WO2019028804A1 - 一种磁集成电路以及功率转换装置 - Google Patents
一种磁集成电路以及功率转换装置 Download PDFInfo
- Publication number
- WO2019028804A1 WO2019028804A1 PCT/CN2017/096995 CN2017096995W WO2019028804A1 WO 2019028804 A1 WO2019028804 A1 WO 2019028804A1 CN 2017096995 W CN2017096995 W CN 2017096995W WO 2019028804 A1 WO2019028804 A1 WO 2019028804A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yoke
- magnetic
- integrated circuit
- column
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/12—Ignition, e.g. for IC engines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
Definitions
- the present invention relates to the field of power conversion technologies, and in particular, to a magnetic integrated circuit and a power conversion device.
- high-power high-voltage power batteries are widely used.
- the voltage of high-power high-voltage power batteries is generally 100-750V DC voltage, while the power supply voltage required by vehicle equipment is often 12-24V.
- a power conversion device for example, a transformer
- a high voltage 100-750V
- a low voltage (12-24V).
- a magnetic integrated circuit is a circuit composed of a magnetic device, a diode, a capacitor, etc., and the change of the output voltage can be changed by adjusting the ratio of the input coil and the output coil on the magnetic device.
- One way is to reduce the number of turns of the input coil and reduce the turns ratio without changing the number of turns of the output coil.
- the AC loss of the input coil is increased, which causes the peak current of the input coil to increase, causing an increase in input coil loss and a high heat generation, which causes the input coil to generate heat seriously;
- Another way is Under the premise of not changing the input coil, increase the number of turns of the output coil.
- the output current of the power conversion device is generally about 200A (for example, 100-300A), and the required output.
- the current is large, and as the output coil increases, the output impedance increases, resulting in a large loss of the output coil.
- the output coil Since the output current is large, the output coil generally uses a copper bar with a large cross-sectional area or a copper plate as a one-turn coil. If the number of turns is increased, processing is difficult. Moreover, after increasing the number of turns, the impedance also increases, resulting in an increase in loss.
- Embodiments of the present invention provide a magnetic integrated circuit and a power conversion device, which can increase an output voltage and reduce output coil loss without changing an input coil.
- a magnetic integrated circuit for use in a power conversion device.
- the N magnetic devices including the interval, the N input windings, the first output circuit and the second output circuit are included, wherein:
- the i-th magnetic device includes a magnetic center column, a narrow side column, a wide side column, a first yoke and a second yoke disposed at both ends of the narrow side column, and a third yoke disposed at both ends of the wide side column And a fourth yoke; the i-th magnetic device is any one of the N magnetic devices;
- a jth input winding is disposed on a magnetic center pillar of the i-th magnetic device; the jth input winding is any one of the N input windings, and the N input windings are connected in parallel; And said j are both positive integers, and said N is a positive integer greater than or equal to 2;
- the first output circuit includes a first diode, a capacitor, a first wire, and a metal heat sink
- the second output circuit includes a second diode, the capacitor, the second wire, and the metal heat sink.
- the first output loop surrounds the N second yokes, and the second output loop surrounds the N fourth yokes.
- a power conversion apparatus comprising the magnetic integrated circuit described in the first aspect of the embodiments of the present invention.
- the magnetic integrated circuit is applied to a power conversion device, including N magnetic devices, N input windings, a first output circuit, and a second output circuit.
- the i-th magnetic device comprises a magnetic center column, a narrow side column, a wide side column, a first yoke and a second yoke disposed at both ends of the narrow side column, a third yoke disposed at both ends of the wide side column, and a fourth yoke;
- the i-th magnetic device is any one of N magnetic devices;
- the jth input winding is disposed on the magnetic center pillar of the i-th magnetic device;
- the j-th input winding is in the N input windings Any one, N input windings are connected in parallel; i and j are positive integers, N is a positive integer greater than or equal to 2;
- the first output loop includes a first diode, a capacitor, a first
- FIG. 1 is a schematic structural view of a magnetic device according to an embodiment of the present invention.
- FIG. 2 is a schematic structural diagram of a magnetic integrated circuit disclosed in an embodiment of the present invention.
- 3a and 3b are schematic diagrams showing the working principle of a magnetic integrated circuit according to an embodiment of the present invention.
- FIG. 4 is a schematic structural view of a magnetic integrated circuit in which the number of output coil turns is increased on the basis of FIG. 2;
- FIG. 5 is a schematic structural diagram of another magnetic integrated circuit disclosed in an embodiment of the present invention.
- Embodiments of the present invention provide a magnetic integrated circuit and a power conversion device, which can increase an output voltage and reduce output coil loss without changing an input coil. The details are described below separately.
- FIG. 1 is a schematic structural diagram of a magnetic device according to an embodiment of the present invention.
- the magnetic device 11 includes a magnetic center pillar 111, a narrow side pillar 112, a wide side pillar 113, a first yoke 1141 and a second yoke 1142 disposed at both ends of the narrow side pillar 112, and is disposed on the wide side.
- the third yoke 1143 and the fourth yoke 1144 at both ends of the column 113; the input winding 21 is disposed on the magnetic center column 111 of the magnetic device 11.
- the wide side pillar 113 and the narrow side pillar 112 are both made of a magnetic material having an internal air gap, and the inner air gap (1131) of the wide side pillar 113 is larger than the inner air gap (1121) of the narrow side pillar 112.
- FIG. 2 is a schematic structural diagram of a magnetic integrated circuit according to an embodiment of the present invention.
- the magnetic integrated circuit includes the magnetic device 11, the input winding 21 and the metal heat dissipation metal plate 31 shown in FIG. 1, wherein the metal heat dissipation metal plate 31 passes through the first diode D1 and the second diode D2.
- Capacitor C is connected, and the positive and negative poles of capacitor C are used as output voltages.
- Figure 2 includes a first output loop and a second output back
- the first output circuit includes a first diode D1, a capacitor C, a first wire, and a metal heat sink metal plate 31;
- the second output circuit includes a second diode D1, a capacitor C, a second wire, and a metal heat sink metal plate 31.
- Embodiments of the present invention control the magnitude of the output voltage (the voltage across capacitor C) by varying the magnitude and direction of the current in input winding 21.
- FIG. 3a is a schematic diagram of a magnetic integrated circuit disclosed in an embodiment of the present invention.
- a voltage is applied between a and b of the wide-side column 113, a current flows from a of the input winding 21 to b, and when the current is increasing, the magnetic flux direction of the magnetic center column 111 is downward.
- the magnetic flux density is increasing.
- the magnetic flux 1 direction of the wide side column 113 is upward, and the magnetic flux 2 direction of the narrow side column 112 is upward.
- the increasing trend of the magnetic flux 2 forms an induced potential in the first output loop where the first diode D1 is located, so that the first diode D1 is turned on, an output current is formed in the first output loop, and both ends of the capacitor C are formed.
- the induced potential formed by the magnetic flux 1 in the second output loop in which the second diode D2 is located causes the second diode D2 to be turned off, and no current is formed in the second loop, so the magnetic flux 1 continues to rise, and the magnetic flux
- the accumulated energy is stored in the internal air gap 1131 of the wide side column 113.
- FIG. 3b is a schematic diagram of another magnetic integrated circuit disclosed in an embodiment of the present invention.
- a current flows from a of the input winding 21 to b, and the current is decreasing, the magnetic flux direction of the magnetic center pillar 111 is downward, as shown in FIG. 3a, the magnetic flux 3, and the magnetic center pillar 111
- the magnetic flux 3 is reduced, the magnetic flux 2 direction of the narrow side column 112 is upward and the magnetic flux 2 is decreased.
- the induced potential formed by the weakened magnetic flux 2 is turned off by the first diode D1, and no current is formed in the first loop.
- the magnetic flux 1 direction of the wide-side column 113 is upward and the magnetic flux 1 is decreased, and the induced potential formed by the weakened magnetic flux 1 causes the second diode D2 to be turned on, and an output current is formed in the second loop, and both ends of the capacitor C are formed.
- the output voltage is generated.
- FIG. 4 is a schematic structural diagram of a magnetic integrated circuit for increasing the number of output coil turns on the basis of FIG. 2. As shown in FIG. 4, the number of coil turns around the wide side column 113 and the narrow side column 112 in FIG. 4 is doubled. However, when the number of coils is increased, for example, the coil is increased from the original 0.5 ⁇ to 1.5 ⁇ , the impedance is increased by two times, and the output impedance is increased, resulting in an increase in output coil loss. Moreover, the large current coil is not easy to manufacture, and it will occupy more effective winding area of the magnetic core.
- the embodiment of the invention provides a new magnetic integrated circuit.
- the magnetic integrated circuit includes N magnetic devices spaced apart, N input windings, a first output loop, and a second output loop, wherein:
- the i-th magnetic device comprises a magnetic center column, a narrow side column, a wide side column, a first yoke and a second yoke disposed at both ends of the narrow side column, a third yoke and a fourth magnetic body disposed at both ends of the wide side column a yoke; the i-th magnetic device is any one of N magnetic devices;
- the jth input winding is disposed on the magnetic center pillar of the i-th magnetic device; the jth input winding is any one of N input windings, N input windings are connected in parallel; i and j are both positive integers, and N is greater than Or a positive integer equal to 2;
- the first output circuit includes a first diode, a capacitor, a first wire, and a metal heat sink
- the second output circuit includes a second diode, a capacitor, a second wire, and a metal heat sink.
- the first output loop surrounds the N second yokes and the second output loop surrounds the N fourth yokes.
- the output voltage can be increased by N times without increasing the number of turns of the output coil.
- the output voltage can be increased without changing the input coil, reducing output coil losses.
- FIG. 5 is an example in which N is equal to 2.
- FIG. 5 is a schematic structural diagram of another magnetic integrated circuit disclosed in the embodiment of the present invention. As shown in FIG. 4, the magnetic integrated circuit includes two magnetic devices (such as the first magnetic device 11 and the second magnetic device 12 shown in FIG. 5) and two input windings (as shown in FIG. 5). a winding 21 and a second winding 22), a first output loop and a second output loop, wherein:
- the first magnetic device 11 includes a magnetic center pillar 111, a narrow side pillar 112, a wide side pillar 113, a first yoke 1141 and a second yoke 1142 which are disposed at both ends of the narrow side pillar 112, and are disposed at both ends of the wide side pillar 113. a third yoke 1143 and a fourth yoke 1144;
- the second magnetic device 12 includes a magnetic center pillar 121, a narrow side pillar 122, a wide side pillar 123, a first yoke 1241 and a second yoke 1242 disposed at both ends of the narrow side pillar 122, and is disposed at both ends of the wide side pillar 123. a third yoke 1243 and a fourth yoke 1244;
- the first input winding 21 is disposed on the magnetic center pillar 111 of the first magnetic device 11; the second input winding 21 is disposed on the magnetic center pillar 121 of the second magnetic device 12; wherein the first input winding 21 and the second input winding 21 parallel;
- the first output circuit includes a first diode D1, a capacitor C, a first wire, and a metal heat sink base plate 31.
- the second output circuit includes a second diode D2, the capacitor C, the second wire, and the metal heat sink bottom plate 31;
- the first output loop surrounds the second yokes 1142 and 1242, and the second output loop surrounds the fourth yokes 1144 and 1244.
- the input windings on the two magnetic devices are connected in parallel (the first input winding 21 is connected in parallel with the second input winding 21), that is, when the current on the two magnetic devices changes.
- the direction of the magnetic flux generated by the first input winding 21 and the second input winding 21 in the respective magnetic center pillars and the changing trend are also the same.
- a closed coil formed by the first output circuit surrounds the narrow side legs of the two magnetic devices, and a closed coil formed by the second output circuit surrounds the wide side legs of the two magnetic devices.
- the direction of the magnetic flux generated by the first input winding 21 and the second input winding 21 in the respective magnetic center pillars is the same, and is generated in the closed coil formed by the first output loop as compared with the magnetic integrated circuit shown in FIG.
- the induced potential will be doubled, thus achieving the purpose of doubling the output voltage and doubling the output power, and maintaining the low heat generation of the magnetic integrated circuit of FIG. Since the output copper strip only passes through the core once, the winding area of the core is saved.
- the embodiment of the invention utilizes a metal heat sink base plate as a part of the output coil. Since the metal heat sink base plate generally has sufficient width and thickness, the impedance is very small, so the metal heat sink base plate can greatly reduce the loss of the output coil, and the heat dissipation condition is also good. .
- One end of the second yoke 1142 is connected to one end of the narrow side column 112, the other end of the second yoke 1142 is connected to the first end of the magnetic center column 111, and one end of the fourth yoke 1144 is connected to one end of the wide side column 113. The other end of the fourth yoke 1144 is connected to the first end of the magnetic center column 111;
- One end of the first yoke 1141 is connected to the other end of the narrow side pillar 112, and the other end of the first yoke 1141 is connected to the second end of the magnetic center pillar 111; one end of the third yoke 1143 is connected to the other end of the wide side pillar 113. The other end of the third yoke 1143 is connected to the second end of the magnetic center column 111.
- the central axis of the first yoke 1141 is perpendicular to the narrow side column 112
- the central axis of the second yoke 1142 is perpendicular to the narrow side column 112
- the central axis of the third yoke 1143 is perpendicular to the wide side column 113
- the fourth magnetic The central axis of the yoke 1144 is perpendicular to the wide side post 113.
- first yoke 1141 is parallel to the third yoke 1143, and the extension line of the first yoke 1141 coincides with the extension line of the third yoke 1143;
- the second yoke 1142 is parallel to the fourth yoke 1144, and the extension of the second yoke 1142 coincides with the extension of the fourth yoke 1144.
- the narrow side column 112 and the wide side column 113 are each made of a magnetic material having an internal air gap.
- the inner air gap of the wide side pillar 113 is larger than the inner air gap of the narrow side pillar 112.
- the number of turns of each of the N input windings is the same.
- the material of the metal heat dissipation substrate 31 is one or a combination of copper, aluminum, and silver, and the resistance of the metal heat dissipation substrate 31 is less than a preset resistance. Since the resistance of the metal heat sink substrate is small, the loss of the output coil formed by the metal heat sink substrate can be greatly reduced.
- the output voltage can be increased to twice the original (only one magnetic device) without increasing the number of turns of the output coil by the two magnetic devices disposed at intervals.
- the output voltage can be increased without changing the input coil, and the output coil loss can be reduced.
- the embodiment of the present invention further provides a power conversion device, which includes the magnetic integrated circuit and the switch bridge arm shown in FIG. 4, and it can be understood that the level of the power converter is not limited in the embodiment of the present invention.
- the power converter may be a two-level power converter, a three-level power converter or a four-level power converter, etc.
- embodiments of the present invention do not limit the type of the power converter.
- the power converter may be a diode clamp type multi-level power converter, or may be a capacitor clamp type multi-level power converter or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明实施例公开了一种磁集成电路以及功率转换装置,该磁集成电路包括间隔设置的N个磁性器件、N个输入绕组、第一输出回路和第二输出回路,其中:第i个磁性器件包括磁中柱、窄边柱、宽边柱、设置于窄边柱两端的第一磁轭和第二磁轭、设置于宽边柱两端的第三磁轭和第四磁轭;第i个磁性器件为N个磁性器件中的任一个;第j个输入绕组设置于第i个磁性器件的磁中柱上;第j个输入绕组为N个输入绕组中的任一个,N个输入绕组并联;i和j均为正整数,N为大于或等于2的正整数。实施本发明实施例,可以在不改变输入线圈的前提下提高输出电压,减少输出线圈损耗。
Description
本发明涉及功率变换技术领域,具体涉及一种磁集成电路以及功率转换装置。
近年来,随着新能源汽车行业的迅速发展,大功率高压动力电池被广泛采用,大功率高压动力电池的电压一般为100-750V的直流电压,而车辆设备需要的供电电压往往在12-24V之间,为了满足车辆设备的供电电压需求,一般采用功率转换装置(例如,变压器)将高电压(100-750V)转换为低电压(12-24V)。
磁集成电路,是由磁性器件、二极管、电容等组成的电路,可以通过调整磁性器件上的输入线圈和输出线圈的比例来改变输出电压的变化。当需要增加输出电压时,有两种实现方式。一种方式是在不改变输出线圈的匝数的前提下,减少输入线圈的匝数,降低匝比数。然而,当输入线圈的匝数减少之后,会导致输入线圈的交流损耗增加,会导致输入线圈的峰值电流增大,引起输入线圈损耗增大发热严重,导致输入线圈发热严重;另一种方式是在不改变输入线圈的前提下,增加输出线圈的匝数,由于车辆设备的功率一般在1KW-6KW之间,功率转换装置的输出电流一般为200A左右(例如,100-300A),需要的输出电流较大,当输出线圈增加之后,输出阻抗增加,导致输出线圈损耗较大。
由于输出电流较大,输出线圈一般采用截面积较大的铜排或者铜板做1匝线圈。如果增加匝数,加工困难。而且增加匝数之后,阻抗也增加,导致损耗增大。
发明内容
本发明实施例提供一种磁集成电路以及功率转换装置,可以在不改变输入线圈的前提下提高输出电压,减少输出线圈损耗。
本发明实施例第一方面,提供了一种磁集成电路,应用于功率转换装置,
包括间隔设置的N个磁性器件、N个输入绕组、第一输出回路和第二输出回路,其中:
第i个磁性器件包括磁中柱、窄边柱、宽边柱、设置于所述窄边柱两端的第一磁轭和第二磁轭、设置于所述宽边柱两端的第三磁轭和第四磁轭;所述第i个磁性器件为所述N个磁性器件中的任一个;
第j个输入绕组设置于所述第i个磁性器件的磁中柱上;所述第j个输入绕组为所述N个输入绕组中的任一个,所述N个输入绕组并联;所述i和所述j均为正整数,所述N为大于或等于2的正整数;
所述第一输出回路包括第一二极管、电容、第一导线以及金属散热底板,所述第二输出回路包括第二二极管、所述电容、第二导线以及所述金属散热底板;
所述第一输出回路围绕N个第二磁轭,所述第二输出回路围绕N个第四磁轭。
本发明实施例第二方面,提供了一种功率转换装置,包括本发明实施例第一方面所描述的磁集成电路。
可见,根据本发明提供的一种磁集成电路以及功率转换装置,该磁集成电路应用于功率转换装置,包括间隔设置的N个磁性器件、N个输入绕组、第一输出回路和第二输出回路,其中:第i个磁性器件包括磁中柱、窄边柱、宽边柱、设置于窄边柱两端的第一磁轭和第二磁轭、设置于宽边柱两端的第三磁轭和第四磁轭;第i个磁性器件为N个磁性器件中的任一个;第j个输入绕组设置于第i个磁性器件的磁中柱上;第j个输入绕组为N个输入绕组中的任一个,N个输入绕组并联;i和j均为正整数,N为大于或等于2的正整数;第一输出回路包括第一二极管、电容、第一导线以及金属散热底板,第二输出回路包括第二二极管、电容、第二导线以及金属散热底板;第一输出回路围绕N个第二磁轭,第二输出回路围绕N个第四磁轭。实施本发明实施例,通过间隔设置的N个磁性器件,可以在不增加输出线圈的匝数的前提下,将输出电压增加至原来的N倍。可以在不改变输入线圈的前提下提高输出电压,减少输出线圈损耗。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种磁性器件的结构示意图;
图2是本发明实施例公开的一种磁集成电路的结构示意图;
图3a,图3b是本发明实施例公开的一种磁集成电路的工作原理示意图;
图4是在图2的基础上增加输出线圈匝数的磁集成电路的结构示意图;
图5是本发明实施例公开的另一种磁集成电路的结构示意图。
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明的一部分实施方式,而不是全部实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都应属于本发明保护的范围。
本发明实施例提供一种磁集成电路以及功率转换装置,可以在不改变输入线圈的前提下提高输出电压,减少输出线圈损耗。以下分别进行详细说明。
为了更好的理解本发明实施例,首先公开一种磁性器件的结构示意图,请参阅图1,图1是本发明实施例公开的一种磁性器件的结构示意图。如图1所示,该磁性器件11包括磁中柱111、窄边柱112、宽边柱113、设置于窄边柱112两端的第一磁轭1141和第二磁轭1142、设置于宽边柱113两端的第三磁轭1143和第四磁轭1144;输入绕组21设置于第磁性器件11的磁中柱111上。其中,宽边柱113和窄边柱112均由有内部气隙的磁性材料制成,并且宽边柱113的内部气隙(1131)大于窄边柱112的内部气隙(1121)。
请参阅图2,图2是本发明实施例公开的一种磁集成电路的结构示意图。如图2所示,磁集成电路包括图1所示的磁性器件11、输入绕组21和金属散热金属板31,其中金属散热金属板31通过第一二极管D1与第二二极管D2与电容C连接,电容C的正负两极作为输出电压。图2中包括第一输出回路和第二输出回
路,第一输出回路包括第一二极管D1、电容C、第一导线以及金属散热金属板31;第二输出回路包括第二二极管D1、电容C、第二导线以及金属散热金属板31。本发明实施例通过改变输入绕组21中的电流的大小和方向来控制输出电压(电容C两端的电压)的大小。
以下结合图3a和图3b阐述该磁集成电路的工作原理。
请参阅图3a,图3a是本发明实施例公开的一种磁集成电路的原理示意图。如图3a所示,在宽边柱113的a和b之间施加电压,电流从输入绕组21的a流向b,并且电流为增大的趋势时,磁中柱111的磁通方向向下,磁通密度为增大的趋势。如图3a中磁通3,宽边柱113的磁通1方向向上,窄边柱112的磁通2方向向上。磁通2增大的趋势在第一二极管D1所在的第一输出回路中形成感应电势,使得第一二极管D1导通,第一输出回路中形成输出电流,电容C的两端形成输出电压。此时,磁通1在第二二极管D2所在的第二输出回路中形成的感应电势使得第二二极管D2截止,第二回路中没有形成电流,因此磁通1持续上升,磁通1蓄积的能量存储在宽边柱113的内部气隙1131中。
请参阅图3b,图3b是本发明实施例公开的另一种磁集成电路的原理示意图。如图3b所示,当电流从输入绕组21的a流向b,并且电流为减小的趋势时,磁中柱111的磁通方向向下,如图3a中磁通3,并且磁中柱111的磁通3减小,窄边柱112的磁通2方向向上并且磁通2减小。减弱的磁通2形成的感应电势被第一二极管D1截止,第一回路中没有形成电流。宽边柱113的磁通1方向向上并且磁通1减小,减弱的磁通1形成的感应电势使得第二二极管D2导通,第二回路中形成输出电流,电容C的两端形成输出电压。
其中,磁集成电路可以通过调整磁性器件上的输入线圈和输出线圈的比例来改变输出电压的变化。当需要增加输出电压时,常用的方式是在不改变输入线圈的前提下,增加输出线圈的匝数。请参阅图4,图4是在图2的基础上增加输出线圈匝数的磁集成电路的结构示意图。如图4所示,图4中绕宽边柱113和窄边柱112的线圈圈数增加了一倍。然而,当线圈数量增加之后,比如,线圈由原来的0.5匝增加到1.5匝,阻抗会增大两倍,输出阻抗增加,会导致输出线圈损耗增加。并且,大电流线圈不容易制作,而且会多占用磁芯的有效绕线面积。
为避免上述缺点,本发明实施例提供了一种新的磁集成电路。该磁集成电路包括间隔设置的N个磁性器件、N个输入绕组、第一输出回路和第二输出回路,其中:
第i个磁性器件包括磁中柱、窄边柱、宽边柱、设置于窄边柱两端的第一磁轭和第二磁轭、设置于宽边柱两端的第三磁轭和第四磁轭;第i个磁性器件为N个磁性器件中的任一个;
第j个输入绕组设置于第i个磁性器件的磁中柱上;第j个输入绕组为N个输入绕组中的任一个,N个输入绕组并联;i和j均为正整数,N为大于或等于2的正整数;
第一输出回路包括第一二极管、电容、第一导线以及金属散热底板,第二输出回路包括第二二极管、电容、第二导线以及金属散热底板;
第一输出回路围绕N个第二磁轭,第二输出回路围绕N个第四磁轭。
本发明实施例中,通过间隔设置的N个磁性器件,可以在不增加输出线圈的匝数的前提下,将输出电压增加至原来的N倍。可以在不改变输入线圈的前提下提高输出电压,减少输出线圈损耗。
具体的,请参阅图5,图5以N等于2为例,图5是本发明实施例公开的另一种磁集成电路的结构示意图。如图4所示,该磁集成电路包括间隔设置的2个磁性器件(如图5所示的第一磁性器件11和第二磁性器件12)、2个输入绕组(如图5所示的第一绕组21和第二绕组22)、第一输出回路和第二输出回路,其中:
第一磁性器件11包括磁中柱111、窄边柱112、宽边柱113、设置于窄边柱112两端的第一磁轭1141和第二磁轭1142、设置于宽边柱113两端的第三磁轭1143和第四磁轭1144;
第二磁性器件12包括磁中柱121、窄边柱122、宽边柱123、设置于窄边柱122两端的第一磁轭1241和第二磁轭1242、设置于宽边柱123两端的第三磁轭1243和第四磁轭1244;
第一输入绕组21设置于第一磁性器件11的磁中柱111上;第二输入绕组21设置于第二磁性器件12的磁中柱121上;其中,第一输入绕组21与第二输入绕组21并联;
第一输出回路包括第一二极管D1、电容C、第一导线以及金属散热底板31,
第二输出回路包括第二二极管D2、上述电容C、第二导线以及上述金属散热底板31;
第一输出回路围绕第二磁轭1142和1242,第二输出回路围绕第四磁轭1144和1244。
本发明实施例中,采用两个磁性器件,并且两个磁性器件上的输入绕组并联(第一输入绕组21与第二输入绕组21并联),也即这两个磁性器件上的电流变化趋势时相同的,第一输入绕组21与第二输入绕组21在各自的磁中柱中产生的磁通方向以及变化趋势也是相同的。第一输出回路形成的闭合线圈包围两个磁性器件的窄边柱,第二输出回路形成的闭合线圈包围两个磁性器件的宽边柱。
第一输入绕组21与第二输入绕组21在各自的磁中柱中产生的磁通方向以及变化趋势相同,与图2所示的磁集成电路相比,第一输出回路形成的闭合线圈中产生的感应电势将增大一倍,这样就达到了将输出电压提高一倍,输出功率提高一倍的目的,并且保有图2的磁集成电路的发热低的特点。由于输出铜排只从磁芯中穿过一次,节约了磁芯的绕线面积。本发明实施例利用金属散热底板作为输出线圈的一部分,由于金属散热底板一般有足够的宽度和厚度,阻抗非常小,所以采用金属散热底板可以大大减少输出线圈的损耗,而且其散热条件也较好。
其中,第二磁轭1142的一端连接窄边柱112的一端,第二磁轭1142的另一端连接磁中柱111的第一端;第四磁轭1144的一端连接宽边柱113的一端,第四磁轭1144的另一端连接磁中柱111的第一端;
第一磁轭1141的一端连接窄边柱112的另一端,第一磁轭1141的另一端连接磁中柱111的第二端;第三磁轭1143的一端连接宽边柱113的另一端,第三磁轭1143的另一端连接磁中柱111的第二端。
其中,第一磁轭1141的中轴线垂直于窄边柱112,第二磁轭1142的中轴线垂直于窄边柱112,第三磁轭1143的中轴线垂直于宽边柱113,第四磁轭1144的中轴线垂直于宽边柱113。
其中,第一磁轭1141与第三磁轭1143平行,并且第一磁轭1141的延长线与第三磁轭1143的延长线重合;
第二磁轭1142与第四磁轭1144平行,并且第二磁轭1142的延长线与第四磁轭1144的延长线重合。
其中,窄边柱112和宽边柱113均由有内部气隙的磁性材料制成。
其中,宽边柱113的内部气隙大于窄边柱112的内部气隙。
其中,N个输入绕组中每个输入绕组的线圈匝数相同。
其中,金属散热底板31的材料为铜、铝、银中的一种或多种组合,金属散热底板31的电阻小于预设阻值。由于金属散热底板的电阻较小,可以大大减少金属散热底板形成的输出线圈的损耗。
图5所示的磁集成电路,通过间隔设置的2个磁性器件,可以在不增加输出线圈的匝数的前提下,将输出电压增加至原来(只采用一个磁性器件)的2倍。可以在不改变输入线圈的前提下提高输出电压,并且可以减少输出线圈损耗。
本发明实施例还提供一种功率转换装置,该功率转换装置包括图4所示的磁集成电路和开关桥臂,可以理解,本发明实施例对所述功率变换器的电平等级不作限定,例如,所述功率变换器可以为二电平功率变换器,三电平功率变换器或四电平功率变换器等;此外,本发明的实施例对所述功率变换器的类型也不作限定,例如,所述功率变换器可以为二极管箝位型多电平功率变换器,也可以是电容箝位型多电平功率变换器等。
以上对本发明实施例所提供的一种磁集成电路以及功率转换装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (9)
- 一种磁集成电路,应用于功率转换装置,其特征在于,包括间隔设置的N个磁性器件、N个输入绕组、第一输出回路和第二输出回路,其中:第i个磁性器件包括磁中柱、窄边柱、宽边柱、设置于所述窄边柱两端的第一磁轭和第二磁轭、设置于所述宽边柱两端的第三磁轭和第四磁轭;所述第i个磁性器件为所述N个磁性器件中的任一个;第j个输入绕组设置于所述第i个磁性器件的磁中柱上;所述第j个输入绕组为所述N个输入绕组中的任一个,所述N个输入绕组并联;所述i和所述j均为正整数,所述N为大于或等于2的正整数;所述第一输出回路包括第一二极管、电容、第一导线以及金属散热底板,所述第二输出回路包括第二二极管、所述电容、第二导线以及所述金属散热底板;所述第一输出回路围绕N个第二磁轭,所述第二输出回路围绕N个第四磁轭。
- 根据权利要求1所述的磁集成电路,其特征在于,所述第二磁轭的一端连接所述窄边柱的一端,所述第二磁轭的另一端连接所述磁中柱的第一端;所述第四磁轭的一端连接所述宽边柱的一端,所述第四磁轭的另一端连接所述磁中柱的所述第一端;所述第一磁轭的一端连接所述窄边柱的另一端,所述第一磁轭的另一端连接所述磁中柱的第二端;所述第三磁轭的一端连接所述宽边柱的另一端,所述第三磁轭的另一端连接所述磁中柱的所述第二端。
- 根据权利要求2所述的磁集成电路,其特征在于,所述第一磁轭的中轴线垂直于所述窄边柱,所述第二磁轭的中轴线垂直于所述窄边柱,所述第三磁轭的中轴线垂直于所述宽边柱,所述第四磁轭的中轴线垂直于所述宽边柱。
- 根据权利要求3所述的磁集成电路,其特征在于,所述第一磁轭与所述第三磁轭平行,并且所述第一磁轭的延长线与所述第三磁轭的延长线重合;所述第二磁轭与所述第四磁轭平行,并且所述第二磁轭的延长线与所述第四磁轭的延长线重合。
- 根据权利要求4所述的磁集成电路,其特征在于,所述窄边柱和所述宽边柱均由有内部气隙的磁性材料制成。
- 根据权利要求5所述的磁集成电路,其特征在于,所述宽边柱的内部气隙大于所述窄边柱的内部气隙。
- 根据权利要求6所述的磁集成电路,其特征在于,所述N个输入绕组中每个输入绕组的线圈匝数相同。
- 根据权利要求1-7任一项所述的磁集成电路,其特征在于,所述金属散热底板的材料为铜、铝、银中的一种或多种组合,所述金属散热底板的电阻小于预设阻值。
- 一种功率转换装置,其特征在于,包括如权利要求1-8任一项所述的磁集成电路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780007202.0A CN108702026B (zh) | 2017-08-11 | 2017-08-11 | 一种磁集成电路以及功率转换装置 |
PCT/CN2017/096995 WO2019028804A1 (zh) | 2017-08-11 | 2017-08-11 | 一种磁集成电路以及功率转换装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/096995 WO2019028804A1 (zh) | 2017-08-11 | 2017-08-11 | 一种磁集成电路以及功率转换装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019028804A1 true WO2019028804A1 (zh) | 2019-02-14 |
Family
ID=63844098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/096995 WO2019028804A1 (zh) | 2017-08-11 | 2017-08-11 | 一种磁集成电路以及功率转换装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108702026B (zh) |
WO (1) | WO2019028804A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021003650A1 (zh) * | 2019-07-08 | 2021-01-14 | 深圳欣锐科技股份有限公司 | 集成车载充电机的电压转换电路 |
CN111527688A (zh) * | 2019-07-08 | 2020-08-11 | 深圳欣锐科技股份有限公司 | 集成车载充电机的电压转换电路 |
CN111542995A (zh) * | 2019-07-08 | 2020-08-14 | 深圳欣锐科技股份有限公司 | 集成车载充电机的电压转换电路 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4774649A (en) * | 1987-07-01 | 1988-09-27 | Power-One, Inc. | Integrated magnetic resonant power converter |
CN101030732A (zh) * | 2007-01-09 | 2007-09-05 | 南京航空航天大学 | 输出电流纹波最小化正激式磁集成变换器 |
-
2017
- 2017-08-11 WO PCT/CN2017/096995 patent/WO2019028804A1/zh active Application Filing
- 2017-08-11 CN CN201780007202.0A patent/CN108702026B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4774649A (en) * | 1987-07-01 | 1988-09-27 | Power-One, Inc. | Integrated magnetic resonant power converter |
CN101030732A (zh) * | 2007-01-09 | 2007-09-05 | 南京航空航天大学 | 输出电流纹波最小化正激式磁集成变换器 |
Also Published As
Publication number | Publication date |
---|---|
CN108702026B (zh) | 2019-11-05 |
CN108702026A (zh) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pavlovský et al. | Buck/boost DC–DC converter topology with soft switching in the whole operating region | |
US20190096572A1 (en) | Coupled Inductor Structure | |
US8058962B2 (en) | Center-tapped transformer | |
US20090237195A1 (en) | Center-tapped transformer | |
WO2019028804A1 (zh) | 一种磁集成电路以及功率转换装置 | |
Pahlevani et al. | A hybrid phase-shift modulation technique for DC/DC converters with a wide range of operating conditions | |
CN107808752B (zh) | 一种四柱无级调压变压器 | |
US20150364909A1 (en) | Power converter, short-circuit detecting device thereof and short-circuit detecting method thereof | |
US9570225B2 (en) | Magnetoelectric device capable of storing usable electrical energy | |
Chen et al. | A passive negative magnetic reluctance structure-based kHz transformer for improved DC magnetic bias withstanding | |
Rong et al. | A magnetic integration half-turn planar transformer for LLC resonant DC-DC converters | |
JP4246106B2 (ja) | 飽和可能リアクトルを備えた電気アーク溶接機の電源 | |
CN204271918U (zh) | 一种llc电路 | |
Ou et al. | A novel transformer structure used in a 1.4 MHz LLC resonant converter with GaNFETs | |
CN207069881U (zh) | 一种磁集成电路以及功率转换装置 | |
WO2016180219A1 (zh) | 一种缩短暂态响应时间的饱和电抗器 | |
Vinnikov et al. | Middle-frequency isolation transformer design issues for the high-voltage DC/DC converter | |
TWI745729B (zh) | 全橋式諧振轉換電路 | |
JP6904018B2 (ja) | 直流電源装置 | |
JP2016158422A (ja) | フォワード形dc−dcコンバータ回路 | |
JPH104680A (ja) | Dc/dcコンバータ装置 | |
JP3582721B2 (ja) | Dc−dcコンバータ | |
JP4512855B2 (ja) | 着磁装置 | |
JP6331480B2 (ja) | インバータ装置及びプラズマ発生装置 | |
JPWO2005041389A1 (ja) | パルス発生回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17921129 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17921129 Country of ref document: EP Kind code of ref document: A1 |