WO2019137486A1 - 上行发送功率调整及装置 - Google Patents

上行发送功率调整及装置 Download PDF

Info

Publication number
WO2019137486A1
WO2019137486A1 PCT/CN2019/071398 CN2019071398W WO2019137486A1 WO 2019137486 A1 WO2019137486 A1 WO 2019137486A1 CN 2019071398 W CN2019071398 W CN 2019071398W WO 2019137486 A1 WO2019137486 A1 WO 2019137486A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
power
transmission
actual
power adjustment
Prior art date
Application number
PCT/CN2019/071398
Other languages
English (en)
French (fr)
Inventor
张言飞
高峰
杨坤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019137486A1 publication Critical patent/WO2019137486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters

Definitions

  • the present application relates to wireless communication technologies, and in particular, to an uplink transmission power adjustment and apparatus.
  • the international telecommunication union defines three types of application scenarios for fifth-generation (5G) communication systems and future mobile communication systems, including: enhanced mobile broadband (eMBB), high reliability and low Ultra reliable and low latency communications (URLLC) and massive machine type communications (mMTC).
  • the typical URLLC service application scenarios include: wireless control, virtual reality technology, remote surgery and other tactile interaction applications in industrial manufacturing.
  • the main features of these services are ultra-high reliability and low latency.
  • the reliability of the data packet must be guaranteed, not only to satisfy the reliability of a single data packet, but also the reliability of two consecutive data packets is extremely important, because two consecutive data packet errors may cause downtime or bring false security. Alerts that cause long downtime.
  • the URLLC service usually increases the transmission reliability by repeating the transmission, and the base station usually configures the terminal with the maximum number of repetitions.
  • an Grant-Free uplink transmission mechanism also known as: UL transmission without dynamic scheduling or none
  • UL transmission without dynamic grant In the transmission mechanism, once the terminal needs to send data, it does not need to send a scheduling request to the base station and wait for the authorization of the base station, and the data can be sent on the Grant Free resource pre-configured by the base station.
  • the terminal calculates the sending power according to the power-related parameters configured by the base station to the terminal, and transmits the data on the Grant Free resource according to the sending power.
  • the data transmission of the terminal on the Grant Free resource can be repeated, that is, the same data packet is repeatedly transmitted multiple times.
  • the present application provides an uplink transmission power adjustment method and apparatus for improving the reliability of data packet transmission.
  • the first aspect of the present application provides a method for adjusting a line transmission power, including:
  • the terminal receives configuration information sent by the network device, where the configuration information includes: a maximum number of repetitions k of repeated transmissions and a parameter for determining an initial transmission power, where k is an integer greater than 0;
  • the terminal determines the actual transmit power of the data packet according to the maximum number of repetitions k of the repeated transmission, the initial transmit power, and the time domain location of the initial transmission of the transmitted data packet.
  • the method further includes:
  • the terminal determines a power adjustment point and a power adjustment value
  • determining, by the terminal, the actual transmit power of the data packet according to the maximum number of repetitions k of the repeated transmission, the initial transmit power, and the time domain location of the initial transmission of the sent data packet includes:
  • the method further includes:
  • the terminal determines a first power adjustment factor
  • the terminal determines the actual transmission power of the initial transmission of the data packet according to the maximum number of repetitions k of the repeated transmission, the initial transmission power, and the time domain location of the initial transmission of the data packet, including:
  • the terminal is based on the maximum number of repetitions k of repeated transmission, the initial transmission power, the first power adjustment factor, and the data packet.
  • the time domain location of the initial transmission determines the actual transmit power of the initial transmission of the data packet.
  • the terminal determines, according to the actual transmit power of the initial transmission of the data packet, the power adjustment point, and the power adjustment value, that the actual transmit power of the other times of the data packet is:
  • the method further includes:
  • the terminal determines a second power compensation factor
  • the second power compensation factor is one of parameters for determining the actual transmission power of other secondary repetitions of the data packet.
  • the method further includes:
  • the terminal determines a third power compensation factor
  • the terminal determines the other times of the data packet according to the actual transmission power of the initial transmission of the data packet, and the actual power adjustment point and the other power repetition value of the data packet. Repeating the actual transmit power, including:
  • the terminal determines the actual transmission power of the last repetition of the data packet according to the actual transmission power of the initial transmission of the data packet and the third power compensation factor. .
  • the method further includes:
  • the terminal is further configured to determine a fourth power compensation factor
  • Determining, by the terminal, the actual transmit power of the initial transmission of the data packet according to the maximum number of repetitions k of the repeated transmission, the initial transmission power, and the time domain location of the initial transmission of the data packet including:
  • the terminal determines, according to the maximum number of repetitions k of the repeated transmission, the initial transmission power, the time domain location of the initial transmission of the data packet, and the fourth power compensation factor.
  • the actual transmit power of the initial transmission of the data packet is the maximum number of repetitions k of the repeated transmission.
  • the historical data packet transmission meets preset conditions, including:
  • the data packet is a retransmitted data packet, and the previous transmission of the retransmitted data packet fails.
  • the method further includes:
  • the terminal obtains a power adjustment value calculation formula identifier
  • the method further includes:
  • the determining, by the terminal device, the power adjustment point comprises:
  • the power adjustment point indicates that each identifier bit in the bitmap is used to indicate whether the corresponding transmission can perform power adjustment
  • the configuration information further includes a power adjustment coefficient
  • the power adjustment coefficient is one of parameters for determining the actual transmit power of the data packet.
  • the second aspect of the present application provides an uplink transmit power adjustment method, including:
  • the network device determines configuration information, where the configuration information includes: a maximum number of repetitions k of repeated transmissions and a parameter for determining an initial transmission power, where k is an integer greater than 0;
  • the network device sends the configuration information to the terminal, and the configuration information is used to determine an actual transmit power of the data packet together with a time domain location of the initial transmission of the transmitted data packet.
  • the method further includes:
  • the network device indicates a power adjustment point to the terminal; an actual transmission power of the initial transmission of the data packet of the terminal is based on a maximum number of repetitions k of the repeated transmission, an initial transmission power, and an initial transmission of the transmitted data packet.
  • the time domain location is determined; the actual transmission power of the other times of the data packet of the terminal is determined according to the actual transmission power, the power adjustment point, and the power adjustment value of the initial transmission of the data packet.
  • the method further includes:
  • the network device indicates a first power compensation factor to the terminal
  • the first power adjustment factor is one of parameters for determining the actual transmission power of the initial transmission of the data packet.
  • the actual transmit power of the other times of the data packet is determined according to an actual transmit power of the initial transmission of the data packet, an actual power adjustment point, and other repeated power adjustment values of the data packet;
  • the actual power adjustment point is determined according to the power adjustment point and a time domain location of an initial transmission of the data packet, where the power adjustment value is based on an actual transmission power of an initial transmission of the data packet, and the The actual power adjustment point is determined.
  • the method further includes:
  • the network device indicates a second power compensation factor to the terminal
  • the second power compensation factor is one of parameters for determining the actual transmission power of other secondary repetitions of the data packet.
  • the method further includes:
  • the network device indicates a third power compensation factor to the terminal
  • the third power compensation factor is one of parameters for determining the actual transmission power of the last repetition of the data packet.
  • the method further includes:
  • the network device indicates a fourth power compensation factor to the terminal
  • the fourth power compensation factor is one of parameters for determining an actual transmission power of an initial transmission of the data packet when the history data packet transmission meets a preset condition.
  • the historical data packet transmission meets preset conditions, including:
  • the data packet is a retransmitted data packet, and the previous transmission of the retransmitted data packet fails.
  • the method further includes:
  • the network device indicates a power adjustment value calculation formula identifier to the terminal.
  • the method further includes:
  • the network device indicates a power adjustment point indication bitmap or a remaining number of times P or a power adjustment period to the terminal, where each of the power adjustment point indication bitmaps is used to indicate whether the corresponding transmission can be powered. Adjusting; when the remaining number p indicates that the actual number of transmissions of the data packet remains p times, a power adjustment is performed, and p is an integer greater than 0.
  • the configuration information further includes a power adjustment coefficient
  • the power adjustment coefficient is one of parameters for determining the actual transmit power of the data packet.
  • the third aspect of the present application provides an uplink transmit power adjustment method, including:
  • the terminal determines a fourth power compensation factor
  • the terminal determines the actual transmission power of the initial transmission of the data packet according to the fourth power compensation factor and the initial transmission power.
  • the historical data packet transmission meets preset conditions, including:
  • the data packet is a retransmitted data packet, and the previous transmission of the retransmitted data packet fails.
  • a fourth aspect of the present application provides a communication apparatus comprising means or means for performing the methods of the first aspect and the various implementations of the first aspect described above.
  • the device may be a terminal or a chip on the terminal.
  • a fifth aspect of the present application provides a communication apparatus comprising means or means for performing the methods of the second aspect and the various implementations of the second aspect described above.
  • the device may be a network device or a chip on the network device.
  • a sixth aspect of the present application provides a communication apparatus comprising means or means for performing the methods of the second aspect and the various implementations of the second aspect described above.
  • the device may be a terminal or a chip on the terminal.
  • a seventh aspect of the present application provides a communication device, the device comprising a processor and a memory, wherein the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the first aspect or the third aspect of the present application.
  • the device may be a terminal or a chip on the terminal.
  • the eighth aspect of the present application provides a communication device, where the device includes a processor and a memory, and the processor calls a program stored in the memory to perform the method provided by the second aspect of the present application.
  • the device may be a network device, or may be A chip on a network device.
  • a ninth aspect of the present application provides a computer storage medium for storing a program for performing any one of the methods of the above first to third aspects.
  • the network device sends configuration information to the terminal, and the terminal determines the data packet according to the maximum repetition number k of the repeated transmission, the initial transmission power, and the time domain location of the initial transmission of the transmission data packet. Actual transmit power.
  • the actual transmission power of the data packet can be flexibly determined to better guarantee the transmission reliability of the data packet.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 2 is a schematic flowchart of an uplink transmission power adjustment method according to an embodiment of the present application
  • 3 is a schematic diagram of data transmission resources
  • FIG. 4 is a schematic flowchart of a method for adjusting an uplink transmit power according to another embodiment of the present application
  • FIG. 5 is a schematic flowchart of an uplink transmission power adjustment method according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a communication apparatus according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to another embodiment of the present application.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication system mentioned in the embodiments of the present application includes but is not limited to: Narrow Band-Internet of Things (NB-IoT), global mobile Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA) 2000 System (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), and Next Generation 5G Mobile Communication System
  • eMBB Enhanced Mobile Broad Band
  • URLLC Massive Machine-Type Communications
  • mMTC Massive Machine-Type Communications
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • the communication system 01 includes a network device 101 and a terminal 102.
  • the network device 101 can also be connected to the core network.
  • Network device 101 may also be in communication with an Internet Protocol (IP) network 200, such as the Internet, a private IP network, or other data network.
  • IP Internet Protocol
  • Network devices provide services to terminals within coverage.
  • network device 101 provides wireless access to one or more terminals within range of network device 101.
  • network devices can communicate with each other.
  • the terminal device 102 includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal, a mobile telephone, a handset, and a portable device. And so on, the terminal can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal can be a mobile phone (or "cellular" phone), and has wireless communication capabilities.
  • RAN Radio Access Network
  • the terminal 102 can also be a portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile device or device.
  • Network device 101 may be a device for communicating with terminal 102.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolved Node B, eNB evolved base station
  • the network device may also be a relay station, an access point, an in-vehicle device, or the like.
  • D2D Device to Device
  • the network device may also be a terminal functioning as a base station.
  • the terminal may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (UE), mobile stations (mobile) Station, MS), etc.
  • the present invention provides an uplink transmission power adjustment method for the uplink transmission of the terminal, which can be applied to a scenario in which the network device schedules resources, that is, when the terminal has data transmission, the scheduling request is first sent to the network device, and the network device schedules the resource configuration to the terminal, and the terminal
  • the configured resource is used to transmit data; it can also be applied to the Grant Free scenario, which is not limited in this application.
  • FIG. 2 is a schematic flowchart of a method for adjusting an uplink transmit power according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes:
  • the network device sends configuration information to the terminal.
  • the configuration information includes: a maximum number of repetitions k of repeated transmissions and a parameter for determining an initial transmission power.
  • the parameters for determining the initial transmit power may include: a maximum transmit power P CMAX,c (i), a frequency domain bandwidth of the Physical Uplink Share Channel (PUSCH), M PUSCH,c (i) (in units of resource blocks) (Resource Block, RB), intra-cell terminal common parameter P O_NOMINAL_PUSCH, c (j), the terminal-specific parameter P O_UE_PUSCH, c (j), and the sum of terminal-specific parts P O_PUSCH, c (j), path loss compensation factor ⁇ c (j), TPC domain ⁇ TPC of Downlink Control Information (DCI), and the like.
  • P CMAX,c (i) a frequency domain bandwidth of the Physical Uplink Share Channel (PUSCH), M PUSCH,c (i) (in units of resource blocks) (Resource Block, RB), intra-cell terminal common parameter P O_NOMINAL_PUSCH, c (j), the terminal-specific parameter P O_UE_PUSCH, c (j), and the sum of terminal-specific parts P
  • the terminal can calculate the initial transmission power according to the above-mentioned parameters for determining the initial transmission power and the path loss compensation factor PL c estimated by itself.
  • the terminal adopts a formula:
  • c in the parameter represents the serving cell c
  • i represents the subframe i
  • ⁇ TF, c (i) is the cell level enable, the terminal specific power adjustment offset value based on the modulation and coding mode
  • f c (i) is Power adjustment value.
  • P O_PUSCH,c (j) is obtained by P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j).
  • the above power adjustment value f c (i) can be indicated by ⁇ TPC .
  • RRC Radio Resource Control
  • the parameters of the cell level in the configuration information may be broadcast by a broadcast message, and the terminal-specific parameters are carried by the RRC.
  • the terminal-specific parameters include: P O_PUSCH, terminal-specific portions of the c (j) P O_UE_PUSCH, c (j), ⁇ c (j), etc., and other may be cell-level parameters.
  • the calculation method of the initial transmission power is not limited to the above manner, and can be obtained by other power calculation methods.
  • the terminal determines an actual transmit power of the data packet according to the maximum number of repetitions k of the repeated transmission, the initial transmit power, and the time domain location of the initial transmission of the transmitted data packet.
  • the time domain location of the initial transmission of the transmitted data packet may refer to the time domain location in which the data packet is actually sent for the first time during the initial transmission or retransmission of the data packet. It should be noted that the data packet can be repeatedly transmitted multiple times within a certain period of time, but the maximum number of repetitions k of the configuration may not be reached due to the uncertainty of the actual start of transmission. Specifically, it may be caused by the uncertainty of the time when the data packet is configured at the physical layer.
  • this application adjusts the actual transmit power of the data packets in order to ensure the reliability of data packet transmission. That is, the actual transmission power of the data packet is flexibly determined according to the maximum number of repetitions k of the repeated transmission, the initial transmission power, and the time domain position of the initial transmission of the transmitted data packet. The actual transmit power of the data packet may be greater than the initial transmit power.
  • the terminal may determine the actual transmit power of the data packet before each data packet transmission, and send the data packet according to the actual transmit power of the data packet. If the network device successfully receives and parses the data packet, it can reply an acknowledgment message (ACK) to the terminal.
  • ACK acknowledgment message
  • the network device sends configuration information to the terminal, and the terminal determines the actual transmission power of the data packet according to the maximum repetition number k of the repeated transmission, the initial transmission power, and the time domain location of the initial transmission of the transmission data packet.
  • the actual transmission power of the data packet can be flexibly determined to better guarantee the transmission reliability of the data packet.
  • the terminal may further implement power adjustment in the data packet transmission process according to the power adjustment point and the power adjustment value.
  • the power adjustment point refers to that the terminal adjusts the transmission power when the data packet is repeatedly transmitted for the nth time.
  • the nth repeated transmission herein refers to the maximum repeated transmission period in which a data packet is configured, and may be the nth repeated transmission in an initial transmission process, or may be during a retransmission process. The nth repeated transmission. n is an integer greater than zero.
  • the terminal determines the actual transmit power of the data packet according to the maximum number of repetitions k of the repeated transmission, the initial transmit power, and the time domain location of the initial transmission of the transmitted data packet, which may be: the maximum repetition of the terminal according to the repeated transmission.
  • the number k, the initial transmission power, and the time domain location of the initial transmission of the data packet determining the actual transmission power of the initial transmission of the data packet; and further, the terminal adjusts according to the actual transmission power of the initial transmission of the data packet, the power adjustment The point and the power adjustment value determine the actual transmission power of the other iterations of the data packet.
  • the terminal may determine the actual transmission power of the initial transmission of the data packet by using a preset formula, substituting the maximum repetition number k, the initial transmission power, and the time domain location of the initial transmission of the data packet. Similarly, the terminal determines the actual transmission power of the other repeated times of the data packet by using a preset formula, substituting the actual transmission power of the initial transmission of the data packet, the power adjustment point, and the power adjustment value.
  • the foregoing configuration information further includes a power adjustment coefficient ⁇ .
  • can be configured by the network device.
  • may be carried in the above configuration information.
  • the network device broadcasts the configuration ⁇ .
  • the network device configures ⁇ separately for each terminal, for example, carrying ⁇ in the RRC message.
  • one way is to calculate the actual transmission power of the initial transmission of the data packet directly according to the maximum repetition number k, the initial transmission power, and the time domain location of the initial transmission of the data packet;
  • P CMAX is the maximum transmit power of the terminal
  • P init is the above initial transmit power
  • x is the time domain location of the initial transmission of the data packet.
  • the actual maximum number of repetitions k′ may be determined according to the time domain location of the initial transmission of the data packet, and then the initial transmission of the data packet is calculated according to the maximum repetition number k, the initial transmission power, and k′. Actual transmit power.
  • the time domain location of the initial transmission of the data packet is determined, and the remaining number of repeatable transmissions is the actual maximum number of repetitions k'.
  • P CMAX is the maximum transmit power of the terminal, and P init is the above initial transmit power.
  • FIG. 4 is a schematic flowchart of a method for adjusting an uplink transmit power according to another embodiment of the present application.
  • the terminal transmits an actual transmit power, a power adjustment point, and the power according to an initial transmission of the data packet. Adjusting the value to determine the actual transmit power of the other iterations of the data packet may include:
  • the terminal determines an actual power adjustment point according to the power adjustment point and a time domain position of the initial transmission of the data packet.
  • the power adjustment point may be pre-configured by the network device to the terminal, or may be a default value. After determining the time domain location of the initial transmission of the data packet, the actual power adjustment value is determined according to the actual situation.
  • the power adjustment point of the configuration data packet is 2, 5, and 8, that is, the power is adjusted when the data packet is transmitted in the second, fifth, and eighth times.
  • the data packet is prepared at the time corresponding to the first repeated transmission, and then the first transmission is actually performed at the time of the third repeated transmission, so the actual power adjustment point corresponds to the original 5th and 8th repeated transmission, that is, The actual 3rd and 6th transmissions are adjustment power.
  • the terminal may further obtain a power adjustment point indication bitmap or a remaining number of times P or a power adjustment period, and determine a power adjustment point according to the power adjustment point indication bitmap or the remaining number P or the power adjustment period.
  • each of the identifier bits in the power adjustment point indication bitmap is used to indicate whether the corresponding transmission can perform power adjustment; when the remaining number of times p indicates that the actual number of transmissions of the data packet remains p times, a power adjustment is performed, where p is An integer greater than 0.
  • the power adjustment point indication bitmap may be a character string consisting of 0 and 1, where "0" indicates that the power is not adjusted, and "1" indicates the adjustment power. Assume that the maximum number of repetitions k of repeated transmission of data packets is 8, and the power adjustment point indication bitmap includes 8 bits, for example, 00100101, indicating that the power is adjusted when the third, sixth, and eighth repeated transmission packets are transmitted.
  • this method can also be used to implicitly indicate the number of repeated transmissions of the data packet.
  • it may be the default transmission power of the last transmission, and the position of the last “1” in the power adjustment point indication bitmap may indicate the number of repeated transmissions of the data packet.
  • the last "1" in 00100101 is in the 8th digit, and the maximum number of repetitions k identifying duplicate transmission is 8; in 01010000, the last "1" is in the 4th digit, and the maximum number of repetitions k identifying duplicate transmission is 4.
  • the remaining number p can be a value or a set.
  • p is a value
  • the number of transmissions of the identification packet is p times
  • the actual initial transmission is in the first transmission position in the configured k times of repeated transmissions, it means that the actual 5th transmission can be power adjusted.
  • the actual initial transmission is in the second transmission position in the configured k times of repeated transmissions, it means that the actual fourth transmission can perform power adjustment. And so on.
  • the power adjustment period indicates the interval between two adjacent power adjustment points.
  • the unit of the interval may be time, such as a symbol/slot, or the number of transmissions, which is represented in a packet.
  • the power is adjusted once every interval of L, where L is an integer greater than zero.
  • the actual repeated transmission of the data packet indicates that the data packet is repeatedly transmitted multiple times when it is first transmitted or retransmitted.
  • the power adjustment point indication bitmap or the remaining number of times P or the power adjustment period may be broadcasted by the network device, or may be separately sent to the terminal through the RRC message, which is not limited in this application.
  • the terminal determines the actual repeated transmit power of the data packet according to the actual transmit power of the initial transmission of the data packet, the actual power adjustment point, and other repeated power adjustment values of the data packet.
  • the power adjustment value is determined according to the actual transmission power of the initial transmission of the data packet and the actual power adjustment point.
  • the actual transmit power and the actual power adjustment point for determining the initial transmission of the data packet may not be prioritized, and after the two are determined, the power adjustment values of other times may be further determined.
  • the actual power adjustable point number N′ may be determined according to the actual power adjustment point, and then the other repeated power adjustments are calculated according to the actual transmit power P init, new and the maximum transmit power P CMAX of the initial transmission of the data packet.
  • the power adjustment value calculation formula identifier may be a preset value preset by the terminal side, or may be configured by the network device.
  • the network device may be configured to broadcast, or may be separately sent to the terminal by using an RRC message, which is not limited in this application.
  • the power adjustment value calculation formula can be several types as shown in Table 1, and can be set according to specific scenarios:
  • the calculation formula of the power adjustment value in Table 1 is exemplified by two bits.
  • the actual implementation process is not limited to this, and can be determined according to the number of formulas.
  • floor means rounding down
  • round means rounding
  • ceil means rounding up.
  • the terminal uses a calculation formula by default, and the power adjustment value calculation formula may not be determined by using the power adjustment value calculation formula identifier.
  • the actual transmit power of each repeated transmission of the data packet may be determined according to the actual transmit power of the previous transmission. First, according to the power adjustment point, it is determined whether the repeated transmission needs to be adjusted. If adjustment is needed, the power adjustment value is added to the actual transmission power of the previous transmission as the actual transmission power of the repetition.
  • the data packet is actually transmitted 7 times in this transmission, and the actual transmission power of the initial transmission is P init, new , and the actual power adjustment points 4, 6, and 7. Then, the actual transmission power of the second and third repeated transmissions is the same as the actual transmission power of the initial transmission, which is P init, new .
  • the actual transmission power of the 4th repetition is P init, new + ⁇ P
  • the actual transmission power of the 5th repetition is P init, new + ⁇ P
  • the actual transmission power of the 6th repetition is P init, new + ⁇ P + ⁇ P
  • the actual transmission power of the seventh repetition is P init, new + ⁇ P + ⁇ P + ⁇ P.
  • the transmission power can be further compensated in some specific cases:
  • the terminal acquires a first power adjustment factor.
  • the terminal when the redundancy version used for the initial transmission of the data packet is a specific redundancy version, the terminal according to the maximum repetition number k, the initial transmission power, the first power adjustment factor, and the time domain location of the initial transmission of the data packet, The actual transmit power of the initial transmission of the data packet is determined.
  • ⁇ P 1 is the power adjustment value of the initial transmission.
  • the terminal may use the first power adjustment factor to compensate the actual transmission power of the initial transmission when the redundancy version used for the initial transmission of the data packet is a specific redundancy version, or may be indicated by the network device to the terminal.
  • the first power adjustment factor is used to compensate the actual transmission power of the initial transmission, for example, the network device indicates by an enable indication message (enabled/disabled indication). This application is not limited.
  • the terminal can also acquire a second power factor.
  • the terminal adjusts according to the actual transmission power of the initial transmission of the data packet, the actual power adjustment point, and other repeated power adjustments of the foregoing data packet.
  • the value determines the actual transmission power of the other times of the data packet, specifically: the actual transmission power according to the initial transmission of the data packet, the actual power adjustment point, and the other power repetition value of the data packet, and the second power compensation. a factor that determines the actual transmit power of the other iterations of the data packet.
  • the second power compensation factor is added. And as the actual transmit power of this time.
  • the transmission power of the sixth repetition is calculated as P init, new + ⁇ P + ⁇ P, but since the redundancy version used is a specific redundancy version, the actual actual transmission power P init is obtained. New + ⁇ P+ ⁇ P+ ⁇ P 2 .
  • the power adjustment ⁇ P + ⁇ P 2 .
  • the second power compensation factor may be the same as the first power compensation factor, that is, a power compensation factor is obtained in advance, and the power compensation factor is used in both the initial transmission and the subsequent repeated transmission.
  • the second power compensation factor may also be different from the first power compensation factor, that is, the power transmission factor of the initial transmission and the subsequent repeated transmission configuration, which is not limited in this application.
  • the terminal may use the second power adjustment factor to compensate the actual transmission power when the redundancy version used by the one repetition of the data packet is a specific redundancy version, or may be indicated by the network device to the terminal.
  • the second power adjustment factor is used to compensate the actual transmission power, for example, the network device indicates by an enable indication message (enabled/disabled indication). This application is not limited.
  • the first power adjustment factor and the second power compensation factor may be configured by the network device, and may be broadcast to the terminal, or sent to the terminal through a special message, for example, sent to the terminal through an RRC message.
  • the specific redundancy version described above may be a redundancy version ⁇ 0 ⁇ , or a redundancy version ⁇ 3 ⁇ , which is not limited herein.
  • the terminal can obtain which redundancy version is a specific redundancy version according to the standard or the configuration of the network device in advance.
  • the power value is adjusted when the data packet is repeatedly transmitted for the last time.
  • the terminal acquires a third power compensation factor.
  • the terminal determines the actual transmission power of the last repetition of the data packet according to the actual transmission power of the initial transmission of the data packet and the third power compensation factor.
  • the actual transmission power of the last repetition of the data packet may be based on the actual transmission power of the previous repetition, plus a third power compensation factor.
  • the actual transmit power during the repetition process is derived from the actual transmit power of the initial transmission.
  • the last repetition mentioned here is the last iteration of a packet retransmission or an initial transmission.
  • the terminal may use the third power adjustment factor to compensate the actual transmission power when the data packet is sent to the last repetition, or may be indicated by the network device to the terminal when the data packet is sent to the last repetition.
  • the power adjustment factor compensates for the actual transmit power, for example, the network device indicates by an enable indication message (enabled/disabled indication). This application is not limited.
  • the terminal further determines a fourth power compensation factor ⁇ P 4 .
  • the terminal determines the initial transmission of the data packet according to the maximum repetition number k of repeated transmission, the initial transmission power, the time domain location of the initial transmission of the data packet, and the fourth power compensation factor. Actual transmit power.
  • the actual transmit power of the initial transmission is compensated to better ensure the reliability of the data packet transmission.
  • the terminal may use the fourth power adjustment factor to compensate the actual transmission power when the historical data packet transmission meets the preset condition, or may be indicated by the network device to the terminal to use the fourth power adjustment when the historical data packet transmission meets the preset condition.
  • the factor compensates for the actual transmit power, for example, the network device indicates via an enable indication message (enabled/disabled indication). This application is not limited.
  • the above historical packet transmission meeting the preset condition may include at least one of the following cases:
  • the previous packet here is a packet different from the packet, and a packet transmitted before the packet.
  • the previous packet may have experienced an initial transmission, and may also undergo an initial transmission and at least one retransmission. There is no restriction here, but the final transmission result is a transmission failure.
  • the transmission failure may be that the network device did not successfully receive the previous data packet, and may not receive or demodulate the failure or send a timeout. If the terminal does not receive the successful reception indication (ACK) fed back by the network device within a preset time, or receives a failure indication (NACK) sent by the network device, the terminal may determine that the previous data packet transmission fails.
  • ACK successful reception indication
  • NACK failure indication
  • the actual transmission power of the initial transmission of the packet is increased.
  • the data packet is a retransmitted data packet, and the previous transmission of the retransmitted data packet fails.
  • the initial transmission and retransmission of a data packet it will be transmitted repeatedly multiple times, or may be repeated transmissions or transmission failures, such as the network device does not receive or demodulate the data packet or send a timeout.
  • the retransmission can also be initiated, and the actual transmission power of the initial transmission of the retransmission can be compensated according to the fourth power compensation factor to ensure the reliability of the data packet transmission.
  • the actual transmission power of the initial transmission of the data packet may be min ⁇ P CMAX , P init, new + ⁇ P 4 ⁇ .
  • the actual transmit power of the initial transmission of the data packet may not exceed the maximum transmit power P CMAX . If the actual transmit power of the initial transmission of the data packet has been greater than or equal to the maximum transmit power P CMAX , then the data packet can be transmitted in accordance with P CMAX .
  • the actual transmit power of the initial transmission of the data packet can also be taken as the maximum transmit power.
  • FIG. 5 is a schematic flowchart of a method for adjusting an uplink transmit power according to another embodiment of the present application. As shown in FIG. 5, the method includes:
  • the terminal acquires a fourth power compensation factor.
  • the terminal determines an actual transmit power of the initial transmission of the data packet according to the fourth power compensation factor and the initial transmit power when the historical data packet transmission meets the preset condition.
  • the terminal may not consider the time domain location of the initial transmission of the data packet, but after calculating the initial transmission power P init according to the relevant parameters of the network device configuration, the fourth power compensation factor is used for compensation. .
  • the actual transmission power of the initial transmission of the data packet may be min ⁇ P CMAX , P init + ⁇ P 4 ⁇ .
  • the historical packet transmission meets the preset conditions and is the same as the foregoing embodiment, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present disclosure, where the apparatus may be integrated into a chip of a terminal or a terminal. As shown in FIG. 6, the apparatus includes: a receiving module 601 and a determining module 602, wherein:
  • the receiving module 601 is configured to receive configuration information sent by the network device, where the configuration information includes: a maximum number of repetitions k of repeated transmissions and a parameter for determining an initial transmission power, where k is an integer greater than 0.
  • the determining module 602 is configured to determine an actual transmit power of the data packet according to the maximum number of repetitions k of the repeated transmission, the initial transmit power, and the time domain location of the initial transmission of the transmitted data packet.
  • the network device sends configuration information to the terminal, and the terminal determines the actual transmission power of the data packet according to the maximum repetition number k of the repeated transmission, the initial transmission power, and the time domain location of the initial transmission of the transmission data packet.
  • the actual transmission power of the data packet can be flexibly determined to better guarantee the transmission reliability of the data packet.
  • the determining module 602 is further configured to determine a power adjustment point and a power adjustment value.
  • the determining module 602 is specifically configured to determine an actual transmit power of the initial transmission of the data packet according to the maximum number of repetitions k of repeated transmission, the initial transmit power, and the time domain location of the initial transmission of the data packet; The actual transmit power of the initial transmission of the data packet, the power adjustment point, and the power adjustment value determine the actual transmission power of the other iterations of the data packet.
  • the determining module 602 is further configured to determine a first power adjustment factor.
  • the determining module 602 is specifically configured to: when a redundancy version used for initial transmission of the data packet is a specific redundancy version, according to a maximum number of repetitions k of repeated transmission, an initial transmission power, and the first power The adjustment factor, and the time domain location of the initial transmission of the data packet, determines the actual transmission power of the initial transmission of the data packet.
  • the determining module 602 is specifically configured to determine the actual power adjustment point according to the power adjustment point and a time domain location of the initial transmission of the data packet; and actual transmit power according to the initial transmission of the data packet. And the actual power adjustment point and the other repeated power adjustment values of the data packet, determining the actual transmission power of the other times of the data packet; wherein the power adjustment value is according to the data packet. The actual transmit power of the initial transmission, and the actual power adjustment point are determined.
  • the determining module 602 is further configured to determine a second power compensation factor.
  • the second power compensation factor is one of parameters for determining the actual transmission power of other secondary repetitions of the data packet.
  • the determining module 602 is further configured to determine a third power compensation factor.
  • the determining module 602 is specifically configured to: when the sending of the data packet is the last repetition, determine the last repeated location of the data packet according to the actual transmission power of the initial transmission of the data packet and the third power compensation factor. The actual transmit power is described.
  • the determining module 602 is further configured to determine a fourth power compensation factor.
  • the determining module 602 is specifically configured to: according to the maximum number of repetitions k of the repeated transmission, the initial transmission power, the time domain location of the initial transmission of the data packet, and the foregoing, when the historical data packet transmission meets the preset condition A four power compensation factor that determines the actual transmit power of the initial transmission of the data packet.
  • the historical data packet transmission meets a preset condition including: the previous data packet transmission of the data packet fails; and/or, the data packet is a retransmission data packet, and the previous transmission of the retransmission data packet fails.
  • the determining module 602 is further configured to obtain a power adjustment value calculation formula identifier.
  • the determining module 602 is configured to: according to the actual transmission power of the initial transmission of the data packet, and the actual power adjustment point, use the power adjustment value calculation formula to identify the power adjustment value calculation formula The power adjustment values of other times are repeated.
  • the determining module 602 is further configured to obtain a power adjustment point indication bitmap or a remaining number of times P or a power adjustment period.
  • the determining module 602 is specifically configured to determine, according to the power adjustment point indication bitmap or the remaining number of times P or the power adjustment period, a power adjustment point, where the power adjustment point indicates each identifier bit in the bitmap The power adjustment is performed to indicate whether the corresponding transmission can be performed; when the remaining number p indicates that the actual number of transmissions of the data packet remains p times, a power adjustment is performed, and p is an integer greater than 0.
  • the configuration information further includes a power adjustment coefficient
  • the power adjustment coefficient is one of parameters for determining the actual transmit power of the data packet.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure, where the device may be integrated into a chip in the foregoing network device or network device.
  • the apparatus includes: a determining module 701 and a sending module 702, wherein:
  • the determining module 701 is configured to determine configuration information, where the configuration information includes: a maximum number of repetitions k of repeated transmissions and a parameter for determining an initial transmission power, where k is an integer greater than 0.
  • the sending module 702 is configured to send the configuration information to the terminal, where the configuration information is used to determine an actual transmit power of the data packet together with a time domain location of the initial transmission of the sent data packet.
  • the sending module 702 is further configured to indicate a power adjustment point to the terminal.
  • the actual transmission power of the initial transmission of the data packet of the terminal is determined according to the maximum repetition number k of the repeated transmission, the initial transmission power, and the time domain location of the initial transmission of the transmission data packet; the data of the terminal.
  • the actual transmit power of the other iterations of the packet is determined based on the actual transmit power, power adjustment point, and power adjustment value of the initial transmission of the data packet.
  • the sending module 702 is further configured to indicate, to the terminal, a first power compensation factor.
  • the first power adjustment factor is one of parameters for determining the actual transmission power of the initial transmission of the data packet.
  • the sending module 702 is further configured to indicate, to the terminal, a second power compensation factor.
  • the second power compensation factor is one of parameters for determining the actual transmission power of other secondary repetitions of the data packet.
  • the sending module 702 is further configured to indicate, to the terminal, a third power compensation factor.
  • the third power compensation factor is one of parameters for determining the actual transmission power of the last repetition of the data packet.
  • the sending module 702 is further configured to indicate, to the terminal, a fourth power compensation factor.
  • the fourth power compensation factor is one of parameters for determining an actual transmission power of an initial transmission of the data packet when the history data packet transmission meets a preset condition.
  • the historical data packet transmission meets a preset condition, including: the previous data packet transmission of the data packet fails; and/or, the data packet is a retransmitted data packet, and the previous transmission of the retransmitted data packet failure.
  • the sending module 702 is further configured to: indicate, to the terminal, a power adjustment value calculation formula identifier.
  • the sending module 702 is further configured to: indicate, to the terminal, a power adjustment point indication bitmap or a remaining number of times P or a power adjustment period; where the power adjustment point indicates that each identifier bit in the bitmap is used to indicate Whether power adjustment can be performed for the corresponding transmission; when the remaining number p indicates that the actual number of transmissions of the data packet remains p times, a power adjustment is performed, and p is an integer greater than 0.
  • the configuration information further includes a power adjustment coefficient
  • the power adjustment coefficient is one of parameters for determining the actual transmit power of the data packet.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • each module of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 8 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure, where the apparatus may be integrated into a chip of a terminal or a terminal. As shown in FIG. 8, the apparatus includes a processor 11 and an input and output interface 10.
  • the processor 11 can communicate with other elements of the terminal via the input and output interface 10 or with a transceiver of the network device.
  • the processor 11 is configured to execute the method embodiment of the aforementioned terminal side.
  • the device may further comprise: a memory.
  • the memory may be a separate physical unit, and is connected to the processor 11 and the input/output interface 10 via a bus.
  • the memory can also be integrated with the processor, implemented by hardware, and the like.
  • the memory is used to store a program for implementing the above terminal side method embodiment, or each module of the embodiment shown in FIG. 6, and the processor 11 calls the program to perform the operations of the above method embodiments.
  • FIG. 9 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure, where the device may be integrated into a chip in the foregoing network device or network device.
  • the apparatus includes a processor 21 and an input and output interface 20.
  • the processor 21 can communicate with other elements of the network device via the input and output interface 20 or with the transceiver of the terminal.
  • the processor 21 is configured to execute the method embodiment of the foregoing network device side.
  • the device may further comprise: a memory.
  • the memory may be a separate physical unit, and is connected to the processor 21 and the input/output interface 20 via a bus.
  • the memory can also be integrated with the processor, implemented by hardware, and the like.
  • the memory is used to store a program implementing the above method embodiments, or the modules of the embodiment shown in FIG. 7, and the processor 21 calls the program to perform the operations of the above method embodiments.
  • the communication device when part or all of the uplink transmission power adjustment method of the foregoing embodiment is implemented by software, when the communication device only includes the processor, the memory for storing the program is located outside the data transmission device, and the processor passes the circuit/ The wires are connected to the memory for reading and executing programs stored in the memory.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行发送功率调整方法及装置,该方法包括:终端接收网络设备发送的配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数;根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定所述数据包的实际发送功率。实现了数据包传输时,可以灵活确定数据包的实际发送功率,以更好地保障数据包的传输可靠性。

Description

上行发送功率调整及装置
本申请要求于2018年01月12日提交中国专利局、申请号为201810032715.3申请名称为“上行发送功率调整及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术,尤其涉及一种上行发送功率调整及装置。
背景技术
国际电信联盟(international telecommunication union,ITU)为第五代(5G)通信系统以及未来的移动通信系统定义了三大类应用场景,包括:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。其中典型的URLLC业务应用场景有:工业制造中的无线控制、虚拟现实技术、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时。在工业制造中,每一个设备的每一个动作一旦出现偏差,则会影响整体生产效果甚至导致停机等状况出现,带来严重的经济损失。因此数据包的可靠性是必须得到保证的,不仅是满足单个数据包的可靠性,连续两个数据包的可靠性也极为重要,因为连续两个数据包出错可能引发停机或者带来虚假的安全警报,从而导致长时间的停机。
现有技术中,URLLC业务通常会通过重复发送的方式增加传输可靠性,基站通常会为终端配置最大重复次数。上行调度过程中为了降低调度和排队带来的时延以及降低调度开销,引入免授权(Grant-Free)上行传输机制(又称之为:无动态调度上行传输(UL transmission without dynamic scheduling)或者无动态授权上行传输(UL transmission without dynamic grant))。在该传输机制中,终端一旦有数据需要发送,不需要向基站发送调度请求并等待基站的授权,在基站预先配置的Grant Free资源上发送数据即可。具体实现时,终端根据基站配置给终端的功率相关参数,计算出发送功率,按照发送功率在Grant Free资源上传输数据。另外,为了保证传输的可靠性,终端在Grant Free资源上的数据传输可以采用重复发送的方式,即同一个数据包重复发送多次。
但是,现有技术中根据基站配置的功率相关参数,只能计算出固定功率,即每次数据发送均采用相同功率,且目前发送数据包的起始时间不能确定,因此不能保证一个数据包的重复传输次数,导致数据包传输的可靠性得不到保障。另外,多次重复传输使用相同功率,时间敏感性不高。且数据包一次传输的多次重复过程中,信道状况可能变化不大,出现同时处于深衰的情况,会导致该次传输的可靠性较低。
发明内容
本申请提供一种上行发送功率调整方法及装置,用于提升数据包传输的可靠性。
本申请第一方面提供一种行发送功率调整方法,包括:
终端接收网络设备发送的配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数;
所述终端根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定所述数据包的实际发送功率。
可选地,所述方法还包括:
所述终端确定功率调整点和功率调整值;
相应地,所述终端根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定所述数据包的实际发送功率包括:
所述终端根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率;
所述终端根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率。
可选地,所述方法还包括:
所述终端确定第一功率调整因子;
相应地,所述终端根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率,包括:
当所述数据包的初始传输所使用的冗余版本为特定的冗余版本时,所述终端根据重复传输的最大重复次数k、初始发送功率、所述第一功率调整因子、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率。
可选地,所述终端根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率包括:
所述终端根据所述功率调整点、以及所述数据包的初始传输的时域位置,确定所述实际功率调整点;
所述终端根据所述数据包的初始传输的实际发送功率、所述实际功率调整点以及所述数据包的其它次重复的功率调整值,确定所述数据包的其它次重复的所述实际发送功率;其中,所述功率调整值根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点确定。
可选地,所述方法还包括:
所述终端确定第二功率补偿因子;
其中,所述第二功率补偿因子是用于确定所述数据包的其它次重复的所述实际发送功率的参数之一。
可选地,所述方法还包括:
所述终端确定第三功率补偿因子;
相应地,所述终端根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点以及所述数据包的其它次重复的所述功率调整值,确定所述数据包的其它次重复的所 述实际发送功率,包括:
当所述数据包的发送为最后一次重复时,所述终端根据所述数据包的初始传输的实际发送功率和第三功率补偿因子,确定所述数据包的最后一次重复的所述实际发送功率。
可选地,所述方法还包括:
所述终端还用于确定第四功率补偿因子;
所述终端根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率,包括:
所述终端在历史数据包传输满足预设条件时,根据所述重复传输的最大重复次数k、初始发送功率、数据包的初始传输的时域位置、以及所述第四功率补偿因子,确定所述数据包的初始传输的实际发送功率。
可选地,所述历史数据包传输满足预设条件包括:
所述数据包的前一数据包传输失败;和/或,
所述数据包为重传数据包,所述重传数据包的前次传输失败。
可选地,所述方法还包括:
所述终端获取功率调整值计算公式标识;
所述终端根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点,确定所述数据包的其它次重复的功率调整值,包括:
根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点,采用所述功率调整值计算公式标识所指示的功率调整值计算公式计算所述其他次重复的功率调整值。
可选地,所述方法还包括:
所述终端设备获取功率调整点指示位图或者剩余次数P或者功率调整周期;
相应地,所述终端设备确定功率调整点包括:
所述终端根据所述功率调整点指示位图或者所述剩余次数P或者所述功率调整周期确定功率调整点;
其中,所述功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;
所述剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
可选地,所述配置信息还包括功率调整系数;
其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
本申请第二方面提供了一种上行发送功率调整方法,包括:
网络设备确定配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数;
所述网络设备向终端发送所述配置信息,所述配置信息用于和发送数据包的初始传输的时域位置一起确定数据包的实际发送功率。
可选地,所述方法还包括:
所述网络设备向所述终端指示功率调整点;所述终端的所述数据包的初始传输的实际发送功率根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传 输的时域位置确定;所述终端的所述数据包的其它次重复的实际发送功率根据所述数据包的初始传输的实际发送功率、功率调整点和功率调整值确定。
可选地,所述方法还包括:
所述网络设备向所述终端指示第一功率补偿因子;
当所述数据包的初始传输所使用的冗余版本为特定的冗余版本时,所述第一功率调整因子是用于确定所述数据包的初始传输的实际发送功率的参数之一。
可选地,所述数据包的其它次重复的所述实际发送功率根据所述数据包的初始传输的实际发送功率、实际功率调整点以及所述数据包的其它次重复的功率调整值确定;其中,所述实际功率调整点根据所述功率调整点、以及所述数据包的初始传输的时域位置确定,所述功率调整值根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点确定。
可选地,所述方法还包括:
所述网络设备向所述终端指示第二功率补偿因子;
其中,所述第二功率补偿因子是用于确定所述数据包的其它次重复的所述实际发送功率的参数之一。
可选地,所述方法还包括:
所述网络设备向所述终端指示第三功率补偿因子;
当所述数据包的发送为最后一次重复时,所述第三功率补偿因子是用于确定所述数据包的最后一次重复的所述实际发送功率的参数之一。
可选地,所述方法还包括:
所述网络设备向所述终端指示第四功率补偿因子;
在历史数据包传输满足预设条件时,所述第四功率补偿因子是用于确定所述数据包的初始传输的实际发送功率的参数之一。
可选地,所述历史数据包传输满足预设条件包括:
所述数据包的前一数据包传输失败;和/或,
所述数据包为重传数据包,所述重传数据包的前次传输失败。
可选地,所述方法还包括:
所述网络设备向所述终端指示功率调整值计算公式标识。
可选地,所述方法还包括:
所述网络设备向所述终端指示功率调整点指示位图或者剩余次数P或者功率调整周期;其中,所述功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;所述剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
可选地,所述配置信息还包括功率调整系数;
其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
本申请第三方面提供一种上行发送功率调整方法,包括:
终端确定第四功率补偿因子;
终端在历史数据包传输满足预设条件时,根据第四功率补偿因子、初始发送功率,确定数据包的初始传输的实际发送功率。
可选地,所述历史数据包传输满足预设条件包括:
所述数据包的前一数据包传输失败;和/或,
所述数据包为重传数据包,所述重传数据包的前次传输失败。
本申请第四方面提供一种通信装置,包括用于执行上述第一方面以及第一方面的各种实现方式所提供的方法的模块或手段(means)。所述装置可以为终端,也可以为终端上的芯片。
本申请第五方面提供一种通信装置,包括用于执行上述第二方面以及第二方面的各种实现方式所提供的方法的模块或手段(means)。所述装置可以为网络设备,也可以为网络设备上的芯片。
本申请第六方面提供一种通信装置,包括用于执行上述第二方面以及第二方面的各种实现方式所提供的方法的模块或手段(means)。所述装置可以为终端,也可以为终端上的芯片。
本申请第七方面提供一种通信装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面或第三方面提供的方法,所述装置可以为终端,也可以为终端上的芯片。
本申请第八方面提供一种通信装置,所述装置包括处理器和存储器,处理器调用存储器存储的程序,以执行本申请第二方面提供的方法,所述装置可以为网络设备,也可以为网络设备上的芯片。
本申请第九方面提供一种计算机存储介质,该计算机存储介质用于存储程序,该程序用于执行以上第一至第三方面所述的任意一种方法。
本申请提供的上行发送功率调整及装置中,网络设备向终端发送配置信息,终端根据上述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定数据包的实际发送功率。实现了数据包传输时,可以灵活确定数据包的实际发送功率,以更好地保障数据包的传输可靠性。
附图说明
图1为本申请提供的一种通信系统结构示意图;
图2为本申请一实施例提供一种上行发送功率调整方法流程示意图;
图3为数据传输资源示意图;
图4为本申请另一实施例提供一种上行发送功率调整方法流程示意图;
图5为本申请另一实施例提供一种上行发送功率调整方法流程示意图;
图6为本申请一实施例提供的通信装置结构示意图;
图7为本申请另一实施例提供的通信装置结构示意图;
图8为本申请另一实施例提供的通信装置结构示意图;
图9为本申请另一实施例提供的通信装置结构示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、 全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G移动通信系统的三大应用场景增强型移动宽带(Enhanced Mobile Broad Band,eMBB)、URLLC以及大规模机器通信(Massive Machine-Type Communications,mMTC)。
图1为本申请提供的一种通信系统结构示意图。
如图1所示,通信系统01包括网设备101和终端102。当无线通信网络01包括核心网时,该网络设备101还可以与核心网相连。网络设备101还可以与互联网协议(Internet Protocol,IP)网络200进行通信,例如,因特网(internet),私有的IP网,或其它数据网等。网络设备为覆盖范围内的终端提供服务。例如,参见图1所示,网络设备101为网络设备101覆盖范围内的一个或多个终端提供无线接入。另外,网络设备之间还可以互相通信。
在本申请实施例中,终端(terminal device)102包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该终端可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端102还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置或设备。
网络设备101可以是用于与终端102进行通信的设备。例如,可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolved Node B,eNB或eNodeB)或未来5G网络中的网络侧设备等。或者该网络设备还可以是中继站、接入点、车载设备等。在终端对终端(Device to Device,D2D)通信系统中,该网络设备还可以是担任基站功能的终端。终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS)等。
本申请针对终端的上行传输提供一种上行发送功率调整方法,可以应用于网络设备调度资源的场景,即终端有数据传输时先向网络设备发送调度请求,由网络设备调度资源配置给终端,终端再采用配置的资源传输数据;也可以应用于Grant Free场景,本申请不作限制。
图2为本申请一实施例提供一种上行发送功率调整方法流程示意图,如图2所示,该方法包括:
S201、网络设备向终端发送配置信息。
该配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数。
用于确定初始发送功率的参数可以包括:最大发送功率P CMAX,c(i)、物理上行共享信道(Physical Uplink Share Channel,PUSCH)的频域带宽M PUSCH,c(i)(单位是资源块 (Resource Block,RB)、小区内终端公用参数P O_NOMINAL_PUSCH,c(j)、该终端专用参数P O_UE_PUSCH,c(j)、和终端专用部分之和P O_PUSCH,c(j)、路径损耗补偿因子α c(j)、下行控制指示(Downlink Control Information,DCI)的TPC域Δ TPC等。
终端可以根据上述用于确定初始发送功率的参数,以及自己估算的路径损耗补偿因子PL c计算初始发送功率。
可选地一种方式中,终端采用公式:
Figure PCTCN2019071398-appb-000001
计算初始发送功率P init
其中,参数中的c表示服务小区c,i表示子帧i;Δ TF,c(i)为小区级使能,终端特定的基于调制编码方式的功率调整偏移值;f c(i)为功率调整值。P O_PUSCH,c(j)由P O_NOMINAL_PUSCH,c(j)和P O_UE_PUSCH,c(j)计算获取。
上述功率调整值f c(i)可以由Δ TPC指示。
需要说明的是,上述配置信息可以由网络设备发送的无线资源控制(Radio Resource Control,RRC)消息携带,也可以通过广播消息广播。
特别地,其中配置信息中小区级别的参数可以通过广播消息广播,终端特定的参数由RRC携带。例如,终端特定的参数包括:P O_PUSCH,c(j)的终端专用部分P O_UE_PUSCH,c(j)、α c(j)等,其他可以是小区级别的参数。另外,还有一些动态变化的参数可以动态指示,例如频域带宽、Δ TPC等。
当然,初始发送功率的计算方式并不以上述方式为限,可以由其他功率计算方法获取。
S202、终端根据上述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定该数据包的实际发送功率。
发送数据包的初始传输的时域位置可以指数据包初传或重传过程中,实际第一次发送该数据包的时域位置。需要说明的是,数据包在一定时间段内可以重复传输多次,但是由于实际开始传输的时间不确定,不一定能达到配置的最大重复次数k。具体可能是数据包在物理层配置完成的时间不确定导致。
图3为数据传输资源示意图。如图3所示,假设配置重复传输的最大重复次数k=8,但是由于数据包在物理层配置完成的时间在图示箭头指示的位置,因此实际最多只能重复传输5次。
由于某些场景下数据包的重复传输次数可能达不到要求,本申请为了保证数据包 的传输可靠性,对数据包的实际发送功率进行调整。即根据重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,灵活确定数据包的实际发送功率。该数据包的实际发送功率可以大于初始发送功率。
具体实现过程中,终端可以在每次数据包传输前,确定数据包的实际发送功率,并按照该数据包的实际发送功率发送数据包。网络设备如果成功接收并解析到数据包,可以向终端回复确认消息(ACK)。
本实施例中,网络设备向终端发送配置信息,终端根据上述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定数据包的实际发送功率。实现了数据包传输时,可以灵活确定数据包的实际发送功率,以更好地保障数据包的传输可靠性。
在上述实施例的基础上,为了提升传输可靠性,终端还可以根据功率调整点和功率调整值,更好地实现数据包传输过程中功率的调整。
该功率调整点是指终端在第n次重复传输上述数据包时调整发送功率。需要说明的是,这里的第n次重复传输指的是一个数据包被配置的最大重复传输周期内,可以是一次初传过程中的第n次重复传输,也可以是某次重传过程中的第n次重复传输。n为大于0的整数。
相应地,上述终端根据上述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定该数据包的实际发送功率,可以为:终端根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率;进而终端根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率。
具体地,终端可以采用预设公式,代入最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定数据包的初始传输的实际发送功率。类似地,终端采用预设公式,代入数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率。
可选地,上述配置信息还包括功率调整系数θ。
θ可以由网络设备配置。可选地,θ可以携带在上述配置信息中。具体地,网络设备广播配置θ。或者,网络设备向每个终端单独配置θ,例如将θ携带在RRC消息中。或者,θ也可以为缺省值,例如θ=1,在此不作限制。
具体计算数据包的初始传输的实际发送功率时:一种方式是直接根据最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,计算数据包的初始传输的实际发送功率;
例如采用公式P init,new=min{P CMAX,f(x,k,P init)}计算数据包的初始传输的实际发送功率P init,new。P CMAX为终端的最大发射功率,P init为上述初始发射功率,x为数据包的初始传输的时域位置。当数据包的实际初始传输位置在配置的k次重复传输中第一次传输位置时,x=1。
其中,f(x,k,P init)=P init+θ*10×log 10(k/(k-x+1))。
另一种方式中,也可以先根据数据包的初始传输的时域位置,确定实际的最大重复次数k′,进而根据最大重复次数k、初始发送功率、以及k′,计算数据包的初始传输的实际发送功率。
如图3所示,确定了数据包的初始传输的时域位置,剩余的可重复传输次数就为实际的最大重复次数k′。图3中k=8,k′=5。
例如采用公式P init,new=min{P CMAX,f(k,k′,P init)}计算数据包的初始传输的实际发送功率P init,new。P CMAX为终端的最大发射功率,P init为上述初始发射功率。
其中,f(k,k′,P init)=P init+θ*10×log 10(k/k′)。
图4为本申请另一实施例提供一种上行发送功率调整方法流程示意图,如图4所示,上述终端根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率,可以包括:
S401、终端根据功率调整点、以及数据包的初始传输的时域位置,确定实际功率调整点。
该功率调整点可以是网络设备预先配置给终端的,也可以是默认值。在确定数据包的初始传输的时域位置后,根据实际情况,确定实际功率调整值。
假设原先数据包的重复次数为8次,配置数据包的功率调整点为2、5、8,即第2、5、8次传输该数据包时调整功率。但实际上该数据包在第一次重复传输对应的时间才准备完毕,那么在原第3次重复传输的时间实际第一次传输,因此实际功率调整点对应原第5、8次重复传输,即实际的第3、6次传输是调整功率。
可选地,本申请提供的方法中,终端还可以获取功率调整点指示位图或者剩余次数P或者功率调整周期,根据功率调整点指示位图或者剩余次数P或者功率调整周期确定功率调整点。
其中,功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
(1)功率调整点指示位图可以是由0、1组成的字符串,其中“0”标识不调整功率,“1”标识调整功率。假设数据包重复传输的最大重复次数k为8,功率调整点指示位图包括8个位,例如00100101,表示第3、6、8次重复传输数据包时调整功率。
可选地,这种方式还可以用于隐式指示数据包的重复传输次数。具体可以是默认最后一次传输调整功率,那么功率调整点指示位图中最后一个“1”的位置可以指示数据包的重复传输次数。例如00100101中最后一个“1”在第8位,标识重复传输的最大重复次数k为8;01010000中,最后一个“1”在第4位,标识重复传输的最大重复次数k为4。
(2)剩余次数p可以是一个数值,也可以是一个集合。当p为一个数值时,标识数据包的传输次数剩余p次时,进行一次功率调整,例如p=4,配置数据包有8次传输重复次数,那么就在剩下4次传输时,调整功率。如果实际初始传输在在配置的k 次重复传输中第一次传输位置时,意味着实际第5次传输可以进行功率调整。如果实际初始传输在配置的k次重复传输中第2次传输位置时,意味着实际第4次传输可以进行功率调整。以此类推。
或者,p为一个数值时,也可以标识剩下的p次传输都调整功率,例如p=4,,配置数据包有8次传输重复次数,那么就在剩下1到4次传输时,调整功率。如果实际初始传输在配置的k次重复传输中第一次传输位置时,意味着实际第5到8次传输可以进行功率调整。如果实际初始传输在在配置的k次重复传输中第2次传输位置时,意味着实际第4到7次传输可以进行功率调整,以此类推,在此不作限制。
若p为一个集合p={p 1,p 2,……,p m},m小于或等于k。标识在剩余p 1,p 2,……,p m次时,调整功率。例如p={2,4}标识,数据包的传输次数剩余4次和剩余2次时调整功率。
终端可以根据p和k生成功率调整点指示位图。例如p={2,4},k=8时,可以生成功率调整点指示位图00001010。
(3)功率调整周期表示相邻两次功率调整点的间隔,间隔的单位可以为时间,例如符号(symbol)/时隙(slot)等,也可以为传输次数,表示在一个数据包实际的多次重复传输中,每间隔L次调整一次功率,其中L为大于0的整数。这里数据包实际的多次重复传输表示数据包一次初传或一次重传时,多次重复传输。
第q次重复传输该数据包时,如果满足mod(q,L)=0则第q次重复传输调整功率,其中q≥2。
终端可以根据功率调整周期和k生成功率调整点指示位图。例如L=2,k=8时,可以生成功率调整点指示位图01010101。
对于网络设备给终端配置功率调整点的情况,功率调整点指示位图或者剩余次数P或者功率调整周期可以由网络设备广播配置,也可以通过RRC消息单独发送给上述终端,本申请不作限制。
S402、终端根据数据包的初始传输的实际发送功率、上述实际功率调整点以及上述数据包的其他次重复的功率调整值,确定数据包的其他次重复的实际发送功率。
其中,功率调整值根据数据包的初始传输的实际发送功率、以及实际功率调整点确定。
上述确定数据包的初始传输的实际发送功率、实际功率调整点可以不区分先后顺序,在二者都确定完毕后,可以进一步地确定其他次重复的功率调整值。
可选地,可以根据实际功率调整点确定实际功率可调整点个数N′,然后根据数据包的初始传输的实际发送功率P init,new、最大发射功率P CMAX,计算其他次重复的功率调整值ΔP。
可选地,计算功率调整值的公式存在多种,具体使用哪个公式计算,可以由终端获取的功率调整值计算公式标识确定。
其中,功率调整值计算公式标识可以是终端侧预先配置好的默认值,也可以由网络设备配置。网络设备可以广播配置,也可以通过RRC消息单独发送给上述终端,本申请不作限制。
举例说明,功率调整值计算公式可以有表1所示的几种,可以根据具体场景需要 进行设定:
表1
功率调整值计算公式标识 功率调整值计算公式
00 ΔP=floor((P CMAX-P init,new)/N')
01 ΔP=round((P CMAX-P init,new)/N')
10 ΔP=ceil((P CMAX-P init,new)/N')
11 保留位
表1中功率调整值计算公式标识以两个位来举例,实际实现过程中不以此为限,可以根据公式的数量确定。
其中,floor表示向下取整、round表示四舍五入、ceil表示向上取整。
可选地一种方案中,终端默认使用一种计算公式,可以不再通过功率调整值计算公式标识来确定功率调整值计算公式。
可选地,数据包每次重复传输的实际发送功率可以根据前一次传输的实际发送功率来决定。先根据功率调整点确定本次重复传输是否要调整,如果需要调整,就在前一次传输的实际发送功率的基础上加上功率调整值,作为本次重复的实际发送功率。
例如,该数据包在本次传输中实际传输7次,初始传输的实际发送功率为P init,new,实际功率调整点4、6、7。那么第2、3次重复传输的实际发送功率都根据初始传输的实际发送功率相同,为P init,new。第4次重复的实际发送功率为P init,new+ΔP,第5次重复的实际发送功率为P init,new+ΔP,第6次重复的实际发送功率为P init,new+ΔP+ΔP,第7次重复的实际发送功率为P init,new+ΔP+ΔP+ΔP。
在上述实施例的基础上,为了更好地保障数据包传输可靠性,还可以在一些特定情况对发送功率进行进一步地补偿:
一种实施方式中,终端获取第一功率调整因子。
相应地,当数据包的初始传输所使用的冗余版本为特定的冗余版本时,终端根据最大重复次数k、初始发送功率、第一功率调整因子以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率。
具体地,可以在上述公式计算出的P init,new基础上,加上第一功率调整因子ΔP 1,即数据包的初始传输的实际发送功率=P init,new+ΔP 1。但不以此为限,也可以给P init,new乘以第一功率调整因子,数据包的初始传输的实际发送功率=P init,newxΔP 1,这种情况下ΔP 1大于1。
也可以认为ΔP 1是初始传输的功率调整值。
另外,终端可以默认当数据包的初始传输所使用的冗余版本为特定的冗余版本时,采用第一功率调整因子补偿初始传输的实际发送功率,也可以是由网络设备向终端指示在数据包的初始传输所使用的冗余版本为特定的冗余版本时,采用第一功率调整因子补偿初始传输的实际发送功率,例如网络设备通过使能指示消息(enabled/disabled 指示)来指示。本申请不作限制。
类似地,终端还可以获取第二功率因子。
当所述数据包的一次重复所使用的冗余版本是特定的冗余版本时,终端根据数据包的初始传输的实际发送功率、上述实际功率调整点以及上述数据包的其他次重复的功率调整值,确定数据包的其他次重复的实际发送功率,具体为:根据数据包的初始传输的实际发送功率、实际功率调整点以及数据包的其它次重复的所述功率调整值、第二功率补偿因子,确定所述数据包的其它次重复的所述实际发送功率。
具体可以是在根据数据包的初始传输的实际发送功率、实际功率调整点以及数据包的其它次重复的所述功率调整值计算出本次发送功率后,再加上第二功率补偿因子,得到的和作为本次实际发送功率。
以前述举例说明,假设计算出第6次重复的发送功率为P init,new+ΔP+ΔP,但是由于使用的冗余版本是特定的冗余版本,那么最终得出的实际发送功率P init,new+ΔP+ΔP+ΔP 2
也可以说,所使用的冗余版本是特定的冗余版本时,功率调整=ΔP+ΔP 2
上述第二功率补偿因子可以和第一功率补偿因子相同,即预先获取一个功率补偿因子,在初次传输和后续重复传输都使用这个功率补偿因子。第二功率补偿因子也可以和第一功率补偿因子,即初次传输和后续重复传输配置不同的功率补偿因子,本申请不作限制。
另外,终端可以默认当所述数据包的一次重复所使用的冗余版本是特定的冗余版本时,采用第二功率调整因子补偿实际发送功率,也可以是由网络设备向终端指示当所述数据包的一次重复所使用的冗余版本是特定的冗余版本时,采用第二功率调整因子补偿实际发送功率,例如网络设备通过使能指示消息(enabled/disabled指示)来指示。本申请不作限制。
第一功率调整因子、第二功率补偿因子可以由网络设备配置,具体可以广播给终端,或者通过专门的消息发送给终端,例如通过RRC消息发送给终端。
上述特定的冗余版本可以为冗余版本{0}、或者冗余版本{3},在此不作限制。终端可以预先根据标准或者网络设备的配置获取哪些冗余版本是特定的冗余版本。
另一实施方式中,认为在最后一次重复传输数据包时,会调整功率值。
终端获取第三功率补偿因子。当数据包的发送为最后一次重复时,终端根据数据包的初始传输的实际发送功率和第三功率补偿因子,确定数据包的最后一次重复的实际发送功率。
具体实现时,数据包的最后一次重复的实际发送功率可以是在前一次重复的实际发送功率基础上,加上第三功率补偿因子。当然,重复过程中的实际发送功率都是由初始传输的实际发送功率依次推导而来。
这里说的最后一次重复是数据包一次重传或一次初传中的最后一次重复。
另外,终端可以默认当数据包的发送为最后一次重复时,采用第三功率调整因子补偿实际发送功率,也可以是由网络设备向终端指示当数据包的发送为最后一次重复时,采用第三功率调整因子补偿实际发送功率,例如网络设备通过使能指示消息(enabled/disabled指示)来指示。本申请不作限制。
又一种实施例中,终端还确定第四功率补偿因子ΔP 4
终端在历史数据包传输满足预设条件时,根据重复传输的最大重复次数k、初始发送功率、数据包的初始传输的时域位置、以及所述第四功率补偿因子,确定数据包的初始传输的实际发送功率。
即某些特定场景下,对初始传输的实际发送功率进行补偿,以更好地保证数据包的传输可靠性。
终端可以默认在历史数据包传输满足预设条件时,采用第四功率调整因子补偿实际发送功率,也可以是由网络设备向终端指示在历史数据包传输满足预设条件时,采用第四功率调整因子补偿实际发送功率,例如网络设备通过使能指示消息(enabled/disabled指示)来指示。本申请不作限制。
上述历史数据包传输满足预设条件可以包括下述情况中的至少一种:
(1)数据包的前一数据包传输失败。
这里的前一数据包是与该数据包不同的数据包,在该数据包之前传输的一个数据包。前一数据包可能经历了一次初传,也可能经历一次初传和至少一次重传,在此不作限制,但是最终的传输结果是传输失败。传输失败可能是网络设备没有成功接收前一数据包,具体可能是没有收到或者解调失败或者发送超时等。终端如果在预设时间内没有收到网络设备反馈的成功接收指示(ACK)、或者收到网络设备发送的失败指示(NACK)等,可以确定前一数据包传输失败。
在确定前一数据包传输失败后,为了保证该数据包成功传输,就增大该数据包的初始传输的实际发送功率。
(2)数据包为重传数据包,且该重传数据包的前次传输失败。
一个数据包的初传和重传过程中,都会重复传输多次,也可能经过多次重复传输还是传输失败,例如网络设备没有收到或者解调失败该数据包或者发送超时等。在数据包传输失败后,还可以发起再次重传,那么这次重传的初始传输的实际发送功率就可以根据第四功率补偿因子进行补偿,以保障数据包传输的可靠性。
具体实现过程中,在历史数据包传输满足预设条件后,数据包的初始传输的实际发送功率可以为min{P CMAX,P init,new+ΔP 4}。
其中,数据包的初始传输的实际发送功率不可以超过最大发送功率P CMAX。如果数据包的初始传输的实际发送功率已经大于或等于最大发送功率P CMAX,那么就可以按照P CMAX发送数据包。
特别地,如果配置ΔP 4=0,那么也可以默认取数据包的初始传输的实际发送功率就为最大发送功率。
图5为本申请另一实施例提供一种上行发送功率调整方法流程示意图,如图5所示,该方法包括:
S501、终端获取第四功率补偿因子。
S502、终端在历史数据包传输满足预设条件时,根据第四功率补偿因子、初始发 送功率,确定数据包的初始传输的实际发送功率。
与前述实施例不同的是,终端可以不考虑数据包的初始传输的时域位置,而是在根据网络设备配置的相关参数,计算出初始发送功率P init后,采用第四功率补偿因子进行补偿。
即数据包的初始传输的实际发送功率可以为min{P CMAX,P init+ΔP 4}。
本实施例中,历史数据包传输满足预设条件与前述实施例相同,不再赘述。
图6为本申请一实施例提供的通信装置结构示意图,该装置可以集成于终端或终端的芯片。如图6所示,该装置包括:接收模块601和确定模块602,其中:
接收模块601,用于接收网络设备发送的配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数。
确定模块602,用于根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定所述数据包的实际发送功率。
本实施例中,网络设备向终端发送配置信息,终端根据上述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定数据包的实际发送功率。实现了数据包传输时,可以灵活确定数据包的实际发送功率,以更好地保障数据包的传输可靠性。
一实施例中,确定模块602,还用于确定功率调整点和功率调整值。
具体地,确定模块602,具体用于根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率;根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率。
另一实施例中,确定模块602,还用于确定第一功率调整因子。
具体地,确定模块602,具体用于当所述数据包的初始传输所使用的冗余版本为特定的冗余版本时,根据重复传输的最大重复次数k、初始发送功率、所述第一功率调整因子、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率。
具体地,确定模块602,具体用于根据所述功率调整点、以及所述数据包的初始传输的时域位置,确定所述实际功率调整点;根据所述数据包的初始传输的实际发送功率、所述实际功率调整点以及所述数据包的其它次重复的功率调整值,确定所述数据包的其它次重复的所述实际发送功率;其中,所述功率调整值根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点确定。
又一实施例中,确定模块602,还用于确定第二功率补偿因子。
其中,所述第二功率补偿因子是用于确定所述数据包的其它次重复的所述实际发送功率的参数之一。
再一实施例中,确定模块602,还用于确定第三功率补偿因子。
确定模块602,具体用于当所述数据包的发送为最后一次重复时,根据所述数据包的初始传输的实际发送功率和第三功率补偿因子,确定所述数据包的最后一次重复的所述实际发送功率。
可选地,另一实施例中,确定模块602,还用于确定第四功率补偿因子。
具体地,确定模块602,具体用于在历史数据包传输满足预设条件时,根据所述重复传输的最大重复次数k、初始发送功率、数据包的初始传输的时域位置、以及所述第四功率补偿因子,确定所述数据包的初始传输的实际发送功率。
所述历史数据包传输满足预设条件包括:所述数据包的前一数据包传输失败;和/或,所述数据包为重传数据包,所述重传数据包的前次传输失败。
在上述实施例的基础上,确定模块602,还用于获取功率调整值计算公式标识。
相应地,确定模块602,具体用于根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点,采用所述功率调整值计算公式标识所指示的功率调整值计算公式计算所述其他次重复的功率调整值。
可选地,确定模块602,还用于获取功率调整点指示位图或者剩余次数P或者功率调整周期。
确定模块602,具体用于根据所述功率调整点指示位图或者所述剩余次数P或者所述功率调整周期确定功率调整点;其中,所述功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;所述剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
进一步地,所述配置信息还包括功率调整系数;
其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图7为本申请另一实施例提供的通信装置结构示意图,该装置可以集成于上述网络设备或网络设备中的芯片。如图7所示,该装置包括:确定模块701和发送模块702,其中:
确定模块701,用于确定配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数。
发送模块702,用于向终端发送所述配置信息,所述配置信息用于和发送数据包的初始传输的时域位置一起确定数据包的实际发送功率。
可选地,发送模块702,还用于向所述终端指示功率调整点。
所述终端的所述数据包的初始传输的实际发送功率根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置确定;所述终端的所述数据包的其它次重复的实际发送功率根据所述数据包的初始传输的实际发送功率、功率调整点和功率调整值确定。
可选地,发送模块702,还用于向所述终端指示第一功率补偿因子。
当所述数据包的初始传输所使用的冗余版本为特定的冗余版本时,所述第一功率调整因子是用于确定所述数据包的初始传输的实际发送功率的参数之一。
可选地,发送模块702,还用于向所述终端指示第二功率补偿因子。
其中,所述第二功率补偿因子是用于确定所述数据包的其它次重复的所述实际发送功率的参数之一。
可选地,发送模块702,还用于向所述终端指示第三功率补偿因子。
当所述数据包的发送为最后一次重复时,所述第三功率补偿因子是用于确定所述 数据包的最后一次重复的所述实际发送功率的参数之一。
可选地,发送模块702,还用于向所述终端指示第四功率补偿因子。
在历史数据包传输满足预设条件时,所述第四功率补偿因子是用于确定所述数据包的初始传输的实际发送功率的参数之一。
其中,所述历史数据包传输满足预设条件包括:所述数据包的前一数据包传输失败;和/或,所述数据包为重传数据包,所述重传数据包的前次传输失败。
可选地,发送模块702,还用于向所述终端指示功率调整值计算公式标识。
可选地,发送模块702,还用于向所述终端指示功率调整点指示位图或者剩余次数P或者功率调整周期;其中,所述功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;所述剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
可选地,所述配置信息还包括功率调整系数;
其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图8为本申请另一实施例提供的通信装置结构示意图,该装置可以集成于终端或终端的芯片。如图8所示,该装置包括处理器11和输入输出接口10。
处理器11可以通过输入输出接口10与终端的其它元件通信,或者与网络设备的收发器通信连接。
处理器11用于执行前述终端侧的方法实施例。
可选地,该装置还可以包括:存储器。存储器可以是独立的物理单元,与处理器11、输入输出接口10通过总线连接。存储器也可以和处理器集成在一起,通过硬件实现等。
存储器用于存储实现以上终端侧方法实施例,或者图6所示实施例各个模块的程序,处理器11调用该程序,执行以上方法实施例的操作。
图9为本申请另一实施例提供的通信装置结构示意图,该装置可以集成于上述网络设备或网络设备中的芯片。如图9所示,该装置包括:处理器21和输入输出接口20。
处理器21可以通过输入输出接口20与网络设备的其它元件通信,或者与终端的收发器通信连接。
处理器21用于执行前述网络设备侧的方法实施例。
可选地,该装置还可以包括:存储器。存储器可以是独立的物理单元,与处理器21、输入输出接口20通过总线连接。存储器也可以和处理器集成在一起,通过硬件实现等。
存储器用于存储实现以上方法实施例,或者图7所示实施例各个模块的程序,处理器21调用该程序,执行以上方法实施例的操作。
可选地,当上述实施例的上行发送功率调整方法中的部分或全部通过软件实现时,通信装置只包括处理器时,用于存储程序的存储器位于数据传输装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。

Claims (41)

  1. 一种上行发送功率调整方法,其特征在于,包括:
    终端接收网络设备发送的配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数;
    所述终端根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定所述数据包的实际发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端确定功率调整点和功率调整值;
    相应地,所述终端根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定所述数据包的实际发送功率包括:
    所述终端根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率;
    所述终端根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端确定第一功率调整因子;
    相应地,所述终端根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率,包括:
    当所述数据包的初始传输所使用的冗余版本为特定的冗余版本时,所述终端根据重复传输的最大重复次数k、初始发送功率、所述第一功率调整因子、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率包括:
    所述终端根据所述功率调整点、以及所述数据包的初始传输的时域位置,确定所述实际功率调整点;
    所述终端根据所述数据包的初始传输的实际发送功率、所述实际功率调整点以及所述数据包的其它次重复的功率调整值,确定所述数据包的其它次重复的所述实际发送功率;其中,所述功率调整值根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点确定。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端确定第二功率补偿因子;
    其中,所述第二功率补偿因子是用于确定所述数据包的其它次重复的所述实际发送功率的参数之一。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端确定第三功率补偿因子;
    相应地,所述终端根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点以及所述数据包的其它次重复的所述功率调整值,确定所述数据包的其它次重复的所 述实际发送功率,包括:
    当所述数据包的发送为最后一次重复时,所述终端根据所述数据包的初始传输的实际发送功率和第三功率补偿因子,确定所述数据包的最后一次重复的所述实际发送功率。
  7. 根据权利要求2-5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端确定第四功率补偿因子;
    所述终端根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率,包括:
    所述终端在历史数据包传输满足预设条件时,根据所述重复传输的最大重复次数k、初始发送功率、数据包的初始传输的时域位置、以及所述第四功率补偿因子,确定所述数据包的初始传输的实际发送功率。
  8. 根据权利要求7所述的方法,其特征在于,所述历史数据包传输满足预设条件包括:
    所述数据包的前一数据包传输失败;和/或,
    所述数据包为重传数据包,所述重传数据包的前次传输失败。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端获取功率调整值计算公式标识;
    所述终端根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点,确定所述数据包的其它次重复的功率调整值,包括:
    所述终端根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点,采用所述功率调整值计算公式标识所指示的功率调整值计算公式计算所述其他次重复的功率调整值。
  10. 根据权利要求2-9任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取功率调整点指示位图或者剩余次数P或者功率调整周期;
    相应地,所述终端设备确定功率调整点包括:
    所述终端根据所述功率调整点指示位图或者所述剩余次数P或者所述功率调整周期确定功率调整点;
    其中,所述功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;
    所述剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述配置信息还包括功率调整系数;
    其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
  12. 一种上行发送功率调整方法,其特征在于,包括:
    网络设备确定配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数;
    所述网络设备向终端发送所述配置信息,所述配置信息用于和发送数据包的初始传输的时域位置一起确定数据包的实际发送功率。
  13. 根据权利要求12所述的方法,其特征在于,所述配置信息还包括功率调整系数;
    其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
  14. 根据权利要求12或13所述的方法,其特征在于,还包括:
    所述网络设备向所述终端指示第一功率补偿因子;
    当所述数据包的初始传输所使用的冗余版本为特定的冗余版本时,所述第一功率调整因子是用于确定所述数据包的初始传输的实际发送功率的参数之一。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,还包括:
    所述数据包的其它次重复的所述实际发送功率根据所述数据包的初始传输的实际发送功率、实际功率调整点以及所述数据包的其它次重复的功率调整值确定;其中,所述实际功率调整点根据所述功率调整点、以及所述数据包的初始传输的时域位置确定,所述功率调整值根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点确定。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端指示第二功率补偿因子;
    其中,所述第二功率补偿因子是用于确定所述数据包的其它次重复的所述实际发送功率的参数之一。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端指示第三功率补偿因子;
    当所述数据包的发送为最后一次重复时,所述第三功率补偿因子是用于确定所述数据包的最后一次重复的所述实际发送功率的参数之一。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端指示第四功率补偿因子;
    在历史数据包传输满足预设条件时,所述第四功率补偿因子是用于确定所述数据包的初始传输的实际发送功率的参数之一。
  19. 根据权利要求18所述的方法,其特征在于,所述历史数据包传输满足预设条件包括:
    所述数据包的前一数据包传输失败;和/或,
    所述数据包为重传数据包,所述重传数据包的前次传输失败。
  20. 根据权利要求12-19任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端指示功率调整值计算公式标识。
  21. 根据权利要求12-20任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端指示功率调整点指示位图或者剩余次数P或者功率调整周期;其中,所述功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;所述剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
  22. 一种上行发送功率调整方法,其特征在于,包括:
    终端确定第四功率补偿因子;
    终端在历史数据包传输满足预设条件时,根据第四功率补偿因子、初始发送功率,确定数据包的初始传输的实际发送功率。
  23. 根据权利要求22所述的方法,其特征在于,所述历史数据包传输满足预设条件包括:
    所述数据包的前一数据包传输失败;和/或,
    所述数据包为重传数据包,所述重传数据包的前次传输失败。
  24. 一种通信装置,其特征在于,包括:
    接收模块,用于接收网络设备发送的配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数;
    确定模块,用于根据所述重复传输的最大重复次数k、初始发送功率、以及发送数据包的初始传输的时域位置,确定所述数据包的实际发送功率。
  25. 根据权利要求24所述的装置,其特征在于,所述确定模块,还用于确定功率调整点和功率调整值;
    相应地,所述确定模块,具体用于根据重复传输的最大重复次数k、初始发送功率、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率;根据所述数据包的初始传输的实际发送功率、所述功率调整点和所述功率调整值,确定所述数据包的其它次重复的实际发送功率。
  26. 根据权利要求25所述的装置,其特征在于,所述确定模块,还用于确定第一功率调整因子;
    相应地,所述确定模块,具体用于当所述数据包的初始传输所使用的冗余版本为特定的冗余版本时,根据重复传输的最大重复次数k、初始发送功率、所述第一功率调整因子、以及数据包的初始传输的时域位置,确定所述数据包的初始传输的实际发送功率。
  27. 根据权利要求25或26所述的装置,其特征在于,所述确定模块,具体用于根据所述功率调整点、以及所述数据包的初始传输的时域位置,确定所述实际功率调整点;根据所述数据包的初始传输的实际发送功率、所述实际功率调整点以及所述数据包的其它次重复的功率调整值,确定所述数据包的其它次重复的所述实际发送功率;其中,所述功率调整值根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点确定。
  28. 根据权利要求25-27任一项所述的装置,其特征在于,所述确定模块,还用于确定第二功率补偿因子;
    其中,所述第二功率补偿因子是用于确定所述数据包的其它次重复的所述实际发送功率的参数之一。
  29. 根据权利要求28所述的装置,其特征在于,所述确定模块,还用于确定第三功率补偿因子;
    相应地,所述确定模块,具体用于当所述数据包的发送为最后一次重复时,根据所述数据包的初始传输的实际发送功率和第三功率补偿因子,确定所述数据包的最后一次重复的所述实际发送功率。
  30. 根据权利要求25-29任一项所述的装置,其特征在于,所述确定模块,还用于确定第四功率补偿因子;
    相应地,所述确定模块,具体用于在历史数据包传输满足预设条件时,根据所述重复传输的最大重复次数k、初始发送功率、数据包的初始传输的时域位置、以及所述第四功率补偿因子,确定所述数据包的初始传输的实际发送功率。
  31. 根据权利要求30所述的装置,其特征在于,所述历史数据包传输满足预设条件包括:
    所述数据包的前一数据包传输失败;和/或,
    所述数据包为重传数据包,所述重传数据包的前次传输失败。
  32. 根据权利要求25-31任一项所述的装置,其特征在于,所述确定模块,还用于获取功率调整值计算公式标识;
    相应地,所述确定模块,具体用于根据所述数据包的初始传输的实际发送功率、以及所述实际功率调整点,采用所述功率调整值计算公式标识所指示的功率调整值计算公式计算所述其他次重复的功率调整值。
  33. 根据权利要求25-32任一项所述的装置,其特征在于,所述确定模块,还用于获取功率调整点指示位图或者剩余次数P或者功率调整周期;
    相应地,所述确定模块,具体用于根据所述功率调整点指示位图或者所述剩余次数P或者所述功率调整周期确定功率调整点;其中,所述功率调整点指示位图中的每个标识位用于指示相应的传输是否可以进行功率调整;所述剩余次数p指示所述数据包的实际传输次数剩余p次时,进行一次功率调整,p为大于0的整数。
  34. 根据权利要求25-33任一项所述的装置,其特征在于,所述配置信息还包括功率调整系数;
    其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
  35. 一种通信装置,其特征在于,包括:
    确定模块,用于确定配置信息,所述配置信息包括:重复传输的最大重复次数k和用于确定初始发送功率的参数,其中,k为大于0的整数;
    发送模块,用于向终端发送所述配置信息,所述配置信息用于和发送数据包的初始传输的时域位置一起确定数据包的实际发送功率。
  36. 根据权利要求35所述的装置,其特征在于,所述配置信息还包括功率调整系数;
    其中,所述功率调整系数是用于确定所述数据包的所述实际发送功率的参数之一。
  37. 一种通信装置,其特征在于,包括用于执行权利要求1到11中任一项所述的方法,或者执行权利要求22-23中任一项所述的方法的模块。
  38. 一种通信装置,其特征在于,包括用于执行权利要求12到21中任一项所述的方法的模块。
  39. 一种通信装置,其特征在于,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行权利要求1到11中任一项所述的方法,或者执行权利要求22-23中任一项所述的方法。
  40. 一种通信装置,其特征在于,所述装置包括处理器和存储器,处理器调用存储器存储的程序,以执行权利要求12到21中任一项所述的方法。
  41. 一种计算机存储介质,其特征在于,所述计算机存储介质用于存储程序,所述程序用于执行权利要求1到11中任一项所述的方法、或者执行权利要求12到21中任一项所述的方法、或者执行权利要求22-23中任一项所述的方法。
PCT/CN2019/071398 2018-01-12 2019-01-11 上行发送功率调整及装置 WO2019137486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032715.3A CN110035486B (zh) 2018-01-12 2018-01-12 上行发送功率调整及装置
CN201810032715.3 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019137486A1 true WO2019137486A1 (zh) 2019-07-18

Family

ID=67218902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071398 WO2019137486A1 (zh) 2018-01-12 2019-01-11 上行发送功率调整及装置

Country Status (2)

Country Link
CN (1) CN110035486B (zh)
WO (1) WO2019137486A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151080A1 (zh) * 2021-01-13 2022-07-21 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181533A1 (en) * 2013-12-20 2015-06-25 Qualcomm Incorporated Pusch and pucch power control under coverage enhancements in lte
WO2015116732A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Method of access and link adaptation for coverage enhanced wireless transmissions
CN107431883A (zh) * 2015-03-06 2017-12-01 高通股份有限公司 用于物理随机接入信道传输的重复水平覆盖增强技术

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679089B2 (ja) * 2002-11-20 2005-08-03 松下電器産業株式会社 基地局装置および再送パケットの送信電力制御方法
CN101272165A (zh) * 2007-03-20 2008-09-24 北京三星通信技术研究有限公司 传输功率控制信息的设备和方法
JP2009055356A (ja) * 2007-08-27 2009-03-12 Ntt Docomo Inc 移動通信システムにおける基地局装置、移動局装置および基地局制御方法
JP5365583B2 (ja) * 2010-06-04 2013-12-11 富士通株式会社 無線通信装置、送信電力制御方法および送信電力制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181533A1 (en) * 2013-12-20 2015-06-25 Qualcomm Incorporated Pusch and pucch power control under coverage enhancements in lte
WO2015116732A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Method of access and link adaptation for coverage enhanced wireless transmissions
CN107431883A (zh) * 2015-03-06 2017-12-01 高通股份有限公司 用于物理随机接入信道传输的重复水平覆盖增强技术

Also Published As

Publication number Publication date
CN110035486A (zh) 2019-07-19
CN110035486B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
EP3961935A1 (en) Beam configuration methods, apparatuses, computer-readable storage medium and computer program product
EP3043501B1 (en) Method, user equipment, and base station for transmission of hybrid automatic repeat request-acknowledgement
KR102035402B1 (ko) 자동 재송신 요청(arq) 피드백 정보를 처리하기 위한 네트워크 노드, 무선 장치 및 그 방법들
JP5994936B2 (ja) 端末装置、通信システム及び通信制御プログラム
EP3852465B1 (en) Wireless communication method and device
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
WO2018196787A1 (zh) 一种信道状态的指示方法、装置及网络设备
CN108632970B (zh) 功率控制方法、终端和网络设备
US20210058213A1 (en) Data transmission method and apparatus
US11956815B2 (en) Channel detection method and device and information transmission method and device
EP3446449A1 (en) Delaying transmission depending on transmission type and ue processing capabilities
JP2022542017A (ja) サイドリンクリソース選択方法及び装置
US11863493B2 (en) Method for transmitting feedback information, terminal device, and network device
TW202014015A (zh) 傳輸訊息的方法和終端設備
WO2018010488A1 (zh) 发射功率确定方法、终端、网络设备和系统
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
TW202019210A (zh) 無線通訊方法和終端設備
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2019137486A1 (zh) 上行发送功率调整及装置
WO2020103316A1 (zh) 一种传输数据的方法和终端设备
TW202015470A (zh) 無線通訊方法和通信設備
CN108702691B (zh) 一种发送通信消息的方法和装置
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2020156394A1 (zh) 一种反馈方法及装置
WO2020206622A1 (zh) 无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738254

Country of ref document: EP

Kind code of ref document: A1