WO2018010488A1 - 发射功率确定方法、终端、网络设备和系统 - Google Patents

发射功率确定方法、终端、网络设备和系统 Download PDF

Info

Publication number
WO2018010488A1
WO2018010488A1 PCT/CN2017/085292 CN2017085292W WO2018010488A1 WO 2018010488 A1 WO2018010488 A1 WO 2018010488A1 CN 2017085292 W CN2017085292 W CN 2017085292W WO 2018010488 A1 WO2018010488 A1 WO 2018010488A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti length
offset value
power offset
value corresponding
terminal
Prior art date
Application number
PCT/CN2017/085292
Other languages
English (en)
French (fr)
Inventor
高雪娟
刘松涛
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018010488A1 publication Critical patent/WO2018010488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a transmit power determining method, a terminal, a network device, and a system.
  • TTI Transmission Time Interval
  • ms millisecond
  • the purpose of the present disclosure is to provide a method, a terminal, a network device, and a system for determining a transmission power, which solves the problem of poor transmission performance.
  • an embodiment of the present disclosure provides a method for determining a transmit power, including:
  • the terminal acquires a power offset value corresponding to the first TTI length
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the terminal acquires a power offset value corresponding to the first TTI length, including:
  • the terminal receives a power offset value corresponding to a second TTI length sent by the network device, and a deviation between a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length, and uses the And a power offset value corresponding to the length of the second TTI, and obtaining a power offset value corresponding to the first TTI length.
  • the terminal acquires a power offset value corresponding to the first TTI length, including:
  • the method further includes:
  • the terminal acquires a power offset corresponding to the second TTI length
  • the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length.
  • the terminal acquires a power offset value corresponding to the first TTI length, including:
  • the terminal determines a first TTI length of the channel, and acquires a power offset value corresponding to the first TTI length.
  • the terminal determines, according to the power offset value, a transmit power of a channel that is transmitted by using the first TTI length, including:
  • the terminal determines, by using a preset transmit power calculation formula, a transmit power of the channel that is transmitted by using the first TTI length, where the transmit power calculation formula includes the power offset value.
  • the terminal determines, by using a preset transmit power calculation formula, the transmit power of the channel that is transmitted by using the first TTI length, including:
  • the terminal determines the transmit power of the channel transmitted using the first TTI length by the following formula:
  • P PUSCH (i) is the transmit power of the channel, i represents the i-th subframe, P MAX is the maximum transmit power of the terminal, and M PUSCH (i) is the uplink resource block allocated to the terminal (Resource) The number of Block, RB), P O_PUSCH (j) is composed of the sum of P O_NOMINAL_PUSCH (j) and P O_UE_PUSCH (j), P O_NOMINAL_PUSCH (j) is the cell-specific normalized power initial value, and P O_UE_PUSCH (j) is The terminal-specific partial power initial value, j is a parameter corresponding to the system scheduling mode, ⁇ is a cell-specific path loss compensation coefficient, and PL is an estimated downlink path loss of the terminal;
  • the K S is a cell-specific parameter configured by a Radio Resource Control (RRC), and corresponds to a current transmission format
  • RRC Radio Resource Control
  • the BPRE is a cell-specific parameter corresponding to a modulation and coding mode.
  • f(i) is an adjustment value of the current power control
  • ⁇ PUSCH is a power offset value corresponding to the first TTI length
  • the terminal determines the transmit power of the channel transmitted using the first TTI length by the following formula:
  • P PUCCH (i) is the transmit power of the channel, i represents the i-th subframe, P MAX is the maximum transmit power of the terminal, P 0_PUCCH is composed of the sum of P 0_NOMINAL_PUCHH and P 0_UE_PUCCH , and P 0_NOMINAL_PUCHH is cell-specific Normalized power initial value, P 0_UE_PUCCH is the terminal partial power initial value, PL is the downlink path loss estimated by the terminal, h(n CQI , n HARQ , n SR ) is the channel quality indicator in the transmission frame format (Channel Quality Indication, CQI) information bit number, Hybrid Automatic Repeat reQuest (HARQ) information bit number, and Scheduling Request (SR) configuration corresponding independent parameters, ⁇ F_PUCCH (F) is a cell The exclusive parameter, ⁇ TxD (F'), is the terminal-specific parameter;
  • g(i) g(i-1)+ ⁇ PUCCH (iK PUCCH );
  • TDD Time-Division Duplexing
  • K PUCCH is a pre-defined parameter of the system, corresponding to the TDD uplink and downlink configuration
  • k m is a pre-defined parameter of the system, corresponding to the transmission frame structure
  • ⁇ PUCCH is The exclusive correction value of the terminal
  • M is a value corresponding to the TDD frame structure.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Short Physical Uplink Shared Channel
  • SRS Channel Sounding Reference Signal
  • the embodiment of the present disclosure further provides a method for determining a transmit power, including:
  • the network device sends an indication message for determining a power offset value corresponding to the first TTI length to the terminal, so that the terminal acquires a power offset value corresponding to the first TTI length, and determines, according to the power offset value, The transmit power of the channel transmitted using the first TTI length.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the network device sends, to the terminal, an indication message for determining a power offset value corresponding to the first TTI length, including:
  • the indication information is further used to determine a power offset corresponding to the second TTI length. Transmitting, so that the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length;
  • the method further includes:
  • the network device sends a power offset value corresponding to the second TTI length to the terminal. And an indication message, so that the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the embodiment of the present disclosure further provides a terminal, including: a first acquiring module, configured to acquire a power offset value corresponding to a first TTI length;
  • a first determining module configured to determine, according to the power offset value, a transmit power of a channel transmitted using the first TTI length.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the first acquiring module is configured to receive a power offset value corresponding to the first TTI length sent by the network device;
  • the first acquiring module is configured to receive a power offset value corresponding to a second TTI length sent by the network device, and a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length Deviation, and using the power offset value corresponding to the second TTI length and the deviation, Obtaining a power offset value corresponding to the first TTI length.
  • the first acquiring module is configured to obtain a pre-agreed power offset value corresponding to the first TTI length
  • the first acquiring module is configured to obtain a power offset value corresponding to a pre-defined second TTI length, and a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length Deviating, and using the power offset value corresponding to the second TTI length and the deviation, acquiring a power offset value corresponding to the first TTI length.
  • the terminal further includes:
  • a second acquiring module configured to acquire a power offset value corresponding to the second TTI length if a first TTI of the first TTI length and a second TTI of the second TTI length exist in the same subframe;
  • a second determining module configured to determine, according to the power offset value corresponding to the second TTI length, a transmit power of a channel transmitted by using the second TTI length.
  • the first acquiring module is configured to determine a first TTI length of the channel, and obtain a power offset value corresponding to the first TTI length.
  • the first determining module is configured to determine, by using a preset transmit power calculation formula, a transmit power of the channel that is transmitted by using the first TTI length, where the transmit power calculation formula includes the power Offset value.
  • the first determining module is configured to determine, by using a formula, a transmit power of a channel transmitted by using the first TTI length:
  • P PUSCH (i) is the transmit power of the channel
  • i represents the i-th subframe
  • P MAX is the maximum transmit power of the terminal
  • M PUSCH (i) is the uplink resource block RB allocated to the terminal.
  • P O_PUSCH (j) is composed of the sum of P O_NOMINAL_PUSCH (j) and P O_UE_PUSCH (j)
  • P O_NOMINAL_PUSCH (j) is the cell-specific normalized power initial value
  • P O_UE_PUSCH (j) is the exclusive part of the terminal power.
  • the initial value, j is a parameter corresponding to the system scheduling mode
  • is a cell-specific path loss compensation coefficient
  • PL is an estimated downlink path loss of the terminal;
  • the K S is a cell-specific parameter configured by the radio resource control RRC, and corresponds to the current transmission format
  • the BPRE is a cell-specific parameter corresponding to the modulation and coding mode.
  • f(i) is an adjustment value of the current power control
  • ⁇ PUSCH is a power offset value corresponding to the first TTI length
  • the first determining module is configured to determine, by using a formula, a transmit power of a channel transmitted using the first TTI length:
  • P PUCCH (i) is the transmit power of the channel, i represents the i-th subframe, P MAX is the maximum transmit power of the terminal, P 0_PUCCH is composed of the sum of P 0_NOMINAL_PUCHH and P 0_UE_PUCCH , and P 0_NOMINAL_PUCH H is a cell
  • P 0_UE_PUCCH is the terminal partial power initial value
  • PL is the downlink path loss estimated by the terminal
  • h(n CQI , n HARQ , n SR ) is the CQI information in the transmission frame format.
  • the number of bits, the number of HARQ information bits, and the independent parameter corresponding to the SR configuration, ⁇ F_PUCCH (F) is a cell-specific parameter, and ⁇ TxD (F′) is the terminal-specific parameter;
  • g(i) g(i-1)+ ⁇ PUCCH (iK PUCCH );
  • K PUCCH is a pre-defined parameter of the system, corresponding to the TDD uplink and downlink configuration
  • k m is a pre-defined parameter of the system, corresponding to the transmission frame structure
  • ⁇ PUCCH is The exclusive correction value of the terminal
  • M is corresponding to the TDD frame structure.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the embodiment of the present disclosure further provides a network device, including:
  • a first sending module configured to send, to the terminal, an indication message for determining a power offset value corresponding to the first TTI length, so that the terminal determines, according to the power offset value, a channel that is transmitted by using the first TTI length Transmit power.
  • the first TTI length is equal to 1 millisecond ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the first sending module is configured to send, to the terminal, a power offset value corresponding to the first TTI length;
  • the first sending module is configured to send, to the terminal, a power offset value corresponding to a second TTI length, and a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length a deviation of the first TTI length corresponding to the power offset value corresponding to the second TTI length and the deviation.
  • the indication information is further used to determine a power offset corresponding to the second TTI length. Transmitting, so that the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length;
  • the network device further includes:
  • a second sending module configured to send, according to the first TTI of the first TTI length and the second TTI of the second TTI length, the power corresponding to the second TTI length is sent to the terminal And an indication message of the offset value, so that the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the embodiment of the present disclosure further provides a transmit power determining system, including:
  • a network device configured to send, to the terminal, an indication message for determining a power offset value corresponding to the first TTI length
  • the terminal is configured to acquire, according to the indication message, a power offset value corresponding to the first TTI length, and determine, according to the power offset value, a transmit power of a channel that is transmitted by using the first TTI length.
  • the embodiment of the present disclosure also provides a terminal, including: a processor, a memory, and a transceiver.
  • the processor is configured to read a program in the memory, and perform the following process: acquiring a power offset value corresponding to the first TTI length; determining, according to the power offset value, the signal transmitted by using the first TTI length The transmit power of the channel.
  • the transceiver is for receiving and transmitting data, and the memory is capable of storing data used by the processor when performing an operation.
  • the embodiment of the present disclosure also provides a network device, including: a processor, a memory, and a transceiver.
  • the processor is configured to read a program in the memory, and execute the following process: sending, by the transceiver, an indication message for determining a power offset value corresponding to the first TTI length to the terminal, so that the terminal is based on the power
  • the offset value determines the transmit power of the channel transmitted using the first TTI length.
  • the transceiver is for receiving and transmitting data, and the memory is capable of storing data used by the processor when performing an operation.
  • the terminal acquires a power offset value corresponding to the first TTI length; the terminal determines a transmit power of a channel transmitted using the first TTI length based on the power offset value. Since the power offset value corresponding to the TTI length is introduced when determining the transmission power of the channel, the performance difference caused by the channel estimation difference is compensated to improve the transmission performance of the communication system.
  • FIG. 1 is a schematic structural diagram of a network provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining a transmit power according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of another method for determining a transmit power according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a transmit power determining system according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network structure provided by an embodiment of the present disclosure. As shown in FIG. 1 , the method includes one or more terminals 11 and a network device 12 , wherein a terminal 11 is illustrated by way of example in the accompanying drawings.
  • the terminal 11 can be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device (MID), or a wearable device.
  • a terminal side device such as a device (Wearable Device), it should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present disclosure.
  • the terminal 11 can establish communication with the network device 12, wherein the network in the figure can indicate that the terminal 11 wirelessly establishes communication with the network device 12, and the network device 12 can be an evolved Node B (eNB) or other base station, or can It is a network side device such as an access point device. It should be noted that the specific type of the network device 12 is not limited in the embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a method for determining a transmit power, as shown in FIG. 2 , including the following steps:
  • the terminal acquires a power offset value corresponding to the length of the first TTI.
  • the terminal determines, according to the power offset value, a transmit power of a channel transmitted using the first TTI length.
  • the power offset value corresponding to the first TTI length may be a preset configuration of the terminal.
  • the power offset value corresponding to the first TTI length may be a first TTI length.
  • the power offset value corresponding to the first TTI length may be dynamically obtained, for example, receiving the network device temporarily configured or indicated.
  • the power offset value corresponding to the first TTI length may be a preset agreement between the terminal and the network device, etc., which is not limited in this embodiment of the disclosure.
  • different TTI lengths in the embodiments of the present disclosure may be To correspond to different power offset values, it is possible to introduce a power offset value corresponding to the TTI length when determining the transmit power of the channel, to compensate for the performance difference caused by the channel estimation difference, so as to improve the transmission performance of the communication system.
  • due to the power offset value corresponding to the length of the TTI introduced when determining the transmit power it is possible to compensate for differences in transmission performance due to transmission difference of Demodulation Reference Signal (DMRS) for different TTI lengths to improve the communication system. Transmission performance.
  • DMRS Demodulation Reference Signal
  • the above-mentioned channel transmitted using the first TTI length may be understood as a channel that transmits with the TTI of the first TTI length, or a channel that performs the TTI transmission of the first TTI length.
  • the above transmission power can be understood as the transmission power of the above terminal when performing the above channel transmission.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the first TTI length may be 1 ms or less, for example, the first TTI length may be 0.5 ms or 0.3 ms, or may be 2, 3, 4 or 7 symbols.
  • the first TTI length may be greater than 1 ms, which is not limited in this disclosure.
  • a TTI length equal to 1 ms or less may be implemented to obtain a corresponding power offset value, so that the corresponding transmit power may be determined to improve transmission performance.
  • the power offset value corresponding to the first TTI length may be a power offset value corresponding to the first TTI length configured for the terminal in a cell.
  • a power offset value corresponding to the first TTI length may be separately configured for the terminal, that is, a power offset value corresponding to the first TTI length that is exclusive to the terminal configuration.
  • different terminals may be configured with different power offset values corresponding to the first TTI length, and when the same terminal supports different TTI lengths, the power offset values corresponding to different TTI lengths are also Can be configured independently.
  • the channel estimation difference can be further compensated to further improve the transmission performance of the communication system.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the work corresponding to the first TTI length of all terminals in the same cell can be implemented.
  • the rate offset values are the same.
  • the power offset value corresponding to the first TTI length of all the terminals in the cell can save transmission resources. For example, the network device only needs to broadcast a message to configure a power offset value corresponding to the first TTI length for all terminals in the cell.
  • the acquiring, by the terminal, the power offset value corresponding to the first TTI length may include:
  • the terminal receives a power offset value corresponding to the first TTI length sent by the network device.
  • the terminal may receive the power offset value corresponding to the first TTI length that is sent by the network device, that is, the power offset value corresponding to the first TTI length is configured by the network device to the terminal.
  • the power offset value may be sent through configuration signaling, or the power offset value or the like may be sent through a broadcast message.
  • the acquiring, by the terminal, the power offset value corresponding to the first TTI length may include:
  • the terminal receives a power offset value corresponding to a second TTI length sent by the network device, and a deviation between a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length, and uses the And a power offset value corresponding to the length of the second TTI, and obtaining a power offset value corresponding to the first TTI length.
  • the power offset value corresponding to the second TTI length sent by the terminal and the power offset value corresponding to the first TTI length and the power offset value corresponding to the second TTI length may be implemented.
  • the deviation of the first TTI length does not need to be transmitted, so that the transmission overhead can be saved, because in the implementation application, the transmission overhead of the power offset value is often greater than the transmission overhead of the deviation.
  • the second TTI length is different from the first TTI length, and the second TTI length may be a TTI length that is the same as the first TTI length or exists in the same subframe, that is, in the same sub
  • the terminal acquires a power offset value corresponding to the first TTI length, including:
  • the terminal acquires a pre-agreed power offset value corresponding to the first TTI length.
  • the power offset value corresponding to the first TTI length that is pre-defined may be obtained, so that network device participation is not required when the power offset is obtained, so as to save transmission overhead.
  • the above-mentioned pre-agreed agreement may be that the foregoing terminal and the network device agree in advance.
  • the terminal acquires a power offset value corresponding to the first TTI length, including:
  • the power offset value corresponding to the second TTI length may be implemented, and the deviation between the power offset value corresponding to the first TTI length and the power offset value corresponding to the second TTI length may be a pre-agreed Ok, so you can save on transmission overhead.
  • the second TTI length is different from the first TTI length, and the second TTI length may be a TTI length that is the same as the first TTI length or exists in the same subframe, that is, in the same sub There are two schedulings of TTI lengths in the above terminals in the frame. In this way, different transmit powers can be configured for different TTI lengths to compensate for channel estimation differences, thereby improving the transmission performance of the communication system.
  • the method may further include the following steps:
  • the terminal acquires a power offset corresponding to the second TTI length
  • the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length.
  • the transmit power of the channel transmitted by using the second TTI length may be separately determined, and the first TTI length is used for transmission.
  • the transmit power of the channel thereby, different transmission powers are configured for channels corresponding to different TTI lengths to compensate for channel estimation differences, thereby improving transmission performance of the communication system.
  • the presence of the first TTI and the second TTI in the same subframe may be understood to be that the first TTI and the second TTI are simultaneously present in the terminal.
  • the presence of the first TTI and the second TTI described above may be understood as the presence of the transmission of the first TTI and the second TTI.
  • the method for obtaining the power offset value corresponding to the second TTI length, and determining the foregoing transmit power may refer to acquiring the first TTI length, and determining the transmit power corresponding to the first TTI length. Narration.
  • the terminal acquires a power offset value corresponding to the first TTI length, including:
  • the terminal determines a first TTI length of the channel, and acquires a power offset value corresponding to the first TTI length.
  • the TTI length of the channel may be determined first, and then the corresponding power offset value is obtained.
  • the terminal determines the TTI length of the channel according to downlink control information (Downlink Control Information (DCI) of the uplink resource scheduling, that is, the DCI indicates the TTI length of the channel.
  • DCI Downlink Control Information
  • the embodiment does not limit the length of the TTI to be indicated by the DCI.
  • the length of the TTI may also be pre-defined by the terminal and the network device, which is not limited in this embodiment of the present disclosure.
  • the power offset value corresponding to the TTI length may be pre-assigned by the network device and the terminal, or may be defaulted by the network device, or may be configured by the network device by the user. Or, the user may obtain and configure the network device and/or the terminal through a large amount of experimental data, and the like.
  • the terminal determines, according to the power offset value, a transmit power of a channel that is transmitted by using the first TTI length, including:
  • the terminal determines, by using a preset transmit power calculation formula, a transmit power of the channel that is transmitted by using the first TTI length, where the transmit power calculation formula includes the power offset value.
  • the power offset value is included in the foregoing calculation formula of the transmit power
  • the power offset value corresponding to the TTI length introduced when calculating the transmit power of the channel can be implemented, so as to achieve performance difference caused by the difference in the estimated channel estimation.
  • the difference in transmission performance due to the difference in DMRS transmission of different TTI lengths can be compensated to improve the transmission performance of the communication system.
  • the foregoing transmit power calculation formula may be a calculation formula obtained by introducing a power offset parameter corresponding to a TTI length in a power control (PC) formula, where the power offset parameter indicates the power offset value.
  • the introduction may be performed by adding a power offset value corresponding to the TTI length when calculating the transmit power, that is, the transmit power determined in the implementation manner may be a power offset value corresponding to the transmit power and the TTI length calculated by using the PC formula. Add the resulting power.
  • the terminal determines, by using a preset transmit power calculation formula, the transmit power of the channel that is transmitted by using the first TTI length, including:
  • the terminal determines a transmit function of a channel transmitted using the first TTI length by using a formula rate:
  • P PUSCH (i) is the transmit power of the channel
  • i represents the i-th subframe
  • P MAX is the maximum transmit power of the terminal
  • M PUSCH (i) is the uplink resource block RB allocated to the terminal.
  • P O_PUSCH (j) is composed of the sum of P O_NOMINAL_PUSCH (j) and P O_UE_PUSCH (j)
  • P O_NOMINAL_PUSCH (j) is the cell-specific normalized power initial value
  • P O_UE_PUSCH (j) is the exclusive part of the terminal power.
  • the initial value, j is a parameter corresponding to the system scheduling mode
  • is a cell-specific path loss compensation coefficient
  • PL is an estimated downlink path loss of the terminal;
  • the K S is a cell-specific parameter configured by the radio resource control RRC, and corresponds to the current transmission format
  • the BPRE is a cell-specific parameter corresponding to the modulation and coding mode.
  • f(i) is the adjustment value of the current power control
  • ⁇ PUSCH is the power offset value corresponding to the first TTI length.
  • the transmit power of the channel is determined based on the power offset value corresponding to the first TTI length by using the above formula.
  • f(i) f(i-1)+ ⁇ PUSCH (iK PUSCH )
  • ⁇ PUSCH is a unique correction value of the terminal, which is also called Transmit Power Control (TPC)
  • K PUSCH is system pre-
  • the defined parameters correspond to the TDD uplink and downlink configuration.
  • the following part of the above formula can be understood as the PC formula:
  • the terminal determines, by using a preset transmit power calculation formula, the transmit power of the channel that is transmitted by using the first TTI length, including:
  • the terminal determines the transmit power of the channel transmitted using the first TTI length by the following formula:
  • P PUCCH (i) is the transmit power of the channel, i represents the i-th subframe, P MAX is the maximum transmit power of the terminal, P 0_PUCCH is composed of the sum of P 0_NOMINAL_PUCHH and P 0_UE_PUCCH , and P 0_NOMINAL_PUCHH is cell-specific Normalized power initial value, P 0_UE_PUCCH is the terminal partial power initial value, PL is the downlink path loss estimated by the terminal, and h(n CQI , n HARQ , n SR ) is the CQI information bit in the transmission frame format.
  • g(i) g(i-1)+ ⁇ PUCCH (iK PUCCH );
  • K PUCCH is a pre-defined parameter of the system, corresponding to the TDD uplink and downlink configuration
  • k m is a pre-defined parameter of the system, corresponding to the transmission frame structure
  • ⁇ PUCCH is The exclusive correction value of the terminal
  • M is a value corresponding to the TDD frame structure.
  • the transmit power of the channel is determined based on the power offset value corresponding to the first TTI length by using the above formula.
  • ⁇ F_PUCCH (F) may be notified by the higher layer, and the cell-specific parameter corresponds to the transmission format of the PUCCH.
  • ⁇ TxD (F') can be notified by the higher layer, and the UE-specific parameters are related to the number of transmission antennas.
  • the following part of the above formula can be understood as the PC formula:
  • the PUCCH channel is taken as an example.
  • the PC formula in the channel can be referred to the foregoing implementation of the PDSCH and PDCCH channels, and details are not described herein.
  • the foregoing channel includes one or more of the following:
  • PUSCH PUCCH, sPUSCH, sPUCCH, SRS transport channel.
  • the transmission power of the PUSCH, PUCCH, sPUSCH, sPUCCH, and SRS transmission channels can be determined.
  • the terminal acquires a power offset value corresponding to the first TTI length; the terminal determines, according to the power offset value, a transmit power of a channel transmitted using the first TTI length. Since the power offset value corresponding to the TTI length is introduced when determining the transmission power of the channel, the performance difference caused by the channel estimation difference is compensated to improve the transmission performance of the communication system.
  • the embodiment of the present disclosure provides a method for determining a transmit power, as shown in FIG. 3 , including the following steps:
  • the network device sends, to the terminal, an indication message for determining a power offset value corresponding to the first TTI length, so that the terminal acquires a power offset value corresponding to the first TTI length, and is based on the power offset.
  • the value determines the transmit power of the channel transmitted using the first TTI length.
  • the foregoing indication information may be a broadcast message, configuration signaling, or the like.
  • the transmit power of the channel transmitted by using the first TTI length may be determined based on the power offset value.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the network device sends, to the terminal, an indication message for determining a power offset value corresponding to the first TTI length, including:
  • the indication information is further used to determine a power offset corresponding to the second TTI length. a value, such that the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length;
  • the method may further include:
  • the network device sends a power offset corresponding to the second TTI length to the terminal, if the first TTI of the first TTI and the second TTI of the second TTI are in the same subframe.
  • An indication message of a value such that the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length.
  • step 301 and step 302 is not limited, for example, it may be performed simultaneously or sequentially.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the embodiment is the implementation of the network device side corresponding to the embodiment shown in FIG. 2, and the specific implementation manners of the embodiment may refer to the related description of the embodiment shown in FIG. 2, so as to avoid repeated explanation. This embodiment will not be described again.
  • the transmission performance of the communication system can also be improved.
  • the power offset value corresponding to the TTI length is configured by configuring signaling:
  • Method 1 Assume that the channel is a PUSCH, and distinguish the length of the TTI in the system, and divide it into 1ms and 0.5ms, that is, normal TTI and sTTI (for example, slot-based sTTI), and the system configures the power offset value of different TTI lengths as ⁇ .
  • PUSCH_normal_TTI and ⁇ PUSCH_sTTI are broadcast to all terminals of the cell through one of a broadcast channel or RRC signaling. It is assumed that the signaling uses 1 bit to indicate the power offset value, and the correspondence is as shown in Table 1. Here, only 1 bit is taken as an example. When the power offset value agreed upon or configurable in the system is more, more bits are needed, but the indication manner is similar.
  • the terminal receives the relevant signaling, obtains the power offset value of the normal TTI and the sTTI, and determines a power offset value corresponding to the TTI length according to the TTI length indicated in the DCI of the scheduled PUSCH, based on the power offset value.
  • ⁇ PUSCH corresponding to the TTI length with the power offset value for the normal TTI
  • ⁇ PUSCH ⁇ PUSCH_normal_TTI
  • ⁇ PUSCH ⁇ PUSCH_sTTI.
  • Method 2 The system configures the deviation of the power offset value of different TTI lengths from the normal TTI, that is, the power offset value of the normal TTI is configured as ⁇ PUSCH_normal_TTI , and the power offset value of the sTTI is among them The deviation of the sTTI power offset value from the normal TTI power offset value. And broadcast to all terminals of the cell through a broadcast channel, System Information Block (SIB) information or RRC signaling. It is assumed that the signaling uses 1 bit to indicate the deviation of the power offset value, and the correspondence is as shown in Table 2. Here, only 2 bits are taken as an example. When the deviation of the power offset value agreed upon or configurable in the system is larger, more bits are needed, but the indication manner is similar.
  • SIB System Information Block
  • the terminal receives the relevant signaling, acquires the power offset value of the normal TTI and the sTTI, and determines the power offset value corresponding to the TTI length according to the TTI length indicated in the downlink control channel corresponding to the PUSCH and the uplink DCI format. Based on the power offset value, the PUSCH is determined according to the following formula:
  • ⁇ PUSCH is a power offset value corresponding to the length of the TTI
  • ⁇ PUSCH ⁇ PUSCH_normal_TTI ; for sTTI, according to the indication state of the signaling or
  • This example is exemplified by prescribing the power offset values corresponding to different TTI lengths. It is assumed that the above-mentioned channels are PUSCHs, and the TTI lengths in the system are distinguished, and are divided into 1 ms and 0.5 ms, that is, normal TTI and sTTI.
  • the system pre- arranges the power offset values corresponding to different TTI lengths as ⁇ PUSCH_normal_TTI and ⁇ PUSCH_sTTI , and the terminal determines the transmit power of the current resource scheduling according to the TTI length indicated in the uplink resource scheduling DCI:
  • ⁇ PUSCH is the power offset value
  • ⁇ PUSCH ⁇ PUSCH_normal_TTI ; for sTTI,
  • the system pre- arranges the deviation of the power offset value of the different TTI lengths from the normal TTI, that is, the power offset value of the normal TTI is ⁇ PUSCH_normal_TTI , and the power offset value of the sTTI is among them The deviation of the sTTI power offset value from the normal TTI power offset value.
  • the foregoing terminal determines, according to the TTI length indicated in the uplink resource scheduling DCI, the transmit power of the current resource scheduling:
  • ⁇ PUSCH is the power offset value
  • ⁇ PUSCH ⁇ PUSCH_normal_TTI ; for sTTI,
  • the terminal 40 includes the following modules:
  • the first obtaining module 41 is configured to obtain a power offset value corresponding to the first TTI length
  • the first determining module 42 is configured to determine, according to the power offset value, a transmit power of a channel transmitted by using the first TTI length.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the first obtaining module 41 is configured to receive a power offset value corresponding to the first TTI length sent by the network device; or
  • the first obtaining module 41 is configured to receive a power offset value corresponding to a second TTI length sent by the network device, and a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length. Deviating, and using the power offset value corresponding to the second TTI length and the deviation, acquiring a power offset value corresponding to the first TTI length.
  • the first obtaining module 41 is configured to obtain a pre-agreed power offset value corresponding to the first TTI length;
  • the first obtaining module 41 is configured to obtain a power offset value corresponding to the pre-defined second TTI length, and a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length. Deviating, and using the power offset value corresponding to the second TTI length and the deviation, obtaining The power offset value corresponding to the first TTI length.
  • the terminal 40 further includes:
  • the second obtaining module 43 is configured to acquire a power offset value corresponding to the second TTI length if a first TTI of the first TTI length and a second TTI of the second TTI length exist in the same subframe;
  • the second determining module 44 is configured to determine, according to the power offset value corresponding to the second TTI length, a transmit power of a channel transmitted by using the second TTI length.
  • the first acquiring module 41 is configured to determine a first TTI length of the channel, and obtain a power offset value corresponding to the first TTI length.
  • the first determining module 42 is configured to determine, by using a preset transmit power calculation formula, a transmit power of the channel that is transmitted by using the first TTI length, where the transmit power calculation formula includes the power offset Move the value.
  • the first determining module 42 is configured to determine, by using the following formula, a transmit power of a channel transmitted using the first TTI length:
  • P PUSCH (i) is the transmit power of the channel
  • i represents the i-th subframe
  • P MAX is the maximum transmit power of the terminal
  • M PUSCH (i) is the uplink resource block RB allocated to the terminal.
  • P O_PUSCH (j) is composed of the sum of P O_NOMINAL_PUSCH (j) and P O_UE_PUSCH (j)
  • P O_NOMINAL_PUSCH (j) is the cell-specific normalized power initial value
  • P O_UE_PUSCH (j) is the exclusive part of the terminal power.
  • the initial value, j is a parameter corresponding to the system scheduling mode
  • is a cell-specific path loss compensation coefficient
  • PL is an estimated downlink path loss of the terminal;
  • the K S is a cell-specific parameter configured by the radio resource control RRC, and corresponds to the current transmission format
  • the BPRE is a cell-specific parameter corresponding to the modulation and coding mode.
  • f(i) is the adjustment value of the current power control
  • ⁇ PUSCH is the power offset corresponding to the first TTI length
  • the first determining module 42 is configured to determine, by using the following formula, the transmit power of the channel transmitted using the first TTI length:
  • P PUCCH (i) is the transmit power of the channel, i represents the i-th subframe, P MAX is the maximum transmit power of the terminal, P 0_PUCCH is composed of the sum of P 0_NOMINAL_PUCHH and P 0_UE_PUCCH , and P 0_NOMINAL_PUCHH is cell-specific Normalized power initial value, P 0_UE_PUCCH is the terminal partial power initial value, PL is the downlink path loss estimated by the terminal, and h(n CQI , n HARQ , n SR ) is the CQI information bit in the transmission frame format.
  • g(i) g(i-1)+ ⁇ PUCCH (iK PUCCH );
  • K PUCCH is a pre-defined parameter of the system, corresponding to the TDD uplink and downlink configuration
  • k m is a pre-defined parameter of the system, corresponding to the transmission frame structure
  • ⁇ PUCCH is The exclusive correction value of the terminal
  • M is corresponding to the TDD frame structure.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the foregoing terminal 40 may be the terminal in the embodiment shown in FIG. 1 to FIG. 3, and any implementation manner of the terminal in the embodiment shown in FIG. 1 to FIG. 3 may be used in this embodiment.
  • the foregoing terminal 40 is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • the network device 60 includes the following modules:
  • the first sending module 61 is configured to send, to the terminal, an indication message for determining a power offset value corresponding to the first TTI length, so that the terminal determines, according to the power offset value, that the first TTI length is used for transmission.
  • the transmit power of the channel is configured to send, to the terminal, an indication message for determining a power offset value corresponding to the first TTI length, so that the terminal determines, according to the power offset value, that the first TTI length is used for transmission.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the first sending module is configured to send, to the terminal, a power offset value corresponding to the first TTI length;
  • the first sending module is configured to send, to the terminal, a power offset value corresponding to a second TTI length, and a power offset value corresponding to the first TTI length and a power offset value corresponding to the second TTI length a deviation of the first TTI length corresponding to the power offset value corresponding to the second TTI length and the deviation.
  • the network device may further include:
  • the second sending module 62 is configured to send a power corresponding to the second TTI length to the terminal if the first TTI of the first TTI length and the second TTI of the second TTI length exist in the same subframe And an indication message of the offset value, so that the terminal determines a transmit power of a channel transmitted using the second TTI length based on a power offset value corresponding to the second TTI length.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the foregoing network device 60 may be the network device in the embodiment shown in FIG. 1 to FIG. 3, and any implementation manner of the network device in the embodiment shown in FIG. 1 to FIG. 3 may be implemented in this embodiment.
  • the foregoing network device 60 in the example is implemented, and achieves the same beneficial effects, and details are not described herein again.
  • FIG. 7 there is shown a structure of a terminal including: a processor 700, a transceiver 710, a memory 720, a user interface 730, and a bus interface, wherein:
  • the processor 700 is configured to read a program in the memory 720 and perform the following process:
  • a transmit power of a channel transmitted using the first TTI length is determined based on the power offset value.
  • the transceiver 710 is configured to receive and transmit data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits.
  • the bus interface provides an interface.
  • Transceiver 710 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 730 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 700 is responsible for managing the bus architecture and the usual processing, and the memory 720 can store the processing.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for all terminals in a cell.
  • the acquiring the power offset value corresponding to the first TTI length includes:
  • the transceiver 710 receives a power offset value corresponding to the second TTI length sent by the network device, and a deviation between the power offset value corresponding to the first TTI length and the power offset value corresponding to the second TTI length, and uses And a power offset value corresponding to the length of the second TTI, and obtaining a power offset value corresponding to the first TTI length.
  • the acquiring the power offset value corresponding to the first TTI length includes:
  • processor 700 is further configured to:
  • a transmit power of a channel transmitted using the second TTI length is determined based on a power offset value corresponding to the second TTI length.
  • the acquiring the power offset value corresponding to the first TTI length includes:
  • the determining, according to the power offset value, a transmit power of a channel transmitted by using the first TTI length including:
  • the determining, by using a preset transmit power calculation formula, the transmit power of the channel that is transmitted by using the first TTI length including:
  • the transmit power of the channel transmitted using the first TTI length is determined by the following formula:
  • P PUSCH (i) is the transmit power of the channel
  • i represents the i-th subframe
  • P MAX is the maximum transmit power of the terminal
  • M PUSCH (i) is the uplink resource block RB allocated to the terminal.
  • P O_PUSCH (j) is composed of the sum of P O_NOMINAL_PUSCH (j) and P O_UE_PUSCH (j)
  • P O_NOMINAL_PUSCH (j) is the cell-specific normalized power initial value
  • P O_UE_PUSCH (j) is the exclusive part of the terminal power.
  • the initial value, j is a parameter corresponding to the system scheduling mode
  • is a cell-specific path loss compensation coefficient
  • PL is an estimated downlink path loss of the terminal;
  • K s is a cell-specific parameter configured by the radio resource control RRC, corresponding to the current transmission format
  • the BPRE is a cell-specific parameter corresponding to the modulation and coding mode
  • f(i) is an adjustment value of the current power control
  • ⁇ PUSCH is a power offset value corresponding to the first TTI length
  • the transmit power of the channel transmitted using the first TTI length is determined by the following formula:
  • P PUCCH (i) is the transmit power of the channel, i represents the i-th subframe, P MAX is the maximum transmit power of the terminal, P 0_PUCCH is composed of the sum of P 0_NOMINAL_PUCHH and P 0_UE_PUCCH , and P 0_NOMINAL_PUCHH is cell-specific Normalized power initial value, P 0_UE_PUCCH is the terminal partial power initial value, PL is the downlink path loss estimated by the terminal, and h(n CQI , n HARQ , n SR ) is the CQI information bit in the transmission frame format.
  • g(i) g(i-1)+ ⁇ PUCCH (iK PUCCH );
  • K PUCCH is a pre-defined parameter of the system, corresponding to the TDD uplink and downlink configuration
  • k m is a pre-defined parameter of the system, corresponding to the transmission frame structure
  • ⁇ PUCCH is The exclusive correction value of the terminal
  • M is corresponding to the TDD frame structure.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the foregoing terminal may be the terminal in the embodiment shown in FIG. 1 to FIG. 3, and any implementation manner of the terminal in the embodiment shown in FIG. 1 to FIG. 3 may be used in the embodiment.
  • the above terminals are implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • FIG. 8 there is shown a structure of a network device including: a processor 800, a transceiver 810, a memory 820, a user interface 830, and a bus interface, wherein:
  • the processor 800 is configured to read a program in the memory 820 and perform the following process:
  • the value determines the transmit power of the channel transmitted using the first TTI length.
  • the transceiver 810 is configured to receive and transmit data under the control of the processor 800.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 800 and various circuits of memory represented by memory 820.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits.
  • the bus interface provides an interface.
  • Transceiver 810 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 830 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 can store data used by the processor 800 in performing operations.
  • the first TTI length is equal to 1 ms, or the first TTI length is less than 1 ms.
  • the power offset value corresponding to the first TTI length is a power offset value corresponding to the first TTI length configured for the terminal in a cell;
  • the power offset value corresponding to the first TTI length is the same for all terminals configured in a cell.
  • the power offset value corresponding to the first TTI length is the same for all terminals configured in a cell.
  • the sending by the terminal, an indication message for determining a power offset value corresponding to the first TTI length, including:
  • processor 800 is further configured to:
  • the transceiver 801 sends a power offset value corresponding to the second TTI length to the terminal. And indicating a message, so that the terminal determines, according to the power offset value corresponding to the second TTI length, a transmit power of a channel transmitted using the second TTI length.
  • the channel includes one or more of the following:
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • sPUSCH Physical Uplink Control Channel
  • sPUCCH Physical Uplink Control Channel
  • SRS transport channels Physical Uplink Control Channel
  • the foregoing network device may be the network device in the embodiment shown in FIG. 1 to FIG. 3, and any implementation manner of the network device in the embodiment shown in FIG. 1 to FIG.
  • the foregoing network device in the example is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • a transmission power determination system including:
  • the network device 91 is configured to send, to the terminal 92, an indication message for determining a power offset value corresponding to the first TTI length;
  • the terminal 92 is configured to acquire a power offset value corresponding to the first TTI length according to the indication message, and determine, according to the power offset value, a transmit power of a channel that is transmitted by using the first TTI length.
  • the network device 91 and the terminal 92 may be the network device and the terminal introduced in the embodiment shown in FIG. 1 to FIG. 8.
  • the implementation manners of the network device and the terminal shown in FIG. 1 to FIG. 8 can also be achieved. The same technical effects will not be described here.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative,
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be ignored, or not carried out.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform part of the steps of the method of transmitting and receiving described in various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本提供一种发射功率确定方法、终端、网络设备和系统,该方法可包括:终端获取第一TTI长度对应的功率偏移值;所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。

Description

发射功率确定方法、终端、网络设备和系统
相关申请的交叉引用
本申请主张在2016年7月11日在中国提交的中国专利申请No.201610541156.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信技术领域,特别涉及一种发射功率确定方法、终端、网络设备和系统。
背景技术
随着移动通信业务需求的发展变化,国际电信同盟(International Telecommunications Union,ITU)等多个组织对未来移动通信系统定义了更高的用户面延时性能要求。其中,缩短用户面时延性能可以通过降低传输时间间隔(Transmission Time Interval,TTI)长度实现。但在未来移动通信系统中,并不是所有的业务传输都需要使用降低长度的TTI进行传输,例如:有些业务还可能是使用长度固定为1毫秒(ms)的TTI进行传输。即在未来系统通信系统中,会出现多种长度不相同的TTI,例如:出现长度为1ms的TTI和长度短于1ms的TTI。而不同长度的TTI在信道估计上是存在差异的,而信道估计差异是会影响传输性能。可见,目前通信系统中存在传输性能较差的问题。
发明内容
本公开文本的目的在于提供一种发射功率确定方法、终端、网络设备和系统,解决了传输性能较差的问题。
为了达到上述目的,本公开文本实施例提供一种发射功率确定方法,包括:
终端获取第一TTI长度对应的功率偏移值;
所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的 发射功率。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,所述终端获取第一TTI长度对应的功率偏移值,包括:
所述终端接收网络设备发送的所述第一TTI长度对应的功率偏移值;或者
所述终端接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,所述终端获取第一TTI长度对应的功率偏移值,包括:
所述终端获取预先约定好的所述第一TTI长度对应的功率偏移值;或者
所述终端获取预先约定好的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,所述方法还包括:
若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述终端获取所述第二TTI长度对应的功率偏移值;
所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,所述终端获取第一TTI长度对应的功率偏移值,包括:
所述终端确定所述信道的第一TTI长度,并获取所述第一TTI长度对应的功率偏移值。
可选地,所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率,包括:
所述终端通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,其中,所述发射功率计算公式中包括所述功率偏移值。
可选地,所述终端通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,包括:
所述终端通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000001
其中,PPUSCH(i)为所述信道的发射功,i表示第i个子帧,PMAX为所述终端的最大发射功率,MPUSCH(i)为分配给所述终端的上行资源块(Resource Block,RB)的数量,PO_PUSCH(j)由PO_NOMINAL_PUSCH(j)和PO_UE_PUSCH(j)之和组成,PO_NOMINAL_PUSCH(j)为小区专属归一化功率初始值,PO_UE_PUSCH(j)为所述终端专属部分功率初始值,j为与系统调度方式相对应的参数,α为小区特定的路损补偿系数,PL为所述终端估计的下行路径损耗;
Figure PCTCN2017085292-appb-000002
其中,KS是由无线资源控制(Radio Resource Control,RRC)配置的小区专属参数,与当前传输格式相对应,BPRE为小区专属参数与调制编码方式相对应,
Figure PCTCN2017085292-appb-000003
为小区专属参数,f(i)为当前功率控制的调整值;ΔPUSCH为所述第一TTI长度对应的功率偏移值;
或者
所述终端通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000004
其中,PPUCCH(i)为所述信道的发射功率,i表示第i个子帧,PMAX为所述终端的最大发射功率,P0_PUCCH由P0_NOMINAL_PUCHH和P0_UE_PUCCH之和组成,P0_NOMINAL_PUCHH为小区专属归一化功率初始值,P0_UE_PUCCH为所述终端专属部分功率初始值,PL为所述终端估计的下行路径损耗,h(nCQI,nHARQ,nSR)为与传输帧格式中信道质量指示(Channel Quality Indication,CQI)信息比特数、混合自 动重传请求(Hybrid Automatic Repeat reQuest,HARQ)信息比特数及调度请求(Scheduling Request,SR)配置相对应的独立参数,ΔF_PUCCH(F)为小区专属参数,ΔTxD(F′)为所述终端专属参数;
对于频分双工(Frequency Division Duplexing,FDD),g(i)=g(i-1)+δPUCCH(i-KPUCCH);
对于时分双工(Time-Division Duplexing,TDD),
Figure PCTCN2017085292-appb-000005
其中g(i)是当前信道功率控制调制值,KPUCCH为系统预先定义的参数,与TDD上下行配置相对应,km为系统预先定义的参数,与传输帧结构相对应,δPUCCH为所述终端的专属修正值,M为与TDD帧结构相对应的值。
可选地,所述信道包括如下一项或者多项:
物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)、短物理上行共享信道(short Physical Uplink Shared Channel,sPUSCH)、短物理上行链路控制信道(short Physical Uplink Control Channel,sPUCCH)和信道探测参考信号(Sounding Reference Signal,SRS)传输信道。
本公开文本实施例还提供一种发射功率确定方法,包括:
网络设备向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端获取所述第一TTI长度对应的功率偏移值,并基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,所述网络设备向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,包括:
所述网络设备向所述终端发送的所述第一TTI长度对应的功率偏移值;或者
所述网络设备向所述终端发送第二TTI长度对应的功率偏移值,以及所 述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,以使所述终端使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述指示信息还用于确定所述第二TTI长度对应的功率偏移值,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率;
或者
所述方法还包括:
若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述网络设备向终端发送用于确定所述第二TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
本公开文本实施例还提供一种终端,包括:第一获取模块,用于获取第一TTI长度对应的功率偏移值;
第一确定模块,用于基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,所述第一获取模块用于接收网络设备发送的所述第一TTI长度对应的功率偏移值;或者
所述第一获取模块用于接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差, 获取所述第一TTI长度对应的功率偏移值。
可选地,所述第一获取模块用于获取预先约定好的所述第一TTI长度对应的功率偏移值;或者
所述第一获取模块用于获取预先约定好的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,所述终端还包括:
第二获取模块,用于若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则获取所述第二TTI长度对应的功率偏移值;
第二确定模块,用于基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,所述第一获取模块用于确定所述信道的第一TTI长度,并获取所述第一TTI长度对应的功率偏移值。
可选地,所述第一确定模块用于通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,其中,所述发射功率计算公式中包括所述功率偏移值。
可选地,所述第一确定模块用于通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000006
其中,PPUSCH(i)为所述信道的发射功,i表示第i个子帧,PMAX为所述终端的最大发射功率,MPUSCH(i)为分配给所述终端的上行资源块RB的数量,PO_PUSCH(j)由PO_NOMINAL_PUSCH(j)和PO_UE_PUSCH(j)之和组成,PO_NOMINAL_PUSCH(j)为小区专属归一化功率初始值,PO_UE_PUSCH(j)为所述终端专属部分功率初始值,j为与系统调度方式相对应的参数,α为小区特定的路损补偿系数,PL为所述终端估计的下行路径损耗;
Figure PCTCN2017085292-appb-000007
其中,KS是由无线资源控制RRC配置的小区专属参数,与当前传输格 式相对应,BPRE为小区专属参数与调制编码方式相对应,
Figure PCTCN2017085292-appb-000008
为小区专属参数,f(i)为当前功率控制的调整值;ΔPUSCH为所述第一TTI长度对应的功率偏移值;
或者
所述第一确定模块用于通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000009
其中,PPUCCH(i)为所述信道的发射功率,i表示第i个子帧,PMAX为所述终端的最大发射功率,P0_PUCCH由P0_NOMINAL_PUCHH和P0_UE_PUCCH之和组成,P0_NOMINAL_PUCHH为小区专属归一化功率初始值,P0_UE_PUCCH为所述终端专属部分功率初始值,PL为所述终端估计的下行路径损耗,h(nCQI,nHARQ,nSR)为与传输帧格式中CQI信息比特数、HARQ信息比特数及SR配置相对应的独立参数,ΔF_PUCCH(F)为小区专属参数,ΔTxD(F′)为所述终端专属参数;
对于FDD,g(i)=g(i-1)+δPUCCH(i-KPUCCH);
对于TDD,
Figure PCTCN2017085292-appb-000010
其中g(i)是当前信道功率控制调制值,KPUCCH为系统预先定义的参数,与TDD上下行配置相对应,km为系统预先定义的参数,与传输帧结构相对应,δPUCCH为所述终端的专属修正值,M为与TDD帧结构相对应的。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
本公开文本实施例还提供一种网络设备,包括:
第一发送模块,用于向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
可选地,所述第一TTI长度等于1毫秒ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,所述第一发送模块用于向所述终端发送所述第一TTI长度对应的功率偏移值;或者
所述第一发送模块用于向所述终端发送第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,以使所述终端使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述指示信息还用于确定所述第二TTI长度对应的功率偏移值,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率;
或者
所述网络设备还包括:
第二发送模块,用于若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则向终端发送用于确定所述第二TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
本公开文本实施例还提供一种发射功率确定系统,包括:
网络设备,用于向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息;
所述终端,用于根据所述指示消息获取所述第一TTI长度对应的功率偏移值,并基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
本公开文本实施例还提供一种终端,包括:处理器、存储器和收发机。所述处理器用于读取存储器中的程序,执行下列过程:获取第一TTI长度对应的功率偏移值;基于所述功率偏移值确定使用所述第一TTI长度传输的信 道的发射功率。所述收发机用于接收和发送数据,所述存储器能够存储所述处理器在执行操作时所使用的数据。
本公开文本实施例还提供一种网络设备,包括:处理器、存储器和收发机。所述处理器用于读取存储器中的程序,执行下列过程:通过所述收发机向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。所述收发机用于接收和发送数据,所述存储器能够存储所述处理器在执行操作时所使用的数据。
本公开文本的上述技术方案至少具有如下有益效果:
在本公开文本实施例中,终端获取第一TTI长度对应的功率偏移值;所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。由于在确定信道的发射功率时引入了TTI长度对应的功率偏移值,从而补偿信道估计差异带来的性能差异,以提升通信系统的传输性能。
附图说明
为了更清楚地说明本公开文本实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本申请的主旨。
图1为本公开文本实施例提供的网络结构示意图;
图2为本公开文本实施例提供的一种发射功率确定方法的流程示意图;
图3为本公开文本实施例提供的另一种发射功率确定方法的流程示意图;
图4为本公开文本实施例提供的一种终端的结构示意图;
图5为本公开文本实施例提供的另一种终端的结构示意图;
图6为本公开文本实施例提供的一种网络设备的结构示意图;
图7为本公开文本实施例提供的另一种终端的结构示意图;
图8为本公开文本实施例提供的另一种网络设备的结构示意图;
图9为本公开文本实施例提供的一种发射功率确定系统的结构示意图。
具体实施方式
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例中的附图,对本公开文本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开文本一部分实施例,而不是全部的实施例。基于本公开文本中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开文本保护的范围。参见图1,图1为本公开文本实施例提供的网络结构示意图,如图1所示,包括一个或者多个终端11和网络设备12,其中,附图中以一个终端11进行举例示意。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开文本实施例中并不限定终端11的具体类型。终端11可以与网络设备12建立通信,其中,附图中的网络可以表示终端11与网络设备12无线建立通信,网络设备12可以是演进型基站(evolved Node B,eNB)或者其他基站,或者可以是接入点设备等网络侧设备,需要说明的是,在本公开文本实施例中并不限定网络设备12的具体类型。
基于图1所示的网络结构,本公开文本实施例提供一种发射功率确定方法,如图2所示,包括以下步骤:
201、终端获取第一TTI长度对应的功率偏移值;
202、所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
本公开文本实施例中,上述第一TTI长度对应的功率偏移值可以是终端预设配置好的,例如:上述第一TTI长度对应的功率偏移值可以是一与上述第一TTI长度对应的默认值。或者上述第一TTI长度对应的功率偏移值可以是动态获取的,例如:接收网络设备临时配置或者指示的。当然,上述第一TTI长度对应的功率偏移值也可以是终端与网络设备预设约定好的等等,对此本公开文本实施例不作限定。另外,本公开文本实施例中不同TTI长度可 以对应不同的功率偏移值,从而可以实现在确定信道的发射功率时引入了TTI长度对应的功率偏移值,以补偿信道估计差异带来的性能差异,以提升通信系统的传输性能。另外,由于在确定发射功率时引入的TTI长度对应的功率偏移值,从而可以补偿不同TTI长度由于解调参考信号(Demodulation Reference Signal,DMRS)传输差异造成的传输性能差异,以提升通信系统的传输性能。
另外,上述使用所述第一TTI长度传输的信道可以理解为以上述第一TTI长度的TTI进行传输的信道,或者可以理解进行上述第一TTI长度的TTI传输的信道。另外,上述发射功率可以理解为上述终端在进行上述信道传输时的发射功率。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
该实施方式中,可以实现上述第一TTI长度可以是1ms或者小于1ms,例如:上述第一TTI长度可以是0.5ms或者0.3ms,或者可以是2、3、4或者7符号等。当然,在本公开文本实施例中,也不排除上述第一TTI长度可以大于1ms,对此本公开文本实施例不作限定。该实施方式中,可以实现为等于1ms或者小于1ms的TTI长度获取对应的功率偏移值,从而可以确定相应的发射功率,以提高传输性能。
可选地,所述第一TTI长度对应的功率偏移值可以为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值。
该实施方式中,可以实现为上述终端单独配置一个上述第一TTI长度对应的功率偏移值,即为上述终端配置专属的上述第一TTI长度对应的功率偏移值。且该实施方式中,不同终端可以配置不同的与上述第一TTI长度对应的功率偏移值,且当同一个终端如果支持不同的TTI长度时,其不同TTI长度所对应的功率偏移值也可以独立配置。该实施方式中,由于功率偏移值是为终端单独配置的,从而可以更一步补偿信道估计差异,以更一步提升通信系统的传输性能。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
该实施方式中,可以实现同一小区内所有终端的第一TTI长度对应的功 率偏移值是相同的。由于小区内所有终端的第一TTI长度对应的功率偏移值这样可以节约传输资源,例如:网络设备只需要通过广播消息就可以为小区内所有终端配置第一TTI长度对应的功率偏移值。
可选地,所述终端获取第一TTI长度对应的功率偏移值,可以包括:
所述终端接收网络设备发送的所述第一TTI长度对应的功率偏移值。
该实施方式中,可以实现终端接收网络设备发送的所述第一TTI长度对应的功率偏移值,即第一TTI长度对应的功率偏移值由网络设备配置给终端。例如:可以通过配置信令发送上述功率偏移值,或者可以通过广播消息发送上述功率偏移值等。
可选地,所述终端获取第一TTI长度对应的功率偏移值,可以包括:
所述终端接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
该实施方式中,可以实现终端接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,由于不需要发送第一TTI长度对应的功率偏移值,从而可以节约传输开销,因为在实施应用中往往功率偏移值的传输开销会大于偏差的传输开销。另外,该实施方式中,上述第二TTI长度与上述第一TTI长度不同,以及上述第二TTI长度可以是与上述第一TTI长度同时或者在同一子帧内存在的TTI长度,即在同一子帧内上述终端存在两种TTI长度的调度。这样通过该实施方式可以实现为不同的TTI长度配置不同的发射功率,以补偿信道估计差异,从而提升通信系统的传输性能。
可选地,所述终端获取第一TTI长度对应的功率偏移值,包括:
所述终端获取预先约定好的所述第一TTI长度对应的功率偏移值。
该实施方式中,可以实现获取预先约定好的所述第一TTI长度对应的功率偏移值,从而可以实现在获取功率偏移时不需要网络设备参与,以节约传输开销。另外,上述预先约定好的可以是上述终端与网络设备预先约定好的。
可选地,所述终端获取第一TTI长度对应的功率偏移值,包括:
所述终端获取预先约定好的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
该实施方式,可以实现上述第二TTI长度对应的功率偏移值,以及上述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差都可以是预先约定好的,从而可以节约传输开销。另外,该实施方式中,上述第二TTI长度与上述第一TTI长度不同,以及上述第二TTI长度可以是与上述第一TTI长度同时或者在同一子帧内存在的TTI长度,即在同一子帧内上述终端存在两种TTI长度的调度。这样通过该实施方式可以实现为不同的TTI长度配置不同的发射功率,以补偿信道估计差异,从而提升通信系统的传输性能。
可选地,所述方法还可以包括如下步骤:
若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,所述终端获取所述第二TTI长度对应的功率偏移值;
所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
该实施方式中,可以实现若在同一子帧内存在上述第一TTI和第二TTI时可以分别确定使用所述第二TTI长度传输的信道的发射功率,以及使用所述第一TTI长度传输的信道的发射功率。从而实现为不同的TTI长度对应的信道配置不同的发射功率,以补偿信道估计差异,从而提升通信系统的传输性能。另外,上述同一子帧存在上述第一TTI和第二TTI可以理解为,上述终端同时存在上述第一TTI和第二TTI。另外,存在上述第一TTI和第二TTI可以理解为存在第一TTI和第二TTI的传输。且该实施方式中,获取上述第二TTI长度对应的功率偏移值,以及确定上述发射功率的实施方式可以参考获取第一TTI长度,以及确定第一TTI长度对应的发射功率,此处不再赘述。
可选地,所述终端获取第一TTI长度对应的功率偏移值,包括:
所述终端确定所述信道的第一TTI长度,并获取所述第一TTI长度对应的功率偏移值。
该实施方式中,可以实现先确定信道的TTI长度,再获取对应的功率偏移值。例如:上述终端根据上行资源调度的下行控制信息(Downlink Control Information,DCI)确定上述信道的TTI长度,即DCI指示上述信道的TTI长度。当然,该实施方式,并不限定通过DCI指示TTI长度,TTI长度还可以是终端与网络设备预先约定好的,对此本公开文本实施例不作限定。
另外,需要说明的是,本公开文本实施例中,TTI长度对应的功率偏移值可以是网络设备与终端预先约定好的,或者可以是网络设备默认的,或者可以是网络设备通过用户配置的,或者可以是用户通过大量实验数据得出并配置给网络设备和/终端的等等,对此本公开文本实施例不作限定。
可选地,所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率,包括:
所述终端通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,其中,所述发射功率计算公式中包括所述功率偏移值。
该实施方式中,由于上述发射功率计算公式中包括功率偏移值,从而可以实现在计算信道的发射功率时引入的TTI长度对应的功率偏移值,以实现补偿信道估计差异带来的性能差异,保证传输的性能稳定性,以及提升信道估计的准确性,保证数据的可靠传输。另外,由于在确定发射功率时引入的TTI长度对应的功率偏移值,从而可以补偿不同TTI长度由于DMRS传输差异造成的传输性能差异,以提升通信系统的传输性能。
另外,该实施方式中,上述发射功率计算公式可以是在功率控制(Power Control,PC)公式引入与TTI长度对应的功率偏移参数得到的计算公式,该功率偏移参数即表示上述功率偏移值。另外,这里的引入可以是在计算发射功率时加上TTI长度对应的功率偏移值,即该实施方式中确定的发射功率可以是采用PC公式计算的发射功率与TTI长度对应的功率偏移值相加得到的功率。
可选地,所述终端通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,包括:
所述终端通过如下公式确定使用所述第一TTI长度传输的信道的发射功 率:
Figure PCTCN2017085292-appb-000011
其中,PPUSCH(i)为所述信道的发射功,i表示第i个子帧,PMAX为所述终端的最大发射功率,MPUSCH(i)为分配给所述终端的上行资源块RB的数量,PO_PUSCH(j)由PO_NOMINAL_PUSCH(j)和PO_UE_PUSCH(j)之和组成,PO_NOMINAL_PUSCH(j)为小区专属归一化功率初始值,PO_UE_PUSCH(j)为所述终端专属部分功率初始值,j为与系统调度方式相对应的参数,α为小区特定的路损补偿系数,PL为所述终端估计的下行路径损耗;
Figure PCTCN2017085292-appb-000012
其中,KS是由无线资源控制RRC配置的小区专属参数,与当前传输格式相对应,BPRE为小区专属参数与调制编码方式相对应,
Figure PCTCN2017085292-appb-000013
为小区专属参数,f(i)为当前功率控制的调整值;ΔPUSCH为所述第一TTI长度对应的功率偏移值。
该实施方式中,通过上述公式可以实现基于第一TTI长度对应的功率偏移值确定上述信道的发射功率。另外,上述f(i)=f(i-1)+δPUSCH(i-KPUSCH),δPUSCH为上述终端的专属修正值,也叫做发送功率控制(Transmit Power Control,TPC),KPUSCH为系统预先定义的参数,与TDD上下行配置相对应。另外,上述公式中的下面部分可以理解为PC公式:
Figure PCTCN2017085292-appb-000014
另外,需要说明的是,该实施方式中,仅是以PUSCH信道作为举例说明。
可选地,所述终端通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,包括:
所述终端通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000015
其中,PPUCCH(i)为所述信道的发射功率,i表示第i个子帧,PMAX为所述终 端的最大发射功率,P0_PUCCH由P0_NOMINAL_PUCHH和P0_UE_PUCCH之和组成,P0_NOMINAL_PUCHH为小区专属归一化功率初始值,P0_UE_PUCCH为所述终端专属部分功率初始值,PL为所述终端估计的下行路径损耗,h(nCQI,nHARQ,nSR)为与传输帧格式中CQI信息比特比特数、HARQ信息比特数及SR配置相对应的独立参数,ΔF_PUCCH(F)为小区专属参数,ΔTxD(F′)为所述终端专属参数;
对于FDD,g(i)=g(i-1)+δPUCCH(i-KPUCCH);
对于TDD,
Figure PCTCN2017085292-appb-000016
其中g(i)是当前信道功率控制调制值,KPUCCH为系统预先定义的参数,与TDD上下行配置相对应,km为系统预先定义的参数,与传输帧结构相对应,δPUCCH为所述终端的专属修正值,M为与TDD帧结构相对应的值。
该实施方式中,通过上述公式可以实现基于第一TTI长度对应的功率偏移值确定上述信道的发射功率。另外,ΔF_PUCCH(F)可以由高层通知,为小区专属参数与PUCCH的传输格式相对应。ΔTxD(F′)可以由高层通知,为UE专属参数与传输天线数相关。另外,上述公式中的下面部分可以理解为PC公式:
Figure PCTCN2017085292-appb-000017
另外,需要说明的是,该实施方式中,仅是以PUCCH信道作为举例说明。例如:针对SRS传输信道可以是在该信道的PC公式参见上述PDSCH和PDCCH信道的实施方式,此处不作赘述。
可选地,上述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH、SRS传输信道。
该实施方式中,可以实现确定PUSCH、PUCCH、sPUSCH、sPUCCH、SRS传输信道的发射功率。
本公开文本实施例,终端获取第一TTI长度对应的功率偏移值;所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。由于在确定信道的发射功率时引入了TTI长度对应的功率偏移值,从而补偿信道估计差异带来的性能差异,以提升通信系统的传输性能。
基于图1所示的网络结构,本公开文本实施例提供一种发射功率确定方法,如图3所示,包括以下步骤:
301、网络设备向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端获取所述第一TTI长度对应的功率偏移值,并基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
该实施方式中,上述指示信息可以是广播消息或者配置信令等等。当终端根据上述指示消息获取所述第一TTI长度对应的功率偏移值后,就可以基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,所述网络设备向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,包括:
所述网络设备向所述终端发送的所述第一TTI长度对应的功率偏移值;或者
所述网络设备向所述终端发送第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,以使所述终端使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,所述指示信息还用于确定所述第二TTI长度对应的功率偏移值,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率;
或者
所述方法还可以包括:
302、若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,所述网络设备向终端发送用于确定所述第二TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
需要说明的是,本实施例中对步骤301和步骤302的执行顺序不作限定,例如:可以同时执行,或者先后执行。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络设备侧的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,同样可以实现提升通信系统的传输性能。
下面以多个举例对上面实施例中介绍的实施方式进行举例说明:
例1:
该举例中,以通过配置信令配置TTI长度对应的功率偏移值进行举例说明:
方法1:假设信道为PUSCH,并且对系统内的TTI长度进行区分,区分为1ms与0.5ms,即normal TTI与sTTI(例如slot-based sTTI),系统配置不同TTI长度的功率偏移值为ΔPUSCH_normal_TTI与ΔPUSCH_sTTI,并通过广播信道或RRC信令中一种广播给小区的所有终端。假设信令使用1比特指示功率偏移值,对应关系如表1。此处仅以1比特为例,当系统中约定或者可以配置的功率偏移值更多时,需要更多比特,但指示方式类似。
表1:
信令指示状态 指示的功率偏移值
0 ΔPUSCH_normal_TTI
1 ΔPUSCH_sTTI
所述终端接收相关信令,获取normal TTI与sTTI的功率偏移值,并根据调度该PUSCH的DCI中指示的TTI长度确定与该TTI长度相对应的功率偏移值,基于该功率偏移值按照如下公式确定PUSCH的发射功率:
Figure PCTCN2017085292-appb-000018
其中,ΔPUSCH为与TTI长度对应的功率偏移值,对于normal TTI,ΔPUSCH=ΔPUSCH_normal_TTI;对于sTTI,ΔPUSCH=ΔPUSCH_sTTI
方法2:系统配置不同TTI长度相对normal TTI的功率偏移值的偏差,即配置normal TTI的功率偏移值为ΔPUSCH_normal_TTI,sTTI的功率偏移值为
Figure PCTCN2017085292-appb-000019
其中
Figure PCTCN2017085292-appb-000020
为sTTI功率偏移值相对normal TTI功率偏移值的偏差。并通过广播信道、系统信息块(SIB,System Information Block)信息或RRC信令中一种广播给小区的所有终端。假设信令使用1比特指示功率偏移值的偏差,对应关系如表2。此处仅以2比特为例,当系统中约定或者可以配置的功率偏移值偏差更大时,需要更多比特,但指示方式类似。
表2:
Figure PCTCN2017085292-appb-000021
上述终端接收相关信令,获取normal TTI与sTTI的功率偏移值,并根据与该PUSCH对应的使用上行DCI格式的下行控制信道中指示的TTI长度确定与该TTI长度相对应的功率偏移值,基于该功率偏移值按照如下公式确定PUSCH:
Figure PCTCN2017085292-appb-000022
其中,ΔPUSCH为与TTI长度对应的功率偏移值,对于normal TTI,ΔPUSCH=ΔPUSCH_normal_TTI;对于sTTI,根据信令的指示状态
Figure PCTCN2017085292-appb-000023
Figure PCTCN2017085292-appb-000024
例2:
该举例以预先约定不同TTI长度对应得功率偏移值进行举例说明,假设上述信道为PUSCH,并且对系统内的TTI长度进行区分,区分为1ms与0.5ms,即normal TTI与sTTI。系统预先约定不同的TTI长度对应的功率偏移值为ΔPUSCH_normal_TTI与ΔPUSCH_sTTI,所述终端根据上行资源调度DCI中指示的TTI长度确定当前资源调度的发射功率:
Figure PCTCN2017085292-appb-000025
其中,ΔPUSCH为功率偏移值,对于normal TTI,ΔPUSCH=ΔPUSCH_normal_TTI;对 于sTTI,
Figure PCTCN2017085292-appb-000026
或者系统预先约定不同TTI长度相对normal TTI的功率偏移值的偏差,即约定normal TTI的功率偏移值为ΔPUSCH_normal_TTI,sTTI的功率偏移值为
Figure PCTCN2017085292-appb-000027
其中
Figure PCTCN2017085292-appb-000028
为sTTI功率偏移值相对normal TTI功率偏移值的偏差。上述终端根据上行资源调度DCI中指示的TTI长度确定当前资源调度的发射功率:
Figure PCTCN2017085292-appb-000029
其中,ΔPUSCH为功率偏移值,对于normal TTI,ΔPUSCH=ΔPUSCH_normal_TTI;对于sTTI,
Figure PCTCN2017085292-appb-000030
参见图4,图中示出一种终端结构,终端40包括如下模块:
第一获取模块41,用于获取第一TTI长度对应的功率偏移值;
第一确定模块42,用于基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,第一获取模块41用于接收网络设备发送的所述第一TTI长度对应的功率偏移值;或者
第一获取模块41用于接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,第一获取模块41用于获取预先约定好的所述第一TTI长度对应的功率偏移值;或者
第一获取模块41用于获取预先约定好的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取 所述第一TTI长度对应的功率偏移值。
可选地,如图5所示,终端40还包括:
第二获取模块43,用于若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,获取所述第二TTI长度对应的功率偏移值;
第二确定模块44,用于基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,第一获取模块41用于确定所述信道的第一TTI长度,并获取所述第一TTI长度对应的功率偏移值。
可选地,第一确定模块42用于通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,其中,所述发射功率计算公式中包括所述功率偏移值。
可选地,第一确定模块42用于通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000031
其中,PPUSCH(i)为所述信道的发射功,i表示第i个子帧,PMAX为所述终端的最大发射功率,MPUSCH(i)为分配给所述终端的上行资源块RB的数量,PO_PUSCH(j)由PO_NOMINAL_PUSCH(j)和PO_UE_PUSCH(j)之和组成,PO_NOMINAL_PUSCH(j)为小区专属归一化功率初始值,PO_UE_PUSCH(j)为所述终端专属部分功率初始值,j为与系统调度方式相对应的参数,α为小区特定的路损补偿系数,PL为所述终端估计的下行路径损耗;
Figure PCTCN2017085292-appb-000032
其中,KS是由无线资源控制RRC配置的小区专属参数,与当前传输格式相对应,BPRE为小区专属参数与调制编码方式相对应,
Figure PCTCN2017085292-appb-000033
为小区专属参数,f(i)为当前功率控制的调整值;ΔPUSCH为所述第一TTI长度对应的功率偏移;
或者
第一确定模块42用于通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000034
其中,PPUCCH(i)为所述信道的发射功率,i表示第i个子帧,PMAX为所述终端的最大发射功率,P0_PUCCH由P0_NOMINAL_PUCHH和P0_UE_PUCCH之和组成,P0_NOMINAL_PUCHH为小区专属归一化功率初始值,P0_UE_PUCCH为所述终端专属部分功率初始值,PL为所述终端估计的下行路径损耗,h(nCQI,nHARQ,nSR)为与传输帧格式中CQI信息比特数、HARQ信息比特数及SR配置相对应的独立参数,ΔF_PUCCH(F)为小区专属参数,ΔTxD(F′)为所述终端专属参数;
对于FDD,g(i)=g(i-1)+δPUCCH(i-KPUCCH);
对于TDD,
Figure PCTCN2017085292-appb-000035
其中g(i)是当前信道功率控制调制值,KPUCCH为系统预先定义的参数,与TDD上下行配置相对应,km为系统预先定义的参数,与传输帧结构相对应,δPUCCH为所述终端的专属修正值,M为与TDD帧结构相对应的。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
需要说明的是,本实施例中上述终端40可以图1-图3所示的实施例中的终端,图1-图3所示实施例中终端的任意实施方式都可以被本实施例中的上述终端40所实现,以及达到相同的有益效果,此处不再赘述。
参见图6,图中示出一种网络设备结构,网络设备60包括如下模块:
第一发送模块61,用于向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,所述第一发送模块用于向所述终端发送所述第一TTI长度对应的功率偏移值;或者
所述第一发送模块用于向所述终端发送第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,以使所述终端使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,所述网络设备还可以包括:
第二发送模块62,用于若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,向终端发送用于确定所述第二TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
需要说明的是,本实施例中上述网络设备60可以图1-图3所示的实施例中的网络设备,图1-图3所示实施例中网络设备的任意实施方式都可以被本实施例中的上述网络设备60所实现,以及达到相同的有益效果,此处不再赘述。
参见图7,图中示出一种终端的结构,该终端包括:处理器700、收发机710、存储器720、用户接口730和总线接口,其中:
处理器700,用于读取存储器720中的程序,执行下列过程:
获取第一TTI长度对应的功率偏移值;
基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
其中,收发机710,用于在处理器700的控制下接收和发送数据。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起。总线接口提供接口。收发机710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口730还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理 器700在执行操作时所使用的数据。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
可选地,所述获取第一TTI长度对应的功率偏移值,包括:
通过收发机710接收网络设备发送的所述第一TTI长度对应的功率偏移值;或者
收发机710接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,所述获取第一TTI长度对应的功率偏移值,包括:
获取预先约定好的所述第一TTI长度对应的功率偏移值;或者
获取预先约定好的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,所述处理器700还用于:
若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,获取所述第二TTI长度对应的功率偏移值;
基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,所述获取第一TTI长度对应的功率偏移值,包括:
确定所述信道的第一TTI长度,并获取所述第一TTI长度对应的功率偏移值。
可选地,所述基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率,包括:
通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,其中,所述发射功率计算公式中包括所述功率偏移值。
可选地,所述通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,包括:
通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000036
其中,PPUSCH(i)为所述信道的发射功,i表示第i个子帧,PMAX为所述终端的最大发射功率,MPUSCH(i)为分配给所述终端的上行资源块RB的数量,PO_PUSCH(j)由PO_NOMINAL_PUSCH(j)和PO_UE_PUSCH(j)之和组成,PO_NOMINAL_PUSCH(j)为小区专属归一化功率初始值,PO_UE_PUSCH(j)为所述终端专属部分功率初始值,j为与系统调度方式相对应的参数,α为小区特定的路损补偿系数,PL为所述终端估计的下行路径损耗;
Figure PCTCN2017085292-appb-000037
其中,Ks是由无线资源控制RRC配置的小区专属参数,与当前传输格式相对应,BPRE为小区专属参数与调制编码方式相对应,
Figure PCTCN2017085292-appb-000038
为小区专属参数,f(i)为当前功率控制的调整值;ΔPUSCH为所述第一TTI长度对应的功率偏移值;
或者
通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
Figure PCTCN2017085292-appb-000039
其中,PPUCCH(i)为所述信道的发射功率,i表示第i个子帧,PMAX为所述终端的最大发射功率,P0_PUCCH由P0_NOMINAL_PUCHH和P0_UE_PUCCH之和组成,P0_NOMINAL_PUCHH为小区专属归一化功率初始值,P0_UE_PUCCH为所述终端专属部分功率初始值,PL为所述终端估计的下行路径损耗,h(nCQI,nHARQ,nSR)为与传输帧格式中CQI信息比特数、HARQ信息比特数及SR配置相对应的独立参数,ΔF_PUCCH(F)为小区专属参数,ΔTxD(F′)为所述终端专属参数;
对于FDD,g(i)=g(i-1)+δPUCCH(i-KPUCCH);
对于TDD,
Figure PCTCN2017085292-appb-000040
其中g(i)是当前信道功率控制调制值,KPUCCH为系统预先定义的参数,与TDD上下行配置相对应,km为系统预先定义的参数,与传输帧结构相对应,δPUCCH为所述终端的专属修正值,M为与TDD帧结构相对应的。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
需要说明的是,本实施例中上述终端可以为图1-图3所示的实施例中的终端,图1-图3所示实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不再赘述。
参见图8,图中示出一种网络设备的结构,该网络设备包括:处理器800、收发机810、存储器820、用户接口830和总线接口,其中:
处理器800,用于读取存储器820中的程序,执行下列过程:
通过收发机810向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端获取所述第一TTI长度对应的功率偏移值,并基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
其中,收发机810,用于在处理器800的控制下接收和发送数据。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起。总线接口提供接口。收发机810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口830还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
可选地,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
可选地,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述 第一TTI长度对应的功率偏移值。
可选地,所述向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,包括:
向所述终端发送的所述第一TTI长度对应的功率偏移值;或者
向所述终端发送第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,以使所述终端使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
可选地,所述处理器800还用于:
若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,通过收发机801向终端发送用于确定所述第二TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
可选地,所述信道包括如下一项或者多项:
PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
需要说明的是,本实施例中上述网络设备可以为图1-图3所示的实施例中的网络设备,图1-图3所示实施例中网络设备的任意实施方式都可以被本实施例中的上述网络设备所实现,以及达到相同的有益效果,此处不再赘述。
参见图9,图中示出一种发射功率确定系统,包括:
网络设备91,用于向终端92发送的用于确定第一TTI长度对应的功率偏移值的指示消息;
所述终端92,用于根据所述指示消息获取所述第一TTI长度对应的功率偏移值,并基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
本实施例中,网络设备91和终端92可以是图1-图8所示实施例中介绍的网络设备和终端,其实施方式都可以参见图1-图8所示的实施方式,也能达到相同的技术效果,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的, 例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开文本各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开文本各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开文本的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开文本的保护范围。

Claims (34)

  1. 一种发射功率确定方法,包括:
    终端获取第一传输时间间隔(Transmission Time Interval,TTI)长度对应的功率偏移值;
    所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
  2. 如权利要求1所述的方法,其中,所述第一TTI长度等于1毫秒(ms),或者所述第一TTI长度小于1ms。
  3. 如权利要求1所述的方法,其中,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
    所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
  4. 如权利要求1-3中任一项所述的方法,其中,所述终端获取第一TTI长度对应的功率偏移值,包括:
    所述终端接收网络设备发送的所述第一TTI长度对应的功率偏移值;或者
    所述终端接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
  5. 如权利要求1-3中任一项所述的方法,其中,所述终端获取第一TTI长度对应的功率偏移值,包括:
    所述终端获取预先约定好的所述第一TTI长度对应的功率偏移值;或者
    所述终端获取预先约定好的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
  6. 如权利要求1-3中任一项所述的方法,还包括:
    若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述终端获取所述第二TTI长度对应的功率偏移值;
    所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
  7. 如权利要求1-3中任一项所述的方法,其中,所述终端获取第一TTI长度对应的功率偏移值,包括:
    所述终端确定所述信道的第一TTI长度,并获取所述第一TTI长度对应的功率偏移值。
  8. 如权利要求1-3中任一项所述的方法,其中,所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率,包括:
    所述终端通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,其中,所述发射功率计算公式中包括所述功率偏移值。
  9. 如权利要求8所述的方法,其中,所述终端通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,包括:
    所述终端通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
    Figure PCTCN2017085292-appb-100001
    其中,PPUSCH(i)为所述信道的发射功,i表示第i个子帧,PMAX为所述终端的最大发射功率,MPUSCH(i)为分配给所述终端的上行资源块(Resource Block,RB)的数量,PO_PUSCH(j)由PO_NOMINAL_PUSCH(j)和PO_UE_PUSCH(j)之和组成,PO_NOMINAL_PUSCH(j)为小区专属归一化功率初始值,PO_UE_PUSCH(j)为所述终端专属部分功率初始值,j为与系统调度方式相对应的参数,α为小区特定的路损补偿系数,PL为所述终端估计的下行路径损耗;
    Figure PCTCN2017085292-appb-100002
    其中,KS是由无线资源控制(Radio Resource Control,RRC)配置的小区专属参数,与当前传输格式相对应,BPRE为小区专属参数与调制编码方 式相对应,
    Figure PCTCN2017085292-appb-100003
    为小区专属参数,f(i)为当前功率控制的调整值;ΔPUSCH为所述第一TTI长度对应的功率偏移值;
    或者
    所述终端通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
    Figure PCTCN2017085292-appb-100004
    其中,PPUCCH(i)为所述信道的发射功率,i表示第i个子帧,PMAX为所述终端的最大发射功率,P0_PUCCH由P0_NOMINAL_PUCHH和P0_UE_PUCCH之和组成,P0_NOMINAL_PUCHH为小区专属归一化功率初始值,P0_UE_PUCCH为所述终端专属部分功率初始值,PL为所述终端估计的下行路径损耗,h(nCQI,nHARQ,nSR)为与传输帧格式中信道质量指示(Channel Quality Indication,CQI)信息比特(bit)数、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)信息比特数及调度请求(Scheduling Request,SR)配置相对应的独立参数,ΔF_PUCCH(F)为小区专属参数,ΔTxD(F′)为所述终端专属参数;
    对于频分双工(Frequency Division Duplexing,FDD),g(i)=g(i-1)+δPUCCH(i-KPUCCH);
    对于时分双工(Time-Division Duplexing,TDD),
    Figure PCTCN2017085292-appb-100005
    其中g(i)是当前信道功率控制调制值,KPUCCH为系统预先定义的参数,与TDD上下行配置相对应,km为系统预先定义的参数,与传输帧结构相对应,δPUCCH为所述终端的专属修正值,M为与TDD帧结构相对应的值。
  10. 如权利要求1-3中任一项所述的方法,其中,所述信道包括如下一项或者多项:
    物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)、短物理上行共享信道(short Physical Uplink Shared Channel,sPUSCH)、短物理上行链路控制信道(short Physical Uplink Control Channel,sPUCCH)和信道探测参考信号(Sounding Reference Signal,SRS)传输信道。
  11. 一种发射功率确定方法,包括:
    网络设备向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端获取所述第一TTI长度对应的功率偏移值,并基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
  12. 如权利要求11所述的方法,其中,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
  13. 如权利要求11所述的方法,其中,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
    所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
  14. 如权利要求11-13中任一项所述的方法,其中,所述网络设备向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,包括:
    所述网络设备向所述终端发送的所述第一TTI长度对应的功率偏移值;或者
    所述网络设备向所述终端发送第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,以使所述终端使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
  15. 如权利要求11-13中任一项所述的方法,其中,若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述指示信息还用于确定所述第二TTI长度对应的功率偏移值,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率;
    或者
    所述方法还包括:
    若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述网络设备向终端发送用于确定所述第二TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
  16. 如权利要求11-13中任一项所述的方法,其中,所述信道包括如下一项或者多项:
    PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
  17. 一种终端,包括:
    第一获取模块,用于获取第一TTI长度对应的功率偏移值;
    第一确定模块,用于基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
  18. 如权利要求17所述的终端,其中,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
  19. 如权利要求17所述的终端,其中,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
    所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
  20. 如权利要求17-19中任一项所述的终端,其中,所述第一获取模块用于接收网络设备发送的所述第一TTI长度对应的功率偏移值;或者
    所述第一获取模块用于接收网络设备发送的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
  21. 如权利要求17-19中任一项所述的终端,其中,所述第一获取模块用于获取预先约定好的所述第一TTI长度对应的功率偏移值;或者
    所述第一获取模块用于获取预先约定好的第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,并使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
  22. 如权利要求17-19中任一项所述的终端,还包括:
    第二获取模块,用于若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则获取所述第二TTI长度对应的功率偏移值;
    第二确定模块,用于基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
  23. 如权利要求17-19中任一项所述的终端,其中,所述第一获取模块用于确定所述信道的第一TTI长度,并获取所述第一TTI长度对应的功率偏移值。
  24. 如权利要求17-19中任一项所述的终端,其中,所述第一确定模块用于通过预设的发射功率计算公式确定所述使用所述第一TTI长度传输的信道的发射功率,其中,所述发射功率计算公式中包括所述功率偏移值。
  25. 如权利要求24所述的终端,其中,所述第一确定模块用于通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
    Figure PCTCN2017085292-appb-100006
    其中,PPUSCH(i)为所述信道的发射功,i表示第i个子帧,PMAX为所述终端的最大发射功率,MPUSCH(i)为分配给所述终端的上行RB的数量,PO_PUSCH(j)由PO_NOMINAL_PUSCH(j)和PO_UE_PUSCH(j)之和组成,PO_NOMINAL_PUSCH(j)为小区专属归一化功率初始值,PO_UE_PUSCH(j)为所述终端专属部分功率初始值,j为与系统调度方式相对应的参数,α为小区特定的路损补偿系数,PL为所述终端估计的下行路径损耗;
    Figure PCTCN2017085292-appb-100007
    其中,KS是由RRC配置的小区专属参数,与当前传输格式相对应,BPRE为小区专属参数与调制编码方式相对应,
    Figure PCTCN2017085292-appb-100008
    为小区专属参数,f(i)为当前功率控制的调整值;ΔPUSCH为所述第一TTI长度对应的功率偏移值;
    或者
    所述第一确定模块用于通过如下公式确定使用所述第一TTI长度传输的信道的发射功率:
    Figure PCTCN2017085292-appb-100009
    其中,PPUCCH(i)为所述信道的发射功率,i表示第i个子帧,PMAX为所述终端的最大发射功率,P0_PUCCH由P0_NOMINAL_PUCHH和P0_UE_PUCCH之和组成,P0_NOMINAL_PUCHH为小区专属归一化功率初始值,P0_UE_PUCCH为所述终端专属部分 功率初始值,PL为所述终端估计的下行路径损耗,h(nCQI,nHARQ,nSR)为与传输帧格式中CQI信息比特数、HARQ信息比特数及SR配置相对应的独立参数,ΔF_PUCCH(F)为小区专属参数,ΔTxD(F′)为所述终端专属参数;
    对于FDD,g(i)=g(i-1)+δPUCCH(i-KPUCCH);
    对于TDD,
    Figure PCTCN2017085292-appb-100010
    其中g(i)是当前信道功率控制调制值,KPUCCH为系统预先定义的参数,与TDD上下行配置相对应,km为系统预先定义的参数,与传输帧结构相对应,δPUCCH为所述终端的专属修正值,M为与TDD帧结构相对应的。
  26. 如权利要求17-19中任一项所述的终端,其中,所述信道包括如下一项或者多项:
    PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
  27. 一种网络设备,包括:
    第一发送模块,用于向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率。
  28. 如权利要求27所述的网络设备,其中,所述第一TTI长度等于1ms,或者所述第一TTI长度小于1ms。
  29. 如权利要求27所述的网络设备,其中,所述第一TTI长度对应的功率偏移值为一小区内为所述终端单独配置的所述第一TTI长度对应的功率偏移值;或者
    所述第一TTI长度对应的功率偏移值为一小区内为所有终端配置的所述第一TTI长度对应的功率偏移值。
  30. 如权利要求27-29中任一项所述的网络设备,其中,所述第一发送模块用于向所述终端发送所述第一TTI长度对应的功率偏移值;或者
    所述第一发送模块用于向所述终端发送第二TTI长度对应的功率偏移值,以及所述第一TTI长度对应的功率偏移值与所述第二TTI长度对应的功率偏移值的偏差,以使所述终端使用所述第二TTI长度对应的功率偏移值和所述偏差,获取所述第一TTI长度对应的功率偏移值。
  31. 如权利要求27-29中任一项所述的网络设备,其中,若在同一子帧 内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则所述指示信息还用于确定所述第二TTI长度对应的功率偏移值,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率;
    或者
    所述网络设备还包括:
    第二发送模块,用于若在同一子帧内存在所述第一TTI长度的第一TTI和第二TTI长度的第二TTI,则向终端发送用于确定所述第二TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述第二TTI长度对应的功率偏移值确定使用所述第二TTI长度传输的信道的发射功率。
  32. 如权利要求27-29中任一项所述的网络设备,其中,所述信道包括如下一项或者多项:
    PUSCH、PUCCH、sPUSCH、sPUCCH和SRS传输信道。
  33. 一种终端,包括:处理器、存储器和收发机,其中:
    所述处理器,用于读取存储器中的程序,执行下列过程:
    获取第一TTI长度对应的功率偏移值;
    基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率,
    所述收发机用于接收和发送数据,
    所述存储器能够存储所述处理器在执行操作时所使用的数据。
  34. 一种网络设备,包括:处理器、存储器和收发机,其中:
    所述处理器,用于读取存储器中的程序,执行下列过程:
    通过所述收发机向终端发送用于确定第一TTI长度对应的功率偏移值的指示消息,以使所述终端基于所述功率偏移值确定使用所述第一TTI长度传输的信道的发射功率,
    所述收发机用于接收和发送数据,
    所述存储器能够存储所述处理器在执行操作时所使用的数据。
PCT/CN2017/085292 2016-07-11 2017-05-22 发射功率确定方法、终端、网络设备和系统 WO2018010488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610541156.XA CN107613557B (zh) 2016-07-11 2016-07-11 一种发射功率确定方法、终端、网络设备和系统
CN201610541156.X 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018010488A1 true WO2018010488A1 (zh) 2018-01-18

Family

ID=60952721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085292 WO2018010488A1 (zh) 2016-07-11 2017-05-22 发射功率确定方法、终端、网络设备和系统

Country Status (2)

Country Link
CN (1) CN107613557B (zh)
WO (1) WO2018010488A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149686A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 上行功率控制的方法和装置
CN109818727B (zh) * 2018-02-24 2020-06-26 华为技术有限公司 发送上行控制信道的方法和装置
CN112425213B (zh) * 2018-10-22 2023-06-20 Oppo广东移动通信有限公司 确定前导序列发射功率的方法、通信设备、芯片和介质
CN110233650B (zh) * 2019-05-09 2020-12-29 中国科学院计算技术研究所 一种mimo-noma系统中功率调整方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734968A (zh) * 2004-08-10 2006-02-15 北京三星通信技术研究有限公司 上行增强专用信道的外环功率控制方法
CN101022593A (zh) * 2007-03-14 2007-08-22 中兴通讯股份有限公司 一种提高无线通信上行分组调度的方法
CN101347013A (zh) * 2005-09-29 2009-01-14 诺基亚公司 基于用以发送至少再多一个所选数据单元的能力而请求数据速率增加的装置、方法和计算机程序产品
CN102017547A (zh) * 2008-04-30 2011-04-13 三星电子株式会社 用于用户设备中的数据尺寸适配的系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469567B (zh) * 2010-11-05 2015-02-25 鼎桥通信技术有限公司 增强专用信道物理上行信道的功率授权的修正方法
CN103228036A (zh) * 2012-01-31 2013-07-31 华为技术有限公司 一种基于功率裕量的传输时间间隔选择方法及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734968A (zh) * 2004-08-10 2006-02-15 北京三星通信技术研究有限公司 上行增强专用信道的外环功率控制方法
CN101347013A (zh) * 2005-09-29 2009-01-14 诺基亚公司 基于用以发送至少再多一个所选数据单元的能力而请求数据速率增加的装置、方法和计算机程序产品
CN101022593A (zh) * 2007-03-14 2007-08-22 中兴通讯股份有限公司 一种提高无线通信上行分组调度的方法
CN102017547A (zh) * 2008-04-30 2011-04-13 三星电子株式会社 用于用户设备中的数据尺寸适配的系统和方法

Also Published As

Publication number Publication date
CN107613557A (zh) 2018-01-19
CN107613557B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
EP2962500B1 (en) Method and apparatus for managing transmit power for device-to-device communication
US10666400B2 (en) Enhancing monitoring of multiple physical downlink control channels in beam based system
WO2018010589A1 (zh) 上行传输功率控制的方法、装置、设备及存储媒介
CN112088550A (zh) 基于路径损耗估计发送上行链路传输的方法和装置
WO2018149273A1 (zh) 一种多码字传输方法及装置
WO2019062998A1 (zh) 功率控制方法及装置
EP3565323B1 (en) Method and device for uplink transmission of power control
CN110167126B (zh) 一种多波束传输时pucch功率的控制方法及装置
WO2018010488A1 (zh) 发射功率确定方法、终端、网络设备和系统
US10880906B2 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (NOMA) scheme
JP7259066B2 (ja) 電力制御方法および電力制御装置
WO2018227484A1 (zh) 上行信息传输方法、装置及系统
WO2015139278A1 (zh) 发送信号的方法、用户设备和基站
WO2019029287A1 (zh) Pucch传输方法、用户设备和装置
WO2019080132A1 (zh) 传输数据的方法、终端设备和网络设备
WO2017152799A1 (zh) 一种反馈信道质量的方法、用户设备及基站
WO2019109687A1 (zh) 一种ack/nack传输方法及对应装置
WO2019029277A1 (zh) Pucch传输方法、用户设备和装置
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2022199443A1 (zh) Csi反馈方法、装置、设备及可读存储介质
WO2022147735A1 (zh) 确定发送功率的方法及装置
JP7334348B2 (ja) 上りリンク伝送方法、上りリンク伝送の指示方法及び機器
TW201840217A (zh) 週期上行訊息/訊號的傳輸方法、裝置及系統
WO2019137486A1 (zh) 上行发送功率调整及装置
CN107889239B (zh) 一种上行控制信息发送、接收方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826827

Country of ref document: EP

Kind code of ref document: A1