WO2018199545A1 - Polyphenylene-based anion conductor, preparation method therefor, and use thereof - Google Patents

Polyphenylene-based anion conductor, preparation method therefor, and use thereof Download PDF

Info

Publication number
WO2018199545A1
WO2018199545A1 PCT/KR2018/004509 KR2018004509W WO2018199545A1 WO 2018199545 A1 WO2018199545 A1 WO 2018199545A1 KR 2018004509 W KR2018004509 W KR 2018004509W WO 2018199545 A1 WO2018199545 A1 WO 2018199545A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
polyphenylene
polymer
anion exchange
Prior art date
Application number
PCT/KR2018/004509
Other languages
French (fr)
Korean (ko)
Inventor
홍영택
이장용
차민석
김태호
조상우
소순용
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2018199545A1 publication Critical patent/WO2018199545A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polyphenylene-based anion conductor, a method for producing the same, and a use thereof.
  • the polymer main chain is polyphenylene.
  • the present invention relates to a redox flow battery in which a polymer, a method for preparing the same, and a polyphenylene-based anionic polymer prepared therein are applied to a separator for a redox flow battery.
  • the rechargeable battery provides a simple and efficient way of storing electricity, which makes it smaller and more portable, thus making efforts to use it as an intermittent auxiliary power source or as a power source for small appliances such as laptops, tablet PCs, and mobile phones. It is becoming.
  • Redox Flow Battery is a secondary battery that can store energy for a long time by repeating charging and discharging due to electrochemical reversible reaction of electrolyte. Since the stack and the electrolyte tank are configured independently of each other, there is an advantage that the design of the battery is free and the installation space is limited.
  • Nafion a perfluorinated cation exchange material.
  • Nafion has excellent initial performance and durability, but due to its very high price and high crossover of active materials, it is suitable for practical applications. There is difficulty.
  • VRFB Vanadium Redox Flow Battery
  • the price of the membrane material is increased in the commercialization and production of the system. It is the most important factor.
  • Korean Patent No. 1543079 discloses that polyethersulfone and polyphenylene sulfide sulfone, which are acid-stable engineering plastics, are block or randomly After preparing a copolymerized copolymer, a technique of chloromethylation to prepare in the form of a polymer gel and introducing an ion exchanger into the diaphragm is disclosed.
  • Korean Patent No. 1062767 discloses polysulfone and polyphenylene sulfide.
  • vanadium having a cation exchanger introduced into the copolymer by adding an ion exchanger introducing solvent and sulfonating reaction is a situation in which the electron donor as the limit of the cation exchange polymer comprising a linking group of characteristics such as.
  • the polymer main chain is made of polyphenylene, and does not contain the linking group of electron donor properties such as -O-, -S-,-(CH 2 ) n -in the main chain, and consists only of CC bonds between benzene rings.
  • the present invention was developed to solve the above problems, and an object of the present invention is to provide a polyphenylene-based anion conductor having a low crossover of the active material compared to commercially available cation exchange material Nafion115 and thus improving the coulomb efficiency.
  • the present invention is a separator membrane for a redox flow battery and a redox flow battery using the same, characterized in that the polymer membrane formed by molding the polyphenylene-based anion exchange polymer itself or a composite membrane prepared by complexing the polyphenylene-based anion exchange polymer with a support. To provide.
  • the present invention provides a polyphenylene-based polymer, which is prepared by copolymerization of a hydrophilic unit monomer of Formula 1 and a hydrophobic unit monomer of Formula 2 to solve the above problems.
  • the polymer according to the invention is characterized in that it has a chemical structure of formula (3).
  • the present invention provides a halogenated polyphenylene-based polymer, which is prepared by the halogenation reaction of the polymer having a chemical structure of the formula (4).
  • W is any one of chlorine (Cl), bromine (Br) or iodine (I), and R 1 , R 2 , R 3 , R 4 and R 5 is all hydrogen atoms or at least one fluorine atom, aryl group, perfluoroalkyl group, or a perfluoroalkylaryl group, perfluoro optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain It is an aryl group and -O- perfluoroaryl group.
  • the present invention provides a polyphenylene-based anion-exchange polymer, which is prepared by ion exchange reaction of the halogenated polyphenylene-based polymer and has a chemical structure of the formula (5).
  • (CF 3 ) 2 -and SO 2- , and Z is an ion exchange functional group in an amine group, ammonium group, amino group, imine group, sulfonium group, phosphonium group, pyridyl group, carbazolyl group and imidazolyl group Any one of an anion exchange functional group selected or an anion exchange functional group in a salt state thereof, an amphoteric ion exchange functional group selected from betaine and a sulfobetaine and an ion exchange group selected from a combination thereof or an anion exchange functional group in a salt state thereof and, R 1, R 2, R 3, R 4 and R 5 are both hydrogen atoms or at least one fluorine atom, an aryl group, a perfluoroalkyl roal Group or, alternatively perfluoroalkyl containing one or more oxygen, nitrogen, or sulfur atom in its chain alkylaryl group, a perfluoroalkyl group and an aryl -O- group ary
  • the present invention is a polymerizing step of preparing a polyphenylene-based polymer by copolymerization of the hydrophilic unit monomer of the formula (1) and the hydrophobic unit monomer of the formula (2);
  • X is any one of chlorine (Cl), bromine (Br) or iodine (I)
  • R 1 , R 2 , R 3 , R 4 and R 5 are both hydrogen atoms or at least one fluorine atom, aryl group, perfluoroalkyl group, or a perfluoroalkylaryl group optionally containing at least one oxygen, nitrogen, or sulfur atom in its chain, Perfluoroaryl group and -O- perfluoroaryl group.
  • It provides a method for producing a polyphenylene-based anion-exchange polymer, characterized in that it comprises an ion exchange step of producing a polyphenylene-based anion-exchange polymer to the halogenated polyphenylene-based polymer through an ion exchange reaction.
  • the halogenation step may be a bromination reaction
  • the ion exchange step is an amine group, ammonium group, amino group, imine group, sulfonium group
  • the anion exchange functional group selected from phosphonium group, pyridyl group, carbazolyl group and imidazolyl group or anion exchange functional group in salt state thereof
  • amphoteric ion exchange functional group selected from betaine and sulfobetaine and combinations thereof It may be to introduce any one of an ion exchange group selected or an anion exchange functional group in a salt state thereof.
  • the present invention is a method for using a membrane prepared by complexing the polyphenylene-based anion exchange polymer itself prepared by the production method or a polyphenylene-based anion-exchange polymer complex with a support for the separator for redox flow battery, It provides a redox flow battery comprising the separator and the positive electrode, the positive electrode electrolyte, the negative electrode electrolyte and the negative electrode.
  • the redox flow battery according to the present invention may be a vanadium-based redox flow battery, a polysulfide bromine (PSB) redox flow battery, or a zinc-bromine (Zn-Br) redox flow battery.
  • PSB polysulfide bromine
  • Zn-Br zinc-bromine
  • the polyphenylene-based anion exchange polymer according to the present invention is structurally composed of polyphenylene, and the main chain of the electron donor properties such as -O-, -S-,-(CH 2 ) n -in the main chain. It is composed of only CC bonds between benzene rings and does not include a linking group, so the dimensional stability of the material is excellent, and the crossover of the active material is lower than that of commercially available Nafion115 (cation exchange material), and thus the coulombic efficiency is improved. have.
  • polyphenylene-based anion exchange polymer according to the present invention is a redox flow battery, fuel cell (fuel cell), electrodialysis (ED), reverse electrodialysis (RED), capacitive deionization; CDI is very useful in such fields.
  • Figure 1 shows a simplified redox flow battery having a polyphenylene-based anion exchange material as a separator according to an embodiment of the present invention.
  • Figure 2 shows the chemical structure and 1 H-NMR of the monomer used in the preparation of the polyphenylene-based polymer according to an embodiment of the present invention.
  • P1 PPP-1 / 1
  • P2 halogenated polyphenylene-based polymer
  • P3 polyphenylene-based anion exchange polymer
  • Figure 4 shows the mechanical strength of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention in comparison with Nafion115.
  • Figure 5 shows the numerical stability of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention in comparison with Nafion115.
  • Figure 6 shows the thermal stability of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
  • Figure 7 shows the result of comparing the ion conductivity of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
  • Figure 8 shows the vanadium ion permeability results of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
  • Figure 9a is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention.
  • Figure 9b is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention.
  • Figure 9c is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention.
  • Figure 10a is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention.
  • Figure 10b is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention.
  • Figure 10c is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention.
  • FIG. 1 is a view briefly showing a redox flow battery having a separator structure of the present invention.
  • a cell housing 51 having a predetermined size as its component, an ion exchange membrane 11 provided across a center of the cell housing 51, and an ion exchange membrane 11 of the ion exchange membrane 11 are formed.
  • outlets 32 and 42 are provided.
  • the positive electrode 21 and the negative electrode 22 include carbon felt, carbon nonwoven fabric, graphite felt, graphite plate, and the like, which are conventional materials.
  • the reaction mechanism of the redox flow battery is made by the oxidation / reduction reaction of the positive electrode 21 and the negative electrode 22, and the positive electrode electrolyte and the negative electrode electrolyte for causing the above reaction are stored in separate storage tanks (not shown).
  • the positive electrode electrolyte and the negative electrode electrolyte for causing the above reaction are stored in separate storage tanks (not shown).
  • Redox flow battery of the present invention having the configuration as described above using the V (IV) / V (V) redox couple as the cathode electrolyte, and V (II) / V (III) redox couple as the cathode electrolyte It can be applied to all vanadium-based redox flow battery.
  • the redox flow battery of the present invention having the configuration described above uses a halogen redox couple as the cathode electrolyte, and an all-vanadium redox flow using the V (II) / V (III) redox couple as the cathode electrolyte. It can be applied to a battery.
  • the redox flow battery of the present invention having the configuration as described above is a polysulfide bromine (PSB) redox flow battery using a halogen redox couple as a cathode electrolyte, sulfide redox couple as a cathode electrolyte Can be applied.
  • PSB polysulfide bromine
  • the redox flow battery of the present invention having the configuration as described above using a halogen redox couple as the cathode electrolyte, zinc-bromine (Zn-Br) redox using a zinc (Zn) redox couple as the cathode electrolyte It can be applied to flow cells.
  • a Nafion cation exchange membrane a Nafion cation exchange membrane, a cation exchange membrane having a sulfonic acid group or a carboxylic acid group, an anion exchange membrane having an ammonium group or a phosphonium group, or the like used in a conventional redox flow battery has been used.
  • the present invention is characterized in that the polyphenylene-based anion exchange polymer as an ion exchange membrane.
  • reinforcing composite membranes prepared by impregnating an ion conductor in a nanoweb support for improving long-term durability by reducing the rate of dimensional change can be used as an ion exchange membrane.
  • a nanoweb support polyimide, polymethylpentene, polyester , Polyacrylonitrile, polyvinylamide, polypropylene, polyvinyl fluoride may be used, but is not limited thereto.
  • Polymer synthesis process of polyphenylene is as follows. Prepare completely dried flasks with 2,5-dichloro-4'-methylbenzophenone (M1) (5.28 g), 2,5-dichlorobenzophenone (M2) (5 g), Ni (pph 3 ) 2 Cl 2 (0.78 g), NaI (0.72g), triphenylphosphine (3.76g) and Zn (3.2g) were dissolved in dimethylacetamide (DMAc) (80ml), stirred at 80 ° C for about 3h, and cooled to room temperature.
  • M1 2,5-dichloro-4'-methylbenzophenone
  • M2 2,5-dichlorobenzophenone
  • Ni pph 3
  • NaI 0.72g
  • triphenylphosphine (3.76g) and Zn (3.2g) were dissolved in dimethylacetamide (DMAc) (80ml), stirred at 80 ° C for about 3h, and cooled to room temperature.
  • the bromination process of polyphenylene is as follows. 1 g of the P1 polymer prepared according to Preparation Example 1 was completely dissolved in 20 ml of 1,1,2,2-tetrachloroethane (1,1,2,2-tetrachloroethane), followed by 0.05 g of benzoyl peroxide (BPO) and N. 0.5673 g of -bromosuccinimide (NBS) was added and reacted at 90 ° C. for 3.5 hours. The reaction mixture was precipitated in excess methanol, washed several times with methanol and distilled water, and washed with P2 at 80 ° C. for 24 hours. Dried in vacuo. When analyzed by 1 H-NMR spectroscopy, halogen functional groups were observed at 4.5 ppm and the degree of bromination of polyphenylene in the present example was 0.75.
  • the anion exchange functional group substitution of the bromomethyl functional group is as follows.
  • the P2 polymer prepared in Preparation Example 2 having a halogen substituent was dissolved in dimethyl sulfoxide (DMSO) solution at 4wt%, and then trimethylamine or methylimidazole was dissolved in a solution containing P2 polymer. Slowly added and precipitated in tertiary distilled water after 24 hours. Wherein trimethylamine is ⁇ 45 wt. % Aqueous solution was used.
  • DMSO dimethyl sulfoxide
  • the prepared anion-exchange functional group-substituted polyphenylene-based membrane is hereinafter referred to as QPPP-n / m (P3), where n and m represent molar ratios of the hydrophobic portion and the hydrophilic portion, respectively.
  • Figure 4 shows the mechanical strength of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention compared to Nafion115
  • Figure 5 shows the numerical stability comparison results.
  • QPPP-1 / 1 and QPPP-1 / 2 according to an embodiment of the present invention not only shows a very good tensile strength (tensile strangth) compared to the commercial material Nafion 115 can be seen in Figure 5
  • QPPP-1 / 1 and QPPP-1 / 2 show lower dimensional stability than Nafion 115, which is used despite the large ion exchange capacity. It can be seen that the results are very stable at about 50%.
  • the ion exchange performance (IEC) of the ion exchange membrane prepared according to the above preparation was measured after changing to Cl - to OH - in an aqueous 1M NaOH solution for 24 hours at room temperature, and the sample substituted with OH - 0.01M HCl aqueous solution After stirring for 24 hours, the acid-base was titrated with 0.01 M NaOH aqueous solution.
  • FIG. 6 shows the thermal stability of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
  • Dynamic mechanical analysis (DMA) analysis was performed to confirm the rheological behavior of the developed material.
  • QPPP-1 / 1 and QPPP-1 / 2 according to an embodiment of the present invention storage modulus (Storage modulus) up to about 200 °C is very large, respectively more than 3GPa, 4GPa, which is the strength of the material It can be seen that it is not only excellent but also easy to handle in the process even with a thin thickness, and also the glass transition temperature is very stable thermally at 230 ° C. or higher.
  • Storage modulus storage modulus up to about 200 °C is very large, respectively more than 3GPa, 4GPa, which is the strength of the material It can be seen that it is not only excellent but also easy to handle in the process even with a thin thickness, and also the glass transition temperature is very stable thermally at 230 ° C. or higher.
  • Ion conductivity was measured by 4-probe electrochemical impedance spectroscopy (Solatron 1280) using a Pt electrode cell. After this time, ion exchange membranes, each carrying 24 hours in 1M NaCl aqueous solution, 1M Na 2 SO 4 aqueous solution of Cl -, SO 4 2- ion conductivity was measured, measurement conditions are 25 °C, 40 °C at 100% relative humidity, 60 The measurement at °C, 70 °C, 80 °C was summarized in Table 2 below.
  • Figure 7 shows the result of comparing the ion conductivity of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
  • QPPP-1 / 1 and QPPP-1 / 2 according to an embodiment of the present invention shows excellent anion conductivity, this anion conductivity is improved with the increase of temperature due to the excellent dimensional stability One result.
  • Vanadium ion permeability was measured by drying the ion exchange membrane in 1M Na 2 SO 4 aqueous solution for 24 hours and then drying.
  • 3M H 2 SO 4 aqueous solution as a solvent 2M MgSO 4 solution and 3M H 2 SO 4 aqueous solution and the solvent A 2M VOSO 4
  • the concentration of vanadium ions in time UV-visible to the It was measured by spectroscopy (Agilent cary 8454).
  • Nafion115 was used for 24 hours in 1.5MH 2 SO 4 aqueous solution, washed in 3 distilled water, and dried for 24 hours. The results are summarized in Table 3 below.
  • FIG. 8 shows the vanadium ion permeability results of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
  • QPPP-1 / 2 according to the present invention shows a very low vanadium permeability, because vanadium is used as the active material in the vanadium redox flow battery, high vanadium permeability is due to a decrease in capacity and battery efficiency As a result, low vanadium permeability is a very important factor for improving the capacity as well as the efficiency of the battery.
  • QPPP-1 / 2 has a very low vanadium permeability of about 1/1000 as compared to Nafion 115.
  • the prepared polyphenylene-based anion exchange membrane showed very low vanadium ion permeability compared to Nafion115, and only the anion exchange membrane having a high IEC showed vanadium ion permeability and had QPPP-1 / 1 (having low IEC). Vanadium ion permeation was not measured for 200 hours.
  • the ion exchange membrane was used after drying in 1M Na 2 SO 4 aqueous solution for 24 hours, and was evaluated by WonATech battery test system. At this time, the effective area of the ion exchange membrane was 49 cm2, current density 50 -200 mA cm -2 , Performance evaluation was performed at a flow rate of 100 ml min - 1 , and Nafion115 was used after washing for 24 hours in 1.5MH 2 SO 4 aqueous solution and washing with 3 distilled water and drying for 24 hours, and the evaluation results are summarized in Table 4 below. It was.
  • FIGS. 9A, 9B and 9C are shown to compare the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention, Figures 10a, 10b and 10c It is shown by comparing the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention.
  • QPPP-1 / 1 and QPPP-1 / 2 shows excellent battery efficiency, in particular QPPP as can be seen in Figures 10a to 10c -1/2 showed very good CE of nearly 100% even when charged and discharged at various current densities, and showed very good VE equivalent to that of Nafion, showing better energy efficiency than commercially available Nafion 115. Able to know. In particular, it shows stable cell efficiency even at 100 cycles of operation, and very good cell efficiency of more than 85% even at 80 mA / cm 2 .
  • t d is the discharge time
  • t c is the charge time
  • V d is the discharge voltage
  • V c is the charge voltage
  • the Coulombic efficiency (CE) is higher overall cross-linked anion exchange membrane than Nafion115, which is due to the low vanadium ion permeability, the voltage for the manufactured anion exchange material QPPP-1 / 2 Voltage efficiency (VE) and energy efficiency (EE) were equal to or better than Nafion115. That is, it can be seen that the polyphenylene-based anion exchanger QPPP-n / m shows better charge / discharge capacity retention than that of Nafion115.
  • V (IV) / V ( V) Using a redox couple, using a V (II) / V (III) redox couple as the cathode electrolyte, cut the 35 ⁇ m thick ion exchange membrane into horizontal and vertical 100 mm ⁇ 100 mm sizes as shown in FIG. 1. The charge and discharge test and the efficiency of the cell were measured by mounting the fabricated single cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a polyphenylene-based anion conductor, a preparation method therefor, and a use thereof. More specifically, the present invention relates to: a polyphenylene-based anion exchange material, wherein a polyphenylene-based anion exchange polymer has a lower crossover of an active material compared with the commercially available cation exchange material Nafion115, leading to excellent column efficiency and wherein, structurally, a main chain of the polymer is formed of polyphenylene and thus the main chain is composed of only C-C bonds between benzene rings without containing a linker group having an electron donor characteristic, such as -O-, -S-, or -(CH2)n-, leading to excellent material dimensional stability; a preparation method therefor; and a redox flow battery obtained by applying the prepared polyphenylene-based anion polymer to a separator for a redox flow battery.

Description

폴리페닐렌계 음이온 전도체, 이의 제조방법 및 용도Polyphenylene-based Anion Conductor, Method of Making and Use thereof
본원 발명은 폴리페닐렌계 음이온 전도체, 이의 제조방법 및 용도에 대한 것이다.The present invention relates to a polyphenylene-based anion conductor, a method for producing the same, and a use thereof.
보다 구체적으로는 폴리페닐렌계 음이온교환소재에 대한 것으로, 상용화된 양이온 교환소재인 Nafion115에 비해 활물질의 크로스오버(crossover)가 낮고 이에 따라 쿨롬 효율이 우수하며, 구조적으로는 고분자 주쇄가 폴리페닐렌으로 이루어져 주쇄에 -O-, -S-, -(CH2)n- 등의 전자주게 특성의 연결기를 포함하지 않고 벤젠고리 사이의 C-C 결합으로만 이루어져 있어 소재의 치수 안정성이 우수한 폴리페닐렌계 음이온 교환 고분자, 이의 제조방법 및 제조된 폴리페닐렌계 음이온 고분자를 레독스 흐름 전지(Redox Flow Battery)용 격리막에 적용한 레독스 흐름전지에 대한 것이다.More specifically, it is a polyphenylene-based anion exchange material. Compared to commercially available cation exchange material, Nafion115, the crossover of the active material is lower, and thus the coulombic efficiency is excellent. Structurally, the polymer main chain is polyphenylene. Polyphenylene-based anion exchange with excellent dimensional stability because it consists of only CC bonds between benzene rings and does not contain electron donor linkages such as -O-, -S-, and-(CH 2 ) n -in the main chain The present invention relates to a redox flow battery in which a polymer, a method for preparing the same, and a polyphenylene-based anionic polymer prepared therein are applied to a separator for a redox flow battery.
본 출원은 2017년 4월 28일에 출원된 한국 특허출원 제10-2017-0055111호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2017-0055111 filed on April 28, 2017, and all the contents disclosed in the specification and drawings of the application are incorporated in this application.
화석연료의 고갈과 환경오염에 대한 문제를 해결하기 위하여 사용효율을 향상시킴으로써 화석연료를 절약하거나 재생 가능한 에너지를 보다 많은 분야에 적용하고자 하는 노력이 이루어지고 있다.Efforts are being made to save fossil fuels or to apply renewable energy to more fields by improving the efficiency of use to solve the problems of fossil fuel depletion and environmental pollution.
그 중 하나로 재충전 가능한 전지(rechargeable battery)는 단순하고 효율적인 전기 저장 방법을 제공하므로 이를 소형화하여 이동성을 높여 간헐적 보조 전원이나 랩톱, 태블릿 PC, 휴대전화 등의 소형가전의 전원으로 활용하고자 하는 노력이 지속되고 있다. 특히 레독스 흐름 전지(RFB; Redox Flow Battery)는 전해질의전기화학적인 가역반응에 의한 충전과 방전을 반복하여 에너지를 장기간 저장하여 사용할 수 있는 2차 전지로서, 전지의 용량과 출력 특성을 각각 좌우하는 스택과 전해질 탱크가 서로 독립적으로 구성되어 있어 전지 설계가 자유로우며 설치 공간 제약도 적은 장점이 있어 이에 관한 연구가 활발히 이루어지고 있다.One of them, the rechargeable battery provides a simple and efficient way of storing electricity, which makes it smaller and more portable, thus making efforts to use it as an intermittent auxiliary power source or as a power source for small appliances such as laptops, tablet PCs, and mobile phones. It is becoming. In particular, Redox Flow Battery (RFB) is a secondary battery that can store energy for a long time by repeating charging and discharging due to electrochemical reversible reaction of electrolyte. Since the stack and the electrolyte tank are configured independently of each other, there is an advantage that the design of the battery is free and the installation space is limited.
현재 사용되는 이온교환소재는 과불소계 양이온교환소재인 나피온(Nafion)인데, 나피온(Nafion)은 초기성능 및 내구성이 우수하지만 매우 비싼 가격과 활물질의 높은 크로스오버(crossover)로 인해 실질적인 적용에 어려움이 있다. 특히, 연료전지와 같은 에너지변환시스템에 비해서 전체 시스템 가격 중 이온교환소재의 가격 비중이 더욱 큰 바나듐 레독스 흐름 전지(Vanadium Redox Flow Battery; VRFB)의 경우 분리막 소재의 가격은 시스템의 상용화 및 생산에서 가장 중요한 요소이다.Currently used ion exchange material is Nafion, a perfluorinated cation exchange material. Nafion has excellent initial performance and durability, but due to its very high price and high crossover of active materials, it is suitable for practical applications. There is difficulty. In particular, in the case of Vanadium Redox Flow Battery (VRFB), which has a higher proportion of ion exchange materials in the total system price than energy conversion systems such as fuel cells, the price of the membrane material is increased in the commercialization and production of the system. It is the most important factor.
또한 활물질(vanadium ion)의 크로스오버(crossover)로 인한 성능의 지속적인 저하는 시스템 수명의 저하뿐 아니라 활물질의 재생을 위한 추가적인 비용의 발생을 유발하는 문제가 있다. 이에 저가이면서도 활물질의 크로스오버가 낮은 분리막 소재의 개발은 바나듐 레독스 흐름 전지의 상용화를 위해 시급히 해결해야 하는 과제로 여겨지고 있다.In addition, the continuous degradation of performance due to the crossover (vanadium ion) of the active material (vanadium ion) there is a problem that causes not only the reduction of the system life, but also the additional cost for the regeneration of the active material. Accordingly, development of a membrane material having low cost and low crossover of an active material is considered an urgent problem to be solved for commercialization of a vanadium redox flow battery.
레독스 흐름 전지용 교환막에 대한 종래기술로는 바나듐 레독스 흐름 전지용 음이온 교환막에 대한 것인 한국 등록특허 제1543079호에는 산에 안정한 엔지니어링 플라스틱 계열인 폴리에테르설폰과 폴리페닐렌설파이드설폰이 블록 또는 랜덤하게 공중합된 공중합 폴리머를 제조한 후, 클로로메틸화하여 폴리머 겔 형태로 제조하고, 여기에 이온 교환기를 도입하여 격막으로 제조하는 기술이 개시되어 있고, 한국 등록특허 제1062767호에는 폴리술폰과 폴리페닐렌설파이드술폰이 블록 공중합된 공중합 폴리머를 테트라클로로에탄(1,1,2,2-tetrachloroethane: TCE)으로 용해시킨 후, 이온교환기 도입용제를 첨가하고, 술폰화 반응시켜 양이온 교환기를 공중합 폴리머에 도입한 바나듐 레독스 흐름 2차전지용 격막의 제조방법에 대한 것이 기재되어 있으나, 대부분의 종래기술은 주쇄에 -O-, -S-, -(CH2)n- 등의 전자주게 특성의 연결기를 포함하는 양이온 교환 고분자에 대한 것에 한계가 있는 상황이다.In the prior art for the redox flow battery exchange membrane is a negative ion exchange membrane for vanadium redox flow battery, Korean Patent No. 1543079 discloses that polyethersulfone and polyphenylene sulfide sulfone, which are acid-stable engineering plastics, are block or randomly After preparing a copolymerized copolymer, a technique of chloromethylation to prepare in the form of a polymer gel and introducing an ion exchanger into the diaphragm is disclosed. Korean Patent No. 1062767 discloses polysulfone and polyphenylene sulfide. After dissolving the sulfone-block copolymerized copolymer with tetrachloroethane (1,1,2,2-tetrachloroethane: TCE), vanadium having a cation exchanger introduced into the copolymer by adding an ion exchanger introducing solvent and sulfonating reaction. Although a method for manufacturing a diaphragm for a redox flow secondary battery has been described, most of Future technologies in the main chain thereof -O-, -S-, - (CH 2 ) n - is a situation in which the electron donor as the limit of the cation exchange polymer comprising a linking group of characteristics such as.
이에 본 발명자들은 탄화수소계 고분자를 이용한 저가의 이온교환소재를 찾고자 예의 연구 노력한 결과, 상용화된 양이온교환소재인 Nafion115에 비해 활물질의 크로스오버(crossover)가 낮고 이에 따라 쿨롬 효율이 우수하며, 구조적으로는 고분자 주쇄가 폴리페닐렌으로 이루어져 주쇄에 -O-, -S-, -(CH2)n- 등의 전자주게 특성의 연결기를 포함하지 않고 벤젠고리 사이의 C-C 결합으로만 이루어져 있어 소재의 치수 안정성이 우수한 폴리페닐렌계 음이온 교환 고분자를 이용함으로써 근본적으로 양이온인 활물질의 투과도를 낮출 수 있음을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors have diligently researched to find a low-cost ion exchange material using a hydrocarbon-based polymer, and as a result, the crossover of the active material is lower than that of Nafion115, which is a commercial cation exchange material, and thus the coulombic efficiency is excellent. The polymer main chain is made of polyphenylene, and does not contain the linking group of electron donor properties such as -O-, -S-,-(CH 2 ) n -in the main chain, and consists only of CC bonds between benzene rings. By using this excellent polyphenylene-based anion exchange polymer, it was confirmed that the permeability of the active material which is essentially a cation can be lowered, and the present invention was completed.
본원 발명은 상기 문제점들을 해결하기 위해 개발된 것으로, 상용화된 양이온교환소재인 Nafion115에 비해 활물질의 크로스오버(crossover)가 낮고 이에 따라 쿨롬 효율이 향상된 폴리페닐렌계 음이온 전도체를 제공하는 것을 목적으로 한다.The present invention was developed to solve the above problems, and an object of the present invention is to provide a polyphenylene-based anion conductor having a low crossover of the active material compared to commercially available cation exchange material Nafion115 and thus improving the coulomb efficiency.
또한, 본원 발명에서는 폴리페닐렌계 음이온 교환 고분자 자체를 성형한 고분자막 또는 폴리페닐렌계 음이온 교환 고분자를 지지체와 복합화하여 제조한 복합막인 것을 특징으로 하는 레독스 흐름 전지용 격리막과 이를 이용한 레독스 흐름 전지를 제공하고자 한다.In addition, the present invention is a separator membrane for a redox flow battery and a redox flow battery using the same, characterized in that the polymer membrane formed by molding the polyphenylene-based anion exchange polymer itself or a composite membrane prepared by complexing the polyphenylene-based anion exchange polymer with a support. To provide.
본원 발명에서는 상기 과제를 해결하기 위하여 하기 화학식 1의 친수성 단위 단량체와 하기 화학식 2의 소수성 단위 단량체의 공중합에 의하여 제조되는 것을 특징으로 하는 폴리페닐렌계 고분자를 제공한다.The present invention provides a polyphenylene-based polymer, which is prepared by copolymerization of a hydrophilic unit monomer of Formula 1 and a hydrophobic unit monomer of Formula 2 to solve the above problems.
<화학식 1> <Formula 1>
Figure PCTKR2018004509-appb-I000001
Figure PCTKR2018004509-appb-I000001
<화학식 2><Formula 2>
Figure PCTKR2018004509-appb-I000002
Figure PCTKR2018004509-appb-I000002
상기 화학식 1과 화학식 2에서 에서 A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 전자끌게기로서 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이고, X는 염소(Cl), 브롬(Br) 혹은 요오드(I) 중 어느 하나이며, R1, R2, R3, R4 및 R5은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다.In Formula 1 and Formula 2, A 1 and A 2 may be the same as or different from each other, which is-(C = O)-, -P (= O)-, -CF 2- , Any one selected from -C (CF 3 ) 2 -and SO 2- , X is any one of chlorine (Cl), bromine (Br) or iodine (I), and R 1 , R 2 , R 3 , R 4 And R 5 are all hydrogen atoms or at least one fluorine atom, aryl group, perfluoroalkyl group, or a perfluoroalkylaryl group, optionally including one or more oxygen, nitrogen, or sulfur atoms in the chain, purple It is a fluoroaryl group and -O- perfluoroaryl group.
본원 발명에 따른 상기 고분자는 하기 화학식 3의 화학구조를 가지는 것을 특징으로 한다.The polymer according to the invention is characterized in that it has a chemical structure of formula (3).
<화학식 3><Formula 3>
Figure PCTKR2018004509-appb-I000003
Figure PCTKR2018004509-appb-I000003
상기 화학식 3에서, m과 n은 양의 정수로 0.1 ≤ n/m ≤ 100의 범위이고, A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 전자끌게기로서 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이며, R1, R2, R3, R4 및 R5 은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다.In Formula 3, m and n are positive integers in the range of 0.1 ≦ n / m ≦ 100, and A 1 and A 2 may be the same as or different from each other, which is a single bond or an electron drawer-(C = O )-, -P (= O)-, -CF 2- , -C (CF 3 ) 2 -and SO 2- , and R 1 , R 2 , R 3 , R 4 and R 5 are all A hydrogen atom or at least one fluorine atom, an aryl group, a perfluoroalkyl group, or optionally a perfluoroalkylaryl group, perfluoroaryl group containing one or more oxygen, nitrogen, or sulfur atoms in its chain; and -O- perfluoroaryl group.
또한, 본원 발명은 상기 고분자의 할로겐화 반응에 의하여 제조되어 하기 화학식 4의 화학구조를 가지는 것을 특징으로 하는 할로겐화 폴리페닐렌계 고분자를 제공한다.In another aspect, the present invention provides a halogenated polyphenylene-based polymer, which is prepared by the halogenation reaction of the polymer having a chemical structure of the formula (4).
<화학식 4><Formula 4>
Figure PCTKR2018004509-appb-I000004
Figure PCTKR2018004509-appb-I000004
상기 화학식 4에서 m'와 n은 양의 정수이고, m''는 0 또는 양의 정수로 0.1 ≤ n/(m'+m'') ≤ 100의 범위이며, 0≤ m''/m' ≤ 100의 범위고, A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 전자끌게기로서 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이며, W는 염소(Cl), 브롬(Br) 혹은 요오드(I) 중 어느 하나이며, R1, R2, R3, R4 및 R5은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다. In Formula 4, m 'and n are positive integers, m''is 0 or a positive integer, and 0.1 ≦ n / (m' + m '') ≤ 100, and 0≤ m '' / m ' ≤ 100, A 1 and A 2 may be the same or different from each other, which is-(C = O)-, -P (= O)-, -CF 2- , -C as a single bond or electron drawer. (CF 3 ) 2 -and SO 2- , W is any one of chlorine (Cl), bromine (Br) or iodine (I), and R 1 , R 2 , R 3 , R 4 and R 5 is all hydrogen atoms or at least one fluorine atom, aryl group, perfluoroalkyl group, or a perfluoroalkylaryl group, perfluoro optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain It is an aryl group and -O- perfluoroaryl group.
또한, 본원 발명은 상기 할로겐화 폴리페닐렌계 고분자의 이온교환반응에 의하여 제조되어 하기 화학식 5의 화학구조를 가지는 것을 특징으로 하는 폴리페닐렌계 음이온 교환 고분자를 제공한다.In addition, the present invention provides a polyphenylene-based anion-exchange polymer, which is prepared by ion exchange reaction of the halogenated polyphenylene-based polymer and has a chemical structure of the formula (5).
<화학식 5><Formula 5>
Figure PCTKR2018004509-appb-I000005
Figure PCTKR2018004509-appb-I000005
상기 화학식 5에서 m'와 n은 양의 정수이고, m''는 0 또는 양의 정수로 0.1 ≤ n/(m'+m'') ≤ 100의 범위이며, 0≤ m''/m' ≤ 100의 범위고, A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 전자끌게기로서 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이며, Z는 이온교환작용기로서 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기 및 이미다졸릴기에서 선택되는 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기, 베타인 및 술포베타인에서 선택되는 양쪽성 이온 교환 작용기 및 이들의 조합에서 선택되는 이온 교환기 또는 이들의 염 상태의 음이온 교환 작용기 중 어느 하나이며, R1, R2, R3, R4 및 R5은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다. In Formula 5, m 'and n are positive integers, m''is 0 or a positive integer, and 0.1 ≦ n / (m' + m '') ≤ 100, and 0≤ m '' / m ' ≤ 100, A 1 and A 2 may be the same or different from each other, which is-(C = O)-, -P (= O)-, -CF 2- , -C as a single bond or electron drawer. (CF 3 ) 2 -and SO 2- , and Z is an ion exchange functional group in an amine group, ammonium group, amino group, imine group, sulfonium group, phosphonium group, pyridyl group, carbazolyl group and imidazolyl group Any one of an anion exchange functional group selected or an anion exchange functional group in a salt state thereof, an amphoteric ion exchange functional group selected from betaine and a sulfobetaine and an ion exchange group selected from a combination thereof or an anion exchange functional group in a salt state thereof and, R 1, R 2, R 3, R 4 and R 5 are both hydrogen atoms or at least one fluorine atom, an aryl group, a perfluoroalkyl roal Group or, alternatively perfluoroalkyl containing one or more oxygen, nitrogen, or sulfur atom in its chain alkylaryl group, a perfluoroalkyl group and an aryl -O- group aryl perfluoroalkyl.
또한, 본원 발명은 하기 화학식 1의 친수성 단위 단량체와 하기 화학식 2의 소수성 단위 단량체의 공중합에 의하여 폴리페닐렌계 고분자를 제조하는 고분자화반응 단계;In addition, the present invention is a polymerizing step of preparing a polyphenylene-based polymer by copolymerization of the hydrophilic unit monomer of the formula (1) and the hydrophobic unit monomer of the formula (2);
<화학식 1> <Formula 1>
Figure PCTKR2018004509-appb-I000006
Figure PCTKR2018004509-appb-I000006
<화학식 2> <Formula 2>
Figure PCTKR2018004509-appb-I000007
Figure PCTKR2018004509-appb-I000007
(상기 화학식 1과 화학식 2에서 에서 A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 전자끌게기로서 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이고, X는 염소(Cl), 브롬(Br) 혹은 요오드(I) 중 어느 하나이며, R1, R2, R3, R4 및 R5 은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다.)(In Formula 1 and Formula 2, A 1 and A 2 may be the same as or different from each other, and as a single bond or an electron drawer,-(C = O)-, -P (= O)-, -CF 2- , -C (CF 3 ) 2 -and SO 2- , X is any one of chlorine (Cl), bromine (Br) or iodine (I), R 1 , R 2 , R 3 , R 4 and R 5 are both hydrogen atoms or at least one fluorine atom, aryl group, perfluoroalkyl group, or a perfluoroalkylaryl group optionally containing at least one oxygen, nitrogen, or sulfur atom in its chain, Perfluoroaryl group and -O- perfluoroaryl group.)
제조된 상기 폴리페닐렌계 고분자를 할로겐화 하여 할로겐화 폴리페닐렌계 고분자를 제조하는 할로겐화반응 단계; 및A halogenation step of halogenating the prepared polyphenylene polymer to produce a halogenated polyphenylene polymer; And
상기 할로겐화 폴리페닐렌계 고분자를 이온교환 반응을 통하여 폴리페닐렌계 음이온 교환 고분자를 제조하는 이온교환 단계를 포함하는 것을 특징으로 하는 폴리페닐렌계 음이온 교환 고분자의 제조방법을 제공한다.It provides a method for producing a polyphenylene-based anion-exchange polymer, characterized in that it comprises an ion exchange step of producing a polyphenylene-based anion-exchange polymer to the halogenated polyphenylene-based polymer through an ion exchange reaction.
본원 발명에 따른 폴리페닐렌계 음이온 교환 고분자의 제조방법에 있어서, 상기 할로겐화반응 단계는 브로민화 반응을 이용할 수 있고, 상기 이온교환 단계는 이온교환작용기로서 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기 및 이미다졸릴기에서 선택되는 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기, 베타인 및 술포베타인에서 선택되는 양쪽성 이온 교환 작용기 및 이들의 조합에서 선택되는 이온 교환기 또는 이들의 염 상태의 음이온 교환 작용기 중 어느 하나를 도입하는 것일 수 있다.In the method for producing a polyphenylene-based anion exchange polymer according to the present invention, the halogenation step may be a bromination reaction, the ion exchange step is an amine group, ammonium group, amino group, imine group, sulfonium group, In the anion exchange functional group selected from phosphonium group, pyridyl group, carbazolyl group and imidazolyl group or anion exchange functional group in salt state thereof, amphoteric ion exchange functional group selected from betaine and sulfobetaine and combinations thereof It may be to introduce any one of an ion exchange group selected or an anion exchange functional group in a salt state thereof.
또한, 본원 발명은 상기 제조방법에 따라 제조된 폴리페닐렌계 음이온 교환 고분자 자체를 성형한 고분자막 또는 폴리페닐렌계 음이온 교환 고분자를 지지체와 복합화 하여 제조한 복합막을 레독스 흐름 전지용 격리막에 사용하는 방법과, 상기 격리막과 양극, 양극 전해질, 음극 전해질 및 음극을 포함하는 것을 특징으로 하는 레독스 흐름 전지를 제공한다.In addition, the present invention is a method for using a membrane prepared by complexing the polyphenylene-based anion exchange polymer itself prepared by the production method or a polyphenylene-based anion-exchange polymer complex with a support for the separator for redox flow battery, It provides a redox flow battery comprising the separator and the positive electrode, the positive electrode electrolyte, the negative electrode electrolyte and the negative electrode.
본원 발명에 따른 레독스 흐름 전지는 바나듐계 레독스 흐름 전지, 폴리설퍼이드브로민(PSB) 레독스 흐름 전지, 또는 아연-브로민(Zn-Br) 레독스 흐름 전전지일 수 있다. The redox flow battery according to the present invention may be a vanadium-based redox flow battery, a polysulfide bromine (PSB) redox flow battery, or a zinc-bromine (Zn-Br) redox flow battery.
이상에서 설명한 바와 같이 본원 발명에 따른 폴리페닐렌계 음이온 교환 고분자는 구조적으로는 고분자 주쇄가 폴리페닐렌으로 이루어져 주쇄에 -O-, -S-, -(CH2)n- 등의 전자주게 특성의 연결기를 포함하지 않고 벤젠고리 사이의 C-C 결합으로만 이루어져 있어 소재의 치수 안정성이 우수하고, 상용화된 Nafion115(양이온교환소재)에 비해 활물질의 크로스오버(crossover)가 낮고 이에 따라 쿨롬 효율이 향상된 장점이 있다.As described above, the polyphenylene-based anion exchange polymer according to the present invention is structurally composed of polyphenylene, and the main chain of the electron donor properties such as -O-, -S-,-(CH 2 ) n -in the main chain. It is composed of only CC bonds between benzene rings and does not include a linking group, so the dimensional stability of the material is excellent, and the crossover of the active material is lower than that of commercially available Nafion115 (cation exchange material), and thus the coulombic efficiency is improved. have.
또한, 본원 발명에 따른 폴리페닐렌계 음이온 교환 고분자는 레독스 흐름 전지, 연료전지(fuel cell), 전기투석(electrodialysis; ED), 역전기투석(reverse electrodialysis; RED), 축전식탈염(capacitive deionization; CDI) 등의 분야에서 그 활용성이 매우 높다.In addition, the polyphenylene-based anion exchange polymer according to the present invention is a redox flow battery, fuel cell (fuel cell), electrodialysis (ED), reverse electrodialysis (RED), capacitive deionization; CDI is very useful in such fields.
도 1은 본원 발명의 일 구현예에 따른 폴리페닐렌계 음이온 교환소재를 격리막으로 가지는 레독스 흐름 전지를 간략하게 나타낸 것이다.Figure 1 shows a simplified redox flow battery having a polyphenylene-based anion exchange material as a separator according to an embodiment of the present invention.
도 2는 본원 발명의 일 구현예에 따른 폴리페닐렌계 고분자의 제조에 사용한 단량체의 화학구조 및 1H-NMR을 나타낸 것이다.Figure 2 shows the chemical structure and 1 H-NMR of the monomer used in the preparation of the polyphenylene-based polymer according to an embodiment of the present invention.
도 3은 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 고분자(P1: PPP-1/1, 할로겐화 폴리페닐렌계 고분자(P2: BrPPP-1/1) 및 폴리페닐렌계 음이온 교환 고분자(P3: QPPP-1/1)의 화학구조 및 1H-NMR을 나타낸 것이다.3 is a polyphenylene-based polymer prepared according to one embodiment of the present invention (P1: PPP-1 / 1, halogenated polyphenylene-based polymer (P2: BrPPP-1 / 1) and polyphenylene-based anion exchange polymer (P3: The chemical structure and 1 H-NMR of QPPP-1 / 1) are shown.
도 4는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 기계적 강도를 Nafion115과 비교하여 나타낸 것이다.Figure 4 shows the mechanical strength of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention in comparison with Nafion115.
도 5는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 수치안정성을 Nafion115과 비교하여 나타낸 것이다.Figure 5 shows the numerical stability of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention in comparison with Nafion115.
도 6은 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 열안정성 결과를 나타낸 것이다.Figure 6 shows the thermal stability of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
도 7은 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 이온전도도를 비교한 결과를 나타낸 것이다.Figure 7 shows the result of comparing the ion conductivity of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
도 8은 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 바나듐이온 투과도 결과를 나타낸 것이다.Figure 8 shows the vanadium ion permeability results of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention.
도 9a는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/1)의 전류밀도에 따른 VRFB 효율을 비교하여 나타낸 것이다.Figure 9a is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention.
도 9b는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/1)의 전류밀도에 따른 VRFB 효율을 비교하여 나타낸 것이다.Figure 9b is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention.
도 9c는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/1)의 전류밀도에 따른 VRFB 효율을 비교하여 나타낸 것이다.Figure 9c is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention.
도 10a은 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/2)의 전류밀도에 따른 VRFB 효율을 비교하여 나타낸 것이다.Figure 10a is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention.
도 10b는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/2)의 전류밀도에 따른 VRFB 효율을 비교하여 나타낸 것이다.Figure 10b is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention.
도 10c는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/2)의 전류밀도에 따른 VRFB 효율을 비교하여 나타낸 것이다.Figure 10c is a comparison of the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention.
이하, 본원 발명에 대해 상세하게 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본원 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
도 1은 본 발명의 격리막 구조를 갖는 레독스 흐름 전지를 간략하게 나타낸 도면이다.1 is a view briefly showing a redox flow battery having a separator structure of the present invention.
도 1에 도시된 바와 같이, 그 구성요소로서 소정의 크기를 갖는 셀하우징(51)과, 상기 셀하우징(51)의 중심을 가로지르며 설치된 이온교환막(11)과, 상기 이온교환막(11)의 분리된 셀하우징(51)의 내부 좌. 우 양쪽에 각각 위치하는 양극(21)과 음극(22)과, 상기 셀하우징(51)의 상, 하단에 형성되어 각각의 전극에 사용되는 전해액의 유입 및 유출을 수행하는 유입구(31,41)와 유출구(32,42)가 구비되어 있다. 상기 양극(21)과 음극(22)은 통상적인 재질인 탄소펠트, 탄소부직포, 그라파이트 펠트, 그라파이트 플레이트 등이 사용된다.As shown in FIG. 1, a cell housing 51 having a predetermined size as its component, an ion exchange membrane 11 provided across a center of the cell housing 51, and an ion exchange membrane 11 of the ion exchange membrane 11 are formed. The inner left of the separated cell housing 51. Inlets 31 and 41 formed on both sides of the anode 21 and the cathode 22, respectively, on the upper and lower ends of the cell housing 51 to perform the inflow and outflow of the electrolyte used for the respective electrodes. And outlets 32 and 42 are provided. The positive electrode 21 and the negative electrode 22 include carbon felt, carbon nonwoven fabric, graphite felt, graphite plate, and the like, which are conventional materials.
이와 같은 레독스 흐름 전지의 반응 메커니즘은 상기 양극(21) 및 음극(22)의 산화/환원반응에 의해 이루어지며, 상기와 같은 반응을 일으키기 위한 양극 전해질과 음극 전해질은 별도의 보관탱크(미도시)에 각각 보관되어 셀하우징(51)에 각각 형성된 전해질 유입구(31,41)를 통해 셀하우징(51) 내부로 유입되어 양극(21) 및 음극(22)과 접촉하여 반응을 일으킨 후, 각각의 전해질 유출구(32,42)를 통해 외부로 유출되는 순환시스템을 갖는다.The reaction mechanism of the redox flow battery is made by the oxidation / reduction reaction of the positive electrode 21 and the negative electrode 22, and the positive electrode electrolyte and the negative electrode electrolyte for causing the above reaction are stored in separate storage tanks (not shown). Are stored in the cell housing 51 and introduced into the cell housing 51 through the electrolyte inlets 31 and 41 formed in the cell housing 51, respectively, to react with the positive electrode 21 and the negative electrode 22 to react with each other. It has a circulation system that flows out through the electrolyte outlet (32, 42).
상기와 같은 구성을 갖는 본 발명의 레독스 흐름 전지는 양극 전해질로 V(IV)/V(V) 레독스 커플을 사용하고, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용한 전바나듐계 레독스 흐름 전지에 적용될 수 있다.Redox flow battery of the present invention having the configuration as described above using the V (IV) / V (V) redox couple as the cathode electrolyte, and V (II) / V (III) redox couple as the cathode electrolyte It can be applied to all vanadium-based redox flow battery.
또한, 상기와 같은 구성을 갖는 본 발명의 레독스 흐름 전지는 양극 전해질로 할로겐 레독스 커플을 사용하고, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용한 전바나듐계 레독스 흐름 전지에 적용될 수 있다. In addition, the redox flow battery of the present invention having the configuration described above uses a halogen redox couple as the cathode electrolyte, and an all-vanadium redox flow using the V (II) / V (III) redox couple as the cathode electrolyte. It can be applied to a battery.
또한, 상기와 같은 구성을 갖는 본 발명의 레독스 흐름 전지는 양극 전해질로 할로겐을 레독스 커플을 사용하고, 음극 전해질로 설파이드 레독스 커플을 사용한 폴리설퍼이드브로민(PSB) 레독스 흐름 전지에 적용될 수 있다. In addition, the redox flow battery of the present invention having the configuration as described above is a polysulfide bromine (PSB) redox flow battery using a halogen redox couple as a cathode electrolyte, sulfide redox couple as a cathode electrolyte Can be applied.
또한, 상기와 같은 구성을 갖는 본 발명의 레독스 흐름 전지는 양극 전해질로 할로겐 레독스 커플을 사용하고, 음극전해질로 아연(Zn) 레독스 커플을 사용한 아연-브로민(Zn-Br) 레독스 흐름 전지에 적용될 수 있다. In addition, the redox flow battery of the present invention having the configuration as described above using a halogen redox couple as the cathode electrolyte, zinc-bromine (Zn-Br) redox using a zinc (Zn) redox couple as the cathode electrolyte It can be applied to flow cells.
일반적으로 이온교환막(11)으로는 종래 레독스 흐름 전지에 사용되던 나피온(Nafion) 양이온 교환막, 슬폰산기 또는 카르복실산기를 가지는 양이온 교환막이나 암모늄기 또는 포스포늄기를 가지는 음이온 교환막 등이 적용되어 왔다. In general, as the ion exchange membrane 11, a Nafion cation exchange membrane, a cation exchange membrane having a sulfonic acid group or a carboxylic acid group, an anion exchange membrane having an ammonium group or a phosphonium group, or the like used in a conventional redox flow battery has been used.
본 발명은 이온교환막으로서 폴리페닐렌계 음이온 교환 고분자인 것을 특징으로 한다. 또한, 치수 변화율을 감소시킴으로써 중, 장기 내구성을 향상시키기 위한 나노웹 지지체에 이온전도체를 함침시켜 제작한 강화복합막을 이온교환막으로 사용할 수 있으며, 나노웹 지지체로는 폴리이미드, 폴리메틸펜텐, 폴리에스터, 폴리아크릴로니트릴, 폴리비닐아마이드, 폴리프로필렌, 폴리비닐플루오라이드가 사용될 수 있으나 이에 한정하지 않는다. The present invention is characterized in that the polyphenylene-based anion exchange polymer as an ion exchange membrane. In addition, reinforcing composite membranes prepared by impregnating an ion conductor in a nanoweb support for improving long-term durability by reducing the rate of dimensional change can be used as an ion exchange membrane.As a nanoweb support, polyimide, polymethylpentene, polyester , Polyacrylonitrile, polyvinylamide, polypropylene, polyvinyl fluoride may be used, but is not limited thereto.
본원 발명에 따른 폴리페닐렌계 음이온 교환소재의 제조방법은 하기의 반응식 1에 따라 제조될 수 있다.Method for producing a polyphenylene-based anion exchange material according to the present invention can be prepared according to the following Scheme 1.
<반응식 1><Scheme 1>
Figure PCTKR2018004509-appb-I000008
Figure PCTKR2018004509-appb-I000008
제조예1: 고분자 합성(PPP-n/m: P1의 제조)Preparation Example 1 Synthesis of Polymer (PPP-n / m: Preparation of P1)
폴리페닐렌의 고분자 합성 과정은 다음과 같다. 완전히 건조시킨 플라스크를 준비하여 2,5-dichloro-4’-methylbenzophenone (M1) (5.28g), 2,5-dichlorobenzophenone (M2) (5g), Ni(pph3)2Cl2 (0.78g), NaI (0.72g), 트리페닐포스핀(triphenylphosphine) (3.76g), Zn (3.2g)을 디메틸아세트아미드(DMAc) (80ml)에 녹인 후 80℃에서 약 3h 동안 교반하고 상온으로 온도를 내린 후 에탄올/염산(9:1, v:v)에 부어 Zn를 제거한 후 뜨거운 에탄올과 뜨거운 증류수로 씻은 후 합성 된 고분자는 80℃ 진공에서 건조한 후 P1 고분자를 얻었다. 합성된 고분자 P1을 1H-NMR 분광법에 의하여 분석, 방향족 수소(aromatic proton)과 지방족 수소(aliphatic proton)의 개수 비교로 고분자 합성을 확인하였다.Polymer synthesis process of polyphenylene is as follows. Prepare completely dried flasks with 2,5-dichloro-4'-methylbenzophenone (M1) (5.28 g), 2,5-dichlorobenzophenone (M2) (5 g), Ni (pph 3 ) 2 Cl 2 (0.78 g), NaI (0.72g), triphenylphosphine (3.76g) and Zn (3.2g) were dissolved in dimethylacetamide (DMAc) (80ml), stirred at 80 ° C for about 3h, and cooled to room temperature. Poured into ethanol / hydrochloric acid (9: 1, v: v) to remove Zn and washed with hot ethanol and hot distilled water, the synthesized polymer was dried under vacuum at 80 ℃ to obtain a P1 polymer. The synthesized polymer P1 was analyzed by 1 H-NMR spectroscopy, and the polymer synthesis was confirmed by comparing the number of aromatic hydrogens and aliphatic protons.
P1 고분자의 합성에 사용한 M1 및 M2의 화학식 및 1H NMR을 도 2에 나타내었고, P1 고분자의 화학구조 및 1H NMR을 도 3에 나타내었다.The chemical formula and 1 H NMR of M1 and M2 used to synthesize P1 polymer are shown in FIG. 2, and the chemical structure and 1 H NMR of P1 polymer are shown in FIG. 3.
제조예 2: 브로민화반응(BrPPP-n/m: P2의 제조)Preparation Example 2 Bromination (BrPPP-n / m: Preparation of P2)
폴리페닐렌의 브로민화 과정은 다음과 같다. 상기 제조예1에 따라 제조된 P1 고분자 1g을 1,1,2,2-테트라클로로에탄(1,1,2,2-tetrachloroethane) 20㎖에 완전히 용해 시킨 후 benzoyl peroxide(BPO) 0.05 g 와 N-bromosuccinimide(NBS) 를 0.5673 g 넣고 90℃에서 3.5 시간 동안 반응하여 반응 종료된 상기의 반응물은 과량의 메탄올에 침전시키고 다시 수차례 메탄올과 3차 증류수로 세척 후 세척된 P2를 80℃에서 24시간 진공 건조하였다. 1H-NMR 분광법에 의하여 분석하였을 때 4.5ppm에서 할로겐 작용기가 관찰되었으며 본 제조예에서의 폴리페닐렌의 브로민화도는 0.75 이었다. The bromination process of polyphenylene is as follows. 1 g of the P1 polymer prepared according to Preparation Example 1 was completely dissolved in 20 ml of 1,1,2,2-tetrachloroethane (1,1,2,2-tetrachloroethane), followed by 0.05 g of benzoyl peroxide (BPO) and N. 0.5673 g of -bromosuccinimide (NBS) was added and reacted at 90 ° C. for 3.5 hours. The reaction mixture was precipitated in excess methanol, washed several times with methanol and distilled water, and washed with P2 at 80 ° C. for 24 hours. Dried in vacuo. When analyzed by 1 H-NMR spectroscopy, halogen functional groups were observed at 4.5 ppm and the degree of bromination of polyphenylene in the present example was 0.75.
제조된 P2 고분자의 화학식 및 1H NMR을 도 3에 나타내었다.The chemical formula and 1 H NMR of the prepared P2 polymer are shown in FIG. 3.
제조예 3: 이온교환 반응(QPPP-n/m: P3의 제조)Preparation Example 3 Ion Exchange Reaction (QPPP-n / m: Preparation of P3)
브로모메틸 작용기의 음이온 교환성 작용기 치환은 다음과 같다. 할로겐 치환기가 달린 제조예 2에서 제조된 P2 고분자를 디메틸술폭시드(DMSO) 용액에 4wt%로 녹인 후, 트리메틸아민(trimethylamine) 혹은 메틸이미다졸(2-methylimidazole)을 P2 고분자가 녹아있는 용액에 천천히 투입하여 24시간 후 3차 증류수에 침전하였다. 이때 트리메틸아민은 ~45 wt. % 수용액을 사용하였다. 제조된 음이온 교환성 작용기 치환된 폴리페닐렌계막을 이하 QPPP-n/m(P3) 이라 명명하고, 여기서 n,m 은 각각 소수성 부분과 친수성 부분의 몰 비를 나타낸다. The anion exchange functional group substitution of the bromomethyl functional group is as follows. The P2 polymer prepared in Preparation Example 2 having a halogen substituent was dissolved in dimethyl sulfoxide (DMSO) solution at 4wt%, and then trimethylamine or methylimidazole was dissolved in a solution containing P2 polymer. Slowly added and precipitated in tertiary distilled water after 24 hours. Wherein trimethylamine is ˜45 wt. % Aqueous solution was used. The prepared anion-exchange functional group-substituted polyphenylene-based membrane is hereinafter referred to as QPPP-n / m (P3), where n and m represent molar ratios of the hydrophobic portion and the hydrophilic portion, respectively.
제조된 P3 고분자의 화학구조 및 1H NMR을 도 3에 나타내었다.The chemical structure and 1 H NMR of the prepared P3 polymer are shown in FIG. 3.
<폴리페닐렌계 음이온 교환소재 특성평가><Evaluation of Polyphenylene-based Anion Exchange Material>
(1) 치수 안정성 평가(1) dimensional stability evaluation
도 4에는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 기계적 강도를 Nafion115과 비교하여 나타내었고, 도 5에는 수치안정성 비교결과를 나타내었다. 도 4에서 알 수 있듯이 본 발명의 일구현예에 따른 QPPP-1/1과 QPPP-1/2는 상용소재인 Nafion 115에 비해 매우 우수한 인장강도(tensile strangth)를 보일 뿐만 아니라 도 5에서 알 수 있듯이 QPPP-1/1과 QPPP-1/2는 큰 이온교환능에도 불구하고 사용소재인 Nafion 115에 비해 더 낮은 치수안정성을 보이며, 특히 내구성에 큰 영향을 미치는 길이방향의 치수 변화율은 Nafion 115에 비해 약 50% 수준으로 매우 안정된 결과를 보임을 알 수 있다.Figure 4 shows the mechanical strength of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention compared to Nafion115, Figure 5 shows the numerical stability comparison results. As can be seen in Figure 4 QPPP-1 / 1 and QPPP-1 / 2 according to an embodiment of the present invention not only shows a very good tensile strength (tensile strangth) compared to the commercial material Nafion 115 can be seen in Figure 5 As can be seen, QPPP-1 / 1 and QPPP-1 / 2 show lower dimensional stability than Nafion 115, which is used despite the large ion exchange capacity. It can be seen that the results are very stable at about 50%.
상기 제조예에 따라 제조된 이온교환막의 이온교환성능(IEC)는 상온에서 24시간 동안 1M NaOH 수용액에 담지하여 Cl-을 OH-로 바꾼 후 측정하였고, OH-로 치환된 샘플을 0.01M HCl 수용액에 24시간 교반 후, 0.01M NaOH 수용액으로 산-염기 적정하였다.The ion exchange performance (IEC) of the ion exchange membrane prepared according to the above preparation was measured after changing to Cl - to OH - in an aqueous 1M NaOH solution for 24 hours at room temperature, and the sample substituted with OH - 0.01M HCl aqueous solution After stirring for 24 hours, the acid-base was titrated with 0.01 M NaOH aqueous solution.
치수안정성은 이온교환막의 젖은 상태와 완전 건조 상태에서의 무게, 길이, 두께, 부피 변화를 상온에서 측정하여 그 결과를 하기 표 1에 정리하였다.Dimensional stability was measured at room temperature by weight, length, thickness, volume change in the wet state and dry state of the ion exchange membrane and summarized the results in Table 1 below.
PolymerPolymer Inherent viscosity(dl/g)Inherent viscosity (dl / g) DB1)(%)DB 1) (%) IECwt 2)(meq./g)IECw t 2) (meq./g) IECw(meq./g)IECw (meq./g) Water uptake (wt%, R.T.)Water uptake (wt%, R.T.) Dimension Changes(%, 25 ℃)Dimension Changes (%, 25 ℃)
ΔlΔl ΔtΔt Δt/ΔlΔt / Δl ΔVΔV
QPPP-1/1QPPP-1 / 1 3.43.4 7575 2.12.1 1.61.6 2020 4.54.5 6.56.5 0.70.7 1616
QPPP-1/2QPPP-1 / 2 3.33.3 7575 2.72.7 2.02.0 2222 6.76.7 17.317.3 2.62.6 3333
1) 브로민화 정도, 2) 이론적 IEC1) degree of bromination, 2) theoretical IEC
표 1에 기재한 바와 같이, 합성된 음이온 교환소재의 주쇄는 높은 분자량으로 합성됨을 점도(inherent viscosity)를 측정함으로 확인하였고, 합성된 음이온 교환소재는 같은 브로민화 정도를 보였으며, 제조된 음이온 교환소재는 IEC의 증대에 따라 함수율과 수치의 변화도 같이 증대됨을 확인할 수 있었다.As shown in Table 1, it was confirmed by measuring the viscosity (inherent viscosity) that the main chain of the synthesized anion exchange material synthesized at a high molecular weight, the synthesized anion exchange material showed the same degree of bromination, the prepared anion exchange As the material increases, the change of moisture content and numerical value increases with the increase of IEC.
도 6에는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 열안정성 결과를 나타내였다. 개발 소재의 유변학적 거동을 확인하기 위해 dynamic mechanical analysis (DMA) 분석을 수행하였음. 도 6에서 알 수 있듯이 본 발명의 일 구현예에 따른 QPPP-1/1과 QPPP-1/2는 약 200℃까지도 저장탄성율(storage modulus)이 각각 3GPa, 4GPa 이상으로 매우 커서 이는 소재의 강도가 우수할 뿐 아니라 얇은 두께로도 공정에서 다루기 용이함을 알 수 있고, 또한 각각 유리전이온도가 230 ℃ 이상으로 열적으로도 매우 안정함을 알 수 있다.Figure 6 shows the thermal stability of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention. Dynamic mechanical analysis (DMA) analysis was performed to confirm the rheological behavior of the developed material. As can be seen in Figure 6 QPPP-1 / 1 and QPPP-1 / 2 according to an embodiment of the present invention storage modulus (Storage modulus) up to about 200 ℃ is very large, respectively more than 3GPa, 4GPa, which is the strength of the material It can be seen that it is not only excellent but also easy to handle in the process even with a thin thickness, and also the glass transition temperature is very stable thermally at 230 ° C. or higher.
(2) 이온 전도도 평가(2) ionic conductivity evaluation
이온전도도는 Pt 전극 cell을 사용하여 4-probe electrochemical impedance spectroscopy (Solatron 1280)로 impedance을 측정하였다. 이 때 이온교환막을 1M NaCl 수용액, 1M Na2SO4 수용액에 각각 24시간 담지한 후 Cl-, SO4 2- 이온전도도를 측정하였으며, 측정 조건은 100% 상대습도에서 25℃, 40℃, 60℃, 70℃, 80℃에서의 측정하여 그 결과를 하기 표 2에 정리하였다. Ion conductivity was measured by 4-probe electrochemical impedance spectroscopy (Solatron 1280) using a Pt electrode cell. After this time, ion exchange membranes, each carrying 24 hours in 1M NaCl aqueous solution, 1M Na 2 SO 4 aqueous solution of Cl -, SO 4 2- ion conductivity was measured, measurement conditions are 25 ℃, 40 ℃ at 100% relative humidity, 60 The measurement at ℃, 70 ℃, 80 ℃ was summarized in Table 2 below.
도 7에는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 이온전도도를 비교한 결과를 나타내였다. 도 7에서 알 수 있듯이, 본 발명의 일 구현예에 따른 QPPP-1/1과 QPPP-1/2는 우수한 음이온 전도도를 보이고, 이러한 음이온 전도도는 온도의 증가에 따라 향상되는데 이는 우수한 치수안정성에 기인한 결과이다.Figure 7 shows the result of comparing the ion conductivity of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention. As can be seen in Figure 7, QPPP-1 / 1 and QPPP-1 / 2 according to an embodiment of the present invention shows excellent anion conductivity, this anion conductivity is improved with the increase of temperature due to the excellent dimensional stability One result.
Polymer Polymer Ion conductivity (mS cm-1)Ion conductivity (mS cm -1 )
25 ℃25 40 ℃40 60 ℃60 70 ℃70 80 ℃80 ℃
Cl- Cl - SO4 2- SO 4 2- Cl- Cl - SO4 2- SO 4 2- Cl- Cl - SO4 2- SO 4 2- Cl- Cl - SO4 2- SO 4 2- Cl- Cl - SO4 2- SO 4 2-
QPPP-1/1QPPP-1 / 1 33 2.62.6 44 3.73.7 66 5.75.7 1010 8.28.2 1414 1010
QPPP-1/2QPPP-1 / 2 5.55.5 33 77 3.73.7 1111 88 1717 1111 2020 1515
표 2에 기재한 바와 같이 각각의 막은 온도가 증가함에 따라 이온 전도도가 증가하는데 이는 온도가 증가함에 따라 이온의 이동 속도가 증가하기 때문이고, 이온 전도도는 Cl-, SO4 2- 순서로 감소하며 이는 이온의 크기 및 이동 속도와 관련 있음을 알 수 있다.As shown in Table 2, and because the moving speed of the ions increases as the temperature increases, which in the ionic conductivity increases as the temperature of each membrane is increased, ionic conductivity is Cl -, and reduced to, SO 4 2- sequence It can be seen that this is related to the size of the ion and the rate of migration.
(3) 바나듐 이온 투과도 평가(3) Vanadium ion permeability evaluation
바나듐 이온 투과도(vanadium ion permeability)는 이온교환막을 1M Na2SO4 수용액에 24시간 담지 후 건조하여 측정하였다. 3M H2SO4 수용액을 용매로 한 2M MgSO4 수용액 및 3M H2SO4 수용액을 용매로 한 2M VOSO4 수용액 사이에 이온교환막을 두고 용액을 순환시키면서 시간에 따른 바나듐 이온의 농도를 UV-visible spectroscopy(Agilent cary 8454)을 이용하여 측정하였으며, Nafion115은 1.5M H2SO4 수용액에 24시간 담지 후 3차 증류수에 세척 및 24시간 담지 후 건조하여 사용하였다. 그 결과를 하기 표 3에 정리하였다. Vanadium ion permeability was measured by drying the ion exchange membrane in 1M Na 2 SO 4 aqueous solution for 24 hours and then drying. By the 3M H 2 SO 4 aqueous solution as a solvent 2M MgSO 4 solution and 3M H 2 SO 4 aqueous solution and the solvent A 2M VOSO 4, while with the ion exchange membrane circulating the solution between an aqueous solution, the concentration of vanadium ions in time UV-visible to the It was measured by spectroscopy (Agilent cary 8454). Nafion115 was used for 24 hours in 1.5MH 2 SO 4 aqueous solution, washed in 3 distilled water, and dried for 24 hours. The results are summarized in Table 3 below.
도 8에는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재의 바나듐이온 투과도 결과를 나타내였다. 도 8에서 알 수 있듯이, 본원 발명에 따른 QPPP-1/2는 매우 낮은 바나듐 투과도를 보이는데, 바나듐은 바나듐 레독스 흐름 전지에서 활물질로 사용되기 때문에 높은 바나듐 투과도는 용량의 저하 및 전지 효율의 저하로 이어지게 되므로 낮은 바나듐 투과도는 전지의 용량뿐 아니라 효율의 향상에도 매우 중요한 인자이다. 도 8에서와 같이 QPPP-1/2는 Nafion 115에 비해 약 1/1000 수준의 매우 낮은 바나듐 투과도를 보임을 알 수 있다.Figure 8 shows the vanadium ion permeability results of the polyphenylene-based anion exchange material prepared according to an embodiment of the present invention. As can be seen in Figure 8, QPPP-1 / 2 according to the present invention shows a very low vanadium permeability, because vanadium is used as the active material in the vanadium redox flow battery, high vanadium permeability is due to a decrease in capacity and battery efficiency As a result, low vanadium permeability is a very important factor for improving the capacity as well as the efficiency of the battery. As shown in FIG. 8, QPPP-1 / 2 has a very low vanadium permeability of about 1/1000 as compared to Nafion 115.
PolymerPolymer Vanadium 이온 투과도(cm2/min)Vanadium ion permeability (cm 2 / min)
QPPP-1/1QPPP-1 / 1 Not detectedNot detected
QPPP-1/2QPPP-1 / 2 2.12 x 10-9 2.12 x 10 -9
Nafion 115 Nafion 115 2.88 x 10-6 2.88 x 10 -6
상기 표 3에 기재한 바와 같이, 제조된 폴리페닐렌계 음이온 교환막은 Nafion115 대비 굉장히 낮은 바나듐 이온 투과도를 보이고, IEC가 높은 음이온 교환막만 바나듐 이온 투과도를 보이며 QPPP-1/1(낮은 IEC를 갖음)의 경우 200 시간 동안 바나듐 이온 투과가 측정되지 않았다.As shown in Table 3, the prepared polyphenylene-based anion exchange membrane showed very low vanadium ion permeability compared to Nafion115, and only the anion exchange membrane having a high IEC showed vanadium ion permeability and had QPPP-1 / 1 (having low IEC). Vanadium ion permeation was not measured for 200 hours.
(4) 레독스 흐름 전지 성능평가(4) Redox Flow Battery Performance Evaluation
상기 이온교환막에 대한 바나듐 레독스 흐름 전지(vanadium redox flow battery) 단위 전지 성능 평가를 수행하였다.A vanadium redox flow battery unit cell performance evaluation of the ion exchange membrane was performed.
이온교환막은 1M Na2SO4 수용액에 24시간 담지 후 건조하여 사용하였으며 WonATech battery test system을 통해서 성능을 평가를 진행하였고, 이때 이온교환막의 유효 면적 49 ㎠, 전류밀도 50 -200 mA cm-2, flow rate 100 ml min- 1 로 성능평가를 진행하였으며, Nafion115은 1.5M H2SO4 수용액에 24시간 담지 후 3차 증류수에 세척 및 24시간 담지 후 건조하여 사용하였고, 평가 결과를 하기 표 4에 정리하였다. The ion exchange membrane was used after drying in 1M Na 2 SO 4 aqueous solution for 24 hours, and was evaluated by WonATech battery test system. At this time, the effective area of the ion exchange membrane was 49 ㎠, current density 50 -200 mA cm -2 , Performance evaluation was performed at a flow rate of 100 ml min - 1 , and Nafion115 was used after washing for 24 hours in 1.5MH 2 SO 4 aqueous solution and washing with 3 distilled water and drying for 24 hours, and the evaluation results are summarized in Table 4 below. It was.
도 9a, 9b 및 9c 에는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/1)의 전류밀도에 따른 VRFB 효율을 비교하여 나타내었고, 도 10a, 10b 및 10c에는 본원 발명의 일 구현예에 따라 제조된 폴리페닐렌계 음이온 교환소재(QPPP-1/2)의 전류밀도에 따른 VRFB 효율을 비교하여 나타내었다. 도 9a 내지 9c와 10a 내지 10c에서 알 수 있듯이 본 발명의 일 구현예에 따른 QPPP-1/1과 QPPP-1/2는 우수한 전지 효율을 보이는데, 특히 도 10a 내지 10c에서 알 수 있는 바와 같이 QPPP-1/2는 다양한 전류 밀도로 충방전 하였을 경우에도 거의 100%에 육박하는 매우 우수한 C.E.를 보였으며 나피온과 동등 수준의 매우 우수한 V.E.를 보여, 상용 소재인 Nafion 115보다 우수한 에너지 효율을 보임을 알 수 있다. 특히, 100 사이클 운전 시에도 안정한 셀효율을 보이고, 80 mA/cm2에서도 85% 이상의 매우 우수한 셀효율을 나타낸다.9A, 9B and 9C are shown to compare the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 1) prepared according to an embodiment of the present invention, Figures 10a, 10b and 10c It is shown by comparing the VRFB efficiency according to the current density of the polyphenylene-based anion exchange material (QPPP-1 / 2) prepared according to an embodiment of the present invention. As can be seen in Figures 9a to 9c and 10a to 10c QPPP-1 / 1 and QPPP-1 / 2 according to an embodiment of the present invention shows excellent battery efficiency, in particular QPPP as can be seen in Figures 10a to 10c -1/2 showed very good CE of nearly 100% even when charged and discharged at various current densities, and showed very good VE equivalent to that of Nafion, showing better energy efficiency than commercially available Nafion 115. Able to know. In particular, it shows stable cell efficiency even at 100 cycles of operation, and very good cell efficiency of more than 85% even at 80 mA / cm 2 .
PolymerPolymer C.E.C.E. V.E.V.E. E.EE.E Vanadium이온 투과도(cm2/min)Vanadium ion permeability (cm 2 / min)
QPPP-1/1QPPP-1 / 1 9999 8080 8080 Not detectedNot detected
QPPP-1/2QPPP-1 / 2 9898 90.5-91.590.5-91.5 88-8988-89 2.12 x 10-9 2.12 x 10 -9
Nafion 115 Nafion 115 95.895.8 90.590.5 86.686.6 2.88 x 10-6 2.88 x 10 -6
C.E. = tdtc × 100%CE = t d t c × 100%
V.E. = VdVc × 100%VE = V d V c × 100%
E.E. = C.E × V.E.E.E. = C.E x V.E.
td는 방전시간, tc는 충전시간, Vd는 방전전압, Vc는 충전전압t d is the discharge time, t c is the charge time, V d is the discharge voltage, V c is the charge voltage
상기 표 4에 기재한 바와 같이, 쿨롬 효율(Coulombic efficiency, C.E.)은 Nafion115 대비 가교한 음이온 교환막이 전체적으로 높으며 이는 낮은 바나듐 이온 투과도에 기인한 것이고, 제조된 음이온교환소재 QPPP-1/2의 경우 전압효율(Voltage efficiency, V.E.) 및 에너지효율(Energy efficiency, E.E.)은 Nafion115대비 동등 이상의 효율을 보였다. 즉, 폴리페닐렌계 음이온교화소재 QPPP-n/m은 Nafion115대비 더 우수한 충방전 용량보존율을 보임을 알 수 있다.As shown in Table 4, the Coulombic efficiency (CE) is higher overall cross-linked anion exchange membrane than Nafion115, which is due to the low vanadium ion permeability, the voltage for the manufactured anion exchange material QPPP-1 / 2 Voltage efficiency (VE) and energy efficiency (EE) were equal to or better than Nafion115. That is, it can be seen that the polyphenylene-based anion exchanger QPPP-n / m shows better charge / discharge capacity retention than that of Nafion115.
구체적인 싱글셀의 구성은 다음과 같다. 양극과 음극물질로는 열처리 및 산처리를 한 5mm 두께의 Carbon felt를 사용하였고, 바이폴라플레이트, Electrode frame 및 End plate는 ㈜스텐다드에너지 사의 단위 셀을 사용하였으며, 양극 전해질로 V(IV)/V(V) 레독스 커플을 사용하고, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하며 이에 사용된 35 ㎛ 두께의 이온교환막을 가로 및 세로 100mm X 100mm 크기로 잘라 도 1와 같이 제작된 싱글셀에 장착하여 셀의 충, 방전 시험 및 효율을 측정하였다.Specific configuration of a single cell is as follows. For the anode and cathode materials, 5mm thick carbon felt was heat treated and treated with acid. Bipolar plates, electrode frames, and end plates were made of standard energy unit cells. V (IV) / V ( V) Using a redox couple, using a V (II) / V (III) redox couple as the cathode electrolyte, cut the 35 μm thick ion exchange membrane into horizontal and vertical 100 mm × 100 mm sizes as shown in FIG. 1. The charge and discharge test and the efficiency of the cell were measured by mounting the fabricated single cell.
싱글셀은 상온 (25℃)에서 구동 시험하였다. 전해질의 흐름 속도는 100 ml/min으로 고정하여, 충전 시 50 ~ 200 mA/cm2의 전류 밀도로 1.6V까지 하였고, 방전 시 동일한 50 ~ 200 mA/cm2의 전류 밀도로 1.0V까지 하였다. 모든 싱글셀은 내구성 시험을 위해 충, 방전을 30회 반복하여 수행하였다.Single cells were run tested at room temperature (25 ° C.). The flow rate of the electrolyte was fixed at 100 ml / min, up to 1.6 V at a current density of 50 to 200 mA / cm 2 during charging, and up to 1.0 V at a current density of 50 to 200 mA / cm 2 during discharge. All single cells were repeatedly charged and discharged 30 times for durability test.

Claims (10)

  1. 하기 화학식 1의 친수성 단위 단량체와 하기 화학식 2의 소수성 단위 단량체의 공중합에 의하여 제조되는 것을 특징으로 하는 고분자:A polymer prepared by copolymerization of a hydrophilic unit monomer of Formula 1 with a hydrophobic unit monomer of Formula 2:
    <화학식 1> <Formula 1>
    Figure PCTKR2018004509-appb-I000009
    Figure PCTKR2018004509-appb-I000009
    <화학식 2> <Formula 2>
    Figure PCTKR2018004509-appb-I000010
    Figure PCTKR2018004509-appb-I000010
    상기 화학식 1과 화학식 2에서 에서 A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로 부터 선택된 어느 하나이고, X는 염소(Cl), 브롬(Br) 혹은 요오드(I) 중 어느 하나이며, R1, R2, R3, R4 및 R5은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다.In Formula 1 and Formula 2, A 1 and A 2 may be the same as or different from each other, which is a single bond or-(C = O)-, -P (= O)-, -CF 2- , -C (CF 3 ) any one selected from 2 -and SO 2- , X is any one of chlorine (Cl), bromine (Br) or iodine (I), and R 1 , R 2 , R 3 , R 4 and R 5 Are all hydrogen atoms or at least one fluorine atom, aryl group, perfluoroalkyl group, or a perfluoroalkylaryl group, perfluoroaryl optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain Group and -O- perfluoroaryl group.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 고분자는 하기 화학식 3의 화학구조를 가지는 것을 특징으로 하는 고분자:The polymer is a polymer characterized in that it has a chemical structure of the formula
    <화학식 3><Formula 3>
    Figure PCTKR2018004509-appb-I000011
    Figure PCTKR2018004509-appb-I000011
    상기 화학식 3에서, m과 n은 양의 정수로 0.1 ≤ n/m ≤ 100의 범위이고, A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이며, R1, R2, R3, R4 및 R5 은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다.In Formula 3, m and n are positive integers ranging from 0.1 ≦ n / m ≦ 100, and A 1 and A 2 may be the same as or different from each other, which may be a single bond or-(C = O)-,- P (= O)-, -CF 2- , -C (CF 3 ) 2 -and SO 2- , wherein R 1 , R 2 , R 3 , R 4 and R 5 are all hydrogen atoms or At least one fluorine atom, aryl group, perfluoroalkyl group, or optionally a perfluoroalkylaryl group, perfluoroaryl group and -O- purple containing one or more oxygen, nitrogen, or sulfur atoms in the chain Luoroaryl group.
  3. 하기 화학식 4의 화학구조를 가지는 것을 특징으로 하는 할로겐화 고분자:Halogenated polymer, characterized in that having the chemical structure of formula
    <화학식 4><Formula 4>
    Figure PCTKR2018004509-appb-I000012
    Figure PCTKR2018004509-appb-I000012
    상기 화학식 4에서 m'와 n은 양의 정수이고, m''는 0 또는 양의 정수로 0.1 ≤ n/(m'+m'') ≤ 100의 범위이며, 0≤ m''/m' ≤ 100의 범위고, A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이며, W는 염소(Cl), 브롬(Br) 혹은 요오드(I) 중 어느 하나이며, R1, R2, R3, R4 및 R5 은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다. In Formula 4, m 'and n are positive integers, m''is 0 or a positive integer, and 0.1 ≦ n / (m' + m '') ≤ 100, and 0≤ m '' / m ' ≤ 100, A 1 and A 2 may be the same or different from each other, which is a single bond or-(C = O)-, -P (= O)-, -CF 2- , -C (CF 3 ) Any one selected from 2 -and SO 2- , W is any one of chlorine (Cl), bromine (Br) or iodine (I), and R 1 , R 2 , R 3 , R 4 and R 5 are all hydrogen An atom or at least one fluorine atom, an aryl group, a perfluoroalkyl group, or optionally a perfluoroalkylaryl group, perfluoroaryl group containing one or more oxygen, nitrogen, or sulfur atoms in the chain; and O-perfluoroaryl group.
  4. 하기 화학식 5의 화학구조를 가지는 것을 특징으로 하는 음이온 교환 고분자:Anion exchange polymer, characterized in that having a chemical structure of the formula
    <화학식 5><Formula 5>
    Figure PCTKR2018004509-appb-I000013
    Figure PCTKR2018004509-appb-I000013
    상기 화학식 5에서 m'와 n은 양의 정수이고, m''는 0 또는 양의 정수로 0.1 ≤ n/(m'+m'') ≤ 100의 범위이며, 0≤ m''/m' ≤ 100의 범위고, A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이며, Z는 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기 및 이미다졸릴기에서 선택되는 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기, 베타인 및 술포베타인에서 선택되는 양쪽성 이온 교환 작용기 및 이들의 조합에서 선택되는 이온 교환기 또는 이들의 염 상태의 음이온 교환 작용기 중 어느 하나이며, R1, R2, R3, R4 및 R5 은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기이다. In Formula 5, m 'and n are positive integers, m''is 0 or a positive integer, and 0.1 ≦ n / (m' + m '') ≤ 100, and 0≤ m '' / m ' ≤ 100, A 1 and A 2 may be the same or different from each other, which is a single bond or-(C = O)-, -P (= O)-, -CF 2- , -C (CF 3 ) 2 -and SO 2- , Z is an anion exchange functional group selected from ammonium group, amino group, imine group, sulfonium group, phosphonium group, pyridyl group, carbazolyl group and imidazolyl group or salt thereof Any one of an anion exchange functional group, an amphoteric ion exchange functional group selected from betaine and a sulfobetaine and an ion exchange group selected from a combination thereof, or an anion exchange functional group in a salt state thereof, and R 1 , R 2 , R 3 , R 4 and R 5 are both hydrogen atoms or at least one fluorine atom, an aryl group, or a perfluoroalkyl group, optionally one or more of its chain In cattle, nitrogen, or alkylaryl group perfluoroalkyl containing a sulfur atom, a perfluoroalkyl group and an aryl -O- perfluoroalkyl an aryl group.
  5. 하기 화학식 1의 친수성 단위 단량체와 하기 화학식 2의 소수성 단위 단량체의 공중합에 의하여 폴리페닐렌계 고분자를 제조하는 고분자화반응 단계;A polymerization reaction step of preparing a polyphenylene-based polymer by copolymerization of a hydrophilic unit monomer of Formula 1 with a hydrophobic unit monomer of Formula 2;
    <화학식 1> <Formula 1>
    Figure PCTKR2018004509-appb-I000014
    Figure PCTKR2018004509-appb-I000014
    <화학식 2><Formula 2>
    Figure PCTKR2018004509-appb-I000015
    Figure PCTKR2018004509-appb-I000015
    상기 화학식 1과 화학식 2에서 에서 A1과 A2는 서로 같거나 다를 수 있고, 이는 단일 결합 또는 -(C=O)-, -P(=O)-, -CF2-, -C(CF3) 2- 및 SO2-로부터 선택된 어느 하나이고, X는 염소(Cl), 브롬(Br) 혹은 요오드(I) 중 어느 하나이며, R1, R2, R3, R4 및 R5 은 모두 수소 원자이거나 혹은 적어도 하나의 플루오린 원자, 아릴기, 퍼플루오로알킬기이거나, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O- 퍼플루오로아릴기임In Formula 1 and Formula 2, A 1 and A 2 may be the same as or different from each other, which is a single bond or-(C = O)-, -P (= O)-, -CF 2- , -C (CF 3 ) any one selected from 2 -and SO 2- , X is any one of chlorine (Cl), bromine (Br) or iodine (I), and R 1 , R 2 , R 3 , R 4 and R 5 are All are hydrogen atoms or at least one fluorine atom, aryl group, perfluoroalkyl group, or a perfluoroalkylaryl group, perfluoroaryl group optionally containing one or more oxygen, nitrogen, or sulfur atoms in its chain And -O- perfluoroaryl group
    제조된 상기 폴리페닐렌계 고분자를 할로겐화하여 할로겐화 폴리페닐렌계 고분자를 제조하는 할로겐화반응 단계; 및A halogenation step of halogenating the prepared polyphenylene polymer to produce a halogenated polyphenylene polymer; And
    상기 할로겐화 폴리페닐렌계 고분자를 이온교환 반응을 통하여 폴리페닐렌계 음이온 교환 고분자를 제조하는 이온교환 단계를 포함하는 것을 특징으로 하는 폴리페닐렌계 음이온 교환 고분자의 제조방법.Method for producing a polyphenylene-based anion exchange polymer, characterized in that it comprises an ion exchange step of producing a polyphenylene-based anion exchange polymer through the halogenated polyphenylene-based polymer through an ion exchange reaction.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 할로겐화반응 단계는 브로민화 반응을 이용하는 것을 특징으로 하는 폴리페닐렌계 음이온 교환 고분자의 제조방법.The halogenation step is a method for producing a polyphenylene-based anion exchange polymer, characterized in that using a bromination reaction.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 이온교환 단계는 이온교환작용기로서 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기 및 이미다졸릴기에서 선택되는 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기, 베타인 및 술포베타인에서 선택되는 양쪽성 이온 교환 작용기 및 이들의 조합에서 선택되는 이온 교환기 또는 이들의 염 상태의 음이온 교환 작용기 중 어느 하나를 도입하는 것을 특징으로 하는 폴리페닐렌계 음이온 교환 고분자의 제조방법.The ion exchange step is an anion exchange functional group selected from ammonium group, amino group, imine group, sulfonium group, phosphonium group, pyridyl group, carbazolyl group and imidazolyl group as an ion exchange functional group, or anion exchange functional group in the salt state thereof, beta A process for producing a polyphenylene-based anion exchange polymer, characterized in that any one of an amphoteric ion exchange functional group selected from phosphorus and sulfobetaine and an ion exchange group selected from a combination thereof or an anion exchange functional group in a salt state thereof is introduced. .
  8. 청구항 4에 기재된 폴리페닐렌계 음이온 교환 고분자 자체를 성형한 고분자막 또는 폴리페닐렌계 음이온 교환 고분자를 지지체와 복합화하여 제조한 복합막인 것을 특징으로 하는 레독스 흐름 전지용 격리막.A separator membrane for redox flow batteries, characterized in that the polymer membrane formed by molding the polyphenylene-based anion exchange polymer itself according to claim 4 or a composite membrane prepared by complexing a polyphenylene-based anion exchange polymer with a support.
  9. 청구항 8에 기재된 격리막과 양극, 양극 전해질, 음극 전해질 및 음극을 포함하는 것을 특징으로 하는 레독스 흐름 전지.A redox flow battery comprising the separator according to claim 8 and a positive electrode, a positive electrode electrolyte, a negative electrode electrolyte and a negative electrode.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 전지는 바나듐계 레독스 흐름 전지, 폴리설퍼이드브로민(PSB) 레독스 흐름 전지, 또는 아연-브로민(Zn-Br) 레독스 흐름 전지 중 어느 하나인 것을 특징으로 하는 레독스 흐름 전지.The battery is any one of a vanadium-based redox flow battery, polysulfidebromine (PSB) redox flow battery, or zinc-bromine (Zn-Br) redox flow battery.
PCT/KR2018/004509 2017-04-28 2018-04-18 Polyphenylene-based anion conductor, preparation method therefor, and use thereof WO2018199545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0055111 2017-04-28
KR1020170055111A KR101952920B1 (en) 2017-04-28 2017-04-28 Polyphenylene-based anion exchange material, preparation method thereof and uses thereof

Publications (1)

Publication Number Publication Date
WO2018199545A1 true WO2018199545A1 (en) 2018-11-01

Family

ID=63920407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004509 WO2018199545A1 (en) 2017-04-28 2018-04-18 Polyphenylene-based anion conductor, preparation method therefor, and use thereof

Country Status (2)

Country Link
KR (1) KR101952920B1 (en)
WO (1) WO2018199545A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773597A (en) * 2022-04-29 2022-07-22 中国科学技术大学 Microporous frame polymer and preparation method thereof, microporous frame polymer membrane and application in quick-charging flow battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168673B1 (en) * 2019-04-29 2020-10-21 한국화학연구원 Carbazole-based anion exchange material, fuel cell electrode and membrane/electrode assembly comprising the same as a binder
KR102608992B1 (en) 2021-05-13 2023-11-30 한국화학연구원 Anion conducting polymer having rigid main-chain with functional side-chain and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066932A (en) * 2012-11-23 2014-06-03 한국화학연구원 Ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups
KR20150132989A (en) * 2014-05-19 2015-11-27 한국화학연구원 Seperator membrane made of ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups and redox flow batteries comprising the same
KR20150133338A (en) * 2014-05-19 2015-11-30 한국화학연구원 Electrolyte membrane made of ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups and membrane-electrode assembly for fuel cells comprising the same
JP5854046B2 (en) * 2011-07-29 2016-02-09 Jsr株式会社 Aromatic copolymer having proton conductive group and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101062767B1 (en) 2009-04-23 2011-09-06 한국에너지기술연구원 Method for manufacturing a membrane for vanadium redox-flow secondary battery and the membrane
KR101543079B1 (en) 2013-09-27 2015-08-10 호서대학교 산학협력단 Separator for anion exchange membrane for all-vanadium redox flow secondary battery and preparation method for the separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854046B2 (en) * 2011-07-29 2016-02-09 Jsr株式会社 Aromatic copolymer having proton conductive group and use thereof
KR20140066932A (en) * 2012-11-23 2014-06-03 한국화학연구원 Ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups
KR20150132989A (en) * 2014-05-19 2015-11-27 한국화학연구원 Seperator membrane made of ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups and redox flow batteries comprising the same
KR20150133338A (en) * 2014-05-19 2015-11-30 한국화학연구원 Electrolyte membrane made of ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups and membrane-electrode assembly for fuel cells comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIU, XIANG ET AL.: "Alkaline stable anion exchange membranes based on poly(phenylene-co-arylene ether ketone) backbones", POLYMER CHEMISTRY, vol. 7, no. 38, 9 May 2016 (2016-05-09), pages 5988 - 5995, XP055529044 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773597A (en) * 2022-04-29 2022-07-22 中国科学技术大学 Microporous frame polymer and preparation method thereof, microporous frame polymer membrane and application in quick-charging flow battery
CN114773597B (en) * 2022-04-29 2024-02-09 中国科学技术大学 Microporous frame polymer and preparation method thereof, microporous frame polymer membrane and application thereof in fast charge flow battery

Also Published As

Publication number Publication date
KR20180121004A (en) 2018-11-07
KR101952920B1 (en) 2019-05-17

Similar Documents

Publication Publication Date Title
Ding et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
WO2021172706A1 (en) Carbazole-based anion exchange material, preparation method therefor, and use thereof
US7816482B1 (en) Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes
KR20080047606A (en) Polymer electrolyte, polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell
WO2018199545A1 (en) Polyphenylene-based anion conductor, preparation method therefor, and use thereof
Che et al. Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly (arylene piperidinium) s for vanadium redox flow batteries
WO2010053297A2 (en) Polymer electrolyte membrane
WO2015064820A1 (en) Vanadium ion low-permeable amphiphilic ion exchange membrane for redox flow battery and redox flow battery comprising same
Mu et al. Novel ether-free membranes based on poly (p-terphenylene methylimidazole) for vanadium redox flow battery applications
EP3252035B1 (en) Compound comprising aromatic ring, and polyelectrolyte membrane using same
KR20070000689A (en) Polymer electrolyte for fuel cell, method of producing same and fuel cell system comprising same
EP3214110B1 (en) Polymer and polymer electrolyte membrane using polymer
CN110564150A (en) long side chain type quaternized polybenzimidazole crosslinked membrane and preparation method thereof
KR20130048519A (en) Styrene-butadiene triblock copolymer, and preparing method of the same
WO2023106657A1 (en) Polycarbazole-based cation-exchange ion conductor and method for manufacturing same
WO2010076911A1 (en) Post-sulfonated copolymers containing perfluorocyclobutane groups and preparation method and use thereof
EP3252034B1 (en) Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same
KR101595829B1 (en) Seperator membrane made of ion-conducting polymer comprising partially branched multiblock copolymer and redox flow batteries comprising the same
CN117247543A (en) Cross-linked quaternary ammonium functionalized polyarylethersulfone anion exchange membrane material for water electrolysis hydrogen production and preparation method thereof
WO2012036347A1 (en) Triblock copolymer, and electrolyte membrane prepared therefrom
KR101543079B1 (en) Separator for anion exchange membrane for all-vanadium redox flow secondary battery and preparation method for the separator
KR101952923B1 (en) Polybenzimidazole electrolyte membrane having controlled ratio of side chain, method for preparing the same and electrochemical device using the same
KR20020076825A (en) Proton-exchange membrane for direct type methanol fuel cell
KR101750412B1 (en) Anion conducting body comprising anion conducting block copolymer having polyphenylene-based hydrophilic main chain, preparation method and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791713

Country of ref document: EP

Kind code of ref document: A1