WO2021003650A1 - 集成车载充电机的电压转换电路 - Google Patents

集成车载充电机的电压转换电路 Download PDF

Info

Publication number
WO2021003650A1
WO2021003650A1 PCT/CN2019/095151 CN2019095151W WO2021003650A1 WO 2021003650 A1 WO2021003650 A1 WO 2021003650A1 CN 2019095151 W CN2019095151 W CN 2019095151W WO 2021003650 A1 WO2021003650 A1 WO 2021003650A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
transistor
circuit
sub
capacitor
Prior art date
Application number
PCT/CN2019/095151
Other languages
English (en)
French (fr)
Inventor
陈丽君
赵德琦
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN201980006623.0A priority Critical patent/CN111542996A/zh
Priority to PCT/CN2019/095151 priority patent/WO2021003650A1/zh
Publication of WO2021003650A1 publication Critical patent/WO2021003650A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements

Definitions

  • This application relates to the technical field of circuit structures, and in particular to a voltage conversion circuit integrated with an on-board charger.
  • LLC resonant circuit is a circuit topology suitable for occasions with high conversion power, low output voltage, but large output current. High power conversion efficiency and power density, as well as low electromagnetic interference characteristics, make it widely used in various electronic products. At present, there are mainly two common LLC resonant circuits in the voltage conversion circuit of the integrated vehicle charger: a half-bridge LLC resonant circuit and a full-bridge LLC resonant circuit.
  • the embodiment of the present application provides a voltage conversion circuit integrated with an on-board charger, which is used to increase the adaptation range of the input voltage of the circuit and meet the requirements of low voltage and large current output.
  • an embodiment of the present application provides a voltage conversion circuit integrated with a vehicle charger, including an input circuit, a transformer, and an output circuit.
  • the input circuit includes a first sub-input circuit and a second sub-input circuit
  • the transformer includes The first primary winding, the second primary winding and the secondary winding, where:
  • the input circuit is connected to the transformer, the transformer is connected to the output circuit, the first sub-input circuit is connected in series with the second sub-input circuit, and the first sub-input circuit is connected to the first original circuit.
  • the first port and the second port of the side winding are connected, the second sub-input circuit is connected with the first port and the second port of the second primary winding, and the secondary winding is connected with the output circuit;
  • the high voltage signal passes through the first sub-input circuit and the second sub-input circuit to generate a first electrical signal and a second electrical signal, respectively, and the first electrical signal passes through the first primary winding of the transformer to generate a first electrical signal.
  • Magnetic flux, the second electrical signal passes through the second primary winding of the transformer to generate a second magnetic flux, the direction of the first magnetic flux is the same as the direction of the second magnetic flux, the first magnetic flux and the second magnetic flux
  • the magnetic flux superimposes through the secondary winding of the transformer to generate an induced electromotive force, and the induced electromotive force generates a low voltage signal through the output circuit.
  • the first sub-input circuit includes a first capacitor, a second capacitor, a first transistor, a second transistor and a first inductor, wherein:
  • the first port of the first capacitor is connected to the drain of the first transistor, the source of the first transistor is connected to the drain of the second transistor and the first port of the second capacitor, so
  • the second port of the second capacitor is connected to the first port of the first inductor, the first port of the first sub-input circuit is connected to the second port of the first inductor, and the first sub-input circuit
  • the second port of the first capacitor is connected to the second port of the first capacitor and the source of the second transistor, and the third port of the first sub-input circuit is connected to the first port of the first capacitor and the first capacitor.
  • the drain of a transistor is connected.
  • the second sub-input circuit includes a third capacitor, a fourth capacitor, a third transistor, a fourth transistor and a second inductor, wherein:
  • the first port of the third capacitor is connected to the drain of the third transistor, the source of the third transistor is connected to the drain of the fourth transistor and the first port of the fourth capacitor, so
  • the second port of the fourth capacitor is connected to the first port of the second inductor, the first port of the second sub-input circuit is connected to the second port of the second inductor, and the second sub-input circuit
  • the second port is connected to the second port of the third capacitor and the source of the fourth transistor, and the third port of the second sub-input circuit is connected to the first port of the third capacitor and the first port of the third capacitor.
  • the first port of the first primary winding is connected to the first port of the first sub-input circuit
  • the second port of the first primary winding is connected to the first port of the first sub-input circuit.
  • the second port of the sub-input circuit is connected.
  • the first port of the second primary winding is connected to the first port of the second sub-input circuit, and the second port of the second primary winding is connected to the second port of the second primary winding.
  • the second port of the input circuit is connected.
  • the output circuit includes: a first switch unit, a second switch unit and a fifth capacitor, wherein:
  • the first port of the fifth capacitor is connected to the first port of the second switch unit and the first port of the first switch unit.
  • the first port of the secondary winding is connected to the second port of the second switch unit, and the second port of the secondary winding is connected to the second port of the fifth inductor Connected, the third port of the secondary winding is connected to the second port of the first switch unit.
  • the first switch unit and the second switch unit include at least one of the following: a rectifier diode and a field effect transistor.
  • the second aspect of the embodiments of the present application provides a switching power supply, including the voltage conversion circuit of the integrated vehicle charger disclosed in the first aspect of the embodiments of the present application.
  • a third aspect of the present application provides a vehicle-mounted device, including the voltage conversion circuit of the integrated vehicle-mounted charger disclosed in the first aspect of the embodiments of the present application and the switching power supply disclosed in the second aspect.
  • the input circuit is connected to the transformer, the transformer is connected to the output circuit, the first sub-input circuit is connected in series with the second sub-input circuit, and the first sub-input circuit is connected to the first port and the second port of the first primary winding.
  • the second sub-input circuit is connected to the first port and the second port of the second primary winding, and the secondary winding is connected to the output circuit; the high voltage signal passes through the first sub-input circuit and the second sub-input
  • the circuit respectively generates a first electrical signal and a second electrical signal.
  • the first electrical signal passes through the first primary winding of the transformer to generate a first magnetic flux
  • the second electrical signal passes through the second primary winding of the transformer.
  • the embodiment of the present application consists of two LLC resonant circuits in series to form two working branches.
  • the two LLC resonant circuits carry the input voltage at the same time, and the voltage remains the same, thereby improving the circuit Adaptation range of the input voltage.
  • Fig. 1 is a schematic structural diagram of a common half-bridge LLC resonant circuit in the prior art
  • Fig. 2 is a schematic structural diagram of a common full-bridge LLC resonant circuit in the prior art
  • Fig. 3 is a circuit block diagram of a voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application
  • 4A is a schematic structural diagram of a voltage conversion circuit for an integrated vehicle charger provided by an embodiment of the present application.
  • 4B is a schematic diagram of a first current direction provided by an embodiment of the present application.
  • 4C is a schematic diagram of a second current direction provided by an embodiment of the present application.
  • 4D is a schematic diagram of a third current direction provided by an embodiment of the present application.
  • 4E is a schematic diagram of a fourth current direction provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the first input circuit shown in FIG. 4A;
  • FIG. 6 is a schematic structural diagram of the second input circuit shown in FIG. 4A;
  • FIG. 7 is a schematic diagram of the structure of the output circuit shown in FIG. 4A;
  • Fig. 8 is a schematic structural diagram of the transformer shown in Fig. 4A.
  • FIG. 1 is a common half-bridge LLC resonant circuit in the prior art.
  • the figure includes the power supply, two field effects (Q1 and Q2), the primary input filter capacitor C1, the transformer T1, the primary LLC resonant circuit, and the output circuit.
  • the transformer T1 includes a primary winding, a first secondary winding, and a second secondary winding.
  • the primary-side LLC resonant circuit includes a series-connected resonant capacitor C2, a resonant inductor L1, and the magnetic inductance of the primary winding itself.
  • the output circuit includes the magnetic induction of the first secondary winding and the second secondary winding itself, rectifier diodes (D1 and D2), and the secondary output capacitor C3.
  • FIG. 2 is a common full-bridge LLC resonant circuit in the prior art.
  • the figure includes the power supply, four field effects (Q1, Q2, Q3 and Q4), the primary input filter capacitor C1, the transformer T1, the primary LLC resonant circuit, and the output circuit.
  • the transformer T1 includes a primary winding, a first secondary winding, and a second secondary winding.
  • the primary-side LLC resonant circuit includes a series-connected resonant capacitor C2, a resonant inductor L1, and the magnetic inductance of the primary winding itself.
  • the output circuit includes the magnetic induction of the first secondary winding and the second secondary winding itself, rectifier diodes (D1 and D2), and the secondary output capacitor C3.
  • the first sub-input circuit and the second sub-input circuit jointly carry a higher input voltage, so the adapting range of the input voltage of the circuit can be increased.
  • FIG. 3 is a circuit block diagram of a voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
  • the voltage conversion circuit of the integrated vehicle charger includes an input circuit, a transformer, and an output circuit.
  • the input circuit includes a first A sub-input circuit, a second sub-input circuit, and the transformer includes a first primary winding, a second primary winding and a secondary winding wound on a magnetic core, wherein:
  • the input circuit is connected to the transformer, the transformer is connected to the output circuit, the first sub-input circuit is connected in series with the second sub-input circuit, the first sub-input circuit is connected to the first port and the second port of the first primary winding, and the second sub-input The circuit is connected to the first port and the second port of the second primary winding, and the secondary winding is connected to the output circuit;
  • the high voltage signal passes through the first sub-input circuit and the second sub-input circuit to generate the first electrical signal and the second electrical signal respectively.
  • the first electrical signal passes through the first primary winding of the transformer to generate the first magnetic flux
  • the second electrical signal passes through the transformer.
  • the second primary winding generates a second magnetic flux.
  • the direction of the first magnetic flux is the same as the direction of the second magnetic flux.
  • the first magnetic flux and the second magnetic flux are superimposed through the secondary winding of the transformer to generate an induced electromotive force.
  • the induced electromotive force generates a low voltage through the output circuit signal.
  • the first sub-input circuit and the second sub-input circuit jointly carry a higher input voltage in the embodiment of the present application, so the input voltage of the circuit can be improved. ⁇ Scope.
  • FIG. 4A is a schematic structural diagram of a voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
  • the voltage conversion circuit of the integrated vehicle charger includes an input circuit 100, an output circuit 200, and a transformer 300.
  • the circuit 100 includes a first sub-input circuit 110 and a second sub-input circuit 120, wherein:
  • the first sub-input circuit 110 includes a first capacitor C1, a second capacitor C2, a first transistor Q1, a second transistor Q2, and a first inductor L1.
  • the first port of the first capacitor C1 is connected to the drain of the first transistor Q1
  • the source of the first transistor Q1 is connected to the drain of the second transistor Q2 and the first port of the second capacitor C2 and the first port of the second capacitor C2, the second port of the second capacitor C2 is connected to the first port of the first inductor L1, and the first sub-input circuit
  • the first port 111 of 110 is connected to the second port of the first inductor L1
  • the second port 112 of the first sub-input circuit 110 is connected to the second port of the first capacitor C1 and the source of the second transistor Q2, and the first sub
  • the third port 113 of the input circuit is connected to the first port of the first capacitor C1 and the drain of the first transistor Q1;
  • the second sub-input circuit 120 includes a third capacitor C3, a fourth capacitor C4, a third transistor Q3, a fourth transistor Q4, and a second inductor L2.
  • the first port of the third capacitor C3 is connected to the drain of the third transistor Q3,
  • the source of the third transistor Q3 is connected to the drain of the fourth transistor Q4 and the first port of the fourth capacitor C4, the second port of the fourth capacitor C4 is connected to the first port of the second inductor L2, and the second sub-input circuit
  • the first port 121 of 120 is connected to the second port of the second inductor L2.
  • the second port 122 of the second sub-input circuit 120 is connected to the second port of the third capacitor C3 and the source of the fourth transistor Q4.
  • the third port 123 of the input circuit is connected to the first port of the third capacitor C3 and the drain of the third transistor Q3.
  • the first transistor Q1, the second transistor Q2, the third transistor Q3, and the fourth transistor Q4 are all field effect transistors.
  • the second port 112 of the first sub-input circuit 110 is connected to the third port 123 of the second sub-input circuit 120, the third port 113 of the first sub-input circuit 110 is connected to the anode of the input source, and the second sub-input circuit 120
  • the second port 122 is connected to the negative electrode of the input source.
  • the first transistor Q1 and the third transistor Q3 switch synchronously
  • the second transistor Q2 and the fourth transistor Q4 switch synchronously
  • the first transistor Q1 and the third transistor Q3 are turned on synchronously
  • the second transistor Q2 and the fourth transistor Q4 are synchronously turned off.
  • the direction of the first magnetic flux generated by the first electrical signal through the first primary winding of the transformer is horizontal to the left
  • the direction of the second magnetic flux generated by the second electrical signal through the second primary winding of the transformer is horizontal
  • the second transistor Q2 and the fourth transistor Q4 are turned on synchronously
  • the first transistor Q1 and the third transistor Q3 are turned off synchronously
  • the first electrical signal passes through the first magnetic flux generated by the first primary winding of the transformer.
  • the direction is horizontal to the right
  • the direction of the second magnetic flux generated by the second electrical signal through the second primary winding of the transformer is horizontal to the right.
  • the first sub-input circuit 110 and the second sub-input circuit 120 jointly carry the input high voltage.
  • the high-voltage signal passes through the first sub-input circuit 110 to generate a first electrical signal
  • the high-voltage signal passes through the second sub-input circuit 120 to generate a first electrical signal.
  • Two electrical signals The first electrical signal passes through the first primary winding of the transformer to generate a first magnetic flux
  • the second electrical signal passes through the second primary winding of the transformer to generate a second magnetic flux.
  • the direction of the first magnetic flux is the same as the direction of the second magnetic flux.
  • the first magnetic flux and the second magnetic flux are superimposed through the secondary winding of the transformer to generate an induced electromotive force, and the induced electromotive force passes through the output circuit 200 to generate a low voltage signal.
  • the first port 301 of the first primary winding is connected to the first port 111 of the first sub-input circuit 110, and the second port 302 of the first primary winding is connected to the second port 112 of the first sub-input circuit 110,
  • the third port 303 of the first primary winding is connected to the first port 121 of the second sub-input circuit 120, the fourth port 304 of the first primary winding is connected to the second port 122 of the second sub-input circuit 120, and the secondary side
  • the first port 305 of the winding is connected to the cathode of the second rectifier diode D2
  • the second port 306 of the secondary winding is connected to the second port of the fifth capacitor C5
  • the third port 307 of the secondary winding is connected to the first rectifier diode D1.
  • the output circuit 200 includes a first rectifier diode D1, a second rectifier diode D2, and a fifth capacitor C5.
  • the first port of the fifth capacitor C5 is connected to the anode of the second rectifier diode D1 and the anode of the first rectifier diode D2.
  • the first rectifier diode D1 and the second rectifier diode D2 can be replaced by field effect transistors.
  • the first primary winding, the second primary winding and the secondary winding are wound on a magnetic core, and the windings are connected in series through the magnetic pole layer and the transformer compound mode.
  • the embodiment of the present application is composed of two half-bridge LLC resonant circuits in series to form two working branches.
  • the two half-bridge LLC resonant circuits simultaneously carry the input voltage, and The voltage remains the same, which can increase the adaptation range of the circuit's input voltage.
  • the first sub-input circuit 110 and the second sub-input circuit 120 have the same structure, the internal component parameters of the two are also the same.
  • the capacitance values of the first capacitor C1 and the third capacitor C3 are the same, and the other components should be understood in the same way, and will not be repeated here.
  • the first transistor Q1 and the third transistor Q3 are turned on or off synchronously, and the second transistor Q2 and the fourth transistor Q4 are turned on or off synchronously.
  • the gate of the first transistor Q1 and the gate of the third transistor Q3 receive the same signal, and the gate of the second transistor Q2 and the gate of the fourth transistor Q4 receive the same signal.
  • the first sub-input circuit 110 and the second sub-input circuit 120 are connected in series, so that both have the same voltage division for the input signal.
  • the working process of the voltage conversion circuit of the integrated on-board charger includes four stages in one cycle, as follows:
  • the first stage the first transistor Q1 and the third transistor Q3 are in the on state, and the second transistor Q2 and the fourth transistor Q4 are in the off state.
  • the current direction in the voltage conversion circuit of the integrated on-board charger is shown in Figure 4B.
  • the first capacitor C1, the first transistor Q1, the second capacitor C2, and the first inductor L1 form a first resonant circuit.
  • the first electrical signal in the first resonant circuit rises and then drops as a sine function;
  • the third capacitor C3, the third The transistor Q3, the fourth capacitor C4 and the second inductor L2 form a second resonant circuit.
  • the second electrical signal in the second resonant circuit rises first and then falls as a sine function; the first electrical signal in the first resonant circuit passes through the transformer A primary winding generates the first magnetic flux.
  • the second electrical signal in the second resonant circuit passes through the second primary winding of the transformer to generate a second magnetic flux.
  • the direction of the first magnetic flux is the same as the direction of the second magnetic flux.
  • the first magnetic flux passes through the transformer.
  • the secondary winding generates the first induced electromotive force
  • the second magnetic flux passes through the secondary winding of the transformer to generate the second induced electromotive force. Since the first primary winding and the second primary winding are wound on the same magnetic core and are well coupled to each other, The generated first induced electromotive force and the second induced electromotive force have the same magnitude, and the directions are both positive and negative.
  • the induced electromotive force generated at the sixth port 306 and the seventh port 307 of the secondary winding of the transformer turns on the first rectifier diode D1 to supply power to the fifth capacitor C5 and the output load, and the electrical signal first rises and then falls in a sinusoidal function.
  • the second stage the first transistor Q1 and the third transistor Q3 are in the off state, and the second transistor Q2 and the fourth transistor Q4 are in the on state.
  • the current direction in the voltage conversion circuit of the integrated on-board charger is shown in Figure 4C.
  • the first electrical signal and the second electrical signal flowing through the first transistor Q1 and the third transistor Q3 are both sinusoidal, rising first and then falling; when the first electrical signal and the second electrical signal flowing through the first transistor Q1 and the third transistor Q3 When the second electrical signal drops to zero, the first transistor Q1 and the third transistor Q3 achieve zero current turn-off.
  • the directions of the induced electromotive force generated by the first primary winding, the second primary winding, and the secondary winding are up-negative and down-positive.
  • the induced electromotive force generated at the fifth port 305 and the sixth port 306 of the secondary winding of the transformer The second rectifier diode D2 is turned on to supply power to the fifth capacitor C5 and the output load.
  • the third stage the first transistor Q1 and the third transistor Q3 are in the off state, and the second transistor Q2 and the fourth transistor Q4 are in the on state.
  • the current direction in the voltage conversion circuit of the integrated on-board charger is shown in Figure 4D.
  • the second transistor Q2 and the fourth transistor Q4 are in a conducting state.
  • the second capacitor C2, the second transistor Q2, and the first inductor L1 form a third resonant circuit.
  • the third electrical signal in the third resonant circuit rises and then drops as a sine function; the fourth capacitor C4, the fourth transistor Q4 and the second The inductance L2 forms the fourth resonant circuit.
  • the fourth electrical signal in the fourth resonant circuit rises and then drops as a sine function; the third electrical signal in the third resonant circuit passes through the first primary winding of the transformer to generate a third magnetic flux.
  • the fourth electrical signal in the four-resonance circuit generates a fourth magnetic flux through the second primary winding of the transformer.
  • the direction of the third magnetic flux is the same as that of the fourth magnetic flux.
  • the third magnetic flux passes through the secondary winding of the transformer to generate a third induced electromotive force.
  • the fourth magnetic flux passes through the secondary winding of the transformer to generate a fourth induced electromotive force.
  • the induced electromotive force generated at the fifth port 305 and the sixth port 306 of the secondary winding of the transformer turns on the second rectifier diode D2 to supply power to the fifth capacitor C5 and the output load, and the electrical signal first rises and then falls in a sinusoidal function.
  • the fourth stage the first transistor Q1 and the third transistor Q3 are in the on state, and the second transistor Q2 and the fourth transistor Q4 are in the off state.
  • the current direction in the voltage conversion circuit of the integrated on-board charger is shown in Figure 4E.
  • the third electrical signal and the fourth electrical signal flowing through the second transistor Q2 and the fourth transistor Q4 are both sinusoidal, rising first and then falling; when the third electrical signal and the fourth electrical signal flowing through the second transistor Q2 and the fourth transistor Q4 When the four electrical signals drop to zero, the second transistor Q2 and the fourth transistor Q4 achieve zero current turn-off.
  • the third electrical signal flows through the first transistor Q1 and the fourth electrical signal flows through the third transistor Q3 makes the voltage of the first transistor Q1 and the third transistor Q3 drop to zero, and the first transistor Q1 and the third transistor Q3 realize zero voltage turn-on.
  • the direction of the induced electromotive force generated by the first primary winding, the second primary winding and the secondary winding is positive and negative, and the induced electromotive force generated at the sixth port 306 and the seventh port 307 of the secondary winding of the transformer
  • the first rectifier diode D1 is turned on to supply power to the fifth capacitor C5 and the output load.
  • FIG. 5 is a schematic structural diagram of the first sub-input circuit 110 in the voltage conversion circuit of the integrated vehicle charger shown in FIG. 4A, in which:
  • the first sub-input circuit 110 includes a first capacitor C1, a second capacitor C2, a first transistor Q1, a second transistor Q2, and a first inductor L1.
  • the first port of the first capacitor C1 is connected to the drain of the first transistor Q1
  • the source of the first transistor Q1 is connected to the drain of the second transistor Q2 and the first port of the second capacitor C2 and the first port of the second capacitor C2, the second port of the second capacitor C2 is connected to the first port of the first inductor L1, and the first sub-input circuit
  • the first port 111 of 110 is connected to the second port of the first inductor L1
  • the second port 112 of the first sub-input circuit 110 is connected to the second port of the first capacitor C1 and the source of the second transistor Q2, and the first sub
  • the third port 113 of the input circuit is connected to the first port of the first capacitor C1 and the drain of the first transistor Q1.
  • the first transistor Q1 and the second transistor Q2 are both field effect transistors.
  • FIG. 6 is a schematic structural diagram of the second sub-input circuit 120 in the voltage conversion circuit of the integrated vehicle charger shown in FIG. 4A, in which:
  • the second sub-input circuit 120 includes a third capacitor C3, a fourth capacitor C4, a third transistor Q3, a fourth transistor Q4, and a second inductor L2.
  • the first port of the third capacitor C3 is connected to the drain of the third transistor Q3,
  • the source of the third transistor Q3 is connected to the drain of the fourth transistor Q4 and the first port of the fourth capacitor C4, the second port of the fourth capacitor C4 is connected to the first port of the second inductor L2, and the second sub-input circuit
  • the first port 121 of 120 is connected to the second port of the second inductor L2.
  • the second port 122 of the second sub-input circuit 120 is connected to the second port of the third capacitor C3 and the source of the fourth transistor Q4.
  • the third port 123 of the input circuit is connected to the first port of the third capacitor C3 and the drain of the third transistor Q3.
  • the third transistor Q3 and the fourth transistor Q4 are both field effect transistors.
  • FIG. 7 is a schematic structural diagram of the output circuit shown in FIG. 4A.
  • the output circuit 200 includes a first rectifier diode D1, a second rectifier diode D2, and a fifth capacitor C5.
  • the first port of the fifth capacitor C5 It is connected to the anode of the second rectifier diode D1 and the anode of the first rectifier diode D2.
  • the first rectifier diode D1 and the second rectifier diode D2 can be replaced by field effect transistors.
  • FIG. 8 is a schematic structural diagram of the transformer shown in FIG. 4A.
  • the transformer 300 includes a first port 301 of a first primary winding, a second port 302 of the first primary winding, and a second primary winding
  • the first port 301 of the first primary winding is connected to the first port 111 of the first sub-input circuit 110, and the second port 302 of the first primary winding is connected to the first port 111 of the first sub-input circuit 110.
  • Two ports 112 are connected, the third port 303 of the first primary winding is connected to the first port 121 of the second sub-input circuit 120, and the fourth port 304 of the first primary winding is connected to the second port of the second sub-input circuit 120 122 is connected, the first port 305 of the secondary winding is connected to the negative electrode of the second rectifier diode D2, the second port 306 of the secondary winding is connected to the second port of the fifth capacitor C5, and the third port 307 of the secondary winding is connected to the The cathode of a rectifier diode D1 is connected.
  • an embodiment of the present application provides a switching power supply, and the switching power supply includes the voltage conversion circuit of an integrated vehicle charger provided in any of the above application embodiments.
  • the voltage conversion circuit of the integrated on-board charger in the switching power supply is the same as the voltage conversion circuit of the integrated on-board charger described in any of the above application embodiments, and will not be described here.
  • an embodiment of the present application provides a vehicle-mounted device, and the vehicle-mounted device includes the voltage conversion circuit of an integrated vehicle charger provided in any of the foregoing application embodiments or the switching power supply provided in the foregoing application embodiments.
  • the voltage conversion circuit of the integrated on-board charger in the on-board equipment is the same as the voltage conversion circuit of the integrated on-board charger described in any of the above application embodiments, and will not be described here.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种集成车载充电机的电压转换电路,该集成车载充电机的电压转换电路包括输入电路、变压器和输出电路,输入电路包括第一子输入电路和第二子输入电路,变压器包括第一原边绕组、第二原边绕组和副边绕组;输入电路与变压器连接,变压器与输出电路连接,第一子输入电路与第二子输入电路串联,第一子输入电路与第一原边绕组的第一端口和第二端口连接,第二子输入电路与第二原边绕组的第一端口和第二端口连接,副边绕组与所述输出电路连接。本申请实施例能够提高电路的输入电压的适配范围,且满足低电压、大电流输出的要求。

Description

集成车载充电机的电压转换电路 技术领域
本申请涉及电路结构技术领域,尤其涉及一种集成车载充电机的电压转换电路。
背景技术
LLC谐振电路是一种适用于转换功率大,输出电压低,但是输出电流较大场合的电路拓扑。高的电力转换效率和功率密度以及低的电磁干扰的特性,使其广泛用于各式电子产品中。目前,集成车载充电机的电压转换电路中常见的LLC谐振电路主要有以下两种:半桥LLC谐振电路和全桥LLC谐振电路。
现有技术中,无论是半桥LLC谐振电路还是全桥LLC谐振电路存在这样一个问题,无法满足集成车载充电机对电路越来越高的输入电压的要求。
发明内容
本申请实施例提供一种集成车载充电机的电压转换电路,用于提高电路的输入电压的适配范围,满足低电压、大电流输出的要求。
第一方面,本申请实施例提供一种集成车载充电机的电压转换电路,包括输入电路、变压器和输出电路,所述输入电路包括第一子输入电路和第二子输入电路,所述变压器包括第一原边绕组、第二原边绕组和副边绕组,其中:
所述输入电路与所述变压器连接,所述变压器与所述输出电路连接,所述第一子输入电路与所述第二子输入电路串联,所述第一子输入电路与所述第一原边绕组的第一端口和第二端口连接,所述第二子输入电路与所述第二原边绕组的第一端口和第二端口连接,所述副边绕组与所述输出电路连接;
高电压信号经过所述第一子输入电路和所述第二子输入电路分别产生第一电信号和第二电信号,所述第一电信号经过所述变压器的第一原边绕组产生第一磁通量,所述第二电信号经过所述变压器的第二原边绕组产生第二磁通量,所述第一磁通量的方向与所述第二磁通量的方向相同,所述第一磁通量和所述第二磁通量经过所述变压器的所述副边绕组叠加产生感应电动势,所述感 应电动势经过所述输出电路产生低电压信号。
在本申请的一个实施例中,所述第一子输入电路包括第一电容、第二电容、第一晶体管、第二晶体管和第一电感,其中:
所述第一电容的第一端口与所述第一晶体管的漏极连接,所述第一晶体管的源极与所述第二晶体管的漏极及所述第二电容的第一端口连接,所述第二电容的第二端口与所述第一电感的第一端口连接,所述第一子输入电路的第一端口与所述第一电感的第二端口连接,所述第一子输入电路的第二端口与所述第一电容的第二端口及所述第二晶体管的源极连接,所述第一子输入电路的第三端口与所述第一电容的第一端口及所述第一晶体管的漏极连接。
在本申请的一个实施例中,所述第二子输入电路包括第三电容、第四电容、第三晶体管、第四晶体管和第二电感,其中:
所述第三电容的第一端口与所述第三晶体管的漏极连接,所述第三晶体管的源极与所述第四晶体管的漏极及所述第四电容的第一端口连接,所述第四电容的第二端口与所述第二电感的第一端口连接,所述第二子输入电路的第一端口与所述第二电感的第二端口连接,所述第二子输入电路的第二端口与所述第三电容的第二端口及所述第四晶体管的源极连接,所述第二子输入电路的第三端口与所述第三电容的第一端口及所述第三晶体管的漏极连接。
在本申请的一个实施例中,所述第一原边绕组的第一端口与所述第一子输入电路的第一端口连接,所述第一原边绕组的第二端口与所述第一子输入电路的第二端口连接。
在本申请的一个实施例中,所述第二原边绕组的第一端口与所述第二子输入电路的第一端口连接,所述第二原边绕组的第二端口与所述第二输入电路的第二端口连接。
在本申请的一个实施例中,所述输出电路包括:第一开关单元、第二开关单元和第五电容,其中:
所述第五电容的第一端口与所述第二开关单元的第一端口以及所述第一开关单元的第一端口连接。
在本申请的一个实施例中,所述副边绕组的第一端口与所述第二开关单元的第二端口连接,所述副边绕组的第二端口与所述第五电感的第二端口连接, 所述副边绕组的第三端口与所述第一开关单元的第二端口连接。
在本申请的一个实施例中,所述第一开关单元和所述第二开关单元包括以下至少一种:整流二极管、场效应晶体管。
本申请实施例第二方面提供了一种开关电源,包括本申请实施例第一方面公开的集成车载充电机的电压转换电路。
本申请第三方面提供了一种车载设备,包括本申请实施例第一方面公开的集成车载充电机的电压转换电路以及第二方面公开的开关电源。
在本申请实施例中,输入电路与变压器连接,变压器与输出电路连接,第一子输入电路与第二子输入电路串联,第一子输入电路与第一原边绕组的第一端口和第二端口连接,第二子输入电路与第二原边绕组的第一端口和第二端口连接,副边绕组与输出电路连接;高电压信号经过所述第一子输入电路和所述第二子输入电路分别产生第一电信号和第二电信号,所述第一电信号经过所述变压器的第一原边绕组产生第一磁通量,所述第二电信号经过所述变压器的第二原边绕组产生第二磁通量,所述第一磁通量的方向与所述第二磁通量的方向相同,所述第一磁通量和所述第二磁通量经过所述变压器的所述副边绕组叠加产生感应电动势,所述感应电动势经过所述输出电路产生低电压信号。相较于一个LLC谐振电路来说,本申请实施例由两个LLC谐振电路串联组成,形成两个工作支路,这两个LLC谐振电路同时承载输入电压,且电压保持一致,从而能够提高电路的输入电压的适配范围。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的一种常见的半桥LLC谐振电路的结构示意图;
图2是现有技术中的一种常见的全桥LLC谐振电路的结构示意图;
图3是本申请实施例提供的一种集成车载充电机的电压转换电路的电路 框图;
图4A是本申请实施例提供的一种集成车载充电机的电压转换电路的结构示意图;
图4B是本申请实施例提供的第一种电流方向的示意图;
图4C是本申请实施例提供的第二种电流方向的示意图;
图4D是本申请实施例提供的第三种电流方向的示意图;
图4E是本申请实施例提供的第四种电流方向的示意图;
图5是图4A中所示的第一输入电路的结构示意图;
图6是图4A中所示的第二输入电路的结构示意图;
图7是图4A中所示的输出电路的结构示意图;
图8是图4A中所示的变压器的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
以下分别进行详细说明。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施 例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图对本申请的实施例进行描述。
现有技术中,集成车载充电机的电压转换电路中常见的LLC谐振电路主要有以下两种:半桥LLC谐振电路和全桥LLC谐振电路。
参阅图1,图1是现有技术中的一种常见的半桥LLC谐振电路。图中包括电源、两个场效应(Q1和Q2)、原边输入滤波电容C1、变压器T1、原边LLC谐振电路、输出电路。变压器T1包括原边绕组、第一副边绕组和第二副边绕组。原边LLC谐振电路包括串联的谐振电容C2、谐振电感L1和原边绕组本身的磁感。输出电路包括第一副边绕组和第二副边绕组本身的磁感、整流二极管(D1和D2)、副边输出电容C3。
参阅图2,图2是现有技术中的一种常见的全桥LLC谐振电路。图中包括电源、四个场效应(Q1、Q2、Q3和Q4)、原边输入滤波电容C1、变压器T1、原边LLC谐振电路、输出电路。变压器T1包括原边绕组、第一副边绕组和第二副边绕组。原边LLC谐振电路包括串联的谐振电容C2、谐振电感L1和原边绕组本身的磁感。输出电路包括第一副边绕组和第二副边绕组本身的磁感、整流二极管(D1和D2)、副边输出电容C3。
然而,无论是半桥LLC谐振电路还是全桥LLC谐振电路存在这样一个问题,一个LLC谐振电路无法满足车载电源对电路越来越高的输入电压的要求。本申请实施例中由第一子输入电路和第二子输入电路共同承载更高的输入电压,因此可提高电路的输入电压的适配范围。
请参阅图3,图3是本申请实施例提供的一种集成车载充电机的电压转换电路的电路框图,该集成车载充电机的电压转换电路包括输入电路、变压器、输出电路,输入电路包括第一子输入电路、第二子输入电路,变压器包括绕制在一个磁芯上的第一原边绕组、第二原边绕组和副边绕组,其中:
输入电路与变压器连接,变压器与输出电路连接,第一子输入电路与第二子输入电路串联,第一子输入电路与第一原边绕组的第一端口和第二端口连接,第二子输入电路与第二原边绕组的第一端口和第二端口连接,副边绕组与输出电路连接;
高电压信号经过第一子输入电路和第二子输入电路分别产生第一电信号和第二电信号,第一电信号经过变压器的第一原边绕组产生第一磁通量,第二电信号经过变压器的第二原边绕组产生第二磁通量,第一磁通量的方向与第二磁通量的方向相同,第一磁通量和第二磁通量经过变压器的副边绕组叠加产生感应电动势,感应电动势经过输出电路产生低电压信号。
可以看出,相较于一个LLC谐振电路承载输入的电压,本申请实施例中由第一子输入电路和第二子输入电路共同承载更高的输入电压,因此能够提高电路的输入电压的适配范围。
请参阅图4A,图4A是本申请实施例提供的一种集成车载充电机的电压转换电路的结构示意图,该集成车载充电机的电压转换电路包括输入电路100、输出电路200和变压器300,输入电路100包括第一子输入电路110和第二子输入电路120,其中:
第一子输入电路110包括第一电容C1、第二电容C2、第一晶体管Q1、第二晶体管Q2和第一电感L1,第一电容C1的第一端口与第一晶体管Q1的漏极连接,第一晶体管Q1的源极与第二晶体管Q2的漏极及第二电容C2的第一端口连接,第二电容C2的第二端口与第一电感L1的第一端口连接,第一子输入电路110的第一端口111与第一电感L1的第二端口连接,第一子输入电路110的第二端口112与第一电容C1的第二端口及第二晶体管Q2的源极连接,第一子输入电路的第三端口113与第一电容C1的第一端口及第一晶体管Q1的漏极连接;
第二子输入电路120包括第三电容C3、第四电容C4、第三晶体管Q3、第四晶体管Q4和第二电感L2,第三电容C3的第一端口与第三晶体管Q3的漏极连接,第三晶体管Q3的源极与第四晶体管Q4的漏极及第四电容C4的第一端口连接,第四电容C4的第二端口与第二电感L2的第一端口连接,第二子输入电路120的第一端口121与第二电感L2的第二端口连接,第二子输入电路120的第二端口122与第三电容C3的第二端口及第四晶体管Q4的源极连接,第二子输入电路的第三端口123与第三电容C3的第一端口及第三晶体管Q3的漏极连接。
其中,第一晶体管Q1、第二晶体管Q2、第三晶体管Q3和第四晶体管 Q4均为场效应晶体管。
第一子输入电路110的第二端口112与第二子输入电路120的第三端口123连接,第一子输入电路110的第三端口113与输入源的正极连接,第二子输入电路120的第二端口122与输入源的负极连接。
其中,第一晶体管Q1与第三晶体管Q3同步开关,第二晶体管Q2与第四晶体管Q4同步开关,在第一晶体管Q1与第三晶体管Q3同步开通,第二晶体管Q2与第四晶体管Q4同步关断的情况下,第一电信号经过变压器的第一原边绕组产生的第一磁通量的方向为水平向左,第二电信号经过变压器的第二原边绕组产生的第二磁通量的方向为水平向左,在第二晶体管Q2与第四晶体管Q4同步开通,第一晶体管Q1与第三晶体管Q3同步关断的情况下,第一电信号经过变压器的第一原边绕组产生的第一磁通量的方向为水平向右,第二电信号经过变压器的第二原边绕组产生的第二磁通量的方向为水平向右。
第一子输入电路110和第二子输入电路120共同承载输入的高电压,高电压信号经过第一子输入电路110中产生第一电信号,高电压信号经过第二子输入电路120中产生第二电信号,第一电信号经过变压器的第一原边绕组产生第一磁通量,第二电信号经过变压器的第二原边绕组产生第二磁通量,第一磁通量的方向与第二磁通量的方向相同,第一磁通量和第二磁通量经过变压器的副边绕组叠加产生感应电动势,感应电动势经过输出电路200产生低电压信号。
其中,第一原边绕组的第一端口301与第一子输入电路110的第一端口111连接,第一原边绕组的第二端口302与第一子输入电路110的第二端口112连接,第一原边绕组的第三端口303与第二子输入电路120的第一端口121连接,第一原边绕组的第四端口304与第二子输入电路120的第二端口122连接,副边绕组的第一端口305与第二整流二极管D2的负极连接,副边绕组的第二端口306与第五电容C5的第二端口连接,副边绕组的第三端口307与第一整流二极管D1的负极连接。
输出电路200包括第一整流二极管D1、第二整流二极管D2和第五电容C5,第五电容C5的第一端口与第二整流二极管D1的正极以及第一整流二极管D2的正极连接。
其中,第一整流二极管D1和第二整流二极管D2可以用场效应晶体管替 换。
其中,第一原边绕组、第二原边绕组和副边绕组绕制在一个磁芯上,通过磁极层,变压器复合方式进行绕组串联。
可以看出,相较于一个LLC谐振电路来说,本申请实施例由两个半桥LLC谐振电路串联组成,形成两个工作支路,这两个半桥LLC谐振电路同时承载输入电压,且电压保持一致,从而能够提高电路的输入电压的适配范围。
下面基于图4A所示的集成车载充电机的电压转换电路对其工作流程进行详细说明。
首先需要说明的是,由于第一子输入电路110与第二子输入电路120的结构相同,所以两者的内部元器件参数也相同。举例来说,第一电容C1与第三电容C3的电容值相同,而其余元器件应同样理解,在此不再赘述。其次,在输入电路100中,第一晶体管Q1与第三晶体管Q3同步导通或关断,第二晶体管Q2与第四晶体管Q4同步导通或关断。换句话说,第一晶体管Q1的栅极与第三晶体管Q3的栅极接入的信号相同,第二晶体管Q2的栅极与第四晶体管Q4的栅极接入的信号相同。另外,第一子输入电路110与第二子输入电路120串联,从而两者对于输入信号的分压相同。
进一步地,集成车载充电机的电压转换电路的工作流程在一个周期内包括四个阶段,具体如下:
第一阶段:第一晶体管Q1、第三晶体管Q3处于导通状态,第二晶体管Q2、第四晶体管Q4处于关断状态。
在第一阶段中,集成车载充电机的电压转换电路中的电流方向如图4B所示。第一电容C1、第一晶体管Q1、第二电容C2和第一电感L1组成第一谐振电路,第一谐振电路中的第一电信号成正弦函数先升后降;第三电容C3、第三晶体管Q3、第四电容C4和第二电感L2组成第二谐振电路,第二谐振电路中的第二电信号成正弦函数先升后降;第一谐振电路中的第一电信号经过变压器的第一原边绕组产生第一磁通量,第二谐振电路中的第二电信号经过变压器的第二原边绕组产生第二磁通量,第一磁通量的方向与第二磁通量的方向相同,第一磁通量经过变压器的副边绕组产生第一感应电动势,第二磁通量经过变压器的副边绕组产生第二感应电动势,由于第一原边绕组和第二原边绕组绕 制在同一磁芯上且互相耦合良好,所以产生的第一感应电动势和第二感应电动势大小相同,方向均为上正下负。变压器的副边绕组的第六端口306和第七端口307处产生的感应电动势导通第一整流二极管D1给第五电容C5和输出负载供电,其电信号成正弦函数先升后降。
第二阶段:第一晶体管Q1、第三晶体管Q3处于关断状态,第二晶体管Q2、第四晶体管Q4处于导通状态。
在第二阶段中,集成车载充电机的电压转换电路中的电流方向如图4C所示。流经第一晶体管Q1和第三晶体管Q3的第一电信号和第二电信号均呈正弦波形,先升后降;当流经第一晶体管Q1和第三晶体管Q3的第一电信号和第二电信号降至零的时候,第一晶体管Q1和第三晶体管Q3实现零电流关断。在第一晶体管Q1和第三晶体管Q3关断之后,由于第一电信号和第二电信号还保持原来的流向,第一电信号流经第二晶体管Q2和第二电信号流经第四晶体管Q4,使第二晶体管Q2和第四晶体管Q4的电压降为零,第二晶体管Q2和第四晶体管Q4实现零电压开通。此时,第一原边绕组、第二原边绕组和副边绕组产生的感应电动势的方向为上负下正,变压器的副边绕组的第五端口305和第六端口306处产生的感应电动势导通第二整流二极管D2给第五电容C5和输出负载供电。
第三阶段:第一晶体管Q1、第三晶体管Q3处于关断状态,第二晶体管Q2、第四晶体管Q4处于导通状态。
在第三阶段中,集成车载充电机的电压转换电路中的电流方向如图4D所示。流经第二晶体管Q2的第一电信号和第四晶体管Q4的第二电信号反向过零点之后,第二晶体管Q2、第四晶体管Q4处于导通状态。第二电容C2、第二晶体管Q2和第一电感L1组成第三谐振电路,第三谐振电路中的第三电信号成正弦函数先升后降;第四电容C4、第四晶体管Q4和第二电感L2组成第四谐振电路,第四谐振电路中的第四电信号成正弦函数先升后降;第三谐振电路中的第三电信号经过变压器的第一原边绕组产生第三磁通量,第四谐振电路中的第四电信号经过变压器的第二原边绕组产生第四磁通量,第三磁通量的方向与第四磁通量的方向相同,第三磁通量经过变压器的副边绕组产生第三感应电动势,第四磁通量经过变压器的副边绕组产生第四感应电动势,由于第一原 边绕组和第二原边绕组绕制在同一磁芯上且互相耦合良好,所以产生的第三感应电动势和第四感应电动势大小相同,方向均为上负下正。变压器的副边绕组的第五端口305和第六端口306处产生的感应电动势导通第二整流二极管D2给第五电容C5和输出负载供电,其电信号成正弦函数先升后降。
第四阶段:第一晶体管Q1、第三晶体管Q3处于导通状态,第二晶体管Q2、第四晶体管Q4处于关断状态。
在第四阶段中,集成车载充电机的电压转换电路中的电流方向如图4E所示。流经第二晶体管Q2和第四晶体管Q4的第三电信号和第四电信号均呈正弦波形,先升后降;当流经第二晶体管Q2和第四晶体管Q4的第三电信号和第四电信号降至零的时候,第二晶体管Q2和第四晶体管Q4实现零电流关断。在第二晶体管Q2和第四晶体管Q4关断之后,由于第三电信号和第四电信号还保持原来的流向,第三电信号流经第一晶体管Q1和第四电信号流经第三晶体管Q3,使第一晶体管Q1和第三晶体管Q3的电压降为零,第一晶体管Q1和第三晶体管Q3实现零电压开通。此时,第一原边绕组、第二原边绕组和副边绕组产生的感应电动势的方向为上正下负,变压器的副边绕组的第六端口306和第七端口307处产生的感应电动势导通第一整流二极管D1给第五电容C5和输出负载供电。
请参阅图5,图5是图4A中所示的集成车载充电机的电压转换电路中的第一子输入电路110的结构示意图,其中:
第一子输入电路110包括第一电容C1、第二电容C2、第一晶体管Q1、第二晶体管Q2和第一电感L1,第一电容C1的第一端口与第一晶体管Q1的漏极连接,第一晶体管Q1的源极与第二晶体管Q2的漏极及第二电容C2的第一端口连接,第二电容C2的第二端口与第一电感L1的第一端口连接,第一子输入电路110的第一端口111与第一电感L1的第二端口连接,第一子输入电路110的第二端口112与第一电容C1的第二端口及第二晶体管Q2的源极连接,第一子输入电路的第三端口113与第一电容C1的第一端口及第一晶体管Q1的漏极连接。
其中,第一晶体管Q1和第二晶体管Q2均为场效应晶体管。
请参阅图6,图6是图4A中所示的集成车载充电机的电压转换电路中的 第二子输入电路120的结构示意图,其中:
第二子输入电路120包括第三电容C3、第四电容C4、第三晶体管Q3、第四晶体管Q4和第二电感L2,第三电容C3的第一端口与第三晶体管Q3的漏极连接,第三晶体管Q3的源极与第四晶体管Q4的漏极及第四电容C4的第一端口连接,第四电容C4的第二端口与第二电感L2的第一端口连接,第二子输入电路120的第一端口121与第二电感L2的第二端口连接,第二子输入电路120的第二端口122与第三电容C3的第二端口及第四晶体管Q4的源极连接,第二子输入电路的第三端口123与第三电容C3的第一端口及第三晶体管Q3的漏极连接。
其中,第三晶体管Q3和第四晶体管Q4均为场效应晶体管。
请参阅图7,图7是图4A中所示的输出电路的结构示意图,该输出电路200包括第一整流二极管D1、第二整流二极管D2和第五电容C5,第五电容C5的第一端口与第二整流二极管D1的正极以及第一整流二极管D2的正极连接。
其中,第一整流二极管D1和第二整流二极管D2可以用场效应晶体管替换。
请参阅图8,图8是图4A中所示的变压器的结构示意图,该变压器300包括第一原边绕组的第一端口301、第一原边绕组的第二端口302、第二原边绕组的第三端口303、第二原边绕组的第二端口304、副边绕组的第一端口305、副边绕组的第二端口306和副边绕组的第三端口307。
在一个可能的示例中,第一原边绕组的第一端口301与第一子输入电路110的第一端口111连接,第一原边绕组的第二端口302与第一子输入电路110的第二端口112连接,第一原边绕组的第三端口303与第二子输入电路120的第一端口121连接,第一原边绕组的第四端口304与第二子输入电路120的第二端口122连接,副边绕组的第一端口305与第二整流二极管D2的负极连接,副边绕组的第二端口306与第五电容C5的第二端口连接,副边绕组的第三端口307与第一整流二极管D1的负极连接。
在一个可能的示例中,本申请实施例提供一种开关电源,开关电源包括上述任一申请实施例提供的集成车载充电机的电压转换电路。
其中,开关电源中的集成车载充电机的电压转换电路与上述任一申请实施例中描述的集成车载充电机的电压转换电路相同,在此不再叙述。
在一个可能的示例中,本申请实施例提供一种车载设备,车载设备包括上述任一申请实施例提供的集成车载充电机的电压转换电路或者上述申请实施例提供的开关电源。
其中,车载设备中的集成车载充电机的电压转换电路与上述任一申请实施例中描述的集成车载充电机的电压转换电路相同,在此不再叙述。
需要说明的是,对于前述的各申请实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种集成车载充电机的电压转换电路,其特征在于,包括输入电路、变压器和输出电路,所述输入电路包括第一子输入电路和第二子输入电路,所述变压器包括第一原边绕组、第二原边绕组和副边绕组,其中:
    所述输入电路与所述变压器连接,所述变压器与所述输出电路连接,所述第一子输入电路与所述第二子输入电路串联,所述第一子输入电路与所述第一原边绕组的第一端口和第二端口连接,所述第二子输入电路与所述第二原边绕组的第一端口和第二端口连接,所述副边绕组与所述输出电路连接;
    高电压信号经过所述第一子输入电路和所述第二子输入电路分别产生第一电信号和第二电信号,所述第一电信号经过所述变压器的第一原边绕组产生第一磁通量,所述第二电信号经过所述变压器的第二原边绕组产生第二磁通量,所述第一磁通量的方向与所述第二磁通量的方向相同,所述第一磁通量和所述第二磁通量经过所述变压器的所述副边绕组叠加产生感应电动势,所述感应电动势经过所述输出电路产生低电压信号。
  2. 根据权利要求1所述的集成车载充电机的电压转换电路,其特征在于,所述第一子输入电路包括第一电容、第二电容、第一晶体管、第二晶体管和第一电感,其中:
    所述第一电容的第一端口与所述第一晶体管的漏极连接,所述第一晶体管的源极与所述第二晶体管的漏极及所述第二电容的第一端口连接,所述第二电容的第二端口与所述第一电感的第一端口连接,所述第一子输入电路的第一端口与所述第一电感的第二端口连接,所述第一子输入电路的第二端口与所述第一电容的第二端口及所述第二晶体管的源极连接,所述第一子输入电路的第三端口与所述第一电容的第一端口及所述第一晶体管的漏极连接。
  3. 根据权利要求1或2所述的集成车载充电机的电压转换电路,其特征在于,所述第二子输入电路包括第三电容、第四电容、第三晶体管、第四晶体管和第二电感,其中:
    所述第三电容的第一端口与所述第三晶体管的漏极连接,所述第三晶体管的源极与所述第四晶体管的漏极及所述第四电容的第一端口连接,所述第四电容的第二端口与所述第二电感的第一端口连接,所述第二子输入电路的第一端口与所述第二电感的第二端口连接,所述第二子输入电路的第二端口与所述第三电容的第二端口及所述第四晶体管的源极连接,所述第二子输入电路的第三端口与所述第三电容的第一端口及所述第三晶体管的漏极连接。
  4. 根据权利要求3所述的集成车载充电机的电压转换电路,所述第一原边绕组的第一端口与所述第一子输入电路的第一端口连接,所述第一原边绕组的第二端口与所述第一子输入电路的第二端口连接。
  5. 根据权利要求4所述的集成车载充电机的电压转换电路,所述第二原边绕组的第一端口与所述第二子输入电路的第一端口连接,所述第二原边绕组的第二端口与所述第二输入电路的第二端口连接。
  6. 根据权利要求1-5任一项所述的集成车载充电机的电压转换电路,其特征在于,所述输出电路包括:第一开关单元、第二开关单元和第五电容,其中:
    所述第五电容的第一端口与所述第二开关单元的第一端口以及所述第一开关单元的第一端口连接。
  7. 根据权利要求6所述的集成车载充电机的电压转换电路,其特征在于,所述副边绕组的第一端口与所述第二开关单元的第二端口连接,所述副边绕组的第二端口与所述第五电感的第二端口连接,所述副边绕组的第三端口与所述第一开关单元的第二端口连接。
  8. 根据权利要求6或7所述的集成车载充电机的电压转换电路,其特征在于,所述第一开关单元和所述第二开关单元包括以下至少一种:整流二极管、场效应晶体管。
  9. 一种开关电源,其特征在于,所述开关电源包括如权利要求1-8任一项所述的集成车载充电机的电压转换电路。
  10. 一种车载设备,其特征在于,所述车载设备包括如权利要求1-9任一项所述的集成车载充电机的电压转换电路或开关电源。
PCT/CN2019/095151 2019-07-08 2019-07-08 集成车载充电机的电压转换电路 WO2021003650A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980006623.0A CN111542996A (zh) 2019-07-08 2019-07-08 集成车载充电机的电压转换电路
PCT/CN2019/095151 WO2021003650A1 (zh) 2019-07-08 2019-07-08 集成车载充电机的电压转换电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095151 WO2021003650A1 (zh) 2019-07-08 2019-07-08 集成车载充电机的电压转换电路

Publications (1)

Publication Number Publication Date
WO2021003650A1 true WO2021003650A1 (zh) 2021-01-14

Family

ID=71979908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095151 WO2021003650A1 (zh) 2019-07-08 2019-07-08 集成车载充电机的电压转换电路

Country Status (2)

Country Link
CN (1) CN111542996A (zh)
WO (1) WO2021003650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992016B (zh) * 2021-12-24 2022-03-18 深圳市永联科技股份有限公司 低压大电流输出电路及低压大电流充电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774649A (en) * 1987-07-01 1988-09-27 Power-One, Inc. Integrated magnetic resonant power converter
CN101030732A (zh) * 2007-01-09 2007-09-05 南京航空航天大学 输出电流纹波最小化正激式磁集成变换器
CN207156960U (zh) * 2017-07-11 2018-03-30 深圳市永联科技股份有限公司 一种集成dc/dc转换器的车载充电机主电路及其控制环路
CN108702026A (zh) * 2017-08-11 2018-10-23 深圳欣锐科技股份有限公司 一种磁集成电路以及功率转换装置
CN109327143A (zh) * 2018-09-27 2019-02-12 段志刚 一种提高llc拓扑电源输出参数及合理利用的方法及电路
CN109624733A (zh) * 2018-11-28 2019-04-16 嘉善中正新能源科技有限公司 一种用于高速电动车的dc/dc转换器和车载充电机的合并电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655792B (zh) * 2016-12-07 2023-04-11 广州金升阳科技有限公司 不对称半桥反激电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774649A (en) * 1987-07-01 1988-09-27 Power-One, Inc. Integrated magnetic resonant power converter
CN101030732A (zh) * 2007-01-09 2007-09-05 南京航空航天大学 输出电流纹波最小化正激式磁集成变换器
CN207156960U (zh) * 2017-07-11 2018-03-30 深圳市永联科技股份有限公司 一种集成dc/dc转换器的车载充电机主电路及其控制环路
CN108702026A (zh) * 2017-08-11 2018-10-23 深圳欣锐科技股份有限公司 一种磁集成电路以及功率转换装置
CN109327143A (zh) * 2018-09-27 2019-02-12 段志刚 一种提高llc拓扑电源输出参数及合理利用的方法及电路
CN109624733A (zh) * 2018-11-28 2019-04-16 嘉善中正新能源科技有限公司 一种用于高速电动车的dc/dc转换器和车载充电机的合并电路

Also Published As

Publication number Publication date
CN111542996A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
CN105375536A (zh) 磁电源耦合到集成电路模块
US11121627B2 (en) DC/DC conversion system
CN203416188U (zh) 低电压大电流数字式多相同步整流电路
CN203151396U (zh) 多功能数控脉冲电源
CA2928189A1 (en) Gate drive circuit to reduce parasitic coupling
WO2020211424A1 (zh) 一种功率变换电路、逆变器及控制方法
CN107104600A (zh) 模块化多电平变换器及电力电子变压器
US12062482B2 (en) Power module and power circuit
US20180019676A1 (en) Soft Switching Auxiliary Circuit, Three-Level Three-Phase Zero-Voltage Conversion Circuit
CN206922659U (zh) 电源转换模块
WO2021003650A1 (zh) 集成车载充电机的电压转换电路
CN107659158B (zh) 一种多谐振网络单元的隔离型高增益直流变换器
CN203522542U (zh) 功率管驱动电源电路
TWI530074B (zh) 具功因修正之轉換器電路
CN206602458U (zh) 一种全桥谐振变换器
WO2018157797A1 (zh) 一种全桥谐振变换器
TWI806913B (zh) 一種功率並聯的均流電路
CN208508784U (zh) 半桥驱动电路、芯片和空调
WO2021003647A1 (zh) 集成车载充电机的电压转换电路
CN206620056U (zh) 一种自驱式同步整流的llc直流变换器
CN206894505U (zh) 一种开关电源装置
WO2020215279A1 (zh) 过压保护控制电路及相关设备
WO2021003648A1 (zh) 集成车载充电机的电压转换电路
CN212850273U (zh) 集成车载充电机的电压转换电路、开关电源及车载设备
CN212085870U (zh) 集成车载充电机的电压转换电路、开关电源以及车载设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937109

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937109

Country of ref document: EP

Kind code of ref document: A1