WO2023106657A1 - Polycarbazole-based cation-exchange ion conductor and method for manufacturing same - Google Patents

Polycarbazole-based cation-exchange ion conductor and method for manufacturing same Download PDF

Info

Publication number
WO2023106657A1
WO2023106657A1 PCT/KR2022/017650 KR2022017650W WO2023106657A1 WO 2023106657 A1 WO2023106657 A1 WO 2023106657A1 KR 2022017650 W KR2022017650 W KR 2022017650W WO 2023106657 A1 WO2023106657 A1 WO 2023106657A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polycarbazole
cation exchange
ion conductor
halogen
Prior art date
Application number
PCT/KR2022/017650
Other languages
French (fr)
Korean (ko)
Inventor
이장용
유덕만
정환엽
신상훈
차민석
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2023106657A1 publication Critical patent/WO2023106657A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polycarbazole-based cation exchange type ion conductor, a manufacturing method and use thereof.
  • Electrode binder as well as water electrolysis, redox flow cell, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or capacitive It relates to a cation exchange type ion conductor that can also be used as an ion exchange material for a capacitive deionization (CDI) separator and a method for manufacturing the same.
  • ED electrodialysis
  • RED reverse electrodialysis
  • capacitive capacitive deionization
  • a fuel cell is an energy conversion device that directly converts the chemical energy of fuel into electrical energy, and is being researched and developed as a next-generation energy source due to its high energy efficiency and low pollutant emission.
  • a polymer electrolyte fuel cell using a polymer electrolyte is a kind of DC power generation device that directly converts the chemical energy of the fuel into electrical energy by an electrochemical reaction, and is an electrode-membrane assembly (MEA, membrane) like the heart of a fuel cell. It consists of a continuous composite of an electrode assembly and a bipolar plate that collects and supplies the generated electricity.
  • the membrane-electrode assembly refers to an assembly of an electrode in which an electrochemical catalytic reaction between hydrogen and air occurs and a polymer membrane in which hydrogen ions are transferred. Meanwhile, all electrochemical reactions are composed of two separate reactions, an oxidation reaction occurring at the anode and a reduction reaction occurring at the cathode, and the anode and cathode are separated through an electrolyte. Electrolyte membranes generally used in polymer electrolyte fuel cells can be divided into perfluorinated polymer electrolytes and hydrocarbon polymer electrolytes.
  • the fluorinated polymer electrolyte is chemically stable due to the strong bonding force between carbon-fluorine (C-F) and the shielding effect characteristic of the fluorine atom, excellent mechanical properties, and especially high conductivity as a hydrogen ion exchange membrane. It is being commercialized as a polymer membrane for electrolyte type fuel cells. Nafion (perfluorinated sulfonic acid polymer), a product of Du Pont, USA, is a representative example of a commercially available hydrogen ion exchange membrane, and is currently most widely used due to its excellent ionic conductivity, chemical stability, ion selectivity, etc.
  • the fluorinated polymer electrolyte membrane has disadvantages such as low industrial use due to its high price, high hydrogen permeability (crossover), and reduced efficiency of the polymer membrane at temperatures above 80 ° C.
  • Research on hydrocarbon ion exchange membranes and electrode binders is being actively conducted.
  • a representative hydrogen electrolysis system for producing hydrogen is attracting attention as a key system for producing green hydrogen.
  • the process of generating hydrogen (H 2 ) and oxygen (O 2 ) from water (H 2 O) by a water electrolysis device does not produce other substances other than hydrogen, oxygen, and water that may cause environmental pollution, so it is an eco-friendly alternative energy source. It has value, and the representative technologies of such water electrolysis can be divided into three major categories: water electrolysis using a proton exchange membrane (PEM), alkaline electrolysis (AE) using an alkaline electrolyte, and There is a high temperature electrolysis (HTE) method using a ceramic electrolyte under high temperature steam conditions.
  • PEM proton exchange membrane
  • AE alkaline electrolysis
  • HTE high temperature electrolysis
  • the cation exchange membrane (PEM) water electrolysis consists of an anode mainly using Ir and Ru, a cathode mainly using Pt, and a cation exchange membrane, and the Amode catalyst decomposes H 2 O to produce H+ and O 2 (Oxygen Evolution Reaction; OER), and the generated H+ cation passes through the cation exchange membrane and moves to the cathode, generating H 2 on the catalyst surface (hydrogen evolution reaction, HER), which has higher hydrogen ion conductivity than other water electrolysis It is characterized by having a high current density of 1 A/cm 2 or more.
  • Korean Patent Registration No. 10-2284854 developed by the inventors of the present invention describes a main chain based on a carbazole-based material with excellent stability.
  • an anion exchange material in which all of the bonds between monomers constituting C-C bonds are provided, a separation membrane with improved physical and chemical stability and durability has been provided by dramatically improving molecular weight while having solubility in solvents, and also, Korean Registered Patent Publication No. 10-2168673 has provided a fuel cell membrane-electrode assembly with excellent physical properties and chemical resistance and easy control of ion exchange capacity, but the development of technology related to cation exchange materials is also required.
  • a novel cation exchange type ion conductor having a polycarbazole-based main chain structure was developed, which can be used not only as an electrode binder but also as an ion exchange material for separators, and when applied as an electrode binder, compared to conventional materials
  • the present invention was completed by confirming that it had superior performance of 50% or more.
  • the present invention was developed to solve the above problems, and an object of the present invention is to provide a non-perfluorine-based (hydrocarbon-based) cation exchange type ion conductor.
  • the present invention is to provide a cation exchange type ion conductor having a polycarbazole-based main chain that can be used as a binder for an electrode.
  • Electrode binder as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or electricity storage
  • ED electrodialysis
  • RED reverse electrodialysis
  • CDI capacitive deionization
  • the present invention intends to provide a Proton Exchange Membrane Fuel Cell (PEMFC) device or a Proton Exchange Membrane Water Electrolysis (PEMWE) device for water electrolysis of a carbazole-based polymer.
  • PEMFC Proton Exchange Membrane Fuel Cell
  • PEMWE Proton Exchange Membrane Water Electrolysis
  • preparing at least one type of monomer from a monomer group consisting of a halogen-containing carbazole-based monomer and a carbazole-based monomer Preparing a halogen-containing polycarbazole-based polymer in which all of the bonds between monomers constituting the main chain are C-C bonds; preparing a thioacetylated polycarbazole-based polymer by thioacetylating the halogen group of the halogen-containing polycarbazole-based polymer; and sulfonating the thioacetylated polycarbazole-based polymer.
  • an electrode binder as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or electricity storage
  • ED electrodialysis
  • RED reverse electrodialysis
  • a cation exchange type ion conductor that can also be used as an ion exchange material for a capacitive deionization (CDI) separation membrane is provided.
  • the present invention provides a Proton Exchange Membrane Fuel Cell (PEMFC) device or a Proton Exchange Membrane Water Electrolysis (PEMWE) device.
  • PEMFC Proton Exchange Membrane Fuel Cell
  • PEMWE Proton Exchange Membrane Water Electrolysis
  • the present invention provides a cation exchange type ion conductor based on a carbazole-based material in which the main chain does not include a linking group of electron donating characteristics such as -O- or -S-, and the main chain is all composed of C-C bonds, thereby providing physical properties
  • the main chain does not include a linking group of electron donating characteristics such as -O- or -S-, and the main chain is all composed of C-C bonds, thereby providing physical properties
  • it is easy to control the ion exchange capacity, and it is possible to introduce a side chain, thereby increasing solubility and improving phase separation characteristics.
  • the present invention is an electrode binder as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or electrical storage It has a great advantage that it can also be used as an ion exchange material for capacitive deionization (CDI) membranes.
  • ED electrodialysis
  • RED reverse electrodialysis
  • CDI capacitive deionization
  • PCTFP-br a halogen-containing polycarbazole-based polymer
  • PCTFP-TAc a thioacetylated polycarbazole-based polymer
  • sPCTFP a sulfonated polycarbazole-based polymer
  • FIG. 3 shows the results of 1 H- 1 H COZY NMR spectrum analysis of thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) and sulfonated polycarbazole-based polymer (sPCTFP: P3) according to an embodiment of the present invention. it is shown
  • FIG. 4 shows a method for manufacturing an MEA using a polycarbazole-based cation exchange type conductor as a binder for an electrode according to an embodiment of the present invention.
  • FIG. 5 shows evaluation results of a fuel cell unit cell using a polycarbazole-based cation exchange type conductor according to an embodiment of the present invention as a binder.
  • the present invention relates to a polycarbazole-based cation exchange ion conductor, its manufacturing method and use, more specifically, as an electrode binder as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or capacitive deionization (CDI) provides a cation exchange type ion conductor that can also be used as an ion exchange material for separation membranes and a manufacturing method thereof do.
  • ED electrodialysis
  • RED reverse electrodialysis
  • CDI capacitive deionization
  • preparing at least one monomer from a monomer group consisting of a halogen-containing carbazole-based monomer and a carbazole-based monomer using a polymerization reaction using a superacid catalyst for the monomer preparing a halogen-containing polycarbazole-based polymer in which all of the bonds between monomers constituting the main chain are composed of C-C bonds; preparing a thioacetylated polycarbazole-based polymer by thioacetylating the halogen group of the halogen-containing polycarbazole-based polymer; and sulfonating the thioacetylated polycarbazole-based polymer, thereby providing a method for producing a polycarbazole-based cation exchange-type ion conductor having a chemical structure of Formula A below.
  • W is a cation exchange group and is either a sulfonic acid group (-SO 3 H), a phosphoric acid group (-PO 3 H 2 ), an acetic acid group (-COOH), or an alkali metal salt thereof, or a nitro group (-NO 2 ),
  • Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
  • n 0 or a positive integer of 100,000 or less.
  • the acetic acid catalyst is trifluoromethanesulfonic acid (TFSA, CF 3 SO 3 H) or fluorosulfonic acid (fluorosulfonic acid: HSO 3 F).
  • TFSA trifluoromethanesulfonic acid
  • fluorosulfonic acid fluorosulfonic acid: HSO 3 F
  • the halogen-containing carbazole-based monomers are the halogen-containing polycarbazole-based monomers in which all the bonds between monomers constituting the main chain are composed of C-C bonds by using a polymerization reaction using the acetic acid catalyst. It can be made of polymers.
  • the polymerization reaction is by the C-C bond synthesis method by the acetic acid catalyst, and has a chemical structure of the following formula B consisting of all C-C bonds without including electron donating groups such as -O- and -S- in the main chain.
  • a polycarbazole-based cation exchange type ion conductor can be prepared.
  • X is any one of halogen atoms chlorine (Cl), bromine (Br), iodine (I),
  • Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
  • n 0 or a positive integer of 100,000 or less.
  • the acetic acid catalyst may be used in an amount of 0.1 to 100 equivalents based on the total amount of carbazole-based monomers. Preferably, it may be used in an amount of 1 to 20 equivalents based on the total amount of the halogen-containing carbazole-based monomers.
  • the step of preparing the halogen-containing polycarbazole-based polymer at least one monomer from the monomer group consisting of the halogen-containing carbazole-based monomer and the carbazole-based monomer and the acetic acid catalyst are dissolved in a solvent. It may include mixing and stirring, wherein the solvent is CCl 4 , CHCl 3 , CH 2 Cl 2 , C 2 H 2 Cl 4 , or an organic solvent containing a halogen element such as iodine, bromine or fluorine may be used. there is.
  • the step of preparing the thioacetylated polycarbazole-based polymer is to convert the halogen group of the halogen-containing polycarbazole-based polymer to thioacetic acid, ethylthioacetate, or thioacetate. It may be a reaction with any one of metal salts, and more preferably, it may be a reaction using sodium thioacetate or potassium thioacetate.
  • the step of sulfonating the thioacetylated polycarbazole-based polymer with hydrogen peroxide, sulfuric acid, chlorosulfonic acid, sodium bisulfite, m-chloroperoxybenzoic acid ( m -chloroperoxybenzoic acid : mCPBA) may be reacted with any one of them.
  • the present invention provides a polycarbazole-based cation exchange type ion conductor characterized in that it has a chemical structure of the following formula (A).
  • W is a cation exchange group and is either a sulfonic acid group (-SO 3 H), a phosphoric acid group (-PO 3 H 2 ), an acetic acid group (-COOH), or an alkali metal salt thereof, or a nitro group (-NO 2 ),
  • Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
  • n 0 or a positive integer of 100,000 or less.
  • the present invention provides a binder for an electrode comprising a polycarbazole-based cation exchange ion conductor prepared according to the above manufacturing method.
  • the polycarbazole-based cation exchange ion conductor prepared according to the manufacturing method is mixed with a catalyst during the manufacture of a membrane electrode assembly (MEA) or an electrode layer in a fuel cell or the like.
  • MEA membrane electrode assembly
  • the present invention provides a separation membrane comprising a polycarbazole-based cation exchange ion conductor prepared according to the above manufacturing method.
  • the separation membrane may be any one selected from the group consisting of a single membrane, a reinforced membrane, a composite membrane, and a reinforced composite membrane made of the corresponding cation exchange ion conductor, and specifically, the single membrane is a cationic membrane according to an embodiment of the present invention. It refers to a separator made of an exchange ion conductor as the main material, and a reinforced membrane is made of polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polystyrene, polysulfone, and polyvinyl alcohol to improve the physical properties of the membrane.
  • One embodiment of the present invention using a porous membrane based on polybenzimidazole, polyimide, polyamideimide, glass fiber, cellulose, or a mixture thereof or a porous membrane based on an organic or inorganic material having pores therein as a support It may be impregnated with a cation exchange ion conductor according to, and the composite membrane uses the cation exchange ion conductor according to an embodiment of the present invention as a main material to lower the crossover of fuel and active material or to improve performance It can be in the form of organic, inorganic or organic-inorganic hybrid nanoparticles and additives that can improve the strength of the composite membrane, and the reinforced composite membrane is a form in which the concept of the above-mentioned composite membrane and reinforced membrane is applied together, and the cation containing nanoparticles and additives It may be manufactured by impregnating a composite membrane of an exchange ion conductor into a porous support based on an organic or inorganic material.
  • the separator may be for a Proton Exchange Membrane Fuel Cell (PEMFC).
  • PEMFC Proton Exchange Membrane Fuel Cell
  • the separation membrane according to one embodiment of the present invention is used for water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, It is for electrodialysis (ED), reverse electrodialysis (RED) or capacitive deionization (CDI), more preferably, the separator is a proton exchange membrane water electrolysis (PEMWE) can
  • a binder for an electrode comprising a polycarbazole-based cation exchange ion conductor according to an embodiment of the present invention
  • the separation membrane may be used in a Proton Exchange Membrane Fuel Cell (PEMFC) device and a Proton Exchange Membrane Water Electrolysis (PEMWE) device.
  • PEMFC Proton Exchange Membrane Fuel Cell
  • PEMWE Proton Exchange Membrane Water Electrolysis
  • a polycarbazole-based cation exchange type ion conductor according to an embodiment of the present invention was prepared according to the method of Reaction Scheme 1 below.
  • a monomer synthesis process for synthesizing a polycarbazole-based polymer according to an embodiment of the present invention is as follows. First, prepare a dried three-necked flask, dissolve 10.0 g of carbazole and 43.8 g of dibromohexane in 200 ml of N,N-dimethylformamide, and KOH (3.4g) was added under C and Ar atmosphere and reacted for 24 h. After the reaction was completed, the mixture was precipitated in iced water and extracted with dichloromethane to obtain a mixture. The resulting mixture was subjected to column chromatography ) and recrystallized with ethanol to prepare a monomer.
  • a process for synthesizing a halogen-containing polycarbazole-based polymer according to an embodiment of the present invention is as follows. A completely dried flask was prepared and dissolved in 10 g of the halogen-containing carbazole-based monomer (M1) prepared in Preparation Example 1, 4.4 g of trifluoroacetone, and 24 ml of methylene chloride, and then dissolved in an Ar atmosphere at 0 ° C. 43.2 g of trifluoromethanesulfonic acid (TFSA, CF 3 SO 3 H) was added thereto, stirred for 2 h, raised to room temperature, and reacted for 48 h.
  • M1 halogen-containing carbazole-based monomer
  • TFSA trifluoromethanesulfonic acid
  • the manufacturing process of the thioacetylated polycarbazole-based polymer according to one embodiment of the present invention is as follows. Prepare a dried three-necked flask and add 10.0 g of the halogen-containing polycarbazole-based polymer (PCTFP-br: P1) prepared in Preparation Example 2 under an Ar atmosphere to 100 ml of N, N-dimethylformamide. After melting, 5.9 g of potassium thioacetate was added at room temperature and reacted at room temperature for 24 h.
  • PCTFP-br halogen-containing polycarbazole-based polymer
  • a process for synthesizing a sulfonated polycarbazole-based polymer according to an embodiment of the present invention is as follows.
  • a completely dried flask was prepared and 10 g of the thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) prepared in Preparation Example 3 was added to 200 ml of N, N-dimethylformamide under an Ar atmosphere.
  • PCTFP-TAc: P2 thioacetylated polycarbazole-based polymer
  • Preparation Example 3 was added to 200 ml of N, N-dimethylformamide under an Ar atmosphere.
  • 8.013 g of m -chloroperoxybenzoic acid (mCPBA) was slowly added thereto, and then the temperature was raised to 10 °C and the reaction proceeded for 2 h.
  • PCTFP-br a halogen-containing polycarbazole-based polymer
  • PCTFP-TAc a thioacetylated polycarbazole-based polymer
  • sPCTFP a sulfonated polycarbazole-based polymer
  • FIG. 3 shows the results of 1 H- 1 H COZY NMR spectrum analysis of thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) and sulfonated polycarbazole-based polymer (sPCTFP: P3) according to an embodiment of the present invention. it is shown
  • PCTFP-br halogen-containing polycarbazole-based polymer
  • PCTFP-TAc thioacetylated polycarbazole-based polymer
  • sPCTFP polycarbazole-based polymers
  • PCTFP-TAc a thioacetylated polycarbazole-based polymer synthesized through thioacetylation through resonance analysis between protons introduced into neighboring carbons
  • sPCTFP sulfonated polycarbazole-based polymer
  • the molecular weight of the prepared polymer was measured by dissolving the polymer in THF solution using HR 3,4 columns and gel permeation chromatograph (GPC) using Waters' 2414 model as a detector. It was measured in mL/min and the results are shown in Table 1.
  • the ion exchange capacity (IEC) of the prepared cation exchange membrane was prepared by preparing a sample in which the counter ion was replaced with Cl - , stirring the prepared cation exchange material in 0.01M HCl aqueous solution for 24 hours, and then adding 0.01M NaOH aqueous solution. It was measured through acid-base titration using
  • the weight, length, thickness, and volume changes of the ion exchange membrane in the wet and dry state were measured at room temperature. Impedance was measured, and after the ion exchange membrane was immersed in 1.5 MH 2 SO 4 aqueous solution for 24 hours, the H + ion conductivity was measured at 25 °C, 40 °C, 60 °C, 80 °C at 100% relative humidity, the results are shown in Table 2 described.
  • sPCTFP according to one embodiment of the present invention showed an appropriate moisture content of 55% at room temperature.
  • FIG. 4 shows a method for manufacturing an MEA using a polycarbazole-based cation exchange type conductor as a binder for an electrode according to an embodiment of the present invention.
  • a polymer binder solution was prepared by dissolving the sulfonated polycarbazole-based polymer (sPCTFP: P3) prepared according to Preparation Example 4 in n-propanol/NMP (Junsei chemical, GC) at 5 wt%, and the prepared polymer binder solution And Pt / C (50 wt% Pt, RTX ), balance (balance) solution using a ball-mill (ball-mill: PM-100, Retsch, Germany) to prepare a slurry (slurry), the prepared slurry
  • a typical hydrocarbon-based cation exchange membrane, sPAES50 was coated on both sides with an active area of 5 cm 2 using a spray coater (LSC-300, Lithotech., Korea) and dried to form a membrane-electrode assembly (MEA).
  • the prepared MEA was immersed in an aqueous 1M sulfuric acid solution for 24 hours and then evaluated.
  • the unit cell characteristics of the cation exchange fuel cell were evaluated as follows.
  • a membrane-electrode junction layer was prepared by overlapping the prepared electrode layer and the ion exchange membrane, and SGL-39BC was used as a gas diffusion layer material.
  • the cell test station (Z010-100, SCITHEC KOREA) was evaluated under 0.2 V - 1.1 V / zero back pressure / 100% humidification condition and temperature condition of 80 °C.
  • FIG. 5 shows evaluation results of a fuel cell unit cell using a polycarbazole-based cation exchange type conductor according to an embodiment of the present invention as a binder.
  • the MEA using sPAES50, an existing hydrocarbon-based ion conductor, as a binder showed a current density of 250 mA/cm 2 at 0.6V, whereas the MEA using the developed sPCTFP binder had a current density of 375 mA/cm 2 at 0.6V. It was confirmed that the fuel cell performance was improved by 50% compared to the existing material by showing the density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a polycarbazole-based cation-exchange ion conductor, a method for manufacturing same, and use thereof and, more particularly, to: a cation-exchange ion conductor which not only can be used as an electrode binder, but can also be used as an ion-exchange material for water electrolysis, a redox flow cell, a fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (D), reverse electrodialysis (RED) or a capacitive deionization (CDI) separator; and a method for manufacturing same.

Description

폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법Polycarbazole-based cation exchange type ion conductor and its manufacturing method
본원 발명은 폴리카바졸계 양이온교환형 이온전도체, 그의 제조방법 및 용도에 대한 것이다.The present invention relates to a polycarbazole-based cation exchange type ion conductor, a manufacturing method and use thereof.
보다 구체적으로는 전극 바인더로서 뿐만 아니라 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI) 분리막용 이온교환 소재로서도 사용할 수 있는 양이온교환형 이온전도체 및 이의 제조방법에 대한 것이다.More specifically, as an electrode binder, as well as water electrolysis, redox flow cell, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or capacitive It relates to a cation exchange type ion conductor that can also be used as an ion exchange material for a capacitive deionization (CDI) separator and a method for manufacturing the same.
본 출원은 2021년 12월 08일에 출원된 한국 특허출원 제10-2021-0175241호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2021-0175241 filed on December 08, 2021, and all contents disclosed in the specification and drawings of the application are incorporated into this application.
석유에너지를 활용한 산업에서의 활용은 석유자원의 고갈문제와 일산화탄소, 이산화탄소 등 지구 온난화 문제, 미세먼지 문제 등 환경파괴로 인해 점차 사용제약이 많아지고 있다. 이에 대체 가능한 에너지로써 태양에너지, 수력, 풍력에너지 등의 지속가능한 에너지 활용에 연구가 집중되고 있으나, 효율이 낮고 특수한 경우에만 적용되는 한계점을 가지고 있다.The use of petroleum energy in industries is becoming increasingly restricted due to depletion of petroleum resources, global warming problems such as carbon monoxide and carbon dioxide, and environmental destruction such as fine dust. Therefore, research is focused on the use of sustainable energy such as solar energy, water power, and wind energy as alternative energy, but it has limitations that are low in efficiency and applied only in special cases.
반면에, 수소에너지는 미래 청정에너지로서 전 세계적으로 주목을 받고 있고, 관련 기술을 선점하기 위하여 수많은 국가 및 기업에서 투자와 기술개발을 진행하고 있으며, 최근, 수소에너지에 대한 높은 관심도는 질량당 보유하는 높은 에너지 함량으로 연료전지를 이용한 실용화 추세에 발맞추어, 수소를 생산하는 분야에도 주목을 받고 있다. On the other hand, hydrogen energy is attracting attention worldwide as a future clean energy, and numerous countries and companies are investing and developing technologies to preoccupy related technologies. Recently, high interest in hydrogen energy is held per mass In line with the trend of practical use using fuel cells with high energy content, the field of hydrogen production is also attracting attention.
대표적인 수소의 생산 및 활용의 기술로 수전해 및 연료전지가 있다. 연료전지는 연료의 화학적 에너지를 직접 전기 에너지로 변환시키는 에너지 전환 장치로써 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 차세대 에너지원으로 연구 개발되고 있다. 특히, 고분자 전해질을 사용하는 고분자 전해질 연료전지는 전기화학반응에 의해 연료가 가지고 있는 화학에너지를 직접 전기에너지로 변환시키는 일종의 직류발전 장치로서, 연료전지의 심장과 같은 전극-막 접합체(MEA, membrane electrode assembly)와 발생된 전기를 집전하고 연료를 공급하는 바이폴라 플레이트(bipolar plate)의 연속적인 복합체로 구성된다. 여기서, 전극 막 접합체는 수소와 공기의 전기화학 촉매반응이 일어나는 전극과 수소이온의 전달이 일어나는 고분자막의 접합체를 의미한다. 한편, 모든 전기화학 반응은 두 개의 개별적인 반응으로 이루어지는데, 연료극에서 일어나는 산화반응과 공기극에서 일어나는 환원반응이 그것이며, 연료극과 공기극은 전해질을 통해 분리되어 있다. 일반적으로 고분자 전해질 연료전지에서 사용되는 전해질 막은 불소화된 고분자(perfluorinated polymer) 전해질과 탄화수소계(hydrocarbon) 고분자 전해질로 나눌 수 있다. 상기 불소화된 고분자 전해질은 탄소-불소(C-F)간의 강한 결합력과 불소원자의 특징인 가림(shielding) 효과로 화학적으로 안정하며, 기계적인 물성도 우수하고, 특히 수소이온 교환막으로 전도성이 높으므로 현재 고분자 전해질형 연료전지의 고분자 막으로 상용화되고 있다. 미국 듀퐁(Du Pont)사의 상품인 네피온(Nafion, 퍼플루오르화 술폰산 중합체)은 상용화된 수소이온 교환막의 대표적인 예로서, 이온전도도, 화학적 안정성, 이온 선택성 등이 우수하여 현재 가장 널리 사용되고 있다. 그러나 불소화된 고분자 전해질 막은 우수한 성능에 반하여 높은 가격으로 인해 산업용으로서의 이용도가 낮으며, 수소 투과성(crossover)이 높고, 80℃ 이상의 온도에서 고분자 막의 효율이 감소되는 단점이 있어 가격면에서 경쟁성 있는 탄화수소 이온교환막 및 전극 바인더에 대한 연구가 활발히 진행되고 있다.Representative hydrogen production and utilization technologies include water electrolysis and fuel cells. A fuel cell is an energy conversion device that directly converts the chemical energy of fuel into electrical energy, and is being researched and developed as a next-generation energy source due to its high energy efficiency and low pollutant emission. In particular, a polymer electrolyte fuel cell using a polymer electrolyte is a kind of DC power generation device that directly converts the chemical energy of the fuel into electrical energy by an electrochemical reaction, and is an electrode-membrane assembly (MEA, membrane) like the heart of a fuel cell. It consists of a continuous composite of an electrode assembly and a bipolar plate that collects and supplies the generated electricity. Here, the membrane-electrode assembly refers to an assembly of an electrode in which an electrochemical catalytic reaction between hydrogen and air occurs and a polymer membrane in which hydrogen ions are transferred. Meanwhile, all electrochemical reactions are composed of two separate reactions, an oxidation reaction occurring at the anode and a reduction reaction occurring at the cathode, and the anode and cathode are separated through an electrolyte. Electrolyte membranes generally used in polymer electrolyte fuel cells can be divided into perfluorinated polymer electrolytes and hydrocarbon polymer electrolytes. The fluorinated polymer electrolyte is chemically stable due to the strong bonding force between carbon-fluorine (C-F) and the shielding effect characteristic of the fluorine atom, excellent mechanical properties, and especially high conductivity as a hydrogen ion exchange membrane. It is being commercialized as a polymer membrane for electrolyte type fuel cells. Nafion (perfluorinated sulfonic acid polymer), a product of Du Pont, USA, is a representative example of a commercially available hydrogen ion exchange membrane, and is currently most widely used due to its excellent ionic conductivity, chemical stability, ion selectivity, etc. However, the fluorinated polymer electrolyte membrane has disadvantages such as low industrial use due to its high price, high hydrogen permeability (crossover), and reduced efficiency of the polymer membrane at temperatures above 80 ° C. Research on hydrocarbon ion exchange membranes and electrode binders is being actively conducted.
또한, 대표적인 수소의 생산 수전해 시스템은 그린수소생산을 위한 핵심 시스템으로서 주목받고 있다. 수전해 장치에 의한 물(H2O)로부터 수소(H2)와 산소(O2)를 생성하는 과정은 수소, 산소, 물 이외에 환경오염을 일으킬 만한 원인물질을 생성하지 않음으로써 친환경적 대체에너지의 가치를 가지고 있고, 이러한 수전해의 대표적 기술은 크게 세 가지로 나눌 수 있는데, 양이온 교환막(Proton Exchange Membrane: PEM)을 사용하는 수전해 , 알칼리전해질을 이용한 알칼리 수전해(Alkaline electrolysis, AE), 및 고온의 수증기 조건하에서 세라믹 전해질을 활용한 HTE 방법 (High Temperature Electrolysis) 등이 있다.In addition, a representative hydrogen electrolysis system for producing hydrogen is attracting attention as a key system for producing green hydrogen. The process of generating hydrogen (H 2 ) and oxygen (O 2 ) from water (H 2 O) by a water electrolysis device does not produce other substances other than hydrogen, oxygen, and water that may cause environmental pollution, so it is an eco-friendly alternative energy source. It has value, and the representative technologies of such water electrolysis can be divided into three major categories: water electrolysis using a proton exchange membrane (PEM), alkaline electrolysis (AE) using an alkaline electrolyte, and There is a high temperature electrolysis (HTE) method using a ceramic electrolyte under high temperature steam conditions.
그 중에서도 양이온 교환막(PEM) 수전해는 주로 Ir, Ru을 사용하는 애노드와 주로 Pt를 사용하는 캐소드 및 양이온 교환막으로 구성되어 있고, 애모드 촉매에서는 H2O를 분해하여, H+ 와 O2를 생산(Oxygen Evolution Reaction; OER)하고, 생성된 H+ 양이온은 양이온 교환막을 통과하여 캐소드로 이동하며, 촉매표면에서 H2를 생성(hydrogen evolution reaction, HER)하게 되며 이는 다른 수전해에 비해 높은 수소이온 전도도로 1 A/cm2이상의 높은 전류밀도를 가지는 것이 특징이다.Among them, the cation exchange membrane (PEM) water electrolysis consists of an anode mainly using Ir and Ru, a cathode mainly using Pt, and a cation exchange membrane, and the Amode catalyst decomposes H 2 O to produce H+ and O 2 (Oxygen Evolution Reaction; OER), and the generated H+ cation passes through the cation exchange membrane and moves to the cathode, generating H 2 on the catalyst surface (hydrogen evolution reaction, HER), which has higher hydrogen ion conductivity than other water electrolysis It is characterized by having a high current density of 1 A/cm 2 or more.
이러한 수소의 생산 및 활용의 기술에 있어서 연료전지 및 수전해 시스템의 핵심소재로 이온교환소재가 활용되고 있는데, 현재는 과불소계 양이온 교환소재가 활용되고 있으나, 비과불소계(탄화수소계) 소재가 개발될 경우 가격 경쟁력 뿐 아니라 성능의 근본적인 개선도 가능할 것으로 전망되고 있고, 분리막의 경우 과불소계에 필적하는 성능의 소재가 개발되고 있으나, 전극 바인더의 경우에는 탄화소소계의 성능이 매우 낮아 이를 극복할 수 있는 소재의 개발이 시급한 실정이다.In the production and utilization technology of hydrogen, ion exchange materials are used as key materials for fuel cells and water electrolysis systems. Currently, perfluorinated cation exchange materials are used, but non-perfluorinated (hydrocarbon) materials are to be developed. In the case of the case, it is expected that not only price competitiveness but also fundamental improvement in performance will be possible, and in the case of separators, materials with performance comparable to perfluorine-based materials are being developed, but in the case of electrode binders, carbon-based materials have very low performance, There is an urgent need to develop materials.
한편, 이러한 이온교환소재 중에서도 음이온 교환 소재, 특히 카바졸계 음이온교환소재에 대한 종래기술로는 본원 발명의 발명자들이 개발한 한국 등록특허공보 제10-2284854호에서는 안정성이 우수한 카바졸계 소재를 기반으로 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 음이온 교환소재를 제공함으로써 용매에 용해성을 가지면서도 분자량을 획기적으로 향상시켜 물리적 화학적 안정성과 내구성이 향상된 분리막을 제공한 바 있고, 또한, 한국 등록특허공보 제10-2168673호에서는 이를 이용한 물성 및 내화학성이 우수하고 이온교환용량의 조절이 용이한 연료전지 막-전극 접합체를 제공한 바 있으나, 양이온교환소재와 관련된 기술 개발 또한 요구되고 있는 상황이다.On the other hand, among these ion exchange materials, as a prior art for an anion exchange material, particularly a carbazole-based anion exchange material, Korean Patent Registration No. 10-2284854 developed by the inventors of the present invention describes a main chain based on a carbazole-based material with excellent stability. By providing an anion exchange material in which all of the bonds between monomers constituting C-C bonds are provided, a separation membrane with improved physical and chemical stability and durability has been provided by dramatically improving molecular weight while having solubility in solvents, and also, Korean Registered Patent Publication No. 10-2168673 has provided a fuel cell membrane-electrode assembly with excellent physical properties and chemical resistance and easy control of ion exchange capacity, but the development of technology related to cation exchange materials is also required.
이에 본원 발명에서는 폴리카바졸계 주쇄 구조를 가지는 신규한 양이온교환형 이온전도체를 개발하였고, 이는 전극 바인더로서 뿐만 아니라 분리막용 이온교환 소재로서도 활용이 가능하고, 본 소재를 전극 바인더로 적용 시 기존 소재 대비 50% 이상의 월등한 성능을 가짐을 확인함으로써 본원 발명을 완성하였다.Therefore, in the present invention, a novel cation exchange type ion conductor having a polycarbazole-based main chain structure was developed, which can be used not only as an electrode binder but also as an ion exchange material for separators, and when applied as an electrode binder, compared to conventional materials The present invention was completed by confirming that it had superior performance of 50% or more.
본원 발명은 상기 문제점들을 해결하기 위해 개발된 것으로, 비과불소계(탄화수소계) 양이온교환형 이온전도체를 제공하는 것을 목적으로 한다.The present invention was developed to solve the above problems, and an object of the present invention is to provide a non-perfluorine-based (hydrocarbon-based) cation exchange type ion conductor.
또한, 본원 발명에서는 전극용 바인더로도 사용이 가능한 폴리카바졸계 주쇄를 갖는 양이온교환형 이온전도체를 제공하고자 한다.In addition, the present invention is to provide a cation exchange type ion conductor having a polycarbazole-based main chain that can be used as a binder for an electrode.
또한, 본원 발명에서는 전극 바인더로서 뿐만 아니라 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI) 분리막용 이온교환 소재로서도 사용할 수 있는 양이온교환형 이온전도체를 제공하는 것을 목적으로 한다.In addition, in the present invention, as an electrode binder, as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or electricity storage It is an object of the present invention to provide a cation exchange type ion conductor that can also be used as an ion exchange material for a capacitive deionization (CDI) separation membrane.
또한, 본원 발명에서는 카바졸계 고분자를 수전해용 양이온교환막 연료전지(Proton Exchange Membrane Fuel Cell: PEMFC)장치 또는 양이온교환막 수전해(Proton Exchange Membrane Water Electorolysis: PEMWE)장치를 제공하고자 한다.In addition, the present invention intends to provide a Proton Exchange Membrane Fuel Cell (PEMFC) device or a Proton Exchange Membrane Water Electrolysis (PEMWE) device for water electrolysis of a carbazole-based polymer.
본원 발명에서는 상기 과제를 해결하기 위하여 할로겐 함유 카바졸계 단량체 및 카바졸계 단량체로 이루어진 단량체 군에서 적어도 1종 이상의 단량체를 준비하는 단계: 상기 단량체를 초산성 촉매(superacid catalyst)를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 할로겐 함유 폴리카바졸계 고분자를 제조하는 단계; 상기 할로겐 함유 폴리카바졸계 고분자의 할로겐기를 티오아세틸화하여 티오아세틸화 폴리카바졸계 고분자를 제조하는 단계; 및 상기 티오아세틸화 폴리카바졸계 고분자를 술폰화하는 단계를 포함하는 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체의 제조방법을 제공한다.In the present invention, in order to solve the above problems, preparing at least one type of monomer from a monomer group consisting of a halogen-containing carbazole-based monomer and a carbazole-based monomer: Preparing a halogen-containing polycarbazole-based polymer in which all of the bonds between monomers constituting the main chain are C-C bonds; preparing a thioacetylated polycarbazole-based polymer by thioacetylating the halogen group of the halogen-containing polycarbazole-based polymer; and sulfonating the thioacetylated polycarbazole-based polymer.
또한, 본원 발명에서는 전극 바인더로서 뿐만 아니라 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI) 분리막용 이온교환 소재로서도 사용할 수 있는 양이온교환형 이온전도체 제공한다.In addition, in the present invention, as an electrode binder, as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or electricity storage A cation exchange type ion conductor that can also be used as an ion exchange material for a capacitive deionization (CDI) separation membrane is provided.
또한, 본원 발명에서는 양이온교환막 연료전지(Proton Exchange Membrane Fuel Cell: PEMFC)장치 또는 양이온교환막 수전해(Proton Exchange Membrane Water Electorolysis: PEMWE)장치를 제공한다.In addition, the present invention provides a Proton Exchange Membrane Fuel Cell (PEMFC) device or a Proton Exchange Membrane Water Electrolysis (PEMWE) device.
본원 발명은 주쇄에 -O-, -S- 등의 전자주게(electron donating) 특성의 연결기를 포함하지 않고 주쇄가 모두 C-C 결합으로 이루어진 카바졸계 소재를 기반으로 하는 양이온교환형 이온전도체를 제공함으로써 물성 및 내화학성이 우수할 뿐만 아니라 이온교환용량의 조절이 용이하며, 측쇄의 도입이 가능하여 용해도 증대 및 상분리 특성을 향상시킬 수 있다.The present invention provides a cation exchange type ion conductor based on a carbazole-based material in which the main chain does not include a linking group of electron donating characteristics such as -O- or -S-, and the main chain is all composed of C-C bonds, thereby providing physical properties In addition to excellent chemical resistance, it is easy to control the ion exchange capacity, and it is possible to introduce a side chain, thereby increasing solubility and improving phase separation characteristics.
또한, 본원 발명은 전극 바인더로서 뿐만 아니라 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI) 분리막용 이온교환 소재로서도 활용할 수 있는 큰 장점이 있다.In addition, the present invention is an electrode binder as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or electrical storage It has a great advantage that it can also be used as an ion exchange material for capacitive deionization (CDI) membranes.
도 1은 본원 발명의 일 구현예에 따른 할로겐 함유 카바졸계 단량체(M1)의 1H NMR 및 1H-1H COZY NMR 스팩트럼 분석 결과를 나타낸 것이다.1 shows the results of 1 H NMR and 1 H- 1 H COZY NMR spectrum analysis of a halogen-containing carbazole-based monomer (M1) according to an embodiment of the present invention.
도 2는 본원 발명의 일 구현예에 따른 할로겐 함유 폴리카바졸계 고분자(PCTFP-br: P1), 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 및 술폰화된 폴리카바졸계 고분자(sPCTFP: P3)의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다.2 is a halogen-containing polycarbazole-based polymer (PCTFP-br: P1), a thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2), and a sulfonated polycarbazole-based polymer (sPCTFP: P3) shows the results of 1 H-NMR spectrum analysis.
도 3은 본원 발명의 일 구현예에 따른 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 및 술폰화된 폴리카바졸계 고분자(sPCTFP: P3)의 1H-1H COZY NMR 스팩트럼 분석 결과를 나타낸 것이다.Figure 3 shows the results of 1 H- 1 H COZY NMR spectrum analysis of thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) and sulfonated polycarbazole-based polymer (sPCTFP: P3) according to an embodiment of the present invention. it is shown
도 4는 본원 발명의 일 구현예에 따른 폴리카바졸계 양이온교환형 전도체를 전극용 바인더로 이용한 MEA의 제조방법을 나타낸 것이다.4 shows a method for manufacturing an MEA using a polycarbazole-based cation exchange type conductor as a binder for an electrode according to an embodiment of the present invention.
도 5는 본원 발명의 일 구현예에 따른 폴리카바졸계 양이온교환형 전도체를 바인더로 사용한 연료전지 단위셀 평가 결과를 나타낸 것이다.5 shows evaluation results of a fuel cell unit cell using a polycarbazole-based cation exchange type conductor according to an embodiment of the present invention as a binder.
이하, 본원 발명에 대해 상세하게 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본원 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims should not be construed as being limited to ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to explain their invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본원 발명은 폴리카바졸계 양이온교환 이온전도체, 그의 제조방법 및 용도에 대한 것으로 보다 구체적으로는 보다 구체적으로는 전극 바인더로서 뿐만 아니라 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI) 분리막용 이온교환 소재로서도 사용할 수 있는 양이온교환형 이온전도체 및 이의 제조방법을 제공한다.The present invention relates to a polycarbazole-based cation exchange ion conductor, its manufacturing method and use, more specifically, as an electrode binder as well as water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED) or capacitive deionization (CDI) provides a cation exchange type ion conductor that can also be used as an ion exchange material for separation membranes and a manufacturing method thereof do.
본원 발명에서는 상기 과제를 해결하기 위하여, 할로겐 함유 카바졸계 단량체 및 카바졸계 단량체로 이루어진 단량체 군에서 적어도 1종 이상의 단량체를 준비하는 단계: 상기 단량체를 초산성 촉매(superacid catalyst)를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 할로겐 함유 폴리카바졸계 고분자를 제조하는 단계; 상기 할로겐 함유 폴리카바졸계 고분자의 할로겐기를 티오아세틸화하여 티오아세틸화 폴리카바졸계 고분자를 제조하는 단계; 및 상기 티오아세틸화 폴리카바졸계 고분자를 술폰화하는 단계를 포함하여, 하기 화학식 A의 화학구조를 가지는 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체의 제조방법을 제공한다.In the present invention, in order to solve the above problems, preparing at least one monomer from a monomer group consisting of a halogen-containing carbazole-based monomer and a carbazole-based monomer: using a polymerization reaction using a superacid catalyst for the monomer preparing a halogen-containing polycarbazole-based polymer in which all of the bonds between monomers constituting the main chain are composed of C-C bonds; preparing a thioacetylated polycarbazole-based polymer by thioacetylating the halogen group of the halogen-containing polycarbazole-based polymer; and sulfonating the thioacetylated polycarbazole-based polymer, thereby providing a method for producing a polycarbazole-based cation exchange-type ion conductor having a chemical structure of Formula A below.
<화학식 A><Formula A>
Figure PCTKR2022017650-appb-img-000001
Figure PCTKR2022017650-appb-img-000001
상기 화학식 A에서,In Formula A,
W는 양이온 교환기로 술폰산기(-SO3H), 인산기(-PO3H2), 아세트산기(-COOH), 또는 이들의 알칼리 금속염 중 어느 하나이거나 니트로기(-NO2) 이고,W is a cation exchange group and is either a sulfonic acid group (-SO 3 H), a phosphoric acid group (-PO 3 H 2 ), an acetic acid group (-COOH), or an alkali metal salt thereof, or a nitro group (-NO 2 ),
R1 ~ R4로 표현되는 치환체는 각각 독립적으로 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
플루오린 원자를 포함하는 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Any one of an alkylene group, an arylene group, and an allylene group containing a fluorine atom;
퍼플루오로알킬렌기이거나, a perfluoroalkylene group,
선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬렌기, 퍼플루오로아릴렌기, -O- 퍼플루오로아릴렌기 중 어느 하나이고,Any one of a perfluoroalkylene group, a perfluoroarylene group, and an -O-perfluoroarylene group, optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain,
반복단위 수인 m은 100,000 이하의 양의 정수이며, n은 0 이거나 100,000 이하의 양의 정수이다.m, the number of repeating units, is a positive integer of 100,000 or less, and n is 0 or a positive integer of 100,000 or less.
본원 발명의 일 구현예에 따른 제조방법에 있어서, 상기 초산성 촉매는 트리플루오로메탄술폰산(trifluoromethanesulfonic acid: TFSA, CF3SO3H) 또는 플루오로술폰산(fluorosulfonic acid: HSO3F) 중 어느 하나일 수 있다.In the production method according to an embodiment of the present invention, the acetic acid catalyst is trifluoromethanesulfonic acid (TFSA, CF 3 SO 3 H) or fluorosulfonic acid (fluorosulfonic acid: HSO 3 F). can be
본원 발명의 일 구현예에 따른 제조방법에 있어서, 상기 할로겐 함유 카바졸계 단량체는 상기 초산성 촉매를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 상기 할로겐 함유 폴리카바졸계 고분자로 제조될 수 있다. 상기 중합반응은 상기 초산성 촉매에 의한 C-C 결합 합성법에 의해 것으로, 주쇄에 -O-, -S- 등의 전자주게기가 포함되지 않고 모두 C-C 결합으로 이루어진 하기 화학식 B의 화학구조를 가지는 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체가 제조될 수 있다.In the production method according to one embodiment of the present invention, the halogen-containing carbazole-based monomers are the halogen-containing polycarbazole-based monomers in which all the bonds between monomers constituting the main chain are composed of C-C bonds by using a polymerization reaction using the acetic acid catalyst. It can be made of polymers. The polymerization reaction is by the C-C bond synthesis method by the acetic acid catalyst, and has a chemical structure of the following formula B consisting of all C-C bonds without including electron donating groups such as -O- and -S- in the main chain. A polycarbazole-based cation exchange type ion conductor can be prepared.
<화학식 B><Formula B>
Figure PCTKR2022017650-appb-img-000002
Figure PCTKR2022017650-appb-img-000002
상기 화학식 B에서,In the above formula B,
X는 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이고,X is any one of halogen atoms chlorine (Cl), bromine (Br), iodine (I),
R1 ~ R4로 표현되는 치환체는 각각 독립적으로 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
플루오린 원자를 포함하는 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Any one of an alkylene group, an arylene group, and an allylene group containing a fluorine atom;
퍼플루오로알킬렌기이거나, a perfluoroalkylene group,
선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬렌기, 퍼플루오로아릴렌기, -O- 퍼플루오로아릴렌기 중 어느 하나이고,Any one of a perfluoroalkylene group, a perfluoroarylene group, and an -O-perfluoroarylene group, optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain,
반복단위 수인 m은 100,000 이하의 양의 정수이며, n은 0 이거나 100,000 이하의 양의 정수이다.m, the number of repeating units, is a positive integer of 100,000 or less, and n is 0 or a positive integer of 100,000 or less.
본원 발명의 일 구현예에 따르면, 상기 초산성 촉매는 카바졸계 단량체의 총량 기준 0.1 내지 100 당량 사용될 수 있다. 바람직하게는 상기 할로겐 함유 카바졸계 단량체의 총량 기준 1 내지 20 당량으로 사용될 수 있다.According to one embodiment of the present invention, the acetic acid catalyst may be used in an amount of 0.1 to 100 equivalents based on the total amount of carbazole-based monomers. Preferably, it may be used in an amount of 1 to 20 equivalents based on the total amount of the halogen-containing carbazole-based monomers.
본원 발명의 일 구현예에 따르면, 상기 할로겐 함유 폴리카바졸계 고분자를 제조하는 단계는, 상기 할로겐 함유 카바졸계 단량체 및 카바졸계 단량체로 이루어진 단량체 군에서 적어도 1종 이상의 단량체 및 상기 초산성 촉매가 용매에 혼합되어 교반되는 것을 포함할 수 있고, 이 때 상기 용매는 CCl4, CHCl3, CH2Cl2, C2H2Cl4, 또는 요오드, 브롬 또는 불소 등 할로겐 원소를 함유하는 유기용매가 사용될 수 있다.According to one embodiment of the present invention, in the step of preparing the halogen-containing polycarbazole-based polymer, at least one monomer from the monomer group consisting of the halogen-containing carbazole-based monomer and the carbazole-based monomer and the acetic acid catalyst are dissolved in a solvent. It may include mixing and stirring, wherein the solvent is CCl 4 , CHCl 3 , CH 2 Cl 2 , C 2 H 2 Cl 4 , or an organic solvent containing a halogen element such as iodine, bromine or fluorine may be used. there is.
본원 발명의 일 구현예에 따르면, 상기 티오아세틸화 폴리카바졸계 고분자를 제조하는 단계는 할로겐 함유 폴리카바졸계 고분자의 할로겐기를 티오아세트산(thioacetic acid), 에틸티오아세테이트(ethylthioacetate), 티오아세테이트(thioacetate) 금속염중 어느 하나와의 반응일 수 있고, 보다 바람직하게는 소듐 티오아세테이트(sodium thioacetate)나 포타슘 티오아세테이트(patassium thioacetate)를 이용한 반응일 수 있다.According to one embodiment of the present invention, the step of preparing the thioacetylated polycarbazole-based polymer is to convert the halogen group of the halogen-containing polycarbazole-based polymer to thioacetic acid, ethylthioacetate, or thioacetate. It may be a reaction with any one of metal salts, and more preferably, it may be a reaction using sodium thioacetate or potassium thioacetate.
본원 발명의 일 구현예에 따르면, 상기 술폰화하는 단계는 티오아세틸화 폴리카바졸계 고분자를 과산화수소, 황산, 클로로술폰산, 소듐바이설파이트(sodium bisulfite), m-클로로퍼옥시벤조산(m-chloroperoxybenzoic acid: mCPBA)중 어느 하나와 반응일 수 있다.According to one embodiment of the present invention, the step of sulfonating the thioacetylated polycarbazole-based polymer with hydrogen peroxide, sulfuric acid, chlorosulfonic acid, sodium bisulfite, m-chloroperoxybenzoic acid ( m -chloroperoxybenzoic acid : mCPBA) may be reacted with any one of them.
또한, 본원 발명에서는 하기 화학식 A의 화학구조를 가지는 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체를 제공한다.In addition, the present invention provides a polycarbazole-based cation exchange type ion conductor characterized in that it has a chemical structure of the following formula (A).
<화학식 A><Formula A>
Figure PCTKR2022017650-appb-img-000003
Figure PCTKR2022017650-appb-img-000003
상기 화학식 A에서,In Formula A,
W는 양이온 교환기로 술폰산기(-SO3H), 인산기(-PO3H2), 아세트산기(-COOH), 또는 이들의 알칼리 금속염 중 어느 하나이거나 니트로기(-NO2) 이고,W is a cation exchange group and is either a sulfonic acid group (-SO 3 H), a phosphoric acid group (-PO 3 H 2 ), an acetic acid group (-COOH), or an alkali metal salt thereof, or a nitro group (-NO 2 ),
R1 ~ R4로 표현되는 치환체는 각각 독립적으로 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
플루오린 원자를 포함하는 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Any one of an alkylene group, an arylene group, and an allylene group containing a fluorine atom;
퍼플루오로알킬렌기이거나, a perfluoroalkylene group,
선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬렌기, 퍼플루오로아릴렌기, -O- 퍼플루오로아릴렌기 중 어느 하나이고,Any one of a perfluoroalkylene group, a perfluoroarylene group, and an -O-perfluoroarylene group, optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain,
반복단위 수인 m은 100,000 이하의 양의 정수이며, n은 0 이거나 100,000 이하의 양의 정수이다.m, the number of repeating units, is a positive integer of 100,000 or less, and n is 0 or a positive integer of 100,000 or less.
또한, 본원 발명에서는 상기 제조방법에 따라 제조되는 폴리카바졸계 양이온교환 이온전도체를 포함하는 전극용 바인더를 제공한다.In addition, the present invention provides a binder for an electrode comprising a polycarbazole-based cation exchange ion conductor prepared according to the above manufacturing method.
본원 발명의 일 구현예에 따르면, 상기 제조방법에 따라 제조되는 폴리카바졸계 양이온교환 이온전도체는 연료전지 등에서 이온교환막과 전극과의 접합(membrane electrode assembly: MEA) 또는 전극층의 제조시 촉매와 혼합되는 바인더로 사용이 가능하다.According to one embodiment of the present invention, the polycarbazole-based cation exchange ion conductor prepared according to the manufacturing method is mixed with a catalyst during the manufacture of a membrane electrode assembly (MEA) or an electrode layer in a fuel cell or the like. Can be used as a binder.
또한, 본원 발명에서는 상기 제조방법에 따라 제조되는 폴리카바졸계 양이온교환 이온전도체를 포함하는 분리막을 제공한다.In addition, the present invention provides a separation membrane comprising a polycarbazole-based cation exchange ion conductor prepared according to the above manufacturing method.
이때 분리막은 해당 양이온교환 이온전도체로 제조된 단일막, 강화막, 복합막 및 강화복합막으로 이루어지는 군에서 선택되는 중 어느 하나일 수 있고, 구체적으로 단일막은 본원 발명의 일 구현예에 따른 양이오교환 이온전도체를 주 재료로 제조된 분리막을 의미하고, 강화막은 막의 물리적인 특성을 향상시키기 위해 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴프루오라이드, 폴리스티렌, 폴리술폰, 폴리비닐알코올, 폴리벤즈이미다졸, 폴리이미드, 폴리아마이드이미드, 유리섬유, 셀룰로오스 혹은 이들의 혼합체를 기반으로 하는 다공성 막 또는 내부에 기공을 갖는 유기 혹은 무기 소재 기반의 다공성 막을 지지체로 하여 본원 발명의 일 구현예에 따른 양이오교환 이온전도체를 함침한 형태일 수 있으며, 복합막은 본원 발명의 일 구현예에 따른 양이오교환 이온전도체를 주 재료로 하여 연료 및 활성물질의 크로스오버(cross over)를 낮추거나 성능을 향상시킬 수 있는 유기계 혹은 무기계 혹은 유무기 하이브리드계 나노입자 및 첨가제를 포함하는 형태 일 수 있고, 강화복합막은 위에서 언급한 복합막과 강화막의 개념을 함께 적용한 형태로서 나노입자 및 첨가제를 포함하는 양이온교환 이온전도체의 복합막을 유기 혹은 무기 소재 기반의 다공성 지지체에 함침하여 제조한 형태 일 수 있다.In this case, the separation membrane may be any one selected from the group consisting of a single membrane, a reinforced membrane, a composite membrane, and a reinforced composite membrane made of the corresponding cation exchange ion conductor, and specifically, the single membrane is a cationic membrane according to an embodiment of the present invention. It refers to a separator made of an exchange ion conductor as the main material, and a reinforced membrane is made of polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polystyrene, polysulfone, and polyvinyl alcohol to improve the physical properties of the membrane. One embodiment of the present invention using a porous membrane based on polybenzimidazole, polyimide, polyamideimide, glass fiber, cellulose, or a mixture thereof or a porous membrane based on an organic or inorganic material having pores therein as a support It may be impregnated with a cation exchange ion conductor according to, and the composite membrane uses the cation exchange ion conductor according to an embodiment of the present invention as a main material to lower the crossover of fuel and active material or to improve performance It can be in the form of organic, inorganic or organic-inorganic hybrid nanoparticles and additives that can improve the strength of the composite membrane, and the reinforced composite membrane is a form in which the concept of the above-mentioned composite membrane and reinforced membrane is applied together, and the cation containing nanoparticles and additives It may be manufactured by impregnating a composite membrane of an exchange ion conductor into a porous support based on an organic or inorganic material.
본원 발명의 일 구현예에 따르면, 상기 분리막은 양이온교환막 연료전지(Proton Exchange Membrane Fuel Cell: PEMFC)용일 수 있다.According to one embodiment of the present invention, the separator may be for a Proton Exchange Membrane Fuel Cell (PEMFC).
또한, 본원 발명의 일 구현예에 따른 상기 분리막은 그 용도가 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용이고, 보다 바람직하게 상기 분리막은 수전해용 양이온교환막(Proton Exchange Membrane Water Electorolysis: PEMWE)일 수 있다.In addition, the separation membrane according to one embodiment of the present invention is used for water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, It is for electrodialysis (ED), reverse electrodialysis (RED) or capacitive deionization (CDI), more preferably, the separator is a proton exchange membrane water electrolysis (PEMWE) can
또한, 본원 발명의 일구현예에 따른 폴리카바졸계 양이온교환 이온전도체를 포함하는 전극용 바인더; 및 분리막은 양이온교환막 연료전지(Proton Exchange Membrane Fuel Cell: PEMFC)장치 및 양이온교환막 수전해(Proton Exchange Membrane Water Electorolysis: PEMWE)장치에 이용될 수 있다.In addition, a binder for an electrode comprising a polycarbazole-based cation exchange ion conductor according to an embodiment of the present invention; And the separation membrane may be used in a Proton Exchange Membrane Fuel Cell (PEMFC) device and a Proton Exchange Membrane Water Electrolysis (PEMWE) device.
이하, 본원 발명의 바람직한 실시 예를 첨부한 도면과 같이 본원이 속하는 기술 분야에서 일반적인 지식을 가진 자가 쉽게 실시할 수 있도록 본원의 구현 예 및 실시 예를 상세히 설명한다. 특히 이것에 의해 본원 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한을 받지 않는다. 또한, 본원 발명의 내용은 여러 가지 다른 형태의 장비로 구현될 수 있으며, 여기에서 설명하는 구현 예 및 실시 예에 한정되지 않는다.Hereinafter, implementation examples and embodiments of the present invention will be described in detail so that those with general knowledge in the technical field to which the present application pertains can easily practice, as shown in the accompanying drawings, preferred embodiments of the present invention. In particular, the technical idea of the present invention and its core configuration and operation are not limited by this. In addition, the contents of the present invention can be implemented in various types of equipment, and is not limited to the implementation examples and examples described herein.
본원 발명의 일 구현예에 따른 폴리카바졸계 양이온교환형 이온전도체는 하기의 반응식 1의 방법에 따라 제조하였다.A polycarbazole-based cation exchange type ion conductor according to an embodiment of the present invention was prepared according to the method of Reaction Scheme 1 below.
<반응식 1><Scheme 1>
Figure PCTKR2022017650-appb-img-000004
Figure PCTKR2022017650-appb-img-000004
<제조예 1> 할로겐 함유 카바졸계 단량체(BHC: M1) 제조<Preparation Example 1> Preparation of halogen-containing carbazole-based monomer (BHC: M1)
본원 발명의 일 구현예에 따른 폴리카바졸계 고분자 합성을 위한 단량체 합성 과정은 다음과 같다. 먼저 건조된 3구 플라스크를 준비하여 카바졸(carbazole) 10.0g과 디브로모헥산(dibromohexane) 43.8g을 N,N-디메틸포름아미드(N,N-dimethylformamide) 200ml에 넣어 녹여준 뒤, 0 oC, Ar 분위기 하에서 KOH (3.4g) 를 넣고 24h 동안 반응 시키고, 반응이 종료 되면 빙수(iced water)에 침전 후 디클로로메탄(dichloromethane)으로 추출하여 혼합물을 얻고, 얻은 혼합물을 컬럼크로마토그래피(column chromatography)를 통해 정제하고 에탄올로 재결정하여 단량체를 제조하였다.A monomer synthesis process for synthesizing a polycarbazole-based polymer according to an embodiment of the present invention is as follows. First, prepare a dried three-necked flask, dissolve 10.0 g of carbazole and 43.8 g of dibromohexane in 200 ml of N,N-dimethylformamide, and KOH (3.4g) was added under C and Ar atmosphere and reacted for 24 h. After the reaction was completed, the mixture was precipitated in iced water and extracted with dichloromethane to obtain a mixture. The resulting mixture was subjected to column chromatography ) and recrystallized with ethanol to prepare a monomer.
도 1은 본원 발명의 일 구현예에 따른 할로겐 함유 카바졸계 단량체(M1)의 NMR 스팩트럼 분석 결과를 나타낸 것이다.1 shows the results of NMR spectrum analysis of a halogen-containing carbazole-based monomer (M1) according to an embodiment of the present invention.
<제조예 2> 할로겐 함유 폴리카바졸계 고분자(PCTFP-br: P1) 제조<Preparation Example 2> Preparation of halogen-containing polycarbazole-based polymer (PCTFP-br: P1)
*본원 발명의 일 구현예에 따른 할로겐 함유 폴리카바졸계의 고분자 합성 과정은 다음과 같다. 완전히 건조시킨 플라스크를 준비하여 상기 제조예 1에서 제조한 할로겐 함유 카바졸계 단량체(M1) 10g, 트리플루오로아세톤(trifluoroacetone) 4.4g, 메틸렌 클로라이드(methylene chloride) 24ml에 녹인 후 0°C에서 Ar 분위기하에서 트리플루오로메탄술폰산(trifluoromethanesulfonic acid: TFSA, CF3SO3H) 43.2g을 넣어준 뒤, 2h동안 교반하고 상온으로 온도를 올려준 후 48h 동안 반응을 진행하고. 반응 종료 후 혼합물을 메탄올로 씻은 후 합성 된 고분자는 80°C 진공에서 건조하여 할로겐 함유 폴리카바졸계 고분자(P1)을 얻었다. 제조된 고분자 P1을 1H-NMR 분광법에 의하여 분석하여 고분자 합성을 확인하였다.* A process for synthesizing a halogen-containing polycarbazole-based polymer according to an embodiment of the present invention is as follows. A completely dried flask was prepared and dissolved in 10 g of the halogen-containing carbazole-based monomer (M1) prepared in Preparation Example 1, 4.4 g of trifluoroacetone, and 24 ml of methylene chloride, and then dissolved in an Ar atmosphere at 0 ° C. 43.2 g of trifluoromethanesulfonic acid (TFSA, CF 3 SO 3 H) was added thereto, stirred for 2 h, raised to room temperature, and reacted for 48 h. After completion of the reaction, the mixture was washed with methanol, and the synthesized polymer was dried in a vacuum at 80 °C to obtain a halogen-containing polycarbazole-based polymer (P1). The prepared polymer P1 was analyzed by 1 H-NMR spectroscopy to confirm the synthesis of the polymer.
<제조예 3> 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 제조<Preparation Example 3> Preparation of thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2)
본원 발명의 일 구현예에 따른 티오아세틸화 폴리카바졸계 고분자의 제조과정은 다음과 같다. 건조된 3구 플라스크를 준비하여 Ar 분위기하에서 상기 제조예 2에서 제조한 할로겐 함유 폴리카바졸계 고분자(PCTFP-br: P1) 10.0g을 N,N-디메틸포름아미드(N,N-dimethylformamide) 100ml에 넣어 녹여준 뒤, 상온에서 포타슘 티오아세테이트(Potassium thioacetate) 5.9 g을 넣고 24h 동안 상온에서 반응 시켰다. 반응이 종료 되면 메탄올에 침전하고 수 차례 메탄올로 씻어준 뒤 필터하고, 제조된 고분자는 80°C 진공 건조하여 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2)를 얻었다.The manufacturing process of the thioacetylated polycarbazole-based polymer according to one embodiment of the present invention is as follows. Prepare a dried three-necked flask and add 10.0 g of the halogen-containing polycarbazole-based polymer (PCTFP-br: P1) prepared in Preparation Example 2 under an Ar atmosphere to 100 ml of N, N-dimethylformamide. After melting, 5.9 g of potassium thioacetate was added at room temperature and reacted at room temperature for 24 h. After the reaction was completed, it was precipitated in methanol, washed with methanol several times, filtered, and the prepared polymer was vacuum dried at 80 ° C to obtain a thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2).
<제조예 4> 술폰화된 폴리카바졸계 고분자(sPCTFP: P3) 제조<Preparation Example 4> Preparation of sulfonated polycarbazole-based polymer (sPCTFP: P3)
본원 발명의 일 구현예에 따른 술폰화된 폴리카바졸계의 고분자 합성 과정은 다음과 같다. 완전히 건조시킨 플라스크를 준비하여 Ar 분위기하에서 상기 제조예 3에서 제조한 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 10g 을 N,N-디메틸포름아미드(N,N-dimethylformamide) 200 ml에 녹인 후 0 °C 로 온도를 낮춰 준 뒤 m-클로로퍼옥시벤조산(m-chloroperoxybenzoic acid: mCPBA) 8.013 g을 천천히 넣어준 후, 10 °C로 승온하여 2h 동안 반응을 진행하였다. 반응 종료 후, 1M NaCl 용액에 침전시키고, 디메틸술폭시드(dimethyl sulfoxide: DMSO)에 녹여 아세톤에 재침전한 후 필터하여 80°C 진공 건조하여 술폰화된 폴리카바졸계 고분자(sPCTFP: P3) 고분자를 얻었다.A process for synthesizing a sulfonated polycarbazole-based polymer according to an embodiment of the present invention is as follows. A completely dried flask was prepared and 10 g of the thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) prepared in Preparation Example 3 was added to 200 ml of N, N-dimethylformamide under an Ar atmosphere. After melting and lowering the temperature to 0 °C, 8.013 g of m -chloroperoxybenzoic acid (mCPBA) was slowly added thereto, and then the temperature was raised to 10 °C and the reaction proceeded for 2 h. After the reaction was completed, it was precipitated in 1M NaCl solution, dissolved in dimethyl sulfoxide (DMSO), reprecipitated in acetone, filtered, and vacuum dried at 80 ° C to obtain a sulfonated polycarbazole-based polymer (sPCTFP: P3) polymer. got it
도 2는 본원 발명의 일 구현예에 따른 할로겐 함유 폴리카바졸계 고분자(PCTFP-br: P1), 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 및 술폰화된 폴리카바졸계 고분자(sPCTFP: P3)의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다.2 is a halogen-containing polycarbazole-based polymer (PCTFP-br: P1), a thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2), and a sulfonated polycarbazole-based polymer (sPCTFP: P3) shows the results of 1 H-NMR spectrum analysis.
도 3은 본원 발명의 일 구현예에 따른 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 및 술폰화된 폴리카바졸계 고분자(sPCTFP: P3)의 1H-1H COZY NMR 스팩트럼 분석 결과를 나타낸 것이다.Figure 3 shows the results of 1 H- 1 H COZY NMR spectrum analysis of thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) and sulfonated polycarbazole-based polymer (sPCTFP: P3) according to an embodiment of the present invention. it is shown
도 2를 통해 주쇄 고분자인 할로겐 함유 폴리카바졸계 고분자(PCTFP-br: P1), 티오아세틸레이션을 통해 합성된 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 및 최종 목표 소재인 술폰화된 폴리카바졸계 고분자(sPCTFP: P3)가 모두 성공적으로 합성되었음을 알 수 있다. 또한, 도3의 1H-1H COZY NMR 스팩트럼 분석에서는 이웃한 탄소에 도입된 프로톤 사이의 공명현상 분석을 통해 티오아세틸레이션을 통해 합성된 티오아세틸화 폴리카바졸계 고분자(PCTFP-TAc: P2) 및 최종 목표 소재인 술폰화된 폴리카바졸계 고분자(sPCTFP: P3)가 성공적으로 합성되었음을 더욱 명확히 확인할 수 있다. 2, halogen-containing polycarbazole-based polymer (PCTFP-br: P1) as a main chain polymer, thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) synthesized through thioacetylation, and sulfonated It can be seen that all polycarbazole-based polymers (sPCTFP: P3) were successfully synthesized. In addition, in the 1 H- 1 H COZY NMR spectrum analysis of FIG. 3, a thioacetylated polycarbazole-based polymer (PCTFP-TAc: P2) synthesized through thioacetylation through resonance analysis between protons introduced into neighboring carbons And it can be more clearly confirmed that the sulfonated polycarbazole-based polymer (sPCTFP: P3), which is the final target material, was successfully synthesized.
<분석예 1> 폴리카바졸계 양이온교환형 이온전도체의 특성평가<Analysis Example 1> Evaluation of characteristics of polycarbazole-based cation exchange type ion conductor
1H NMR 스팩트럼은 500, 700MHz Bruker AVANCE 장비를 사용하였고, tetramethylsilane (TMS) 기준으로 하였으며, 용매로는 DMF-d 7(δ= 2.75, 2.92, 8.03 ppm) 와 CDCl3-d 1 (δ = 7.28 ppm) 를 사용하였다. For 1 H NMR spectra, 500 and 700 MHz Bruker AVANCE instruments were used, and tetramethylsilane (TMS) was used as the standard. As solvents, DMF- d 7 (δ = 2.75, 2.92, 8.03 ppm) and CDCl 3 -d 1 (δ = 7.28 ppm) was used.
제조한 고분자의 분자량은 HR 3,4 columns을 사용하고 detector로 Waters사의 2414 model을 이용한 gel permeation chromatograph (GPC)를 사용하여 THF 용액에 고분자를 녹여 주사하였으며, 측정은 40 °C , flow rate는 1.0 mL/min으로 측정하여 그 결과를 표 1에 기재하였다.The molecular weight of the prepared polymer was measured by dissolving the polymer in THF solution using HR 3,4 columns and gel permeation chromatograph (GPC) using Waters' 2414 model as a detector. It was measured in mL/min and the results are shown in Table 1.
Mn(KDa)Mn(KDa) Mw(KDa)Mw (KDa)
PCTFP-brPCTFP-br 4040 9191
PCTFP-TAcPCTFP-TAc 4141 107107
sPCTFPsPCTFP 4343 124124
제조한 양이온교환막의 이온교환용량 (ion exchange capacity; IEC)은 counter ion이 Cl- 로 치환된 샘플은 준비하여, 준비된 양이온교환소재를 0.01M HCl 수용액에 24시간 교반 한 뒤, 0.01M NaOH 수용액을 이용하여 산-염기 적정을 통해서 측정하였다.The ion exchange capacity (IEC) of the prepared cation exchange membrane was prepared by preparing a sample in which the counter ion was replaced with Cl - , stirring the prepared cation exchange material in 0.01M HCl aqueous solution for 24 hours, and then adding 0.01M NaOH aqueous solution. It was measured through acid-base titration using
제조된 막의 치수안정성은 이온교환막의 젖은 상태와 건조 상태에서의 무게, 길이, 두께, 부피 변화를 상온에서 측정하였고, 이온전도도는 Pt 전극 cell을 사용하였으며 4-probe electrochemical impedance spectroscopy (Solatron 1280)로 impedance을 측정하며, 이온교환막을 1.5 M H2SO4 수용액에 24시간 담지한 후 H+ 이온전도도를 100% 상대습도에서 25℃, 40℃, 60℃, 80℃에서 측정하여 그 결과를 표 2에 기재하였다.For the dimensional stability of the prepared membrane, the weight, length, thickness, and volume changes of the ion exchange membrane in the wet and dry state were measured at room temperature. Impedance was measured, and after the ion exchange membrane was immersed in 1.5 MH 2 SO 4 aqueous solution for 24 hours, the H + ion conductivity was measured at 25 ℃, 40 ℃, 60 ℃, 80 ℃ at 100% relative humidity, the results are shown in Table 2 described.
IEC
(meq/g)
IEC
(meq/g)
Water uptake
(%)
Water uptake
(%)
Proton conductivity(mS/cm)Proton conductivity (mS/cm)
25℃25℃ 80℃80℃
sPCTFPsPCTFP 2.12.1 5555 5959 115115
표 2에서와 같이 본원 발명의 일 구현예에 따른 sPCTFP는 상온에서 55%의 적절한 함수율을 보였다. 또한 상용막인 Nafion 115와 거의 유사한 우수한 양이온전도도를 가짐을 알 수 있다.As shown in Table 2, sPCTFP according to one embodiment of the present invention showed an appropriate moisture content of 55% at room temperature. In addition, it can be seen that it has an excellent cationic conductivity almost similar to that of Nafion 115, a commercial film.
<분석예 2> 양이온교환형 이온전도체의 연료전지용 전극 바인더 특성평가<Analysis Example 2> Characteristic evaluation of electrode binder for fuel cell of cation exchange type ion conductor
도 4는 본원 발명의 일 구현예에 따른 폴리카바졸계 양이온교환형 전도체를 전극용 바인더로 이용한 MEA의 제조방법을 나타낸 것이다.4 shows a method for manufacturing an MEA using a polycarbazole-based cation exchange type conductor as a binder for an electrode according to an embodiment of the present invention.
상기 제조예 4에 따라 제조된 술폰화된 폴리카바졸계 고분자(sPCTFP: P3)를 n-propanol/NMP (Junsei chemical, GC) 에 5 wt%로 녹여 고분자 바인더 용액을 제조하였고, 제조된 고분자 바인더 용액과 Pt/C (50 wt% Pt, RTX ), 밸런스(balance) 용액을 볼-밀(ball-mill: PM-100, Retsch, Germany)을 사용하여 슬러리(slurry)를 제조하고, 제조된 슬러리는 대표적인 탄화수소계 양이온교환막인 sPAES50에 스프레이코터(spray coater: LSC-300, Lithotech., Korea)를 사용하여 활성면적 5 cm2로 양면에 도포하고 건조함으로서 막전극접합체 (membrane-electrode assembly; MEA)를 제조하였고, 제조된 MEA는 1M 황산수용액에 24시간 담지한 후 평가하였다.A polymer binder solution was prepared by dissolving the sulfonated polycarbazole-based polymer (sPCTFP: P3) prepared according to Preparation Example 4 in n-propanol/NMP (Junsei chemical, GC) at 5 wt%, and the prepared polymer binder solution And Pt / C (50 wt% Pt, RTX ), balance (balance) solution using a ball-mill (ball-mill: PM-100, Retsch, Germany) to prepare a slurry (slurry), the prepared slurry A typical hydrocarbon-based cation exchange membrane, sPAES50, was coated on both sides with an active area of 5 cm 2 using a spray coater (LSC-300, Lithotech., Korea) and dried to form a membrane-electrode assembly (MEA). The prepared MEA was immersed in an aqueous 1M sulfuric acid solution for 24 hours and then evaluated.
이때, 양이온교환형 연료전지 단위전지 특성 평가는 다음과 같이 이루어졌다. 만들어진 전극층과 이온교환막을 겹쳐서 막-전극접합층을 제조하고, 기체 확산층(gas diffusion layer) 소재로는 SGL-39BC를 사용하였으며, 제조된 막-전극접합층을 연료전지 단위전지에 넣어준 뒤 fuel cell test station (Z010-100, SCITHEC KOREA)으로 0.2 V - 1.1 V /zero back pressure/ 100% 가습상태하에서 80℃의 온도조건하에서 평가하였다.At this time, the unit cell characteristics of the cation exchange fuel cell were evaluated as follows. A membrane-electrode junction layer was prepared by overlapping the prepared electrode layer and the ion exchange membrane, and SGL-39BC was used as a gas diffusion layer material. The cell test station (Z010-100, SCITHEC KOREA) was evaluated under 0.2 V - 1.1 V / zero back pressure / 100% humidification condition and temperature condition of 80 ℃.
도 5는 본원 발명의 일 구현예에 따른 폴리카바졸계 양이온교환형 전도체를 바인더로 사용한 연료전지 단위셀 평가 결과를 나타낸 것이다.5 shows evaluation results of a fuel cell unit cell using a polycarbazole-based cation exchange type conductor according to an embodiment of the present invention as a binder.
평가결과 기존 탄화수소계 이온전도체인 sPAES50을 바인더로 사용한 MEA의 경우 0.6V에서 250 mA/cm2의 전류밀도를 보인 반면 개발된 sPCTFP 바인더를 도입한 MEA의 경우 0.6V에서 375 mA/cm2의 전류밀도를 보여 기존 소재 대비 50% 향상된 연료전지 성능을 보이는 것을 확인할 수 있었다.As a result of the evaluation, the MEA using sPAES50, an existing hydrocarbon-based ion conductor, as a binder showed a current density of 250 mA/cm 2 at 0.6V, whereas the MEA using the developed sPCTFP binder had a current density of 375 mA/cm 2 at 0.6V. It was confirmed that the fuel cell performance was improved by 50% compared to the existing material by showing the density.

Claims (12)

  1. 할로겐 함유 카바졸계 단량체 및 카바졸계 단량체로 이루어진 단량체 군에서 적어도 1종 이상의 단량체를 준비하는 단계:Preparing at least one monomer from a monomer group consisting of a halogen-containing carbazole-based monomer and a carbazole-based monomer:
    상기 단량체를 초산성 촉매(superacid catalyst)를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 할로겐 함유 폴리카바졸계 고분자를 제조하는 단계;preparing a halogen-containing polycarbazole-based polymer in which all the bonds between the monomers constituting the main chain are composed of C-C bonds by using a polymerization reaction of the monomers using a superacid catalyst;
    상기 할로겐 함유 폴리카바졸계 고분자의 할로겐기를 티오아세틸화하여 티오아세틸화 폴리카바졸계 고분자를 제조하는 단계; 및preparing a thioacetylated polycarbazole-based polymer by thioacetylating the halogen group of the halogen-containing polycarbazole-based polymer; and
    상기 티오아세틸화 폴리카바졸계 고분자를 술폰화하는 단계를 포함하여,Including the step of sulfonating the thioacetylated polycarbazole-based polymer,
    하기 화학식 A의 화학구조를 가지는 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체의 제조방법:A method for producing a polycarbazole-based cation exchange type ion conductor having the chemical structure of Formula A below:
    <화학식 A><Formula A>
    Figure PCTKR2022017650-appb-img-000005
    Figure PCTKR2022017650-appb-img-000005
    상기 화학식 A에서,In Formula A,
    W는 양이온 교환기로 술폰산기(-SO3H), 인산기(-PO3H2), 아세트산기(-COOH), 또는 이들의 알칼리 금속염 중 어느 하나이거나 니트로기(-NO2) 이고,W is a cation exchange group and is either a sulfonic acid group (-SO 3 H), a phosphoric acid group (-PO 3 H 2 ), an acetic acid group (-COOH), or an alkali metal salt thereof, or a nitro group (-NO 2 ),
    R1 ~ R4로 표현되는 치환체는 각각 독립적으로 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
    플루오린 원자를 포함하는 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Any one of an alkylene group, an arylene group, and an allylene group containing a fluorine atom;
    퍼플루오로알킬렌기이거나, a perfluoroalkylene group,
    선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬렌기, 퍼플루오로아릴렌기, -O- 퍼플루오로아릴렌기 중 어느 하나이고,Any one of a perfluoroalkylene group, a perfluoroarylene group, and an -O-perfluoroarylene group, optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain,
    반복단위 수인 m은 100,000 이하의 양의 정수이며, n은 0 이거나 100,000 이하의 양의 정수이다.m, the number of repeating units, is a positive integer of 100,000 or less, and n is 0 or a positive integer of 100,000 or less.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 초산성 촉매는 트리플루오로메탄술폰산(trifluoromethanesulfonic acid: TFSA, CF3SO3H) 또는 플루오로술폰산(fluorosulfonic acid: HSO3F) 중 어느 하나인 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체의 제조방법.The acetic acid catalyst is a polycarbazole-based cation exchange type ion conductor, characterized in that any one of trifluoromethanesulfonic acid (TFSA, CF 3 SO 3 H) or fluorosulfonic acid (HSO 3 F) Manufacturing method of.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 할로겐 함유 폴리카바졸계 고분자는 하기 화학식 B의 화학구조를 가지는 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체의 제조방법:Method for producing a polycarbazole-based cation exchange type ion conductor, characterized in that the halogen-containing polycarbazole-based polymer has a chemical structure of the following formula (B):
    <화학식 B><Formula B>
    Figure PCTKR2022017650-appb-img-000006
    Figure PCTKR2022017650-appb-img-000006
    상기 화학식 B에서,In the above formula B,
    X는 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이고,X is any one of halogen atoms chlorine (Cl), bromine (Br), iodine (I),
    R1 ~ R4로 표현되는 치환체는 각각 독립적으로 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
    플루오린 원자를 포함하는 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Any one of an alkylene group, an arylene group, and an allylene group containing a fluorine atom;
    퍼플루오로알킬렌기이거나, a perfluoroalkylene group,
    선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬렌기, 퍼플루오로아릴렌기, -O- 퍼플루오로아릴렌기 중 어느 하나이고,Any one of a perfluoroalkylene group, a perfluoroarylene group, and an -O-perfluoroarylene group, optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain,
    반복단위 수인 m은 100,000 이하의 양의 정수이며, n은 0 이거나 100,000 이하의 양의 정수이다.m, the number of repeating units, is a positive integer of 100,000 or less, and n is 0 or a positive integer of 100,000 or less.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 티오아세틸화 폴리카바졸계 고분자를 제조하는 단계는 할로겐 함유 폴리카바졸계 고분자의 할로겐기를 티오아세트산(thioacetic acid), 에틸티오아세테이트(ethylthioacetate), 티오아세테이트(thioacetate) 금속염 중 어느 하나와의 반응인 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체의 제조방법.The step of preparing the thioacetylated polycarbazole-based polymer is a reaction of the halogen group of the halogen-containing polycarbazole-based polymer with any one of thioacetic acid, ethylthioacetate, and thioacetate metal salt. A method for producing a polycarbazole-based cation exchange type ion conductor.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 술폰화하는 단계는 티오아세틸화 폴리카바졸계 고분자를 과산화수소, 황산, 클로로술폰산, 소듐바이설파이트(sodium bisulfite), m-클로로퍼옥시벤조산(m-chloroperoxybenzoic acid: mCPBA) 중 어느 하나와 반응인 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체의 제조방법.The sulfonating step is a reaction of the thioacetylated polycarbazole-based polymer with any one of hydrogen peroxide, sulfuric acid, chlorosulfonic acid, sodium bisulfite, and m- chloroperoxybenzoic acid (mCPBA) Method for producing a polycarbazole-based cation exchange type ion conductor, characterized in that.
  6. 하기 화학식 A의 화학구조를 가지는 것을 특징으로 하는 폴리카바졸계 양이온교환형 이온전도체:A polycarbazole-based cation exchange type ion conductor characterized in that it has the chemical structure of Formula A:
    <화학식 A><Formula A>
    Figure PCTKR2022017650-appb-img-000007
    Figure PCTKR2022017650-appb-img-000007
    상기 화학식 A에서,In Formula A,
    W는 양이온 교환기로 술폰산기(-SO3H), 인산기(-PO3H2), 아세트산기(-COOH), 또는 이들의 알칼리 금속염 중 어느 하나이거나 니트로기(-NO2) 이고,W is a cation exchange group and is either a sulfonic acid group (-SO3H), a phosphoric acid group (-PO3H2), an acetic acid group (-COOH), or an alkali metal salt thereof, or a nitro group (-NO2),
    R1 ~ R4로 표현되는 치환체는 각각 독립적으로 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Substituents represented by R 1 to R 4 are each independently any one of an alkylene group, an arylene group, and an allylene group;
    플루오린 원자를 포함하는 알킬렌기, 아릴렌기, 알릴렌기 중 어느 하나이거나, Any one of an alkylene group, an arylene group, and an allylene group containing a fluorine atom;
    퍼플루오로알킬렌기이거나, a perfluoroalkylene group,
    선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬렌기, 퍼플루오로아릴렌기, -O- 퍼플루오로아릴렌기 중 어느 하나이고,Any one of a perfluoroalkylene group, a perfluoroarylene group, and an -O-perfluoroarylene group, optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain,
    반복단위 수인 m은 100,000 이하의 양의 정수이며, n은 0 이거나 100,000 이하의 양의 정수이다.m, the number of repeating units, is a positive integer of 100,000 or less, and n is 0 or a positive integer of 100,000 or less.
  7. 청구항 6에 따른 폴리카바졸계 양이온교환형 이온전도체를 포함하는 전극용 바인더.An electrode binder comprising the polycarbazole-based cation exchange type ion conductor according to claim 6.
  8. 청구항 6에 따른 폴리카바졸계 양이온교환형 이온전도체를 포함하는 분리막.Separation membrane comprising the polycarbazole-based cation exchange type ion conductor according to claim 6.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 분리막은 양이온교환막 연료전지(Proton Exchange Membrane Fuel Cell: PEMFC)용인 것을 특징으로 하는 분리막.The separator is a separator, characterized in that for a cation exchange membrane fuel cell (Proton Exchange Membrane Fuel Cell: PEMFC).
  10. 청구항 8에 있어서,The method of claim 8,
    상기 분리막은 그 용도가 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 막인 것을 특징으로 하는 분리막.The separation membrane is used for water electrolysis, redox flow cell, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, A separation membrane, characterized in that it is a membrane for electrodialysis (ED), reverse electrodialysis (RED) or capacitive deionization (CDI).
  11. 청구항 6에 따른 전극용 바인더; 및Binder for an electrode according to claim 6; and
    청구항 8에 따른 분리막을 포함하는 것을 특징으로 하는 양이온교환막 연료전지(Proton Exchange Membrane Fuel Cell: PEMFC)장치.A cation exchange membrane fuel cell (Proton Exchange Membrane Fuel Cell: PEMFC) device comprising the separator according to claim 8.
  12. 청구항 6에 따른 전극용 바인더; 및Binder for an electrode according to claim 6; and
    청구항 8에 따른 분리막을 포함하는 것을 특징으로 하는 양이온교환막 수전해(Proton Exchange Membrane Water Electorolysis: PEMWE)장치.A cation exchange membrane water electrolysis (PEMWE) apparatus comprising the separation membrane according to claim 8.
PCT/KR2022/017650 2021-12-08 2022-11-10 Polycarbazole-based cation-exchange ion conductor and method for manufacturing same WO2023106657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210175241A KR20230086523A (en) 2021-12-08 2021-12-08 Polycarbazole-based cation-exchange ion conductor and preparation method thereof
KR10-2021-0175241 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023106657A1 true WO2023106657A1 (en) 2023-06-15

Family

ID=86730660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017650 WO2023106657A1 (en) 2021-12-08 2022-11-10 Polycarbazole-based cation-exchange ion conductor and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20230086523A (en)
WO (1) WO2023106657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094024A1 (en) * 2022-11-01 2024-05-10 中国石油天然气股份有限公司 Polymer, and preparation method therefor and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071570A (en) * 2002-10-15 2005-07-07 니폰 가야꾸 가부시끼가이샤 Process for the production of sulfoalkyl-containing polymers
JP2009277532A (en) * 2008-05-15 2009-11-26 Nippon Kayaku Co Ltd Polyether sulfone-based polyelectrolyte, solid polyelectrolyte film, fuel cell, and their manufacturing method
JP2013209500A (en) * 2012-03-30 2013-10-10 Toyobo Co Ltd Proton-conducting compound, molded product, proton exchange membrane for fuel cell and fuel cell
KR20160066485A (en) * 2015-05-26 2016-06-10 성균관대학교산학협력단 Copolymer for manufacturing membrane of a fuel cell and membrane of a fuel cell
KR102168673B1 (en) * 2019-04-29 2020-10-21 한국화학연구원 Carbazole-based anion exchange material, fuel cell electrode and membrane/electrode assembly comprising the same as a binder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102284854B1 (en) 2020-02-28 2021-07-30 한국화학연구원 Carbazole-based anion exchange material, preparation method and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071570A (en) * 2002-10-15 2005-07-07 니폰 가야꾸 가부시끼가이샤 Process for the production of sulfoalkyl-containing polymers
JP2009277532A (en) * 2008-05-15 2009-11-26 Nippon Kayaku Co Ltd Polyether sulfone-based polyelectrolyte, solid polyelectrolyte film, fuel cell, and their manufacturing method
JP2013209500A (en) * 2012-03-30 2013-10-10 Toyobo Co Ltd Proton-conducting compound, molded product, proton exchange membrane for fuel cell and fuel cell
KR20160066485A (en) * 2015-05-26 2016-06-10 성균관대학교산학협력단 Copolymer for manufacturing membrane of a fuel cell and membrane of a fuel cell
KR102168673B1 (en) * 2019-04-29 2020-10-21 한국화학연구원 Carbazole-based anion exchange material, fuel cell electrode and membrane/electrode assembly comprising the same as a binder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094024A1 (en) * 2022-11-01 2024-05-10 中国石油天然气股份有限公司 Polymer, and preparation method therefor and use thereof

Also Published As

Publication number Publication date
KR20230086523A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
Ding et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications
US7785750B2 (en) Solid alkaline fuel cell comprising ion exchange membrane
WO2021172706A1 (en) Carbazole-based anion exchange material, preparation method therefor, and use thereof
KR100464317B1 (en) Proton-conducting polymer containing acid group in side chain, polymer membrane prepared with them and fuel cell using the same
KR100657740B1 (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
US7816482B1 (en) Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes
KR100707163B1 (en) Solid acid, polymer electrolyte membrane comprising the same, and fuel cell employing the same
Gao et al. Anion exchange membranes with" rigid-side-chain" symmetric piperazinium structures for fuel cell exceeding 1.2 W cm− 2 at 60° C
WO2010053297A2 (en) Polymer electrolyte membrane
CA2662066A1 (en) Development of novel proton-conductive polymers for proton exchange membrane fuel cell (pemfc) technology
JP4102299B2 (en) Ionomer used in fuel cell and method for producing the same
EP1740639A2 (en) Ion-conductive copolymers containing one or more ion-conducting oligomers
WO2023106657A1 (en) Polycarbazole-based cation-exchange ion conductor and method for manufacturing same
US20070218334A1 (en) Methods for making sulfonated non-aromatic polymer electrolyte membranes
WO2018199545A1 (en) Polyphenylene-based anion conductor, preparation method therefor, and use thereof
Tawalbeh et al. Highly proton conductive membranes based on lignin/ZrP/PTFE composite for high temperature PEM fuel cells
EP2617753B1 (en) Triblock copolymer, and electrolyte membrane prepared therefrom
KR100956652B1 (en) Crosslinking polymer electrolyte membranes, Method for preparing thereof and Fuel cell comprising the electrolyte membranes
KR101372071B1 (en) Polysulfone-based polymer, electrolyte membrane comprising the same, and method for preparing the polymer
CN108028407B (en) Ion conductor, method for producing same, and ion exchange membrane, membrane electrode assembly, and fuel cell each comprising same
AU2002356654B2 (en) Fuel cell and membrane-electrode assembly thereof
JP2005054170A (en) Copolymer and its application
KR20170107633A (en) Sulfonated hydrocarbon nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
JP2009217950A (en) Ion conductive polymer electrolyte membrane, and manufacturing method thereof
KR20150142885A (en) Sulfonated polyphenylene polymer containing n-methylisatin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904490

Country of ref document: EP

Kind code of ref document: A1