WO2019027069A1 - Fuel cell electrolyte reinforced membrane and manufacturing method therefor - Google Patents

Fuel cell electrolyte reinforced membrane and manufacturing method therefor Download PDF

Info

Publication number
WO2019027069A1
WO2019027069A1 PCT/KR2017/008400 KR2017008400W WO2019027069A1 WO 2019027069 A1 WO2019027069 A1 WO 2019027069A1 KR 2017008400 W KR2017008400 W KR 2017008400W WO 2019027069 A1 WO2019027069 A1 WO 2019027069A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
fuel cell
membrane
porous support
uniaxial
Prior art date
Application number
PCT/KR2017/008400
Other languages
French (fr)
Korean (ko)
Inventor
이길목
양의석
양연화
한승원
정성기
권정오
정지홍
한명성
성기호
Original Assignee
(주)상아프론테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)상아프론테크 filed Critical (주)상아프론테크
Priority to PCT/KR2017/008400 priority Critical patent/WO2019027069A1/en
Publication of WO2019027069A1 publication Critical patent/WO2019027069A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell electrolyte-reinforced membrane, and more particularly, to an electrolyte-reinforced membrane for a fuel cell, wherein a porous support used for an electrolyte membrane for fuel cells is introduced into a specific support to greatly improve mechanical properties, A fuel cell including the same, and a method of manufacturing the same.
  • a fuel cell is a power generation system that converts chemical energy generated by electrochemically reacting fuel (hydrogen or methanol) and oxidizer (oxygen) directly into electrical energy. It is a next generation energy source with high energy efficiency and eco- Research and development. Fuel cells can be selectively used for high temperature and low temperature fuel cells according to application fields and are usually classified according to the kind of electrolyte. Solid oxide fuel cell (SOFC), molten carbonate An alkali fuel cell (AFC), a polymer electrolyte fuel cell (PEMFC), and the like are being developed for low temperature applications.
  • SOFC Solid oxide fuel cell
  • AFC molten carbonate
  • AFC alkali fuel cell
  • PEMFC polymer electrolyte fuel cell
  • PEMFC proton exchange membrane fuel cell
  • DMFC direct methanol fuel cell
  • the unit cell structure of such a fuel cell has a structure in which an anode and a cathode are coated on both sides of an electrolyte membrane composed of a polymer material, Electrode Assembly, MEA).
  • This membrane-electrode assembly is composed of a reducing electrode, an oxidizing electrode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane (for example, a hydrogen ion conductive electrolyte membrane), where electrochemical reaction of hydrogen and oxygen occurs.
  • the oxidizing electrode hydrogen or methanol, which is a fuel, is supplied to generate hydrogen ions and electrons. Hydrogen ions and electrons are generated in the oxidizing electrode, and hydrogen ions and oxygen that pass through the polymer electrolyte membrane are combined with each other in the reducing electrode. .
  • the electrode catalyst layer of the oxidized electrode and the reducing electrode is coated on both surfaces of the ion conductive electrolyte membrane, and the material forming the electrode catalyst layer is Pt (platinum) or Pt-Ru (platinum-ruthenium) Is supported on a carbon carrier.
  • the membrane-electrode assembly (MEA) which is considered to be a core component of the electrochemical reaction of the fuel cell, uses an ion conductive electrolyte membrane and a platinum catalyst, Is considered to be the most important part to improve the performance and price competitiveness.
  • Conventional methods for preparing commonly used MEAs include preparing a paste by mixing a catalyst material with a hydrogen ion conductive binder, i.e., a fluorine-based Nafion Ionomer, and water and / or an alcohol solvent, This is coated on a carbon cloth or a carbon paper, which serves as a gas diffusion layer, as well as an electrode support for supporting the catalyst layer, and then dried and thermally fused to the hydrogen ion conductive electrolyte membrane.
  • a hydrogen ion conductive binder i.e., a fluorine-based Nafion Ionomer
  • water and / or an alcohol solvent This is coated on a carbon cloth or a carbon paper, which serves as a gas diffusion layer, as well as an electrode support for supporting the catalyst layer, and then dried and thermally fused to the hydrogen ion conductive electrolyte membrane.
  • Oxidation and reduction reaction of hydrogen and oxygen by the catalyst in the catalyst layer The transfer of electrons by the adherent carbon particles; Securing a passage for supplying hydrogen, oxygen and moisture and discharging a surplus gas after the reaction; And the movement of oxidized hydrogen ions must be simultaneously performed. Further, in order to improve the performance, it is necessary to reduce the activation polarization by increasing the area of the triple phase boundary where the feed fuel and the catalyst and the ion conductive polymer electrolyte membrane meet, and the interface between the catalyst layer and the electrolyte membrane, And the gas diffusion layer should be uniformly bonded to reduce ohmic polarization at the interface.
  • the interface between the catalyst layer and the electrolyte membrane and the interface bonding between the catalyst layer and the gas diffusion layer are weakened and separated from each other. Therefore, when the fuel cell is applied to the fuel cell, the performance of the fuel cell may deteriorate.
  • the present invention has been conceived in order to solve the problems described above. It is an object of the present invention to provide a porous support which is produced under specific conditions such as stretching ratio and stretching speed, ) In which the difference in physical properties between the fuel cell and the electrolyte membrane is minimized.
  • the present invention also provides a membrane-electrode assembly including the fuel cell electrolyte-reinforced membrane, and a fuel cell including the membrane-electrode assembly.
  • a fuel cell electrolyte-reinforced membrane including a first electrolyte layer formed on one side of a porous support and a first electrolyte layer formed on another side of the porous support, And a second electrolyte layer formed thereon.
  • the fuel cell electrolyte-reinforced membrane of the present invention can satisfy the following equation (1) when measuring according to ASTM D 822, the uniaxial direction modulus and the biaxial direction modulus difference.
  • the fuel cell electrolyte membrane of the present invention may have a uniaxial modulus of 80 MPa or more and a biaxial modulus of 80 MPa or more when measured according to ASTM D 822.
  • the fuel cell electrolyte-reinforced membrane of the present invention can satisfy the following Equation 2 in the uniaxial tensile strength and biaxial tensile strength difference when measured according to ASTM D 822.
  • the fuel cell electrolyte membrane of the present invention has a tensile strength in a uniaxial direction (longitudinal direction) of 50 MPa or more and a tensile strength in a biaxial direction (width direction) of 50 MPa or more.
  • the fuel cell electrolyte-reinforced membrane may have a weight coefficient of variation (CV1) of the following relational expression 1 of 20% or more.
  • the fuel cell electrolyte-reinforced membrane may have an average thickness of 1 ⁇ to 20 ⁇ , and the first electrolyte layer and the second electrolyte layer may independently have an average thickness of 1 ⁇ to 15 ⁇ have.
  • the porous support has a modulus in a uniaxial direction (longitudinal direction) of 40 MPa or more and a modulus in a biaxial direction (width direction) of 40 MPa or more when measured according to ASTM D 822 .
  • the porous support has a tensile strength in a uniaxial direction (longitudinal direction) of 40 MPa or more and a tensile strength in a biaxial direction (width direction) of 40 MPa or more, as measured according to ASTM D 882 have.
  • the uniaxial direction modulus and the biaxial direction modulus value can satisfy the following equation (3).
  • the porous support may have a stretching ratio in a uniaxial direction (longitudinal direction) of 3 to 10 times and a stretching ratio in a biaxial direction (width direction) of 15 to 50 times.
  • the porous support may have a uniaxial (longitudinal) stretching ratio of 6 to 9.5 times and a biaxial (width) stretching ratio of 25 to 45 times.
  • the porous support may have a uniaxial (longitudinal) stretching ratio of 6.2 to 9 times and a biaxial (widthwise) stretching ratio of 28 to 45 times.
  • the porous support has a stretching ratio (or aspect ratio) of 1: 3.00 to 8.5, preferably 1: 3.50 to 7.0, in a uniaxial (longitudinal) direction and a biaxial .
  • the porous support has an average pore size of 0.080 ⁇ to 0.20 ⁇ and an average porosity of 60% to 90%.
  • the porous support may be a PTFE porous support including polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • Another object of the present invention is to provide a method of preparing the various types of fuel cell electrolyte-reinforced membranes described above, comprising the steps of: impregnating a porous support with a fluorine ionomer solution; And drying and heat treating the impregnated PTFE porous support.
  • the fluorine-based ionomer solution may further contain 0.05 to 5% by weight of hollow silica in the total weight of the solution.
  • the fluorine-based ionomer may include at least one selected from Nafion, Flemion, and Aciplex.
  • the porous support includes a first step of mixing a PTFE powder and a liquid lubricant to prepare a paste; 2) aging the paste; A third step of extruding and rolling the aged paste to produce an unflavicious tape; Drying the uncured tape, and then removing the liquid lubricant; 5) uniaxially stretching the untreated tape from which the lubricant has been removed; Biaxially stretching the uniaxially stretched untreated tape; And firing step (7).
  • the first-stage paste may contain 15 to 35 parts by weight of a lubricant based on 100 parts by weight of the PTFE powder.
  • the lubricant is a liquid lubricant, and various alcohols, ketones, esters and the like can be used in addition to hydrocarbon oils such as liquid paraffin, naphtha, white oil, toluene and xylene, At least one selected from liquid paraffin, naphtha and white oil can be used.
  • the aging of the two stages may be carried out at a temperature of 30 to 70 for 12 to 24 hours.
  • the three-step extrusion can be performed by compressing the aged paste in a compressor to produce a PTFE block, and then extruding the PTFE block under a pressure of 0.069 to 0.200 Ton / cm 2 .
  • the rolling in three stages can be carried out by calendering at an oil pressure of 5 to 10 MPa and at 50 to 100 ⁇ .
  • the drying process of four stages is a process for removing the lubricant, and drying can be performed at 100 ° C to 200 ° C while moving the untreated tape at a speed of 1 to 5 M / min.
  • the untreated tape from which the lubricant has been removed is stretched in the longitudinal direction to 3 to 10 times, preferably 6 to 9.5 times, more preferably 6.2 to 9 times Can be performed.
  • the five-step uniaxial stretching can be carried out at a stretching speed of 6 to 12 M / min under a stretching temperature of 260 ° C to 350 ° C.
  • the biaxial stretching in 6 stages is conducted by stretching uniaxially stretched untreated tapes 15 to 50 times, preferably 25 to 45 times, more preferably 28 to 45 times in the width direction Can be performed.
  • the biaxial stretching in six steps can be performed at a stretching speed of 10 to 20 M / min under a stretching temperature of 150 to 260 ° C.
  • the firing in the seventh step may be performed at a temperature of 350 ° C to 450 ° C.
  • a method for preparing a fluorine-containing ionomer comprising the steps of: 8) impregnating a fluorine-based ionomer solution with a porous support prepared by performing a 7-step process; And drying and heat-treating the impregnated PTFE porous support.
  • the fluorine-based ionomer solution of the eight-step may further include at least one moisture absorbent selected from the group consisting of zeolite, titania, zirconia, and montmorillonite.
  • the drying in 9 steps is carried out at a temperature of 60 ° C to 100 ° C for 1 to 30 minutes, and the heat treatment may be carried out at a temperature of 100 ° C to 200 ° C for 1 minute to 5 minutes .
  • the volume of the closed pores of the heat-treated porous support in the step 9 may be 90 vol% or more with respect to the total pore volume.
  • Still another object of the present invention relates to a membrane-electrode assembly (MEA), which comprises the fuel cell electrolyte-reinforced membrane.
  • MEA membrane-electrode assembly
  • the membrane-electrode assembly (MEA) of the present invention comprises the fuel cell electrolyte-reinforced membrane; Anode (anode); And a cathode (cathode), wherein the oxidant electrode and the reducing electrode comprise a catalyst layer; A gas diffusion layer; And an electrode substrate.
  • It is still another object of the present invention to provide a fuel cell comprising: an electricity generating unit generating electricity through an electrochemical reaction between a fuel and an oxidant; A fuel supply unit for supplying fuel to the electricity generation unit; And an oxidizing agent supply unit for supplying an oxidizing agent to the generating unit, wherein the electricity generating unit includes the membrane-electrode assembly and the separator.
  • the fuel cell includes a membrane-electrode assembly and a separator, and includes a first step of forming an electricity generating part generating electricity through an electrochemical reaction between a fuel and an oxidant; A second step of forming a stack between the membrane electrode assemblies via a separator; Forming a fuel supply unit for supplying fuel to the electricity generating unit; And forming an oxidant supply unit for supplying the oxidant to the electricity generating unit.
  • the porous support for a fuel cell electrolyte reinforced membrane of the present invention ensures an optimal stretch ratio and elongation speed, and can be manufactured with a very low defective ratio, thereby being excellent in economy and commerciality, and securing excellent mechanical properties. As a result, Thereby improving the performance of the fuel cell by reducing the total thickness of the fuel cell electrolyte-reinforced membrane.
  • FIG. 1 is a schematic view of a fuel cell electrolyte-reinforced membrane according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic view of a membrane-electrode assembly according to a preferred embodiment of the present invention.
  • the fuel cell electrolyte-reinforced membrane of the present invention is simpler in structure than the conventional fuel cell electrolyte-reinforced membrane and can improve the interfacial property when bonded to an electrode.
  • it is an electrolyte reinforced membrane for a fuel cell that can be designed to have a thinner support and can prevent hydrogen ion transmission delay as the thickness of the electrolyte membrane becomes thinner, and can improve the performance of the fuel cell.
  • the fuel cell electrolyte-reinforced membrane of the present invention has an electrolyte membrane on the surface of the porous support. As shown in a schematic cross-sectional view in FIG. 1, the first electrolyte membrane 2 is formed on one side of the porous support 1 , And a second electrolyte layer (3) is formed on the other side of the support (1).
  • the uniaxial modulus and biaxial modulus difference of the electrolyte-reinforced membrane when measured according to ASTM D 822, can satisfy Equation 1 below.
  • the electrolyte reinforced membrane of the present invention may have a modulus in a uniaxial direction (longitudinal direction) of 80 MPa or more, preferably a uniaxial modulus in a range of 85 to 145 MPa Preferably, the uniaxial direction modulus is 95 to 140 MPa.
  • the modulus in the biaxial direction (width direction) is 80 MPa or more, preferably, the modulus in the biaxial direction (width direction) is 85 to 135 MPa, more preferably 95 to 135 MPa.
  • the uniaxial tensile strength and biaxial tensile strength difference of the electrolyte-reinforced membrane can satisfy the following equation (2).
  • the electrolyte-reinforced membrane of the present invention may have a tensile strength in a uniaxial direction (longitudinal direction) of 50 MPa or more and a tensile strength in a biaxial direction (width direction) of 50 MPa or more when measured according to ASTM D 822,
  • the uniaxial tensile strength may be 60 to 95 MPa, and more preferably the uniaxial tensile strength may be 66 to 90 MPa.
  • the biaxial tensile strength may be 50 Mpa or more, and preferably the biaxial tensile strength may be 60 to 92 Mpa, and more preferably, the biaxial tensile strength may be 65 to 88 Mpa.
  • the fuel cell electrolyte-reinforced membrane of the present invention comprises the steps of: impregnating a porous support with a fluorine ionomer solution; And drying and heat treating the impregnated PTFE porous support.
  • the fluorine-based ionomer solution may further include hollow silica, thereby improving the moisture absorption of the fluorine-based ionomer solution of the support and preventing the volume expansion of the PTFE porous support due to impregnation of the fluorine-based ionomer solution.
  • the fluorine-based ionomer may include at least one selected from Nafion, Flemion, and Aciplex, and more preferably Nafion.
  • the hollow silica may have a spherical shape and may have an average particle diameter of 10 to 300 nm, and more preferably 10 nm to 100 nm.
  • the particle diameter means the diameter when the shape of the hollow silica is spherical, and the maximum distance of the straight line from one point to another point on the surface of the hollow silica when it is not spherical.
  • the average particle diameter of the hollow silica is less than 10 nm, absorption capacity of the fluorine-based ionomer solution may be limited as the capacity to support the fluorine-based ionomer solution is reduced.
  • the average diameter exceeds 300 nm, The amount of the hollow silica impregnated in the pores may be limited.
  • the hollow portion of the hollow silica is a space for supporting the fluorine ionomer solution adsorbed and moved through the shell portion.
  • the hollow portion may have a hollow diameter of 5 nm to 100 nm, more preferably 5 nm to 50 nm . If the hollow diameter is less than 5 nm, the amount of the supported fluorine ionomer solution may be reduced. If the diameter exceeds 100 nm, the particle diameter of the hollow silica may exceed the desired range or cause collapse of the shell part. Based on 100 parts by weight of the fluorine-based ionomer solution, 0.05 to 5 parts by weight, and more preferably 1 to 3 parts by weight, of hollow silica.
  • the amount of hollow silica is less than 0.05 parts by weight based on 100 parts by weight of the fluorine-containing ionomer solution, the impregnation effect of the fluorine-based ionomer solution may be insufficient. If the amount exceeds 5 parts by weight, the ratio of the closed pores in the porous support increases, When applied to an electrode assembly, the current flow rate may be lowered.
  • the fluorine-based ionomer solution may further include at least one moisture absorbent selected from zeolite, titania, zirconia, and montmorillonite.
  • the PTFE porous support impregnated with the fluorine-based ionomer solution is taken out and dried at 60 to 100 ° C. for 1 to 30 minutes.
  • the heat treatment is performed at 100 ° C. to 200 ° C. for 1 to 5 minutes . If the temperature of the drying step is less than 60 ° C, the liquid-repellency of the fluorinated ionomer solution impregnated into the porous support may be deteriorated. When the temperature exceeds 100 ° C, the electrolyte membrane and / The adhesion with the electrode may be deteriorated.
  • the heat treatment temperature is less than 100 ° C or less than 1 minute in the heat treatment step, the liquid reflux of the fluorinated ionomer solution impregnated in the porous support may deteriorate. If the temperature exceeds 200 ° C or the heat treatment time is 5 minutes The adhesion to the electrolyte membrane may be deteriorated when the support is adhered to the electrolyte membrane.
  • the porous support in the heat-treated electrolyte-reinforced membrane may have a volume of occluded pores of 90% by volume or more based on the total pore volume.
  • porous support used for preparing the electrolyte-reinforced membrane of the present invention can be produced by the following method.
  • the porous support may include a first step of mixing and stirring a PTFE powder and a lubricant to prepare a paste; 2) aging the paste; A third step of extruding and rolling the aged paste to produce an unflavicious tape; Drying the uncured tape, and then removing the liquid lubricant; 5) uniaxially stretching the untreated tape from which the lubricant has been removed; Biaxially stretching the uniaxially stretched untreated tape; And firing step (7).
  • the paste may contain 15 to 35 parts by weight, preferably 15 to 30 parts by weight, more preferably 15 to 25 parts by weight of a lubricant based on 100 parts by weight of the PTFE powder. If the amount of the lubricant is less than 15 parts by weight based on 100 parts by weight of the PTFE fine powder, the porosity may be lowered when the PTFE porous support is formed by the biaxial stretching process described below. If the amount is more than 35 parts by weight, The strength of the support can be weakened.
  • the average particle diameter of the PTFE powder is 300 ⁇ to 800 ⁇ . But it is not limited thereto.
  • the lubricant may be any of various alcohols, ketones, esters, etc., in addition to hydrocarbon oils such as liquid paraffin, naphtha, white oil, toluene, and xylene as the liquid lubricant, preferably selected from liquid paraffin, naphtha and white oil One or more species can be used.
  • the paste can be aged at a temperature of 30 to 70 for 12 to 24 hours, preferably aged at a temperature of 35 to 60 for 16 to 20 hours can do.
  • the aging temperature is less than 35 ° C or the aging time is less than 12 hours, the lubricant coating on the surface of the PTFE powder becomes non-uniform, which may limit the stretching uniformity of the PTFE sheet to be described below. If the aging temperature exceeds 70 ° C or the aging time exceeds 24 hours, the pore size of the support after the biaxial stretching process may become too small due to the evaporation of the lubricant.
  • the aged paste is compressed in a compressor to produce a PTFE block, and then the PTFE block is pressurized at a pressure of 0.069 to 0.200 Ton / cm 2 , preferably at a pressure of 0.090 to 0.175 Ton / cm 2 And then extruding it by pressure.
  • the pressure-extruding pressure is 0.069 Ton / cm 2
  • the strength of the support may be weakened due to the increase of the pore size of the support, and if it exceeds 0.200 Ton / cm 2 , there may be a problem that the pore size of the support after the biaxial stretching process becomes small.
  • the rolling in the third step can be carried out by calendering at an oil pressure of 5 to 10 MPa and at 50 ° C to 100 ° C. At this time, if the hydraulic pressure is less than 5 MPa, the pore size of the support becomes large and the strength of the support may be weakened, and if it exceeds 10 MPa, the support pore size may be reduced.
  • the four-step drying can be carried out by a general drying method used in the art.
  • the unfired tape produced by rolling is heated at a temperature of 100 ° C to 200 ° C at a rate of 1 to 5 M / min Conveying at a speed of 2 to 4 M / min, preferably at a temperature of 140 to 190 deg. C, while being conveyed to a conveyor belt.
  • the drying temperature is less than 100 ° C. or the drying rate is more than 5 M / min, bubbles may be generated during the drawing process due to the evaporation of the lubricant.
  • the drying temperature is more than 200 ° C., min, the stiffness of the dried tape increases, and slip may occur during the drawing process.
  • the uniaxial stretching in the five steps is a step of stretching the untreated tape in which the lubricant is removed in the longitudinal direction, and uniaxial stretching is performed using the speed difference between the rollers when the tape is fed through the rollers.
  • the untreated tape from which the lubricant has been removed is stretched in the longitudinal direction by 3 to 10 times, preferably by 6 to 9.5 times, more preferably by 6.2 to 9 times, further preferably by 6.3 to 8.2 times It is better to do it.
  • the uniaxial stretching ratio is less than 3 times, sufficient mechanical properties can not be secured. If the uniaxial stretching ratio exceeds 10 times, the mechanical properties may be rather reduced and the pores of the support may become too large.
  • the uniaxial stretching is carried out at a stretching temperature of 260 to 350 ⁇ ⁇ and a stretching speed of 6 to 12 M / min, preferably a stretching temperature of 270 to 330 ⁇ ⁇ and a stretching speed of 8 to 11.5 M / min
  • a stretching temperature of 260 to 350 ⁇ ⁇ and a stretching speed of 6 to 12 M / min preferably a stretching temperature of 270 to 330 ⁇ ⁇ and a stretching speed of 8 to 11.5 M / min
  • heat applied to the dry sheet is increased to cause a firing section
  • the uniaxial stretching temperature Exceeds 350 ⁇ ⁇ or the stretching speed exceeds 12 M / min slip may occur during the uniaxial stretching process, resulting in a problem that the thickness uniformity is lowered.
  • the biaxial stretching is carried out in the width direction (direction perpendicular to uniaxial stretching) of the uniaxially stretched untreated tape, and stretching can be performed in a state in which the end is fixed, have.
  • the present invention is not limited thereto, and stretching can be carried out according to a stretching method commonly used in the art.
  • the biaxial stretching can be performed at a stretching rate of 15 to 50 times in the width direction, preferably 25 to 45 times, more preferably 28 to 45 times, still more preferably 29 to 42 times, If the biaxial stretching ratio is 15 times or less, sufficient mechanical properties may not be secured. If the biaxial stretching ratio is more than 50 times, the mechanical properties are not improved and the uniformity of physical properties in the longitudinal direction and / Therefore, it is preferable that the stretching is performed within the above range.
  • the biaxial stretching is carried out at a stretching speed of 10 to 20 M / min under a stretching temperature of 150 to 260 ⁇ , preferably at a stretching speed of 11 to 18 M / min under a stretching temperature of 200 to 250 ⁇ If the biaxial stretching temperature is less than 150 ° C or the stretching speed is less than 10 M / min, there may be a problem that the stretch uniformity in the transverse direction is lowered. If the biaxial stretching temperature exceeds 260 ° C If the stretching speed exceeds 20 M / min, there may be a problem that the untreated section occurs and the physical properties are lowered.
  • the calcination in step 7 is carried out at a temperature of 350 ° C to 450 ° C, preferably 350 ° C to 450 ° C, while moving the stretched porous support on the conveyor belt at a speed of 10 to 18 M / min, preferably 13 to 17 M / It is possible to carry out the heat treatment at a temperature of 380 ° C to 440 ° C, more preferably 400 ° C to 435 ° C, thereby fixing the stretching ratio and improving the strength.
  • the firing temperature is less than 350 ° C., the strength of the porous support may be lowered. If the firing temperature is higher than 450 ° C., the fibril number may be decreased due to the underfatibility.
  • the porous support for a fuel cell electrolyte membrane of the present invention manufactured by performing the 7-step process has a stretching ratio (or aspect ratio) in a uniaxial (longitudinal) direction and a biaxial (width) direction of 1: 3.00 to 8.5, May be 1: 3.50 to 7.0, more preferably 1: 4.00 to 5.50, still more preferably 1: 4.20 to 5.00, and the uniaxial and biaxial stretch ratios (or aspect ratios) It is preferable from the viewpoints of high mechanical properties, securing the optimum pore size of the support, and ensuring proper current flowability.
  • the prepared porous support may have an average pore size of 0.080 ⁇ to 0.200 ⁇ , preferably 0.090 ⁇ to 0.180 ⁇ , more preferably 0.095 ⁇ to 0.150 ⁇ , still more preferably 0.100 to 0.140 ⁇ .
  • the porous support of the present invention may have an average porosity of 60% to 90%, more preferably 70% to 85%.
  • the average pore size of the porous support is less than 0.080 mu m or the porosity is less than 60%
  • impregnation of the electrolyte in the support may be limited when the electrolyte is impregnated to prepare an electrolyte membrane using the support. If the average pore size exceeds 0.200 m or the porosity exceeds 90%, the porous support structure may be deformed when impregnated with the electrolyte, and the life of the product may be deteriorated due to deterioration of dimensional stability.
  • the porous support produced by the above method may have an average thickness of 5 ⁇ to 25 ⁇ , preferably an average thickness of 5 ⁇ to 20 ⁇ , and more preferably 10 ⁇ to 20 ⁇ .
  • the porous support prepared by this method can satisfy the following equation (3) in the uniaxial direction modulus and biaxial direction modulus value.
  • the porous support may have a modulus in a uniaxial direction (longitudinal direction) of 40 MPa or more, preferably a uniaxial modulus of 50 MPa or more, more preferably, The uniaxial direction modulus may be 52 to 70 MPa.
  • the modulus in the biaxial direction (width direction) may be 40 MPa or more, preferably, the modulus in the biaxial direction (width direction) may be 45 MPa or more, more preferably 45 to 72 MPa.
  • the porous support used in the present invention may have a tensile strength in a uniaxial direction (longitudinal direction) of 40 MPa or more and a tensile strength in a biaxial direction (width direction) of 40 MPa or more, as measured according to ASTM D882, ,
  • the uniaxial tensile strength may be 50 MPa or more, and more preferably the uniaxial tensile strength may be 54 to 67 MPa.
  • the biaxial tensile strength is 45 Mpa or more, and more preferably the biaxial tensile strength is 48 to 68 Mpa.
  • the membrane-electrode assembly includes the steps of manufacturing the above-described fuel cell electrolyte-enhanced membrane 10, as shown in the sectional view schematically shown in FIG. 2, 22, 22 '), the gas diffusion layers 21, 21', and the electrode substrate 23, 23 '.
  • the membrane-electrode assembly includes an oxidizing electrode 20 and a reducing electrode 20 'positioned opposite to each other with a fuel cell electrolyte reinforcing film 10 therebetween do.
  • the oxidation electrode 20 and the reduction electrode 20 ' include gas diffusion layers 21 and 21', catalyst layers 22 and 22 ', and electrode substrates 23 and 23', respectively.
  • the oxidation electrode 20 may include a gas diffusion layer 21 and an oxidation catalyst layer 22.
  • the gas diffusion layer 21 may be provided to prevent rapid diffusion of fuel injected into the fuel cell and to prevent deterioration of ion conductivity.
  • the gas diffusion layer 21 can control the diffusion rate of the fuel through heat treatment or electrochemical treatment.
  • the gas diffusion layer 21 may be carbon fiber or carbon paper.
  • the fuel may be a liquid fuel such as a formic acid solution, methanol, formaldehyde, or ethanol.
  • the oxidation catalyst layer 22 may include a conductive support and an ion conductive binder (not shown) as a layer into which the catalyst is introduced.
  • the oxidation catalyst layer 22 may include a main catalyst attached to the conductive support.
  • the conductive support may be carbon black
  • the ion conductive binder may be a Nafion ionomer or a sulfonated polymer.
  • the main catalyst may be a metal catalyst, and may be, for example, platinum (Pt).
  • the oxidation catalyst layer 22 can be formed by an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
  • the reduction electrode 20 ' may include a gas diffusion layer 21' and a reduction catalyst layer 22 '.
  • the gas diffusion layer 21 ' may be provided to prevent abrupt diffusion of gas injected into the reducing electrode 20' and to uniformly disperse the gas injected into the reducing electrode 20 '.
  • the gas diffusion layer may be (21 ') carbon paper or carbon fiber.
  • the reduction catalyst layer 22 ' may include a conductive support and an ion conductive binder (not shown) as a layer into which the catalyst is introduced.
  • the reduction catalyst layer 22 ' may include a main catalyst attached to the conductive support.
  • the conductive support may be carbon black
  • the ion conductive binder may be a Nafion ionomer or a sulfonated polymer.
  • the main catalyst may be a metal catalyst, for example, platinum (Pt).
  • the membrane-electrode assembly may be formed by disposing the oxidation electrode 20, the composite electrolyte membrane 10 for a fuel cell, and the reduction electrode 20 ', respectively, and then pressing them together at a high temperature and a high pressure.
  • the bonding of the electrodes 20 and 20 'to both surfaces of the composite electrolyte membrane 10 for a fuel cell may be performed by first applying a gas diffusion layer forming material to one surface of the fuel cell electrolyte reinforced membrane 10 to form gas diffusion layers 21, 21 '). ≪ / RTI >
  • the gas diffusion layers 21 and 21 ' serve as current conductors between the composite electrolyte membrane 10 for a fuel cell and the catalyst layers 22 and 22', and serve as passages for gas as a reactant and water as a product. Accordingly, the gas diffusion layers 21 and 21 'may have a porous structure with a porosity of 20% to 90% so that the gas can pass through.
  • the thickness of the gas diffusion layers 21, 21 ' may be suitably adopted as needed, and may be, for example, 100 ⁇ m to 400 ⁇ m. When the thickness of the gas diffusion layers 21 and 21 'is 100 ⁇ m or less, the electrical contact resistance between the catalyst layer and the electrode substrate becomes large, and the structure may become unstable due to compression. In addition, when the thickness of the gas diffusion layers 21 and 21 'exceeds 400 ⁇ , it may become difficult to move the reactant gas.
  • the gas diffusion layers 21 and 21 ' may include a carbon-based material and a fluororesin.
  • catalyst layers 22 and 22 ' are formed on the gas diffusion layers 21 and 21'.
  • the catalyst layers 22 and 22 ' may be formed by applying a catalyst layer forming material on the gas diffusion layers 21 and 21'.
  • the catalyst layer forming material may be a metal catalyst or a metal catalyst supported on a carbon-based support.
  • the metal catalyst at least one selected from the group consisting of platinum, ruthenium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy, and platinum-transition metal alloy may be used.
  • the carbon-based support include graphite, carbon black, acetylene black, denka black, keehan black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, Wire, fullerene, and super P, for example.
  • the electrode substrate 23 and 23 ' may be made of a conductive material selected from the group consisting of carbon paper, carbon cloth, and carbon felt.
  • the present invention is not limited thereto, and a cathode electrode material applicable to a polymer electrolyte fuel cell All of the anode electrode materials are usable.
  • the electrode substrate may be formed by a conventional deposition method and the catalyst layers 22 and 22 'may be formed on the electrode substrates 23 and 23', and then the catalyst layers 22 and 22 'may be formed on the gas diffusion layers 21 and 21' (22, 22 ') and the gas diffusion layers (21, 21') are in contact with each other.
  • the fuel cell according to an embodiment of the present invention includes at least one electricity generating unit for generating electric energy through oxidation reaction of the fuel and oxidizing agent, and a fuel supply unit for supplying the fuel to the electricity generating unit. And an oxidant space portion for supplying an oxidant to the electricity generating portion.
  • the membrane-electrode assembly may include one or more electrodes, and a separator for supplying fuel and an oxidant to both ends of the membrane-electrode assembly is disposed to constitute an electricity generating unit. At least one of these electricity generating units may be gathered to form a stack.
  • the arrangement or the manufacturing method of the fuel cell can be variously applied to a polymer electrolyte fuel cell, so that it can be applied variously with reference to the prior art.
  • the paste was allowed to stand at 50 DEG C for 18 hours to be aged, and then compressed using a molding jig to prepare a PTFE block.
  • the PTFE block was put into an extrusion die, and then subjected to pressure extrusion under a pressure of about 0.10 Ton / cm 2 .
  • the untreated tape was transferred to the conveyor belt at a speed of 3 M / min while being heated by 180 ° C to be dried to remove the lubricant.
  • the untreated tape from which the lubricant was removed was subjected to uniaxial stretching (longitudinal stretching) at 6.7 times under the conditions of a stretching temperature of 280 ⁇ ⁇ and a stretching speed of 10 M / min.
  • uniaxially stretched untreated tapes were subjected to biaxial stretching (stretching in the transverse direction) at a draw temperature of 250 DEG C and a stretching speed of 10 M / min at 31 times to prepare porous supports.
  • the uniaxially and biaxially oriented porous supports were fired on the conveyor belt at a rate of 15 M / min at a temperature of 420 DEG C to prepare a PTFE porous support having an average thickness of 13.6 mu m and an average pore size of 0.112 mu m.
  • Example 2 ⁇ Example 3 and Comparative Example 1 ⁇ Comparative Example 2
  • Example 4 Example 6 and Comparative Example 3 ⁇ Comparative Example 6
  • Examples 4 to 6 and Comparative Examples 3 to 6 were prepared in the same manner as in Example 1 except that the PTFE porous support was prepared by varying the temperature during the uniaxial stretching or the temperature during biaxial stretching, Respectively.
  • Example 7 Example 10 and Comparative Example 7 ⁇ Comparative Example 10
  • the PTFE porous support was prepared in the same manner as in Example 1 except that the stretching speed in the uniaxial stretching or the stretching speed in the biaxial stretching was changed as shown in Table 1 to obtain Examples 7 to 10 and Comparative Example 7 Respectively.
  • the PTFE porous support was prepared in the same manner as in Example 1, except that uniaxial and biaxial orientation was performed under the same conditions as in Table 1 below.
  • Example 1 420 280 250 10 10 6.7 31 1: 4.63 13.6 ⁇
  • Example 2 440 280 250 10 10 6.7 31 1: 4.63 11.8 ⁇
  • Example 3 380 280 250 10 10 6.7 31 1: 4.63 17.1 ⁇
  • Example 4 420 260 250 10 10 6.7 31 1: 4.63 15.9 ⁇
  • Example 5 420 330 250 10 10 6.7 31 1: 4.63 12.9 ⁇
  • Example 6 420 280 260 10 10 6.7 31 1: 4.63 13.7 ⁇
  • Example 7 420 280 250 8 10 6.7 31 1: 4.63 13.6 ⁇
  • Example 8 420 280 250 11.5 10 6.7 31 1: 4.63 13.6 ⁇
  • Example 9 420 280 250 11.5 10 6.7 31 1: 4.63 13.6 ⁇
  • Example 9 420 280 250 11.5 10 6.7 31 1: 4.63 13.6 ⁇
  • Example 9 420 280 250 11.5 10 6.7 31 1: 4.63 13.6 ⁇
  • Example 9 420 280 250
  • the average pore size and porosity were measured according to ASTM F316-03, the pressure was 0 to 70 psi, the solvent was galwick, and the dry up / wet up method was used (capillary flow meter, capillary flow porometer).
  • the tensile strength and the modulus were measured using a universal tester under the conditions of a test speed of 500 mm / min and an initial grip distance of 500 mm after making a straight specimen (width 10 mm, length 100 mm) according to the ASTM D 882 method. test machine.
  • Example 1 0.121 71.3
  • Example 2 0.149 79.1
  • Example 3 0.091 63.6
  • Example 4 0.150 70.2
  • Example 5 0.143 78.3
  • Example 6 0.130 74.2
  • Example 7 0.145 78.1
  • Example 8 0.117 70.9
  • Example 9 0.095 68.3
  • Example 10 0.090 63.1
  • Example 11 0.140 77.4
  • Example 12 0.147 79.9
  • Example 13 0.188 76.5
  • Example 14 0.107 68.7
  • Example 15 0.151 79.6
  • Example 16 0.125 75.0
  • Example 17 0.151 78.3
  • Comparative Example 1 0.072 56.1 Comparative Example 2 0.255 91.6 Comparative Example 3 0.073 58.3
  • Comparative Example 4 0.213 88.1 Comparative Example 5 0.071 53.5 Comparative Example 6 0.229 88.2 Comparative Example 7 0.223 87.1 Comparative Example 8 0.076 54.3 Comparative Example 9 0.216 89.6 Comparative Example 10 0.076 54.3 Comparative Example
  • Nafion which is a fluorine-based ionomer
  • Example 2 the porous support prepared in Example 1 was impregnated with the Nafion solution, taken out, put in a vacuum oven, and dried at 80 DEG C for 10 minutes. Next, heat treatment was performed at 160 ⁇ ⁇ for 3 minutes to prepare a porous support impregnated with an electrolyte having a thickness of 15 ⁇ ⁇ .
  • the porous support impregnated with electrolyte was prepared in the same manner as in Preparation Example 1 except that the kinds of supports were changed as shown in Table 4 below.
  • An electrolyte-reinforced membrane was prepared in the same manner as in Preparation Example 1 except that the electrolyte-reinforced membranes were prepared by different porous supports as shown in Table 5 to prepare electrolyte membranes having a three-layer structure including a PTFE porous support layer.
  • an electrolyte reinforced membrane having a three-layer structure as shown in Fig. 1 was prepared by using the conventional PTFE porous support (monoaxial stretching ratio 2.5 times, biaxial stretching ratio 10 times, manufacturer: Sawafron Tech).
  • the tensile strength and modulus of the electrolyte membrane thus prepared were measured according to ASTM D 822, and the results are shown in Table 5 below.
  • the uniaxial and biaxial tensile strength deviations were 20% or less, and the uniaxial and biaxial modulus deviations were 30% or less.
  • the PTFE porous support prepared by the method of the present invention has not only good mechanical properties but also excellent electrolyte impregnation amount in the inside of the support.
  • porous support 2 first electrolyte layer 3: second electrolyte layer
  • Fuel cell electrolyte strengthening film 21 Gas diffusion layer 22: Catalyst layer
  • electrode substrate 20 electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a fuel cell electrolyte reinforced membrane, a membrane-electrode assembly comprising same and a fuel cell, and more specifically, to an invention that may provide a fuel cell material and a fuel cell exhibiting improved performance by providing a fuel cell electrolyte reinforced membrane comprising, from the cross-sectional view of the electrolyte reinforced membrane, a first electrolyte layer formed on one lateral surface of a porous support; and a second electrolyte layer formed on the other lateral surface. By introducing the porous support exhibiting improved mechanical properties by being manufactured under particular conditions such as draw ratio and drawing speed, the mechanical properties of the electrolyte reinforced membrane may be greatly improved, and the difference in mechanical properties between a first axial direction (length direction) and a second axial direction (thickness direction) may be minimized.

Description

연료전지 전해질 강화막 및 이의 제조방법Fuel cell electrolyte-reinforced membrane and manufacturing method thereof
본 발명은 연료전지 전해질 강화막에 관한 것으로, 더욱 상세하게는 연료전지용 전해질 강화막에 사용되는 다공성 지지체를 특정 지지체로 도입하여, 기계적 물성을 크게 향상시킨 연료전지용 전해질 강화막, 이를 이용한 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법에 관한 것이다.The present invention relates to a fuel cell electrolyte-reinforced membrane, and more particularly, to an electrolyte-reinforced membrane for a fuel cell, wherein a porous support used for an electrolyte membrane for fuel cells is introduced into a specific support to greatly improve mechanical properties, A fuel cell including the same, and a method of manufacturing the same.
연료전지는 연료(수소 또는 메탄올)와 산화제(산소)를 전기화학적으로 반응시켜 생기는 화학적 에너지를 직접 전기적 에너지로 변환시키는 발전 시스템으로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 차세대 에너지원으로 연구 개발되고 있다. 연료전지는 적용분야에 따라 고온용 및 저온용 연료전지를 선택하여 사용할 수 있으며, 통상적으로 전해질의 종류에 따라 분류되고 있는데, 고온용에는 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC), 용융탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC) 등이 있고, 저온용에는 알칼리 전해질 연료전지(Alkaline Fuel Cell, AFC) 및 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등이 대표적으로 개발되고 있다.A fuel cell is a power generation system that converts chemical energy generated by electrochemically reacting fuel (hydrogen or methanol) and oxidizer (oxygen) directly into electrical energy. It is a next generation energy source with high energy efficiency and eco- Research and development. Fuel cells can be selectively used for high temperature and low temperature fuel cells according to application fields and are usually classified according to the kind of electrolyte. Solid oxide fuel cell (SOFC), molten carbonate An alkali fuel cell (AFC), a polymer electrolyte fuel cell (PEMFC), and the like are being developed for low temperature applications.
이중 고분자 전해질 연료전지를 세분하면 수소 가스를 연료로 사용하는 수소이온 교환막 연료전지(PEMFC, Proton Exchange Membrane Fuel Cell)와, 액상의 메탄올을 직접 연료로 산화극(Anode)에 공급하여 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등이 있다. 고분자 전해질 연료전지는 100 미만의 낮은 작동온도, 고체 전해질 사용으로 인한 누수문제 배제, 빠른 시동과 응답 특성, 및 우수한 내구성 등의 장점으로 휴대용, 차량용, 및 가정용 전원장치로 각광을 받고 있다. 특히 다른 형태의 연료전지에 비하여 전류밀도가 큰 고출력 연료전지로서, 소형화가 가능하기 때문에 휴대용 연료전지로의 연구가 계속 진행되고 있다.The two types of polymer electrolyte fuel cells are divided into proton exchange membrane fuel cell (PEMFC), which uses hydrogen gas as fuel, and direct methanol (PEMFC) And a direct methanol fuel cell (DMFC). Polymer electrolyte fuel cells are attracting attention as portable, automotive, and household power sources because of their low operating temperature of less than 100, the elimination of leakage problems caused by the use of solid electrolytes, quick start and response characteristics, and excellent durability. Particularly, as a high-output fuel cell having a higher current density than other types of fuel cells, miniaturization is possible, and thus research into a portable fuel cell continues.
이러한 연료전지의 단위전지 구조는 고분자 물질로 구성된 전해질막을 중심으로 양쪽에 산화극(Anode, 연료극) 및 환원극(Cathode, 산소극)이 도포되어 있는 구조를 이루고 있는데, 이를 막-전극 접합체(Membrane Electrode Assembly, MEA)라 칭한다. 이 막-전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 환원극과 산화극 그리고 전해질막, 즉 이온 전도성 전해질막(예, 수소이온 전도성 전해질막)으로 구성되어 있다.The unit cell structure of such a fuel cell has a structure in which an anode and a cathode are coated on both sides of an electrolyte membrane composed of a polymer material, Electrode Assembly, MEA). This membrane-electrode assembly (MEA) is composed of a reducing electrode, an oxidizing electrode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane (for example, a hydrogen ion conductive electrolyte membrane), where electrochemical reaction of hydrogen and oxygen occurs.
산화극에서는 연료인 수소 또는 메탄올이 공급되어 수소의 산화 반응이 일어나 수소이온과 전자를 발생시키며, 환원극에서는 고분자 전해질막을 통과한 수소이온과 산소가 결합하여 산소의 환원 반응에 의해 물이 생성된다.In the oxidizing electrode, hydrogen or methanol, which is a fuel, is supplied to generate hydrogen ions and electrons. Hydrogen ions and electrons are generated in the oxidizing electrode, and hydrogen ions and oxygen that pass through the polymer electrolyte membrane are combined with each other in the reducing electrode. .
이 막-전극 접합체는 이러한 산화극과 환원극의 전극 촉매층이 이온 전도성 전해질막의 양면에 도포되어 있는 형태를 이루고, 전극 촉매층을 이루고 있는 물질은 Pt(백금)이나 Pt-Ru(백금-루테늄) 등의 촉매 물질이 카본담체에 담지되어 있는 형태이다. 연료전지의 전기화학적 반응의 핵심부품으로 볼 수 있는 막-전극 접합체(MEA)에는 특히 가격 구성 비율이 높은 이온 전도성 전해질막과 백금 촉매 등이 사용되며, 전력 생산 효율과 직결된 부분이기 때문에 연료전지의 성능향상과 가격경쟁력을 높이는데 가장 중요한 부분으로 간주되고 있다.In this membrane-electrode assembly, the electrode catalyst layer of the oxidized electrode and the reducing electrode is coated on both surfaces of the ion conductive electrolyte membrane, and the material forming the electrode catalyst layer is Pt (platinum) or Pt-Ru (platinum-ruthenium) Is supported on a carbon carrier. The membrane-electrode assembly (MEA), which is considered to be a core component of the electrochemical reaction of the fuel cell, uses an ion conductive electrolyte membrane and a platinum catalyst, Is considered to be the most important part to improve the performance and price competitiveness.
일반적으로 사용되고 있는 MEA를 제조하는 기존의 방법은 촉매 물질과 수소이온 전도성 바인더(binder), 즉 불소계 나피온 이오노머(Nafion Ionomer) 그리고 물 및/또는 알코올 용매를 혼합하여 반죽(paste)을 제조하고, 이를 촉매층을 지지해주는 전극 지지체이면서 동시에 기체 확산층의 역할을 하는 카본 천(carbon cloth)이나 카본페이퍼(carbon paper) 등에 코팅한 다음, 건조하고 수소이온 전도성 전해질 막에 열 융착하는 방법을 사용한다.Conventional methods for preparing commonly used MEAs include preparing a paste by mixing a catalyst material with a hydrogen ion conductive binder, i.e., a fluorine-based Nafion Ionomer, and water and / or an alcohol solvent, This is coated on a carbon cloth or a carbon paper, which serves as a gas diffusion layer, as well as an electrode support for supporting the catalyst layer, and then dried and thermally fused to the hydrogen ion conductive electrolyte membrane.
촉매층에서는 촉매에 의한 수소와 산소의 산화환원 반응; 밀착된 탄소 입자에 의한 전자의 이동; 수소, 산소 및 수분을 공급하고 반응 후 잉여 가스를 배출하기 위한 통로의 확보; 산화된 수소이온의 이동 등이 동시에 이루어져야만 한다. 더욱이 성능의 향상을 위해서는 공급연료와 촉매 및 이온 전도성 고분자 전해질막이 만나는 3상 계면영역(Triple Phase Boundary)의 면적을 증대시켜 활성분극(Activation polarization)을 줄여야 하며, 촉매층과 전해질막과의 계면 및 촉매층과 기체확산층과의 계면을 균일하게 접합하여 계면에서의 저항 분극(Ohmic polarization)을 줄여야 한다. 따라서, 촉매층과 전해질막과의 계면 저항을 최대한 감소시킴으로써 연료전지의 성능을 향상시키기 위해서는, MEA 제조시 촉매층과 전해질막의 접합력이 있어야 할 뿐만 아니라, 연료전지 구동 중에도 촉매층과 전해질막 사이의 계면 접합이 계속 유지되어야 한다.Oxidation and reduction reaction of hydrogen and oxygen by the catalyst in the catalyst layer; The transfer of electrons by the adherent carbon particles; Securing a passage for supplying hydrogen, oxygen and moisture and discharging a surplus gas after the reaction; And the movement of oxidized hydrogen ions must be simultaneously performed. Further, in order to improve the performance, it is necessary to reduce the activation polarization by increasing the area of the triple phase boundary where the feed fuel and the catalyst and the ion conductive polymer electrolyte membrane meet, and the interface between the catalyst layer and the electrolyte membrane, And the gas diffusion layer should be uniformly bonded to reduce ohmic polarization at the interface. Therefore, in order to improve the performance of the fuel cell by minimizing the interface resistance between the catalyst layer and the electrolyte membrane, it is necessary not only to have a bonding force between the catalyst layer and the electrolyte membrane during the production of the MEA, It should be maintained.
이에, 최근에는 촉매층과 전해질막과의 계면 및 촉매층과 기체확산층과의 계면을 균일하게 접합하기 위한 기술 개발이 활발히 이루어지고 있지만, 계면 균일성이 여전히 제한적인 단점이 있다.Recently, a technique for uniformly bonding the interface between the catalyst layer and the electrolyte membrane and the interface between the catalyst layer and the gas diffusion layer has actively been developed, but the interface uniformity is still limited.
또한, 전술된 구조를 갖는 MEA의 경우 통상적으로 두께가 두꺼운 전해질막을 사용하므로, 수소 이온의 전달이 지연되어 성능 저하가 발생할 수 있다.Further, in the case of an MEA having the above-described structure, since an electrolyte membrane having a large thickness is usually used, the transfer of hydrogen ions may be delayed to deteriorate performance.
또한, 연료 전지 구동 시 수소 이온의 이동과 사용시간이 길어짐에 따라 촉매층과 전해질막과의 계면 및 촉매층과 기체확산층과의 계면 접합성이 약해져 서로 분리되게 된다. 이에, 연료전지에 적용됐을 때 연료전지의 성능 저하를 야기할 수 있다.Further, as the movement of the hydrogen ions and the use time are prolonged in driving the fuel cell, the interface between the catalyst layer and the electrolyte membrane and the interface bonding between the catalyst layer and the gas diffusion layer are weakened and separated from each other. Therefore, when the fuel cell is applied to the fuel cell, the performance of the fuel cell may deteriorate.
수소 이온의 이동 시간 등의 단축을 위해서, 전해질막의 두께를 줄여야 하고 이를 위해서 전해질막을 구성하는 다공성 지지체의 두께를 얇게 하는 방법이 있는데, 지지체의 두께를 얇게 하기 위해 고연신시 지지체의 강도 등의 물성이 크게 감소할 뿐만 아니라, 길이방향과 두께방향간 물성차이가 나는 문제가 있으며, 지지체 제조시 불량률이 높아서 경제성, 상업성이 떨어지는 문제가 있었다.In order to shorten the movement time of the hydrogen ion, etc., there is a method of reducing the thickness of the electrolyte membrane and thinning the thickness of the porous support constituting the electrolyte membrane. In order to reduce the thickness of the support, There is a problem in that there is a difference in physical properties between the longitudinal direction and the thickness direction, and there is a problem in that economical efficiency and commerciality are poor due to a high defect rate in the production of the support.
본 발명은 상기 문제점을 해결하기 위해 안출된 것으로, 연신비, 연신속도 등 특정 조건 하에서 제조한 다공성 지지체를 도입함으로써, 기계적 물성을 크게 향상시키면서도, 1축 방향(길이 방향)과 2축 방향(두께 방향) 간 물성차이가 최소화된 연료전지 전해질 강화막을 제공하고자 한다. 또한, 이러한 연료전지 전해질 강화막을 포함하는 막-전극 접합체, 이를 포함하는 연료전지를 제공하고자 한다.SUMMARY OF THE INVENTION The present invention has been conceived in order to solve the problems described above. It is an object of the present invention to provide a porous support which is produced under specific conditions such as stretching ratio and stretching speed, ) In which the difference in physical properties between the fuel cell and the electrolyte membrane is minimized. The present invention also provides a membrane-electrode assembly including the fuel cell electrolyte-reinforced membrane, and a fuel cell including the membrane-electrode assembly.
상술한 과제를 해결하기 위한 본 발명의 연료전지 전해질 강화막은 다공성 지지체 표면에 전해질막이 코팅된 전해질 강화막으로서, 전해질 강화막을 단면으로 볼 때, 다공성 지지체 일측면에 형성된 제1전해질층 및 타측면에 형성된 제2전해질층;을 포함한다.According to an aspect of the present invention, there is provided a fuel cell electrolyte-reinforced membrane including a first electrolyte layer formed on one side of a porous support and a first electrolyte layer formed on another side of the porous support, And a second electrolyte layer formed thereon.
본 발명의 바람직한 일실시예로서, 본 발명의 연료전지 전해질 강화막은 ASTM D 822에 의거하여 측정시, 1축 방향 모듈러스(modulus) 및 2축 방향 모듈러스 차이가 하기 방정식 1을 만족할 수 있다.As a preferred embodiment of the present invention, the fuel cell electrolyte-reinforced membrane of the present invention can satisfy the following equation (1) when measuring according to ASTM D 822, the uniaxial direction modulus and the biaxial direction modulus difference.
[방정식 1][Equation 1]
0 ≤ │(전해질 강화막의 1축 방향 모듈러스 - 전해질 강화막의 2축 방향 모듈러스)/(전해질 강화막의 1축 방향 모듈러스)×100%│ ≤ 30%0 ≤ (uniaxial direction modulus of electrolyte-reinforced membrane - biaxial direction modulus of electrolyte-reinforced membrane) / (uniaxial direction modulus of electrolyte-reinforced membrane) × 100% ≤ ≤ 30%
본 발명의 바람직한 일실시예로서, 본 발명의 연료전지 전해질막은 ASTM D 822에 의거하여 측정시, 1축 방향 모듈러스(modulus)가 80 MPa 이상 및 2축 방향 모듈러스가 80 MPa 이상일 수 있다.In one preferred embodiment of the present invention, the fuel cell electrolyte membrane of the present invention may have a uniaxial modulus of 80 MPa or more and a biaxial modulus of 80 MPa or more when measured according to ASTM D 822.
본 발명의 바람직한 일실시예로서, 본 발명의 연료전지 전해질 강화막은 ASTM D 822에 의거하여 측정시, 1축 방향 인장강도 및 2축 방향 인장강도 차이가 하기 방정식 2를 만족할 수 있다.As a preferred embodiment of the present invention, the fuel cell electrolyte-reinforced membrane of the present invention can satisfy the following Equation 2 in the uniaxial tensile strength and biaxial tensile strength difference when measured according to ASTM D 822.
[방정식 2][Equation 2]
0 ≤ │(전해질 강화막의 1축 방향 인장강도 - 전해질 강화막의 2축 방향 인장강도)/(전해질 강화막의 1축 방향 인장강도)×100%│ ≤ 20%0 ≤ (Uniaxial Tensile Strength of Electrolyte Reinforced Film - Biaxial Tensile Strength of Electrolyte Reinforced Film) / (Uniaxial Tensile Strength of Electrolyte Reinforced Film) × 100% ≤ ≤ 20%
본 발명의 바람직한 일실시예로서, 본 발명의 연료전지 전해질막은 ASTM D 822에 의거하여 측정시, 1축 방향(길이 방향) 인장강도가 50 MPa 이상 및 2축 방향(폭 방향) 인장강도가 50 MPa 이상일 수 있다.As a preferred embodiment of the present invention, the fuel cell electrolyte membrane of the present invention has a tensile strength in a uniaxial direction (longitudinal direction) of 50 MPa or more and a tensile strength in a biaxial direction (width direction) of 50 MPa or more.
본 발명의 바람직한 일실시예로서, 상기 연료전지 전해질 강화막은 하기 관계식 1의 무게 변동계수(CV1)값이 20% 이상일 수 있다.As a preferred embodiment of the present invention, the fuel cell electrolyte-reinforced membrane may have a weight coefficient of variation (CV1) of the following relational expression 1 of 20% or more.
[관계식 1][Relation 1]
무게 변동계수(CV1,%) = │(전해질 처리 후 다공성 지지체 두께 - 전해질 처리 전 다공성 지지체 무게) / (전해질 처리 전 다공성 지지체 무게)│×100(%)(CV1,%) = (thickness of porous support after electrolyte treatment - weight of porous support before electrolytic treatment) / (weight of porous support before electrolyte treatment) × 100 (%)
본 발명의 바람직한 일실시예로서, 상기 연료전지 전해질 강화막은 상기 다공성 지지체는 평균두께 1㎛ ~ 20㎛이고, 상기 제1전해질층 및 제2전해질층은 독립적으로 평균두께 1㎛ ~ 15㎛일 수 있다.As a preferred embodiment of the present invention, the fuel cell electrolyte-reinforced membrane may have an average thickness of 1 탆 to 20 탆, and the first electrolyte layer and the second electrolyte layer may independently have an average thickness of 1 탆 to 15 탆 have.
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 ASTM D 822에 의거하여 측정시, 1축 방향(길이 방향) 모듈러스(modulus)가 40 MPa 이상 및 2축 방향(폭 방향) 모듈러스가 40 MPa 이상일 수 있다.In one preferred embodiment of the present invention, the porous support has a modulus in a uniaxial direction (longitudinal direction) of 40 MPa or more and a modulus in a biaxial direction (width direction) of 40 MPa or more when measured according to ASTM D 822 .
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 ASTM D 882에 의거하여 측정시, 1축 방향(길이 방향) 인장강도가 40 MPa 이상 및 2축 방향(폭 방향) 인장강도가 40 MPa 이상일 수 있다.In one preferred embodiment of the present invention, the porous support has a tensile strength in a uniaxial direction (longitudinal direction) of 40 MPa or more and a tensile strength in a biaxial direction (width direction) of 40 MPa or more, as measured according to ASTM D 882 have.
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 ASTM D 822에 의거하여 측정시, 1축 방향 모듈러스와 2축 방향 모듈러스 값이 하기 방정식 3을 만족할 수 있다.In one preferred embodiment of the present invention, when the porous support is measured according to ASTM D 822, the uniaxial direction modulus and the biaxial direction modulus value can satisfy the following equation (3).
[방정식 3][Equation 3]
0 ≤ │(1축 방향 모듈러스 - 2축 방향 모듈러스)/(1축 방향 모듈러스)×100%│ ≤ 54%0 ≤ │ (1 axis direction modulus - 2 axis direction modulus) / (1 axis direction direction modulus) × 100% ≤ 54%
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 1축 방향(길이 방향) 연신비가 3 ~ 10배이고, 2축 방향(폭 방향) 연신비가 15 ~ 50배일 수 있다.In one preferred embodiment of the present invention, the porous support may have a stretching ratio in a uniaxial direction (longitudinal direction) of 3 to 10 times and a stretching ratio in a biaxial direction (width direction) of 15 to 50 times.
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 1축 방향(길이 방향) 연신비가 6 ~ 9.5배이고, 2축 방향(폭 방향) 연신비가 25 ~ 45배일 수 있다.In one preferred embodiment of the present invention, the porous support may have a uniaxial (longitudinal) stretching ratio of 6 to 9.5 times and a biaxial (width) stretching ratio of 25 to 45 times.
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 1축 방향(길이 방향) 연신비가 6.2~9배이고, 2축 방향(폭 방향) 연신비가 28 ~ 45배일 수 있다.In one preferred embodiment of the present invention, the porous support may have a uniaxial (longitudinal) stretching ratio of 6.2 to 9 times and a biaxial (widthwise) stretching ratio of 28 to 45 times.
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 1축 방향(길이 방향) 및 2축 방향(폭 방향)의 연신비(또는 종횡비)가 1 : 3.00 ~ 8.5, 바람직하게는 1 : 3.50 ~ 7.0일 수 있다.In one preferred embodiment of the present invention, the porous support has a stretching ratio (or aspect ratio) of 1: 3.00 to 8.5, preferably 1: 3.50 to 7.0, in a uniaxial (longitudinal) direction and a biaxial .
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 평균기공크기가 0.080㎛ ~ 0.20㎛이고, 평균 기공률이 60% ~ 90%일 수 있다.In one preferred embodiment of the present invention, the porous support has an average pore size of 0.080 탆 to 0.20 탆 and an average porosity of 60% to 90%.
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 PTFE(polytetrafluoroethylene)를 포함하는 PTFE 다공성 지지체일 수 있다.In one preferred embodiment of the present invention, the porous support may be a PTFE porous support including polytetrafluoroethylene (PTFE).
본 발명의 다른 목적은 앞서 설명한 다양한 형태의 연료전지 전해질 강화막을 제조하는 방법에 관한 것으로서, 다공성 지지체를 불소계 이오노머 용액에 함침하는 단계; 및 상기 함침된 PTFE 다공성 지지체를 건조 및 열처리하는 단계;를 포함하는 공정을 수행하여 제조할 수 있다.Another object of the present invention is to provide a method of preparing the various types of fuel cell electrolyte-reinforced membranes described above, comprising the steps of: impregnating a porous support with a fluorine ionomer solution; And drying and heat treating the impregnated PTFE porous support.
본 발명의 바람직한 일실시예로서, 상기 불소계 이오노머 용액은 용액 전체 중량 중 중공형 실리카 0.05 ~ 5 중량%로 더 포함할 수 있다. In one preferred embodiment of the present invention, the fluorine-based ionomer solution may further contain 0.05 to 5% by weight of hollow silica in the total weight of the solution.
본 발명의 바람직한 일실시예로서, 상기 불소계 이오노머는 나피온(Nafion), 플레미온(Flemion) 및 아시플렉스(Aciplex) 중에서 선택된 1종 이상을 포함할 수 있다.In one preferred embodiment of the present invention, the fluorine-based ionomer may include at least one selected from Nafion, Flemion, and Aciplex.
본 발명의 바람직한 일실시예로서, 상기 다공성 지지체는 PTFE 파우더 및 액상 윤활제를 혼합 및 교반하여 페이스트(paste)를 제조하는 1단계; 상기 페이스트를 숙성시키는 2단계; 숙성된 페이스트(paste)를 압출 및 압연시켜서 미소성 테이프를 제조하는 3단계; 미소성 테이프를 건조시킨 후, 액상 윤활제를 제거하는 4단계; 윤활제가 제거된 미소성 테이프를 1축 연신시키는 5단계; 1축 연신된 미소성 테이프를 2축 연신시키는 6단계; 및 소성하는 7단계;를 포함하는 공정을 수행하여 제조할 수 있다.In one preferred embodiment of the present invention, the porous support includes a first step of mixing a PTFE powder and a liquid lubricant to prepare a paste; 2) aging the paste; A third step of extruding and rolling the aged paste to produce an unflavicious tape; Drying the uncured tape, and then removing the liquid lubricant; 5) uniaxially stretching the untreated tape from which the lubricant has been removed; Biaxially stretching the uniaxially stretched untreated tape; And firing step (7).
본 발명의 바람직한 일실시예로서, 1단계의 페이스트는 PTFE 파우더 100 중량부에 대하여 윤활제 15 ~ 35 중량부를 포함할 수 있다.In one preferred embodiment of the present invention, the first-stage paste may contain 15 to 35 parts by weight of a lubricant based on 100 parts by weight of the PTFE powder.
본 발명의 바람직한 일실시예로서, 상기 윤활제는 액상 윤활제로서, 유동파라핀, 나프타, 화이트 오일, 톨루엔, 크실렌 등의 탄화수소 오일 외에, 각종 알코올류, 케톤류, 에스테르류 등이 사용할 수 있으며, 바람직하게는 유동파라핀, 나프타 및 화이트 오일 중에서 선택된 1종 이상을 사용할 수 있다.In one preferred embodiment of the present invention, the lubricant is a liquid lubricant, and various alcohols, ketones, esters and the like can be used in addition to hydrocarbon oils such as liquid paraffin, naphtha, white oil, toluene and xylene, At least one selected from liquid paraffin, naphtha and white oil can be used.
본 발명의 바람직한 일실시예로서, 2단계의 상기 숙성은 30 ~ 70의 온도에서 12 ~ 24 시간 동안 방치하여 수행할 수 있다.In one preferred embodiment of the present invention, the aging of the two stages may be carried out at a temperature of 30 to 70 for 12 to 24 hours.
본 발명의 바람직한 일실시예로서, 3단계의 상기 압출은 숙성된 페이스트를 압축기에서 압축하여 PTFE 블록을 제조한 후, PTFE 블록을 0.069 ~ 0.200 Ton/cm2 압력으로 가압압출하여 수행할 수 있다. In one preferred embodiment of the present invention, the three-step extrusion can be performed by compressing the aged paste in a compressor to produce a PTFE block, and then extruding the PTFE block under a pressure of 0.069 to 0.200 Ton / cm 2 .
본 발명의 바람직한 일실시예로서, 3단계의 상기 압연은 5 ~ 10 MPa의 유압으로, 50℃ ~ 100℃ 하에서 캘린더링 공정으로 수행할 수 있다.As a preferred embodiment of the present invention, the rolling in three stages can be carried out by calendering at an oil pressure of 5 to 10 MPa and at 50 to 100 캜.
본 발명의 바람직한 일실시예로서, 4단계의 건조 공정은 윤활제 제거를 위한 공정으로서, 미소성 테이프를 1 ~ 5M/min 속도로 이동시키면서 100℃ ~ 200℃ 하에서 건조를 수행할 수 있다.As a preferred embodiment of the present invention, the drying process of four stages is a process for removing the lubricant, and drying can be performed at 100 ° C to 200 ° C while moving the untreated tape at a speed of 1 to 5 M / min.
본 발명의 바람직한 일실시예로서, 5단계의 1축 연신은 윤활제가 제거된 미소성 테이프를 길이 방향으로 3 ~ 10배, 바람직하게는 6 ~ 9.5배, 더욱 바람직하게는 6.2 ~ 9배로 연신을 수행할 수 있다.As a preferred embodiment of the present invention, in the uniaxial stretching in the five-step process, the untreated tape from which the lubricant has been removed is stretched in the longitudinal direction to 3 to 10 times, preferably 6 to 9.5 times, more preferably 6.2 to 9 times Can be performed.
본 발명의 바람직한 일실시예로서, 5단계의 1축 연신은 260℃ ~ 350℃의 연신온도 하에서, 6 ~ 12 M/min의 연신속도로 수행할 수 있다.In one preferred embodiment of the present invention, the five-step uniaxial stretching can be carried out at a stretching speed of 6 to 12 M / min under a stretching temperature of 260 ° C to 350 ° C.
본 발명의 바람직한 일실시예로서, 6단계의 2축 연신은 1축 연신된 미소성 테이프를 폭 방향으로 15 ~ 50배, 바람직하게는 25 ~ 45배, 더욱 바람직하게는 28 ~ 45배로 연신을 수행할 수 있다.As a preferred embodiment of the present invention, the biaxial stretching in 6 stages is conducted by stretching uniaxially stretched untreated tapes 15 to 50 times, preferably 25 to 45 times, more preferably 28 to 45 times in the width direction Can be performed.
본 발명의 바람직한 일실시예로서, 6단계의 2축 연신은 150℃ ~ 260℃의 연신온도 하에서, 10 ~ 20M/min의 연신속도로 수행할 수 있다.In a preferred embodiment of the present invention, the biaxial stretching in six steps can be performed at a stretching speed of 10 to 20 M / min under a stretching temperature of 150 to 260 ° C.
본 발명의 바람직한 일실시예로서, 7단계의 소성은 350℃ ~ 450℃ 온도 하에서 수행할 수 있다.In one preferred embodiment of the present invention, the firing in the seventh step may be performed at a temperature of 350 ° C to 450 ° C.
본 발명의 바람직한 일실시예로서, 7단계 공정을 수행하여 제조한 다공성 지지체를 불소계 이오노머 용액에 함침하는 8단계; 및 상기 함침된 PTFE 다공성 지지체를 건조 및 열처리하는 9단계;를 더 수행할 수도 있다.As a preferred embodiment of the present invention, there is provided a method for preparing a fluorine-containing ionomer, comprising the steps of: 8) impregnating a fluorine-based ionomer solution with a porous support prepared by performing a 7-step process; And drying and heat-treating the impregnated PTFE porous support.
본 발명의 바람직한 일실시예로서, 8단계의 상기 불소계 이오노머 용액은 제올라이트, 티타니아, 지르코니아, 및 몬모릴로나이트로 이루어진 군으로부터 선택되는 하나 이상의 흡습제를 더 포함할 수 있다.As a preferred embodiment of the present invention, the fluorine-based ionomer solution of the eight-step may further include at least one moisture absorbent selected from the group consisting of zeolite, titania, zirconia, and montmorillonite.
본 발명의 바람직한 일실시예로서, 9단계의 상기 건조는 60℃ ~ 100℃ 온도에서 1 ~ 30분 동안 수행하고, 상기 열처리는 100℃ ~ 200℃ 온도에서 1분 ~ 5분 동안 수행될 수 있다.As a preferred embodiment of the present invention, the drying in 9 steps is carried out at a temperature of 60 ° C to 100 ° C for 1 to 30 minutes, and the heat treatment may be carried out at a temperature of 100 ° C to 200 ° C for 1 minute to 5 minutes .
본 발명의 바람직한 일실시예로서, 9단계의 열처리된 상기 다공성 지지체는 폐색된 기공의 부피가 전체 기공 부피에 대하여 90 부피% 이상일 수 있다.In one preferred embodiment of the present invention, the volume of the closed pores of the heat-treated porous support in the step 9 may be 90 vol% or more with respect to the total pore volume.
본 발명의 또 다른 목적은 막-전극 접합체(MEA)에 관한 것으로서, 상기 연료전지 전해질 강화막을 포함하다.Still another object of the present invention relates to a membrane-electrode assembly (MEA), which comprises the fuel cell electrolyte-reinforced membrane.
본 발명의 바람직한 일실시예로서, 본 발명의 막-전극 접합체(MEA)는 상기 연료전지 전해질 강화막; 산화극(Anode, 연료극); 및 환원극(Cathode, 산소극);을 포함하며, 상기 산화극 및 환원극은 촉매층; 기체확산층; 및 전극 기재;를 포함한다.In one preferred embodiment of the present invention, the membrane-electrode assembly (MEA) of the present invention comprises the fuel cell electrolyte-reinforced membrane; Anode (anode); And a cathode (cathode), wherein the oxidant electrode and the reducing electrode comprise a catalyst layer; A gas diffusion layer; And an electrode substrate.
본 발명의 또 다른 목적은 연료전지에 관한 것으로서, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 전기 발생부; 연료를 상기 전기 발생부로 공급하는 연료 공급부; 및 산화제를 상기 발생부로 공급하는 산화제 공급부;를 포함하고, 상기 전기 발생부는 상기 막-전극 접합체 및 세퍼레이터를 포함한다.It is still another object of the present invention to provide a fuel cell comprising: an electricity generating unit generating electricity through an electrochemical reaction between a fuel and an oxidant; A fuel supply unit for supplying fuel to the electricity generation unit; And an oxidizing agent supply unit for supplying an oxidizing agent to the generating unit, wherein the electricity generating unit includes the membrane-electrode assembly and the separator.
본 발명의 바람직한 일실시예로서, 상기 연료전지는 막-전극 접합체 및 세퍼레이터를 포함하고, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 전기 발생부를 형성하는 1단계; 상기 막-전극 접합체 사이에 세퍼레이터를 개재하여 스택을 형성하는 2단계; 연료를 상기 전기 발생부로 공급하는 연료 공급부를 형성하는 3단계; 및 산화제를 상기 전기 발생부로 공급하는 산화제 공급부를 형성하는 4단계;를 포함한다.In a preferred embodiment of the present invention, the fuel cell includes a membrane-electrode assembly and a separator, and includes a first step of forming an electricity generating part generating electricity through an electrochemical reaction between a fuel and an oxidant; A second step of forming a stack between the membrane electrode assemblies via a separator; Forming a fuel supply unit for supplying fuel to the electricity generating unit; And forming an oxidant supply unit for supplying the oxidant to the electricity generating unit.
본 발명의 연료전지 전해질 강화막용 다공성 지지체는 최적의 연신비 및 연신속도를 확보하였는 바, 매우 낮은 불량률로 제조가 가능하여 경제성 및 상업성이 우수할 뿐만 아니라, 우수한 기계적 물성을 확보하고 있는 바, 얇은 두께의 지지체 형태로 제공할 수 있으며, 이를 통하여 연료전지 전해질 강화막의 전체 두께를 감소시켜서 연료전지의 성능을 향상시킬 수 있다.The porous support for a fuel cell electrolyte reinforced membrane of the present invention ensures an optimal stretch ratio and elongation speed, and can be manufactured with a very low defective ratio, thereby being excellent in economy and commerciality, and securing excellent mechanical properties. As a result, Thereby improving the performance of the fuel cell by reducing the total thickness of the fuel cell electrolyte-reinforced membrane.
도 1은 본 발명의 바람직한 일 구현예에 따른 연료전지 전해질 강화막의 개략도이다.1 is a schematic view of a fuel cell electrolyte-reinforced membrane according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 일 구현예에 따른 막-전극 접합체의 개략도이다.2 is a schematic view of a membrane-electrode assembly according to a preferred embodiment of the present invention.
이하, 본 발명의 연료전지 전해질 강화막에 대하여 더욱 자세하게 설명을 한다.Hereinafter, the fuel cell electrolyte-reinforced membrane of the present invention will be described in more detail.
본 발명의 연료전지 전해질 강화막은 기존의 연료전지 전해질 강화막과 비교하여 구조가 단순화되고, 전극과 접합됐을 때 계면 특성을 향상시킬 수 있다. 또한, 지지체의 두께가 얇게 설계가 가능하여, 전해질막의 두께가 얇아짐에 따라 수소 이온 전달 지연을 방지할 수 있고, 연료 전지의 성능을 향상시킬 수 있는 연료전지용 전해질 강화막이다.The fuel cell electrolyte-reinforced membrane of the present invention is simpler in structure than the conventional fuel cell electrolyte-reinforced membrane and can improve the interfacial property when bonded to an electrode. In addition, it is an electrolyte reinforced membrane for a fuel cell that can be designed to have a thinner support and can prevent hydrogen ion transmission delay as the thickness of the electrolyte membrane becomes thinner, and can improve the performance of the fuel cell.
이러한 본 발명의 연료전지 전해질 강화막은 다공성 지지체 표면에 전해질막이 형성되어 있으며, 도 1에 개략적인 단면도로 나타낸 바와 같이, 다공성 지지체(1)의 일측면에 제1전해질막(2)을 형성되어 있고, 지지체(1)의 타측면에는 제2전해질층(3)이 형성되어 있다.The fuel cell electrolyte-reinforced membrane of the present invention has an electrolyte membrane on the surface of the porous support. As shown in a schematic cross-sectional view in FIG. 1, the first electrolyte membrane 2 is formed on one side of the porous support 1 , And a second electrolyte layer (3) is formed on the other side of the support (1).
본 발명의 연료전지 전해질 강화막은 ASTM D 822에 의거하여 측정시, 전해질 강화막의 1축 방향 모듈러스(modulus) 및 2축 방향 모듈러스 차이가 하기 방정식 1을 만족할 수 있다.In the fuel cell electrolyte-reinforced membrane of the present invention, when measured according to ASTM D 822, the uniaxial modulus and biaxial modulus difference of the electrolyte-reinforced membrane can satisfy Equation 1 below.
[방정식 1][Equation 1]
0 ≤ │(전해질 강화막의 1축 방향 모듈러스 - 전해질 강화막의 2축 방향 모듈러스)/(전해질 강화막의 1축 방향 모듈러스)×100%│ ≤ 30%, 바람직하게는 0 ≤ │(전해질 강화막의 1축 방향 모듈러스 - 전해질 강화막의 2축 방향 모듈러스)/(전해질 강화막의 1축 방향 모듈러스)×100%│ ≤ 15%, 더욱 바람직하게는 0 ≤ │(전해질 강화막의 1축 방향 모듈러스 - 전해질 강화막의 2축 방향 모듈러스)/(전해질 강화막의 1축 방향 모듈러스)×100%│ ≤ 10%0 ≤ (uniaxial direction modulus of electrolyte-reinforced membrane - biaxial direction modulus of electrolyte-reinforced membrane) / (uniaxial direction modulus of electrolyte-reinforced membrane) × 100% ≤ 30%, preferably 0 ≤ Directional modulus - biaxial modulus of the electrolyte-reinforced membrane) / (uniaxial modulus of the electrolyte-reinforced membrane) x 100% ≤ 15%, more preferably 0 ≤ (biaxial modulus of the electrolyte- Directional modulus) / (uniaxial modulus of the electrolyte-reinforced membrane) x 100% ≤ 10%
그리고, 본 발명의 전해질 강화막은 ASTM D 822에 의거하여 측정시, 1축 방향(길이 방향) 모듈러스(modulus)가 80 MPa 이상 일 수 있으며, 바람직하게는 1축 방향 모듈러스가 85 ~ 145 MPa, 더욱 바람직하게는 1축 방향 모듈러스가 95 ~ 140 Mpa일 수 있다. 또한, 2축 방향(폭 방향) 모듈러스가 80 MPa 이상, 바람직하게는 2축 방향(폭 방향) 모듈러스가 85 ~ 135 Mpa, 더욱 바람직하게는 95 ~ 135 Mpa일 수 있다.The electrolyte reinforced membrane of the present invention may have a modulus in a uniaxial direction (longitudinal direction) of 80 MPa or more, preferably a uniaxial modulus in a range of 85 to 145 MPa Preferably, the uniaxial direction modulus is 95 to 140 MPa. The modulus in the biaxial direction (width direction) is 80 MPa or more, preferably, the modulus in the biaxial direction (width direction) is 85 to 135 MPa, more preferably 95 to 135 MPa.
또한, 본 발명의 연료전지 전해질 강화막은 ASTM D 822에 의거하여 측정시, 전해질 강화막의 1축 방향 인장강도 및 2축 방향 인장강도 차이가 하기 방정식 2를 만족할 수 있다.In the fuel cell electrolyte-reinforced membrane of the present invention, when measured according to ASTM D 822, the uniaxial tensile strength and biaxial tensile strength difference of the electrolyte-reinforced membrane can satisfy the following equation (2).
[방정식 2][Equation 2]
0 ≤ │(전해질 강화막의 1축 방향 인장강도 - 전해질 강화막의 2축 방향 인장강도)/(전해질 강화막의 1축 방향 인장강도)×100%│ ≤ 20 %, 바람직하게는 0 ≤ │(전해질 강화막의 1축 방향 인장강도 - 전해질 강화막의 2축 방향 인장강도)/(전해질 강화막의 1축 방향 인장강도)×100%│ ≤ 16%, 더욱 바람직하게는 0 ≤ │(전해질 강화막의 1축 방향 인장강도 - 전해질 강화막의 2축 방향 인장강도)/(전해질 강화막의 1축 방향 인장강도)×100%│ ≤ 9%0 ≤ (uniaxial tensile strength of the electrolyte-reinforced membrane - biaxial tensile strength of the electrolyte-reinforced membrane) / (uniaxial tensile strength of the electrolyte-reinforced membrane) x 100% ≤ 20%, preferably 0 ≤ Axis direction tensile strength of the electrolyte-reinforced film) / (tensile strength in uniaxial direction of the electrolyte-reinforced film) 占 100% | 16%, more preferably 0? (Uniaxial tensile strength of the electrolyte- Strength - Tensile strength in the biaxial direction of the electrolyte-reinforced membrane) / (Tensile strength in the uniaxial direction of the electrolyte-reinforced membrane) 100% | 9%
그리고, 본 발명의 전해질 강화막은 ASTM D 822에 의거하여 측정시, 1축 방향(길이 방향) 인장강도가 50 MPa 이상 및 2축 방향(폭 방향) 인장강도가 50 MPa 이상일 수 있으며, 바람직하게는 1축 방향 인장강도가 60 ~ 95 MPa, 더욱 바람직하게는 1축 방향 인장강도가 66 ~ 90 Mpa일 수 있다. 또한, 2축 방향 인장강도가 50 Mpa 이상일 수 있고, 바람직하게는 2축 방향 인장강도가 60 ~ 92 Mpa, 더욱 바람직하게는 2축 방향 인장강도가 65 ~ 88 Mpa일 수 있다.The electrolyte-reinforced membrane of the present invention may have a tensile strength in a uniaxial direction (longitudinal direction) of 50 MPa or more and a tensile strength in a biaxial direction (width direction) of 50 MPa or more when measured according to ASTM D 822, The uniaxial tensile strength may be 60 to 95 MPa, and more preferably the uniaxial tensile strength may be 66 to 90 MPa. The biaxial tensile strength may be 50 Mpa or more, and preferably the biaxial tensile strength may be 60 to 92 Mpa, and more preferably, the biaxial tensile strength may be 65 to 88 Mpa.
본 발명의 연료전지 전해질 강화막은 다공성 지지체를 불소계 이오노머 용액에 함침하는 단계; 및 상기 함침된 PTFE 다공성 지지체를 건조 및 열처리하는 단계;를 포함하는 공정을 수행하여 제조할 수 있다.The fuel cell electrolyte-reinforced membrane of the present invention comprises the steps of: impregnating a porous support with a fluorine ionomer solution; And drying and heat treating the impregnated PTFE porous support.
상기 불소계 이오노머 용액은 중공형 실리카를 더 포함할 수 있으며, 이를 통하여 지지체의 불소계 이오노머 용액에 대한 흡습을 향상시키고, 불소계 이오노머 용액 함침에 따른 PTFE 다공성 지지체의 부피 팽창을 방지할 수 있다. The fluorine-based ionomer solution may further include hollow silica, thereby improving the moisture absorption of the fluorine-based ionomer solution of the support and preventing the volume expansion of the PTFE porous support due to impregnation of the fluorine-based ionomer solution.
상기 불소계 이오노머는 나피온(Nafion), 플레미온(Flemion), 및 아시플렉스(Aciplex) 중에서 선택된 1종 이상을 포함할 수 있으며, 더욱 바람직하게는 나피온일 수 있다.The fluorine-based ionomer may include at least one selected from Nafion, Flemion, and Aciplex, and more preferably Nafion.
그리고, 상기 중공형 실리카는 구상이며, 평균입경은 10 ~ 300 nm일 수 있고, 더욱 바람직하게는 10 nm ~ 100 nm일 수 있다. 여기서 입경의 의미는 중공형 실리카의 형상이 구상일 경우 지름을 의미하고, 구형이 아닌 경우 중공형 실리카 표면의 임의의 한 점에서 다른 한 점까지의 직선거리 중 최대거리를 의미한다. 상기 중공형 실리카의 평균입경이 10 nm 미만일 경우 상기 불소계 이오노머 용액을 담지할 수 있는 용량이 감소함에 따라 상기 불소계 이오노머 용액의 흡수력이 제한적일 수 있고, 평균직경이 300 nm를 초과하는 경우 상기 PTFE 다공성 지지체 기공 내에 상기 중공형 실리카가 함침되는 양이 제한적일 수 있다.The hollow silica may have a spherical shape and may have an average particle diameter of 10 to 300 nm, and more preferably 10 nm to 100 nm. Here, the particle diameter means the diameter when the shape of the hollow silica is spherical, and the maximum distance of the straight line from one point to another point on the surface of the hollow silica when it is not spherical. When the average particle diameter of the hollow silica is less than 10 nm, absorption capacity of the fluorine-based ionomer solution may be limited as the capacity to support the fluorine-based ionomer solution is reduced. When the average diameter exceeds 300 nm, The amount of the hollow silica impregnated in the pores may be limited.
상기 중공형 실리카에 포함되는 중공부는 쉘부를 통해 흡착 이동한 불소계 이오노머 용액이 담지되는 공간으로써, 바람직하게는 중공의 직경이 5 nm ~ 100 nm일 수 있고, 더욱 바람직하게는 5 nm ~ 50 nm일 수 있다. 만일 중공직경이 5 nm 미만일 경우 담지되는 불소계 이오노머 용액의 양이 적어질 수 있고, 100 nm를 초과할 경우 중공형 실리카의 입경이 목적하는 범위를 초과하여 커지거나 쉘부의 붕괴를 초래할 수 있다. 상기 불소계 이오노머 용액 100 중량부에 대하여 중공형 실리카 0.05 ~ 5 중량부를 포함할 수 있고, 더욱 바람직하게는 1 ~ 3 중량부를 포함할 수 있다. 상기 불소계 이오노머 용액 100 중략부에 대하여 중공형 실리카를 0.05 중량부 미만으로 포함할 경우 불소계 이오노머 용액의 함침 효과가 미미할 수 있고, 5 중량부를 초과할 경우 다공성 지지체에서 폐쇄된 기공의 비율이 높아져 막-전극 접합체에 적용 시 전류의 흐름도가 낮아질 수 있다.The hollow portion of the hollow silica is a space for supporting the fluorine ionomer solution adsorbed and moved through the shell portion. The hollow portion may have a hollow diameter of 5 nm to 100 nm, more preferably 5 nm to 50 nm . If the hollow diameter is less than 5 nm, the amount of the supported fluorine ionomer solution may be reduced. If the diameter exceeds 100 nm, the particle diameter of the hollow silica may exceed the desired range or cause collapse of the shell part. Based on 100 parts by weight of the fluorine-based ionomer solution, 0.05 to 5 parts by weight, and more preferably 1 to 3 parts by weight, of hollow silica. If the amount of hollow silica is less than 0.05 parts by weight based on 100 parts by weight of the fluorine-containing ionomer solution, the impregnation effect of the fluorine-based ionomer solution may be insufficient. If the amount exceeds 5 parts by weight, the ratio of the closed pores in the porous support increases, When applied to an electrode assembly, the current flow rate may be lowered.
또한, 상기 불소계 이오노머 용액은 제올라이트, 티타니아, 지르코니아 및 몬모릴로나이트 중에서 선택된 1종 이상의 흡습제를 더 포함할 수 있다.The fluorine-based ionomer solution may further include at least one moisture absorbent selected from zeolite, titania, zirconia, and montmorillonite.
다음으로, 불소계 이오노머 용액에 함침시킨 PTFE 다공성 지지체를 꺼낸 후, 이를 60 ~ 100 온도에서 1 ~ 30 분 동안 건조를 수행할 수 있고, 열처리는 100℃ ~ 200℃ 온도에서 1 분 ~ 5 분 동안 수행될 수 있다. 상기 건조 공정의 온도가 60℃ 미만일 경우 다공성 지지체에 함침된 불소계 이오노머 용액의 보액성이 저하될 수 있고, 100℃를 초과할 경우, 전해질막 제조시, 전해질막 및/또는 막-전극 접합체 제조시 전극과의 접착성이 저하될 수 있다. 또한, 상기 열처리 공정에서 열처리 온도가 100℃ 미만이거나 시간이 1분 미만일 경우 상기 다공성 지지체에 함침된 불소계 이오노머 용액의 보액성이 저하될 수 있고, 온도가 200℃를 초과하거나 열처리 시간이 5분을 초과할 경우 전해질막에 지지체 접착시, 전해질막과의 접착성이 저하될 수 있다.Next, the PTFE porous support impregnated with the fluorine-based ionomer solution is taken out and dried at 60 to 100 ° C. for 1 to 30 minutes. The heat treatment is performed at 100 ° C. to 200 ° C. for 1 to 5 minutes . If the temperature of the drying step is less than 60 ° C, the liquid-repellency of the fluorinated ionomer solution impregnated into the porous support may be deteriorated. When the temperature exceeds 100 ° C, the electrolyte membrane and / The adhesion with the electrode may be deteriorated. If the heat treatment temperature is less than 100 ° C or less than 1 minute in the heat treatment step, the liquid reflux of the fluorinated ionomer solution impregnated in the porous support may deteriorate. If the temperature exceeds 200 ° C or the heat treatment time is 5 minutes The adhesion to the electrolyte membrane may be deteriorated when the support is adhered to the electrolyte membrane.
그리고, 열처리된 전해질 강화막 내 다공성 지지체는 폐색된 기공의 부피가 전체 기공 부피에 대하여 90 부피% 이상일 수 있다.The porous support in the heat-treated electrolyte-reinforced membrane may have a volume of occluded pores of 90% by volume or more based on the total pore volume.
본 발명의 전해질 강화막 제조에 사용되는 상기 다공성 지지체는 하기와 같은 방법으로 제조할 수 있다. The porous support used for preparing the electrolyte-reinforced membrane of the present invention can be produced by the following method.
상기 다공성 지지체는 PTFE 파우더 및 윤활제를 혼합 및 교반하여 페이스트(paste)를 제조하는 1단계; 상기 페이스트를 숙성시키는 2단계; 숙성된 페이스트(paste)를 압출 및 압연시켜서 미소성 테이프를 제조하는 3단계; 미소성 테이프를 건조시킨 후, 액상 윤활제를 제거하는 4단계; 윤활제가 제거된 미소성 테이프를 1축 연신시키는 5단계; 1축 연신된 미소성 테이프를 2축 연신시키는 6단계; 및 소성하는 7단계;를 포함하는 공정을 수행하여 제조할 수 있다.The porous support may include a first step of mixing and stirring a PTFE powder and a lubricant to prepare a paste; 2) aging the paste; A third step of extruding and rolling the aged paste to produce an unflavicious tape; Drying the uncured tape, and then removing the liquid lubricant; 5) uniaxially stretching the untreated tape from which the lubricant has been removed; Biaxially stretching the uniaxially stretched untreated tape; And firing step (7).
1단계에서 상기 페이스트는 PTFE 파우더 100 중량부에 대하여 윤활제 15 ~ 35 중량부를, 바람직하게는 15 ~ 30 중량부를, 더욱 바람직하게는 15 ~ 25 중량부를 포함할 수 있다. 상기 PTFE 미세분말 100 중량부에 대하여 윤활제가 15 중량부 미만일 경우 후술되는 2축 연신 공정에 의해 PTFE 다공성 지지체 형성시 기공도가 낮아질 수 있고, 35 중량부를 초과할 경우 PTFE 다공성 지지체 형성시 기공의 크기가 커져 지지체의 강도가 약해질 수 있다.In the first step, the paste may contain 15 to 35 parts by weight, preferably 15 to 30 parts by weight, more preferably 15 to 25 parts by weight of a lubricant based on 100 parts by weight of the PTFE powder. If the amount of the lubricant is less than 15 parts by weight based on 100 parts by weight of the PTFE fine powder, the porosity may be lowered when the PTFE porous support is formed by the biaxial stretching process described below. If the amount is more than 35 parts by weight, The strength of the support can be weakened.
상기 PTFE 파우더의 평균입경은 300㎛ ~ 800㎛. 바람직하게는 450㎛ ~ 700㎛일 수 있으나, 이에 제한되지 않는다. 상기 윤활제는 액상 윤활제로서, 유동파라핀, 나프타, 화이트 오일, 톨루엔, 크실렌 등의 탄화수소 오일 외에, 각종 알코올류, 케톤류, 에스테르류 등이 사용할 수 있으며, 바람직하게는 유동파라핀, 나프타 및 화이트 오일 중에서 선택된 1종 이상을 사용할 수 있다.The average particle diameter of the PTFE powder is 300 탆 to 800 탆. But it is not limited thereto. The lubricant may be any of various alcohols, ketones, esters, etc., in addition to hydrocarbon oils such as liquid paraffin, naphtha, white oil, toluene, and xylene as the liquid lubricant, preferably selected from liquid paraffin, naphtha and white oil One or more species can be used.
다음으로, 2단계의 숙성은 예비성형 공정으로서, 상기 페이스트를 30℃ ~ 70의 온도에서 12 ~ 24 시간 동안 숙성할 수 있고, 바람직하게는 35℃ ~ 60℃의 온도에서 16 ~ 20 시간 동안 숙성할 수 있다. 상기 숙성 온도가 35℃ 미만이거나 숙성 시간이 12 시간 미만일 경우 PTFE 파우더 표면에 윤활제 코팅이 불 균일하게 되어 후술되는 2축 연신시 PTFE 시트의 연신 균일성이 제한적일 수 있다. 또한, 숙성 온도가 70℃를 초과하거나 숙성 시간이 24 시간을 초과할 경우 윤활제의 증발로 인하여 2축 연신 공정 후의 지지체 기공 크기가 너무 작아지는 문제가 있을 수 있다.Next, the aging in two stages is a pre-forming step, the paste can be aged at a temperature of 30 to 70 for 12 to 24 hours, preferably aged at a temperature of 35 to 60 for 16 to 20 hours can do. When the aging temperature is less than 35 ° C or the aging time is less than 12 hours, the lubricant coating on the surface of the PTFE powder becomes non-uniform, which may limit the stretching uniformity of the PTFE sheet to be described below. If the aging temperature exceeds 70 ° C or the aging time exceeds 24 hours, the pore size of the support after the biaxial stretching process may become too small due to the evaporation of the lubricant.
다음으로, 3단계의 상기 압출은 숙성된 페이스트를 압축기에서 압축하여 PTFE 블록을 제조한 후, PTFE 블록을 0.069 ~ 0.200 Ton/cm2의 압력으로, 바람직하게는 0.090 ~ 0.175 Ton/cm2의 압력으로 가압 압출하여 수행할 수 있다. 이때, 상기 가압압출 압력이 0.069 Ton/cm2 미만일 경우 지지체의 기공 크기가 커져서 지지체의 강도가 약해질 수 있고, 0.200 Ton/cm2을 초과할 경우 2축 연신 공정 후의 지지체 기공크기가 작아지는 문제가 있을 수 있다.Next, in the third extrusion, the aged paste is compressed in a compressor to produce a PTFE block, and then the PTFE block is pressurized at a pressure of 0.069 to 0.200 Ton / cm 2 , preferably at a pressure of 0.090 to 0.175 Ton / cm 2 And then extruding it by pressure. At this time, when the pressure-extruding pressure is 0.069 Ton / cm 2 The strength of the support may be weakened due to the increase of the pore size of the support, and if it exceeds 0.200 Ton / cm 2 , there may be a problem that the pore size of the support after the biaxial stretching process becomes small.
다음으로, 3단계의 상기 압연은 5 ~ 10MPa의 유압으로, 50℃ ~ 100℃ 하에서 캘린더링 공정으로 수행할 수 있다. 이때, 상기 유압이 5MPa 미만일 경우 지지체의 기공 크기가 커져서 지지체의 강도가 약해질 수 있고, 10MPa를 초과할 경우 지지체 기공크기가 작아지는 문제가 있을 수 있다.Next, the rolling in the third step can be carried out by calendering at an oil pressure of 5 to 10 MPa and at 50 ° C to 100 ° C. At this time, if the hydraulic pressure is less than 5 MPa, the pore size of the support becomes large and the strength of the support may be weakened, and if it exceeds 10 MPa, the support pore size may be reduced.
다음으로, 4단계의 건조는 당업계에서 사용하는 일반적인 건조 방법을 통해 수행할 수 있으며, 바람직한 일례를 들면, 압연시켜 제조한 미소성 테이프를 100℃ ~ 200℃ 온도에서 1 ~ 5M/min 속도로 컨베이어 벨트로 이송시키면서, 바람직하게는 140℃ ~ 190℃ 온도에서 2 ~ 4M/min 속도로 이송시키면서 수행할 수 있다. 이때, 상기 건조 온도가 100℃ 이하이거나, 건조 속도가 5M/min를 초과할 경우 윤활제의 미증발로 인해 연신 공정 진행 시 기포가 발생할 수 있으며, 상기 건조 온도가 200℃ 이상이거나 건조속도가 1M/min을 미만일 경우 건조된 테이프의 스티브니스(Stiffness)가 증가하여 연신공정 중 슬립(Slip)이 발생할 수 있다.Next, the four-step drying can be carried out by a general drying method used in the art. For example, the unfired tape produced by rolling is heated at a temperature of 100 ° C to 200 ° C at a rate of 1 to 5 M / min Conveying at a speed of 2 to 4 M / min, preferably at a temperature of 140 to 190 deg. C, while being conveyed to a conveyor belt. If the drying temperature is less than 100 ° C. or the drying rate is more than 5 M / min, bubbles may be generated during the drawing process due to the evaporation of the lubricant. If the drying temperature is more than 200 ° C., min, the stiffness of the dried tape increases, and slip may occur during the drawing process.
다음으로, 5단계의 1축 연신은 윤활제가 제거된 미소성 테이프를 길이 방향으로 연신을 수행하는 공정으로서, 롤러를 통해 이송시, 롤러간의 속도차를 이용하여 1축 연신을 수행한다. 그리고, 1축 연신은 윤활제가 제거된 미소성 테이프를 길이 방향으로 3 ~ 10배로, 바람직하게는 6 ~ 9.5배로, 더욱 바람직하게는 6.2 ~ 9배로, 더 더욱 바람직하게는 6.3 ~ 8.2배로 연신을 수행하는 것이 좋다. 이때, 1축 연신비가 3배 미만이면 충분한 기계적 물성을 확보할 수 없으며, 1축 연신비가 10배를 초과하면 기계적 물성이 오히려 감소하고, 지지체의 기공이 너무 커지는 문제가 있을 수 있다.Next, the uniaxial stretching in the five steps is a step of stretching the untreated tape in which the lubricant is removed in the longitudinal direction, and uniaxial stretching is performed using the speed difference between the rollers when the tape is fed through the rollers. In the uniaxial stretching, the untreated tape from which the lubricant has been removed is stretched in the longitudinal direction by 3 to 10 times, preferably by 6 to 9.5 times, more preferably by 6.2 to 9 times, further preferably by 6.3 to 8.2 times It is better to do it. At this time, if the uniaxial stretching ratio is less than 3 times, sufficient mechanical properties can not be secured. If the uniaxial stretching ratio exceeds 10 times, the mechanical properties may be rather reduced and the pores of the support may become too large.
그리고, 1축 연신은 260℃ ~ 350℃의 연신온도 및 6 ~ 12 M/min의 연신속도, 바람직하게는 270℃ ~ 330℃의 연신온도 및 8 ~ 11.5 M/min의 연신속도로, 수행하는 것이 좋으며, 1축 연신시 연신온도가 260℃ 미만이거나, 연신속도가 6 M/min 미만이면 건조시트에 부하되는 열이 많아져 소성구간이 발생하는 문제가 있을 수 있고, 1축 연신시 연신온도가 350℃를 초과하거나, 연신속도가 12 M/min를 초과하면 1축 연신공정 중 슬립(Slip)이 발생하여 두께 균일도가 저하되는 문제가 있을 수 있다.The uniaxial stretching is carried out at a stretching temperature of 260 to 350 占 폚 and a stretching speed of 6 to 12 M / min, preferably a stretching temperature of 270 to 330 占 폚 and a stretching speed of 8 to 11.5 M / min When the uniaxial stretching temperature is lower than 260 占 폚 or the stretching speed is lower than 6 M / min, heat applied to the dry sheet is increased to cause a firing section, and when the uniaxial stretching temperature Exceeds 350 占 폚 or the stretching speed exceeds 12 M / min, slip may occur during the uniaxial stretching process, resulting in a problem that the thickness uniformity is lowered.
다음으로, 6단계의 2축 연신은 1축 연신된 미소성 테이프의 폭 방향(1축 연신과 수직하는 방향)으로 연신을 수행하며, 끝단이 고정된 상태에서 횡방향으로 폭을 넓혀 연신할 수 있다. 그러나, 이에 제한되는 것은 아니며, 당업계에서 통상으로 사용되는 연신방법에 따라 연신할 수 있다. 본 발명에서 상기 2축 연신은 폭 방향으로 15 ~ 50배로 연신을 수행할 수 있으며, 바람직하게는 25 ~ 45배, 더욱 28 ~ 45배, 더 더욱 바람직하게는 29 ~ 42배로 수행할 수 있으며, 이때 2축 연신비가 15 배 이하이면 충분한 기계적 물성을 확보하지 못할 수 있고, 50배를 초과하더라도 기계적 물성 향상이 없을 뿐만 아니라, 길이 방향 및/또는 폭 방향으로의 물성 균일성이 저하되는 문제가 있을 수 있으므로, 상기 범위 내로 연신을 수행하는 것이 좋다.Next, in the biaxial stretching in the six steps, stretching is carried out in the width direction (direction perpendicular to uniaxial stretching) of the uniaxially stretched untreated tape, and stretching can be performed in a state in which the end is fixed, have. However, the present invention is not limited thereto, and stretching can be carried out according to a stretching method commonly used in the art. In the present invention, the biaxial stretching can be performed at a stretching rate of 15 to 50 times in the width direction, preferably 25 to 45 times, more preferably 28 to 45 times, still more preferably 29 to 42 times, If the biaxial stretching ratio is 15 times or less, sufficient mechanical properties may not be secured. If the biaxial stretching ratio is more than 50 times, the mechanical properties are not improved and the uniformity of physical properties in the longitudinal direction and / Therefore, it is preferable that the stretching is performed within the above range.
그리고, 2축 연신은 150℃ ~ 260℃의 연신온도 하에서 10 ~ 20 M/min의 연신속도로, 바람직하게는 200℃ ~ 250℃의 연신온도 하에서 11 ~ 18 M/min의 연신속도로 하에서 수행하는 것이 좋으며, 2축 연신온도가 150℃ 미만이거나 또는 연신속도가 10 M/min 미만이면 횡방향의 연신 균일성이 저하되는 문제가 있을 수 있고, 2축 연신온도가 260℃를 초과하거나, 또는 연신속도가 20 M/min을 초과하면 미소성 구간이 발생하여 물성이 저하되는 문제가 있을 수 있다.The biaxial stretching is carried out at a stretching speed of 10 to 20 M / min under a stretching temperature of 150 to 260 캜, preferably at a stretching speed of 11 to 18 M / min under a stretching temperature of 200 to 250 캜 If the biaxial stretching temperature is less than 150 ° C or the stretching speed is less than 10 M / min, there may be a problem that the stretch uniformity in the transverse direction is lowered. If the biaxial stretching temperature exceeds 260 ° C If the stretching speed exceeds 20 M / min, there may be a problem that the untreated section occurs and the physical properties are lowered.
다음으로, 7단계의 소성은 연신된 다공성 지지체를 컨베이어 벨트 상에서 10 ~ 18 M/min의 속도로, 바람직하게는 13 ~ 17 M/min의 속도로 이동시키면서, 350℃ ~ 450℃, 바람직하게는 380℃ ~ 440℃의 온도를, 더욱 바람직하게는 400℃ ~ 435℃은 온도를 가하여 수행할 수 있으며, 이를 통해서 연신비를 고정시키고 강도 향상 효과를 꾀할 수 있다. 소성시, 소성 온도가 350℃ 미만일 경우 다공성 지지체의 강도가 낮아질 수 있고, 450℃를 초과할 경우 과소성에 따른 피브릴(Fibril)수 감소로 인해 지지체의 물성이 저하되는 문제가 있을 수 있다.Next, the calcination in step 7 is carried out at a temperature of 350 ° C to 450 ° C, preferably 350 ° C to 450 ° C, while moving the stretched porous support on the conveyor belt at a speed of 10 to 18 M / min, preferably 13 to 17 M / It is possible to carry out the heat treatment at a temperature of 380 ° C to 440 ° C, more preferably 400 ° C to 435 ° C, thereby fixing the stretching ratio and improving the strength. When the firing temperature is less than 350 ° C., the strength of the porous support may be lowered. If the firing temperature is higher than 450 ° C., the fibril number may be decreased due to the underfatibility.
7단계 공정을 수행하여 제조한 본 발명의 연료전지 전해질 강화막용 다공성 지지체는 1축 방향(길이 방향) 및 2축 방향(폭 방향)의 연신비(또는 종횡비)가 1:3.00 ~ 8.5, 바람직하게는 1 : 3.50 ~ 7.0, 더 바람직하게는 1 : 4.00 ~ 5.50일 수 있으며, 더 더욱 바람직하게는 1 : 4.20 ~ 5.00일 수 있으며, 1축 방향 및 2축 방향 연신비(또는 종횡비)가 상기 범위인 것이 높은 기계적 물성, 지지체의 적정 기공크기 확보 측면 및 적정 전류 흐름성 확보 측면에서 바람직하다. The porous support for a fuel cell electrolyte membrane of the present invention manufactured by performing the 7-step process has a stretching ratio (or aspect ratio) in a uniaxial (longitudinal) direction and a biaxial (width) direction of 1: 3.00 to 8.5, May be 1: 3.50 to 7.0, more preferably 1: 4.00 to 5.50, still more preferably 1: 4.20 to 5.00, and the uniaxial and biaxial stretch ratios (or aspect ratios) It is preferable from the viewpoints of high mechanical properties, securing the optimum pore size of the support, and ensuring proper current flowability.
제조된 다공성 지지체는 평균기공 크기가 0.080㎛ ~ 0.200㎛, 바람직하게는 0.090㎛ ~ 0.180㎛, 더 바람직하게는 0.095㎛ ~ 0.150㎛, 더 더욱 바람직하게는 0.100 ~ 0.140㎛일 수 있다. 또한, 본 발명의 다공성 지지체는 평균 기공률이 60% ~ 90%, 더욱 바람직하게는 70% ~ 85%일 수 있다.The prepared porous support may have an average pore size of 0.080 탆 to 0.200 탆, preferably 0.090 탆 to 0.180 탆, more preferably 0.095 탆 to 0.150 탆, still more preferably 0.100 to 0.140 탆. In addition, the porous support of the present invention may have an average porosity of 60% to 90%, more preferably 70% to 85%.
이때, 다공성 지지체의 평균기공 크기가 0.080 ㎛ 미만이거나 기공률이 60 % 미만일 경우, 지지체를 이용하여 전해질막 제조하기 위해 전해질 함침시, 지지체 내 전해질의 함침 정도가 제한적일 수 있다. 또한, 상기 평균기공 크기가 0.200 ㎛을 초과하거나 기공률이 90%를 초과할 경우 전해질에 함침시 다공성 지지체 구조가 변형되고, 치수안정성의 저하에 따라 제품 수명이 저하되는 문제가 있을 수 있다.At this time, when the average pore size of the porous support is less than 0.080 mu m or the porosity is less than 60%, impregnation of the electrolyte in the support may be limited when the electrolyte is impregnated to prepare an electrolyte membrane using the support. If the average pore size exceeds 0.200 m or the porosity exceeds 90%, the porous support structure may be deformed when impregnated with the electrolyte, and the life of the product may be deteriorated due to deterioration of dimensional stability.
위의 방법으로 제조한 다공성 지지체는 평균두께 5㎛ ~ 25㎛, 바람직하게는 평균두께 5㎛ ~ 20㎛, 더욱 바람직하게는 10㎛ ~ 20㎛일 수 있다.The porous support produced by the above method may have an average thickness of 5 탆 to 25 탆, preferably an average thickness of 5 탆 to 20 탆, and more preferably 10 탆 to 20 탆.
이러한, 방법으로 제조된 상기 다공성 지지체는 ASTM D 822에 의거하여 측정시, 1축 방향 모듈러스와 2축 방향 모듈러스 값이 하기 방정식 3을 만족할 수 있다.When measured according to ASTM D 822, the porous support prepared by this method can satisfy the following equation (3) in the uniaxial direction modulus and biaxial direction modulus value.
[방정식 3][Equation 3]
0 ≤ │(1축 방향 모듈러스 - 2축 방향 모듈러스)/(1축 방향 모듈러스)×100%│ ≤ 54%, 바람직하게는 0 ≤ │(1축 방향 모듈러스 - 2축 방향 모듈러스)/(1축 방향 모듈러스)×100%│ ≤ 40%, 더욱 바람직하게는 1 ≤ │(1축 방향 모듈러스 - 2축 방향 모듈러스)/(1축 방향 모듈러스)×100%│ ≤ 26%0 ≤ │ (1 axis direction modulus - 2 axis direction modulus) / (1 axis direction direction modulus) × 100% ≤ 54%, preferably 0 ≤ (1 axis direction modulus - 2 axis direction modulus) / Directional modulus) 100% ≤ 40%, more preferably 1 ≤ (1-axis direction modulus-2-axis direction modulus) / (1-axis direction modulus) 100% ≤ 26%
그리고, 상기 다공성 지지체는 ASTM D 822에 의거하여 측정시, 1축 방향(길이 방향) 모듈러스(modulus)가 40 MPa 이상 일 수 있으며, 바람직하게는 1축 방향 모듈러스가 50 MPa 이상, 더욱 바람직하게는 1축 방향 모듈러스가 52 ~ 70Mpa일 수 있다. 또한, 2축 방향(폭 방향) 모듈러스가 40 MPa 이상, 바람직하게는 2축 방향(폭 방향) 모듈러스가 45 Mpa 이상, 더욱 바람직하게는 45 ~ 72 Mpa일 수 있다.The porous support may have a modulus in a uniaxial direction (longitudinal direction) of 40 MPa or more, preferably a uniaxial modulus of 50 MPa or more, more preferably, The uniaxial direction modulus may be 52 to 70 MPa. The modulus in the biaxial direction (width direction) may be 40 MPa or more, preferably, the modulus in the biaxial direction (width direction) may be 45 MPa or more, more preferably 45 to 72 MPa.
또한, 본 발명에서 사용하는 상기 다공성 지지체는 ASTM D882에 의거하여 측정시, 1축 방향(길이 방향) 인장강도가 40 MPa 이상 및 2축 방향(폭 방향) 인장강도가 40 MPa 이상일 수 있으며, 바람직하게는 1축 방향 인장강도가 50 MPa 이상, 더욱 바람직하게는 1축 방향 인장강도가 54 ~ 67 Mpa일 수 있다. 또한, 바람직하게는 2축 방향 인장강도가 45 Mpa 이상, 더욱 바람직하게는 2축 방향 인장강도가 48 ~ 68 Mpa일 수 있다.The porous support used in the present invention may have a tensile strength in a uniaxial direction (longitudinal direction) of 40 MPa or more and a tensile strength in a biaxial direction (width direction) of 40 MPa or more, as measured according to ASTM D882, , The uniaxial tensile strength may be 50 MPa or more, and more preferably the uniaxial tensile strength may be 54 to 67 MPa. Preferably, the biaxial tensile strength is 45 Mpa or more, and more preferably the biaxial tensile strength is 48 to 68 Mpa.
본 발명의 바람직한 일실시예에 따른 막-전극 접합체는 도 2에 개략전인 단면도로 나타낸 바와 같이, 전술된 연료전지 전해질 강화막(10)을 제조하는 단계, 및 상기 연료전지용 전해질막의 양면에 촉매층(22, 22'), 기체 확산층(21, 21') 맟 전극 기재(23, 23')을 포함하는 전극을 접합하는 단계를 포함하는 공정을 수행하여 제조할 수 있다.The membrane-electrode assembly according to a preferred embodiment of the present invention includes the steps of manufacturing the above-described fuel cell electrolyte-enhanced membrane 10, as shown in the sectional view schematically shown in FIG. 2, 22, 22 '), the gas diffusion layers 21, 21', and the electrode substrate 23, 23 '.
도 2를 참조하면, 본 발명의 일 실시예에 따른 막-전극 접합체는 연료전지 전해질 강화막(10)을 사이에 두고 서로 대향하여 위치하는 산화 전극(20) 및 환원 전극(20')를 구비한다. 이때, 상기 산화 전극(20) 및 환원 전극(20')은 각각 기체 확산층 (21, 21'), 촉매층(22, 22'), 및 전극 기재(23, 23')를 포함한다.Referring to FIG. 2, the membrane-electrode assembly according to an embodiment of the present invention includes an oxidizing electrode 20 and a reducing electrode 20 'positioned opposite to each other with a fuel cell electrolyte reinforcing film 10 therebetween do. At this time, the oxidation electrode 20 and the reduction electrode 20 'include gas diffusion layers 21 and 21', catalyst layers 22 and 22 ', and electrode substrates 23 and 23', respectively.
상기 연료전지용 복합 전해질막에 대한 상세한 설명은 전술된 내용을 참고하기로 한다.The detailed description of the composite electrolyte membrane for a fuel cell will be made in reference to the above description.
상기 산화전극(20)은 기체 확산층(21) 및 산화 촉매층(22)을 구비할 수 있다. 상기 기체 확산층(21)은 연료전지에 주입되는 연료의 급격한 확산을 방지하고, 이온 전도도의 저하를 방지하기 위해 구비될 수 있다. 상기 기체 확산층(21)은 열처리 또는 전기화학적 처리를 통하여 연료의 확산 속도를 조절할 수 있다. 상기 기체 확산층(21)은 탄소섬유 또는 탄소종이일 수 있다. 여기서, 상기 연료는 개미산 용액, 메탄올, 포름알데히드, 또는 에탈올과 같은 액체연료일 수 있다. The oxidation electrode 20 may include a gas diffusion layer 21 and an oxidation catalyst layer 22. The gas diffusion layer 21 may be provided to prevent rapid diffusion of fuel injected into the fuel cell and to prevent deterioration of ion conductivity. The gas diffusion layer 21 can control the diffusion rate of the fuel through heat treatment or electrochemical treatment. The gas diffusion layer 21 may be carbon fiber or carbon paper. Here, the fuel may be a liquid fuel such as a formic acid solution, methanol, formaldehyde, or ethanol.
상기 산화 촉매층(22)은 촉매가 도입되는 층으로서, 도전성 지지체 및 이온 전도성 바인더(미도시)를 포함할 수 있다. 이에 더하여, 상기 산화 촉매층(22)은 상기 도전성 지지체에 부착된 주촉매를 포함할 수 있다. 상기 도전성 지지체는 카본 블랙일 수 있고, 상기 이온 전도성 바인더는 나피온 이오노머 또는 술폰화된 폴리머일 수 있다. 또한, 상기 주촉매는 금속촉매일 수 있으며, 일례로서 백금(Pt)일 수 있다. The oxidation catalyst layer 22 may include a conductive support and an ion conductive binder (not shown) as a layer into which the catalyst is introduced. In addition, the oxidation catalyst layer 22 may include a main catalyst attached to the conductive support. The conductive support may be carbon black, and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer. In addition, the main catalyst may be a metal catalyst, and may be, for example, platinum (Pt).
상기 산화 촉매층(22)은 전기도금법, 스프레이법, 페인팅법, 닥터블레이드법 또는 전사법을 사용하여 형성할 수 있다. The oxidation catalyst layer 22 can be formed by an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
상기 환원전극(20')은 기체 확산층(21') 및 환원 촉매층(22')을 포함할 수 있다. 상기 기체 확산층(21')은 상기 환원전극(20')에 주입되는 가스의 급격한 확산을 방지하고, 상기 환원전극(20')에 주입된 가스를 균일하게 분산시켜주기 위해 구비될 수 있다. 상기 기체 확산층은(21') 탄소 종이 또는 탄소 섬유일 수 있다. The reduction electrode 20 'may include a gas diffusion layer 21' and a reduction catalyst layer 22 '. The gas diffusion layer 21 'may be provided to prevent abrupt diffusion of gas injected into the reducing electrode 20' and to uniformly disperse the gas injected into the reducing electrode 20 '. The gas diffusion layer may be (21 ') carbon paper or carbon fiber.
상기 환원 촉매층(22')은 촉매가 도입되는 층으로서, 도전성 지지체 및 이온 전도성 바인더(미도시)를 포함할 수 있다. 이에 더하여, 상기 환원 촉매층(22')은 상기 도전성 지지체에 부착된 주촉매를 포함할 수 있다. 상기 도전성 지지체는 카본 블랙일 수 있고, 상기 이온 전도성 바인더는 나피온 이오노머 또는 술폰화된 폴리머일 수 있다. 또한, 상기 주촉매는 금속촉매일 수 있으며, 일 예로서 백금(Pt)일수 있다.The reduction catalyst layer 22 'may include a conductive support and an ion conductive binder (not shown) as a layer into which the catalyst is introduced. In addition, the reduction catalyst layer 22 'may include a main catalyst attached to the conductive support. The conductive support may be carbon black, and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer. The main catalyst may be a metal catalyst, for example, platinum (Pt).
상기 환원 촉매층(22')은 전기도금법, 스프레이법, 페인팅법, 닥터블레이드법 또는 전사법을 사용하여 형성할 수 있다. The reduction catalyst layer 22 'can be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
상기 막-전극 접합체는 상기 산화전극(20), 연료전지용 복합 전해질막(10) 및 환원전극(20') 각각을 배치시킨 후 체결하여 형성하거나, 이를 고온 및 고압으로 압착하여 형성할 수 있다.The membrane-electrode assembly may be formed by disposing the oxidation electrode 20, the composite electrolyte membrane 10 for a fuel cell, and the reduction electrode 20 ', respectively, and then pressing them together at a high temperature and a high pressure.
상기 연료전지용 복합 전해질막(10)의 양면에 상기 전극(20, 20')을 접합하는 단계는 먼저 상기 연료전지 전해질 강화막(10)의 일면에 기체 확산층 형성 물질을 도포하여 기체 확산층(21, 21')을 형성하는 단계를 포함할 수 있다.The bonding of the electrodes 20 and 20 'to both surfaces of the composite electrolyte membrane 10 for a fuel cell may be performed by first applying a gas diffusion layer forming material to one surface of the fuel cell electrolyte reinforced membrane 10 to form gas diffusion layers 21, 21 '). ≪ / RTI >
상기 기체 확산층(21, 21')은 상기 연료전지용 복합 전해질막(10)과 상기 촉매층(22, 22') 사이에서 전류 전도체 역할을 수행하며, 반응물인 가스와 생성물인 물의 통로가 된다. 따라서, 기체 확산층(21, 21')은 가스가 잘 통할 수 있도록 기공률이 20% ~ 90%인 다공성 구조일 수 있다. 기체 확산층(21, 21')의 두께는 필요에 따라 적절하게 채택될 수 있으며, 예를 들면 100㎛ ~ 400㎛일 수 있다. 상기 기체 확산층(21, 21')의 두께가 100㎛ 이하일 경우 촉매층과 상기 전극 기재 사이에서 전기 접촉 저항이 커지고, 압축에 의해 구조가 불안정해질 수 있다. 또한, 상기 기체 확산층(21, 21')의 두꼐가 400㎛를 초과할 경우 반응물인 가스의 이동이 어려워질 수 있다.The gas diffusion layers 21 and 21 'serve as current conductors between the composite electrolyte membrane 10 for a fuel cell and the catalyst layers 22 and 22', and serve as passages for gas as a reactant and water as a product. Accordingly, the gas diffusion layers 21 and 21 'may have a porous structure with a porosity of 20% to 90% so that the gas can pass through. The thickness of the gas diffusion layers 21, 21 'may be suitably adopted as needed, and may be, for example, 100 μm to 400 μm. When the thickness of the gas diffusion layers 21 and 21 'is 100 μm or less, the electrical contact resistance between the catalyst layer and the electrode substrate becomes large, and the structure may become unstable due to compression. In addition, when the thickness of the gas diffusion layers 21 and 21 'exceeds 400 탆, it may become difficult to move the reactant gas.
상기 기체 확산층(21, 21')은 탄소계 물질 및 불소계 수지를 포함하여 형성될 수 있다. 탄소계 물질로는 흑연, 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 케천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 및 수퍼P로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있으나 이에 한정되지 않는다. 또한, 불소계 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐알코올, 셀룰로오스 아세테이트, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머, 또는 스티렌-부타디엔고부(SBR)로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다. The gas diffusion layers 21 and 21 'may include a carbon-based material and a fluororesin. Carbon nanowires, carbon nanowires, carbon nanowires, fullerenes (C60), carbon nanotubes, carbon nanotubes, carbon nanotubes, carbon nanowires, carbon nanowires, carbon nanowires, And Super P, but the present invention is not limited thereto. Examples of the fluororesin include polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyvinyl alcohol, cellulose acetate, copolymers of polyvinylidene fluoride-hexafluoropropylene, styrene-butadiene heptane (SBR) ≪ RTI ID = 0.0 > and / or < / RTI >
다음으로, 상기 기체 확산층(21, 21') 상에 촉매층(22, 22')을 형성한다. Next, catalyst layers 22 and 22 'are formed on the gas diffusion layers 21 and 21'.
상기 촉매층(22, 22')은 상기 기체 확산층(21, 21') 상에 촉매층 형성 물질을 도포하여 형성시킬 수 있다.The catalyst layers 22 and 22 'may be formed by applying a catalyst layer forming material on the gas diffusion layers 21 and 21'.
상기 촉매층 형성 물질은 금속촉매 또는 탄소계 지지체에 담지된 금속촉매를 사용할 수 있다. 금속 촉매로는 대표적으로 백금, 루테늄, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금, 및 백금-전이금속 합금으로 이루어진 군으로부터 선택되는 하나 이상을 사용할 수 있다. 또한, 상기 탄소계 지지체로는 흑연(그라파이트), 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 케천 블랙, 활성카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌 및 수퍼P로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.The catalyst layer forming material may be a metal catalyst or a metal catalyst supported on a carbon-based support. As the metal catalyst, at least one selected from the group consisting of platinum, ruthenium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy, and platinum-transition metal alloy may be used. Examples of the carbon-based support include graphite, carbon black, acetylene black, denka black, keehan black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, Wire, fullerene, and super P, for example.
상기 전극 기재(23, 23')는 탄소페이퍼, 탄소천, 및 탄소펠트로 이루어진 군으로부터 선택되는 도전성 기재를 사용할 수 있으나 이에 한정되지 않고, 고분자 전해질 연료전지에 적용이 가능한 캐소드(cathode) 전극 물질 또는 애노드(anode) 전극 물질은 모두 사용이 가능하다. 상기 전극 기재는 통상의 증착 방법을 통해 형성될 수 있고, 상기 전극 기재(23, 23')에 상기 촉매층(22, 22')을 형성한 뒤 상기 기체 확산층(21, 21') 상에 상기 촉매층(22, 22') 및 상기 기체 확산층(21, 21')이 접하도록 배치시켜 형성될 수 있다.The electrode substrate 23 and 23 'may be made of a conductive material selected from the group consisting of carbon paper, carbon cloth, and carbon felt. However, the present invention is not limited thereto, and a cathode electrode material applicable to a polymer electrolyte fuel cell All of the anode electrode materials are usable. The electrode substrate may be formed by a conventional deposition method and the catalyst layers 22 and 22 'may be formed on the electrode substrates 23 and 23', and then the catalyst layers 22 and 22 'may be formed on the gas diffusion layers 21 and 21' (22, 22 ') and the gas diffusion layers (21, 21') are in contact with each other.
한편, 본 발명의 일실시예에 따른 연료전지는 연료의 산화 반응과 산화제의 환원반응을 통해 전기 에너지를 발생시키는 적어도 하나의 전기 발생부와, 전술된 연료를 상기 전기 발생부에 공급하는 연료 공급부와, 산화제를 상기 전기 발생부로 공급하는 산화제 공극부를 포함하여 구성된다.Meanwhile, the fuel cell according to an embodiment of the present invention includes at least one electricity generating unit for generating electric energy through oxidation reaction of the fuel and oxidizing agent, and a fuel supply unit for supplying the fuel to the electricity generating unit. And an oxidant space portion for supplying an oxidant to the electricity generating portion.
상기 막-전극 접합체는 하나 이상을 포함할 수 있고, 상기 막-전극 접합체의 양단에 연료와 산화제를 공급하기 위한 세퍼레이터가 배치되어 전기 발생부가 구성된다. 이러한 전기 발생부 적어도 하나가 모여서 스택을 구성할 수 있다.The membrane-electrode assembly may include one or more electrodes, and a separator for supplying fuel and an oxidant to both ends of the membrane-electrode assembly is disposed to constitute an electricity generating unit. At least one of these electricity generating units may be gathered to form a stack.
이때, 상기 연료전지의 배치 형태 또는 제조방법은 고분자 전해질 연료전지에 적용 가능한 형태라면 제한 없이 형성이 가능하므로, 종래 기술을 참조하여 다양하게 적용할 수 있다.At this time, the arrangement or the manufacturing method of the fuel cell can be variously applied to a polymer electrolyte fuel cell, so that it can be applied variously with reference to the prior art.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(example)를 제시한다. 다만, 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are intended to aid understanding of the present invention, and the present invention is not limited by the following experimental examples.
[[ 실시예Example ]]
실시예Example 1 :  One : PTFEPTFE 다공성 지지체의 제조 Preparation of Porous Support
평균입경 570㎛인 PTFE 미세 파우더 100 중량부에 대하여 액상 윤활제인 나프타(naphtha) 23 중량부를 혼합 및 교반하여 균일하게 분산시켜서 페이스트를 제조하였다.23 parts by weight of naphtha as a liquid lubricant was mixed and stirred with 100 parts by weight of a PTFE fine powder having an average particle diameter of 570 탆 and uniformly dispersed to prepare a paste.
다음으로, 상기 페이스트를 50℃에서 18 시간 동안 방치시켜서 숙성시킨 후, 성형 지그를 이용하여 압축시켜서 PTFE 블록을 제조하였다.Next, the paste was allowed to stand at 50 DEG C for 18 hours to be aged, and then compressed using a molding jig to prepare a PTFE block.
다음으로, 상기 PTFE 블록을 압출금형에 투입 후, 약 0.10 Ton/cm2 압력 하에서 가압압출을 실시하였다.Next, the PTFE block was put into an extrusion die, and then subjected to pressure extrusion under a pressure of about 0.10 Ton / cm 2 .
다음으로, 압연롤을 이용하여, 압연시켜서 평균두께 850㎛인 미소성 테이프를 제조하였다. Next, rolling was performed using a rolling roll to produce an untreated tape having an average thickness of 850 占 퐉.
다음으로, 미소성 테이프를 3M/min의 속도로 컨베이어 벨트로 이송시키면서 180℃의 열을 가하여 건조시켜 윤활제를 제거하였다.Next, the untreated tape was transferred to the conveyor belt at a speed of 3 M / min while being heated by 180 ° C to be dried to remove the lubricant.
다음으로, 윤활제가 제거된 미소성 테이프를 연신온도 280℃ 및 연신속도 10 M/min 조건 하에서 6.7 배로 1축 연신(길이 방향 연신)을 수행하였다.Next, the untreated tape from which the lubricant was removed was subjected to uniaxial stretching (longitudinal stretching) at 6.7 times under the conditions of a stretching temperature of 280 占 폚 and a stretching speed of 10 M / min.
다음으로, 1축 연신된 미소성 테이프를 연신온도 250℃ 및 연신속도 10 M/min 조건 하에서 31배로 2축 연신(폭 방향 연신)을 수행하여 다공성 지지체를 제조하였다.Next, uniaxially stretched untreated tapes were subjected to biaxial stretching (stretching in the transverse direction) at a draw temperature of 250 DEG C and a stretching speed of 10 M / min at 31 times to prepare porous supports.
다음으로, 1축 및 2축 연신된 다공성 지지체를 컨베이어 벨트 상에서 15 M/min의 속도로 420℃ 온도를 가하여 소성시켜서 평균두께 13.6㎛ 및 평균기공 크기 0.112㎛인 PTFE 다공성 지지체를 제조하였다.Next, the uniaxially and biaxially oriented porous supports were fired on the conveyor belt at a rate of 15 M / min at a temperature of 420 DEG C to prepare a PTFE porous support having an average thickness of 13.6 mu m and an average pore size of 0.112 mu m.
실시예Example 2 ~  2 ~ 실시예Example 3 및  3 and 비교예Comparative Example 1 ~  1 ~ 비교예Comparative Example 2 2
상기 실시예 1과 동일한 방법으로 실시하되, 실시예 1에서 1축 및 2축 연신시켜 제조한 다공성 지지체를 소성 온도를 하기 표 1과 같이 달리하여 PTFE 다공성 지지체를 각각 제조하여, 실시예 2 ~ 3 및 비교예 1 ~ 2를 각각 실시하였다.The porous support prepared in the same manner as in Example 1 except that the porous support prepared by uniaxial and biaxial stretching in Example 1 was changed to the firing temperature as shown in Table 1 below to prepare PTFE porous supports, And Comparative Examples 1 and 2, respectively.
실시예Example 4 ~  4 ~ 실시예Example 6 및  6 and 비교예Comparative Example 3 ~  3 ~ 비교예Comparative Example 6 6
상기 실시예 1과 동일한 방법으로 실시하되, 하기 표 1과 같이 1축 연신시 온도 또는 2축 연신시 온도를 각각 달리하여 PTFE 다공성 지지체를 각각 제조함으로써, 실시예 4 ~ 6 및 비교예 3 ~ 6을 각각 실시하였다.Examples 4 to 6 and Comparative Examples 3 to 6 were prepared in the same manner as in Example 1 except that the PTFE porous support was prepared by varying the temperature during the uniaxial stretching or the temperature during biaxial stretching, Respectively.
실시예Example 7 ~  7 ~ 실시예Example 10 및  10 and 비교예Comparative Example 7 ~  7 ~ 비교예Comparative Example 10 10
상기 실시예 1과 동일한 방법으로 실시하되, 하기 표 1과 같이 1축 연신시 연신속도 또는 2축 연신시 연신속도를 각각 달리하여 PTFE 다공성 지지체를 각각 제조함으로써, 실시예 7 ~ 10 및 비교예 7 ~ 10을 각각 실시하였다.The PTFE porous support was prepared in the same manner as in Example 1 except that the stretching speed in the uniaxial stretching or the stretching speed in the biaxial stretching was changed as shown in Table 1 to obtain Examples 7 to 10 and Comparative Example 7 Respectively.
실시예Example 11 ~  11 ~ 실시예Example 15 및  15 and 비교예Comparative Example 11 ~  11 ~ 비교예Comparative Example 15 15
상기 실시예 1과 동일한 방법으로 PTFE 다공성 지지체를 제조하되, 하기 표 1과 같은 조건으로 1축 및 2축 연신을 각각 실시하였다.The PTFE porous support was prepared in the same manner as in Example 1, except that uniaxial and biaxial orientation was performed under the same conditions as in Table 1 below.
구분division 소성온도(℃)Firing temperature (캜) 1축 연신온도(℃)Uniaxial stretching temperature (占 폚) 2축 연신온도(℃)Biaxial stretching temperature (占 폚) 1축 연신속도(M/min)Uniaxial stretching speed (M / min) 2축 연신속도(M/min)Biaxial stretching speed (M / min) 1축 연신비(길이 방향)Uniaxial stretching ratio (longitudinal direction) 2축 연신비(폭 방향)Biaxial stretching ratio (width direction) 1축 및 2축 연신비율(지지체 연신 종횡비)The uniaxial and biaxial draw ratio (support elongation aspect ratio) 지지체평균두께(㎛)Support average thickness (탆)
실시예 1Example 1 420420 280280 250250 1010 1010 6.76.7 3131 1:4.63 1: 4.63 13.6㎛13.6 탆
실시예 2Example 2 440440 280280 250250 1010 1010 6.76.7 3131 1:4.63 1: 4.63 11.8㎛11.8 탆
실시예 3Example 3 380380 280280 250250 1010 1010 6.76.7 3131 1:4.63 1: 4.63 17.1㎛17.1 탆
실시예 4Example 4 420420 260260 250250 1010 1010 6.76.7 3131 1:4.63 1: 4.63 15.9㎛15.9 탆
실시예 5Example 5 420420 330330 250250 1010 1010 6.76.7 3131 1:4.63 1: 4.63 12.9㎛12.9 탆
실시예 6Example 6 420420 280280 260260 1010 1010 6.76.7 3131 1:4.63 1: 4.63 13.7㎛13.7 탆
실시예 7Example 7 420420 280280 250250 88 1010 6.76.7 3131 1:4.63 1: 4.63 13.6㎛13.6 탆
실시예 8Example 8 420420 280280 250250 11.511.5 1010 6.76.7 3131 1:4.63 1: 4.63 13.6㎛13.6 탆
실시예 9Example 9 420420 280280 250250 1010 1515 6.76.7 3131 1:4.63 1: 4.63 16.1㎛16.1 탆
실시예 10Example 10 420420 280280 250250 1010 1818 6.76.7 3131 1:4.63 1: 4.63 16㎛16 탆
실시예 11Example 11 420420 280280 250250 1010 1010 77 3131 1:4.29 1: 4.29 12.2㎛12.2 탆
실시예 12Example 12 420420 280280 250250 1010 1010 88 3636 1:4.50 1: 4.50 9.7㎛9.7 탆
실시예 13Example 13 420420 280280 250250 1010 1010 88 3232 1:4.00 1: 4.00 10.8㎛10.8 탆
실시예 14Example 14 420420 280280 250250 1010 1010 3.53.5 3131 1:8.57 1: 8.57 17.8㎛17.8 탆
실시예 15Example 15 420420 280280 250250 1010 1010 99 3131 1:3.33 1: 3.33 9.8㎛9.8 탆
실시예 16Example 16 420420 280280 250250 1010 1010 6.76.7 1818 1:2.77 1: 2.77 17.9㎛17.9 탆
실시예 17Example 17 420420 280280 250250 1010 1010 6.76.7 4545 1:6.92 1: 6.92 9.8㎛9.8 탆
비교예 1Comparative Example 1 335335 280280 250250 1010 1010 6.76.7 3131 1:4.631: 4.63 18㎛18 탆
비교예 2Comparative Example 2 460460 280280 250250 1010 1010 6.76.7 3131 1:4.631: 4.63 8.9㎛8.9 탆
비교예 3Comparative Example 3 420420 240240 250250 1010 1010 6.76.7 3131 1:4.631: 4.63 14.8㎛14.8 탆
비교예 4Comparative Example 4 420420 365365 250250 1010 1010 6.76.7 3131 1:4.631: 4.63 10.9㎛10.9 탆
비교예 5Comparative Example 5 420420 280280 140140 1010 1010 6.76.7 3131 1:4.631: 4.63 17.1㎛17.1 탆
비교예 6Comparative Example 6 420420 280280 290290 1010 1010 6.76.7 3131 1:4.631: 4.63 12.8㎛12.8 탆
비교예 7Comparative Example 7 420420 280280 250250 5.55.5 1010 6.76.7 3131 1:4.631: 4.63 11.8㎛11.8 탆
비교예 8Comparative Example 8 420420 280280 250250 1414 1010 6.76.7 3131 1:4.631: 4.63 18.1㎛18.1 m
비교예 9Comparative Example 9 420420 280280 250250 1010 88 6.76.7 3131 1:4.631: 4.63 10.7㎛10.7 탆
비교예 10Comparative Example 10 420420 280280 250250 1010 2222 6.76.7 3131 1:4.631: 4.63 18.1㎛18.1 m
비교예 11Comparative Example 11 420420 280280 250250 1010 1010 2.52.5 1818 1:7.20 1: 7.20 27.2㎛27.2 탆
비교예 12Comparative Example 12 420420 280280 250250 1010 1010 2.52.5 2020 1:8.00 1: 8.00 23.8㎛23.8 탆
비교예 13Comparative Example 13 420420 280280 250250 1010 1010 88 2222 1:2.75 1: 2.75 15.9㎛15.9 탆
비교예 14Comparative Example 14 420420 280280 250250 1010 1010 6.76.7 1414 1:2.15 1: 2.15 24.7㎛24.7 탆
비교예 15Comparative Example 15 420420 280280 250250 1010 1010 6.76.7 5151 1:7.85 1: 7.85 6.8㎛6.8 탆
실험예Experimental Example 1 :  One : PTFEPTFE 다공성 지지체의 기계적 물성 측정 Measurement of Mechanical Properties of Porous Support
상기 실시예 및 비교예에서 제조한 다공성 지지체 각각의 평균기공크기, 기공율, 인장강도 및 모듈러스를 측정한 후, 그 결과를 하기 표 2 및 표 3에 나타내었다.The average pore size, porosity, tensile strength and modulus of each of the porous supports prepared in Examples and Comparative Examples were measured, and the results are shown in Tables 2 and 3 below.
평균기공 크기 및 기공율은 ASTM F316-03에 의거하여 측정하였으며, 압력은 0 ~ 70 psi, 용매는 갤윅(galwick)을 사용하였고, dry up/wet up 방식으로 측정하였다(모세관류 포로미터, capillary flow porometer 사용).The average pore size and porosity were measured according to ASTM F316-03, the pressure was 0 to 70 psi, the solvent was galwick, and the dry up / wet up method was used (capillary flow meter, capillary flow porometer).
그리고, 인장강도 및 모듈러스는 ASTM D 882방법에 의거하여, 일자형 시편을 제작(폭 10 mm, 길이 100mm)한 후, 시험속도 500 mm/분, 초기 그립(grip)거리 500mm 조건에서 유니버설 테스트기(universal test machine)으로 측정하였다.The tensile strength and the modulus were measured using a universal tester under the conditions of a test speed of 500 mm / min and an initial grip distance of 500 mm after making a straight specimen (width 10 mm, length 100 mm) according to the ASTM D 882 method. test machine.
구분division 평균기공 크기(㎛)Average pore size (占 퐉) 기공율(%)Porosity (%)
실시예 1Example 1 0.121 0.121 71.3 71.3
실시예 2Example 2 0.149 0.149 79.1 79.1
실시예 3Example 3 0.091 0.091 63.6 63.6
실시예 4Example 4 0.150 0.150 70.2 70.2
실시예 5Example 5 0.143 0.143 78.3 78.3
실시예 6Example 6 0.130 0.130 74.2 74.2
실시예 7Example 7 0.145 0.145 78.1 78.1
실시예 8Example 8 0.117 0.117 70.9 70.9
실시예 9Example 9 0.095 0.095 68.3 68.3
실시예 10Example 10 0.090 0.090 63.1 63.1
실시예 11Example 11 0.140 0.140 77.4 77.4
실시예 12Example 12 0.147 0.147 79.9 79.9
실시예 13Example 13 0.188 0.188 76.5 76.5
실시예 14Example 14 0.107 0.107 68.7 68.7
실시예 15Example 15 0.151 0.151 79.6 79.6
실시예 16Example 16 0.125 0.125 75.0 75.0
실시예 17Example 17 0.151 0.151 78.3 78.3
비교예 1Comparative Example 1 0.072 0.072 56.1 56.1
비교예 2Comparative Example 2 0.255 0.255 91.6 91.6
비교예 3Comparative Example 3 0.073 0.073 58.3 58.3
비교예 4Comparative Example 4 0.213 0.213 88.1 88.1
비교예 5Comparative Example 5 0.071 0.071 53.5 53.5
비교예 6Comparative Example 6 0.229 0.229 88.2 88.2
비교예 7Comparative Example 7 0.223 0.223 87.1 87.1
비교예 8Comparative Example 8 0.076 0.076 54.3 54.3
비교예 9Comparative Example 9 0.216 0.216 89.6 89.6
비교예 10Comparative Example 10 0.076 0.076 54.3 54.3
비교예 11Comparative Example 11 0.177 0.177 83.1 83.1
비교예 12Comparative Example 12 0.186 0.186 84.6 84.6
비교예 13Comparative Example 13 0.173 0.173 82.2 82.2
비교예 14Comparative Example 14 0.164 0.164 83.7 83.7
비교예 15Comparative Example 15 0.221 0.221 91.1 91.1
구분division 인장강도 (Mpa)Tensile Strength (Mpa) 모듈러스(Mpa)Modulus (Mpa) 1축 및 2축 모듈러스 값 차이(%)(1) Difference between 1-axis and 2-axis modulus values (%) (1)
1축 (길이 방향)1 axis (longitudinal direction) 2축 (폭 방향)2 axes (width direction) 1축 (길이 방향)1 axis (longitudinal direction) 2축 (폭 방향)2 axes (width direction)
실시예 1Example 1 5252 5454 5252 5555 5.77%5.77%
실시예 2Example 2 5151 5353 5353 5151 3.77%3.77%
실시예 3Example 3 6666 7171 6868 6969 1.47%1.47%
실시예 4Example 4 6060 5555 6262 6161 1.61%1.61%
실시예 5Example 5 5050 4545 5252 4646 11.54%11.54%
실시예 6Example 6 5555 5252 5454 5656 3.70%3.70%
실시예 7Example 7 5151 4949 5353 5252 1.89%1.89%
실시예 8Example 8 5757 6363 5555 5757 3.64%3.64%
실시예 9Example 9 6767 6565 6868 6767 1.47%1.47%
실시예 10Example 10 7171 6767 6868 6767 1.47%1.47%
실시예 11Example 11 6666 5353 6666 5757 13.64%13.64%
실시예 12Example 12 6464 6161 6363 5959 6.35%6.35%
실시예 13Example 13 6666 5757 6868 6060 11.76%11.76%
실시예 14Example 14 4747 7575 5050 7171 42.00%42.00%
실시예 15Example 15 7676 4545 7373 4848 34.25%34.25%
실시예 16Example 16 5555 4343 5858 4545 22.41%22.41%
실시예 17Example 17 5151 6464 5555 6767 21.82%21.82%
비교예 1Comparative Example 1 8383 7474 7777 7676 1.30%1.30%
비교예 2Comparative Example 2 4343 3535 4141 3737 9.76%9.76%
비교예 3Comparative Example 3 7575 7171 7474 6969 6.76%6.76%
비교예 4Comparative Example 4 5050 4747 4848 4545 6.25%6.25%
비교예 5Comparative Example 5 8080 7878 7979 7676 3.80%3.80%
비교예 6Comparative Example 6 4343 4545 4444 4949 11.36%11.36%
비교예 7Comparative Example 7 4040 3131 3737 3434 8.11%8.11%
비교예 8Comparative Example 8 7474 7171 7272 7676 5.56%5.56%
비교예 9Comparative Example 9 4343 4545 4444 4949 11.36%11.36%
비교예 10Comparative Example 10 6868 7272 7070 7373 4.29%4.29%
비교예 11Comparative Example 11 3030 4444 3333 4646 39.39%39.39%
비교예 12Comparative Example 12 2525 5050 3131 4949 58.06%58.06%
비교예 13Comparative Example 13 7878 2727 7676 3131 59.21%59.21%
비교예 14Comparative Example 14 5555 2525 5353 2727 49.06%49.06%
비교예 15Comparative Example 15 3333 5858 3535 6363 80.00%80.00%
(1) 1축 및 2축 모듈러스 값 차이 = │(1축 방향 모듈러스 - 2축 방향 모듈러스)/(1축 방향 모듈러스)×100%│(1) Difference between 1 and 2 axis modulus values = (1 axis direction modulus - 2 axis direction modulus) / (1 axis direction modulus) 100%
상기 표 2를 살펴보면, 실시예 1 ~ 17의 지지체는 평균기공크기 0.08㎛ ~ 0.20㎛를 가지며, 60 ~ 80% 범위의 기공율을 가지는 것을 확인할 수 있었다. 이에 반해, 비교예 1, 비교예 3, 비교예 5 및 비교예 8의 경우, 평균기공크기가 0.08㎛ 미만이고 60% 미만의 낮은 기공율을 가졌다. 또한, 비교예 4, 비교예 6, 비교예 7, 비교예 9 및 비교예 15는 평균기공크기가 0.20㎛를 초과하였다.Referring to Table 2, it was confirmed that the supports of Examples 1 to 17 had an average pore size of 0.08 to 0.20 μm and a porosity of 60 to 80%. On the contrary, in Comparative Example 1, Comparative Example 3, Comparative Example 5, and Comparative Example 8, the average pore size was less than 0.08 탆 and less than 60%. In Comparative Example 4, Comparative Example 6, Comparative Example 7, Comparative Example 9 and Comparative Example 15, the average pore size exceeded 0.20 탆.
상기 표 3을 살펴보면, 실시예 1 ~ 17의 경우, 인장강도가 1축 및 2축 모두 40 Mpa 이상이었으며, 모듈러스 역시 1축 및 2축 모두 40 Mpa 이상이었다.As shown in Table 3, in Examples 1 to 17, the tensile strengths were more than 40 Mpa in both the first and second axes, and the modulus was more than 40 Mpa in both the first and second axes.
이에 반해, 비교예 2의 경우 2축 인장강도 및 1축 모듈러스가 40 Mpa 미만으로 낮았으며, 비교예 11, 비교예 12 및 비교예 15의 경우 1축 인장강도 및 1축 모듈러스가 40 Mpa 미만으로 낮은 결과를 보였다.In contrast, the biaxial tensile strength and uniaxial modulus of Comparative Example 2 were as low as less than 40 MPa, while the uniaxial tensile strength and uniaxial modulus of Comparative Example 11, Comparative Example 12 and Comparative Example 15 were lower than 40 MPa Respectively.
또한, 비교예 13 및 비교예 14의 경우, 2축 인장강도 및 2축 모듈러스가 40 Mpa 미만의 낮은 결과를 보였다.In Comparative Examples 13 and 14, biaxial tensile strength and biaxial modulus were lower than 40 Mpa.
제조예Manufacturing example 1 : 전해질막 제조 1: Preparation of electrolyte membrane
불소계 이오노머인 나피온 100 중량부에 대하여 평균입경이 50 nm인 구형의 중공형 실리카 1 중량부를 혼합하여 나피온 용액을 준비하였다1 part by weight of spherical hollow silica having an average particle diameter of 50 nm was mixed with 100 parts by weight of Nafion, which is a fluorine-based ionomer, to prepare a Nafion solution
다음으로, 실시예 1에서 제조한 다공성 지지체를 상기 나피온 용액에 함침시킨 다음 꺼내서 진공 오븐에 투입한 다음, 80℃에서 10분 동안 건조하였다. 다음으로, 160℃에서, 3분 동안 열처리를 수행하여 두께 15㎛의 전해질이 함침된 다공성 지지체를 제조하였다.Next, the porous support prepared in Example 1 was impregnated with the Nafion solution, taken out, put in a vacuum oven, and dried at 80 DEG C for 10 minutes. Next, heat treatment was performed at 160 占 폚 for 3 minutes to prepare a porous support impregnated with an electrolyte having a thickness of 15 占 퐉.
제조예Manufacturing example 2 ~ 3 및  2 to 3 and 비교제조예Comparative Manufacturing Example 1 ~ 2 1-2
상기 제조예 1과 동일한 조건으로 제조하되, 하기 표 4와 같이 지지체의 종류를 달리하여 전해질이 함침된 다공성 지지체를 제조하였다.The porous support impregnated with electrolyte was prepared in the same manner as in Preparation Example 1 except that the kinds of supports were changed as shown in Table 4 below.
실험예Experimental Example 2 : 무게 변동 계수 측정 2: Measurement of weight variation coefficient
(1) 제조예 및 비교제조예에서 제조한 전해질 함침 전 PTFE 다공성 지지체의 무게 및 전해질 함침 후 지지체에 전해질층이 코팅된 전해질막의 무게를 측정하여 하기 관계식 2를 통해 무게 변동 계수(CV1,%)를 계산하였다.(1) The weight of the PTFE porous support before the electrolyte impregnation prepared in Production Example and Comparative Preparation Example and the weight of the electrolyte membrane coated with the electrolyte layer on the support after electrolyte impregnation were measured, and the weight variation coefficient (CV1,%) Respectively.
[관계식 1][Relation 1]
무게 변동계수(CV1,%) = (전해질 처리 후 다공성 지지체 두께 - 전해질 처리 전 다공성 지지체 무게) / (전해질 처리 전 다공성 지지체 무게) × 100%(CV1,%) = (thickness of porous support after electrolytic treatment - weight of porous support before electrolyte treatment) / (weight of porous support before electrolytic treatment) 100%
구분division 지지체 종류Support type 전해질 함침 전무게 (g)Weight before electrolyte impregnation (g) 전해질 함침 후 무게 (g)Weight after electrolyte impregnation (g) 무게변동 계수(%)Weight variation coefficient (%)
제조예 1Production Example 1 실시예1Example 1 8.58.5 10.710.7 28.1028.10
제조예 2Production Example 2 실시예3Example 3 13.313.3 17.417.4 30.6330.63
제조예 3Production Example 3 실시예12Example 12 4.14.1 5.15.1 22.2322.23
비교제조예1Comparative Preparation Example 1 비교예1Comparative Example 1 16.916.9 18.118.1 7.047.04
비교제조예2Comparative Production Example 2 비교예3Comparative Example 3 12.512.5 14.214.2 13.5113.51
비교제조예3Comparative Production Example 3 비교예5Comparative Example 5 13.213.2 14.714.7 11.3011.30
비교제조예4Comparative Production Example 4 비교예6Comparative Example 6 3.23.2 3.83.8 17.5617.56
비교제조예5Comparative Preparation Example 5 비교예8Comparative Example 8 17.717.7 19.019.0 7.347.34
비교제조예6Comparative Preparation Example 6 비교예9Comparative Example 9 2.32.3 2.62.6 9.189.18
비교제조예7Comparative Preparation Example 7 비교예10Comparative Example 10 17.717.7 18.818.8 6.216.21
상기 표 4의 실험결과를 살펴보면, 제조예 1 ~ 3의 경우, 무게 변동계수가 20% 이상, 바람직하게는 22% ~ 40% 범위로 적정 무게가 증가함을 확인할 수 있었다. 이에 반해, 다공성 지지체의 평균기공크기가 0.08㎛ 미만이었던 비교예 1, 비교예 3, 비교예 5 및 비교예 8의 다공성 지지체를 사용한 경우, 우수한 인장강도 및 모듈러스를 가졌으나, 다공성 지지체 내 전해질 함침량이 적어서 무게 변동 계수 값이 20% 미만인 결과를 보였다. As shown in Table 4, in the case of Production Examples 1 to 3, it was confirmed that the weight change coefficient was in the range of 20% or more, preferably 22% to 40%. On the contrary, when the porous support of Comparative Example 1, Comparative Example 3, Comparative Example 5 and Comparative Example 8, in which the average pore size of the porous support was less than 0.08 탆, had excellent tensile strength and modulus, And the weight variation coefficient value was less than 20%.
또한, 기계적 물성이 적정 범위를 가졌던 다공성 지지체를 사용했던 비교제조예 4 및 비교제조예 6 ~ 7 너무 낮은 무게 변동계수 값을 가지는 결과를 보였는데, 이는 함침 량이 적은 것으로 판단된다.In addition, Comparative Preparation Example 4 and Comparative Preparation Examples 6 to 7, which used porous supports having an appropriate range of mechanical properties, showed a too low weight variation coefficient value, indicating that the impregnation amount was small.
상기 표 4를 참조하면, 제조예 1 ~ 3의 경우 비교제조예 1 ~ 2와 비교하여 높은 무게 변동 계수 특성을 나타냄을 알 수 있다. 따라서, 본 발명의 일 실시예에 따른 제조예 1 ~ 3이 더 많은 전해질을 보액하고 있는 것을 확인할 수 있다.Referring to Table 4, it can be seen that the weight variation coefficients of Examples 1 to 3 are higher than those of Comparative Examples 1 and 2. Therefore, it can be confirmed that Production Examples 1 to 3 according to one embodiment of the present invention have more electrolyte retained.
실험예Experimental Example 3 :전해질3: electrolyte 강화막의Reinforced membrane 인장강도 및  Tensile strength and 모듈러스Modulus 측정 Measure
상기 제조예 1과 동일한 방법으로 전해질 강화막을 제조하되, 하기 표 5와 같이 다공성 지지체를 각각 달리하여 전해질 강화막을 각각 제조하여, PTFE 다공성 지지체 층이 포함된 3층 구조의 전해질막을 제조하였다.An electrolyte-reinforced membrane was prepared in the same manner as in Preparation Example 1 except that the electrolyte-reinforced membranes were prepared by different porous supports as shown in Table 5 to prepare electrolyte membranes having a three-layer structure including a PTFE porous support layer.
또한, 기존 PTFE 다공성 지지체(1축 연신비 2.5 배, 2축 연신비 10배, 제조사:상아프론테크)를 이용하여 동일한 방법으로 도 1과 같이 단면이 3층 구조인 전해질 강화막을 제조하였다.In addition, an electrolyte reinforced membrane having a three-layer structure as shown in Fig. 1 was prepared by using the conventional PTFE porous support (monoaxial stretching ratio 2.5 times, biaxial stretching ratio 10 times, manufacturer: Sawafron Tech).
그리고, 제조한 전해질막의 인장강도 및 모듈러스를 ASTM D 822에 의거하여 측정하였고, 그 결과를 하기 표 5에 나타내었다.The tensile strength and modulus of the electrolyte membrane thus prepared were measured according to ASTM D 822, and the results are shown in Table 5 below.
구분division 다공성 지지체Porous support 인장강도The tensile strength 모듈러스Modulus
1축 방향(MD방향, Mpa)1 axis direction (MD direction, Mpa) 2축 방향(TD방향, Mpa)In the biaxial direction (TD direction, Mpa) 1축,2축편차(%)1 axis, 2 axis deviation (%) 1축 방향(MD방향, Mpa)1 axis direction (MD direction, Mpa) 2축 방향(TD방향, Mpa)In the biaxial direction (TD direction, Mpa) 1축,2축편차(%)1 axis, 2 axis deviation (%)
제조예 1Production Example 1 실시예 1Example 1 7272 6969 4.174.17 127127 115115 9.459.45
제조예 3Production Example 3 실시예 3Example 3 8080 8484 5.005.00 114114 123123 7.897.89
제조예 5Production Example 5 실시예 5Example 5 7171 6666 7.047.04 106106 121121 14.1514.15
제조예 7Production Example 7 실시예 7Example 7 6969 6868 1.451.45 108108 107107 0.930.93
제조예 10Production Example 10 실시예 10Example 10 8888 8484 4.554.55 120120 118118 1.671.67
제조예 12Production Example 12 실시예 12Example 12 7777 7575 2.602.60 107107 108108 0.930.93
제조예 15Production Example 15 실시예 15Example 15 8989 7575 15.7315.73 139139 109109 21.5821.58
비교제조예8Comparative Preparation Example 8 기존 PTFE 다공성 지지체Existing PTFE porous support 4343 2828 34.8834.88 7070 4242 40.0040.00
비교제조예9Comparative Preparation Example 9 비교예 6Comparative Example 6 4949 3333 32.6532.65 7373 4242 36.9936.99
비교제조예10Comparative Preparation Example 10 비교예 9Comparative Example 9 4646 3232 30.4330.43 6565 3838 35.3835.38
상기 표 5의 물성 측정 결과를 살펴보면, 기존 PTFE 다공성 지지체를 이용하여 제조한 전해질 강화막(비교제조예 8)의 경우, 제조예 1 등과 비교할 때, 크게 낮은 기계적 물성을 가지는 결과를 보였다. 이에 반해, 실시예의 PTFE 다공성 지지체를 이용하여 제조한 전해질막의 경우, 모듈러스가 크게 증대하는 경향을 보였다.The results of the physical properties measurement of Table 5 show that the electrolyte-reinforced membrane (Comparative Preparation Example 8) prepared using the conventional PTFE porous support has significantly lower mechanical properties as compared to Production Example 1 and the like. On the contrary, in the case of the electrolyte membrane prepared using the PTFE porous support of the examples, the modulus tended to increase greatly.
또한, 비교제조예 9 및 비교제조예 10의 경우, 제조예와 비교할 때, 전해질막의 인장강도뿐만 아니라 모듈러스가 크게 떨어지는 문제가 있음을 확인할 수 있었으며, 다공성 지지체를 이용한 전해질막 제조에 따른 기계적 물성 증대 효과가 매우 약했다. 이에 반해 제조예 1, 3, 5, 10, 12 및 15의 경우, 다공성 지지체의 인장강도 및 모듈러스와 비교할 때, 전해질막의 인장강도 및 모듈러스 증대 효과가 있었다.In Comparative Production Example 9 and Comparative Production Example 10, it was confirmed that there was a problem that not only the tensile strength of the electrolyte membrane but also the modulus were significantly lowered as compared with the production example, and the mechanical properties of the electrolyte membrane using the porous support were increased The effect was very weak. On the other hand, in Examples 1, 3, 5, 10, 12 and 15, the tensile strength and modulus of the electrolyte membrane were increased in comparison with the tensile strength and modulus of the porous support.
이에 반해, 제조예의 경우, 1축과 2축 인장강도 편차가 20% 이하를 보였고, 1축과 2축 모듈러스 편차가 30% 이하를 보였다.On the other hand, in the case of the production example, the uniaxial and biaxial tensile strength deviations were 20% or less, and the uniaxial and biaxial modulus deviations were 30% or less.
상기 실시예 및 실험예를 통하여 본 발명이 제시하는 방법으로 제조한 PTFE 다공성 지지체가 우수한 기계적 물성을 가질 뿐만 아니라, 지지체 내부에 전해질 함침량이 우수함을 확인할 수 있었다. 또한, 이러한 본 발명의 PTFE 다공성 지지체를 이용하여 기계적 물성이 우수한 연료전지용 전해질막을 제공할 수 있으며, 나아가 우수한 효율의 연료전지용 막-전극 접합체 및 연료전지를 제공할 수 있을 것으로 판단된다.It can be seen from the above Examples and Experimental Examples that the PTFE porous support prepared by the method of the present invention has not only good mechanical properties but also excellent electrolyte impregnation amount in the inside of the support. In addition, it is possible to provide an electrolyte membrane for a fuel cell having excellent mechanical properties using the PTFE porous support of the present invention, and further, to provide a membrane-electrode assembly and a fuel cell for a fuel cell with excellent efficiency.
이상, 본 발명을 바람직한 실시예 및 실험예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예 및 실험예에 의해 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be apparent to those skilled in the art that the present invention, Various modifications and variations are possible.
[부호의 설명][Description of Symbols]
1 : 다공성 지지체 2 : 제1전해질층 3 : 제2전해질층1: porous support 2: first electrolyte layer 3: second electrolyte layer
10 : 연료전지 전해질 강화막 21 : 기체 확산층 22 : 촉매층10: Fuel cell electrolyte strengthening film 21: Gas diffusion layer 22: Catalyst layer
23 : 전극 기재 20 : 전극23: electrode substrate 20: electrode

Claims (14)

  1. 전해질 강화막을 단면으로 볼 때, 다공성 지지체 일측면에 형성된 제1전해질층 및 타측면에 형성된 제2전해질층;을 포함하고,A first electrolyte layer formed on one side of the porous support and a second electrolyte layer formed on the other side of the electrolyte-enhanced membrane,
    ASTM D 822에 의거하여 측정시, 전해질 강화막의 1축 방향 모듈러스(modulus) 및 2축 방향 모듈러스 차이가 하기 방정식 1을 만족하는 것을 특징으로 하는 연료전지 전해질 강화막;Wherein the uniaxial modulus and the biaxial modulus difference of the electrolyte-reinforced membrane satisfy the following equation (1) when measured according to ASTM D 822: " (1) "
    [방정식 1][Equation 1]
    0 ≤ │(전해질 강화막의 1축 방향 모듈러스 - 전해질 강화막의 2축 방향 모듈러스)/(전해질 강화막의 1축 방향 모듈러스)×100%│ ≤ 30%0 ≤ (uniaxial direction modulus of electrolyte-reinforced membrane - biaxial direction modulus of electrolyte-reinforced membrane) / (uniaxial direction modulus of electrolyte-reinforced membrane) × 100% ≤ ≤ 30%
  2. 제1항에 있어서, ASTM D 822에 의거하여 측정시, 전해질 강화막의 1축 방향 인장강도 및 2축 방향 인장강도 차이가 하기 방정식 2를 만족하는 것을 특징으로 하는 연료전지 전해질 강화막;The fuel cell electrolyte-reinforced membrane according to claim 1, wherein, when measured according to ASTM D 822, the uniaxial tensile strength and biaxial tensile strength difference of the electrolyte-reinforced film satisfies the following equation (2).
    [방정식 2][Equation 2]
    0 ≤ │(전해질 강화막의 1축 방향 인장강도 - 전해질 강화막의 2축 방향 인장강도)/(전해질 강화막의 1축 방향 인장강도)×100%│ ≤ 20%0 ≤ (Uniaxial Tensile Strength of Electrolyte Reinforced Film - Biaxial Tensile Strength of Electrolyte Reinforced Film) / (Uniaxial Tensile Strength of Electrolyte Reinforced Film) × 100% ≤ ≤ 20%
  3. 제1항에 있어서, ASTM D 822에 의거하여 측정시, 전해질 강화막의 1축 방향(길이 방향) 모듈러스가 80 MPa 이상 및 2축 방향(폭 방향) 모듈러스가 80 MPa 이상인 것을 특징으로 하는 연료전지 전해질 강화막.The fuel cell according to claim 1, wherein the electrolyte membrane has a uniaxial (longitudinal) modulus of 80 MPa or more and a biaxial (width direction) modulus of 80 MPa or more when measured according to ASTM D 822 Reinforced membrane.
  4. 제1항에 있어서, ASTM D 822에 의거하여 측정시, 전해질 강화막의 1축 방향(길이 방향) 인장강도가 50 MPa 이상 및 2축 방향(폭 방향) 인장강도가 50 MPa 이상인 것을 특징으로 하는 연료전지 전해질 강화막.The fuel cell according to claim 1, characterized in that the tensile strength in the uniaxial direction (longitudinal direction) of the electrolyte-reinforced membrane is 50 MPa or more and the tensile strength in the biaxial direction (width direction) is 50 MPa or more when measured according to ASTM D 822 Battery electrolyte toughening film.
  5. 제1항에 있어서, 상기 다공성 지지체는 ASTM D 822에 의거하여 측정시, 1축 방향(길이 방향) 인장강도가 40 MPa 이상 및 2축 방향(폭 방향) 인장강도가 40 MPa 이상인 것을 특징으로 하는 연료전지 전해질 강화막.The porous support according to claim 1, wherein the porous support has a tensile strength in a uniaxial direction (longitudinal direction) of 40 MPa or more and a tensile strength in a biaxial direction (width direction) of 40 MPa or more as measured according to ASTM D 822 Fuel cell electrolyte strengthening membrane.
  6. 제1항에 있어서, 상기 다공성 지지체는 ASTM D 822에 의거하여 측정시, 1축 방향(길이 방향) 모듈러스(modulus)가 40 MPa 이상 및 2축 방향(폭 방향) 모듈러스가 40 MPa 이상인 것을 특징으로 하는 연료전지 전해질 강화막.The porous support according to claim 1, wherein the porous support has a modulus in a uniaxial direction (longitudinal direction) of 40 MPa or more and a modulus in a biaxial direction (width direction) of 40 MPa or more when measured according to ASTM D 822 A fuel cell electrolyte toughening membrane.
  7. 제1항에 있어서, 다공성 지지체는 PTFE(polytetrafluoroethylene) 다공성 지지체로서, 평균기공크기가 0.080㎛ ~ 0.200㎛이고, 평균 기공률이 60% ~ 90%인 것을 특징으로 하는 연료전지 전해질 강화막.The fuel cell electrolyte-reinforced membrane according to claim 1, wherein the porous support is a polytetrafluoroethylene (PTFE) porous support having an average pore size of 0.080 탆 to 0.200 탆 and an average porosity of 60% to 90%.
  8. 제1항에 있어서, 상기 다공성 지지체는 평균두께 1㎛ ~ 20㎛이고, 상기 제1전해질층 및 제2전해질층은 독립적으로 평균두께 1㎛ ~ 15㎛인 것을 특징으로 하는 연료전지 전해질 강화막.The fuel cell electrolyte enhanced membrane according to claim 1, wherein the porous support has an average thickness of 1 탆 to 20 탆, and the first electrolyte layer and the second electrolyte layer independently have an average thickness of 1 탆 to 15 탆.
  9. 다공성 지지체를 불소계 이오노머 용액에 함침하는 단계; 및 Impregnating the porous support with a fluorine ionomer solution; And
    상기 함침된 PTFE 다공성 지지체를 건조 및 열처리하는 단계;를 포함하며,Drying and heat treating the impregnated PTFE porous support,
    상기 다공성 지지체는 PTFE 파우더 및 액상 윤활제를 혼합 및 교반하여 페이스트(paste)를 제조하는 1단계;The porous support may include a first step of mixing and stirring the PTFE powder and the liquid lubricant to produce a paste;
    상기 페이스트를 숙성시키는 2단계;2) aging the paste;
    숙성된 페이스트(paste)를 압출 및 압연시켜서 미소성 테이프를 제조하는 3단계;A third step of extruding and rolling the aged paste to produce an unflavicious tape;
    미소성 테이프를 건조시킨 후, 액상 윤활제를 제거하는 4단계; 윤활제가 제거된 미소성 테이프를 1축 연신시키는 5단계;Drying the uncured tape, and then removing the liquid lubricant; 5) uniaxially stretching the untreated tape from which the lubricant has been removed;
    1축 연신된 미소성 테이프를 2축 연신시키는 6단계; 및 Biaxially stretching the uniaxially stretched untreated tape; And
    소성하는 7단계;를 포함하는 공정을 수행하여 제조한 것을 특징으로 하는 연료전지 전해질 강화막의 제조방법.And firing the mixture in the step (7).
  10. 제8항에 있어서, 5단계의 1축 연신은 260℃ ~ 350℃의 연신온도 및 6 ~ 12 M/min의 연신속도 하에서, 길이 방향으로 연신을 수행하는 것을 특징으로 하는 연료전지 전해질 강화막의 제조방법.9. The process for producing a fuel cell electrolyte-reinforced membrane according to claim 8, wherein the uniaxial stretching in the five-step stretching is performed in the longitudinal direction at a stretching temperature of 260 to 350 DEG C and a stretching speed of 6 to 12 M / Way.
  11. 제8항에 있어서, 5단계의 2축 연신은 150℃ ~ 260℃의 연신온도 및 10 ~ 20 M/min의 연신속도 하에서, 폭 방향으로 연신을 수행하는 것을 특징으로 하는 연료전지 전해질 강화막 의 제조방법.The fuel cell electrolyte-reinforced membrane according to claim 8, wherein the biaxial stretching in the five-step stretching is performed in the transverse direction at a stretching temperature of 150 ° C to 260 ° C and a stretching speed of 10 to 20 M / Gt;
  12. 제9항에 있어서, 상기 불소계 이오노머 용액은 10. The method of claim 9, wherein the fluorine ionomer solution comprises
    평균입경 10 nm ~ 300 nm인 구상의 중공형 실리카; 및Spherical hollow silica having an average particle diameter of 10 nm to 300 nm; And
    제올라이트, 티타니아, 지르코니아 및 몬모릴로나이트 중에서 선택된 1종 이상의 흡습제; 중에서 선택된 1종 이상을 더 포함하는 것을 특징을 연료전지 전해질 강화막의 제조방법.Zeolite, titania, zirconia and montmorillonite; Wherein the fuel cell electrolyte-reinforced membrane further comprises at least one selected from the group consisting of hydrogen peroxide and hydrogen peroxide.
  13. 제1항의 연료전지 전해질 강화막을 포함하는 것을 특징으로 하는 막-전극 접합체.A membrane-electrode assembly comprising the fuel cell electrolyte-reinforced membrane of claim 1.
  14. 제13항의 상기 막-전극 접합체 및 세퍼레이터를 포함하고, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 전기 발생부;An electricity generating unit including the membrane-electrode assembly and the separator of claim 13, and generating electricity through an electrochemical reaction between the fuel and the oxidant;
    연료를 상기 전기 발생부로 공급하는 연료 공급부; 및A fuel supply unit for supplying fuel to the electricity generation unit; And
    산화제를 상기 발생부로 공급하는 산화제 공급부; 를 포함하는 연료전지.An oxidant supply unit supplying the oxidant to the generator; ≪ / RTI >
PCT/KR2017/008400 2017-08-03 2017-08-03 Fuel cell electrolyte reinforced membrane and manufacturing method therefor WO2019027069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/008400 WO2019027069A1 (en) 2017-08-03 2017-08-03 Fuel cell electrolyte reinforced membrane and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/008400 WO2019027069A1 (en) 2017-08-03 2017-08-03 Fuel cell electrolyte reinforced membrane and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2019027069A1 true WO2019027069A1 (en) 2019-02-07

Family

ID=65233824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008400 WO2019027069A1 (en) 2017-08-03 2017-08-03 Fuel cell electrolyte reinforced membrane and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2019027069A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310485A (en) * 2004-04-20 2005-11-04 Nitto Denko Corp Electrolyte membrane and solid polymer fuel cell
KR20080047574A (en) * 2005-09-26 2008-05-29 고어 엔터프라이즈 홀딩즈, 인코포레이티드 Solid polymer electrolyte and process for making same
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite
JP2015128060A (en) * 2013-11-29 2015-07-09 旭化成イーマテリアルズ株式会社 Polymer electrolyte membrane
KR20170040018A (en) * 2015-10-02 2017-04-12 김성철 manufacturing method of PTFE electrolyte membrane for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310485A (en) * 2004-04-20 2005-11-04 Nitto Denko Corp Electrolyte membrane and solid polymer fuel cell
KR20080047574A (en) * 2005-09-26 2008-05-29 고어 엔터프라이즈 홀딩즈, 인코포레이티드 Solid polymer electrolyte and process for making same
JP2015128060A (en) * 2013-11-29 2015-07-09 旭化成イーマテリアルズ株式会社 Polymer electrolyte membrane
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite
KR20170040018A (en) * 2015-10-02 2017-04-12 김성철 manufacturing method of PTFE electrolyte membrane for fuel cell

Similar Documents

Publication Publication Date Title
KR101860873B1 (en) Fuel cell-electrolyte membrane containing the same, and manufacturing method thereof
WO2017175893A1 (en) Composite electrolyte membrane having asymmetric density gradient for fuel cell, method for manufacturing same, membrane-electrode assembly comprising composite electrolyte membrane having asymmetric density gradient for fuel cell, and fuel cell comprising same
WO2017175891A1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2013147520A1 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
WO2014178620A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
WO2015047008A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
WO2017171285A2 (en) Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same
WO2020005018A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and membrane electrode assembly comprising same
WO2015080475A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
WO2015147550A1 (en) Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same
WO2022270934A1 (en) Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same
WO2016163773A1 (en) Polymer electrolyte membrane, electrochemical cell and flow cell comprising same, method for manufacturing polymer electrolyte membrane, and flow cell electrolyte
WO2017175892A1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2021066544A1 (en) Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
KR102321252B1 (en) Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same
WO2022131629A1 (en) Membrane-electrode assembly and method for manufacturing same
WO2019027069A1 (en) Fuel cell electrolyte reinforced membrane and manufacturing method therefor
WO2019013372A1 (en) Porous support for fuel cell electrolyte membrane, fuel cell electrolyte membrane comprising same, and manufacturing methods therefor
US6579639B1 (en) Polymer electrolyte fuel cell
WO2021133044A1 (en) Polymer electrolyte membrane, membrane-electrode assembly including same, and method for measuring durability thereof
WO2016013728A1 (en) Flat-tube type segment solid oxide fuel cell and manufacturing method therefor
WO2019139415A1 (en) Gas diffusion layer for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for preparing gas diffusion layer for fuel cell
WO2017175890A1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2021133045A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and electrochemical device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920038

Country of ref document: EP

Kind code of ref document: A1