/S3;或者,
    如果值(N/2-P T2)不可以被所述S3整除,所述S3组中一组包含极化信道的个数为:(N/2-P T2)-floor((N/2-P T2)/S3)*(S3-1)或(N/2-P T2)-ceil((N/2-P T2)/S3)*(S3-1),其他S3-1组中每一组包含的极化信道的个数为:floor((N/2-P T2)/S3)或ceil((N/2-P T2)/S3),floor(i)表示对i向下取整,ceil(j)表示对j向上取整;或者,
    如果值(N/2-P T2)不可以被所述S3整除,S3'组中每一组包含的极化信道的个数为ceil((N/2-P T2)/S3),S3"组中每一组包含的极化信道个数为floor((N/2-P T2)/S3),其中S3"=ceil((N/2-P T2)/S3)*S3-(N/2-P T2),S3'=S3-S3"。
  40. 如权利要求38或者39所述速率匹配的方法,其特征在于,
    所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K3组中可靠 度最高的K3-K n3组中全部极化信道对应的比特位置,以及所述K3组中可靠度最低的K n3组中的(P2-P T2-P n3)个极化信道对应的比特位置,其中,所述K n3大于等于0小于等于K3,所述P n3为所述K3-K n3组中全部极化信道的个数,所述(P2-P T2-P n3)个极化信道为从所述K n3组中按照一定顺序选取,或者随机选择,如果K3组中包含的极化信道的个数等于P2-P T2,K n3等于0,(P2-P T2-P n3)=0;或者,
    所述被缩短比特位置为第N-1~N-P T2极化信道对应的比特位置,和所述K4组中码重最高的K4-K n4组中全部极化信道对应的比特位置,以及所述K4组中码重最低的K n4组中的(P2-P T2-P n4)个极化信道对应的比特位置,其中,所述K n4大于等于0小于等于K4,所述P n4为所述K4-K n4组中全部极化信道的个数,所述(P2-P T2-P n4)个极化信道可以从所述K n4组中按照按照极化信道序号从高到低选取的,或者随机选择,如果K4组中包含的极化信道的个数等于P2-P T2,K n4于等于0,(P2-P T2-P n4)=0。
  41. 如权利要求36-40任一项所述速率匹配的方法,其特征在于,
    如果所述P2小于等于P T2,所述被缩短的P2个比特位置为第N-1~N-P2极化信道对应的比特位置。
  42. 一种接收装置,其特征在于,用于执行权利要求30-35或者36-41任意一项所述的方法。
  43. 一种接收装置,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求30-35或者36-41中任一所述的方法。
  44. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求30-35或者36-41中任一所述的方法。
  45. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码, 当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求30-35或者36-41中任一所述的方法。
  46. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如权利要求30-35或者36-41中任一所述的方法。
PCT/CN2018/100224 2017-08-11 2018-08-13 一种编码方法、译码方法、装置和设备 WO2019029745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18844853.4A EP3657708B1 (en) 2017-08-11 2018-08-13 Coding method and device
US16/786,488 US11265101B2 (en) 2017-08-11 2020-02-10 Encoding method, decoding method, apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687048.8 2017-08-11
CN201710687048.8A CN109391353B (zh) 2017-08-11 2017-08-11 一种速率匹配的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,488 Continuation US11265101B2 (en) 2017-08-11 2020-02-10 Encoding method, decoding method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2019029745A1 true WO2019029745A1 (zh) 2019-02-14

Family

ID=65270898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100224 WO2019029745A1 (zh) 2017-08-11 2018-08-13 一种编码方法、译码方法、装置和设备

Country Status (4)

Country Link
US (1) US11265101B2 (zh)
EP (1) EP3657708B1 (zh)
CN (1) CN109391353B (zh)
WO (1) WO2019029745A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11082067B1 (en) * 2019-10-03 2021-08-03 Xilinx, Inc. System and method for determining bit types for polar encoding and decoding
CN113810060A (zh) * 2020-06-17 2021-12-17 华为技术有限公司 一种Polar码速率匹配方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100561A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 极化码的速率匹配方法及装置
CN105164956A (zh) * 2013-11-04 2015-12-16 华为技术有限公司 Polar码的速率匹配方法和设备、无线通信装置
CN105493424A (zh) * 2013-12-31 2016-04-13 华为技术有限公司 一种Polar码的处理方法、系统及无线通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074192A1 (zh) 2013-11-20 2015-05-28 华为技术有限公司 极化码的处理方法和设备
WO2017091018A1 (en) * 2015-11-24 2017-06-01 Samsung Electronics Co., Ltd. Method and apparatus for channel encoding/decoding in a communication or broadcasting system
CN106817195B (zh) * 2015-12-02 2020-04-21 华为技术有限公司 用于极化码的速率匹配的方法和装置
CN106877973B (zh) * 2015-12-10 2020-04-14 华为技术有限公司 极化码处理的方法及通信设备
US10567011B2 (en) * 2016-06-17 2020-02-18 Huawei Technologies Co., Ltd. Systems and methods for piece-wise rate matching when using polar codes
US10432234B2 (en) * 2016-07-19 2019-10-01 Mediatek Inc. Low complexity rate matching for polar codes
CN108347302B (zh) * 2017-01-25 2021-09-07 华为技术有限公司 一种编译码方法和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164956A (zh) * 2013-11-04 2015-12-16 华为技术有限公司 Polar码的速率匹配方法和设备、无线通信装置
WO2015100561A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 极化码的速率匹配方法及装置
CN105493424A (zh) * 2013-12-31 2016-04-13 华为技术有限公司 一种Polar码的处理方法、系统及无线通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Polar Code Size and Rate-Matching Design for NR Control Chan- nels", 3GPP TSG RAN WG1 RANI #88 MEETING RL-1702735, 17 February 2017 (2017-02-17), XP051209882 *
See also references of EP3657708A4

Also Published As

Publication number Publication date
EP3657708A4 (en) 2020-08-19
CN109391353A (zh) 2019-02-26
CN109391353B (zh) 2021-09-14
EP3657708B1 (en) 2022-06-15
US20200195373A1 (en) 2020-06-18
US11265101B2 (en) 2022-03-01
EP3657708A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP7471357B2 (ja) 符号化方法、復号方法、装置、および装置
CN108365848B (zh) 一种极性码的译码方法和装置
US11211947B2 (en) Polar code encoding method and apparatus, polar code decoding method and apparatus, and device
CN108282259B (zh) 一种编码方法及装置
WO2018196786A1 (zh) Polar码的速率匹配方法及装置
US11502704B2 (en) Polar coding method and apparatus
CN111446969A (zh) 一种级联crc码的极化码编码方法及装置
WO2019029745A1 (zh) 一种编码方法、译码方法、装置和设备
WO2019029205A1 (zh) 编码方法及装置
TWI791023B (zh) 編碼輸入資料為極性碼的方法及設備、解碼方法及用以解碼碼字的設備
WO2018210216A1 (zh) 传输数据的方法、芯片、收发机和计算机可读存储介质
CN109245852B (zh) Polar码的速率匹配方法及装置
US20200343913A1 (en) Channel encoding method and encoding apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844853

Country of ref document: EP

Effective date: 20200221