WO2021003648A1 - 集成车载充电机的电压转换电路 - Google Patents
集成车载充电机的电压转换电路 Download PDFInfo
- Publication number
- WO2021003648A1 WO2021003648A1 PCT/CN2019/095149 CN2019095149W WO2021003648A1 WO 2021003648 A1 WO2021003648 A1 WO 2021003648A1 CN 2019095149 W CN2019095149 W CN 2019095149W WO 2021003648 A1 WO2021003648 A1 WO 2021003648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- port
- transistor
- capacitor
- magnetic
- column
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/3353—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
Definitions
- This application relates to the technical field of electronic circuits, in particular to a voltage conversion circuit integrated with an on-board charger.
- the active clamp forward and flyback integrated circuit is a circuit suitable for large conversion power, low output voltage and large output current.
- the active clamp forward and flyback integrated circuit has simple circuit topology and voltage spikes. With excellent characteristics such as small and zero voltage switching, it has been widely used in small and medium power DC conversion occasions. Since the maximum input voltage of the active clamp forward and flyback integrated circuit is limited, in order to increase the adaptation range of the input voltage of the active clamp forward and flyback integrated circuit, the active clamp forward and flyback integrated circuit needs to be further optimized.
- the embodiment of the present application provides a voltage conversion circuit integrated with an on-board charger, which is used to increase the adaptation range of the input voltage of the circuit.
- the first aspect of the embodiments of the present application provides a voltage conversion circuit integrated with a vehicle charger, including an input circuit, a magnetic element, and an output circuit.
- the input circuit includes a first sub-input circuit and a second sub-input circuit.
- the magnetic element It includes the first port of the primary winding, the second port of the primary winding, the third port of the primary winding and the fourth port of the primary winding, where:
- the input circuit is connected to the first end of the magnetic element, the second end of the magnetic element is connected to the output circuit, the first sub-input circuit is connected in series with the second sub-input circuit, and the first A sub-input circuit is respectively connected to the first port of the primary winding and the second port of the primary winding, and the second sub-input circuit is respectively connected to the third port of the primary winding and the primary side
- the fourth port of the winding is connected;
- the first sub-input circuit and the second sub-input circuit respectively generate a first voltage signal and a second voltage signal based on the input high voltage signal, and the first voltage signal and the second voltage signal are in the magnetic field.
- a first magnetic flux and a second magnetic flux are respectively generated in the element, the direction of the first magnetic flux is the same as the direction of the second magnetic flux, and the third magnetic flux superimposed by the first magnetic flux and the second magnetic flux passes through the magnetic element
- the secondary winding generates induced electromotive force, and the induced electromotive force generates a low voltage signal through the output circuit.
- the magnetic element includes a first magnetic core, a second magnetic core, a first coil, a second coil, a third coil, and a fourth coil, wherein:
- the first magnetic core includes a first magnetic column, a second magnetic column, a third magnetic column, and a first horizontal column.
- the first horizontal column is connected to the first magnetic column, the second magnetic column, and the The same end of the third magnetic column is connected;
- the second magnetic core includes a fourth magnetic column, a fifth magnetic column, a sixth magnetic column and a second horizontal column, and the second horizontal column is respectively connected to the fourth magnetic column.
- the same end of the column, the fifth magnetic column and the sixth magnetic column are connected;
- the second magnetic column and the fifth magnetic column are opposed and contacted in pairs to form a central column; the first magnetic column and the fourth magnetic column are relatively non-contacting in pairs to form a first side column; The third magnetic column and the sixth magnetic column are not in contact with each other, forming a second side column;
- the first coil and the second coil are wound on the central column, and the number of turns and the winding direction of the first coil and the second coil are the same; the third coil and the The fourth coil is wound on the second horizontal column, and the number of turns and the winding direction of the third coil and the fourth coil are the same.
- the area of the central pillar is equal to the sum of the area of the first side pillar and the area of the second side pillar, and the area of the first side pillar is the area of the second side pillar Half of it.
- a first air gap is formed between the first magnetic column and the fourth magnetic column, and a second air gap is formed between the third magnetic column and the sixth magnetic column.
- the width of the first air gap is half of the width of the second air gap.
- the ratio of the area of the first side post to the area of the second side post is equal to the ratio of the width of the first air gap to the width of the second air gap.
- the first sub-input circuit includes a resistor R 1 , a capacitor C 1 , a capacitor C 2 , a transistor Q 1 and a transistor Q 2 , wherein:
- the first end of resistor R 1 is connected to the first terminal of the capacitor C 1, the second end of the capacitor C 1 is connected to the drain of the transistor Q 1, the source of the transistor Q 1 and The drain of the transistor Q 2 is connected, the source of the transistor Q 2 is connected to the second end of the resistor R 1 , and the first end of the capacitor C 2 is respectively connected to the first end of the resistor R 1 and the capacitor C 1 is connected to a first terminal, a second terminal of the capacitor C 2 are connected to the source electrode of the resistor R 1 and a second terminal of the transistor Q 2, the first input sub-circuit
- the first port of the first sub-input circuit is respectively connected to the first end of the resistor R 1 , the first end of the capacitor C 1 and the first end of the capacitor C 2 , and the second port of the first sub-input circuit is respectively connected to The second end of the resistor R 1 , the source of the transistor Q 2 and the second end of the capacitor C 2 are connected;
- the second sub-input circuit includes a resistor R 2 , a capacitor C 3 , a capacitor C 4 , a transistor Q 3 and a transistor Q 4 , wherein:
- the first end of the resistor R 2 and the capacitor C 3 is connected to the first terminal, the second terminal of the capacitor C 3 is connected to the drain of the transistor Q 3, a source electrode of the transistor Q 3 and The drain of the transistor Q 4 is connected, the source of the transistor Q 4 is connected to the second end of the resistor R 2 , and the first end of the capacitor C 4 is respectively connected to the first end of the resistor R 2 And the first end of the capacitor C 3 is connected, the second end of the capacitor C 4 is respectively connected to the second end of the resistor R 2 and the source of the transistor Q 4 , the second sub-input circuit
- the first port of the resistor R 2 is connected to the first end of the resistor R 2 , the first end of the capacitor C 3 and the first end of the capacitor C 4 respectively, and the second port of the second sub-input circuit is respectively connected to The second end of the resistor R 2 , the source of the transistor Q 4 and the second end of the capacitor C 4 are connected;
- the second port of the first sub-input circuit is connected to the first port of the second sub-input circuit, and the first port of the first sub-input circuit and the second port of the second sub-input circuit are used for Connect the input voltage source.
- the first port of the second coil is the first port of the primary winding
- the second port of the second coil is the second port of the primary winding
- the primary The first port of the winding is respectively connected to the first end of the resistor R 1 , the first end of the capacitor C 1 and the first end of the capacitor C 2
- the second port of the primary winding is respectively connected to the first end of the capacitor C 2 .
- said source of the transistor Q 1 and the drain of the transistor Q 2 is connected;
- the first port of the first coil is the third port of the primary winding
- the second port of the first coil is the fourth port of the primary winding
- the third ports of the primary winding are respectively and a second terminal of the resistors R 1, the source of the transistor Q 2 of electrode, the second terminal of the capacitor C 2, the first end of the resistor R 2, a first end of the capacitor C 3 and The first terminal of the capacitor C 4 is connected
- the fourth terminal of the primary winding is connected to the source of the transistor Q 3 and the drain of the transistor Q 4 respectively.
- the output circuit includes a transistor Q 5 , a transistor Q 6 and a capacitor C 5
- the magnetic element further includes a first port of the secondary winding, a second port of the secondary winding, and a second port of the secondary winding.
- the first port of the third coil is the first port of the secondary winding
- the second port of the third coil is the second port of the secondary winding
- the first port of the secondary winding is connected to the capacitor C 5 is connected to the positive electrode
- the negative electrode of the capacitor C 5 and the source of the transistor Q 5 is connected to the drain of the transistor Q 5 is connected to a second port of the secondary winding;
- the first port of the fourth coil is the third port of the secondary winding
- the second port of the fourth coil is the fourth port of the secondary winding
- the third ports of the secondary winding are respectively with the first port of the secondary winding and the positive electrode of the capacitor C 5 is connected to a fourth port connected to the drain of the transistor Q 6, and the source of the transistor Q of the secondary winding of the pole 6, respectively The source of the transistor Q 5 and the negative electrode of the capacitor C 5 are connected.
- the first magnetic core and the second magnetic core are PQ-type power magnetic cores.
- a second aspect of the present application provides a switching power supply, which includes the voltage conversion circuit of the integrated on-board charger described in the above embodiments.
- the input circuit is connected to the first end of the magnetic element, the second end of the magnetic element is connected to the output circuit, the first sub-input circuit is connected in series with the second sub-input circuit, and the first sub-input The circuit is respectively connected to the first port and the second port of the primary winding of the magnetic element.
- the second sub-input circuit is connected to the third port and the fourth port of the primary winding of the magnetic element.
- the first sub-input circuit and the second The sub-input circuit generates the first voltage signal and the second voltage signal respectively based on the input high voltage signal.
- the first voltage signal and the second voltage signal respectively generate the first magnetic flux and the second magnetic flux in the same direction in the magnetic element.
- the first magnetic flux The third magnetic flux superimposed with the second magnetic flux generates induced electromotive force through the secondary winding of the magnetic element, and the induced electromotive force generates a low voltage signal through the output circuit.
- the first sub-input circuit and the second sub-input circuit jointly carry the input high voltage in the embodiment of the present application, so the input voltage of the circuit can be increased
- two active clamp forward and flyback integrated circuits correspond to two magnetic components, The embodiment of the present application only uses one magnetic element, so the cost of the circuit can be saved, and the volume and weight of the circuit can be reduced.
- FIG. 1 is a schematic structural diagram of a first voltage conversion circuit for an integrated vehicle charger provided by an embodiment of the present application
- 2A is a schematic structural diagram of a second voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
- FIG. 2B is a schematic diagram of a first current direction provided by an embodiment of the present application.
- 2C is a schematic diagram of a second current direction provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of the structure of the magnetic element shown in FIG. 2A;
- FIG. 4 is a schematic structural diagram of the input circuit shown in FIG. 2A;
- FIG. 5 is a schematic diagram of the structure of the output circuit shown in FIG. 2A.
- the highest input voltage of the active clamp forward and flyback integrated circuit is about 750V, which cannot meet the higher input voltage requirements.
- a feasible implementation is to adopt Two active clamp forward and flyback integrated circuits, the two active clamp forward and flyback integrated circuits are the first active clamp forward and flyback integrated circuit and the second active clamp forward and flyback integrated circuit.
- An active clamp forward and flyback integrated circuit includes a first input circuit, a first magnetic element, and a first output circuit.
- the second active clamp forward and flyback integrated circuit includes a second input circuit, a second magnetic element, and a second output circuit.
- the output circuit, the first input circuit and the second input circuit are connected in series, the first output circuit and the second output circuit are connected in series to form the third output circuit, and the higher input voltage is carried by the first input circuit and the second input circuit.
- the input circuit carries the first voltage
- the second input circuit carries the second voltage
- the first voltage generates the first voltage signal in the first input circuit
- the second voltage generates the second voltage signal in the second input circuit
- the first voltage signal The first magnetic flux is generated in the first magnetic element
- the second voltage signal generates the second magnetic flux in the second magnetic element.
- the first magnetic flux generates a first induced electromotive force through the secondary winding of the first magnetic element
- the second magnetic flux passes through the second
- the secondary winding of the magnetic element generates a second induced electromotive force
- the third induced electromotive force superimposed on the first induced electromotive force and the second induced electromotive force generates a low voltage signal through the third output circuit.
- FIG. 1 is a schematic structural diagram of a first voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
- the voltage conversion circuit 100 of the integrated vehicle charger includes an input circuit 200, a magnetic element 300, and an output circuit 400.
- the input circuit 200 includes a first sub-input circuit 210 and a second sub-input circuit 220.
- the magnetic element 300 includes a first port 310 of the primary winding, a second port 320 of the primary winding, and a third port 330 of the primary winding.
- the fourth port 340 of the primary winding where:
- the input circuit 200 is connected to the first end of the magnetic element 300, the second end of the magnetic element 300 is connected to the output circuit 400, the first sub-input circuit 210 is connected in series with the second sub-input circuit 220, and the first sub-input circuit 210 is connected to the original
- the first port 310 of the side winding and the second port 320 of the primary winding are connected, and the second sub-input circuit 220 is respectively connected with the third port 330 of the primary winding and the fourth port 340 of the primary winding;
- the first sub-input circuit 210 and the second sub-input circuit 220 respectively generate a first voltage signal and a second voltage signal based on the input high voltage signal, and the first voltage signal and the second voltage signal respectively generate the first magnetic flux in the magnetic element 300 As with the second magnetic flux, the direction of the first magnetic flux is the same as the direction of the second magnetic flux.
- the third magnetic flux superimposed on the first magnetic flux and the second magnetic flux generates induced electromotive force through the secondary winding of the magnetic element 300, and the induced electromotive force is generated by the output circuit 400. Voltage signal.
- the first sub-input circuit and the second sub-input circuit jointly carry the input in the embodiment of the present application. Therefore, the adaption range of the input voltage of the circuit can be increased; further, compared with the use of two active clamp forward and flyback integrated circuits to increase the adaption range of the input voltage of the circuit, the two active clamps
- the forward and flyback integrated circuit corresponds to two magnetic elements, and the embodiment of the present application uses only one magnetic element, so the cost of the circuit can be saved, and the volume and weight of the circuit can be reduced.
- FIG. 2A is a schematic structural diagram of a second voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
- the voltage conversion circuit 100 of the integrated vehicle charger includes an input circuit 200, a magnetic element 300, and an output circuit. 400.
- the input circuit 200 includes a first sub-input circuit 210 and a second sub-input circuit 220.
- the magnetic element 300 includes a first port 310 of the primary winding, a second port 320 of the primary winding, and a third port 330 of the primary winding.
- the fourth port 340 of the primary winding where:
- the input circuit 200 is connected to the first end of the magnetic element 300, the second end of the magnetic element 300 is connected to the output circuit 400, the first sub-input circuit 210 is connected in series with the second sub-input circuit 220, and the first sub-input circuit 210 is connected to the original
- the first port 310 of the side winding and the second port 320 of the primary winding are connected, and the second sub-input circuit 220 is respectively connected with the third port 330 of the primary winding and the fourth port 340 of the primary winding;
- the first sub-input circuit 210 and the second sub-input circuit 220 respectively generate a first voltage signal and a second voltage signal based on the input high voltage signal, and the first voltage signal and the second voltage signal respectively generate the first magnetic flux in the magnetic element 300 As with the second magnetic flux, the direction of the first magnetic flux is the same as the direction of the second magnetic flux.
- the third magnetic flux superimposed on the first magnetic flux and the second magnetic flux generates induced electromotive force through the secondary winding of the magnetic element 300, and the induced electromotive force is generated by the output circuit 400. Voltage signal.
- the first sub-input circuit and the second sub-input circuit jointly carry the input in the embodiment of the present application. Therefore, the adaption range of the input voltage of the circuit can be increased; further, compared with the use of two active clamp forward and flyback integrated circuits to increase the adaption range of the input voltage of the circuit, the two active clamps
- the forward and flyback integrated circuit corresponds to two magnetic elements, and the embodiment of the present application uses only one magnetic element, so the cost of the circuit can be saved, and the volume and weight of the circuit can be reduced.
- the internal component parameters of the two are also the same.
- the resistance value of the resistor R 1 is the same as that of the resistor R 2 , and the other components should be understood in the same way, which will not be repeated here.
- the transistor Q 3 and the transistor Q 1 is turned on or off in synchronization
- the transistor Q 2 and the transistor Q 4 is turned on or off in synchronization.
- the gate of the transistor Q 1 and the signal gate access transistor Q 3 is identical, the signal gate of the transistor Q 2 and the gate of the access transistor Q 4.
- the first sub-input circuit 210 and the second sub-input circuit 220 are connected in series, so that both have the same voltage division for the input signal.
- the working process of the voltage conversion circuit 100 integrated with the on-board charger includes four stages in one cycle, which are specifically as follows:
- the first stage the transistor Q 1 and the transistor Q 3 are in the off state, and the transistor Q 2 and the transistor Q 4 are in the on state.
- the current directions of the first coil 11 and the second coil 12 are shown in FIG. 2B.
- the number of turns and the winding direction of the first coil 11 and the second coil 12 are the same.
- the direction of the magnetic flux is also the same, and the magnetic flux in the center column 21 tends to increase to the right.
- the magnetic flux in the center column 21 is shunted to the first side column 22 and the second side column 23, and induced electromotive force is generated in the third coil 41 and the fourth coil 42.
- Fourth coil 42 induced electromotive force generated by the transistor Q 6 is turned off, current is not generated.
- the first coil 11, the second coil 12 and the fourth coil 42 form a flyback transformer.
- the first coil 11, the second coil 12 and the fourth coil 42 do not transmit energy, and the generated magnetic field energy is stored in the second air gap 32.
- the third coil 41 so that an induced electromotive force generated in the transistor Q 5 is turned on, induction current is generated in the transistor Q 5 and the capacitance C of the circuit 5.
- the first coil 11, the second coil 12 and the third coil 41 form a forward coupling. Energy is transferred from the first coil 11 and the second coil 12 to the third coil 41 through the second horizontal column 361, and the magnetic flux in the second horizontal column 361 is the magnetic flux generated by the magnetizing inductance.
- the voltage of the capacitor C 3 is equal to the voltage of the second coil 12
- the voltage of the capacitor C 4 is equal to the voltage of the first coil 11. Since the first coil 11 and the second coil 12 are coupled together with equal turns, the voltage of the capacitor C 3 and the capacitor C 4 will remain the same during the entire discharge process.
- the capacitor C 3 and the capacitor C 4 release the same energy through two identical coils coupled together during the entire discharge process. Therefore, the voltage of the capacitor C 3 and the capacitor C 4 remains the same during the entire discharge process and has an automatic balance function.
- the second stage the transistor Q 1 and the transistor Q 3 are in the off state, and the transistor Q 2 and the transistor Q 4 are in the off state.
- the diode in the transistor Q 1 is turned on. At this time, the driving voltage is applied to the transistor Q 1 so that the transistor Q 1 turns on at zero voltage.
- the diode in the transistor Q 3 is turned on.
- a driving voltage is applied to the transistor Q 3 , so that the transistor Q 3 turns on at zero voltage.
- the transistor Q 5 and the transistor Q 6 are in a commutation state and turned on at the same time.
- the third stage the transistor Q 2 and the transistor Q 4 are in the off state, and the transistor Q 1 and the transistor Q 3 are in the on state.
- the second coil 12 is charged by the transistor Q 5 is turned on the capacitor C 1, the current to the downward trend.
- the first coil 11 is charged by the transistor Q 6 is turned on the capacitor C 2, the current to the downward trend.
- the magnetic flux in the center column 21 tends to increase to the left.
- the magnetic flux in the center pillar 21 is divided into the first side pillar 22 and the second side pillar 23.
- the magnetic flux tends to increase upward, and the induced electromotive force generated thereby turns on the transistor Q 6 .
- energy is provided to the fourth coil 42 by the magnetic field energy and the capacitor C 1 and the capacitor C 2 originally stored in the second air gap 32.
- the first column 22 side there is an increasing downward trend of the magnetic flux, induced electromotive force which generates the transistor Q 5 is ended, the current is not generated.
- the fourth stage the transistor Q 1 and the transistor Q 3 are in the off state, and the transistor Q 2 and the transistor Q 4 are in the off state.
- the diodes in the transistor Q 2 and the transistor Q 4 are turned on to maintain the voltage of the transistor Q 2 and the voltage of the transistor Q 4 at 0 volts.
- Q 2 and transistor Q 4 apply driving voltage, so that transistor Q 2 and transistor Q 4 are turned on at zero voltage.
- the transistor Q 5 and the transistor Q 6 are in a commutation state and turned on at the same time.
- the area of the central pillar 21 is equal to the sum of the area of the first side pillar 22 and the area of the second side pillar 23, and the area of the first side pillar 22 is half of the area of the second side pillar 23.
- a first air gap 31 is formed between the first magnetic column 321 and the fourth magnetic column 322
- a second air gap 32 is formed between the third magnetic column 331 and the sixth magnetic column 332, and the first air gap
- the width of 31 is half the width of the second air gap 32.
- the ratio of the area of the first side post 22 to the area of the second side post 23 is equal to the ratio of the width of the first air gap 31 to the width of the second air gap 32.
- the first port of the second coil 12 is the first port 310 of the primary winding
- the second port of the second coil 12 is the second port 320 of the primary winding
- the first port 310 of the primary winding is Are respectively connected to the first end of the resistor R 1 , the first end of the capacitor C 1 and the first end of the capacitor C 2
- the second port 320 of the primary winding is respectively connected to the source of the transistor Q 1 and the drain of the transistor Q 2 connection;
- a first coil of the first port 11 to the third port 330 of the primary winding of the first coil is a second port 11 of the primary winding 340 of the fourth port, the third port of the primary winding 330 of the resistors R 1 respectively a second terminal of the transistor Q source electrode 2, the capacitance C 2 of the second end, the first end of the resistor R 2, the capacitance C of the first terminal 3 and the capacitor C 4 is connected to a first terminal, a fourth primary winding port 340 source electrode respectively of the transistor Q 3 and the transistor Q 4 is connected to the drain.
- the first magnetic core and the second magnetic core are PQ-type power magnetic cores.
- the PQ type power magnetic core has the characteristics of low loss, low temperature rise, good anti-interference performance, reasonable shape and large power range (50W-1000W), which can effectively reduce the installation volume, equipped with multiple pins and winding wiring Convenience.
- the specific description of the input circuit 200 please refer to the related description of FIG. 4 below, the specific description of the magnetic element 300 may refer to the related description of FIG. 3 below, and the specific description of the output circuit 400 may refer to the related description of FIG. 5 below.
- FIG. 3 is a schematic structural diagram of a magnetic element in a voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
- the magnetic element 300 includes a first magnetic core 350, a second magnetic core 360, and a second magnetic core.
- the first magnetic core 350 includes a first magnetic column 321, a second magnetic column 311, a third magnetic column 331, and a first horizontal column 351.
- the first horizontal column 351 is connected to the first magnetic column 321, the second magnetic column 311, and the The three magnetic pillars 331 are connected at the same end;
- the second magnetic core 360 includes a fourth magnetic pillar 322, a fifth magnetic pillar 312, a sixth magnetic pillar 332, and a second horizontal pillar 361.
- the second horizontal pillar 361 is respectively connected to the fourth magnetic pillar 322, the same end of the fifth magnetic column 312 and the sixth magnetic column 332 are connected;
- the second magnetic column 311 and the fifth magnetic column 312 are opposed and contacted in pairs to form the central column 21; the first magnetic column 321 and the fourth magnetic column 322 are relatively non-contacting, forming the first side column 22; the third magnetic column 331 and the sixth magnetic pillar 332 are relatively non-contact, forming the second side pillar 23;
- the first coil 11 and the second coil 12 are wound on the central column 21, and the number and winding direction of the first coil 11 and the second coil 12 are the same; the third coil 41 and the fourth coil 42 are wound on the On the two horizontal bars, the number of turns and the winding direction of the third coil 41 and the fourth coil 42 are the same.
- FIG. 4 is a schematic structural diagram of an input circuit in a voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
- the input circuit 200 includes a first sub-input circuit 210 and a second sub-input circuit 220. ,among them:
- the first sub-input circuit 210 includes a resistor R 1 , a capacitor C 1 , a capacitor C 2 , a transistor Q 1 and a transistor Q 2 , where:
- a first end of a resistor R is connected to a first terminal of the capacitor C 1, the second end of the capacitor C 1 is connected to the drain of the transistor Q 1, the source of the transistor Q 1 is connected to the drain of the transistor Q 2, the transistor Q 2 and the source resistor R 1 is connected to a second end, the first end of the capacitor C 2 to the first end of a capacitor C and a resistor R is connected to a first terminal 1, respectively, the second end of the capacitor C and the resistor 2 are The second end of R 1 and the source of transistor Q 2 are connected, and the first port 211 of the first sub-input circuit 210 is connected to the first end of resistor R 1 , the first end of capacitor C 1 and the first end of capacitor C 2 respectively . terminal is connected, a first sub-circuit 210 of the second input port 212 of the second end of the resistor R respectively 1, a source of the transistor Q 2 and a second capacitor C 2 is connected to a second terminal;
- the second sub-input circuit 220 includes a resistor R 2 , a capacitor C 3 , a capacitor C 4 , a transistor Q 3 and a transistor Q 4 , where:
- a first end of resistor R 2 connected to a first terminal of the capacitor C 3 of the capacitor C 3 and the second terminal of the transistor Q 3 is connected to the drain, the source of the transistor Q 3 is connected to the drain of the transistor Q 4, the transistor Q the source and the resistor R 4 is connected to a second terminal 2, a first end of the capacitor C 4 are connected to a first end 2 a first terminal of the resistor R and the capacitor C 3, the second terminal of the capacitor C and the resistor 4 are The second end of R 2 is connected to the source of transistor Q 4 , and the first port 221 of the second sub-input circuit 220 is connected to the first end of resistor R 2 , the first end of capacitor C 3 , and the first end of capacitor C 4 , respectively.
- the second port 222 of the second sub-input circuit 220 is connected to the second end of the resistor R 2 , the source of the transistor Q 4 and the second end of the capacitor C 4 respectively;
- the second port 212 of the first sub-input circuit 210 is connected to the first port 221 of the second sub-input circuit 220, and the first port 211 of the first sub-input circuit 210 and the second port 222 of the second sub-input circuit 220 are used for Connect the input voltage source U i .
- the transistor Q 1 , the transistor Q 2 , the transistor Q 3 and the transistor Q 4 are all field effect transistors.
- FIG. 5 is a structural diagram of an output circuit in a voltage conversion circuit of an integrated vehicle charger provided by an embodiment of the present application.
- the output circuit 400 includes a transistor Q 5 , a transistor Q 6 and a capacitor C 5 , magnetic
- the element 300 also includes a first port 411 of the secondary winding, a second port 412 of the secondary winding, a third port 421 of the secondary winding, and a fourth port 422 of the secondary winding, wherein:
- the first port of the third coil 41 is the first port 411 of the secondary winding
- the second port of the third coil 41 is the second port 412 of the secondary winding
- the first port 411 of the secondary winding is connected to the positive terminal of the capacitor C 5 connecting the capacitor C to the negative electrode 5 and the source of the transistor Q 5 is connected, the second port 412 and the drain of the transistor Q 5 of the secondary winding is connected;
- the first port of the fourth coil 42 is the third port 421 of the secondary winding
- the second port of the fourth coil 42 is the fourth port 422 of the secondary winding
- the third port 421 of the secondary winding is connected to the third port 421 of the secondary winding.
- a first port 411 and a capacitor C 5 is connected to the positive electrode
- the source of the transistor Q 6 are connected to the negative pole of the source of the transistor Q and the capacitor C 5 5 .
- the first port and 410,400 respectively of the secondary winding 411 of the first port, the third port 421 of the winding and a capacitor C 5 is connected to the positive electrode, the second output circuit output port circuit 420 respectively 400 and a source electrode of the transistor Q 5, the source electrode of the transistor Q 6 is connected to the negative electrode and the capacitor C, the output circuit of the first port of the second port 5 420 410 and an output circuit 400 for connecting the output 400 of the voltage source U o.
- the transistor Q 5 and the transistor Q 6 are field effect transistors.
- An embodiment of the present application also provides a switching power supply, which includes the voltage conversion circuit of an integrated vehicle charger provided in any of the foregoing application embodiments.
- the voltage conversion circuit of the integrated on-board charger in the switching power supply is the same as the voltage conversion circuit of the integrated on-board charger described in any of the above application embodiments, and will not be described here.
- the disclosed device may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
- the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本申请实施例公开了一种集成车载充电机的电压转换电路,输入电路与磁性元件的第一端连接,磁性元件的第二端与输出电路连接,第一子输入电路与第二子输入电路串联,第一子输入电路分别与磁性元件的原边绕组的第一端口以及第二端口连接,第二子输入电路分别与磁性元件的原边绕组的第三端口以及第四端口连接;第一、第二子输入电路基于输入的高电压信号分别产生第一、第二电压信号,第一、第二电压信号在磁性元件中分别产生同方向的第一、第二磁通量,第一、第二磁通量叠加的第三磁通量通过磁性元件的副边绕组产生感应电动势,感应电动势通过输出电路产生低电压信号。采用本申请实施例可提高电路的输入电压的适配范围。
Description
本申请涉及电子电路技术领域,具体涉及一种集成车载充电机的电压转换电路。
目前,有源钳位正反激磁集成电路是一种适用于转换功率较大、输出电压较低和输出电流较大场合的电路,有源钳位正反激磁集成电路具有电路拓扑简单、电压尖峰小、零电压开关等优良特性,因此在中小功率的直流变换场合得到了广泛应用。由于有源钳位正反激磁集成电路的最高输入电压有限,因此为了提高有源钳位正反激磁集成电路的输入电压的适配范围,需要对有源钳位正反激磁集成电路进一步优化。
发明内容
本申请实施例提供一种集成车载充电机的电压转换电路,用于提高电路的输入电压的适配范围。
本申请实施例第一方面提供一种集成车载充电机的电压转换电路,包括输入电路、磁性元件和输出电路,所述输入电路包括第一子输入电路和第二子输入电路,所述磁性元件包括原边绕组的第一端口、原边绕组的第二端口、原边绕组的第三端口和原边绕组的第四端口,其中:
所述输入电路与所述磁性元件的第一端连接,所述磁性元件的第二端与所述输出电路连接,所述第一子输入电路与所述第二子输入电路串联,所述第一子输入电路分别与所述原边绕组的第一端口以及所述原边绕组的第二端口连接,所述第二子输入电路分别与所述原边绕组的第三端口以及所述原边绕组的第四端口连接;
所述第一子输入电路和所述第二子输入电路基于输入的高电压信号分别 产生第一电压信号和第二电压信号,所述第一电压信号和所述第二电压信号在所述磁性元件中分别产生第一磁通量和第二磁通量,所述第一磁通量的方向与所述第二磁通量的方向相同,所述第一磁通量和所述第二磁通量叠加的第三磁通量通过所述磁性元件的副边绕组产生感应电动势,所述感应电动势通过所述输出电路产生低电压信号。
在一个实施方式中,所述磁性元件包括第一磁芯、第二磁芯、第一线圈、第二线圈、第三线圈和第四线圈,其中:
所述第一磁芯包括第一磁柱、第二磁柱、第三磁柱和第一横柱,所述第一横柱分别与所述第一磁柱、所述第二磁柱以及所述第三磁柱的同一端连接;所述第二磁芯包括第四磁柱、第五磁柱、第六磁柱和第二横柱,所述第二横柱分别与所述第四磁柱、所述第五磁柱以及所述第六磁柱的同一端连接;
所述第二磁柱与所述第五磁柱两两相对并接触,构成中心柱;所述第一磁柱与所述第四磁柱两两相对不接触,构成第一边柱;所述第三磁柱与所述第六磁柱两两相对不接触,构成第二边柱;
所述第一线圈和所述第二线圈绕制在所述中心柱上,且所述第一线圈与所述第二线圈的圈数和绕制方向均相同;所述第三线圈和所述第四线圈绕制在所述第二横柱上,且所述第三线圈与所述第四线圈的圈数和绕制方向均相同。
在一个实施方式中,所述中心柱的面积等于所述第一边柱的面积与所述第二边柱的面积的和,所述第一边柱的面积为所述第二边柱的面积的一半。
在一个实施方式中,所述第一磁柱与所述第四磁柱之间形成第一气隙,所述第三磁柱与所述第六磁柱之间形成第二气隙,所述第一气隙的宽度为所述第二气隙的宽度的一半。
在一个实施方式中,所述第一边柱的面积与所述第二边柱的面积的比值等于所述第一气隙的宽度与所述第二气隙的宽度的比值。
在一个实施方式中,所述第一子输入电路包括电阻R
1、电容C
1、电容C
2、晶体管Q
1和晶体管Q
2,其中:
所述电阻R
1的第一端与所述电容C
1的第一端连接,所述电容C
1的第二端与所述晶体管Q
1的漏极连接,所述晶体管Q
1的源极与所述晶体管Q
2的漏 极连接,所述晶体管Q
2的源极与所述电阻R
1的第二端连接,所述电容C
2的第一端分别与所述电阻R
1的第一端以及所述电容C
1的第一端连接,所述电容C
2的第二端分别与所述电阻R
1的第二端以及所述晶体管Q
2的源极连接,所述第一子输入电路的第一端口分别与所述电阻R
1的第一端、所述电容C
1的第一端以及所述电容C
2的第一端连接,所述第一子输入电路的第二端口分别与所述电阻R
1的第二端、所述晶体管Q
2的源极以及所述电容C
2的第二端连接;
所述第二子输入电路包括电阻R
2、电容C
3、电容C
4、晶体管Q
3和晶体管Q
4,其中:
所述电阻R
2的第一端与所述电容C
3的第一端连接,所述电容C
3的第二端与所述晶体管Q
3的漏极连接,所述晶体管Q
3的源极与所述晶体管Q
4的漏极连接,所述晶体管Q
4的源极与所述电阻R
2的第二端连接,所述电容C
4的第一端分别与所述电阻R
2的第一端以及所述电容C
3的第一端连接,所述电容C
4的第二端分别与所述电阻R
2的第二端以及所述晶体管Q
4的源极连接,所述第二子输入电路的第一端口分别与所述电阻R
2的第一端、所述电容C
3的第一端以及所述电容C
4的第一端连接,所述第二子输入电路的第二端口分别与所述电阻R
2的第二端、所述晶体管Q
4的源极以及所述电容C
4的第二端连接;
所述第一子输入电路的第二端口与所述第二子输入电路的第一端口连接,所述第一子输入电路的第一端口和所述第二子输入电路的第二端口用于连接输入电压源。
在一个实施方式中,所述第二线圈的第一端口为所述原边绕组的第一端口,所述第二线圈的第二端口为所述原边绕组的第二端口,所述原边绕组的第一端口分别与所述电阻R
1的第一端、所述电容C
1的第一端以及所述电容C
2的第一端连接,所述原边绕组的第二端口分别与所述晶体管Q
1的源极以及所述晶体管Q
2的漏极连接;
所述第一线圈的第一端口为所述原边绕组的第三端口,所述第一线圈的第二端口为所述原边绕组的第四端口,所述原边绕组的第三端口分别与所述电阻R
1的第二端、所述晶体管Q
2的源极、所述电容C
2的第二端、所述电阻R
2的第一端、所述电容C
3的第一端以及所述电容C
4的第一端连接,所述原边绕组 的第四端口分别与所述晶体管Q
3的源极以及所述晶体管Q
4的漏极连接。
在一个实施方式中,所述输出电路包括晶体管Q
5、晶体管Q
6和电容C
5,所述磁性元件还包括副边绕组的第一端口、副边绕组的第二端口、副边绕组的第三端口和副边绕组的第四端口,其中:
所述第三线圈的第一端口为所述副边绕组的第一端口,所述第三线圈的第二端口为所述副边绕组的第二端口,所述副边绕组的第一端口与所述电容C
5的正极连接,所述电容C
5的负极与所述晶体管Q
5的源极连接,所述晶体管Q
5的漏极与所述副边绕组的第二端口连接;
所述第四线圈的第一端口为所述副边绕组的第三端口,所述第四线圈的第二端口为所述副边绕组的第四端口,所述副边绕组的第三端口分别与所述副边绕组的第一端口以及所述电容C
5的正极连接,所述副边绕组的第四端口与所述晶体管Q
6的漏极连接,所述晶体管Q
6的源极分别与所述晶体管Q
5的源极以及所述电容C
5的负极连接。
在一个实施方式中,所述第一磁芯和所述第二磁芯为PQ型功率磁芯。
本申请第二方面提供一种开关电源,所述开关电源包括上述实施方式中所述的集成车载充电机的电压转换电路。
可以看出,在本申请实施例中,输入电路与磁性元件的第一端连接,磁性元件的第二端与输出电路连接,第一子输入电路与第二子输入电路串联,第一子输入电路分别与磁性元件的原边绕组的第一端口以及第二端口连接,第二子输入电路分别与磁性元件的原边绕组的第三端口以及第四端口连接,第一子输入电路和第二子输入电路基于输入的高电压信号分别产生第一电压信号和第二电压信号,第一电压信号和第二电压信号在磁性元件中分别产生同方向的第一磁通量和第二磁通量,第一磁通量和第二磁通量叠加的第三磁通量通过磁性元件的副边绕组产生感应电动势,感应电动势通过输出电路产生低电压信号。相较于采用一个有源钳位正反激磁集成电路承载输入的高电压,本申请实施例由第一子输入电路和第二子输入电路共同承载输入的高电压,因此可提高电路的输入电压的适配范围;进一步地,相较于采用两个有源钳位正反激磁集成电路提高电路的输入电压的适配范围,两个有源钳位正反激磁集成电路对应两个 磁性元件,本申请实施例只采用一个磁性元件,因此可节约电路的成本,减少电路的体积和重量。
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所涉及到的附图作简单地介绍。
图1是本申请实施例提供的第一种集成车载充电机的电压转换电路的结构示意图;
图2A是本申请实施例提供的第二种集成车载充电机的电压转换电路的结构示意图;
图2B是本申请实施例提供的第一种电流方向示意图;
图2C是本申请实施例提供的第二种电流方向示意图;
图3是图2A中所示的磁性元件的结构示意图;
图4是图2A中所示的输入电路的结构示意图;
图5是图2A中所示的输出电路的结构示意图。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
现有技术中,有源钳位正反激磁集成电路的最高输入电压约为750V,无法满足更高的输入电压要求,为了提高电路的输入电压的适配范围,一种可行的实施方式为采用两个有源钳位正反激磁集成电路,两个有源钳位正反激磁集成电路分别为第一有源钳位正反激磁集成电路和第二有源钳位正反激磁集成电路,第一有源钳位正反激磁集成电路包括第一输入电路、第一磁性元件和第一输出电路,第二有源钳位正反激磁集成电路包括第二输入电路、第二磁性元件和第二输出电路,第一输入电路和第二输入电路串联,第一输出电路和第二输出电路串联形成第三输出电路,更高的输入电压由第一输入电路和第二输入电路共同承载,第一输入电路承载第一电压,第二输入电路承载第二电压,第一电压在第一输入电路中产生第一电压信号,第二电压在第二输入电路中产生第二电压信号,第一电压信号在第一磁性元件中产生第一磁通量,第二电压信号在第二磁性元件中产生第二磁通量,第一磁通量通过第一磁性元件的副边绕组产生第一感应电动势,第二磁通量通过第二磁性元件的副边绕组产生第二感应电动势,第一感应电动势和第二感应电动势叠加的第三感应电动势通过第三输出电路产生低电压信号。这种可行的实施方式需要采用两个磁性元件,本申请实施例只采用一个磁性元件,因此可节约电路的成本,同时减小了电路的体积和重量。
下面结合附图对本申请实施例进行详细介绍。
请参阅图1,图1是本申请实施例提供的第一种集成车载充电机的电压转换电路的结构示意图,该集成车载充电机的电压转换电路100包括输入电路200、磁性元件300和输出电路400,输入电路200包括第一子输入电路210和第二子输入电路220,磁性元件300包括原边绕组的第一端口310、原边绕组的第二端口320、原边绕组的第三端口330和原边绕组的第四端口340,其中:
输入电路200与磁性元件300的第一端连接,磁性元件300的第二端与输出电路400连接,第一子输入电路210与第二子输入电路220串联,第一子输入电路210分别与原边绕组的第一端口310以及原边绕组的第二端口320连接,第二子输入电路220分别与原边绕组的第三端口330以及原边绕组的第四端口340连接;
第一子输入电路210和第二子输入电路220基于输入的高电压信号分别产生第一电压信号和第二电压信号,第一电压信号和第二电压信号在磁性元件300中分别产生第一磁通量和第二磁通量,第一磁通量的方向与第二磁通量的方向相同,第一磁通量和第二磁通量叠加的第三磁通量通过磁性元件300的副边绕组产生感应电动势,感应电动势通过输出电路400产生低电压信号。
可以看出,在本申请实施例中,相较于采用一个有源钳位正反激磁集成电路承载输入的高电压,本申请实施例由第一子输入电路和第二子输入电路共同承载输入的高电压,因此可提高电路的输入电压的适配范围;进一步地,相较于采用两个有源钳位正反激磁集成电路提高电路的输入电压的适配范围,两个有源钳位正反激磁集成电路对应两个磁性元件,本申请实施例只采用一个磁性元件,因此可节约电路的成本,减少电路的体积和重量。
请参阅图2A,图2A是本申请实施例提供的第二种集成车载充电机的电压转换电路的结构示意图,该集成车载充电机的电压转换电路100包括输入电路200、磁性元件300和输出电路400,输入电路200包括第一子输入电路210和第二子输入电路220,磁性元件300包括原边绕组的第一端口310、原边绕组的第二端口320、原边绕组的第三端口330和原边绕组的第四端口340,其中:
输入电路200与磁性元件300的第一端连接,磁性元件300的第二端与输出电路400连接,第一子输入电路210与第二子输入电路220串联,第一子输入电路210分别与原边绕组的第一端口310以及原边绕组的第二端口320连接,第二子输入电路220分别与原边绕组的第三端口330以及原边绕组的第四端口340连接;
第一子输入电路210和第二子输入电路220基于输入的高电压信号分别产生第一电压信号和第二电压信号,第一电压信号和第二电压信号在磁性元件300中分别产生第一磁通量和第二磁通量,第一磁通量的方向与第二磁通量的方向相同,第一磁通量和第二磁通量叠加的第三磁通量通过磁性元件300的副边绕组产生感应电动势,感应电动势通过输出电路400产生低电压信号。
可以看出,在本申请实施例中,相较于采用一个有源钳位正反激磁集成电路承载输入的高电压,本申请实施例由第一子输入电路和第二子输入电路共同承载输入的高电压,因此可提高电路的输入电压的适配范围;进一步地,相较于采用两个有源钳位正反激磁集成电路提高电路的输入电压的适配范围,两个有源钳位正反激磁集成电路对应两个磁性元件,本申请实施例只采用一个磁性元件,因此可节约电路的成本,减少电路的体积和重量。
下面基于图2A所示的集成车载充电机的电压转换电路100对其工作流程进行详细说明。
首先需要说明的是,由于第一子输入电路210与第二子输入电路220的结构相同,所以两者的内部元器件参数也相同。举例来说,电阻R
1与电阻R
2的电阻值相同,而其余元器件应同样理解,在此不再赘述。其次,在输入电路200中,晶体管Q
1与晶体管Q
3同步导通或关断,晶体管Q
2与晶体管Q
4同步导通或关断。换句话说,晶体管Q
1的栅极与晶体管Q
3的栅极接入的信号相同,晶体管Q
2的栅极与晶体管Q
4的栅极接入的信号相同。另外,第一子输入电路210与第二子输入电路220串联,从而两者对于输入信号的分压相同。
进一步地,集成车载充电机的电压转换电路100的工作流程在一个周期内包括四个阶段,具体如下:
第一阶段:晶体管Q
1、晶体管Q
3处于关断状态,晶体管Q
2、晶体管Q
4处于导通状态。
在第一阶段中,第一线圈11和第二线圈12的电流方向如图2B所示,第一线圈11与第二线圈12的圈数和绕制方向均相同,在中心柱21中产生的磁通方向也相同,中心柱21中的磁通有向右增强的趋势。中心柱21中的磁通量分流至第一边柱22和第二边柱23中,并且在第三线圈41和第四线圈42中产 生感应电动势。第四线圈42中产生的感应电动势被晶体管Q
6截止,因此不产生电流。第一线圈11、第二线圈12和第四线圈42组成一个反激变压器。在晶体管Q
2、晶体管Q
4的导通过程中,第一线圈11、第二线圈12和第四线圈42没有传递能量,所产生的磁场能量储存在第二气隙32中。第三线圈41产生的感应电动势使得晶体管Q
5导通,在晶体管Q
5和电容C
5的回路中产生感应电流。第一线圈11、第二线圈12和第三线圈41形成一个正激耦合。能量从第一线圈11、第二线圈12通过第二横柱361传递到第三线圈41中,第二横柱361中的磁通为励磁电感产生的磁通。
在这个过程中由于第一线圈11和第二线圈12绕制在中心柱21上,第一线圈11和第二线圈12的圈数和绕制方向均相同,因此两者产生的感应电动势也相同。在晶体管Q
2和晶体管Q
4导通的过程中,电容C
3的电压等于第二线圈12的电压,电容C
4的电压等于第一线圈11的电压。由于第一线圈11和第二线圈12等圈数耦合在一起,电容C
3和电容C
4在整个放电过程中电压会保持一致。电容C
3和电容C
4在整个放电过程中通过两个耦合在一起的相同的线圈释放相同的能量,因此电容C
3和电容C
4在整个放电过程中电压仍然保持一致,拥有自动均衡功能。
第二阶段:晶体管Q
1、晶体管Q
3处于关断状态,晶体管Q
2、晶体管Q
4处于关断状态。
在第二阶段中,第二线圈12的电流给晶体管Q
2的结电容充电,晶体管Q
2的电压逐渐升高。同时,晶体管Q
1的结电容在放电,晶体管Q
1的电压下降。当晶体管Q
2的电压=电容C
3的电压+电容C
1的电压,晶体管Q
1的电压=0时,晶体管Q
1体内的二极管导通,此时给晶体管Q
1施加驱动电压,从而使得晶体管Q
1在零电压下导通。
第一线圈11的电流给晶体管Q
4的结电容充电,晶体管Q
4的电压升高。同时,晶体管Q
3的结电容在放电,晶体管Q
3的电压下降。当晶体管Q
4的电压=电容C
4的电压+电容C
2的电压,晶体管Q
3的电压=0时,晶体管Q
3体内的二极管导通,此时给晶体管Q
3施加驱动电压,从而使得晶体管Q
3在零电压下导通。在此过程中,晶体管Q
5,晶体管Q
6晶体管处于换流状态,同时导通。
第三阶段:晶体管Q
2、晶体管Q
4处于关断状态,晶体管Q
1、晶体管Q
3处于导通状态。
在第三阶段中,第一线圈11和第二线圈12的电流方向如图2C所示,第二线圈12通过导通的晶体管Q
5对电容C
1进行充电,电流成下降趋势。第一线圈11通过导通的晶体管Q
6对电容C
2进行充电,电流成下降趋势。中心柱21中的磁通有向左增加的趋势。中心柱21中的磁通分流至第一边柱22和第二边柱23中,在第二边柱23中,磁通有向上增加的趋势,其产生的感应电动势导通晶体管Q
6。在这个过程中,由原先储存在第二气隙32中的磁场能量和电容C
1、电容C
2向第四线圈42提供能量。而在第一边柱22中,磁通有向下增加的趋势,其产生的感应电动势被晶体管Q
5截至,不产生电流。
第四阶段:晶体管Q
1、晶体管Q
3处于关断状态,晶体管Q
2、晶体管Q
4处于关断状态。
在第四阶段中,第一线圈11给晶体管Q
3充电,第二线圈12给晶体管Q
1充电,晶体管Q
2、晶体管Q
4放电,导致晶体管Q
1的电压、晶体管Q
3的电压上升,晶体管Q
2的电压、晶体管Q
4的电压下降。
当晶体管Q
2的电压、晶体管Q
4的电压=0后,晶体管Q
2、晶体管Q
4体内的二极管导通,将晶体管Q
2的电压、晶体管Q
4的电压维持在0伏,此时给晶体管Q
2、晶体管Q
4施加驱动电压,这样晶体管Q
2、晶体管Q
4在零电压下导通。在此过程中,晶体管Q
5、晶体管Q
6处于换流状态,同时导通。
在一个实施方式中,中心柱21的面积等于第一边柱22的面积与第二边柱23的面积的和,第一边柱22的面积为第二边柱23的面积的一半。
在一个实施方式中,第一磁柱321与第四磁柱322之间形成第一气隙31,第三磁柱331与第六磁柱332之间形成第二气隙32,第一气隙31的宽度为第二气隙32的宽度的一半。
在一个实施方式中,第一边柱22的面积与第二边柱23的面积的比值等于第一气隙31的宽度与第二气隙32的宽度的比值。
在一个实施方式中,第二线圈12的第一端口为原边绕组的第一端口310,第二线圈12的第二端口为原边绕组的第二端口320,原边绕组的第一端口310 分别与电阻R
1的第一端、电容C
1的第一端以及电容C
2的第一端连接,原边绕组的第二端口320分别与晶体管Q
1的源极以及晶体管Q
2的漏极连接;
第一线圈11的第一端口为原边绕组的第三端口330,第一线圈11的第二端口为原边绕组的第四端口340,原边绕组的第三端口330分别与电阻R
1的第二端、晶体管Q
2的源极、电容C
2的第二端、电阻R
2的第一端、电容C
3的第一端以及电容C
4的第一端连接,原边绕组的第四端口340分别与晶体管Q
3的源极以及晶体管Q
4的漏极连接。
在一个实施方式中,第一磁芯和第二磁芯为PQ型功率磁芯。
其中,PQ型功率磁芯具有损耗小、温升低、抗干扰性能好、形状合理和功率范围大(50W-1000W)的特点,能有效减少安装体积,备有多个引脚,绕制接线方便。
其中,输入电路200的具体描述可参阅下述图4的相关描述,磁性元件300的具体描述可参阅下述图3的相关描述,输出电路400的具体描述可参阅下述图5的相关描述。
请参阅图3,图3是本申请实施例提供的一种集成车载充电机的电压转换电路中的磁性元件的结构示意图,该磁性元件300包括第一磁芯350、第二磁芯360、第一线圈11、第二线圈12、第三线圈41和第四线圈42,其中:
第一磁芯350包括第一磁柱321、第二磁柱311、第三磁柱331和第一横柱351,第一横柱351分别与第一磁柱321、第二磁柱311以及第三磁柱331的同一端连接;第二磁芯360包括第四磁柱322、第五磁柱312、第六磁柱332和第二横柱361,第二横柱361分别与第四磁柱322、第五磁柱312以及第六磁柱332的同一端连接;
第二磁柱311与第五磁柱312两两相对并接触,构成中心柱21;第一磁柱321与第四磁柱322两两相对不接触,构成第一边柱22;第三磁柱331与第六磁柱332两两相对不接触,构成第二边柱23;
第一线圈11和第二线圈12绕制在中心柱21上,且第一线圈11与第二线圈12的圈数和绕制方向均相同;第三线圈41和第四线圈42绕制在第二横柱 上,且第三线圈41与第四线圈42的圈数和绕制方向均相同。
请参阅图4,图4是本申请实施例提供的一种集成车载充电机的电压转换电路中的输入电路的结构示意图,该输入电路200包括第一子输入电路210和第二子输入电路220,其中:
第一子输入电路210包括电阻R
1、电容C
1、电容C
2、晶体管Q
1和晶体管Q
2,其中:
电阻R
1的第一端与电容C
1的第一端连接,电容C
1的第二端与晶体管Q
1的漏极连接,晶体管Q
1的源极与晶体管Q
2的漏极连接,晶体管Q
2的源极与电阻R
1的第二端连接,电容C
2的第一端分别与电阻R
1的第一端以及电容C
1的第一端连接,电容C
2的第二端分别与电阻R
1的第二端以及晶体管Q
2的源极连接,第一子输入电路210的第一端口211分别与电阻R
1的第一端、电容C
1的第一端以及电容C
2的第一端连接,第一子输入电路210的第二端口212分别与电阻R
1的第二端、晶体管Q
2的源极以及第二电容C
2的第二端连接;
第二子输入电路220包括电阻R
2、电容C
3、电容C
4、晶体管Q
3和晶体管Q
4,其中:
电阻R
2的第一端与电容C
3的第一端连接,电容C
3的第二端与晶体管Q
3的漏极连接,晶体管Q
3的源极与晶体管Q
4的漏极连接,晶体管Q
4的源极与电阻R
2的第二端连接,电容C
4的第一端分别与电阻R
2的第一端以及电容C
3的第一端连接,电容C
4的第二端分别与电阻R
2的第二端以及晶体管Q
4的源极连接,第二子输入电路220的第一端口221分别与电阻R
2的第一端、电容C
3的第一端以及电容C
4的第一端连接,第二子输入电路220的第二端口222分别与电阻R
2的第二端、晶体管Q
4的源极以及电容C
4的第二端连接;
第一子输入电路210的第二端口212与第二子输入电路220的第一端口221连接,第一子输入电路210的第一端口211和第二子输入电路220的第二端口222用于连接输入电压源U
i。
其中,晶体管Q
1、晶体管Q
2、晶体管Q
3和晶体管Q
4均为场效应晶体管。
请参阅图5,图5是本申请实施例提供的一种集成车载充电机的电压转换电路中的输出电路的结构示意图,该输出电路400包括晶体管Q
5、晶体管Q
6和电容C
5,磁性元件300还包括副边绕组的第一端口411、副边绕组的第二端口412、副边绕组的第三端口421和副边绕组的第四端口422,其中:
第三线圈41的第一端口为副边绕组的第一端口411,第三线圈41的第二端口为副边绕组的第二端口412,副边绕组的第一端口411与电容C
5的正极连接,电容C
5的负极与晶体管Q
5的源极连接,晶体管Q
5的漏极与副边绕组的第二端口412连接;
第四线圈42的第一端口为副边绕组的第三端口421,第四线圈42的第二端口为副边绕组的第四端口422,副边绕组的第三端口421分别与副边绕组的第一端口411以及电容C
5的正极连接,副边绕组的第四端口422与晶体管Q
6的漏极连接,晶体管Q
6的源极分别与晶体管Q
5的源极以及电容C
5的负极连接。
在一个实施方式中,输出电路400的第一端口410分别与副边绕组的第一端口411、副边绕组的第三端口421以及电容C
5的正极连接,输出电路400的第二端口420分别与晶体管Q
5的源极、晶体管Q
6的源极以及电容C
5的负极连接,输出电路400的第一端口410和输出电路400的第二端口420用于连接输出电压源U
o。
其中,晶体管Q
5和晶体管Q
6为场效应晶体管。
本申请实施例还提供一种开关电源,开关电源包括上述任一申请实施例提供的集成车载充电机的电压转换电路。
其中,开关电源中的集成车载充电机的电压转换电路与上述任一申请实施例中描述的集成车载充电机的电压转换电路相同,在此不再叙述。
需要说明的是,对于前述的各申请实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施 例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。
Claims (10)
- 一种集成车载充电机的电压转换电路,其特征在于,包括输入电路、磁性元件和输出电路,所述输入电路包括第一子输入电路和第二子输入电路,所述磁性元件包括原边绕组的第一端口、原边绕组的第二端口、原边绕组的第三端口和原边绕组的第四端口,其中:所述输入电路与所述磁性元件的第一端连接,所述磁性元件的第二端与所述输出电路连接,所述第一子输入电路与所述第二子输入电路串联,所述第一子输入电路分别与所述原边绕组的第一端口以及所述原边绕组的第二端口连接,所述第二子输入电路分别与所述原边绕组的第三端口以及所述原边绕组的第四端口连接;所述第一子输入电路和所述第二子输入电路基于输入的高电压信号分别产生第一电压信号和第二电压信号,所述第一电压信号和所述第二电压信号在所述磁性元件中分别产生第一磁通量和第二磁通量,所述第一磁通量的方向与所述第二磁通量的方向相同,所述第一磁通量和所述第二磁通量叠加的第三磁通量通过所述磁性元件的副边绕组产生感应电动势,所述感应电动势通过所述输出电路产生低电压信号。
- 根据权利要求1所述的集成车载充电机的电压转换电路,其特征在于,所述磁性元件包括第一磁芯、第二磁芯、第一线圈、第二线圈、第三线圈和第四线圈,其中:所述第一磁芯包括第一磁柱、第二磁柱、第三磁柱和第一横柱,所述第一横柱分别与所述第一磁柱、所述第二磁柱以及所述第三磁柱的同一端连接;所述第二磁芯包括第四磁柱、第五磁柱、第六磁柱和第二横柱,所述第二横柱分别与所述第四磁柱、所述第五磁柱以及所述第六磁柱的同一端连接;所述第二磁柱与所述第五磁柱两两相对并接触,构成中心柱;所述第一磁柱与所述第四磁柱两两相对不接触,构成第一边柱;所述第三磁柱与所述第六磁柱两两相对不接触,构成第二边柱;所述第一线圈和所述第二线圈绕制在所述中心柱上,且所述第一线圈与所 述第二线圈的圈数和绕制方向均相同;所述第三线圈和所述第四线圈绕制在所述第二横柱上,且所述第三线圈与所述第四线圈的圈数和绕制方向均相同。
- 根据权利要求2所述的集成车载充电机的电压转换电路,其特征在于,所述中心柱的面积等于所述第一边柱的面积与所述第二边柱的面积的和,所述第一边柱的面积为所述第二边柱的面积的一半。
- 根据权利要求3所述的集成车载充电机的电压转换电路,其特征在于,所述第一磁柱与所述第四磁柱之间形成第一气隙,所述第三磁柱与所述第六磁柱之间形成第二气隙,所述第一气隙的宽度为所述第二气隙的宽度的一半。
- 根据权利要求4所述的集成车载充电机的电压转换电路,其特征在于,所述第一边柱的面积与所述第二边柱的面积的比值等于所述第一气隙的宽度与所述第二气隙的宽度的比值。
- 根据权利要求5所述的集成车载充电机的电压转换电路,其特征在于,所述第一子输入电路包括电阻R 1、电容C 1、电容C 2、晶体管Q 1和晶体管Q 2,其中:所述电阻R 1的第一端与所述电容C 1的第一端连接,所述电容C 1的第二端与所述晶体管Q 1的漏极连接,所述晶体管Q 1的源极与所述晶体管Q 2的漏极连接,所述晶体管Q 2的源极与所述电阻R 1的第二端连接,所述电容C 2的第一端分别与所述电阻R 1的第一端以及所述电容C 1的第一端连接,所述电容C 2的第二端分别与所述电阻R 1的第二端以及所述晶体管Q 2的源极连接,所述第一子输入电路的第一端口分别与所述电阻R 1的第一端、所述电容C 1的第一端以及所述电容C 2的第一端连接,所述第一子输入电路的第二端口分别与所述电阻R 1的第二端、所述晶体管Q 2的源极以及所述电容C 2的第二端连接;所述第二子输入电路包括电阻R 2、电容C 3、电容C 4、晶体管Q 3和晶体管Q 4,其中:所述电阻R 2的第一端与所述电容C 3的第一端连接,所述电容C 3的第二端与所述晶体管Q 3的漏极连接,所述晶体管Q 3的源极与所述晶体管Q 4的漏极连接,所述晶体管Q 4的源极与所述电阻R 2的第二端连接,所述电容C 4的第一端分别与所述电阻R 2的第一端以及所述电容C 3的第一端连接,所述电容C 4的第二端分别与所述电阻R 2的第二端以及所述晶体管Q 4的源极连接,所述第二子输入电路的第一端口分别与所述电阻R 2的第一端、所述电容C 3的第一端以及所述电容C 4的第一端连接,所述第二子输入电路的第二端口分别与所述电阻R 2的第二端、所述晶体管Q 4的源极以及所述电容C 4的第二端连接;所述第一子输入电路的第二端口与所述第二子输入电路的第一端口连接,所述第一子输入电路的第一端口和所述第二子输入电路的第二端口用于连接输入电压源。
- 根据权利要求6所述的方法,其特征在于,所述第二线圈的第一端口为所述原边绕组的第一端口,所述第二线圈的第二端口为所述原边绕组的第二端口,所述原边绕组的第一端口分别与所述电阻R 1的第一端、所述电容C 1的第一端以及所述电容C 2的第一端连接,所述原边绕组的第二端口分别与所述晶体管Q 1的源极以及所述晶体管Q 2的漏极连接;所述第一线圈的第一端口为所述原边绕组的第三端口,所述第一线圈的第二端口为所述原边绕组的第四端口,所述原边绕组的第三端口分别与所述电阻R 1的第二端、所述晶体管Q 2的源极、所述电容C 2的第二端、所述电阻R 2的第一端、所述电容C 3的第一端以及所述电容C 4的第一端连接,所述原边绕组的第四端口分别与所述晶体管Q 3的源极以及所述晶体管Q 4的漏极连接。
- 根据权利要求7所述的方法,其特征在于,所述输出电路包括晶体管Q 5、晶体管Q 6和电容C 5,所述磁性元件还包括副边绕组的第一端口、副边绕组的第二端口、副边绕组的第三端口和副边绕组的第四端口,其中:所述第三线圈的第一端口为所述副边绕组的第一端口,所述第三线圈的第二端口为所述副边绕组的第二端口,所述副边绕组的第一端口与所述电容C 5 的正极连接,所述电容C 5的负极与所述晶体管Q 5的源极连接,所述晶体管Q 5的漏极与所述副边绕组的第二端口连接;所述第四线圈的第一端口为所述副边绕组的第三端口,所述第四线圈的第二端口为所述副边绕组的第四端口,所述副边绕组的第三端口分别与所述副边绕组的第一端口以及所述电容C 5的正极连接,所述副边绕组的第四端口与所述晶体管Q 6的漏极连接,所述晶体管Q 6的源极分别与所述晶体管Q 5的源极以及所述电容C 5的负极连接。
- 根据权利要求8所述的集成车载充电机的电压转换电路,其特征在于,所述第一磁芯和所述第二磁芯为PQ型功率磁芯。
- 一种开关电源,其特征在于,所述开关电源包括如权利要求1-9任一项所述的集成车载充电机的电压转换电路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980006617.5A CN111542995A (zh) | 2019-07-08 | 2019-07-08 | 集成车载充电机的电压转换电路 |
PCT/CN2019/095149 WO2021003648A1 (zh) | 2019-07-08 | 2019-07-08 | 集成车载充电机的电压转换电路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/095149 WO2021003648A1 (zh) | 2019-07-08 | 2019-07-08 | 集成车载充电机的电压转换电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021003648A1 true WO2021003648A1 (zh) | 2021-01-14 |
Family
ID=71971218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/095149 WO2021003648A1 (zh) | 2019-07-08 | 2019-07-08 | 集成车载充电机的电压转换电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111542995A (zh) |
WO (1) | WO2021003648A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4774649A (en) * | 1987-07-01 | 1988-09-27 | Power-One, Inc. | Integrated magnetic resonant power converter |
CN101030732A (zh) * | 2007-01-09 | 2007-09-05 | 南京航空航天大学 | 输出电流纹波最小化正激式磁集成变换器 |
CN207156960U (zh) * | 2017-07-11 | 2018-03-30 | 深圳市永联科技股份有限公司 | 一种集成dc/dc转换器的车载充电机主电路及其控制环路 |
CN108702026A (zh) * | 2017-08-11 | 2018-10-23 | 深圳欣锐科技股份有限公司 | 一种磁集成电路以及功率转换装置 |
CN109327143A (zh) * | 2018-09-27 | 2019-02-12 | 段志刚 | 一种提高llc拓扑电源输出参数及合理利用的方法及电路 |
CN109624733A (zh) * | 2018-11-28 | 2019-04-16 | 嘉善中正新能源科技有限公司 | 一种用于高速电动车的dc/dc转换器和车载充电机的合并电路 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203931733U (zh) * | 2014-03-05 | 2014-11-05 | 深圳市欣锐特科技有限公司 | 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源 |
CN106981993A (zh) * | 2017-05-19 | 2017-07-25 | 深圳市奥耐电气技术有限公司 | 一种高效双向dc‑dc变换器 |
-
2019
- 2019-07-08 CN CN201980006617.5A patent/CN111542995A/zh active Pending
- 2019-07-08 WO PCT/CN2019/095149 patent/WO2021003648A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4774649A (en) * | 1987-07-01 | 1988-09-27 | Power-One, Inc. | Integrated magnetic resonant power converter |
CN101030732A (zh) * | 2007-01-09 | 2007-09-05 | 南京航空航天大学 | 输出电流纹波最小化正激式磁集成变换器 |
CN207156960U (zh) * | 2017-07-11 | 2018-03-30 | 深圳市永联科技股份有限公司 | 一种集成dc/dc转换器的车载充电机主电路及其控制环路 |
CN108702026A (zh) * | 2017-08-11 | 2018-10-23 | 深圳欣锐科技股份有限公司 | 一种磁集成电路以及功率转换装置 |
CN109327143A (zh) * | 2018-09-27 | 2019-02-12 | 段志刚 | 一种提高llc拓扑电源输出参数及合理利用的方法及电路 |
CN109624733A (zh) * | 2018-11-28 | 2019-04-16 | 嘉善中正新能源科技有限公司 | 一种用于高速电动车的dc/dc转换器和车载充电机的合并电路 |
Also Published As
Publication number | Publication date |
---|---|
CN111542995A (zh) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10177671B2 (en) | Modified dual active half bridge DC/DC converter with transformer DC bias | |
TWI737129B (zh) | 直流/直流變換系統 | |
CA2928189A1 (en) | Gate drive circuit to reduce parasitic coupling | |
US20240363283A1 (en) | Power module and power circuit | |
WO2020056603A1 (zh) | 集成车载充电机电路及制造方法、集成车载充电机 | |
WO2020056604A1 (zh) | 集成车载充电机电路及制造方法、集成车载充电机 | |
CN105978343A (zh) | 一种多路输出开关电源和逆变器 | |
WO2021003648A1 (zh) | 集成车载充电机的电压转换电路 | |
JP7381596B2 (ja) | チップ、信号レベルシフタ回路、及び電子装置 | |
WO2021003649A1 (zh) | 集成车载充电机的电压转换电路 | |
WO2021003650A1 (zh) | 集成车载充电机的电压转换电路 | |
CN208508784U (zh) | 半桥驱动电路、芯片和空调 | |
WO2020215279A1 (zh) | 过压保护控制电路及相关设备 | |
JP2001119814A (ja) | 第4の素子コンデンサを用いて充電電力を制御するバッテリ充電システム | |
WO2021003652A1 (zh) | 集成车载充电机的有源箝位正反激组合式电路 | |
CN108233723A (zh) | 反激电路和反激变换器 | |
WO2021003647A1 (zh) | 集成车载充电机的电压转换电路 | |
WO2021003651A1 (zh) | 集成车载充电机的开关电源电路及转换器 | |
CN108832830B (zh) | 一种功率并联的均流电路 | |
CN210225038U (zh) | 集成车载充电机的电压转换电路及开关电源 | |
CN210225039U (zh) | 集成车载充电机的电压转换电路及开关电源 | |
US11777393B2 (en) | Current detection circuit and current detection method | |
CN212850273U (zh) | 集成车载充电机的电压转换电路、开关电源及车载设备 | |
CN220857627U (zh) | 一种应用于多输出接口装置的控制电路及分线板 | |
CN212085870U (zh) | 集成车载充电机的电压转换电路、开关电源以及车载设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19937325 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19937325 Country of ref document: EP Kind code of ref document: A1 |