WO2019029354A1 - 功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备 - Google Patents

功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备 Download PDF

Info

Publication number
WO2019029354A1
WO2019029354A1 PCT/CN2018/096813 CN2018096813W WO2019029354A1 WO 2019029354 A1 WO2019029354 A1 WO 2019029354A1 CN 2018096813 W CN2018096813 W CN 2018096813W WO 2019029354 A1 WO2019029354 A1 WO 2019029354A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
bwp
power
power control
uplink
Prior art date
Application number
PCT/CN2018/096813
Other languages
English (en)
French (fr)
Inventor
潘学明
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65273343&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019029354(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20160684.5A priority Critical patent/EP3681210B1/en
Priority to US16/637,408 priority patent/US11622354B2/en
Priority to EP18843237.1A priority patent/EP3668196A4/en
Publication of WO2019029354A1 publication Critical patent/WO2019029354A1/zh
Priority to US16/785,365 priority patent/US11503603B2/en
Priority to US17/963,852 priority patent/US11737076B2/en
Priority to US18/337,369 priority patent/US20230337210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a power control method, a receiving method, a power allocation method, a mobile communication terminal, and a network device.
  • the fifth-generation (5th-generation, 5G) mobile communication system can support system bandwidths of 100 MHz, 400 MHz, etc., much larger than long-term evolution.
  • the maximum 20MHz system bandwidth supported by the Long Term Evolution (LTE) system to support greater system and user throughput.
  • LTE Long Term Evolution
  • BWP Bandwidth Part
  • the 5G mobile communication system can divide the system bandwidth into one or more BWPs, and one mobile communication terminal can be configured with one or more BWPs.
  • power management is usually performed according to carriers, and there is no related solution for how to perform power management of BWP.
  • an embodiment of the present disclosure provides a power control method.
  • the power control method includes:
  • the transmit power control is performed on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target bandwidth portion BWP.
  • an embodiment of the present disclosure further provides a receiving method.
  • the receiving method includes:
  • an embodiment of the present disclosure further provides a power allocation method.
  • the power allocation method includes:
  • the transmission power allocation is performed on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • an embodiment of the present disclosure further provides a receiving method.
  • the receiving method includes:
  • an embodiment of the present disclosure further provides a mobile communication terminal.
  • the mobile communication terminal includes:
  • the first control module is configured to perform transmit power control on the uplink transmission performed on the first target BWP by using a target uplink power control parameter corresponding to the first target BWP.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes:
  • the third receiving module is configured to perform receiving processing on the uplink transmission performed on the first target BWP by using a target uplink power control parameter corresponding to the first target bandwidth portion BWP.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes:
  • an allocating module configured to perform transmit power allocation on the downlink transmission performed on the second target BWP by using a target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • an embodiment of the present disclosure further provides a mobile communication terminal.
  • the mobile communication terminal includes:
  • the fifth receiving module is configured to perform receiving processing on the downlink transmission performed on the second target BWP by using a target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • an embodiment of the present disclosure further provides a mobile communication terminal, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the computer program being the processor.
  • an embodiment of the present disclosure further provides a network device, where the network device includes a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is The step of implementing the receiving method provided by the above second aspect when the processor is executed, or the step of implementing the power allocation method provided by the above third aspect.
  • an embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implementing the foregoing first aspect The steps of the power control method, or the steps of the receiving method provided by the above fourth aspect.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implementing the foregoing second aspect The step of receiving the method, or the step of implementing the power allocation method provided by the third aspect above.
  • FIG. 1 is a schematic structural diagram of a network applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a power control method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a BWP application scenario provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a BWP application scenario according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a BWP application scenario according to another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a receiving method according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a power allocation method according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a receiving method according to still another embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a mobile communication terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a mobile communication terminal according to another embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of a mobile communication terminal according to another embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of a mobile communication terminal according to another embodiment of the present disclosure.
  • FIG. 13 is a structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 14 is a structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 16 is a structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 17 is a structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 18 is a structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 19 is a structural diagram of a mobile communication terminal according to another embodiment of the present disclosure.
  • FIG. 20 is a structural diagram of a mobile communication terminal according to another embodiment of the present disclosure.
  • 21 is a structural diagram of a mobile communication terminal according to another embodiment of the present disclosure.
  • FIG. 22 is a structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 23 is a structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 24 is a structural diagram of a mobile communication terminal according to another embodiment of the present disclosure.
  • the uplink power control is used to control the transmit power of different uplink physical channels.
  • the uplink power control may include a Physical Uplink Shared Channel (PUSCH) power control and a Physical Uplink control channel (Physical Uplink). Control Channel, PUCCH) Power Control, Sounding Reference Signal (SRS) power control, etc.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink control channel
  • SRS Sounding Reference Signal
  • the uplink of the LTE system adopts a single carrier frequency division multiple access (SC-FDMA) waveform
  • SC-FDMA single carrier frequency division multiple access
  • the uplink power control adopts an open loop and a closed loop combination.
  • the transmit power of the subframe i on the serving cell c of the mobile communication terminal can be calculated by the following formula:
  • P CMAX,c (i) represents the maximum transmit power of the subframe i of the mobile communication terminal on the serving cell c;
  • M PUSCH,c (i) represents the bandwidth occupied by the PUSCH of the subframe i of the mobile communication terminal on the serving cell c, and the unit is a resource block (Resource Block, RB);
  • ⁇ c represents the path loss compensation factor on the serving cell c, and partial path loss compensation can be realized.
  • j 0 or 1
  • PL c represents the path loss measurement value on the serving cell c
  • ⁇ TF,c (i) represents a power adjustment amount related to a PUSCH Modulation and Coding Scheme (MCS);
  • f c (i) represents the closed loop power control command cumulative value of subframe i on the serving cell c.
  • the downlink power allocation is used to determine the transmit power of the downlink transmission on each resource element.
  • the LTE system supports user-based slow power allocation, which involves the following power parameter settings:
  • EPRE Energy Per Resource Element: indicates the transmit power on the Resource Element (RE), including the EPRE and channel status of the Cell Reference Signal (CRS).
  • CSI-RS Channel State Information-Reference Signal
  • Data EPRE indicates the transmission power on the data resource RE, wherein the data EPRE is UE-specific, and the network side (for example, the base station) can transmit data through Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • one mobile communication terminal can be configured with one or more BWPs, and when the mobile communication terminal is configured with multiple BWPs, each BWP
  • the same or different configuration parameters ie Numerologies
  • the neighboring serving cells Due to different service conditions and different capabilities of the mobile communication terminal, the neighboring serving cells use different BWPs to transmit uplink or downlink services at the same time, which may cause the adjacent serving cell interference to be different on different BWPs.
  • one serving cell can use different transmission points to send or receive different BWPs. If the same power control mode as LTE is adopted, that is, the power control mode of each carrier will result in a difference in transmission performance on different BWPs, and system performance is degraded. In addition, inaccurate power control will result in unnecessary power transmission, increased power consumption and in-system interference.
  • the embodiments of the present disclosure perform power management for each BWP, including configuring power management parameters (eg, uplink power control parameters, downlink power adjustment parameters, and the like) for each BWP and corresponding processing to improve system performance.
  • power management parameters eg, uplink power control parameters, downlink power adjustment parameters, and the like
  • FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • the mobile communication terminal 10 and the network device 20 are configured.
  • the mobile communication terminal 10 can communicate with the network device 20 through a network.
  • the mobile communication terminal 10 can be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device (MID), or Wearable Device, etc.
  • the network device may be an evolved base station (eNB or an eNodeB), or a relay station or an access point, or a base station (gNB) in a 5G network, or a radio network controller on the network side, and is not limited herein.
  • the mobile communication terminal 10 may perform transmission power control on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP.
  • the network device 20 can perform receiving processing on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, thereby standardizing power control for one or more BWPs.
  • the network device 20 may perform transmission power allocation on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP.
  • the mobile communication terminal 10 performs reception processing on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP. This regulates the power control of one or more BWPs.
  • Embodiments of the present disclosure provide a power control method.
  • the method is applied to a mobile communication terminal.
  • FIG. 2 is a flowchart of a power control method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Perform transmit power control on the uplink transmission performed on the first target BWP by using a target uplink power control parameter corresponding to the first target bandwidth portion BWP.
  • the system bandwidth may be divided into one or at least two BWPs, and the mobile communication terminal may be supporting one or at least two BWPs.
  • the first target BWP may be any one of the at least two BWPs.
  • the embodiment of the present disclosure may independently configure an uplink power control parameter for each BWP, and the mobile communication terminal may control, according to an uplink power control parameter of each BWP, a transmit power of an uplink transmission performed on each BWP.
  • the target uplink power control parameter may include at least one of the following parameters: maximum transmit power, target receive power, power compensation factor, path loss reference, power adjustment value, and transmit power control (TPC). Command word.
  • the maximum transmit power may be the maximum transmit power P cmax , bwp of the terminal on the BWP.
  • the maximum transmit power P cmax , bwp of the BWP may be determined according to the maximum transmit power parameter, where the maximum transmit Power parameters may include, but are not limited to, maximum transmit power P EMAX,c and/or Additional Maximum Power Reduction (A-MPR).
  • the above-mentioned target received power that is, Po
  • Po includes but is not limited to the power target value Po_PUSCH of the PUSCH, the received power target value Po_PUCCH of the PUCCH, and the received power target value Po_SRS of the SRS (or the SRS received power target offset value Po_SRS_offset) And one or more of the received power target values Po_preamble of the preamble.
  • the above power compensation factor is the aforementioned alpha.
  • the network side may configure a downlink path loss reference (DL Pathloss Reference) for each uplink BWP (UL BWP), for example, a downlink BWP (DL BWP) that needs to measure a path loss.
  • DL Pathloss Reference downlink path loss reference
  • UL BWP uplink BWP
  • DL BWP downlink BWP
  • the power adjustment value may include a power adjustment value related to a transmission format, a power adjustment value related to a PUCCH format, and a power adjustment value related to a PUCCH antenna mode.
  • a power adjustment value related to the transport format may be configured for each uplink BWP, where the power adjustment value related to the transport format may include:
  • the amount of adjustment related to the PUSCH transmitting MCS (modulation coding method)
  • the PUSCH When the PUSCH carries the uplink control information (UCI), the adjustment value of the UCI compared to the PUSCH
  • the power adjustment value related to the PUCCH format described above may include ⁇ F_PUCCH (F), that is, a relative power offset value of a different PUCCH format.
  • the power adjustment value related to the PUCCH antenna mode may include ⁇ TxD (F'), that is, the power adjustment amount of the transmission power when the PUCCH adopts transmit diversity compared to the transmit power when the non-transmission diversity transmission.
  • the network side may send an independent TPC command word for each BWP, and the mobile communication terminal performs the accumulation of the TPC command according to each BWP.
  • the embodiment of the present disclosure performs transmission power control on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, compared to the power per carrier used in the related art.
  • Control mode can improve system performance. In addition, it can reduce unnecessary power transmission, reduce power consumption and system interference.
  • the foregoing target uplink power control parameter may be predefined in a communication protocol between the mobile communication terminal and the network device, or may be configured and sent to the mobile communication terminal through the network side.
  • the method further includes: receiving, by the network side, respective uplink power control parameters corresponding to each BWP.
  • the entire bandwidth may be composed of one or more BWPs.
  • the uplink power control parameter corresponding to the unique BWP is sent, and when the entire bandwidth is composed of multiple BWPs.
  • the uplink power control parameter corresponding to each BWP needs to be sent.
  • the network side may configure a corresponding uplink power control parameter for each BWP, and send the corresponding uplink power control parameter to the mobile communication terminal, so that the mobile communication terminal may determine, according to the uplink power control parameter corresponding to each BWP.
  • the transmit power of the uplink BWP may be configured a corresponding uplink power control parameter for each BWP, and send the corresponding uplink power control parameter to the mobile communication terminal, so that the mobile communication terminal may determine, according to the uplink power control parameter corresponding to each BWP.
  • the transmit power of the uplink BWP may be configured.
  • the embodiment of the present disclosure configures corresponding uplink power control parameters for each BWP by using the network side, so that the uplink power control parameters corresponding to each BWP can be flexibly controlled, for example, according to the bandwidth of each BWP and the capabilities of the mobile communication terminal.
  • the uplink power control parameters corresponding to the BWPs enable the uplink power control parameters corresponding to each BWP to minimize interference and energy consumption while ensuring uplink transmission quality.
  • the method further includes:
  • Orthogonal Frequency Division Multiple Access calculating and transmitting the first target BWP according to the maximum transmit power corresponding to the first target BWP and the virtual transmit power of the physical uplink shared channel Virtual power headroom.
  • the mobile communication terminal may calculate the actual transmit power on the first target BWP according to the uplink power control parameter corresponding to the first target BWP, including the actual transmit power P pusch of the physical uplink shared channel on the first target BWP , The actual transmit power P pucch, bwp of bwp and the physical uplink control channel.
  • the maximum transmit power P cmax, bwp, and physical uplink of the first target BWP may also be used.
  • the mobile communication terminal can allocate more bandwidth resources to send more data; if the PHR bwp is negative, it indicates that the mobile The communication terminal has reached the maximum transmission power, and the mobile communication terminal may need to reduce the bandwidth resources to ensure the quality of the service.
  • the mobile communication terminal may also be based on the maximum transmit power P cmax of the BWP , bwp and the virtual transmit power of the physical uplink shared channel on the BWP.
  • the embodiment of the present disclosure may send the calculated actual power headroom corresponding to the first target BWP or the virtual power headroom corresponding to the first target BWP to the network device, so that the network device may be based on the actual power headroom corresponding to the first target BWP.
  • the virtual power margin corresponding to the first target BWP adjusts the bandwidth resource of the mobile communication terminal, and can improve the quantity of the transmission while ensuring the quality of the service.
  • the method before the power control is performed on the transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, the method further includes:
  • the first target BWP is determined according to the BWP adjustment instruction.
  • the network side may send the BWP adjustment instruction to the mobile communication terminal by using L1/L2 signaling, so that the mobile communication terminal may perform BWP adjustment according to the BWP adjustment instruction to determine the first target BWP.
  • each BWP has an associated power control parameter.
  • the network side dynamically adjusts the BWP of the mobile communication terminal by using L1/L2 signaling (such as dynamic switching in a plurality of pre-configured BWPs)
  • the mobile communication terminal may use the power control parameter corresponding to the currently valid BWP.
  • the BWP adjustment may also include the following adjustment methods:
  • Method 1 The center frequency of the BWP is unchanged, and the BWP bandwidth changes;
  • Method 2 The center frequency of the BWP changes, and the BWP bandwidth does not change;
  • Mode 3 The frequency of the BWP center changes, and the BWP bandwidth also changes.
  • the first method does not require RF retuning.
  • FIG. 3 to FIG. 5 show several application scenarios of the BWP:
  • Scenario 1 A BWP for the mobile communication terminal to access the system bandwidth, see Figure 3.
  • Scenario 2 BWP adjustment of the mobile communication terminal, the BWP center frequency point is unchanged, and the BWP bandwidth changes, see FIG.
  • Scenario 3 The mobile communication terminal simultaneously accesses two BWPs (BWP1 and BWP2) in the system bandwidth, and the two BWP configuration parameters (Numerology) are different, as shown in FIG. 5.
  • the mobile communication terminal can perform BWP adjustment according to the BWP adjustment instruction, so that the adjustment of the bandwidth resource of the mobile communication terminal can be conveniently implemented.
  • FIG. 6 is a flowchart of a receiving method provided by an embodiment of the present disclosure. This method is applied to the network side. As shown in FIG. 6, the receiving method provided by the implementation of the present disclosure includes the following steps:
  • Step 601 Perform receiving processing on the uplink transmission performed on the first target BWP by using a target uplink power control parameter corresponding to the first target bandwidth portion BWP.
  • the network device may perform receiving processing on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP.
  • the embodiment of the present disclosure may separately configure an uplink power control parameter for each BWP, and the network device may perform the receiving process of the uplink transmission performed on each BWP according to the uplink power control parameter of each BWP.
  • the target uplink power control parameter may include at least one of the following parameters: maximum transmit power, target receive power, power compensation factor, path loss reference, power adjustment value, and transmit power control (TPC). Command word.
  • the maximum transmit power may be the maximum transmit power P cmax, bwp of the BWP .
  • the maximum transmit power P cmax , bwp of the BWP may be determined according to the maximum transmit power parameter, where the maximum transmit power parameter may be This includes, but is not limited to, the maximum transmit power P EMAX,c and/or Additional Maximum Power Reduction (A-MPR) of the higher layer signaling configuration.
  • A-MPR Additional Maximum Power Reduction
  • the above-mentioned target received power that is, Po
  • Po includes but is not limited to the power target value Po_PUSCH of the PUSCH, the received power target value Po_PUCCH of the PUCCH, and the received power target value Po_SRS of the SRS (or the SRS received power target offset value Po_SRS_offset)
  • a preamble receives one or more of the power target values Po_preamble.
  • the above power compensation factor is alpha.
  • the network side may configure a downlink path loss reference (DL Pathloss Reference) for each uplink BWP (UL BWP), for example, a downlink BWP (DL BWP) that needs to measure a path loss.
  • DL Pathloss Reference downlink path loss reference
  • UL BWP uplink BWP
  • DL BWP downlink BWP
  • the power adjustment value may include a power adjustment value related to a transmission format, a power adjustment value related to a PUCCH format, a power adjustment value related to a PUCCH antenna mode, and the like.
  • a transmission format related power adjustment value may be configured for each UL BWP, where the transmission format related power adjustment value may include K S and/or
  • the power adjustment value associated with the PUCCH format described above may include ⁇ F_PUCCH (F).
  • the power adjustment value associated with the PUCCH antenna mode described above may include ⁇ TxD (F').
  • the network side may send an independent TPC command word for each BWP, and the mobile communication terminal performs the accumulation of the TPC command according to each BWP.
  • the embodiment of the present disclosure performs the receiving process on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, compared to the power control mode of each carrier in the related art. It can improve system performance and, in addition, reduce unnecessary power transmission, reduce power consumption and system interference.
  • the foregoing target uplink power control parameter may be predefined in a communication protocol between the mobile communication terminal and the network device, or may be configured and sent to the mobile communication terminal through the network side.
  • the method before the receiving the uplink transmission on the first target BWP, the method further includes: Send each uplink power control parameter corresponding to each BWP to the mobile communication terminal.
  • the network side may configure a corresponding uplink power control parameter for each BWP, and send the corresponding uplink power control parameter to the mobile communication terminal, so that the mobile communication terminal may determine, according to the uplink power control parameter corresponding to each BWP.
  • the transmit power of the uplink BWP may be configured a corresponding uplink power control parameter for each BWP, and send the corresponding uplink power control parameter to the mobile communication terminal, so that the mobile communication terminal may determine, according to the uplink power control parameter corresponding to each BWP.
  • the transmit power of the uplink BWP may be configured.
  • the embodiment of the present disclosure configures corresponding uplink power control parameters for each BWP by using the network side, so that the uplink power control parameters corresponding to each BWP can be flexibly controlled, for example, according to the bandwidth of each BWP and the capabilities of the mobile communication terminal.
  • the uplink power control parameters corresponding to the BWPs enable the uplink power control parameters corresponding to each BWP to minimize interference and energy consumption while ensuring uplink transmission quality.
  • the method further includes:
  • the received mobile communication terminal calculates and transmits the actual power headroom corresponding to the first target BWP according to the maximum transmit power corresponding to the first target BWP and the actual transmit power of the physical uplink shared channel;
  • the receiving mobile communication terminal calculates and transmits the virtual power margin corresponding to the first target BWP according to the maximum transmit power corresponding to the first target BWP and the virtual transmit power of the physical uplink shared channel.
  • the mobile communication terminal can allocate more bandwidth resources to send more data; if the PHR bwp is negative, it indicates that the mobile The communication terminal has reached the maximum transmission power, and the mobile communication terminal may need to reduce the bandwidth resources to ensure the quality of the service.
  • the mobile communication terminal may also calculate the virtual power margin of the BWP according to the maximum transmit power P cmax, bwp of the first target BWP and the virtual transmit power P pusch_virtual of the physical uplink shared channel on the first target BWP.
  • the embodiment of the present disclosure may send the calculated actual power headroom corresponding to the first target BWP or the virtual power headroom corresponding to the first target BWP to the network device, so that the network device may be based on the actual power headroom corresponding to the first target BWP.
  • the virtual power margin corresponding to the first target BWP adjusts the bandwidth resource of the mobile communication terminal, and can improve the quantity of the transmission while ensuring the quality of the service.
  • the method before performing the receiving process on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, the method further includes: sending an indication of the first target BWP's BWP adjustment instructions.
  • the network side may send the BWP adjustment instruction to the mobile communication terminal by using L1/L2 signaling, so that the mobile communication terminal may perform BWP adjustment according to the BWP adjustment instruction to determine the first target BWP.
  • each BWP is configured with related power control parameters (for example, uplink power control parameters).
  • the network side dynamically adjusts the BWP of the mobile communication terminal by using L1/L2 signaling (such as dynamic switching in a plurality of pre-configured BWPs)
  • the mobile communication terminal may use the power control parameter corresponding to the currently valid BWP.
  • the network side sends a BWP adjustment instruction indicating the first target BWP to the mobile communication terminal, so that the mobile communication terminal can perform BWP adjustment according to the BWP adjustment instruction, so as to conveniently implement the bandwidth of the mobile communication terminal. Adjustment of resources.
  • FIG. 7 is a flowchart of a power allocation method according to an embodiment of the present disclosure. This method is applied to the network side. As shown in FIG. 7, the power allocation method provided by the implementation of the present disclosure includes the following steps:
  • Step 701 Perform transmit power allocation on the downlink transmission performed on the second target BWP by using a target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • the downlink power adjustment parameter may be independently configured for each BWP, and the downlink power allocation may be performed based on the downlink power adjustment parameter corresponding to each BWP.
  • the foregoing second target BWP may be any one of the at least two BWPs.
  • the target downlink power adjustment parameter includes at least one of the following parameters: a per-resource particle power EPRE of the synchronization signal, an EPRE of the reference signal, an EPRE of the reference signal, and an EPRE of the downlink data signal.
  • the reference signal may be a Demodulation Reference Signal (DMRS), a Channel State Information-Reference Signal (CSI-RS), and a Tracking Reference Signal (TRS). At least one of a Phase Tracking Reference Signal (PTRS).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the ratio of the EPRE of the reference signal to the EPRE of the downlink data signal may include, but is not limited to, at least one of: a power ratio of the DMRS to the EPRE of the downlink data signal, a power ratio of the CSI-RS to the EPRE of the downlink data signal, and TRS and The power ratio of the EPRE of the downlink data signal, and the power ratio of the PTRS to the EPRE of the downlink data signal.
  • the downlink power adjustment parameter may be predefined in a communication protocol between the mobile communication terminal and the network device, or may be configured through a network device.
  • the transmit power allocation is performed on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • the method further includes: transmitting a target downlink power adjustment parameter corresponding to the second target BWP to the mobile communication terminal.
  • the target downlink power adjustment parameter corresponding to the second target BWP is sent to the mobile communication terminal, so that the mobile communication terminal can perform downlink receiving processing according to the target downlink power adjustment parameter.
  • the network device may configure one or more BWPs for the mobile communication terminal.
  • each BWP is configured with a corresponding downlink power adjustment parameter, and the network device may The downlink power adjustment parameter corresponding to each BWP is sent to the mobile communication terminal, so that the mobile communication terminal can perform reception processing on the downlink transmission performed on each BWP according to each BWP downlink power adjustment parameter.
  • each BWP is configured with a corresponding power control parameter (for example, a downlink power adjustment parameter).
  • a power control parameter for example, a downlink power adjustment parameter.
  • the network side dynamically adjusts the BWP of the mobile communication terminal by using L1/L2 signaling (such as dynamic switching in a plurality of pre-configured BWPs)
  • the mobile communication terminal may use the power control parameter corresponding to the currently valid BWP.
  • the embodiment of the present disclosure performs transmission power allocation on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP, compared to the power control of each carrier in the related art. In this way, system performance can be improved. In addition, unnecessary power transmission can be reduced, and power consumption and intra-system interference can be reduced.
  • FIG. 8 is a flowchart of a receiving method provided by an embodiment of the present disclosure. The method is applied to a mobile communication terminal. As shown in FIG. 8, the receiving method provided by the implementation of the present disclosure includes the following steps:
  • Step 801 Perform receiving processing on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • the downlink power adjustment parameter (DL power control) may be separately configured for each BWP, and the downlink transmission receiving process may be performed based on the downlink power adjustment parameter corresponding to each BWP.
  • the foregoing second target BWP may be any one of the at least two BWPs.
  • the mobile communication terminal may perform the receiving process on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP.
  • the target downlink power adjustment parameter includes at least one of the following: an EPRE of the synchronization signal, an EPRE of the reference signal, an EPRE of the reference signal, and an EPRE of the downlink data signal.
  • the reference signal is at least one of DMRS, CSI-RS, TRS, and PTRS.
  • the reference signal may be a Demodulation Reference Signal (DMRS), a Channel State Information-Reference Signal (CSI-RS), and a Tracking Reference Signal (TRS). At least one of a Phase Tracking Reference Signal (PTRS).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the ratio of the EPRE of the reference signal to the EPRE of the downlink data signal may include, but is not limited to, at least one of: a power ratio of the DMRS to the EPRE of the downlink data signal, a power ratio of the CSI-RS to the EPRE of the downlink data signal, and TRS and The power ratio of the EPRE of the downlink data signal, and the power ratio of the PTRS to the EPRE of the downlink data signal.
  • the downlink power adjustment parameter may be predefined in a communication protocol between the mobile communication terminal and the network device, or may be configured through a network device.
  • the target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP is used to perform the receiving process on the downlink transmission performed on the second target BWP.
  • the method further includes: receiving a target downlink power adjustment parameter corresponding to the second target BWP sent by the network side.
  • the network device may configure one or more BWPs for the mobile communication terminal.
  • each BWP is configured with a corresponding downlink power adjustment parameter, and the network device may The downlink power adjustment parameter corresponding to each BWP is sent to the mobile communication terminal, so that the mobile communication terminal can perform reception processing on the downlink transmission performed on each BWP according to each BWP downlink power adjustment parameter.
  • the embodiment of the present disclosure performs the receiving process on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP, compared to the power control mode of each carrier in the related art. It can improve system performance and, in addition, reduce unnecessary power transmission, reduce power consumption and system interference.
  • the power control method, the power allocation method, and the receiving method provided by the embodiments of the present disclosure may be applied to a 5G mobile communication system, and may also be applied to other mobile communication systems that segment a carrier. This example does not limit this.
  • FIG. 9 is a structural diagram of a mobile communication terminal provided by an implementation of the present disclosure.
  • the mobile communication terminal 10 includes a first control module 901.
  • the first control module 901 is configured to perform transmit power control on the uplink transmission performed on the first target BWP by using a target uplink power control parameter corresponding to the first target BWP.
  • the mobile communication terminal 10 further includes:
  • the first receiving module 902 is configured to: before the transmit power control on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, each BWP sent by the receiving network side Corresponding uplink power control parameters.
  • the target uplink power control parameter includes at least one of the following parameters: a maximum transmit power, a target received power, a power compensation factor, a path loss reference, a power adjustment value, and a Transmission Power Control (TPC) command. word.
  • TPC Transmission Power Control
  • the mobile communication terminal 10 further includes a calculation module 903, where the calculation module 903 is specifically configured to:
  • the virtual transmit power of the uplink shared channel calculates and transmits a virtual power margin corresponding to the first target BWP.
  • the mobile communication terminal 10 further includes:
  • the second receiving module 904 is configured to receive, by using a target uplink power control parameter corresponding to the first target BWP, a BWP adjustment command sent by the network side before performing transmission power control on the transmission performed on the first target BWP;
  • the determining module 905 is configured to determine the first target BWP according to the BWP adjustment instruction.
  • the mobile communication terminal 10 can implement the various processes of the power control method of the method embodiment of FIG. 2, and achieve the same effect to avoid repetition, and details are not described herein again.
  • the mobile communication terminal 10 of the embodiment of the present disclosure performs the transmission power control on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP by the first control module 901, and implements For BWP power control, power control for one or more BWPs is specified.
  • FIG. 13 is a structural diagram of a network device provided by an implementation of the present disclosure.
  • the network device 20 includes: a third receiving module 1301, where:
  • the third receiving module 1301 is configured to perform receiving processing on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP.
  • the network device 20 further includes:
  • the first sending module 1302 is configured to send, according to the target uplink power control parameter corresponding to the first target BWP, the uplink power control parameter corresponding to each BWP before performing the receiving process on the uplink transmission performed on the first target BWP. To the mobile communication terminal.
  • the target uplink power control parameter includes at least one of the following parameters: a maximum transmit power, a target receive power, a power compensation factor, a path loss reference, a power adjustment value, and a transmit power control command word.
  • the network device 20 further includes a fourth receiving module 1303, where the fourth receiving module 1303 is specifically configured to:
  • the mobile communication terminal After receiving the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target bandwidth portion BWP, receiving the maximum transmission corresponding to the first target BWP by the mobile communication terminal The actual power headroom corresponding to the first target BWP calculated and transmitted by the actual transmit power of the power and the physical uplink shared channel;
  • the virtual power margin corresponding to the first target BWP is calculated and transmitted by the power and the virtual transmit power of the physical uplink shared channel.
  • the network device 20 further includes:
  • the second sending module 1304 is configured to send a BWP indicating the first target BWP before performing the receiving process on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP. Adjust the instructions.
  • the network device 20 can implement the processes of the receiving method of the method embodiment of FIG. 6 and achieve the same effect to avoid repetition, and details are not described herein again.
  • the network device 20 of the embodiment of the present disclosure performs receiving processing on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP by the third receiving module 1301, and implements power for the BWP. Controls, regulates power control of one or more BWPs.
  • FIG. 17 is a structural diagram of a network device provided by an implementation of the present disclosure.
  • the network device 20 includes: an allocation module 1701, wherein:
  • the allocating module 1701 is configured to perform transmission power allocation on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP.
  • the network device 20 further includes:
  • the third sending module 1702 is configured to send the target downlink power adjustment parameter corresponding to the second target BWP to the mobile communication terminal.
  • the target downlink power adjustment parameter includes at least one of the following: an EPRE of the synchronization signal, an EPRE of the reference signal, an EPRE of the reference signal, and an EPRE of the downlink data signal.
  • the reference signal is at least one of DMRS, CSI-RS, TRS, and PTRS.
  • the network device 20 can implement the various processes of the power allocation method of the method embodiment of FIG. 7 and achieve the same effect to avoid repetition, and details are not described herein again.
  • the network device 20 of the embodiment of the present disclosure is configured to allocate, by using the target downlink power adjustment parameter corresponding to the second target BWP, the transmit power allocation on the downlink transmission performed on the second target BWP, and implement the BWP.
  • Power control standardizing power control for one or more BWPs.
  • FIG. 19 is a structural diagram of a mobile communication terminal provided by an implementation of the present disclosure.
  • the mobile communication terminal 10 includes: a fifth receiving module 1901, wherein:
  • the fifth receiving module 1901 is configured to perform receiving processing on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP.
  • the mobile communication terminal 10 further includes:
  • the sixth receiving module 1902 is configured to receive a target downlink power adjustment parameter corresponding to the second target BWP sent by the network side.
  • the target downlink power adjustment parameter includes at least one of the following: an EPRE of the synchronization signal, an EPRE of the reference signal, an EPRE of the reference signal, and an EPRE of the downlink data signal.
  • the reference signal is at least one of DMRS, CSI-RS, TRS, and PTRS.
  • the mobile communication terminal 10 can implement the various processes of the receiving method of the method embodiment of FIG. 8 and achieve the same effect to avoid repetition, and details are not described herein again.
  • the mobile communication terminal 10 of the embodiment of the present disclosure is configured to receive, by using the fifth receiving module 1901, the downlink transmission adjustment performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP.
  • BWP power control power control for one or more BWPs is specified.
  • Embodiments of the present disclosure also provide a mobile communication terminal including a memory, a processor, and a computer program stored on the memory and operable on the processor, the computer program being implemented by the processor to implement the above
  • a mobile communication terminal including a memory, a processor, and a computer program stored on the memory and operable on the processor, the computer program being implemented by the processor to implement the above
  • the steps of the power control method of the method embodiment of FIG. 2, or the steps of the receiving method of the method embodiment of FIG. 8, and the same technical effects can be achieved. To avoid repetition, details are not described herein again.
  • Embodiments of the present disclosure also provide a network device including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the above-described diagram
  • a network device including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the above-described diagram
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and the computer program is executed by the processor to implement the power control method of the method embodiment of FIG. 2
  • the steps of the receiving method of the method embodiment of FIG. 8 are implemented, and the same technical effects can be achieved. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the receiving method of the method embodiment of FIG. 6 is implemented.
  • the steps of the power allocation method of the method embodiment of FIG. 7 are implemented, and the same technical effects can be achieved. To avoid repetition, details are not described herein again.
  • FIG. 21 is a structural diagram of a mobile communication terminal according to an embodiment of the present disclosure.
  • the mobile communication terminal 10 includes: at least one first processor 2101, a first memory 2102, and at least one first network interface. 2104 and first user interface 2103.
  • the various components in the mobile communication terminal 10 are coupled together by a first bus system 2105.
  • the first bus system 2105 is used to implement connection communication between these components.
  • the first bus system 2105 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as the first bus system 2105 in FIG.
  • the first user interface 2103 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the first memory 2102 in the embodiments of the present disclosure may be a volatile first memory or a non-volatile first memory, or may include both volatile and non-volatile first memories.
  • the non-volatile first memory may be a read-only memory (ROM), a programmable read-only first memory (Programmable ROM (PROM), an erasable programmable read-only first memory ( Erasable PROM, EPROM), electrically erasable programmable read only first memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile first memory may be a random access first memory (Random Access Memory, RAM) that is used as an external cache.
  • RAM static random access first memory
  • DRAM dynamic random access first memory
  • SDRAM synchronous dynamic random access Synchronous DRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access First Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access First Memory
  • SLDRAM Synchronous Connection Dynamics Random access first memory
  • Direct Rambus RAM Direct Rambus RAM
  • the first memory 2102 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set: a first operating system 21021 and a first application 21022.
  • the first operating system 21021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the first application 21022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the first application 21022.
  • the mobile communication terminal 10 further includes: a computer program stored on the first memory 2102 and executable on the first processor 2101, and specifically, may be a computer program in the first application 21022, When the computer program is executed by the first processor 2101, the following steps are implemented: performing transmission power control on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target bandwidth portion BWP.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the first processor 2101 or implemented by the processor 2101.
  • the first processor 2101 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the first processor 2101 or an instruction in a form of software.
  • the first processor 2101 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array (FPGA). Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random first memory, flash memory, read only first memory, programmable read only first memory or electrically erasable programmable first memory, registers, etc., which are well established in the art.
  • the storage medium is located in the first memory 2102, and the first processor 2101 reads the information in the first memory 2102 and completes the steps of the above method in combination with the hardware thereof.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in the first memory and executed by the processor.
  • the first memory can be implemented in the processor or external to the processor.
  • the uplink power control parameters corresponding to each BWP sent by the network side are received.
  • the target uplink power control parameter includes at least one of the following parameters: a maximum transmit power, a target received power, a power compensation factor, a path loss reference, a power adjustment value, and a Transmission Power Control (TPC) command. word.
  • TPC Transmission Power Control
  • the virtual transmit power of the uplink shared channel calculates and transmits a virtual power margin corresponding to the first target BWP.
  • the first target BWP is determined according to the BWP adjustment instruction.
  • the mobile communication terminal 10 can implement the various processes implemented by the mobile communication terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the mobile communication terminal 10 of the embodiment of the present disclosure performs transmission power control on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, thereby implementing power control on the BWP. Power control for one or more BWPs is specified.
  • FIG. 22 is a structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 20 includes: a second processor 2201, a second memory 2202, a second user interface 2203, and a second transceiver.
  • the network device 20 further includes: a computer program stored on the second memory 2202 and executable on the second processor 2201. When the computer program is executed by the second processor 2201, the following steps are implemented:
  • the bus architecture may include any number of interconnected buses and bridges, specifically the various circuit connections of the second memory represented by the second processor 2201 and the second memory represented by the second memory 2202. Together.
  • the bus architecture can also connect various other circuits, such as peripherals, voltage regulators, and power control circuits, as is known in the art, and therefore, will not be further described herein.
  • the second bus interface provides an interface.
  • the second transceiver 2204 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the second user interface 2203 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the second processor 2201 is responsible for controlling the bus architecture and the usual processing, and the second memory 2202 can store data used by the second processor 2201 when performing operations.
  • the target uplink power control parameter includes at least one of the following parameters: a maximum transmit power, a target receive power, a power compensation factor, a path loss reference, a power adjustment value, and a transmit power control command word.
  • the mobile communication terminal After receiving the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target bandwidth portion BWP, receiving the maximum transmission corresponding to the first target BWP by the mobile communication terminal The actual power headroom corresponding to the first target BWP calculated and transmitted by the actual transmit power of the power and the physical uplink shared channel;
  • the virtual power margin corresponding to the first target BWP is calculated and transmitted by the power and the virtual transmit power of the physical uplink shared channel.
  • the network device 20 can implement the various processes implemented by the network device in the foregoing embodiment, and achieve the same effect. To avoid repetition, details are not described herein again.
  • the network device 20 of the embodiment of the present disclosure performs the receiving process on the uplink transmission performed on the first target BWP by using the target uplink power control parameter corresponding to the first target BWP, thereby implementing power control on the BWP, and standardizing the pair Power control of one or more BWPs.
  • FIG. 23 is a structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 20 includes: a third processor 2301, a third memory 2302, a third user interface 2303, and a third transceiver.
  • Machine 2304 and a third bus interface are examples of the network device 20.
  • the network device 20 further includes: a computer program stored on the third memory 2302 and executable on the third processor 2301.
  • a computer program stored on the third memory 2302 and executable on the third processor 2301.
  • the transmission power allocation is performed on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • the bus architecture may include any number of interconnected buses and bridges, in particular, various circuit connections of the third memory represented by the third processor 2301 and the third memory represented by the third memory 2302. Together.
  • the bus architecture can also connect various other circuits, such as peripherals, voltage regulators, and power control circuits, as is known in the art, and therefore, will not be further described herein.
  • the third bus interface provides an interface.
  • the third transceiver 2304 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the third user interface 2303 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the third processor 2301 is responsible for controlling the bus architecture and normal processing, and the third memory 2302 can store data used by the third processor 2301 when performing operations.
  • the target downlink power adjustment parameter includes at least one of the following: an EPRE of the synchronization signal, an EPRE of the reference signal, an EPRE of the reference signal, and an EPRE of the downlink data signal.
  • the reference signal is at least one of DMRS, CSI-RS, TRS, and PTRS.
  • the network device 20 can implement the various processes implemented by the network device in the foregoing embodiment, and achieve the same effect. To avoid repetition, details are not described herein again.
  • the network device 20 of the embodiment of the present disclosure performs transmission power allocation on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP, thereby implementing power control on the BWP, and standardizing Power control for one or more BWPs.
  • FIG. 24 is a structural diagram of a mobile communication terminal provided by an implementation of the present disclosure.
  • the mobile communication terminal 10 includes: at least one fourth processor 2401, a fourth memory 2402, and at least one fourth network interface. 2404 and a fourth user interface 2403.
  • the various components in the mobile communication terminal 10 are coupled together by a fourth bus system 2405.
  • the fourth bus system 2405 is used to implement connection communication between these components.
  • the fourth bus system 2405 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as the fourth bus system 2405 in FIG.
  • the fourth user interface 2403 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the fourth memory 2402 in the embodiment of the present disclosure may be a volatile fourth memory or a non-volatile fourth memory, or may include both volatile and non-volatile fourth memories.
  • the nonvolatile fourth memory may be a Read-Only Memory (ROM), a Programmable Read Only Memory (ROM), and an Erasable Programmable Read Only Memory ( Erasable PROM, EPROM), electrically erasable programmable read only fourth memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile fourth memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access fourth memory (DRAM), synchronous dynamic random access.
  • the fourth memory 2402 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable type of fourth memory.
  • the fourth memory 2402 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set: a fourth operating system 24024 and a fourth application 24022.
  • the fourth operating system 24024 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the fourth application 24022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiment of the present disclosure may be included in the fourth application 24022.
  • the mobile communication terminal 10 further includes: a computer program stored on the fourth memory 2402 and executable on the fourth processor 2401, and specifically, may be a computer program in the fourth application program 24022, When the computer program is executed by the fourth processor 2401, the following steps are implemented: receiving the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target bandwidth portion BWP.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the fourth processor 2401 or implemented by the processor 2401.
  • the fourth processor 2401 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the fourth processor 2401 or an instruction in a form of software.
  • the fourth processor 2401 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array (FPGA). Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random fourth memory, flash memory, read only fourth memory, programmable read only fourth memory or electrically erasable programmable fourth memory, registers, etc., which are well established in the art.
  • the storage medium is located in the fourth memory 2402, and the fourth processor 2401 reads the information in the fourth memory 2402 and completes the steps of the above method in combination with the hardware thereof.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in a fourth memory and executed by the processor.
  • the fourth memory can be implemented in the processor or external to the processor.
  • the target downlink power adjustment parameter includes at least one of the following: an EPRE of the synchronization signal, an EPRE of the reference signal, an EPRE of the reference signal, and an EPRE of the downlink data signal.
  • the reference signal is at least one of DMRS, CSI-RS, TRS, and PTRS.
  • the mobile communication terminal 10 can implement the various processes implemented by the mobile communication terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the mobile communication terminal 10 of the embodiment of the present disclosure performs receiving processing on the downlink transmission performed on the second target BWP by using the target downlink power adjustment parameter corresponding to the second target BWP, and implements power control on the BWP, and standardizes the pair. Power control of one or more BWPs.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present disclosure.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备,该方法包括:利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。

Description

功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备
相关申请的交叉引用
本申请主张在2017年8月9日在中国提交的中国专利申请号No.201710677047.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备。
背景技术
随着移动通信技术的发展,未来移动通信系统趋于采用较大的系统带宽,例如,第五代(5th-Generation,5G)移动通信系统可以支持100MHZ、400MHz等的系统带宽,远大于长期演进(Long Term Evolution,LTE)系统所支持的最大20MHz的系统带宽,以支持更大的系统与用户吞吐量。
在移动通信系统采用较大系统带宽时,由于不同的移动通信终端可以支持的带宽可以不同,为了使得支持较小带宽的移动通信终端能够接入较大带宽网络中的带宽部分,引入了带宽部分(Bandwidth Part,BWP)。具体的,以5G移动通信系统为例,5G移动通信系统可以将系统带宽划分成一个或多个BWP,一个移动通信终端可以被配置一个或多个BWP。然而,相关技术中,通常是按照载波进行功率管理,对于如何进行BWP的功率管理并没有相关的解决方案。
发明内容
第一方面,本公开实施例提供了一种功率控制方法。该功率控制方法包括:
利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。
第二方面,本公开实施例还提供了一种接收方法。该接收方法包括:
利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理。
第三方面,本公开实施例还提供了一种功率分配方法。该功率分配方法包括:
利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配。
第四方面,本公开实施例还提供了一种接收方法。该接收方法包括:
利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行接收处理。
第五方面,本公开实施例还提供一种移动通信终端。该移动通信终端包括:
第一控制模块,用于利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。
第六方面,本公开实施例还提供一种网络设备。该网络设备包括:
第三接收模块,用于利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理。
第七方面,本公开实施例还提供一种网络设备。该网络设备包括:
分配模块,用于利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配。
第八方面,本公开实施例还提供一种移动通信终端。该移动通信终端包括:
第五接收模块,用于利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行接收处理。
第九方面,本公开实施例还提供一种移动通信终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的功率控制方法的步骤,或者实现上述第四方面提供的接收方法的步骤。
第十方面,本公开实施例还提供一种网络设备,所述网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序, 所述计算机程序被所述处理器执行时实现上述第二方面提供的接收方法的步骤,或者实现上述第三方面提供的功率分配方法的步骤。
第十一方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的功率控制方法的步骤,或者实现上述第四方面提供的接收方法的步骤。
第十二方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现上述第二方面提供的接收方法的步骤,或者实现上述第三方面提供的功率分配方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例可应用的网络结构示意图;
图2是本公开实施例提供的功率控制方法的流程图;
图3是本公开实施例提供的BWP应用场景的示意图;
图4是本公开又一实施例提供的BWP应用场景的示意图;
图5是本公开又一实施例提供的BWP应用场景的示意图;
图6是本公开实施例提供的接收方法的流程图;
图7是本公开实施例提供的功率分配方法的流程图;
图8是本公开又一实施例提供的接收方法的流程图;
图9是本公开实施例提供的移动通信终端的结构图;
图10是本公开又一实施例提供的移动通信终端的结构图;
图11是本公开又一实施例提供的移动通信终端的结构图;
图12是本公开又一实施例提供的移动通信终端的结构图;
图13是本公开实施例提供的网络设备的结构图;
图14是本公开又一实施例提供的网络设备的结构图;
图15是本公开又一实施例提供的网络设备的结构图;
图16是本公开又一实施例提供的网络设备的结构图;
图17是本公开又一实施例提供的网络设备的结构图;
图18是本公开又一实施例提供的网络设备的结构图;
图19是本公开又一实施例提供的移动通信终端的结构图;
图20是本公开又一实施例提供的移动通信终端的结构图;
图21是本公开又一实施例提供的移动通信终端的结构图;
图22是本公开又一实施例提供的网络设备的结构图;
图23是本公开又一实施例提供的网络设备的结构图;
图24是本公开又一实施例提供的移动通信终端的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中,上行功率控制用于控制不同上行物理信道的发射功率,如上行功率控制可以包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)功率控制、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)功率控制、探测参考信号(Sounding Reference Signal,SRS)功率控制等。
以LTE系统为例,LTE系统中上行采用单载波频分多址(Single Carrier Frequency Division Multiple Access,SC-FDMA)波形,上行功率控制采用开环和闭环结合的方式。以PUSCH为例,移动通信终端在服务小区c(serving cell c)上子帧i的发射功率可以由如下公式计算:
Figure PCTCN2018096813-appb-000001
其中:
P CMAX,c(i)表示移动通信终端在服务小区c上子帧i的最大发射功率;
M PUSCH,c(i)表示移动通信终端在服务小区c上子帧i的PUSCH所占的带宽,单位为资源块(Resource Block,RB);
P O_PUSCH,c(j)表示移动通信终端在服务小区c上子帧i的PUSCH开环功率目标值,其中j表示PUSCH传输类型,j=0表示半持续调度的PUSCH传输,j=1表示动态调度的PUSCH传输,j=2表示携带随机接入Msg3(message 3)信令的PUSCH传输;
α c表示服务小区c上的路损补偿因子,可以实现部分路损补偿,对于j=0或1,α c∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1},对于j=2,α c(j)=1;
PL c表示服务小区c上的路损测量值;
Δ TF,c(i)表示与PUSCH调制与编码策略(Modulation and Coding Scheme,MCS)有关的功率调整量;
f c(i)表示服务小区c上子帧i的闭环功率控制命令累积值。
可选的,下行功率分配用于确定下行传输在每个资源元素上的发射功率。以LTE系统为例,LTE系统支持基于用户的慢速功率分配,涉及到如下的功率参数设定:
导频每个资源元素的能量(Energy Per Resource Element,EPRE):表示导频资源资源元素(Resource Element,RE)上的发射功率,包括小区参考信号(Cell Reference Signal,CRS)的EPRE和信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)的EPRE等,其中,导频EPRE是小区属性,对所有用户是一样的。
数据EPRE:表示数据资源RE上的发射功率,其中,数据EPRE是移动通信终端特定(UE specific)的,网络侧(例如,基站)可以通过无线资源控制(Radio Resource Control,RRC)信令将数据EPRE有关的信息告知移动通信终端。
实际应用中,在一些支持较大带宽的移动通信系统中,例如,5G移动通信系统,一个移动通信终端可以被配置一个或多个BWP,当移动通信终端被配置多个BWP时,每个BWP可以采用相同或不同的配置参数(即Numerologies)。
由于业务情况不同、移动通信终端能力不同等原因,相邻服务小区同一时刻使用不同的BWP传输上行或下行业务,会导致相邻服务小区干扰在不同的BWP上不同。此外,由于网络部署的原因,一个服务小区可以使用不同的传输点发送或接收不同的BWP。如果采用与LTE相同的功率控制方式,即每个载波的功率控制方式,将导致不同BWP上传输性能存在差异,降低系统性能。此外,不准确的功率控制将导致不必要功率发送,增加功耗和系统内干扰。
因此,本公开实施例针对每个BWP进行功率管理,包括对每个BWP进行功率管理参数(例如,上行功率控制参数、下行功率调整参数等)的配置以及相应的处理,以提升系统性能。
参见图1,图1是本公开实施例可应用的网络结构示意图,如图1所示,包括移动通信终端10和网络设备20,其中,移动通信终端10可以通过网络与网络设备20进行通信,其中,移动通信终端10可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等。网络设备可以是演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站(gNB),或者网络侧的无线网络控制器等,在此并不限定。
本公开实施例中,移动通信终端10可以利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。相应的,网络设备20可以利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理,从而规范了对一个或是多个BWP的功率控制。
本公开实施例中,网络设备20可以利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行发送功率分配。相应的,移动通信终端10利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行接收处理。从而规范了对一个或是多个BWP的功率控制。
本公开实施例提供一种功率控制方法。该方法应用于移动通信终端。参 见图2,图2是本公开实施例提供的功率控制方法的流程图,如图2所示,包括以下步骤:
步骤201、利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。
本公开实施例中,系统带宽可以分成一个或至少两个BWP,移动通信终端可以是支持一个或至少两个BWP。当移动通信终端支持至少两个BWP时,上述第一目标BWP可以是至少两个BWP中任意一个BWP。具体的,本公开实施例可以为每个BWP独立配置上行功率控制参数,移动通信终端可以根据每个BWP的上行功率控制参数控制在每个BWP上进行的上行传输的发射功率。
可选的,所述目标上行功率控制参数可以包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制(Transmission Power Control,TPC)命令字。
本公开实施例中,上述最大发射功率可以是指BWP上的终端的最大发射功率P cmax,bwp,具体的,可以根据最大发射功率参数确定BWP的最大发射功率P cmax,bwp,其中,最大发射功率参数可以包括但不限于最大发射功率P EMAX,c和/或额外最大功率减小(Additional Maximum Power Reduction,A-MPR)。
上述目标接收功率(Taget Received Power),也即Po,包括但不限于PUSCH的功率目标值Po_PUSCH、PUCCH的接收功率目标值Po_PUCCH、SRS的接收功率目标值Po_SRS(或SRS接收功率目标偏移值Po_SRS_offset)、前导码(preamble)的接收功率目标值Po_preamble中的一个或多个。
上述功率补偿因子即前面提到的alpha。
对于上述路损参考,网络侧(例如,基站)可以为每个上行BWP(UL BWP)配置下行路损参考(DL Pathloss Reference),例如,需要测量路损(Pathloss)的下行BWP(DL BWP)。
上述功率调整值可以包括传输格式有关的功率调整值、PUCCH格式有关的功率调整值和PUCCH天线模式有关的功率调整值等。具体的,可以为每个上行BWP配置传输格式有关的功率调整值,其中,传输格式有关的功率调整值可以包括:
与PUSCH发送MCS(调制编码方式)有关的调整量;
和/或
PUSCH中携带上行控制信息(Uplink Control Information,UCI)时,UCI相比PUSCH的调整值
Figure PCTCN2018096813-appb-000002
上述PUCCH格式有关的功率调整值可以包括Δ F_PUCCH(F),即不同PUCCH格式的相对功率偏移值。
上述PUCCH天线模式有关的功率调整值可以包括Δ TxD(F'),即PUCCH采用发射分集时的发射功率相比非发射分集传输时的发射功率的功率调整量。
具体的,对于TPC命令字,上述网络侧(例如基站)可以为每个BWP发送独立的TPC命令字,移动通信终端按照每个BWP进行TPC命令的累积。
这样,本公开实施例通过利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制,相比于相关技术中采用每载波的功率控制方式,可以提高系统性能,此外,还可以减少不必要功率发送,降低功耗和系统内干扰。
实际应用中,上述目标上行功率控制参数可以在移动通信终端和网络设备间的通信协议中预定义,也可以通过网络侧配置并发给移动通信终端。
可选的,为了提高功率控制参数配置的灵活性,利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之前,所述方法还包括:接收网络侧发送的,每一个BWP各自对应的上行功率控制参数。
本公开具体实施例中,整个带宽可以由一个或一个以上的BWP组成,在整个带宽由一个BWP组成时,发送该唯一的BWP对应的上行功率控制参数,而在整个带宽由多个BWP组成时,需要发送每一个BWP对应的上行功率控制参数。
本公开实施例中,网络侧(例如,基站)可以为每个BWP配置对应的上行功率控制参数,并发送给移动通信终端,从而移动通信终端可以根据每个BWP对应的上行功率控制参数确定每个上行BWP的发射功率。
本公开实施例通过网络侧为每个BWP配置对应的上行功率控制参数,从而可以灵活的控制每个BWP对应的上行功率控制参数,如可以根据每个 BWP的带宽和移动通信终端的能力配置每个BWP对应的上行功率控制参数,使得每个BWP对应的上行功率控制参数可以在保证上行传输质量的前提下尽量降低干扰和能量消耗。
可选的,所述利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,所述方法还包括:
对应于单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送所述第一目标BWP对应的实际功率余量;
对应于正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA),根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送所述第一目标BWP对应的虚拟功率余量。
本公开实施例中,移动通信终端可以根据第一目标BWP对应的上行功率控制参数计算第一目标BWP上的实际发射功率,包括第一目标BWP上的物理上行共享信道的实际发射功率P pusch,bwp和物理上行控制信道的实际发射功率P pucch,bwp
同时,本公开实施例中,对应于单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),还可以根据该第一目标BWP的最大发射功率P cmax,bwp和物理上行共享信道的实际发射功率P pusch计算出第一目标BWP的实际功率余量(Power Headroom)PHR bwp,例如:PHR bwp=P cmax,bwp-P pusch。具体的,若PHR bwp为正,则表示移动通信终端的发射功率尚未达到最大值,移动通信终端还可以分配更多的带宽资源,以发送更多的数据;若PHR bwp为负,则表示移动通信终端已经达到最大发射功率,移动通信终端可能需要减少带宽资源,以保证业务质量。
可选的,对应于正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA),移动通信终端也可以根据BWP的最大发射功率P cmax,bwp和该BWP上物理上行共享信道的虚拟发射功率P pusch_virtual计算出该BWP的虚拟功率余量(power headroom)HR bwp_virtual,例如:PHR bwp_virtual= P cmax,bwp-P pusch_virtual。
本公开实施例可以将计算得到的第一目标BWP对应的实际功率余量或第一目标BWP对应的虚拟功率余量发送给网络设备,从而网络设备可以根据第一目标BWP对应的实际功率余量或第一目标BWP对应的虚拟功率余量调整移动通信终端的带宽资源,可以在保障业务质量的同时,提高数量传输量。
可选的,所述利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的传输进行功率控制之前,所述方法还包括:
接收网络侧发送的BWP调整指令;
根据所述BWP调整指令确定所述第一目标BWP。
本公开实施例中,网络侧可以通过L1/L2信令发送BWP调整指令给移动通信终端,从而移动通信终端可以根据BWP调整指令进行BWP的调整,以确定第一目标BWP。
具体的,当网络侧为移动通信终端配置多个BWP时,每个BWP有相关的功率控制参数。当网络侧采用L1/L2信令对移动通信终端的BWP进行动态调整(如在预配置的多个BWP中进行动态切换)时,移动通信终端可以使用当前有效的BWP对应的功率控制参数。
可选的,BWP的调整还可以包括如下调整方式:
方式一:BWP的中心频点不变,BWP带宽变化;
方式二:BWP的中心频点变化,BWP带宽不变;
方式三:BWP中心频点变化,BWP带宽也变化。
需要说明的是,方式一可以不需要射频调节(RF Retuning)。
例如,参见图3至图5,图3至图5示出了BWP的几种应用场景:
场景一:移动通信终端接入系统带宽的一个BWP,参见图3。
场景二:移动通信终端的BWP调整,BWP中心频点不变,BWP带宽变化,参见图4。
场景三:移动通信终端同时接入系统带宽中的2个BWP(BWP1和BWP2),2个BWP配置参数(Numerology)不同,参见图5。
本公开实施例中,移动通信终端可以根据BWP调整指令进行BWP的调整,从而可以方便实现移动通信终端的带宽资源的调整。
参见图6,图6是本公开实施例提供的接收方法的流程图。该方法应用于网络侧。如图6所示,本公开实施提供的接收方法包括以下步骤:
步骤601、利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理。
本公开实施例中,网络设备可以利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理。
具体的,本公开实施例可以为每个BWP独立配置上行功率控制参数,网络设备可以根据每个BWP的上行功率控制参数进行每个BWP上进行的上行传输的接收处理。
可选的,所述目标上行功率控制参数可以包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制(Transmission Power Control,TPC)命令字。
本公开实施例中,上述最大发射功率可以是指BWP的最大发射功率P cmax,bwp,具体的,可以根据最大发射功率参数确定BWP的最大发射功率P cmax,bwp,其中,最大发射功率参数可以包括但不限于高层信令配置的最大发射功率P EMAX,c和/或附加最大功率减小(Additional Maximum Power Reduction,A-MPR)。
上述目标接收功率(Taget Received Power),也即Po,包括但不限于PUSCH的功率目标值Po_PUSCH、PUCCH的接收功率目标值Po_PUCCH、SRS的接收功率目标值Po_SRS(或SRS接收功率目标偏移值Po_SRS_offset)、前导码(preamble)接收功率目标值Po_preamble中的一个或多个。
上述功率补偿因子即alpha。
对于上述路损参考,网络侧(例如,基站)可以为每个上行BWP(UL BWP)配置下行路损参考(DL Pathloss Reference),例如,需要测量路损(Pathloss)的下行BWP(DL BWP)。
上述功率调整值可以包括传输格式有关的功率调整值、PUCCH格式有关的功率调整值、PUCCH天线模式有关的功率调整值等。具体的,可以为每个UL BWP配置传输格式有关的功率调整值,其中,传输格式有关的功率调整值可以包括K S和/或
Figure PCTCN2018096813-appb-000003
上述PUCCH格式有关的功率调整值可以包括 Δ F_PUCCH(F)。上述PUCCH天线模式有关的功率调整值可以包括Δ TxD(F')。
具体的,对于TPC命令字,上述网络侧(例如基站)可以为每个BWP发送独立的TPC命令字,移动通信终端按照每个BWP进行TPC命令的累积。
这样,本公开实施例通过利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理,相比于相关技术中采用每载波的功率控制方式,可以提高系统性能,此外,还可以减少不必要功率发送,降低功耗和系统内干扰。
实际应用中,上述目标上行功率控制参数可以在移动通信终端和网络设备间的通信协议中预定义,也可以通过网络侧配置并发给移动通信终端。
可选的,为了提高功率控制参数配置的灵活性,利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,所述方法还包括:发送每一个BWP各自对应的上行功率控制参数到移动通信终端。
本公开实施例中,网络侧(例如,基站)可以为每个BWP配置对应的上行功率控制参数,并发送给移动通信终端,从而移动通信终端可以根据每个BWP对应的上行功率控制参数确定每个上行BWP的发射功率。
本公开实施例通过网络侧为每个BWP配置对应的上行功率控制参数,从而可以灵活的控制每个BWP对应的上行功率控制参数,如可以根据每个BWP的带宽和移动通信终端的能力配置每个BWP对应的上行功率控制参数,使得每个BWP对应的上行功率控制参数可以在保证上行传输质量的前提下尽量降低干扰和能量消耗。
可选的,所述利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理之后,所述方法还包括:
对应于SC-FDMA,接收移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送的,所述第一目标BWP对应的实际功率余量;
对应于OFDMA,接收移动通信终端根据所述第一目标BWP对应的最大 发射功率和物理上行共享信道的虚拟发射功率计算并发送的,所述第一目标BWP对应的虚拟功率余量。
本公开实施例中,移动通信终端可以根据第一目标BWP对应的上行功率控制参数计算第一目标BWP的实际发射功率,包括第一目标BWP上的物理上行共享信道的实际发射功率P pusch,bwp和物理上行控制信道的实际发射功率P pucch,bwp,并可以根据第一目标BWP的最大发射功率P cmax,bwp和物理上行共享信道的实际发射功率P pusch计算出该BWP的实际功率余量(Power Headroom)PHR bwp,例如:PHR bwp=P cmax,bwp-P pusch。具体的,若PHR bwp为正,则表示移动通信终端的发射功率尚未达到最大值,移动通信终端还可以分配更多的带宽资源,以发送更多的数据;若PHR bwp为负,则表示移动通信终端已经达到最大发射功率,移动通信终端可能需要减少带宽资源,以保证业务质量。
可选的,移动通信终端也可以根据第一目标BWP的最大发射功率P cmax,bwp和第一目标BWP上物理上行共享信道的虚拟发射功率P pusch_virtual计算出该BWP的虚拟功率余量(power headroom)HR bwp_virtual,例如:PHR bwp_virtual=P cmax,bwp-P pusch_virtual
本公开实施例可以将计算得到的第一目标BWP对应的实际功率余量或第一目标BWP对应的虚拟功率余量发送给网络设备,从而网络设备可以根据第一目标BWP对应的实际功率余量或第一目标BWP对应的虚拟功率余量调整移动通信终端的带宽资源,可以在保障业务质量的同时,提高数量传输量。
可选的,所述利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,所述方法还包括:发送一指示所述第一目标BWP的BWP调整指令。
本公开实施例中,网络侧可以通过L1/L2信令发送BWP调整指令给移动通信终端,从而移动通信终端可以根据BWP调整指令进行BWP的调整,以确定第一目标BWP。
具体的,当网络侧为移动通信终端配置多个BWP时,每个BWP配置有相关的功率控制参数(例如,上行功率控制参数)。当网络侧采用L1/L2信令对移动通信终端的BWP进行动态调整(如在预配置的多个BWP中进行动态切换)时,移动通信终端可以使用当前有效的BWP对应的功率控制参数。
本公开实施例中,网络侧通过向移动通信终端发送一指示所述第一目标BWP的BWP调整指令,从而移动通信终端可以根据BWP调整指令进行BWP的调整,以便捷的实现移动通信终端的带宽资源的调整。
参见图7,图7是本公开实施例提供的功率分配方法的流程图。该方法应用于网络侧。如图7所示,本公开实施提供的功率分配方法包括以下步骤:
步骤701、利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配。
本公开实施例中,可以为每个BWP独立配置下行功率调整参数,并可以基于每个BWP对应的下行功率调整参数进行下行功率分配。可选的,当网络设备为移动通信终端配置了至少两个BWP时,上述第二目标BWP可以是上述至少两个BWP中任意一个。
可选的,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的每资源粒子功率EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
可选的,所述参考信号可以为解调参考信号(Demodulation Reference Signal,DMRS)、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、跟踪参考信号(Tracking Reference Signal,TRS)、相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)中的至少一种。
上述参考信号的EPRE与下行数据信号的EPRE的比值,可以包括但不限于如下至少一种:DMRS与下行数据信号的EPRE的功率比值,CSI-RS与下行数据信号的EPRE的功率比值,TRS与下行数据信号的EPRE的功率比值,PTRS与下行数据信号的EPRE的功率比值。
实际应用中,上述下行功率调整参数可以在移动通信终端和网络设备间的通信协议中预定义,也可以通过网络设备配置。
可选的,为了提高下行功率调整参数配置的灵活性,所述利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配之前,所述方法还包括:发送所述第二目标BWP对应的目标下行功率调整参数到移动通信终端。
本公开实施例通过发送所述第二目标BWP对应的目标下行功率调整参 数到移动通信终端,使得移动通信终端可以依据目标下行功率调整参数进行下行接收处理。
本公开实施例中,网络设备可以为移动通信终端配置一个或是多个BWP,当网络设备为移动通信终端配置了多个BWP时,每个BWP配置有对应的下行功率调整参数,网络设备可以将每个BWP对应的下行功率调整参数发送给移动通信终端,从而移动通信终端可以根据每个BWP下行功率调整参数,在每个BWP上进行的下行传输进行接收处理。
可选的,当网络侧为移动通信终端配置了多个BWP时,每个BWP配置有对应的功率控制参数(例如,下行功率调整参数)。当网络侧采用L1/L2信令对移动通信终端的BWP进行动态调整(如在预配置的多个BWP中进行动态切换)时,移动通信终端可以使用当前有效的BWP对应的功率控制参数。
这样,本公开实施例通过利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行发送功率分配,相比于相关技术中采用每个载波的功率控制方式,可以提高系统性能,此外,还可以减少不必要功率发送,降低功耗和系统内干扰。
参见图8,图8是本公开实施例提供的接收方法的流程图。该方法应用于移动通信终端。如图8所示,本公开实施提供的接收方法包括以下步骤:
步骤801、利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行接收处理。
本公开实施例中,可以为每个BWP独立配置下行功率调整参数(DL power control),并可以基于每个BWP对应的下行功率调整参数进行下行传输的接收处理。可选的,当网络设备为移动通信终端配置了至少两个BWP时,上述第二目标BWP可以是上述至少两个BWP中任意一个。
具体的,移动通信终端可以利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行接收处理。
可选的,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
可选的,所述参考信号为DMRS、CSI-RS、TRS和PTRS中的至少一种。
具体的,所述参考信号可以为解调参考信号(Demodulation Reference Signal,DMRS)、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、跟踪参考信号(Tracking Reference Signal,TRS)、相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)中的至少一种。
上述参考信号的EPRE与下行数据信号的EPRE的比值,可以包括但不限于如下至少一种:DMRS与下行数据信号的EPRE的功率比值,CSI-RS与下行数据信号的EPRE的功率比值,TRS与下行数据信号的EPRE的功率比值,PTRS与下行数据信号的EPRE的功率比值。
实际应用中,上述下行功率调整参数可以在移动通信终端和网络设备间的通信协议中预定义,也可以通过网络设备配置。
可选的,为了提高下行功率调整参数配置的灵活性,所述利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行接收处理之前,所述方法还包括:接收网络侧发送的所述第二目标BWP对应的目标下行功率调整参数。
本公开实施例中,网络设备可以为移动通信终端配置一个或是多个BWP,当网络设备为移动通信终端配置了多个BWP时,每个BWP配置有对应的下行功率调整参数,网络设备可以将每个BWP对应的下行功率调整参数发送给移动通信终端,从而移动通信终端可以根据每个BWP下行功率调整参数,在每个BWP上进行的下行传输进行接收处理。
这样,本公开实施例通过利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行接收处理,相比于相关技术中采用每个载波的功率控制方式,可以提高系统性能,此外,还可以减少不必要功率发送,降低功耗和系统内干扰。
需要说明的是,本公开实施例提供的功率控制方法、功率分配方法及接收方法,均可以应用于5G移动通信系统,也可以应用于其他的对载波进行分段的移动通信系统,本公开实施例对此不做限定。
参见图9,图9是本公开实施提供的移动通信终端的结构图。如图9所示,移动通信终端10包括:第一控制模块901。
第一控制模块901,用于利用与第一目标BWP对应的目标上行功率控制 参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。
可选的,参见图10,移动通信终端10还包括:
第一接收模块902,用于利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之前,接收网络侧发送的,每一个BWP各自对应的上行功率控制参数。
可选的,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制(Transmission Power Control,TPC)命令字。
可选的,参见图11,移动通信终端10还包括计算模块903,所述计算模块903具体用于:
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送所述第一目标BWP对应的实际功率余量;
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送所述第一目标BWP对应的虚拟功率余量。
可选的,参见图12,移动通信终端10还包括:
第二接收模块904,用于在利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的传输进行发射功率控制之前,接收网络侧发送的BWP调整指令;
确定模块905,用于根据所述BWP调整指令确定所述第一目标BWP。
移动通信终端10能够实现图2的方法实施例的功率控制方法的各个过程,并达到相同的效果为避免重复,这里不再赘述。
本公开实施例的移动通信终端10,通过第一控制模块901利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制,实现了对BWP的功率控制,规范了对一个或是多 个BWP的功率控制。
参见图13,图13是本公开实施提供的网络设备的结构图。如图13所示,网络设备20包括:第三接收模块1301,其中:
第三接收模块1301,用于利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理。
可选的,参见图14,网络设备20还包括:
第一发送模块1302,用于在利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,发送每一个BWP各自对应的上行功率控制参数到移动通信终端。
可选的,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制命令字。
可选的,参见图15,网络设备20还包括第四接收模块1303,所述第四接收模块1303具体用于:
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理之后,接收移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送的,所述第一目标BWP对应的实际功率余量;
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理之后,接收移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送的,所述第一目标BWP对应的虚拟功率余量。
可选的,参见图16,网络设备20还包括:
第二发送模块1304,用于在利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,发送一指示所述第一目标BWP的BWP调整指令。
网络设备20能够实现图6的方法实施例的接收方法的各个过程,并达到相同的效果为避免重复,这里不再赘述。
本公开实施例的网络设备20,通过第三接收模块1301利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理,实现了对BWP的功率控制,规范了对一个或是多个BWP的功率控制。
参见图17,图17是本公开实施提供的网络设备的结构图。如图17所示,网络设备20包括:分配模块1701,其中:
分配模块1701,用于利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行发送功率分配。
可选的,参见图18,网络设备20还包括:
第三发送模块1702,用于发送所述第二目标BWP对应的目标下行功率调整参数到移动通信终端。
可选的,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
可选的,所述参考信号为DMRS、CSI-RS、TRS和PTRS中的至少一种。
网络设备20能够实现图7的方法实施例的功率分配方法的各个过程,并达到相同的效果为避免重复,这里不再赘述。
本公开实施例的网络设备20,通过分配模块1701,用于利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行发送功率分配,实现了对BWP的功率控制,规范了对一个或是多个BWP的功率控制。
参见图19,图19是本公开实施提供的移动通信终端的结构图。如图19所示,移动通信终端10包括:第五接收模块1901,其中:
第五接收模块1901,用于利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行接收处理。
可选的,参见图20,移动通信终端10还包括:
第六接收模块1902,用于接收网络侧发送的所述第二目标BWP对应的目标下行功率调整参数。
可选的,所述目标下行功率调整参数包括如下参数中的至少一个:同步 信号的EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
可选的,所述参考信号为DMRS、CSI-RS、TRS和PTRS中的至少一种。
移动通信终端10能够实现图8的方法实施例的接收方法的各个过程,并达到相同的效果为避免重复,这里不再赘述。
本公开实施例的移动通信终端10,通过第五接收模块1901,用于利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行接收处理,实现了对BWP的功率控制,规范了对一个或是多个BWP的功率控制。
本公开实施例还提供一种移动通信终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述图2的方法实施例的功率控制方法的步骤,或者实现图8的方法实施例的接收方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述图6的方法实施例的接收方法的步骤,或者实现图7的方法实施例的功率分配方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现上述图2的方法实施例的功率控制方法的步骤,或者实现图8的方法实施例的接收方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现上述图6的方法实施例的接收方法的步骤,或者实现图7的方法实施例的功率分配方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图21,图21是本公开实施提供的移动通信终端的结构图,如图21所示,移动通信终端10包括:至少一个第一处理器2101、第一存储器2102、 至少一个第一网络接口2104和第一用户接口2103。移动通信终端10中的各个组件通过第一总线系统2105耦合在一起。可理解,第一总线系统2105用于实现这些组件之间的连接通信。第一总线系统2105除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图21中将各种总线都标为第一总线系统2105。
其中,第一用户接口2103可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的第一存储器2102可以是易失性第一存储器或非易失性第一存储器,或可包括易失性和非易失性第一存储器两者。其中,非易失性第一存储器可以是只读第一存储器(Read-Only Memory,ROM)、可编程只读第一存储器(Programmable ROM,PROM)、可擦除可编程只读第一存储器(Erasable PROM,EPROM)、电可擦除可编程只读第一存储器(Electrically EPROM,EEPROM)或闪存。易失性第一存储器可以是随机存取第一存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取第一存储器(Static RAM,SRAM)、动态随机存取第一存储器(Dynamic RAM,DRAM)、同步动态随机存取第一存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取第一存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取第一存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取第一存储器(Synchronous link DRAM,SLDRAM)和直接内存总线随机存取第一存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的第一存储器2102旨在包括但不限于这些和任意其它适合类型的第一存储器。
在一些实施方式中,第一存储器2102存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:第一操作系统21021和第一应用程序21022。
其中,第一操作系统21021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。第一应用程序21022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器 (Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在第一应用程序21022中。
在本公开实施例中,移动通信终端10还包括:存储在第一存储器2102上并可在第一处理器2101上运行的计算机程序,具体地,可以是第一应用程序21022中的计算机程序,计算机程序被第一处理器2101执行时实现如下步骤:利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。
上述本公开实施例揭示的方法可以应用于第一处理器2101中,或者由处理器2101实现。第一处理器2101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第一处理器2101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第一处理器2101可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机第一存储器,闪存、只读第一存储器,可编程只读第一存储器或者电可擦写可编程第一存储器、寄存器等本领域成熟的存储介质中。该存储介质位于第一存储器2102,第一处理器2101读取第一存储器2102中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在第一存储器中并通过处理器执行。第一存储器可以在处理器中或在处理器外部实现。
可选的,计算机程序被第一处理器2101执行时还可实现如下步骤:
接收网络侧发送的,每一个BWP各自对应的上行功率控制参数。
可选的,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制(Transmission Power Control,TPC)命令字。
可选的,计算机程序被第一处理器2101执行时还可实现如下步骤:
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送所述第一目标BWP对应的实际功率余量;
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送所述第一目标BWP对应的虚拟功率余量。
可选的,计算机程序被第一处理器2101执行时还可实现如下步骤:
接收网络侧发送的BWP调整指令;
根据所述BWP调整指令确定所述第一目标BWP。
移动通信终端10能够实现前述实施例中移动通信终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的移动通信终端10,利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制,实现了对BWP的功率控制,规范了对一个或是多个BWP的功率控制。
参见图22,图22是本公开实施例提供的网络设备的结构图,如图22所示,网络设备20包括:第二处理器2201、第二存储器2202、第二用户接口2203、第二收发机2204和第二总线接口。
其中,在本公开实施例中,网络设备20还包括:存储在第二存储器2202上并可在第二处理器2201上运行的计算机程序,计算机程序被第二处理器2201执行时实现如下步骤:
利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理。
在图22中,总线架构可以包括任意数量的互联的总线和桥,具体由第二处理器2201代表的一个或多个第二处理器和第二存储器2202代表的第二存储器的各种电路连接在一起。总线架构还可以将诸如外围设备、稳压器和功率控制电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。第二总线接口提供接口。第二收发机2204可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,第二用户接口2203还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
第二处理器2201负责控制总线架构和通常的处理,第二存储器2202可以存储第二处理器2201在执行操作时所使用的数据。
可选的,计算机程序被第二处理器2201执行时还实现如下步骤:
发送每一个BWP各自对应的上行功率控制参数到移动通信终端。
可选的,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制命令字。
可选的,计算机程序被第二处理器2201执行时还实现如下步骤:
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理之后,接收移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送的,所述第一目标BWP对应的实际功率余量;
在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理之后,接收移动通信终端根 据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送的,所述第一目标BWP对应的虚拟功率余量。
可选的,计算机程序被第二处理器2201执行时还实现如下步骤:
发送一指示所述第一目标BWP的BWP调整指令。
网络设备20能够实现前述实施例中网络设备实现的各个过程,并达到相同的效果,为避免重复,这里不再赘述。
本公开实施例的网络设备20,通过利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理,实现了对BWP的功率控制,规范了对一个或是多个BWP的功率控制。
参见图23,图23是本公开实施例提供的网络设备的结构图,如图23所示,网络设备20包括:第三处理器2301、第三存储器2302、第三用户接口2303、第三收发机2304和第三总线接口。
其中,在本公开实施例中,网络设备20还包括:存储在第三存储器2302上并可在第三处理器2301上运行的计算机程序,计算机程序被第三处理器2301执行时实现如下步骤:
利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配。
在图23中,总线架构可以包括任意数量的互联的总线和桥,具体由第三处理器2301代表的一个或多个第三处理器和第三存储器2302代表的第三存储器的各种电路连接在一起。总线架构还可以将诸如外围设备、稳压器和功率控制电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。第三总线接口提供接口。第三收发机2304可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,第三用户接口2303还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
第三处理器2301负责控制总线架构和通常的处理,第三存储器2302可以存储第三处理器2301在执行操作时所使用的数据。
可选的,计算机程序被第三处理器2301执行时还实现如下步骤:
发送所述第二目标BWP对应的目标下行功率调整参数到移动通信终端。
可选的,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
可选的,所述参考信号为DMRS、CSI-RS、TRS和PTRS中的至少一种。
网络设备20能够实现前述实施例中网络设备实现的各个过程,并达到相同的效果,为避免重复,这里不再赘述。
本公开实施例的网络设备20,通过利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行发送功率分配,实现了对BWP的功率控制,规范了对一个或是多个BWP的功率控制。
参见图24,图24是本公开实施提供的移动通信终端的结构图,如图24所示,移动通信终端10包括:至少一个第四处理器2401、第四存储器2402、至少一个第四网络接口2404和第四用户接口2403。移动通信终端10中的各个组件通过第四总线系统2405耦合在一起。可理解,第四总线系统2405用于实现这些组件之间的连接通信。第四总线系统2405除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图24中将各种总线都标为第四总线系统2405。
其中,第四用户接口2403可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的第四存储器2402可以是易失性第四存储器或非易失性第四存储器,或可包括易失性和非易失性第四存储器两者。其中,非易失性第四存储器可以是只读第四存储器(Read-Only Memory,ROM)、可编程只读第四存储器(Programmable ROM,PROM)、可擦除可编程只读第四存储器(Erasable PROM,EPROM)、电可擦除可编程只读第四存储器(Electrically EPROM,EEPROM)或闪存。易失性第四存储器可以是随机存取第四存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取第四存储器(Static RAM,SRAM)、动态随机存取第四存储器(Dynamic RAM,DRAM)、同步动态随机存取第四存储器(Synchronous DRAM,SDRAM)、双倍数据速率 同步动态随机存取第四存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取第四存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取第四存储器(Synchronous link DRAM,SLDRAM)和直接内存总线随机存取第四存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的第四存储器2402旨在包括但不限于这些和任意其它适合类型的第四存储器。
在一些实施方式中,第四存储器2402存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:第四操作系统24024和第四应用程序24022。
其中,第四操作系统24024,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。第四应用程序24022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在第四应用程序24022中。
在本公开实施例中,移动通信终端10还包括:存储在第四存储器2402上并可在第四处理器2401上运行的计算机程序,具体地,可以是第四应用程序24022中的计算机程序,计算机程序被第四处理器2401执行时实现如下步骤:利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行接收处理。
上述本公开实施例揭示的方法可以应用于第四处理器2401中,或者由处理器2401实现。第四处理器2401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第四处理器2401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第四处理器2401可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现 为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机第四存储器,闪存、只读第四存储器,可编程只读第四存储器或者电可擦写可编程第四存储器、寄存器等本领域成熟的存储介质中。该存储介质位于第四存储器2402,第四处理器2401读取第四存储器2402中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在第四存储器中并通过处理器执行。第四存储器可以在处理器中或在处理器外部实现。
可选的,计算机程序被第四处理器2401执行时还可实现如下步骤:
接收网络侧发送的所述第二目标BWP对应的目标下行功率调整参数。
可选的,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
可选的,所述参考信号为DMRS、CSI-RS、TRS和PTRS中的至少一种。
移动通信终端10能够实现前述实施例中移动通信终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的移动通信终端10,利用与第二目标BWP对应的目标下行功率调整参数,对在第二目标BWP上进行的下行传输进行接收处理,实现了对BWP的功率控制,规范了对一个或是多个BWP的功率控制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特 定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (40)

  1. 一种功率控制方法,用于移动通信终端,包括:
    利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。
  2. 根据权利要求1所述的功率控制方法,利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之前,还包括:
    从网络侧接收每一个BWP各自对应的上行功率控制参数。
  3. 根据权利要求1所述的功率控制方法,其中,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制命令字。
  4. 根据权利要求1所述的功率控制方法,所述利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,还包括:
    发送所述第一目标BWP对应的实际功率余量,其中,所述第一目标BWP对应的实际功率余量为根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算;
    根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送所述第一目标BWP对应的虚拟功率余量。
  5. 根据权利要求1所述的功率控制方法,所述利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之前,还包括:
    从网络侧接收BWP调整指令;
    根据所述BWP调整指令确定所述第一目标BWP。
  6. 一种接收方法,用于网络侧,包括:
    利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理。
  7. 根据权利要求6所述的接收方法,利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,还包括:
    发送各自对应的上行功率控制参数到移动通信终端。
  8. 根据权利要求6所述的接收方法,其中,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制命令字。
  9. 根据权利要求6所述的接收方法,所述利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理之后,还包括:
    接收所述第一目标BWP对应的实际功率余量,其中所述第一目标BWP对应的实际功率余量为移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送;
    接收移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送的,所述第一目标BWP对应的虚拟功率余量。
  10. 根据权利要求6所述的接收方法,所述利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,还包括:
    发送一指示所述第一目标BWP的BWP调整指令。
  11. 一种功率分配方法,用于网络侧,包括:
    利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配。
  12. 根据权利要求11所述的功率分配方法,所述利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配之前,还包括:
    发送所述第二目标BWP对应的目标下行功率调整参数到移动通信终端。
  13. 根据权利要求11所述的功率分配方法,其中,所述目标下行功率调 整参数包括如下参数中的至少一个:同步信号的每资源粒子功率EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
  14. 根据权利要求13所述的功率分配方法,其中,所述参考信号为解调参考信号DMRS、信道状态信息参考符号CSI-RS、跟踪参考信号TRS和相位跟踪参考信号PTRS中的至少一种。
  15. 一种接收方法,用于移动通信终端,包括:
    利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行接收处理。
  16. 根据权利要求15所述的接收方法,所述利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行接收处理之前,还包括:
    接收网络侧发送的所述第二目标BWP对应的目标下行功率调整参数。
  17. 根据权利要求15所述的接收方法,其中,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的每资源粒子功率EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
  18. 根据权利要求17所述的接收方法,其中,所述参考信号为解调参考信号DMRS、信道状态信息参考符号CSI-RS、跟踪参考信号TRS和相位跟踪参考信号PTRS中的至少一种。
  19. 一种移动通信终端,包括:
    第一控制模块,用于利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制。
  20. 根据权利要求19所述的移动通信终端,还包括:
    第一接收模块,用于在利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之前,从网络侧接收每一个BWP各自对应的上行功率控制参数。
  21. 根据权利要求19所述的移动通信终端,其中,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制命令字。
  22. 根据权利要求19所述的移动通信终端,还包括计算模块,所述计算 模块具体用于:
    在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,发送所述第一目标BWP对应的实际功率余量,其中,所述第一目标BWP对应的实际功率余量为根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算;
    在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之后,根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送所述第一目标BWP对应的虚拟功率余量。
  23. 根据权利要求19所述的移动通信终端,还包括:
    第二接收模块,用于在利用与第一目标BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行发射功率控制之前,从网络侧接收BWP调整指令;
    确定模块,用于根据所述BWP调整指令确定所述第一目标BWP。
  24. 一种网络设备,包括:
    第三接收模块,用于利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理。
  25. 根据权利要求24所述的网络设备,还包括:
    第一发送模块,用于在利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,发送每一个BWP各自对应的上行功率控制参数到移动通信终端。
  26. 根据权利要求24所述的网络设备,其中,所述目标上行功率控制参数包括如下参数中的至少一个:最大发射功率、目标接收功率、功率补偿因子、路损参考、功率调整值、发射功率控制命令字。
  27. 根据权利要求24所述的网络设备,还包括第四接收模块,所述第四接收模块具体用于:
    在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所 述第一目标BWP上进行的上行传输进行接收处理之后,接收所述第一目标BWP对应的实际功率余量,其中所述第一目标BWP对应的实际功率余量为移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的实际发射功率计算并发送;
    在利用与第一目标带宽部分BWP对应的目标上行功率控制参数,对在所述第一目标BWP上进行的上行传输进行接收处理之后,接收移动通信终端根据所述第一目标BWP对应的最大发射功率和物理上行共享信道的虚拟发射功率计算并发送的,所述第一目标BWP对应的虚拟功率余量。
  28. 根据权利要求24所述的网络设备,还包括:
    第二发送模块,用于在所述利用与第一目标BWP对应的目标上行功率控制参数,对在第一目标BWP上进行的上行传输进行接收处理之前,发送一指示所述第一目标BWP的BWP调整指令。
  29. 一种网络设备,包括:
    分配模块,用于利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行发送功率分配。
  30. 根据权利要求29所述的网络设备,还包括:
    第三发送模块,用于发送所述第二目标BWP对应的目标下行功率调整参数到移动通信终端。
  31. 根据权利要求29所述的网络设备,其中,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的每资源粒子功率EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
  32. 根据权利要求31所述的网络设备,其中,所述参考信号为解调参考信号DMRS、信道状态信息参考符号CSI-RS、跟踪参考信号TRS和相位跟踪参考信号PTRS中的至少一种。
  33. 一种移动通信终端,包括:
    第五接收模块,用于利用与第二目标带宽部分BWP对应的目标下行功率调整参数,对在所述第二目标BWP上进行的下行传输进行接收处理。
  34. 根据权利要求33所述的移动通信终端,还包括:
    第六接收模块,用于接收网络侧发送的所述第二目标BWP对应的目标下行功率调整参数。
  35. 根据权利要求33所述的移动通信终端,其中,所述目标下行功率调整参数包括如下参数中的至少一个:同步信号的每资源粒子功率EPRE、参考信号的EPRE、参考信号的EPRE与下行数据信号的EPRE的比值。
  36. 根据权利要求35所述的移动通信终端,其中,所述参考信号为解调参考信号DMRS、信道状态信息参考符号CSI-RS、跟踪参考信号TRS和相位跟踪参考信号PTRS中的至少一种。
  37. 一种移动通信终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的功率控制方法的步骤,或者实现如权利要求15至18中任一项所述的接收方法的步骤。
  38. 一种网络设备,所述网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求6至10中任一项所述的接收方法的步骤,或者实现如权利要求11至14中任一项所述的功率分配方法的步骤。
  39. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的功率控制方法的步骤,或者实现如权利要求15至18中任一项所述的接收方法的步骤。
  40. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求6至10中任一项所述的接收方法的步骤,或者实现如权利要求11至14中任一项所述的功率分配方法的步骤。
PCT/CN2018/096813 2017-08-09 2018-07-24 功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备 WO2019029354A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20160684.5A EP3681210B1 (en) 2017-08-09 2018-07-24 Power control method, reception method, power allocation method, user equipment, and network device
US16/637,408 US11622354B2 (en) 2017-08-09 2018-07-24 Power control method, reception method, power allocation method, user equipment, and network device
EP18843237.1A EP3668196A4 (en) 2017-08-09 2018-07-24 POWER CONTROL METHOD, RECEIVING METHOD, POWER DISTRIBUTION METHOD, MOBILE COMMUNICATION TERMINAL AND NETWORK DEVICE
US16/785,365 US11503603B2 (en) 2017-08-09 2020-02-07 Power allocation based on target downlink power corresponding to target bandwith part
US17/963,852 US11737076B2 (en) 2017-08-09 2022-10-11 User equipment, network device, and non-transitory computer storage media
US18/337,369 US20230337210A1 (en) 2017-08-09 2023-06-19 Downlink transmission power control on bwp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710677047.5A CN109392065B (zh) 2017-08-09 2017-08-09 一种功率控制方法、接收方法、功率分配方法及相关设备
CN201710677047.5 2017-08-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/637,408 A-371-Of-International US11622354B2 (en) 2017-08-09 2018-07-24 Power control method, reception method, power allocation method, user equipment, and network device
US16/785,365 Continuation US11503603B2 (en) 2017-08-09 2020-02-07 Power allocation based on target downlink power corresponding to target bandwith part

Publications (1)

Publication Number Publication Date
WO2019029354A1 true WO2019029354A1 (zh) 2019-02-14

Family

ID=65273343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096813 WO2019029354A1 (zh) 2017-08-09 2018-07-24 功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备

Country Status (7)

Country Link
US (4) US11622354B2 (zh)
EP (2) EP3668196A4 (zh)
CN (2) CN111586825B (zh)
ES (1) ES2968754T3 (zh)
HU (1) HUE065117T2 (zh)
PT (1) PT3681210T (zh)
WO (1) WO2019029354A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586825B (zh) 2017-08-09 2021-11-16 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备
WO2019097294A1 (en) * 2017-11-17 2019-05-23 Lenovo (Singapore) Pte. Ltd. Power control for multiple uplink transmissions
CN110149684B (zh) * 2018-02-11 2021-02-19 维沃移动通信有限公司 无线通信方法、终端设备和网络设备
CN110536392B (zh) * 2018-08-10 2022-11-15 中兴通讯股份有限公司 功率控制方法、装置、设备及存储介质
CN110536396A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 功率控制方法和装置、确定目标接收功率的方法和装置
US11445449B2 (en) * 2020-02-25 2022-09-13 Shanghai Langbo Communication Technology Company Limited Power control method and device to trade off desired signal power and interference among multiple wireless devices
CN110233650B (zh) * 2019-05-09 2020-12-29 中国科学院计算技术研究所 一种mimo-noma系统中功率调整方法及系统
WO2021062836A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 功率调整方法及装置
CN110996382B (zh) * 2019-11-21 2023-04-07 Oppo(重庆)智能科技有限公司 功率调整方法、装置、存储介质及电子设备
US11627574B2 (en) * 2020-06-09 2023-04-11 Qualcomm Incorporated Grouping user equipment based on downlink power
US11690083B2 (en) 2020-06-09 2023-06-27 Qualcomm Incorporated Grouping user equipment based on downlink power
US11412458B2 (en) * 2020-12-07 2022-08-09 Qualcomm Incorporated Power control techniques for ultra-wide bandwidth beamforming systems
KR20220097321A (ko) * 2020-12-31 2022-07-07 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 다중-trp에 관한 전력 헤드룸 보고를 위한 방법 및 장치
CN115209460A (zh) * 2021-04-09 2022-10-18 维沃移动通信有限公司 上行功率确定方法和设备
CN113804961B (zh) * 2021-10-11 2024-04-12 中国电信股份有限公司 智能表面设备和系统,以及控制方法、装置和系统
CN116939789A (zh) * 2022-04-11 2023-10-24 维沃移动通信有限公司 发射功率确定方法、装置、终端、网络侧设备及存储介质
EP4397089A1 (en) * 2022-04-28 2024-07-10 ZTE Corporation Power control and indication for wireless communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260805A1 (en) * 2012-03-30 2013-10-03 Byoung Seong Park Apparatus and method for controlling cell transmit power to reduce interference of cell and mobile telecommunication base station for the same
CN103460634A (zh) * 2011-02-18 2013-12-18 高通股份有限公司 基于信道状态信息参考信号(csi-rs)群组的反馈报告
CN104936126A (zh) * 2014-03-21 2015-09-23 上海交通大学 功率控制方法和用户设备

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8825065B2 (en) * 2007-01-19 2014-09-02 Wi-Lan, Inc. Transmit power dependent reduced emissions from a wireless transceiver
CN103781163B (zh) * 2009-02-09 2017-07-04 交互数字专利控股公司 在wtru中进行上行链路功率控制的方法和wtru
KR101734948B1 (ko) * 2009-10-09 2017-05-12 삼성전자주식회사 파워 헤드룸 보고, 자원 할당 및 전력 제어 방법
EP2536199A4 (en) * 2010-02-11 2015-07-08 Alcatel Lucent METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING A POWER MARGIN RATIO
DK2567578T3 (en) * 2010-05-04 2015-03-02 Ericsson Telefon Ab L M REPORTING OF THE SUSTAINABILITY EFFECT MARGET
CN102271389B (zh) 2010-06-04 2014-03-19 中兴通讯股份有限公司 一种上行功率控制方法及系统
JP5357119B2 (ja) 2010-08-16 2013-12-04 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置及び無線通信方法
CN102448160B9 (zh) * 2010-09-30 2016-06-15 中兴通讯股份有限公司 载波聚合场景下上报功率上升空间报告的方法和装置
CN102118842B (zh) 2011-03-18 2013-11-06 电信科学技术研究院 一种应用于lte系统的下行功率控制方法及装置
CN104782067B (zh) 2012-11-06 2017-11-28 Lg电子株式会社 用于在无线通信系统中发送和接收数据的方法和设备
EP2963970B1 (en) 2013-03-28 2022-01-05 Huawei Technologies Co., Ltd. Method and device for allocating bandwidth, user equipment and base station
JP6244009B2 (ja) * 2013-04-03 2017-12-06 インターデイジタル パテント ホールディングス インコーポレイテッド 累積された送信電力制御コマンドおよび対応するアップリンクサブフレームセットに基づいてアップリンク送信電力を制御するための方法および装置
WO2014175634A1 (ko) * 2013-04-22 2014-10-30 엘지전자 주식회사 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 파워 헤드룸 보고 방법 및 이를 위한 장치
CN104219724A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种小区间协作进行干扰测量的方法和节点
CN104429123B (zh) * 2013-06-14 2018-10-30 华为技术有限公司 一种下行功率分配参数的通知方法及装置
WO2015005325A1 (ja) * 2013-07-09 2015-01-15 シャープ株式会社 端末装置、基地局装置、通信方法、および集積回路
JP6599355B2 (ja) * 2014-04-03 2019-10-30 エルジー エレクトロニクス インコーポレイティド 端末と基地局との間の二重接続におけるパワーヘッドルーム報告を送信する方法および端末
EP3764703B1 (en) * 2014-09-28 2024-02-28 Huawei Technologies Co., Ltd. Uplink power control method and apparatus
WO2016070417A1 (en) * 2014-11-07 2016-05-12 Panasonic Intellectual Property Corporation Of America Improved resource allocation for transmissions on unlicensed carriers
CN106961721B (zh) * 2016-01-11 2020-05-15 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端
US11057837B2 (en) 2016-03-15 2021-07-06 Qualcomm Incorporated Downlink power adjustment in narrowband wireless communications
US10039062B2 (en) * 2016-04-01 2018-07-31 Electronics And Telecommunications Research Institute Uplink transmit power of a mobile controlled by base station based on difference between target and received quality
WO2017175196A1 (en) * 2016-04-08 2017-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Uplink power control on unlicensed carriers
EP3499982B1 (en) * 2016-08-08 2021-06-23 LG Electronics Inc. Method and device for reporting power headroom
CN107734622B (zh) * 2016-08-12 2020-12-11 中兴通讯股份有限公司 上行功率控制方法及装置
US20180128646A1 (en) 2016-11-04 2018-05-10 Thomas Meek Very narrowband mesh system using single-mode transponders
JP2020036052A (ja) 2017-01-05 2020-03-05 シャープ株式会社 基地局装置、端末装置およびその通信方法
WO2019026296A1 (ja) * 2017-08-04 2019-02-07 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111586825B (zh) 2017-08-09 2021-11-16 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备
US11956049B2 (en) * 2021-10-14 2024-04-09 Qualcomm Incorporated Beam failure declaration and reporting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460634A (zh) * 2011-02-18 2013-12-18 高通股份有限公司 基于信道状态信息参考信号(csi-rs)群组的反馈报告
US20130260805A1 (en) * 2012-03-30 2013-10-03 Byoung Seong Park Apparatus and method for controlling cell transmit power to reduce interference of cell and mobile telecommunication base station for the same
CN104936126A (zh) * 2014-03-21 2015-09-23 上海交通大学 功率控制方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO INC.: "Status Report of WI on New Radio Access Technology; rapporteur: NTT DOCOMO RP-171505", TSG RAN WG1 MEETING #76 RP-1711505, no. RP-1711505, 8 June 2017 (2017-06-08), West Palm Beach, Florida (US), pages 28 - 29, XP009517796 *

Also Published As

Publication number Publication date
EP3681210A1 (en) 2020-07-15
EP3681210B1 (en) 2023-12-13
US11622354B2 (en) 2023-04-04
US11503603B2 (en) 2022-11-15
EP3668196A1 (en) 2020-06-17
ES2968754T3 (es) 2024-05-13
PT3681210T (pt) 2024-01-11
CN109392065A (zh) 2019-02-26
HUE065117T2 (hu) 2024-05-28
US11737076B2 (en) 2023-08-22
CN111586825B (zh) 2021-11-16
CN109392065B (zh) 2020-06-05
US20230337210A1 (en) 2023-10-19
US20200178259A1 (en) 2020-06-04
US20230031421A1 (en) 2023-02-02
US20200187125A1 (en) 2020-06-11
CN111586825A (zh) 2020-08-25
EP3668196A4 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2019029354A1 (zh) 功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备
WO2020199956A1 (zh) 功率控制方法、装置和系统
US11800462B2 (en) Power control method, network device, and terminal
KR102305897B1 (ko) 전력 제어 방법 및 장치
CN103155659B (zh) 载波聚合中的总剩余功率估计
CN108781416B (zh) 用于上行链路发送功率控制方法、装置和计算机可读存储介质
US20140133448A1 (en) Method and apparatus for uplink power control
WO2018228544A1 (zh) 一种功率确定方法、设备及系统
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
CN110167126B (zh) 一种多波束传输时pucch功率的控制方法及装置
KR20150121005A (ko) 디바이스간 통신을 위해 송신 전력을 관리하기 위한 방법 및 장치
WO2018202169A1 (zh) 一种功率控制方法和装置
WO2021023250A1 (zh) 功率控制方法、通信节点和存储介质
US11968699B2 (en) Radio communication method and device
WO2021057362A1 (en) Reference signal determination method and device, and ue
WO2015139278A1 (zh) 发送信号的方法、用户设备和基站
WO2018010488A1 (zh) 发射功率确定方法、终端、网络设备和系统
WO2020030159A1 (zh) 功率控制方法和装置、接收设备及存储介质
WO2018201941A1 (zh) 配置参数的方法及装置
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2019154209A1 (zh) 无线通信方法、终端设备和网络设备
WO2019096316A1 (zh) 通信方法、通信装置和系统
EP3753307A1 (en) Uplink control channel power control adjustment in a network with different processing times
CN110602784A (zh) 一种上下行配置方法、基站及终端
EP4061075A1 (en) Wireless communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018843237

Country of ref document: EP

Effective date: 20200309