WO2022270934A1 - Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same - Google Patents

Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same Download PDF

Info

Publication number
WO2022270934A1
WO2022270934A1 PCT/KR2022/008920 KR2022008920W WO2022270934A1 WO 2022270934 A1 WO2022270934 A1 WO 2022270934A1 KR 2022008920 W KR2022008920 W KR 2022008920W WO 2022270934 A1 WO2022270934 A1 WO 2022270934A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchange
composite membrane
formula
exchange composite
membrane
Prior art date
Application number
PCT/KR2022/008920
Other languages
French (fr)
Korean (ko)
Inventor
남상용
손태양
임광섭
김지현
Original Assignee
경상국립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교 산학협력단 filed Critical 경상국립대학교 산학협력단
Publication of WO2022270934A1 publication Critical patent/WO2022270934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an anion exchange composite membrane, a manufacturing method thereof, and an alkaline fuel cell including the same, and more particularly, to a porous support comprising polyphenylene sulfide; and an anion conductive polymer formed on the support.
  • the present invention relates to a technique for preparing an anion exchange composite membrane comprising an anion exchange composite membrane and applying the membrane to an alkaline fuel cell, water electrolysis, or redox flow battery.
  • PEMFC polymer electrolyte membrane fuel cells
  • Nafion perfluorocarbon-based proton exchange membrane represented by Nafion
  • the Nafion membrane has excellent chemical stability and high ionic conductivity, it is very expensive and has a low glass transition temperature, so researches that can replace Nafion, including the development of aromatic hydrocarbon-based polymer electrolyte membranes, are being actively conducted.
  • alkaline membrane fuel cell using an anion exchange membrane operated in an alkaline environment has recently received attention.
  • alkaline membrane fuel cells can use inexpensive non-noble metals such as nickel and manganese as electrode catalysts instead of platinum, and are known to have superior performance and price competitiveness compared to polymer electrolyte membrane fuel cells, and continuous research is being conducted. The situation is.
  • Polymers having aryl ether main chains such as polyaryl ether sulfone, polyphenyl ether, and polyether ether ketone have been mainly used as anion exchange membranes for use in alkaline membrane fuel cells.
  • crosslinked anion exchange membranes using hydrophobic crosslinking agents such as 1,5-dibromopentane, 1,6-dibromohexane, and 1,6-hexanediamine are known, but hydrophobic anion exchange membranes are used in anion exchange fuel cells.
  • hydrophobic anion exchange membranes are used in anion exchange fuel cells.
  • anion exchange membranes have limited chemical stability (less than 500 hours in 1M NaOH solution at 80 °C) and mechanical properties (less than 30 Mpa tensile strength), so when applied to fuel cells, the power density (0.1 ⁇ 0.5 Wcm-2) is low and the battery The downside is poor durability.
  • anion exchange membranes have poor dimensional stability due to high water uptake and swelling ratio, and it is known that the decrease in physical properties is caused by the fact that most of the anion exchange membranes are formed in the form of a single membrane.
  • the inventors of the present invention as a result of repeated research to expand the application field of aromatic polymer ion exchange membranes with excellent thermal and chemical stability and mechanical properties, developed polyphenylene anion exchange membranes obtained from polymers introduced with a high content of anion exchange groups.
  • polyphenylene anion exchange membranes obtained from polymers introduced with a high content of anion exchange groups.
  • it is formed on a porous support formed of a sulfide polymer and manufactured in the form of a composite membrane, mechanical properties, dimensional stability, durability, chemical stability, and long-term stability can be greatly improved, and commercialization can be expected, and the present invention has been reached.
  • Patent Document 1 Korean Patent Registration No. 10-1545229
  • the present invention was made in view of the above problems, and a first object of the present invention is to provide an anion exchange composite membrane with significantly improved mechanical properties, dimensional stability, durability, chemical stability and long-term stability, and a method for manufacturing the same. will be.
  • a second object of the present invention is to apply the anion exchange composite membrane to alkaline fuel cells, water electrolysis, and redox flow batteries.
  • the present invention for achieving the above object is a porous support comprising polyphenylene sulfide (PPS); and an anion exchange layer prepared from a composition containing an anion exchange polymer filled in the porous support and having a repeating unit represented by any one selected from the following ⁇ Formula 1> to ⁇ Formula 3>. provide a barrier
  • A is any one selected from compounds represented by the following structural formulas,
  • the composition may further include a crosslinking agent, preferably the crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA) , N,N,N',N'-tetramethyl 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) It is characterized in that at least one selected from the group consisting of.
  • TMMDA N,N,N',N'-tetramethylmethylenediamine
  • TEDA N,N,N',N'-tetramethylethylenediamine
  • TMPDA N,N,
  • the polyphenylene sulfide is characterized in that it is a cross-linked or linear polyphenylene sulfide having a weight average molecular weight of 10000 or more and a degree of dispersion obtained by dividing the weight average molecular weight by the number average molecular weight of 2.5 or less.
  • the polyphenylene sulfide has a stiffness of 3 to 4 GPa, a strength at break of 50 to 80 MPa, and a yield strength of 50 to 80 MPa.
  • the present invention comprises the steps of (I) preparing a porous support by dissolving polyphenylene sulfide (PPS) in a first solvent, casting and drying on a substrate; (II) dissolving an anion exchange polymer having a repeating unit represented by any one selected from the following ⁇ Formula 1> to ⁇ Formula 3> in a second solvent to obtain a polymer solution; and (III) impregnating and drying the porous support in the polymer solution.
  • PPS polyphenylene sulfide
  • A is any one selected from compounds represented by the following structural formulas,
  • the polymer solution may further include a crosslinking agent, and the crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine ( TMEDA), N,N,N',N'-tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), Consisting of N,N,N',N'-tetramethyl 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) It is characterized in that at least one selected from the group.
  • TMMDA N,N,N',N'-tetramethylmethylenediamine
  • TMEDA N,N,N',N'-tetramethylethylenediamine
  • TMEDA N,N,N
  • the first solvent and the second solvent are the same as or different from each other, and each independently N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, diethylformamide, dimethylacetamide, tetrahydrofuran, methanol , characterized in that at least one selected from the group consisting of ethanol and ether.
  • the concentration of the polymer solution is characterized in that 2 to 5% by weight.
  • the porous support is subjected to carding, garneting, air-laying, wet-laying, melt blowing, spun bonding ( It is characterized in that it is manufactured by any one method selected from the group consisting of spunbonding and stitch bonding.
  • step (III) is characterized in that the second solvent is completely removed by first drying in an oven at 80 to 90 ° C for 1 to 10 hours and then drying in a vacuum oven at 110 to 150 ° C for 20 to 30 hours. do.
  • the present invention provides an alkaline fuel cell including the anion exchange composite membrane.
  • the present invention provides a water electrolysis device including the anion exchange composite membrane.
  • the present invention provides a redox flow battery including the anion exchange composite membrane.
  • a porous support containing polyphenylene sulfide (PPS); and an anion exchange layer prepared from a composition containing an anion exchange polymer filled in the porous support and having a repeating unit represented by any one selected from the following ⁇ Formula 1> to ⁇ Formula 3>. provide a barrier
  • anion exchange membranes use polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, and polyperfluoroalkylvinyl ether as porous supports, but the porous supports have a degree of substitution of 70% or more.
  • an anion exchange polymer into which a high content of anion exchange group is introduced mechanical properties and chemical durability are rather weakened, resulting in easy breakage.
  • the anion exchange polymer introduced with a high content of anion exchange groups having a degree of substitution of 70% or more is stably impregnated on the porous support to form a defect-free anion exchange composite membrane.
  • the polyphenylene sulfide originally has excellent chemical resistance and excellent heat resistance, and has been utilized in various fields. However, the mechanical properties are not sufficient, especially the impact strength is relatively low, and the tensile strength is 6 MPa, so there is a limit as a support.
  • a technique for adding fillers such as glass fibers has been developed, but there is a problem of phase instability such as peeling during secondary processing or post-processing.
  • the polyphenylene sulfide may be a cross-linked or linear polyphenylene sulfide having a weight average molecular weight of 10000 or more and a degree of dispersion obtained by dividing the weight average molecular weight by the number average molecular weight of 2.5 or less.
  • the polyphenylene sulfide may have a stiffness of 3 to 4 GPa, a strength at break of 50 to 80 MPa, and a strength at yield of 50 to 80 MPa.
  • the polyphenylene sulfide may be represented by Formula A below.
  • Z is an integer from 200 to 2000
  • the porous support may be in the form of a nonwoven fabric in which a porous web is formed by crossing polyphenylene sulfide nanofibers or in the form of a porous membrane including a plurality of pores.
  • a non-woven fabric having a large pore structure inside to improve the anion exchange polymer impregnation rate is preferred.
  • the thickness of the porous support is not particularly limited, but is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 5 to 50 ⁇ m, and more preferably in the range of 10 to 20 ⁇ m. When the thickness is less than 1 ⁇ m, it is difficult to achieve the desired effect, and when the thickness exceeds 100 ⁇ m, it may act as a resistance layer.
  • the porosity of the porous support is not particularly limited, but may be in the range of 30 to 90%. That is, when the porosity of the porous support is less than 30%, it is difficult to coat the anion exchange polymer, and at the same time, the amount of the anion exchange polymer is small, and the ionic conductivity may be reduced. Not only cannot maintain mechanical strength, but also may be damaged when coating an anion exchange polymer, which may cause difficulties in manufacturing.
  • the porosity of the porous support is most preferably 80% because impregnation is best achieved.
  • the porous support may be prepared using electrospinning.
  • composition containing an anion exchange polymer' refers to a composition that is filled on a porous support to form an anion exchange layer, which will be described later.
  • the anion exchange polymer may have a repeating unit represented by any one selected from the following ⁇ Formula 1> to ⁇ Formula 3>.
  • A is any one selected from compounds represented by the following structural formulas,
  • the mole fraction of the repeating unit into which the anion exchange group is introduced is 0.70 to 0.90.
  • the x is selected from 0.70 to 0.90.
  • y is one selected from 0.70 to 0.90
  • o + p + q + r 1 and o is one selected from 0.70 to 0.90
  • p + q + r is When an anion exchange polymer selected from 0.1 to 0.3 is used, high ion exchange capacity can be secured because there is a high content of cationic groups responsible for ion transfer.
  • polyphenylene sulfide has high chemical durability, but poor mechanical properties.
  • anion exchange polymer of Formulas 1 to 3 with a high content of cationic groups is introduced, the ion exchange capacity is improved to improve the ionic conductivity, chemical durability is also improved, and mechanical properties can be improved by more than two times. there is.
  • the present invention not only improves ionic conductivity and chemical durability at the same time by introducing anion exchange polymers of Chemical Formulas 1 to 3 into which a high content of cationic groups is introduced onto a porous support of polyphenylene sulfide having poor mechanical properties. The effect of improving mechanical properties by more than two times was achieved.
  • the composition may further include a crosslinking agent.
  • the crosslinking agent serves to improve the physical/chemical stability and durability of the anion exchange polymer.
  • the crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N' -Tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), N,N,N',N'-tetramethyl It may be at least one selected from the group consisting of 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA).
  • TMMDA N,N,N',N'-tetramethylmethylenediamine
  • TMEDA N,N,N',N'-tetramethylethylenediamine
  • TMBDA N,N,N',N'-tetramethyl-1,4-butanediamine
  • the content of the crosslinking agent may be appropriately selected depending on the structure of the anion exchange polymer and the desired performance of the ion exchange layer.
  • the crosslinking agent may be included in an amount of less than 10% by weight based on the total weight of the composition. When the crosslinking agent is used within the above range, physical/chemical stability and durability of the anion exchange layer may be further improved.
  • the composition may further include a solvent.
  • the solvent may be at least one selected from the group consisting of N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, diethylformamide, dimethylacetamide, tetrahydrofuran, methanol, ethanol, and ether. .
  • the amount of the solvent may be greater than 0% by weight and less than or equal to 99% by weight based on the total weight of the composition.
  • the content of the solvent is within the above range, when the composition for forming an ion exchange membrane is polymerized, the drying time can be shortened and uniform membrane properties can be obtained.
  • the present invention (I) preparing a porous support containing polyphenylene sulfide (PPS); (II) dissolving an anion exchange polymer having a repeating unit represented by any one selected from the following ⁇ Formula 1> to ⁇ Formula 3> in a second solvent to obtain a polymer solution; and (III) impregnating and drying the porous support in the polymer solution.
  • PPS polyphenylene sulfide
  • the porous support may be in the form of a nonwoven fabric in which a porous web is formed by crossing polyphenylene sulfide nanofibers or in the form of a porous membrane including a plurality of pores.
  • a porous membrane having a plurality of large pore structures present therein to improve an anion exchange polymer impregnation rate is preferred.
  • step (I) when the porous support is made in the form of a nonwoven fabric, carding, garneting, air-laying, wet-laying, melt blowing ( It may be manufactured by any one method selected from the group consisting of melt blowing, spunbonding, and stitch bonding.
  • the composition containing polyphenylene sulfide is injected into an extruder, discharged through a T-die, molded into a sheet form, and then stretched to form a film. may be manufactured.
  • the stretching may be performed by a known method such as uniaxial stretching or biaxial stretching (sequential or simultaneous biaxial stretching).
  • the stretching magnification may be 4 to 20 times in the transverse direction (MD) and the longitudinal direction (TD), respectively, and the plane magnification accordingly may be 16 to 400 times.
  • the thickness of the porous support is not particularly limited, but is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m. More preferably, it may be 10 to 20 ⁇ m. When the thickness is less than 1 ⁇ m, it is difficult to achieve the desired effect, and when the thickness exceeds 100 ⁇ m, it may act as a resistance layer.
  • the porosity of the porous support is not particularly limited, but may be in the range of 30 to 90%. That is, when the porosity of the porous support is less than 30%, it is difficult to coat the anion exchange polymer, and at the same time, the amount of the anion exchange polymer is small, and the ionic conductivity may be reduced. Not only cannot maintain mechanical strength, but also may be damaged when coating an anion exchange polymer, which may cause difficulties in manufacturing.
  • the porosity of the porous support is most preferably 80% because impregnation is best achieved.
  • an anion exchange polymer having a repeating unit represented by any one selected from ⁇ Formula 1> to ⁇ Formula 3> is dissolved in a second solvent to obtain a polymer solution.
  • A is any one selected from compounds represented by the following structural formulas,
  • the mole fraction of the repeating unit into which the anion exchange group is introduced is 0.70 to 0.90.
  • the x is selected from 0.70 to 0.90.
  • y is one selected from 0.70 to 0.90
  • o + p + q + r 1 and o is one selected from 0.70 to 0.90
  • p + q + r is When an anion exchange polymer selected from 0.1 to 0.3 is used, high ion exchange capacity can be secured because there is a high content of cationic groups responsible for ion transfer.
  • the first solvent and the second solvent are the same as or different from each other, and each independently N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, diethylformamide, dimethylacetamide, tetrahydrofuran, methanol , It may be any one or more selected from the group consisting of ethanol and ether, but is not limited thereto.
  • the concentration of the polymer solution may be 2 to 5% by weight, specifically, the polymer solution contains 2 to 5% by weight, specifically 3 to 4% by weight of the anion exchange polymer based on the total weight. %, more specifically 3% by weight.
  • the polymer solution may further include a crosslinking agent, and the crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine ( TMEDA), N,N,N',N'-tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), Consisting of N,N,N',N'-tetramethyl 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) It may be any one or more selected from the group.
  • TMMDA N,N,N',N'-tetramethylmethylenediamine
  • TMEDA N,N,N',N'-tetramethylethylenediamine
  • TMEDA N,N,N',
  • the drying in step (III) may be to completely remove the second solvent by first drying in an oven at 80 to 90 ° C for 1 to 10 hours and then drying in a vacuum oven at 110 to 150 ° C for 20 to 30 hours. .
  • the impregnation time may be specifically 1 to 50 hours, more specifically 10 to 30 hours, and more specifically 22 to 26 hours, and the drying time after the impregnation is as described above.
  • the reaction temperature and time range of each step may be appropriately adjusted as necessary, and are not particularly limited thereto, but when each reaction is performed under conditions less than the above temperature and time ranges, anion The performance of the exchange composite membrane may deteriorate, and if the exchange membrane is performed under conditions of temperature and time exceeding the above ranges, a cost increase problem may occur due to a decrease in process efficiency due to a long reaction, so it is preferable to perform the exchange membrane within each condition range.
  • the anion exchange polymer is most preferably an anion exchange polymer represented by Chemical Formula 4 below.
  • the anion exchange polymer represented by Chemical Formula 4 is not particularly limited, but examples include (1) poly(2,6-dimethyl-1,4-phenylene oxide), AlCl 3 and azobisisobutyronitrile (AIBN).
  • the mixture was mixed at a ratio of 1:1 and mixed at a molar ratio of 1:0.7 (specifically, 0.7 equivalents of AlCl3 and AIBN were mixed with respect to 1 equivalent of poly(2,6-dimethyl-1,4-phenylene oxide)) .
  • reacting for 1 to 24 hours, more specifically for 1 to 12 hours, and more specifically for 5 to 8 hours to produce PPO (Ac-PPO) represented by ⁇ Chemical Formula 4>; may have been
  • the anion exchange composite membrane according to the present invention can be used as an electrolyte membrane.
  • the electrolyte membrane may be used for an electrolyte membrane for a fuel cell, an electrolyte membrane for a water electrolysis device, and an electrolyte membrane for a redox flow battery.
  • a fuel cell containing the anion exchange composite membrane according to the present invention may be a solid alkaline fuel cell (SAFC) or a direct borohydride fuel cell (DBFC).
  • SAFC solid alkaline fuel cell
  • DBFC direct borohydride fuel cell
  • the solid alkali fuel cell contains an anion exchange composite membrane, supplies one or more fuels selected from the hydrogen-containing gas group of hydrogen, reformed gas, and mixed hydrogen gas to the anode, and supplies oxygen, air, and mixed oxygen gas to the fuel electrode.
  • the direct borohydride fuel cell contains an anion exchange composite membrane, and uses 1 to 20 wt% of sodium borohydride (NaBH4) containing a caustic soda solution in a concentration range of 0 to 5M as fuel to obtain an anode and supplying at least one oxidizing agent selected from the group of oxygen-containing gases such as oxygen, air, and mixed oxygen gas to the cathode.
  • NaBH4 sodium borohydride
  • aBH4 sodium borohydride
  • caustic soda solution in a concentration range of 0 to 5M
  • the water electrolysis system may be an alkaline water electrolyzer (AWE) using an aqueous KOH solution as an electrolyte
  • the alkaline water electrolysis system contains an anion exchange composite membrane, and hydroxide ions (OH-) move It is a device that produces hydrogen and oxygen from water.
  • the redox flow battery contains an anion exchange composite membrane, and the anion exchange composite membrane is applied to a separator separating both electrodes.
  • the separator prevents mixing of electroactive species in a redox flow battery, passes only a common counter ion transporter at both electrodes, and requires excellent physical strength that is not destroyed by the pressure difference generated between the anode and cathode. , the anion exchange composite membrane of the present invention can be easily applied.
  • the mechanical properties, dimensional stability, durability, chemical stability and long-term stability of the anion exchange composite membrane including polyphenylene sulfide (PPS) as a porous support are remarkably improved.
  • anion exchange composite membrane comprising the porous support of the present invention can be applied to alkaline fuel cells, water electrolyzers, redox flow batteries, and the like.
  • FIG. 2 is a photograph of a porous support of polyphenylene sulfide prepared from Preparation Example 2 of the present invention.
  • Example 3 is a photograph of the anion exchange composite membrane prepared in Example 1 of the present invention.
  • Figure 4 measures the tensile strength of the anion exchange composite membrane (XAc-PPO-PPS) prepared from Example 1, the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1, and the Ac-PPO single membrane prepared from Preparation Example 1 This is the graph shown by
  • FIG. 5 is a graph showing the measured hydroxide ion conductivity over time at 80 ° C. of the anion exchange membrane (XAc-PPO-PPS) prepared from Example 1 and the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1 it's a graph
  • FIG. 6 is a graph showing the measured hydroxide ion conductivity over time at 80° C. of the anion exchange composite membrane (XAc-PPO+PE) prepared in Comparative Example 2.
  • FIG. 6 is a graph showing the measured hydroxide ion conductivity over time at 80° C. of the anion exchange composite membrane (XAc-PPO+PE) prepared in Comparative Example 2.
  • Poly(2,6-dimethyl-1,4-phenylene oxide) was dissolved in 1,2-dichloroethane solvent (PPO solution).
  • PPO solution 1,2-dichloroethane solvent
  • AlCl 3 and azobisisobutyronitrile (AIBN) were mixed in a weight ratio of 1:1 to prepare a mixed solution added to 1,2-dichloroethane solvent.
  • the PPO solution and the mixture were mixed at a molar ratio of 1:0.7 (specifically, 0.7 equivalents of AlCl3 and AIBN were mixed with respect to 1 equivalent of poly(2,6-dimethyl-1,4-phenylene oxide)). It was reacted for 6 hours.
  • Methanol (MeOH) was added thereto to precipitate, washed several times with methanol, and dried in a vacuum oven to remove the solvent, thereby obtaining a polyphenylene oxide copolymer represented by Formula 4>.
  • a paste was prepared by uniformly dispersing 23 parts by weight of liquid lubricant naphtha by mixing and stirring with respect to 100 parts by weight of PPS fine powder having an average particle diameter of 570 ⁇ m. Next, the paste was aged at 50° C. for 18 hours, and then compressed using a molding jig to prepare a PPS block. Next, after putting the PPS block into an extrusion mold, pressure extrusion was performed under a pressure of about 0.10 Ton/cm 2 .
  • an unsintered tape having an average thickness of 850 ⁇ m was prepared.
  • the unsintered tape was dried by applying heat of 180° C. while being transferred to a conveyor belt at a speed of 3 M/min to remove the lubricant.
  • the unsintered tape from which the lubricant was removed was uniaxially stretched (longitudinal stretching) by 6.5 times at a stretching temperature of 280° C. and a stretching speed of 10 M/min.
  • the uniaxially stretched unsintered tape was biaxially stretched (width direction stretched) 30 times under conditions of a stretching temperature of 250° C. and a stretching speed of 10 M/min to prepare a porous support.
  • a PPS porous support having an average thickness of 14 ⁇ m and an average pore size of 0.114 ⁇ m was prepared by firing the uniaxially and biaxially stretched porous support on a conveyor belt by applying a temperature of 420 ° C. at a speed of 15 M / min.
  • a first solution was prepared by mixing 15% by weight of the polyphenylene oxide copolymer represented by ⁇ Chemical Formula 4> prepared in Preparation Example 1 and 85% by weight of an NMP solvent.
  • a polymer solution was prepared by mixing N,N,N',N'-tetramethyl-1,6-hexadiamine (TMHDA) with the first solution.
  • TMHDA crosslinking agent was mixed with the polyphenylene oxide copolymer (Formula 4) in an equivalent ratio of 1:1 to achieve 100% crosslinking.
  • porous support was impregnated with the polymer solution, taken out, put into a vacuum oven, and dried with hot air at 80° C. for 8 hours. Thereafter, the mixture was heated in a vacuum oven at 120° C. for 24 hours to prepare an anion exchange composite membrane in the form of a composite membrane formed with a cross-linked polyphenylene oxide copolymer (XAc-PPO) of ⁇ Chemical Formula 4>.
  • XAc-PPO cross-linked polyphenylene oxide copolymer
  • a first solution was prepared by mixing 15% by weight of the polyphenylene oxide copolymer represented by ⁇ Chemical Formula 4> prepared in Preparation Example 1 and 85% by weight of an NMP solvent.
  • a polymer solution was prepared by mixing N,N,N',N'-tetramethyl-1,6-hexadiamine (TMHDA) with the first solution.
  • TMHDA crosslinking agent was mixed with the polyphenylene oxide copolymer (Formula 4) in an equivalent ratio of 1:1 to achieve 100% crosslinking.
  • a film was formed with only the polymer solution and dried under vacuum at 60° C. for 12 hours to prepare a single-membrane anion exchange membrane.
  • Example 1 an anion exchange composite membrane was prepared in the same manner as in Example 1, except that polyethylene was used as a support instead of polyphenylene sulfide, which is a porous support prepared in Preparation Example 2.
  • the polyethylene used in the present invention was purchased from W.Scope Korea and had a porosity of 80%.
  • Figure 1 is a photograph of an anion exchange membrane prepared from Comparative Example 1 of the present invention
  • Figure 2 is a photograph of a porous support of polyphenylene sulfide prepared from Preparation Example 2 of the present invention
  • Figure 3 is a photograph of the present invention This is a photograph of the anion exchange composite membrane prepared from Example 1 of
  • Figure 4 measures the tensile strength of the anion exchange composite membrane (XAc-PPO-PPS) prepared from Example 1, the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1, and the Ac-PPO single membrane prepared from Preparation Example 1 This is the graph shown by
  • the anion exchange composite membrane prepared from Example 1 exhibited tensile strength more than twice as high as that of the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1, indicating that mechanical properties were improved. .
  • FIG. 5 is a graph showing the measured hydroxide ion conductivity over time at 80 ° C. of the anion exchange membrane (XAc-PPO-PPS) prepared from Example 1 and the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1
  • FIG. 6 is a graph showing the measured hydroxide ion conductivity over time at 80° C. of the anion exchange composite membrane (XAc-PPO+PE) prepared in Comparative Example 2.
  • Alkali stability was measured by recording the hydroxide ion conductivity as a function of time under the conditions of a 1 M KOH solution at 80 °C. The change in hydroxide ion conductivity compared to the initial (0 hour) hydroxide ion conductivity was calculated and shown.
  • the anion exchange composite membrane prepared in Example 1 maintains 100% hydroxide ion conductivity for more than 2500 hours.
  • the anion exchange composite membrane of Comparative Example 2 like the anion exchange membrane of Comparative Example 1, started to decrease at 100 hours, decreased by 10% or more at 200 hours, and decreased by 30% or more at 900 hours. there is. That is, it can be seen that when using a porous support other than polyphenylene sulfide, the alkali stability is greatly reduced even when XAc-PPO is used as an anion exchange layer.
  • the anion exchange composite membrane using polyphenylene sulfide as a porous support and impregnating quaternary ammoniumized polyphenylene oxide into which a high content of anion exchange groups is introduced on the porous support has ionic groups and a polymer backbone. It showed excellent application stability at high temperature without decomposition, showed high tensile strength of 40 MPa, and maintained 100% of the initial conductivity at 80 ° C even after being exposed to alkali for more than 2500 hours in 1M KOH at 80 ° C. showed
  • polyphenylene sulfide is used as a porous support to have excellent mechanical properties and excellent alkali stability. It was confirmed that this can be achieved.
  • the anion exchange composite membrane of the present invention is expected to be modular and commercializable as it has excellent mechanical properties and alkali stability at the same time.

Abstract

The present invention relates to techniques for manufacturing an anion exchange composite membrane and applying the membrane to alkaline fuel cells, water electrolysis, redox flow batteries, and the like, the membrane comprising: a porous support containing polyphenylenesulfide; and an anion exchange layer prepared from a composition, which is filled in the support and contains an anion exchange polymer. The anion exchange composite membrane comprising the porous support according to the present invention has significantly improved mechanical properties, dimensional stability, durability, chemical stability, and long-term stability.

Description

음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지Anion exchange composite membrane, manufacturing method thereof, and alkaline fuel cell including the same
본 발명은 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지에 관한 것으로, 보다 상세하게는 폴리페닐렌설파이드를 포함하는 다공성 지지체; 및 상기 지지체 상에 형성된 음이온 전도성 고분자;를 포함하는 음이온교환 복합막을 제조하고, 이를 알칼리 연료전지, 수전해, 레독스 흐름전지 등에 응용하는 기술에 관한 것이다.The present invention relates to an anion exchange composite membrane, a manufacturing method thereof, and an alkaline fuel cell including the same, and more particularly, to a porous support comprising polyphenylene sulfide; and an anion conductive polymer formed on the support. The present invention relates to a technique for preparing an anion exchange composite membrane comprising an anion exchange composite membrane and applying the membrane to an alkaline fuel cell, water electrolysis, or redox flow battery.
지금까지 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)는 비교적 높은 전류밀도를 갖고 친환경성이라는 장점 때문에 많은 연구가 진행되어 왔다. 특히, 나피온으로 대표되는 과불소화탄소 계열의 프로톤 교환막이 고분자 전해질막으로 주로 사용되었다. 그런데 나피온막은 우수한 화학적 안정성 및 높은 이온전도도를 갖는 반면, 가격이 매우 높고 유리전이온도가 낮아 방향족 탄화수소계 고분자 전해질막 등의 개발을 비롯하여 나피온을 대체할 수 있는 연구가 활발하게 수행되고 있다.Until now, polymer electrolyte membrane fuel cells (PEMFC) have been studied a lot because of their advantages of relatively high current density and eco-friendliness. In particular, a perfluorocarbon-based proton exchange membrane represented by Nafion has been mainly used as a polymer electrolyte membrane. However, while the Nafion membrane has excellent chemical stability and high ionic conductivity, it is very expensive and has a low glass transition temperature, so researches that can replace Nafion, including the development of aromatic hydrocarbon-based polymer electrolyte membranes, are being actively conducted.
이러한 연구들 중에서 최근에는 알칼리 환경에서 구동하는 음이온교환막을 이용하는 알칼리막 연료전지(alkaline membrane fuel cell, AMFC)가 주목을 받고 있다. 특히, 알칼리막 연료전지는 백금 대신에 니켈, 망간 등 저가의 비귀금속을 전극촉매로 사용할 수 있고, 고분자 전해질막 연료전지에 비하여 우수한 성능과 더불어 가격 경쟁력 또한 월등히 높은 것으로 알려져 지속적인 연구가 이루어지고 있는 실정이다.Among these studies, an alkaline membrane fuel cell (AMFC) using an anion exchange membrane operated in an alkaline environment has recently received attention. In particular, alkaline membrane fuel cells can use inexpensive non-noble metals such as nickel and manganese as electrode catalysts instead of platinum, and are known to have superior performance and price competitiveness compared to polymer electrolyte membrane fuel cells, and continuous research is being conducted. The situation is.
알칼리막 연료전지에 적용하기 위한 음이온교환막으로서는 폴리아릴에테르술폰, 폴리페닐에테르, 폴리에테르에테르케톤 등과 같은 아릴 에테르 주사슬을 갖는 고분자가 주로 사용되어 왔다. 또한, 1,5-디브로모펜탄, 1,6-디브로모헥산, 1,6-헥산디아민과 같은 소수성 가교제를 사용한 가교구조의 음이온교환막도 알려져 있으나, 소수성 음이온교환막은 음이온교환 연료전지로 시용하기에는 낮은 이온전도도, 제한된 유연성, 낮은 용해도 등의 문제점이 있다. 게다가 종래 음이온교환막은 화학적 안정성(80℃, 1M NaOH 용액에서 500시간 미만) 및 기계적 물성(인장강도 30 Mpa 미만)이 제한적이어서 연료전지에 적용하면 전력밀도(0.1~0.5 Wcm-2)가 낮고 전지 내구성이 떨어지는 단점이 있다.Polymers having aryl ether main chains such as polyaryl ether sulfone, polyphenyl ether, and polyether ether ketone have been mainly used as anion exchange membranes for use in alkaline membrane fuel cells. In addition, crosslinked anion exchange membranes using hydrophobic crosslinking agents such as 1,5-dibromopentane, 1,6-dibromohexane, and 1,6-hexanediamine are known, but hydrophobic anion exchange membranes are used in anion exchange fuel cells. There are problems such as low ionic conductivity, limited flexibility, and low solubility in application. In addition, conventional anion exchange membranes have limited chemical stability (less than 500 hours in 1M NaOH solution at 80 °C) and mechanical properties (less than 30 Mpa tensile strength), so when applied to fuel cells, the power density (0.1 ~ 0.5 Wcm-2) is low and the battery The downside is poor durability.
또한, 종래 통상의 음이온교환막은 높은 수분 함유량(water uptake) 및 팽윤도(swelling ratio)로 인하여 치수안정성이 떨어지는바, 이러한 물성의 저하는 음이온교환막이 대부분 단일막 형태로 이루어진 것에서 비롯하는 것으로 알려져 있다.In addition, conventional anion exchange membranes have poor dimensional stability due to high water uptake and swelling ratio, and it is known that the decrease in physical properties is caused by the fact that most of the anion exchange membranes are formed in the form of a single membrane.
그러므로 본 발명자 등은, 열적·화학적 안정성 및 기계적 물성이 우수한 방향족 고분자 이온교환막의 응용분야를 확대하기 위하여 연구를 거듭한 결과, 높은 함량의 음이온교환 그룹이 도입된 고분자로부터 얻어지는 음이온 교환막을 폴리페닐렌설파이드 고분자로 형성된 다공성 지지체 위에 형성하여 복합막의 형태로 제조하면, 기계적 물성, 치수안정성, 내구성, 화학적 안정성 및 장기안정성 등이 크게 향상되어 상용화를 기대할 수 있음에 착안하여 본 발명에 이르렀다.Therefore, the inventors of the present invention, as a result of repeated research to expand the application field of aromatic polymer ion exchange membranes with excellent thermal and chemical stability and mechanical properties, developed polyphenylene anion exchange membranes obtained from polymers introduced with a high content of anion exchange groups. When it is formed on a porous support formed of a sulfide polymer and manufactured in the form of a composite membrane, mechanical properties, dimensional stability, durability, chemical stability, and long-term stability can be greatly improved, and commercialization can be expected, and the present invention has been reached.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
특허문헌 1. 한국 등록특허 공보 제10-1545229호 Patent Document 1. Korean Patent Registration No. 10-1545229
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 제1 목적은 기계적 물성, 치수안정성, 내구성, 화학적 안정성 및 장기안정성 등이 현저히 향상된 음이온교환 복합막 및 그 제조방법을 제공하고자 하는 것이다.The present invention was made in view of the above problems, and a first object of the present invention is to provide an anion exchange composite membrane with significantly improved mechanical properties, dimensional stability, durability, chemical stability and long-term stability, and a method for manufacturing the same. will be.
또한, 본 발명의 제2 목적은 상기 음이온교환 복합막을 알칼리 연료전지, 수전해, 레독스 흐름전지에 응용하고자 하는 것이다.A second object of the present invention is to apply the anion exchange composite membrane to alkaline fuel cells, water electrolysis, and redox flow batteries.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 폴리페닐렌설파이드(PPS)를 포함하는 다공성 지지체; 및 상기 다공성 지지체에 충진되고, 하기 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 음이온 교환 고분자를 포함하는 조성물로부터 제조된 음이온교환층;을 포함하는 음이온교환 복합막을 제공한다.The present invention for achieving the above object is a porous support comprising polyphenylene sulfide (PPS); and an anion exchange layer prepared from a composition containing an anion exchange polymer filled in the porous support and having a repeating unit represented by any one selected from the following <Formula 1> to <Formula 3>. provide a barrier
<화학식 1><Formula 1>
Figure PCTKR2022008920-appb-img-000001
Figure PCTKR2022008920-appb-img-000001
<화학식 2> <Formula 2>
Figure PCTKR2022008920-appb-img-000002
Figure PCTKR2022008920-appb-img-000002
<화학식 3><Formula 3>
Figure PCTKR2022008920-appb-img-000003
Figure PCTKR2022008920-appb-img-000003
(상기 화학식 1 내지 3에서, 상기 A는 하기 구조식으로 표시되는 화합물로부터 선택되는 어느 하나이고,(In Formulas 1 to 3, A is any one selected from compounds represented by the following structural formulas,
Figure PCTKR2022008920-appb-img-000004
,
Figure PCTKR2022008920-appb-img-000005
,
Figure PCTKR2022008920-appb-img-000006
,
Figure PCTKR2022008920-appb-img-000007
Figure PCTKR2022008920-appb-img-000004
,
Figure PCTKR2022008920-appb-img-000005
,
Figure PCTKR2022008920-appb-img-000006
,
Figure PCTKR2022008920-appb-img-000007
상기 x, n, o, p, q, r은 각각 반복단위 내 몰분율로서, x, n, o, p, q, r은 모두 0보다 크고, o+p+q+r=1이고, 상기 y는 1 내지 6 중에서 선택되는 어느 하나의 정수이다)Where x, n, o, p, q, and r are mole fractions in the repeating unit, respectively, x, n, o, p, q, and r are all greater than 0, o + p + q + r = 1, and y Is an integer selected from 1 to 6)
상기 조성물은 가교제를 더 포함할 수 있고, 바람직하게 상기 가교제는 N,N,N',N'- 테트라메틸메틸렌다이아민(TMMDA), N,N,N',N'-테트라메틸에틸렌다이아민(TMEDA), N,N,N',N'-테트라메틸 1,3-프로판다이아민(TMPDA), N,N,N',N'-테트라메틸-1,4-부탄다이아민(TMBDA), N,N,N',N'-테트라메틸1-1,6-헥산다이아민(TMHDA) 및 N,N,N',N'-테트라에틸-1,3-프로판다이아민(TEPDA)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 한다.The composition may further include a crosslinking agent, preferably the crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA) , N,N,N',N'-tetramethyl 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) It is characterized in that at least one selected from the group consisting of.
상기 폴리페닐렌설파이드는 중량평균분자량이 10000 이상이고, 중량평균분자량을 수평균분자량으로 나눈 분산도가 2.5 이하인 가교형 또는 선형 폴리페닐렌설파이드인 것을 특징으로 한다.The polyphenylene sulfide is characterized in that it is a cross-linked or linear polyphenylene sulfide having a weight average molecular weight of 10000 or more and a degree of dispersion obtained by dividing the weight average molecular weight by the number average molecular weight of 2.5 or less.
상기 폴리페닐렌설파이드는 강성(stiffness)이 3 내지 4 GPa, 파단강도(strength at break)가 50 내지 80 MPa, 항복강도(strength at yield)가 50 내지 80 MPa인 것을 특징으로 한다.The polyphenylene sulfide has a stiffness of 3 to 4 GPa, a strength at break of 50 to 80 MPa, and a yield strength of 50 to 80 MPa.
상기 화학식 1 내지 3에서, x=0.7 내지 0.9, n=0.7 내지 0.9, o+p+q+r=1이고, o=0.7 내지 0.9, p+q+r=0.1 내지 0.3인 것을 특징으로 한다.In Formulas 1 to 3, x = 0.7 to 0.9, n = 0.7 to 0.9, o + p + q + r = 1, o = 0.7 to 0.9, p + q + r = 0.1 to 0.3. .
또한, 본 발명은 (I) 폴리페닐렌설파이드(PPS)를 제1용매에 용해시켜 기판 상에 캐스팅 및 건조함으로써 다공성 지지체를 준비하는 단계; (II) 하기 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 음이온 교환 고분자를 제2용매에 용해시켜 고분자용액을 얻는 단계; 및 (III) 상기 다공성 지지체를 상기 고분자용액에 함침 및 건조하는 단계;를 포함하는 음이온교환 복합막의 제조방법을 제공한다.In addition, the present invention comprises the steps of (I) preparing a porous support by dissolving polyphenylene sulfide (PPS) in a first solvent, casting and drying on a substrate; (II) dissolving an anion exchange polymer having a repeating unit represented by any one selected from the following <Formula 1> to <Formula 3> in a second solvent to obtain a polymer solution; and (III) impregnating and drying the porous support in the polymer solution.
<화학식 1><Formula 1>
Figure PCTKR2022008920-appb-img-000008
Figure PCTKR2022008920-appb-img-000008
<화학식 2> <Formula 2>
Figure PCTKR2022008920-appb-img-000009
Figure PCTKR2022008920-appb-img-000009
<화학식 3><Formula 3>
Figure PCTKR2022008920-appb-img-000010
Figure PCTKR2022008920-appb-img-000010
(상기 화학식 1 내지 3에서, 상기 A는 하기 구조식으로 표시되는 화합물로부터 선택되는 어느 하나이고,(In Formulas 1 to 3, A is any one selected from compounds represented by the following structural formulas,
Figure PCTKR2022008920-appb-img-000011
,
Figure PCTKR2022008920-appb-img-000012
,
Figure PCTKR2022008920-appb-img-000013
,
Figure PCTKR2022008920-appb-img-000014
Figure PCTKR2022008920-appb-img-000011
,
Figure PCTKR2022008920-appb-img-000012
,
Figure PCTKR2022008920-appb-img-000013
,
Figure PCTKR2022008920-appb-img-000014
상기 x, n, o, p, q, r은 각각 반복단위 내 몰분율로서, x, n, o, p, q, r은 모두 0보다 크고, o+p+q+r=1이고, 상기 y는 1 내지 6 중에서 선택되는 어느 하나의 정수이다)Where x, n, o, p, q, and r are mole fractions in the repeating unit, respectively, x, n, o, p, q, and r are all greater than 0, o + p + q + r = 1, and y Is an integer selected from 1 to 6)
상기 고분자 용액은 가교제를 더 포함할 수 있고, 상기 가교제는 N,N,N',N'- 테트라메틸메틸렌다이아민(TMMDA), N,N,N',N'-테트라메틸에틸렌다이아민(TMEDA), N,N,N',N'-테트라메틸 1,3-프로판다이아민(TMPDA), N,N,N',N'-테트라메틸-1,4-부탄다이아민(TMBDA), N,N,N',N'-테트라메틸1-1,6-헥산다이아민(TMHDA) 및 N,N,N',N'-테트라에틸-1,3-프로판다이아민(TEPDA)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 한다.The polymer solution may further include a crosslinking agent, and the crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine ( TMEDA), N,N,N',N'-tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), Consisting of N,N,N',N'-tetramethyl 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) It is characterized in that at least one selected from the group.
상기 제1용매 및 제2용매는 서로 동일하거나 상이하고, 각각 독립적으로 N-메틸-2-피롤리돈, 디메틸설폭사이드, 디메틸포름아미드, 디에틸포름아미드, 디메틸아세트아미드, 테트라하이드로퓨란, 메탄올, 에탄올 및 에테르로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 한다.The first solvent and the second solvent are the same as or different from each other, and each independently N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, diethylformamide, dimethylacetamide, tetrahydrofuran, methanol , characterized in that at least one selected from the group consisting of ethanol and ether.
상기 고분자용액의 농도는 2~5 중량%인 것을 특징으로 한다.The concentration of the polymer solution is characterized in that 2 to 5% by weight.
상기 (I) 단계에서, 상기 다공성 지지체는 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spunbonding) 및 스티치 본딩(stitch bonding)로 이루어진 군에서 선택되는 어느 하나의 방법으로 제조되는 것을 특징으로 한다.In the step (I), the porous support is subjected to carding, garneting, air-laying, wet-laying, melt blowing, spun bonding ( It is characterized in that it is manufactured by any one method selected from the group consisting of spunbonding and stitch bonding.
상기 (III) 단계의 건조는 80~90℃ 오븐에서 1 내지 10 시간동안 1차 건조한 후, 110~150 ℃ 진공오븐에서 20 내지 30시간 동안 2차 건조함으로써 제2용매를 완전히 제거하는 것을 특징으로 한다.The drying in step (III) is characterized in that the second solvent is completely removed by first drying in an oven at 80 to 90 ° C for 1 to 10 hours and then drying in a vacuum oven at 110 to 150 ° C for 20 to 30 hours. do.
또한, 본 발명은 상기 음이온교환 복합막을 포함하는 알칼리 연료전지를 제공한다.In addition, the present invention provides an alkaline fuel cell including the anion exchange composite membrane.
또한, 본 발명은 상기 음이온교환 복합막을 포함하는 수전해 장치를 제공한다.In addition, the present invention provides a water electrolysis device including the anion exchange composite membrane.
또한, 본 발명은 상기 음이온교환 복합막을 포함하는 레독스 흐름전지를 제공한다.In addition, the present invention provides a redox flow battery including the anion exchange composite membrane.
이하에서는 본 발명에 따른 음이온교환 복합막 및 그 제조방법에 관하여 상세히 설명하기로 한다.Hereinafter, an anion exchange composite membrane and a manufacturing method thereof according to the present invention will be described in detail.
본 발명에서는 폴리페닐렌설파이드(PPS)를 포함하는 다공성 지지체; 및 상기 다공성 지지체에 충진되고, 하기 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 음이온 교환 고분자를 포함하는 조성물로부터 제조된 음이온교환층;을 포함하는 음이온교환 복합막을 제공한다.In the present invention, a porous support containing polyphenylene sulfide (PPS); and an anion exchange layer prepared from a composition containing an anion exchange polymer filled in the porous support and having a repeating unit represented by any one selected from the following <Formula 1> to <Formula 3>. provide a barrier
종래 음이온 교환막은 다공성 지지체로 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌 및 폴리퍼플루오로알킬비닐에테르를 사용하였으나, 상기 다공성 지지체는 치환도 70% 이상의 높은 함량의 음이온 교환 그룹이 도입된 음이온 교환 고분자를 사용할 경우, 기계적 물성과 화학적 내구성이 오히려 약해져 쉽게 파손되는 문제가 발생하였다. 이에 다공성 지지체로 폴리페닐렌설파이드(PPS)를 사용함으로써, 상기 다공성 지지체 상에 치환도 70% 이상의 높은 함량의 음이온 교환 그룹이 도입된 음이온 교환 고분자가 안정적으로 함침되도록 하여 결함 없는 음이온교환 복합막을 형성하여 완성되었다.Conventional anion exchange membranes use polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, and polyperfluoroalkylvinyl ether as porous supports, but the porous supports have a degree of substitution of 70% or more. In the case of using an anion exchange polymer into which a high content of anion exchange group is introduced, mechanical properties and chemical durability are rather weakened, resulting in easy breakage. Therefore, by using polyphenylene sulfide (PPS) as the porous support, the anion exchange polymer introduced with a high content of anion exchange groups having a degree of substitution of 70% or more is stably impregnated on the porous support to form a defect-free anion exchange composite membrane. it was completed
상기 폴리페닐렌설파이드(PPS)는 본래 뛰어난 내화학성과 뛰어난 내열성을 가지고 있어, 다양한 분야에 활용되어 왔다. 그러나 기계적 물성이 충분하지 않으며, 특히 충격강도가 상대적으로 낮고, 인장강도는 6 MPa이므로 지지체로는 한계가 있었다. 폴리페닐렌설파이드의 기계적 물성을 향상시키기 위하여 유리섬유 등 충전제를 첨가하는 기술이 개발되었으나, 이차가공 또는 후가공할 때, 박리되는 등 상이 불안정해지는 문제가 있었다.The polyphenylene sulfide (PPS) originally has excellent chemical resistance and excellent heat resistance, and has been utilized in various fields. However, the mechanical properties are not sufficient, especially the impact strength is relatively low, and the tensile strength is 6 MPa, so there is a limit as a support. In order to improve the mechanical properties of polyphenylene sulfide, a technique for adding fillers such as glass fibers has been developed, but there is a problem of phase instability such as peeling during secondary processing or post-processing.
그러나 본 발명에서는 폴리페닐렌설파이드에 충전제를 첨가하지 않아도, 치환도 70% 이상의 높은 함량의 음이온 교환 그룹이 도입된 음이온 교환 고분자를 함침함으로써, 기계적 물성뿐만 아니라 화학적 물성 및 투명도까지 개선되는 현저한 효과를 달성할 수 있었다.However, in the present invention, even without adding a filler to polyphenylene sulfide, a significant effect of improving not only mechanical properties but also chemical properties and transparency is obtained by impregnating an anion exchange polymer into which an anion exchange group having a high degree of substitution of 70% or more is introduced. was able to achieve
본 발명에서 상기 폴리페닐렌설파이드는 중량평균분자량이 10000 이상이고, 중량평균분자량을 수평균분자량으로 나눈 분산도가 2.5 이하인 가교형 또는 선형 폴리페닐렌설파이드일 수 있다.In the present invention, the polyphenylene sulfide may be a cross-linked or linear polyphenylene sulfide having a weight average molecular weight of 10000 or more and a degree of dispersion obtained by dividing the weight average molecular weight by the number average molecular weight of 2.5 or less.
상기 폴리페닐렌설파이드는 강성(stiffness)이 3 내지 4 GPa, 파단강도(strength at break)가 50 내지 80 MPa, 항복강도(strength at yield)가 50 내지 80 MPa인 것일 수 있다.The polyphenylene sulfide may have a stiffness of 3 to 4 GPa, a strength at break of 50 to 80 MPa, and a strength at yield of 50 to 80 MPa.
상기 폴리페닐렌설파이드는 하기 화학식 A로 표시되는 것일 수 있다.The polyphenylene sulfide may be represented by Formula A below.
[화학식 A][Formula A]
Figure PCTKR2022008920-appb-img-000015
Figure PCTKR2022008920-appb-img-000015
(상기 화학식 A에서, Z는 200 내지 2000의 정수이다)(In the above formula A, Z is an integer from 200 to 2000)
상기 다공성 지지체는 폴리페닐렌설파이드 나노 섬유의 교차에 의해 다공성 웹이 형성된 부직포(nonwoven) 형태이거나 또는 복수 개의 기공부를 포함하는 다공성 막(membrane) 형태일 수 있다. 특히 내부에 큰 기공 구조가 다수 존재하여 음이온 교환 고분자 함침율을 향상시킬 수 있는 부직포 형태가 바람직하다.The porous support may be in the form of a nonwoven fabric in which a porous web is formed by crossing polyphenylene sulfide nanofibers or in the form of a porous membrane including a plurality of pores. In particular, a non-woven fabric having a large pore structure inside to improve the anion exchange polymer impregnation rate is preferred.
상기 다공성 지지체의 두께는 크게 제한이 없으나, 1 내지 100 ㎛ 범위가 바람직하며, 5 내지 50 ㎛ 범위가 더욱 바람직하고, 보다 바람직하게는 10 내지 20 ㎛인 것일 수 있다. 1 ㎛ 미만일 경우에는 원하는 효과를 도모하기 어려우며, 100 ㎛를 초과할 경우에는 저항층으로 작용할 수 있다.The thickness of the porous support is not particularly limited, but is preferably in the range of 1 to 100 μm, more preferably in the range of 5 to 50 μm, and more preferably in the range of 10 to 20 μm. When the thickness is less than 1 μm, it is difficult to achieve the desired effect, and when the thickness exceeds 100 μm, it may act as a resistance layer.
상기 다공성 지지체의 기공도는 특별히 제한되지는 않지만, 30 내지 90% 범위일 수 있다. 즉 다공성 지지체의 기공도가 30% 미만인 경우에는 음이온 교환 고분자를 코팅할 때 어려움이 있으며 동시에 음이온 교환 고분자의 양이 적어 이온전도도의 성질이 감소할 수 있고, 90%를 초과하는 경우에는 지지체 자체의 기계적 강도를 유지할 수 없을 뿐만 아니라 음이온 교환 고분자를 코팅할 때 파손되어 제작에 어려움이 있을 수 있다. 상기 다공성 지지체의 기공도는 80%인 것이 가장 함침이 잘 이루어지므로, 가장 바람직하다.The porosity of the porous support is not particularly limited, but may be in the range of 30 to 90%. That is, when the porosity of the porous support is less than 30%, it is difficult to coat the anion exchange polymer, and at the same time, the amount of the anion exchange polymer is small, and the ionic conductivity may be reduced. Not only cannot maintain mechanical strength, but also may be damaged when coating an anion exchange polymer, which may cause difficulties in manufacturing. The porosity of the porous support is most preferably 80% because impregnation is best achieved.
상기 다공성 지지체는 전기방사를 이용하여 제조된 것일 수 있다.The porous support may be prepared using electrospinning.
본 명세서에서, '음이온 교환 고분자를 포함하는 조성물'은 후술하는 다공성 지지체 상에 충진되어 음이온교환층을 형성하는 조성물을 의미한다.In the present specification, 'a composition containing an anion exchange polymer' refers to a composition that is filled on a porous support to form an anion exchange layer, which will be described later.
상기 음이온 교환 고분자는 하기 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 것일 수 있다.The anion exchange polymer may have a repeating unit represented by any one selected from the following <Formula 1> to <Formula 3>.
<화학식 1><Formula 1>
Figure PCTKR2022008920-appb-img-000016
Figure PCTKR2022008920-appb-img-000016
<화학식 2> <Formula 2>
Figure PCTKR2022008920-appb-img-000017
Figure PCTKR2022008920-appb-img-000017
<화학식 3><Formula 3>
Figure PCTKR2022008920-appb-img-000018
Figure PCTKR2022008920-appb-img-000018
(상기 화학식 1 내지 3에서, 상기 A는 하기 구조식으로 표시되는 화합물로부터 선택되는 어느 하나이고,(In Formulas 1 to 3, A is any one selected from compounds represented by the following structural formulas,
Figure PCTKR2022008920-appb-img-000019
,
Figure PCTKR2022008920-appb-img-000020
,
Figure PCTKR2022008920-appb-img-000021
,
Figure PCTKR2022008920-appb-img-000022
Figure PCTKR2022008920-appb-img-000019
,
Figure PCTKR2022008920-appb-img-000020
,
Figure PCTKR2022008920-appb-img-000021
,
Figure PCTKR2022008920-appb-img-000022
상기 x, n, o, p, q, r은 각각 반복단위 내 몰분율로서, x, n, o, p, q, r은 모두 0보다 크고, o+p+q+r=1이고, 상기 y는 1 내지 6 중에서 선택되는 어느 하나의 정수이다)Where x, n, o, p, q, and r are mole fractions in the repeating unit, respectively, x, n, o, p, q, and r are all greater than 0, o + p + q + r = 1, and y Is an integer selected from 1 to 6)
특히 전술한 음이온 교환 고분자는, 상기 화학식 1 내지 3에서, 음이온 교환 그룹이 도입된 반복단위의 몰분율이 0.70 내지 0.90인 것이 보다 바람직한데, 구체적으로 상기 화학식 1에서는 상기 x가 0.70 내지 0.90 중에서 선택되는 하나이고, 상기 화학식 2에서는 상기 y가 0.70 내지 0.90 중에서 선택되는 하나이고, 화학식 3에서는 o+p+q+r=1이고 상기 o가 0.70 내지 0.90 중에서 선택되는 하나이고, p+q+r이 0.1 내지 0.3 중에서 선택되는 하나인 음이온 교환 고분자를 사용하였을 때, 이온전달을 담당하는 양이온기가 높은 함량으로 존재하고 있기 때문에 높은 이온교환능을 확보할 수 있다. In particular, in the above-described anion exchange polymer, in Chemical Formulas 1 to 3, it is more preferable that the mole fraction of the repeating unit into which the anion exchange group is introduced is 0.70 to 0.90. Specifically, in Chemical Formula 1, the x is selected from 0.70 to 0.90. In Formula 2, y is one selected from 0.70 to 0.90, and in Formula 3, o + p + q + r = 1 and o is one selected from 0.70 to 0.90, and p + q + r is When an anion exchange polymer selected from 0.1 to 0.3 is used, high ion exchange capacity can be secured because there is a high content of cationic groups responsible for ion transfer.
또한, 높은 함량의 양이온기가 도입되어 있음에도 폴리페닐렌설파이드를 다공성 지지체로 하여 화학적 및 기계적 안정성을 더욱 향상시킬 수 있으므로, 염기성 조건에서의 화학적 내구성을 향상시킬 수 있다.In addition, since chemical and mechanical stability can be further improved by using polyphenylene sulfide as a porous support even though a high content of cationic groups is introduced, chemical durability under basic conditions can be improved.
앞서 설명한 바와 같이, 폴리페닐렌설파이드는 화학적으로 내구성이 높으나, 기계적 물성이 취약하다. 하지만 높은 함량의 양이온기가 도입된 화학식 1 내지 3의 음이온 교환 고분자를 도입하면 이온교환능을 향상시켜 이온전도도를 향상시킴과 동시에 화학 내구성도 향상될 뿐만 아니라 기계적 물성까지 2배 이상 향상되는 효과를 가질 수 있다.As described above, polyphenylene sulfide has high chemical durability, but poor mechanical properties. However, when the anion exchange polymer of Formulas 1 to 3 with a high content of cationic groups is introduced, the ion exchange capacity is improved to improve the ionic conductivity, chemical durability is also improved, and mechanical properties can be improved by more than two times. there is.
일반적으로 양이온기가 도입된 반복단위의 비율이 높아지고, 상대적으로 안정한 반복단위의 비율이 낮아지면 다공성 지지체를 도입하더라도 화학적 안정성이 저하되어 쉽게 분해되기 때문에 이온전도도와 기계적 물성이 모두 낮아지게되는 문제가 존재하게 된다, 그러나 본 발명은 높은 함량의 양이온기가 도입된 화학식 1 내지 3의 음이온 교환 고분자를, 기계적 물성이 취약한 폴리페닐렌설파이드의 다공성 지지체 위에 도입함으로써, 이온전도도와 동시에 화학 내구성을 향상시켰을 뿐만 아니라 기계적 물성까지 2배 이상 향상되는 효과를 달성하였다.In general, if the ratio of repeating units into which cationic groups are introduced increases and the ratio of relatively stable repeating units decreases, even if a porous support is introduced, chemical stability decreases and is easily decomposed, so both ionic conductivity and mechanical properties are reduced. However, the present invention not only improves ionic conductivity and chemical durability at the same time by introducing anion exchange polymers of Chemical Formulas 1 to 3 into which a high content of cationic groups is introduced onto a porous support of polyphenylene sulfide having poor mechanical properties. The effect of improving mechanical properties by more than two times was achieved.
상기 조성물은 가교제를 추가로 포함할 수 있다. 상기 가교제는 음이온 교환 고분자의 물리/화학적 안정성 및 내구성을 향상시키는 역할을 수행한다.The composition may further include a crosslinking agent. The crosslinking agent serves to improve the physical/chemical stability and durability of the anion exchange polymer.
상기 가교제는 N,N,N',N'- 테트라메틸메틸렌다이아민(TMMDA), N,N,N',N'-테트라메틸에틸렌다이아민(TMEDA), N,N,N',N'-테트라메틸 1,3-프로판다이아민(TMPDA), N,N,N',N'-테트라메틸-1,4-부탄다이아민(TMBDA), N,N,N',N'-테트라메틸1-1,6-헥산다이아민(TMHDA) 및 N,N,N',N'-테트라에틸-1,3-프로판다이아민(TEPDA)로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 가교제는 단독으로 또는 2 종 이상을 혼합하여 사용할 수 있다.The crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N' -Tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), N,N,N',N'-tetramethyl It may be at least one selected from the group consisting of 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA). The crosslinking agent may be used alone or in combination of two or more.
상기 가교제의 함량은 상기 음이온 교환 고분자의 구조 및 목적하는 상기 이온 교환층의 성능에 따라 적절히 선택할 수 있다. 상기 가교제는 상기 조성물의 총 중량을 기준으로 10 중량% 미만의 양으로 포함될 수 있다. 상기 가교제가 상술한 범위 내에서 사용될 경우, 음이온 교환층의 물리/화학적 안정성 및 내구성이 보다 더 향상될 수 있다.The content of the crosslinking agent may be appropriately selected depending on the structure of the anion exchange polymer and the desired performance of the ion exchange layer. The crosslinking agent may be included in an amount of less than 10% by weight based on the total weight of the composition. When the crosslinking agent is used within the above range, physical/chemical stability and durability of the anion exchange layer may be further improved.
상기 조성물은 용매를 더 포함할 수 있다. 상기 용매는 N-메틸-2-피롤리돈, 디메틸설폭사이드, 디메틸포름아미드, 디에틸포름아미드, 디메틸아세트아미드, 테트라하이드로퓨란, 메탄올, 에탄올 및 에테르로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.The composition may further include a solvent. The solvent may be at least one selected from the group consisting of N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, diethylformamide, dimethylacetamide, tetrahydrofuran, methanol, ethanol, and ether. .
상기 용매의 함량은 상기 조성물의 총 중량을 기준으로 0 중량% 초과 99 중량% 이하일 수 있다. 상기 용매의 함량이 상기 범위 이내이면, 상기 이온 교환막 형성용 조성물을 중합할 경우 건조 시간을 단축할 수 있으며 균일한 막 물성을 얻을 수 있다.The amount of the solvent may be greater than 0% by weight and less than or equal to 99% by weight based on the total weight of the composition. When the content of the solvent is within the above range, when the composition for forming an ion exchange membrane is polymerized, the drying time can be shortened and uniform membrane properties can be obtained.
또한, 본 발명은 (I) 폴리페닐렌설파이드(PPS)를 포함하는 다공성 지지체를 준비하는 단계; (II) 하기 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 음이온 교환 고분자를 제2용매에 용해시켜 고분자용액을 얻는 단계; 및 (III) 상기 다공성 지지체를 상기 고분자용액에 함침 및 건조하는 단계;를 포함하는 음이온교환 복합막의 제조방법을 제공한다.In addition, the present invention (I) preparing a porous support containing polyphenylene sulfide (PPS); (II) dissolving an anion exchange polymer having a repeating unit represented by any one selected from the following <Formula 1> to <Formula 3> in a second solvent to obtain a polymer solution; and (III) impregnating and drying the porous support in the polymer solution.
우선, (I) 폴리페닐렌설파이드(PPS)를 포함하는 다공성 지지체를 준비한다. 상기 다공성 지지체는 폴리페닐렌설파이드 나노 섬유의 교차에 의해 다공성 웹이 형성된 부직포(nonwoven) 형태이거나 또는 복수 개의 기공부를 포함하는 다공성 막(membrane) 형태일 수 있다. 특히 내부에 큰 기공 구조가 다수 존재하여 음이온 교환 고분자 함침율을 향상시킬 수 있는 다공성 막 형태가 바람직하다.First, (I) prepare a porous support containing polyphenylene sulfide (PPS). The porous support may be in the form of a nonwoven fabric in which a porous web is formed by crossing polyphenylene sulfide nanofibers or in the form of a porous membrane including a plurality of pores. In particular, a porous membrane having a plurality of large pore structures present therein to improve an anion exchange polymer impregnation rate is preferred.
상기 (I) 단계에서, 상기 다공성 지지체가 부직포 형태로 제조될 경우에는 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spunbonding) 및 스티치 본딩(stitch bonding)로 이루어진 군에서 선택되는 어느 하나의 방법으로 제조되는 것일 수 있다.In the step (I), when the porous support is made in the form of a nonwoven fabric, carding, garneting, air-laying, wet-laying, melt blowing ( It may be manufactured by any one method selected from the group consisting of melt blowing, spunbonding, and stitch bonding.
상기 (I) 단계에서, 상기 다공성 지지체가 막 형태로 제조될 경우에는, 폴리페닐렌설파이드를 포함하는 조성물을 압출기에 투입하고 티-다이를 통해 토출하여 시트 형태로 성형한 후 연신하여 막 형태로 제조되는 것일 수 있다.In the step (I), when the porous support is prepared in the form of a film, the composition containing polyphenylene sulfide is injected into an extruder, discharged through a T-die, molded into a sheet form, and then stretched to form a film. may be manufactured.
상기 연신은 1축 연신, 또는 2축 연신(축차 또는 동시 2축 연신) 등의 공지된 방법에 의해 이루어질 수 있다. 축차 2축 연신의 경우 연신 배율은 가로방향(MD) 및 세로방향(TD)으로 각각 4~20배일 수 있고, 그에 따른 면 배율은 16~400배일 수 있다.The stretching may be performed by a known method such as uniaxial stretching or biaxial stretching (sequential or simultaneous biaxial stretching). In the case of sequential biaxial stretching, the stretching magnification may be 4 to 20 times in the transverse direction (MD) and the longitudinal direction (TD), respectively, and the plane magnification accordingly may be 16 to 400 times.
상기 다공성 지지체의 두께는 크게 제한이 없으나, 1 내지 100 ㎛ 범위가 바람직하며, 5 내지 50 ㎛ 범위가 더욱 바람직하다. 보다 바람직하게는 10 내지 20 ㎛인 것일 수 있다. 1 ㎛ 미만일 경우에는 원하는 효과를 도모하기 어려우며, 100 ㎛를 초과할 경우에는 저항층으로 작용할 수 있다.The thickness of the porous support is not particularly limited, but is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm. More preferably, it may be 10 to 20 μm. When the thickness is less than 1 μm, it is difficult to achieve the desired effect, and when the thickness exceeds 100 μm, it may act as a resistance layer.
상기 다공성 지지체의 기공도는 특별히 제한되지는 않지만, 30 내지 90% 범위일 수 있다. 즉 다공성 지지체의 기공도가 30% 미만인 경우에는 음이온 교환 고분자를 코팅할 때 어려움이 있으며 동시에 음이온 교환 고분자의 양이 적어 이온전도도의 성질이 감소할 수 있고, 90%를 초과하는 경우에는 지지체 자체의 기계적 강도를 유지할 수 없을 뿐만 아니라 음이온 교환 고분자를 코팅할 때 파손되어 제작에 어려움이 있을 수 있다. 상기 다공성 지지체의 기공도는 80%인 것이 가장 함침이 잘 이루어지므로, 가장 바람직하다.The porosity of the porous support is not particularly limited, but may be in the range of 30 to 90%. That is, when the porosity of the porous support is less than 30%, it is difficult to coat the anion exchange polymer, and at the same time, the amount of the anion exchange polymer is small, and the ionic conductivity may be reduced. Not only cannot maintain mechanical strength, but also may be damaged when coating an anion exchange polymer, which may cause difficulties in manufacturing. The porosity of the porous support is most preferably 80% because impregnation is best achieved.
다음으로 (II) 상기 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 음이온 교환 고분자를 제2용매에 용해시켜 고분자용액을 얻는다.Next, (II) an anion exchange polymer having a repeating unit represented by any one selected from <Formula 1> to <Formula 3> is dissolved in a second solvent to obtain a polymer solution.
<화학식 1><Formula 1>
Figure PCTKR2022008920-appb-img-000023
Figure PCTKR2022008920-appb-img-000023
<화학식 2> <Formula 2>
Figure PCTKR2022008920-appb-img-000024
Figure PCTKR2022008920-appb-img-000024
<화학식 3><Formula 3>
Figure PCTKR2022008920-appb-img-000025
Figure PCTKR2022008920-appb-img-000025
(상기 화학식 1 내지 3에서, 상기 A는 하기 구조식으로 표시되는 화합물로부터 선택되는 어느 하나이고,(In Formulas 1 to 3, A is any one selected from compounds represented by the following structural formulas,
Figure PCTKR2022008920-appb-img-000026
,
Figure PCTKR2022008920-appb-img-000027
,
Figure PCTKR2022008920-appb-img-000028
,
Figure PCTKR2022008920-appb-img-000029
Figure PCTKR2022008920-appb-img-000026
,
Figure PCTKR2022008920-appb-img-000027
,
Figure PCTKR2022008920-appb-img-000028
,
Figure PCTKR2022008920-appb-img-000029
상기 x, n, o, p, q, r은 각각 반복단위 내 몰분율로서, x, n, o, p, q, r은 모두 0보다 크고, o+p+q+r=1이고, 상기 y는 1 내지 6 중에서 선택되는 어느 하나의 정수이다)Where x, n, o, p, q, and r are mole fractions in the repeating unit, respectively, x, n, o, p, q, and r are all greater than 0, o + p + q + r = 1, and y Is an integer selected from 1 to 6)
특히 전술한 음이온 교환 고분자는, 상기 화학식 1 내지 3에서, 음이온 교환 그룹이 도입된 반복단위의 몰분율이 0.70 내지 0.90인 것이 보다 바람직한데, 구체적으로 상기 화학식 1에서는 상기 x가 0.70 내지 0.90 중에서 선택되는 하나이고, 상기 화학식 2에서는 상기 y가 0.70 내지 0.90 중에서 선택되는 하나이고, 화학식 3에서는 o+p+q+r=1이고 상기 o가 0.70 내지 0.90 중에서 선택되는 하나이고, p+q+r이 0.1 내지 0.3 중에서 선택되는 하나인 음이온 교환 고분자를 사용하였을 때, 이온전달을 담당하는 양이온기가 높은 함량으로 존재하고 있기 때문에 높은 이온교환능을 확보할 수 있다. In particular, in the above-described anion exchange polymer, in Chemical Formulas 1 to 3, it is more preferable that the mole fraction of the repeating unit into which the anion exchange group is introduced is 0.70 to 0.90. Specifically, in Chemical Formula 1, the x is selected from 0.70 to 0.90. In Formula 2, y is one selected from 0.70 to 0.90, and in Formula 3, o + p + q + r = 1 and o is one selected from 0.70 to 0.90, and p + q + r is When an anion exchange polymer selected from 0.1 to 0.3 is used, high ion exchange capacity can be secured because there is a high content of cationic groups responsible for ion transfer.
상기 제1용매 및 제2용매는 서로 동일하거나 상이하고, 각각 독립적으로 N-메틸-2-피롤리돈, 디메틸설폭사이드, 디메틸포름아미드, 디에틸포름아미드, 디메틸아세트아미드, 테트라하이드로퓨란, 메탄올, 에탄올 및 에테르로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있으며, 이에 한정되는 것은 아니다.The first solvent and the second solvent are the same as or different from each other, and each independently N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, diethylformamide, dimethylacetamide, tetrahydrofuran, methanol , It may be any one or more selected from the group consisting of ethanol and ether, but is not limited thereto.
상기 (II) 단계에서 상기 고분자용액의 농도는 2~5 중량%일 수 있는데, 구체적으로 상기 고분자용액은 전체 총중량을 기준으로 음이온 교환 고분자의 중량이 2 내지 5 중량%, 구체적으로 3 내지 4 중량%, 보다 구체적으로는 3 중량%일 수 있다.In the step (II), the concentration of the polymer solution may be 2 to 5% by weight, specifically, the polymer solution contains 2 to 5% by weight, specifically 3 to 4% by weight of the anion exchange polymer based on the total weight. %, more specifically 3% by weight.
상기 고분자 용액은 가교제를 더 포함할 수 있고, 상기 가교제는 N,N,N',N'- 테트라메틸메틸렌다이아민(TMMDA), N,N,N',N'-테트라메틸에틸렌다이아민(TMEDA), N,N,N',N'-테트라메틸 1,3-프로판다이아민(TMPDA), N,N,N',N'-테트라메틸-1,4-부탄다이아민(TMBDA), N,N,N',N'-테트라메틸1-1,6-헥산다이아민(TMHDA) 및 N,N,N',N'-테트라에틸-1,3-프로판다이아민(TEPDA)로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.The polymer solution may further include a crosslinking agent, and the crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine ( TMEDA), N,N,N',N'-tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), Consisting of N,N,N',N'-tetramethyl 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) It may be any one or more selected from the group.
상기 (III) 단계의 건조는 80~90℃ 오븐에서 1 내지 10 시간동안 1차 건조한 후, 110~150 ℃ 진공오븐에서 20 내지 30시간 동안 2차 건조함으로써 제2용매를 완전히 제거하는 것일 수 있다.The drying in step (III) may be to completely remove the second solvent by first drying in an oven at 80 to 90 ° C for 1 to 10 hours and then drying in a vacuum oven at 110 to 150 ° C for 20 to 30 hours. .
또한, 상기 함침 시간은 구체적으로는 1 내지 50 시간, 보다 구체적으로는 10 내지 30 시간, 더욱 구체적으로는 22 내지 26 시간일 수 있고, 상기 함침 후의 건조 시간은 앞서 설명한 바와 같다.In addition, the impregnation time may be specifically 1 to 50 hours, more specifically 10 to 30 hours, and more specifically 22 to 26 hours, and the drying time after the impregnation is as described above.
본 발명에 따른 제조방법에 있어서, 각 단계의 반응 온도와 시간 범위는 필요에 따라 적절히 조절할 수 있으며, 특별히 이에 제한되는 것은 아니지만, 각각의 반응이 상기 온도 및 시간 범위 미만의 조건 하에서 수행될 경우 음이온교환 복합막의 성능이 하락할 수 있으며, 상기 범위를 초과하는 온도 및 시간 조건 하에서 수행될 경우에는 장시간 반응에 따른 공정 효율 감소로 인해 비용증가 문제가 발생할 수 있으므로 각 조건 범위에서 수행되는 것이 바람직하다.In the production method according to the present invention, the reaction temperature and time range of each step may be appropriately adjusted as necessary, and are not particularly limited thereto, but when each reaction is performed under conditions less than the above temperature and time ranges, anion The performance of the exchange composite membrane may deteriorate, and if the exchange membrane is performed under conditions of temperature and time exceeding the above ranges, a cost increase problem may occur due to a decrease in process efficiency due to a long reaction, so it is preferable to perform the exchange membrane within each condition range.
상기 음이온 교환 고분자는 구체적으로 하기 화학식 4로 표시되는 음이온 교환 고분자인 것이 가장 바람직하다.The anion exchange polymer is most preferably an anion exchange polymer represented by Chemical Formula 4 below.
<화학식 4><Formula 4>
Figure PCTKR2022008920-appb-img-000030
Figure PCTKR2022008920-appb-img-000030
(상기 <화학식 4>에서 A, x는 상기 <화학식 1>에서 정의한 바와 같다)(A and x in <Formula 4> are as defined in <Formula 1>)
상기 화학식 4로 표시되는 음이온 교환 고분자는 특별히 제한되지 않으나, 예컨대, (1) 폴리(2,6-디메틸-1,4-페닐렌옥사이드), AlCl3 및 아조비스이소부티로니트릴(AIBN)를 1:1로 혼합한 혼합액과 1 : 0.7 몰비가 되도록 혼합하였다(구체적으로 폴리(2,6-디메틸-1,4-페닐렌옥사이드) 1 당량에 대하여 AlCl3 및 AIBN을 각각 0.7 당량으로 혼합하였다). 구체적으로는 1 내지 24 시간, 보다 구체적으로는 1 내지 12 시간, 더욱 구체적으로는 5 내지 8 시간동안 반응시켜 <화학식 4>로 표시되는 PPO(Ac-PPO)를 생성하는 단계;를 포함하여 제조된 것일 수 있다.The anion exchange polymer represented by Chemical Formula 4 is not particularly limited, but examples include (1) poly(2,6-dimethyl-1,4-phenylene oxide), AlCl 3 and azobisisobutyronitrile (AIBN). The mixture was mixed at a ratio of 1:1 and mixed at a molar ratio of 1:0.7 (specifically, 0.7 equivalents of AlCl3 and AIBN were mixed with respect to 1 equivalent of poly(2,6-dimethyl-1,4-phenylene oxide)) . Specifically, reacting for 1 to 24 hours, more specifically for 1 to 12 hours, and more specifically for 5 to 8 hours to produce PPO (Ac-PPO) represented by <Chemical Formula 4>; may have been
본 발명에 따른 음이온교환 복합막은 전해질막으로 사용될 수 있다. 상기 전해질막은 연료전지용 전해질막, 수전해 장치용 전해질막 및 레독스 플로우 전지용 전해질 막에 사용될 수 있다.The anion exchange composite membrane according to the present invention can be used as an electrolyte membrane. The electrolyte membrane may be used for an electrolyte membrane for a fuel cell, an electrolyte membrane for a water electrolysis device, and an electrolyte membrane for a redox flow battery.
본 발명에 따른 음이온교환 복합막을 함유하는 연료전지는 고체알칼리연료전지(Solid alkaline fuel cell, SAFC) 또는 직접붕소화물연료전지(Direct borohydride fuel cell, DBFC)일 수 있다.A fuel cell containing the anion exchange composite membrane according to the present invention may be a solid alkaline fuel cell (SAFC) or a direct borohydride fuel cell (DBFC).
상기에서 고체알칼리연료전지(SAFC)는 음이온교환 복합막을 함유하며, 수소, 개질가스, 혼합수소가스의 수소 함유 가스 계열군으로부터 선택된 하나 이상의 연료를 연료극으로 공급하고, 산소, 공기, 혼합산소가스의 산소 함유 가스 계열군으로부터 선택된 하나 이상의 산화제를 공기극으로 공급하는 연료전지이다.In the above, the solid alkali fuel cell (SAFC) contains an anion exchange composite membrane, supplies one or more fuels selected from the hydrogen-containing gas group of hydrogen, reformed gas, and mixed hydrogen gas to the anode, and supplies oxygen, air, and mixed oxygen gas to the fuel electrode. A fuel cell in which at least one oxidizing agent selected from the group of oxygen-containing gases is supplied to the cathode.
상기에서 직접붕소수소화물연료전지(DBFC)는 음이온교환 복합막을 함유하며, 가성소다 용액을 0 내지 5M 농도 범위를 함유하고 있는 1∼20wt%의 나트륨 보로하이드라이드(NaBH4)를 연료로 사용하여 연료극으로 공급하고, 산소, 공기, 혼합산소가스의 산소 함유 가스 계열군으로부터 선택된 하나 이상의 산화제를 공기극으로 공급하는 연료전지이다.In the above, the direct borohydride fuel cell (DBFC) contains an anion exchange composite membrane, and uses 1 to 20 wt% of sodium borohydride (NaBH4) containing a caustic soda solution in a concentration range of 0 to 5M as fuel to obtain an anode and supplying at least one oxidizing agent selected from the group of oxygen-containing gases such as oxygen, air, and mixed oxygen gas to the cathode.
상기에서 수전해시스템은 KOH수용액을 전해질로 이용하는 알칼리형 수전해시스템(Alkaline Water Electrolyzer, AWE)일 수 있고, 상기 알칼리형 수전해시스템은 음이온교환 복합막을 함유하며, 수산화이온(OH-)이 이동하여 물로부터 수소와 산소를 만드는 장치이다.In the above, the water electrolysis system may be an alkaline water electrolyzer (AWE) using an aqueous KOH solution as an electrolyte, the alkaline water electrolysis system contains an anion exchange composite membrane, and hydroxide ions (OH-) move It is a device that produces hydrogen and oxygen from water.
상기에서 레독스 플로우 전지(redox flow battery)는 음이온교환 복합막을 함유하며, 상기 음이온교환 복합막은 양 전극을 분리하는 격리막에 적용된다. 상기 격리막은 레독스 플로우 전지에서 전기활성종의 혼합을 방지하고, 양 전극에서 공통의 상대 이온 전달체만을 통과시키며, 양극쪽과 음극쪽에서 발생하는 압력차에 의해 파괴되지 않은 우수한 물리적 강도를 필요로 하므로, 본 발명의 음이온교환 복합막이 용이하게 적용될 수 있다.In the above, the redox flow battery contains an anion exchange composite membrane, and the anion exchange composite membrane is applied to a separator separating both electrodes. The separator prevents mixing of electroactive species in a redox flow battery, passes only a common counter ion transporter at both electrodes, and requires excellent physical strength that is not destroyed by the pressure difference generated between the anode and cathode. , the anion exchange composite membrane of the present invention can be easily applied.
본 발명에 따라, 폴리페닐렌설파이드(PPS)를 다공성 지지체로 포함하는 음이온교환 복합막은 기계적 물성, 치수안정성, 내구성, 화학적 안정성 및 장기안정성 등이 현저히 향상된다.According to the present invention, the mechanical properties, dimensional stability, durability, chemical stability and long-term stability of the anion exchange composite membrane including polyphenylene sulfide (PPS) as a porous support are remarkably improved.
또한, 본 발명의 다공성 지지체를 포함하는 음이온교환 복합막은 알칼리 연료전지, 수전해 장치, 레독스 흐름전지 등에 응용할 수 있다.In addition, the anion exchange composite membrane comprising the porous support of the present invention can be applied to alkaline fuel cells, water electrolyzers, redox flow batteries, and the like.
도 1은 본 발명의 비교예 1로부터 제조된 음이온 교환막을 촬영한 사진이다.1 is a photograph of an anion exchange membrane prepared from Comparative Example 1 of the present invention.
도 2는 본 발명의 제조예 2로부터 제조된 폴리페닐렌설파이드의 다공성 지지체를 촬영한 사진이다.2 is a photograph of a porous support of polyphenylene sulfide prepared from Preparation Example 2 of the present invention.
도 3은 본 발명의 실시예 1로부터 제조된 음이온교환 복합막을 촬영한 사진이다.3 is a photograph of the anion exchange composite membrane prepared in Example 1 of the present invention.
도 4는 실시예 1로부터 제조된 음이온교환 복합막(XAc-PPO-PPS), 비교예 1로부터 제조된 음이온 교환막(XAc-PPO) 및 제조예 1로부터 제조된 Ac-PPO 단일막의 인장강도를 측정하여 나타낸 그래프이다.Figure 4 measures the tensile strength of the anion exchange composite membrane (XAc-PPO-PPS) prepared from Example 1, the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1, and the Ac-PPO single membrane prepared from Preparation Example 1 This is the graph shown by
도 5는 실시예 1로부터 제조된 음이온교환 복합막(XAc-PPO-PPS) 및 비교예 1로부터 제조된 음이온 교환막(XAc-PPO)의 80 ℃에서의 시간 경과에 따른 수산화 이온 전도도를 측정하여 나타낸 그래프이다.5 is a graph showing the measured hydroxide ion conductivity over time at 80 ° C. of the anion exchange membrane (XAc-PPO-PPS) prepared from Example 1 and the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1 it's a graph
도 6은 비교예 2로부터 제조된 음이온교환 복합막(XAc-PPO+PE)의 80 ℃에서의 시간 경과에 따른 수산화 이온 전도도를 측정하여 나타낸 그래프이다. FIG. 6 is a graph showing the measured hydroxide ion conductivity over time at 80° C. of the anion exchange composite membrane (XAc-PPO+PE) prepared in Comparative Example 2. FIG.
이하에서는 본 발명에 따른 음이온교환 복합막을 제조하기 위한 실시예를 첨부된 도면과 함께 구체적으로 설명한다.Hereinafter, an embodiment for manufacturing an anion exchange composite membrane according to the present invention will be described in detail with accompanying drawings.
제조예 1. 4차 암모늄화된 폴리페닐렌옥사이드 공중합체(Ac-PPO)의 합성Preparation Example 1. Synthesis of quaternary ammoniumized polyphenylene oxide copolymer (Ac-PPO)
폴리(2,6-디메틸-1,4-페닐렌옥사이드)를 1,2-디클로로에탄(1,2-dichloroethane) 용매에 용해시켰다(PPO 용액). AlCl3 및 아조비스이소부티로니트릴(AIBN)을 1 : 1의 중량비로 혼합하여 1,2-디클로로에탄(1,2-dichloroethane) 용매에 첨가한 혼합액을 제조하였다. 상기 PPO 용액과 혼합액을 1 : 0.7 몰비가 되도록 혼합하였다(구체적으로 폴리(2,6-디메틸-1,4-페닐렌옥사이드) 1 당량에 대하여 AlCl3 및 AIBN을 각각 0.7 당량으로 혼합하였다). 6시간 반응시켰다. 여기에 메탄올(MeOH)을 첨가하여 침전시킨 뒤, 메탄올로 수회 세척한 다음, 진공오븐에 건죠시켜 용매를 제거함으로써 상기 화학식 4>로 표시되는 폴리페닐렌옥사이드 공중합체를 얻었다.Poly(2,6-dimethyl-1,4-phenylene oxide) was dissolved in 1,2-dichloroethane solvent (PPO solution). AlCl 3 and azobisisobutyronitrile (AIBN) were mixed in a weight ratio of 1:1 to prepare a mixed solution added to 1,2-dichloroethane solvent. The PPO solution and the mixture were mixed at a molar ratio of 1:0.7 (specifically, 0.7 equivalents of AlCl3 and AIBN were mixed with respect to 1 equivalent of poly(2,6-dimethyl-1,4-phenylene oxide)). It was reacted for 6 hours. Methanol (MeOH) was added thereto to precipitate, washed several times with methanol, and dried in a vacuum oven to remove the solvent, thereby obtaining a polyphenylene oxide copolymer represented by Formula 4>.
<화학식 4><Formula 4>
Figure PCTKR2022008920-appb-img-000031
Figure PCTKR2022008920-appb-img-000031
(상기 <화학식 4>에서 x는 반복단위 내 몰분율로서 x=0.7이고, A는
Figure PCTKR2022008920-appb-img-000032
이다)
(In the above <Formula 4>, x is the mole fraction in the repeating unit, x = 0.7, and A is
Figure PCTKR2022008920-appb-img-000032
to be)
상기 제조예 1로부터 <화학식 4>로 표시되는 폴리페닐렌옥사이드 공중합체가 합성되었음을 다음과 같이 1H-NMR 및 FT-IR 데이터로 확인하였다. 1H-NMR(300 MHz, DMSO-d6, ppm): 13.50 (s,-COOH), 10.41 (s, -OH), 8.10 (d, Har, J=8.0Hz), 7.92 (d, Har, J=8.0Hz), 7.85 (s, Har), 7.80 (s, Har), 7.71 (s, Har), 7.47 (s, Har), 7.20 (d, Har, J=8.3Hz), 7.04 (d, Har, J=8.3Hz). FT-IR (film) : ν(O-H) at 3400 cm-1, ν(C=O) at 1786 and 1716 cm-1, Ar (C-C) at 1619, 1519 cm-1, imide ν(C-N) at 1377 cm-1, (C-F) at 1299-1135 cm-1, imide (C-N-C) at 1102 and 720 cm-1.The synthesis of the polyphenylene oxide copolymer represented by <Chemical Formula 4> from Preparation Example 1 was confirmed by 1 H-NMR and FT-IR data as follows. 1 H-NMR (300 MHz, DMSO-d 6 , ppm): 13.50 (s, -COOH), 10.41 (s, -OH), 8.10 (d, H ar , J=8.0 Hz), 7.92 (d, H ar , J=8.0 Hz), 7.85 (s, H ar ), 7.80 (s, H ar ), 7.71 (s, H ar ), 7.47 (s, H ar ), 7.20 (d, H ar , J=8.3 Hz), 7.04 (d, H ar , J=8.3 Hz). FT-IR (film): ν(OH) at 3400 cm -1 , ν(C=O) at 1786 and 1716 cm -1 , Ar (CC) at 1619, 1519 cm -1 , imide ν(CN) at 1377 cm -1 , (CF) at 1299-1135 cm -1 , imide (CNC) at 1102 and 720 cm -1 .
제조예 2. 폴리페닐렌설파이드(polyphenylene sulfide) 다공성 지지체의 제조Preparation Example 2. Preparation of polyphenylene sulfide porous support
평균입경 570㎛인 PPS 미세 파우더 100 중량부에 대하여 액상 윤활제인 나프타(naphtha) 23 중량부를 혼합 및 교반하여 균일하게 분산시켜서 페이스트를 제조하였다. 다음으로, 상기 페이스트를 50℃에서 18 시간 동안 방치시켜서 숙성시킨 후, 성형 지그를 이용하여 압축시켜서 PPS 블록을 제조하였다. 다음으로, 상기 PPS 블록을 압출금형에 투입 후, 약 0.10 Ton/cm2 압력 하에서 가압압출을 실시하였다.A paste was prepared by uniformly dispersing 23 parts by weight of liquid lubricant naphtha by mixing and stirring with respect to 100 parts by weight of PPS fine powder having an average particle diameter of 570 μm. Next, the paste was aged at 50° C. for 18 hours, and then compressed using a molding jig to prepare a PPS block. Next, after putting the PPS block into an extrusion mold, pressure extrusion was performed under a pressure of about 0.10 Ton/cm 2 .
다음으로, 압연롤을 이용하여, 압연시켜서 평균두께 850㎛인 미소성 테이프를 제조하였다. 다음으로, 미소성 테이프를 3M/min의 속도로 컨베이어 벨트로 이송시키면서 180℃의 열을 가하여 건조시켜 윤활제를 제거하였다. 윤활제가 제거된 미소성 테이프를 연신온도 280 ℃ 및 연신속도 10 M/min 조건 하에서 6.5 배로 1축 연신(길이 방향 연신)을 수행하였다. 1축 연신된 미소성 테이프를 연신온도 250℃ 및 연신속도 10 M/min 조건 하에서 30 배로 2축 연신(폭 방향 연신)을 수행하여 다공성 지지체를 제조하였다.Next, it was rolled using a pressure roll to prepare an unsintered tape having an average thickness of 850 μm. Next, the unsintered tape was dried by applying heat of 180° C. while being transferred to a conveyor belt at a speed of 3 M/min to remove the lubricant. The unsintered tape from which the lubricant was removed was uniaxially stretched (longitudinal stretching) by 6.5 times at a stretching temperature of 280° C. and a stretching speed of 10 M/min. The uniaxially stretched unsintered tape was biaxially stretched (width direction stretched) 30 times under conditions of a stretching temperature of 250° C. and a stretching speed of 10 M/min to prepare a porous support.
다음으로, 1축 및 2축 연신된 다공성 지지체를 컨베이어 벨트 상에서 15 M/min의 속도로 420℃ 온도를 가하여 소성시켜서 평균두께 14㎛ 및 평균기공 크기 0.114㎛인 PPS 다공성 지지체를 제조하였다.Next, a PPS porous support having an average thickness of 14 μm and an average pore size of 0.114 μm was prepared by firing the uniaxially and biaxially stretched porous support on a conveyor belt by applying a temperature of 420 ° C. at a speed of 15 M / min.
실시예 1. 음이온교환 복합막(xAc-PPO-PPS)의 제조Example 1. Preparation of anion exchange composite membrane (xAc-PPO-PPS)
제조예 2로부터 제조된 다공성 지지체인 폴리페닐렌설파이드(polyphenylene sulfide)를 준비한다.Prepare polyphenylene sulfide, which is a porous support prepared in Preparation Example 2.
제조예 1로부터 제조된 <화학식 4>로 표시되는 폴리페닐렌옥사이드 공중합체 15 중량%과 NMP 용매 85 중량%를 혼합한 제1용액을 제조하였다. 상기 제1용액에 N,N,N',N'-tetramethyl-1,6-hexadiamine(TMHDA)을 혼합하여 고분자용액을 제조하였다. 상기 TMHDA 가교제는 상기 폴리페닐렌옥사이드 공중합체(화학식 4)에 대해 1 : 1의 당량비로 혼합하여 100% 가교가 이루어지도록 하였다.A first solution was prepared by mixing 15% by weight of the polyphenylene oxide copolymer represented by <Chemical Formula 4> prepared in Preparation Example 1 and 85% by weight of an NMP solvent. A polymer solution was prepared by mixing N,N,N',N'-tetramethyl-1,6-hexadiamine (TMHDA) with the first solution. The TMHDA crosslinking agent was mixed with the polyphenylene oxide copolymer (Formula 4) in an equivalent ratio of 1:1 to achieve 100% crosslinking.
다음으로 상기 다공성 지지체를 고분자용액에 함침시킨 다음 꺼내어 진공오븐에 투입하고, 80 ℃에서 8 시간 열풍 건조하였다. 이후 120 ℃ 진공오븐에서 24시간 동안 가열하여 가교된 형태의 <화학식 4>의 폴리페닐렌옥사이드 공중합체(XAc-PPO)가 형성된 복합막 형태의 음이온교환 복합막을 제조하였다.Next, the porous support was impregnated with the polymer solution, taken out, put into a vacuum oven, and dried with hot air at 80° C. for 8 hours. Thereafter, the mixture was heated in a vacuum oven at 120° C. for 24 hours to prepare an anion exchange composite membrane in the form of a composite membrane formed with a cross-linked polyphenylene oxide copolymer (XAc-PPO) of <Chemical Formula 4>.
비교예 1. 단일막 형태의 음이온 교환막의 제조Comparative Example 1. Preparation of an anion exchange membrane in the form of a single membrane
제조예 1로부터 제조된 <화학식 4>로 표시되는 폴리페닐렌옥사이드 공중합체 15 중량%과 NMP 용매 85 중량%를 혼합한 제1용액을 제조하였다. 상기 제1용액에 N,N,N',N'-tetramethyl-1,6-hexadiamine(TMHDA)을 혼합하여 고분자용액을 제조하였다. 상기 TMHDA 가교제는 상기 폴리페닐렌옥사이드 공중합체(화학식 4)에 대해 1 : 1의 당량비로 혼합하여 100% 가교가 이루어지도록 하였다.A first solution was prepared by mixing 15% by weight of the polyphenylene oxide copolymer represented by <Chemical Formula 4> prepared in Preparation Example 1 and 85% by weight of an NMP solvent. A polymer solution was prepared by mixing N,N,N',N'-tetramethyl-1,6-hexadiamine (TMHDA) with the first solution. The TMHDA crosslinking agent was mixed with the polyphenylene oxide copolymer (Formula 4) in an equivalent ratio of 1:1 to achieve 100% crosslinking.
상기 고분자 용액만으로 제막하고, 60 ℃에서 12 시간 동안 진공 하에 건조시켜 단일막 형태의 음이온 교환막을 제조하였다. A film was formed with only the polymer solution and dried under vacuum at 60° C. for 12 hours to prepare a single-membrane anion exchange membrane.
비교예 2. 폴리에틸렌 지지체를 사용한 음이온교환 복합막의 제조Comparative Example 2. Preparation of Anion Exchange Composite Membrane Using Polyethylene Support
실시예 1에서 제조예 2로부터 제조된 다공성 지지체인 폴리페닐렌설파이드(polyphenylene sulfide) 대신에 폴리에틸렌(polyethylene)을 지지체로 사용한 것을 제외하고는 모두 실시예 1과 동일하게 음이온교환 복합막을 제조하였다.In Example 1, an anion exchange composite membrane was prepared in the same manner as in Example 1, except that polyethylene was used as a support instead of polyphenylene sulfide, which is a porous support prepared in Preparation Example 2.
본 발명에서 사용한 폴리에틸렌은 더블유스코프 코리아 회사로부터 기공도 80%인 것을 구입하여 사용하였다.The polyethylene used in the present invention was purchased from W.Scope Korea and had a porosity of 80%.
도 1은 본 발명의 비교예 1로부터 제조된 음이온 교환막을 촬영한 사진이고, 도 2는 본 발명의 제조예 2로부터 제조된 폴리페닐렌설파이드의 다공성 지지체를 촬영한 사진이며, 도 3은 본 발명의 실시예 1로부터 제조된 음이온교환 복합막을 촬영한 사진이다.Figure 1 is a photograph of an anion exchange membrane prepared from Comparative Example 1 of the present invention, Figure 2 is a photograph of a porous support of polyphenylene sulfide prepared from Preparation Example 2 of the present invention, Figure 3 is a photograph of the present invention This is a photograph of the anion exchange composite membrane prepared from Example 1 of
도 1에 나타난 바와 같이, 70% 이상의 높은 치환도로 음이온 교환 그룹이 도입된 음이온 교환 고분자(제조예 1)는, 기계적 및 화학적 물성이 약해 쉽게 부서지기 때문에 단일막 형태로 제조할 수 없다는 것을 확인하였다.As shown in FIG. 1, it was confirmed that the anion exchange polymer (Preparation Example 1) into which the anion exchange group was introduced with a high substitution degree of 70% or more could not be prepared in the form of a single membrane because it had weak mechanical and chemical properties and was easily broken. .
도 2에 나타난 바와 같이, 폴리페닐렌설파이드(PPS)는 다공성 지지체를 형성하는 것을 확인하였다. As shown in FIG. 2, it was confirmed that polyphenylene sulfide (PPS) forms a porous support.
도 3에 나타난 바와 같이, 실시예 1로부터 제조된 음이온교환 복합막의 경우, 기계적 물성과 내구성이 향상되어, 결함이 없는 양호한 상태의 음이온교환 복합막이 제조되었음을 알 수 있다. 또한, 다공성 지지체의 불투명성을 개선하였음을 알 수 있다.As shown in FIG. 3, in the case of the anion-exchange composite membrane prepared in Example 1, mechanical properties and durability were improved, and it could be seen that a defect-free anion-exchange composite membrane was manufactured in a good state. In addition, it can be seen that the opacity of the porous support was improved.
도 4는 실시예 1로부터 제조된 음이온교환 복합막(XAc-PPO-PPS), 비교예 1로부터 제조된 음이온 교환막(XAc-PPO) 및 제조예 1로부터 제조된 Ac-PPO 단일막의 인장강도를 측정하여 나타낸 그래프이다.Figure 4 measures the tensile strength of the anion exchange composite membrane (XAc-PPO-PPS) prepared from Example 1, the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1, and the Ac-PPO single membrane prepared from Preparation Example 1 This is the graph shown by
도 4에 나타난 바와 같이, 실시예 1로부터 제조된 음이온교환 복합막은 비교예 1로부터 제조된 음이온 교환막(XAc-PPO)에 비하여 2배 이상의 인장강도를 나타내었는 바, 기계적 물성이 향상되었음을 알 수 있다.As shown in FIG. 4, the anion exchange composite membrane prepared from Example 1 exhibited tensile strength more than twice as high as that of the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1, indicating that mechanical properties were improved. .
한편, 제조예 1로부터 제조된 Ac-PPO도, 비교예 1의 XAc-PPO와 마찬가지로 단일막 형태로 단독으로 음이온 교환막으로 제조할 경우, 제조된 음이온 교환막의 형태가 일정하지 않고, 쉽게 파손되어 충분한 기계적 강도를 얻을 수 없다는 것을 확인할 수 있다. 즉 제조예 1의 AC-PPO 단독으로는 음이온교환막으로 사용될 수 없으며, 이를 가교화하더라도(XAx-PPO:비교예 1) 충분한 기계적 강도를 얻을 수 없다는 것을 알 수 있다.On the other hand, when Ac-PPO prepared from Preparation Example 1 is prepared as an anion exchange membrane alone in the form of a single membrane like XAc-PPO of Comparative Example 1, the shape of the prepared anion exchange membrane is not constant and is easily damaged, so that sufficient It can be confirmed that no mechanical strength can be obtained. That is, it can be seen that the AC-PPO of Preparation Example 1 alone cannot be used as an anion exchange membrane, and even if it is crosslinked (XAx-PPO: Comparative Example 1), sufficient mechanical strength cannot be obtained.
도 5는 실시예 1로부터 제조된 음이온교환 복합막(XAc-PPO-PPS) 및 비교예 1로부터 제조된 음이온 교환막(XAc-PPO)의 80 ℃에서의 시간 경과에 따른 수산화 이온 전도도를 측정하여 나타낸 그래프이고, 도 6은 비교예 2로부터 제조된 음이온교환 복합막(XAc-PPO+PE)의 80 ℃에서의 시간 경과에 따른 수산화 이온 전도도를 측정하여 나타낸 그래프이다.5 is a graph showing the measured hydroxide ion conductivity over time at 80 ° C. of the anion exchange membrane (XAc-PPO-PPS) prepared from Example 1 and the anion exchange membrane (XAc-PPO) prepared from Comparative Example 1 FIG. 6 is a graph showing the measured hydroxide ion conductivity over time at 80° C. of the anion exchange composite membrane (XAc-PPO+PE) prepared in Comparative Example 2.
알칼리 안정성은 80 ℃, 1 M KOH 용액 조건 하에서, 수산화 이온 전도성을 시간에 따라 기록함으로써 측정하였다. 초기(0 시간) 수산화 이온 전도성 대비 수산화 이온 전도성 변화를 계산하여 나타내었다.Alkali stability was measured by recording the hydroxide ion conductivity as a function of time under the conditions of a 1 M KOH solution at 80 °C. The change in hydroxide ion conductivity compared to the initial (0 hour) hydroxide ion conductivity was calculated and shown.
도 5에 나타난 바와 같이, 비교예 1의 음이온 교환막(XAc-PPO)은 200 시간이전에 수산화 이온 전도성이 10% 감소하기 시작하여, 1000 시간에 50% 이상 감소하는 것을 확인할 수 있다.As shown in FIG. 5, it can be seen that the hydroxide ion conductivity of the anion exchange membrane (XAc-PPO) of Comparative Example 1 starts to decrease by 10% before 200 hours and decreases by more than 50% at 1000 hours.
반면, 실시예 1로부터 제조된 음이온교환 복합막은 2500 시간이 넘도록 100%의 수산화 이온 전도성을 유지하고 있는 것을 확인할 수 있다.On the other hand, it can be confirmed that the anion exchange composite membrane prepared in Example 1 maintains 100% hydroxide ion conductivity for more than 2500 hours.
도 6에 나타난 바와 같이, 비교예 2의 음이온교환 복합막은 비교예 1의 음이온 교환막과 같이 100 시간부터 감소하기 시작하여 200 시간에는 10% 이상 감소하였고, 900 시간에는 30% 이상 감소되었다는 것을 확인할 수 있다. 즉 폴리페닐렌설파이드 대신 다른 사용화된 다공성 지지체를 사용할 경우 XAc-PPO를 음이온교환층으로 사용하여도 알칼리 안정성이 크게 저하되는 것을 알 수 있다.As shown in FIG. 6, it can be confirmed that the anion exchange composite membrane of Comparative Example 2, like the anion exchange membrane of Comparative Example 1, started to decrease at 100 hours, decreased by 10% or more at 200 hours, and decreased by 30% or more at 900 hours. there is. That is, it can be seen that when using a porous support other than polyphenylene sulfide, the alkali stability is greatly reduced even when XAc-PPO is used as an anion exchange layer.
상술한 바와 같이, 폴리페닐렌설파이드를 다공성 지지체로 사용하고, 상기 다공성 지지체 상에 높은 함량의 음이온 교환 그룹이 도입된 4 차 암모늄화 폴리페닐렌옥사이드를 함침시킨 음이온교환 복합막은 이온 그룹과 폴리머 백본의 분해없이 고온에서 우수한 적용 안정성을 보였고, 40 MPa의 높은 인장강도를 나타내었으며, 80 ℃에서 1M KOH에서 2500 시간 이상 알칼리성으로 노출한 후에도 80 ℃에서 초기 전도도의 100%를 유지하였으므로, 우수한 화학적 안정성을 나타내었다.As described above, the anion exchange composite membrane using polyphenylene sulfide as a porous support and impregnating quaternary ammoniumized polyphenylene oxide into which a high content of anion exchange groups is introduced on the porous support has ionic groups and a polymer backbone. It showed excellent application stability at high temperature without decomposition, showed high tensile strength of 40 MPa, and maintained 100% of the initial conductivity at 80 ° C even after being exposed to alkali for more than 2500 hours in 1M KOH at 80 ° C. showed
그러므로 본 발명에 따른 음이온교환 복합막은, 상기 음이온 교환 고분자 내에 70% 이상의 치환도로 음이온 교환 그룹이 도입되었음에도 불구하고, 폴리페닐렌설파이드를 다공성 지지체로 구성함으로써 기계적 물성이 우수하면서도 알칼리 안정성까지 우수한 효과를 달성할 수 있음을 확인하였다.Therefore, in the anion exchange composite membrane according to the present invention, despite the introduction of an anion exchange group with a substitution degree of 70% or more in the anion exchange polymer, polyphenylene sulfide is used as a porous support to have excellent mechanical properties and excellent alkali stability. It was confirmed that this can be achieved.
따라서 본 발명의 음이온교환 복합막은 기계적 물성이 뛰어날 뿐만 아니라, 알칼리 안정성까지 동시에 우수하여 모듈화 및 상업화가 가능할 것으로 기대된다.Therefore, the anion exchange composite membrane of the present invention is expected to be modular and commercializable as it has excellent mechanical properties and alkali stability at the same time.

Claims (16)

  1. 폴리페닐렌설파이드(PPS)를 포함하는 다공성 지지체; 및 A porous support containing polyphenylene sulfide (PPS); and
    상기 다공성 지지체에 충진되고, 하기 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 음이온 교환 고분자를 포함하는 조성물로부터 제조된 음이온교환층;을 포함하는 음이온교환 복합막.An anion exchange composite membrane comprising an anion exchange layer prepared from a composition containing an anion exchange polymer filled in the porous support and having a repeating unit represented by any one selected from the following <Formula 1> to <Formula 3> .
    <화학식 1><Formula 1>
    Figure PCTKR2022008920-appb-img-000033
    Figure PCTKR2022008920-appb-img-000033
    <화학식 2> <Formula 2>
    Figure PCTKR2022008920-appb-img-000034
    Figure PCTKR2022008920-appb-img-000034
    <화학식 3><Formula 3>
    Figure PCTKR2022008920-appb-img-000035
    Figure PCTKR2022008920-appb-img-000035
    (상기 화학식 1 내지 3에서, 상기 A는 하기 구조식으로 표시되는 화합물로부터 선택되는 어느 하나이고,(In Formulas 1 to 3, A is any one selected from compounds represented by the following structural formulas,
    Figure PCTKR2022008920-appb-img-000036
    ,
    Figure PCTKR2022008920-appb-img-000037
    ,
    Figure PCTKR2022008920-appb-img-000038
    ,
    Figure PCTKR2022008920-appb-img-000039
    Figure PCTKR2022008920-appb-img-000036
    ,
    Figure PCTKR2022008920-appb-img-000037
    ,
    Figure PCTKR2022008920-appb-img-000038
    ,
    Figure PCTKR2022008920-appb-img-000039
    상기 x, n, o, p, q, r은 각각 반복단위 내 몰분율로서, x, n, o, p, q, r은 모두 0보다 크고, o+p+q+r=1이고, 상기 y는 1 내지 6 중에서 선택되는 어느 하나의 정수이다)Where x, n, o, p, q, and r are mole fractions in the repeating unit, respectively, x, n, o, p, q, and r are all greater than 0, o + p + q + r = 1, and y Is an integer selected from 1 to 6)
  2. 제1항에 있어서,According to claim 1,
    상기 조성물은 가교제를 더 포함하는 것을 특징으로 하는 음이온교환 복합막.The anion exchange composite membrane, characterized in that the composition further comprises a crosslinking agent.
  3. 제2항에 있어서,According to claim 2,
    상기 가교제는 N,N,N',N'- 테트라메틸메틸렌다이아민(TMMDA), N,N,N',N'-테트라메틸에틸렌다이아민(TMEDA), N,N,N',N'-테트라메틸 1,3-프로판다이아민(TMPDA), N,N,N',N'-테트라메틸-1,4-부탄다이아민(TMBDA), N,N,N',N'-테트라메틸1-1,6-헥산다이아민(TMHDA) 및 N,N,N',N'-테트라에틸-1,3-프로판다이아민(TEPDA)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 음이온교환 복합막.The crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N' -Tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), N,N,N',N'-tetramethyl An anion characterized by being at least one selected from the group consisting of 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) Exchange complex membrane.
  4. 제1항에 있어서,According to claim 1,
    상기 폴리페닐렌설파이드는 중량평균분자량이 10000 이상이고, 중량평균분자량을 수평균분자량으로 나눈 분산도가 2.5 이하인 가교형 또는 선형 폴리페닐렌설파이드인 것을 특징으로 하는 음이온교환 복합막.The anion exchange composite membrane, characterized in that the polyphenylene sulfide is a cross-linked or linear polyphenylene sulfide having a weight average molecular weight of 10000 or more and a degree of dispersion obtained by dividing the weight average molecular weight by the number average molecular weight of 2.5 or less.
  5. 제1항에 있어서,According to claim 1,
    상기 폴리페닐렌설파이드는 강성(stiffness)이 3 내지 4 GPa, 파단강도(strength at break)가 50 내지 80 MPa, 항복강도(strength at yield)가 50 내지 80 MPa인 것을 특징으로 하는 음이온교환 복합막.The polyphenylene sulfide has a stiffness of 3 to 4 GPa, a strength at break of 50 to 80 MPa, and a strength at yield of 50 to 80 MPa, an anion exchange composite membrane. .
  6. 제1항에 있어서,According to claim 1,
    상기 화학식 1 내지 3에서, x=0.7 내지 0.9, n=0.7 내지 0.9, o+p+q+r=1이고, o=0.7 내지 0.9, p+q+r=0.1 내지 0.3인 것을 특징으로 하는 음이온교환 복합막.In Formulas 1 to 3, x = 0.7 to 0.9, n = 0.7 to 0.9, o + p + q + r = 1, o = 0.7 to 0.9, p + q + r = 0.1 to 0.3, characterized in that Anion exchange composite membrane.
  7. (I) 폴리페닐렌설파이드(PPS)를 포함하는 다공성 지지체를 준비하는 단계;(I) preparing a porous support containing polyphenylene sulfide (PPS);
    (II) 제1항 기재의 <화학식 1> 내지 <화학식 3>에서 선택된 어느 하나의 것으로 표시되는 반복단위를 갖는 음이온 교환 고분자를 제2용매에 용해시켜 고분자용액을 얻는 단계; 및(II) dissolving an anion exchange polymer having a repeating unit represented by any one selected from <Formula 1> to <Formula 3> described in claim 1 in a second solvent to obtain a polymer solution; and
    (III) 상기 다공성 지지체를 상기 고분자용액에 함침 및 건조하는 단계;를 포함하는 음이온교환 복합막의 제조방법.(III) impregnating the porous support with the polymer solution and drying it;
  8. 제7항에 있어서, According to claim 7,
    상기 고분자 용액은 가교제를 더 포함하는 것을 특징으로 하는 음이온교환 복합막의 제조방법.The method of manufacturing an anion exchange composite membrane, characterized in that the polymer solution further comprises a crosslinking agent.
  9. 제7항에 있어서, According to claim 7,
    상기 가교제는 N,N,N',N'- 테트라메틸메틸렌다이아민(TMMDA), N,N,N',N'-테트라메틸에틸렌다이아민(TMEDA), N,N,N',N'-테트라메틸 1,3-프로판다이아민(TMPDA), N,N,N',N'-테트라메틸-1,4-부탄다이아민(TMBDA), N,N,N',N'-테트라메틸1-1,6-헥산다이아민(TMHDA) 및 N,N,N',N'-테트라에틸-1,3-프로판다이아민(TEPDA)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 음이온교환 복합막.The crosslinking agent is N,N,N',N'-tetramethylmethylenediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N' -Tetramethyl 1,3-propanediamine (TMPDA), N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA), N,N,N',N'-tetramethyl An anion characterized by being at least one selected from the group consisting of 1-1,6-hexanediamine (TMHDA) and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) Exchange complex membrane.
  10. 제7항에 있어서, According to claim 7,
    상기 제1용매 및 제2용매는 서로 동일하거나 상이하고, 각각 독립적으로 N-메틸-2-피롤리돈, 디메틸설폭사이드, 디메틸포름아미드, 디에틸포름아미드, 디메틸아세트아미드, 테트라하이드로퓨란, 메탄올, 에탄올 및 에테르로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 음이온교환 복합막의 제조방법.The first solvent and the second solvent are the same as or different from each other, and each independently N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, diethylformamide, dimethylacetamide, tetrahydrofuran, methanol , A method for producing an anion exchange composite membrane, characterized in that at least one selected from the group consisting of ethanol and ether.
  11. 제7항에 있어서, According to claim 7,
    상기 고분자용액의 농도는 2~5 중량%인 것을 특징으로 하는 음이온교환 복합막의 제조방법.The method for producing an anion exchange composite membrane, characterized in that the concentration of the polymer solution is 2 to 5% by weight.
  12. 제7항에 있어서, According to claim 7,
    상기 (I) 단계에서, 상기 다공성 지지체는 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spunbonding) 및 스티치 본딩(stitch bonding)로 이루어진 군에서 선택되는 어느 하나의 방법으로 제조되는 것을 특징으로 하는 음이온교환 복합막의 제조방법.In the step (I), the porous support is subjected to carding, garneting, air-laying, wet-laying, melt blowing, spun bonding ( A method for producing an anion exchange composite membrane, characterized in that it is produced by any one method selected from the group consisting of spunbonding and stitch bonding.
  13. 제7항에 있어서, According to claim 7,
    상기 (III) 단계의 건조는 80~90℃ 오븐에서 1 내지 10 시간동안 1차 건조한 후, 110~150 ℃ 진공오븐에서 20 내지 30시간 동안 2차 건조함으로써 제2용매를 완전히 제거하는 것을 특징으로 하는 음이온교환 복합막의 제조방법.The drying in step (III) is characterized in that the second solvent is completely removed by first drying in an oven at 80 to 90 ° C for 1 to 10 hours and then drying in a vacuum oven at 110 to 150 ° C for 20 to 30 hours. A method for producing an anion exchange composite membrane.
  14. 제1항 내지 제6항 중 어느 한 항에 따른 음이온교환 복합막을 포함하는 알칼리 연료전지.An alkaline fuel cell comprising the anion exchange composite membrane according to any one of claims 1 to 6.
  15. 제1항 내지 제6항 중 어느 한 항에 따른 음이온교환 복합막을 포함하는 수전해 장치.A water electrolysis device comprising the anion exchange composite membrane according to any one of claims 1 to 6.
  16. 제1항 내지 제6항 중 어느 한 항에 따른 음이온교환 복합막을 포함하는 레독스 플로우 전지(redox flow battery).A redox flow battery comprising the anion exchange composite membrane according to any one of claims 1 to 6.
PCT/KR2022/008920 2021-06-24 2022-06-23 Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same WO2022270934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0082537 2021-06-24
KR1020210082537A KR102655259B1 (en) 2021-06-24 2021-06-24 Anion exchange composite membrane, preparation method thereof and alkaline fuel cell comprising the same

Publications (1)

Publication Number Publication Date
WO2022270934A1 true WO2022270934A1 (en) 2022-12-29

Family

ID=84545826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008920 WO2022270934A1 (en) 2021-06-24 2022-06-23 Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same

Country Status (2)

Country Link
KR (1) KR102655259B1 (en)
WO (1) WO2022270934A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180003006A (en) * 2016-06-30 2018-01-09 코오롱인더스트리 주식회사 Non-woven Fabric Support for Ion Exchange Membrane and Method for Manufacturing The Same
KR20190024311A (en) * 2017-08-31 2019-03-08 경상대학교산학협력단 Composite membrane based on polyether ether ketone, preparation method thereof and anion-exchange membrane for fuel cell comprising the same
KR20200023822A (en) * 2018-08-27 2020-03-06 인천대학교 산학협력단 Anion exchange membrane and method for preparing the same
KR20200139459A (en) * 2019-06-04 2020-12-14 경상대학교산학협력단 Ion-exchange composite membrane, preparation method thereof and fuel cell comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545229B1 (en) 2014-03-04 2015-08-18 인천대학교 산학협력단 Morpholinium-functionalized copolymer and anion exchange membrane using the same
KR102065080B1 (en) * 2017-08-28 2020-01-10 인천대학교 산학협력단 Anion-exchange membranes for fuel cells and preparation method thereof
KR102061633B1 (en) * 2017-08-31 2020-01-02 경상대학교산학협력단 Composite membrane based on polyphenylene oxide, preparation method thereof and anion-exchange membrane for fuel cell comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180003006A (en) * 2016-06-30 2018-01-09 코오롱인더스트리 주식회사 Non-woven Fabric Support for Ion Exchange Membrane and Method for Manufacturing The Same
KR20190024311A (en) * 2017-08-31 2019-03-08 경상대학교산학협력단 Composite membrane based on polyether ether ketone, preparation method thereof and anion-exchange membrane for fuel cell comprising the same
KR20200023822A (en) * 2018-08-27 2020-03-06 인천대학교 산학협력단 Anion exchange membrane and method for preparing the same
KR20200139459A (en) * 2019-06-04 2020-12-14 경상대학교산학협력단 Ion-exchange composite membrane, preparation method thereof and fuel cell comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO LI; HE GAOHONG; PAN YU; ZHAO BAOLIN; XU XIAOWEI; LIU YANJUN; DENG RUNLIAN; YAN XIAOMING: "Poly(2,6-dimethyl-1,4-phenylene oxide) containing imidazolium-terminated long side chains as hydroxide exchange membranes with improved conductivity", JOURNAL OF MEMBRANE SCIENCE, vol. 518, 9 July 2016 (2016-07-09), NL , pages 159 - 167, XP029684568, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2016.07.012 *
SON TAE, KIM TAE-HYUN, NAM SANG: "Crosslinked Pore-Filling Anion Exchange Membrane Using the Cylindrical Centrifugal Force for Anion Exchange Membrane Fuel Cell System", POLYMERS, vol. 12, no. 11, 1 January 2020 (2020-01-01), pages 1 - 15, XP093016414, DOI: 10.3390/polym12112758 *

Also Published As

Publication number Publication date
KR102655259B1 (en) 2024-04-09
KR20230000523A (en) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2013147520A1 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
WO2011078465A2 (en) Porous support having improved strength, reinforced composite electrolyte membrane using same, membrane-electrode assembly having same membrane, and fuel cell having same membrane
WO2011025259A2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2021172706A1 (en) Carbazole-based anion exchange material, preparation method therefor, and use thereof
US20100015496A1 (en) Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode assembly and solid polymer electrolyte-based fuel cell
WO2013081437A1 (en) Sulphonate based compound, polymer electrolyte membrane comprising same and fuel cell comprising same
WO2015147550A1 (en) Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same
WO2012134254A2 (en) Polymer electrolyte and preparation method thereof
WO2015130066A1 (en) Porous support, method for manufacturing same, and reinforced membrane comprising same
WO2015047008A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
WO2014178619A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
WO2010053297A2 (en) Polymer electrolyte membrane
WO2017171285A2 (en) Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same
WO2017086609A1 (en) Porous carbon structure using intrinsically microporous polymer, and battery electrode including same
KR20090088646A (en) The cation conductive polysulfone-type cross-linked polymer membranes, membrane-electrode assembly and fuel cell
WO2012134095A2 (en) Hydrogen ion-conducting copolymer including a diphenyl fluorene group in which a sulfonic acid group is introduced, method for preparing same, polymer electrolyte membrane produced therefrom, membrane/electrolyte assembly using same, and polymer electrolyte membrane fuel cell adopting same
WO2021066544A1 (en) Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
WO2010076911A1 (en) Post-sulfonated copolymers containing perfluorocyclobutane groups and preparation method and use thereof
WO2023234725A1 (en) Novel branch-containing poly(aryl piperidinium) copolymer ionomer, anion exchange membrane, and preparation method therefor
WO2022270934A1 (en) Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same
WO2018199545A1 (en) Polyphenylene-based anion conductor, preparation method therefor, and use thereof
WO2022131665A1 (en) Novel polyfluorene-based cross-linked copolymer, method for producing same, and anion exchange membrane for alkaline fuel cell using same
WO2021006496A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and electrochemical device comprising same
WO2015130061A1 (en) Porous support, preparation method therefor, and reinforced membrane containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE