WO2023085592A1 - Fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane and water electrolysis system using same - Google Patents

Fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane and water electrolysis system using same Download PDF

Info

Publication number
WO2023085592A1
WO2023085592A1 PCT/KR2022/014151 KR2022014151W WO2023085592A1 WO 2023085592 A1 WO2023085592 A1 WO 2023085592A1 KR 2022014151 W KR2022014151 W KR 2022014151W WO 2023085592 A1 WO2023085592 A1 WO 2023085592A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
polymer
polymer electrolyte
biphenyl
fluorene
Prior art date
Application number
PCT/KR2022/014151
Other languages
French (fr)
Korean (ko)
Inventor
김기현
남상용
김미정
고한솔
황선수
황인혁
정유경
Original Assignee
경상국립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교 산학협력단 filed Critical 경상국립대학교 산학협력단
Publication of WO2023085592A1 publication Critical patent/WO2023085592A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane having high hydrogen ion conductivity with a cation exchange functional group introduced at the end of a carbon branch and a chemically stable polymer main chain composed of carbon single bonds, and water electrolysis using the same. It's about the system.
  • CEM Cation Exchange Membrane
  • CEMs are DuPont's perfluorine-based electrolyte Nafion® and Gore's perfluorine-based porous filled structural membrane Gore-Select®, both of which have high ionic conductivity and chemical stability. Therefore, it is used in most commercial or pilot fuel cells, oxidation/reduction flow cells, and electrochemical hydrogen compressor systems, but all existing perfluorinated CEMs have 1) decomposition problems due to oxygen radicals, 2) problems in the incineration process. Environmental pollution caused by hydrofluoric acid and pollutants and 3) high unit cost due to complex manufacturing processes act as obstacles to the spread of eco-friendly and high-efficiency low-cost energy conversion and storage systems.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a polymer electrolyte membrane for water electrolysis, which has excellent hydrogen ion conductivity and mechanical properties, and operates under high temperature and pressurized conditions.
  • the present invention is to provide a polymer electrolyte membrane for water electrolysis that can solve the problem of decomposition of oxygen radicals and environmental pollution caused by incineration of hydrofluoric acid, which are problems of the perfluorine-based electrolyte membrane for water electrolysis.
  • the present invention provides a polymer electrolyte membrane for water electrolysis having a branched side chain composed of carbon single bonds with easy introduction of ion exchange functional groups and excellent chemical stability.
  • the present invention is to provide a polymer electrolyte membrane for water electrolysis that is stable to radicals and has low crystallinity and increased solubility due to an increase in free volume between polymer chains.
  • the polymer electrolyte membrane of the present invention is characterized by including a polymer having a repeating unit represented by the following [Formula 1].
  • n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
  • the polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] has a tensile strength of 30 MPa or more and an elongation of 50% or more.
  • the polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion conductivity is 50 to 350 mS/cm under running conditions in water.
  • the polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion exchange capacity (IEC) is 2.0 to 5.0 meq / g.
  • a second step of preparing a fluorene-biphenyl-based polymer to which thioacetic acid is bonded by reacting the fluorene-biphenyl-based polymer prepared in the first step with potassium thioacetate;
  • the water electrolysis device of the present invention is characterized in that it includes a polymer electrolyte membrane including a polymer having a repeating unit represented by the following [Chemical Formula 1].
  • n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
  • the fuel cell of the present invention is characterized in that it includes a polymer electrolyte membrane including a polymer having a repeating unit of [Formula 1] below.
  • n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
  • the present invention uses an electrophilic substitution reaction under strong acid conditions, rather than developing a cation exchange material through condensation polymerization under a conventional basic catalyst, so that there is no chemically weak bond in the polymer backbone, so that it can be chemically It has a stabilizing effect.
  • the present invention can manufacture a chemically stable polymer electrolyte membrane composed of fluorene that is stable to radicals and a water electrolysis system using the same.
  • a polymer electrolyte membrane having excellent chemical stability and a water electrolysis system using the polymer electrolyte membrane having an entire polymer main chain composed of only carbon single bonds can be manufactured.
  • the present invention is a branched copolymer polymer in which a cation exchange functional group is introduced at the end of a side chain, and a molecular electrolyte membrane that simultaneously improves ion conduction behavior and physicochemical stability due to a distinct hydrophilic or hydrophobic phase separation effect and a water electrolysis system using the same can be manufactured
  • the present invention is obtained through condensation polymerization at room temperature under an acid catalyst, a molecular electrolyte membrane that can be easily mass-produced and a water electrolysis system using the same can be manufactured.
  • FIG. 1 is an F1B-SA-10 polymer electrolyte membrane (a) and an F1B-SA-30 polymer electrolyte membrane (b) according to an embodiment of the present invention.
  • FIG. 2 is a 1 H-NMR analysis result of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30 according to an embodiment of the present invention.
  • FIG 3 is an FT-IR analysis result of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30 according to an embodiment of the present invention.
  • FIG. 4 is a TGA analysis result of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30 according to an embodiment of the present invention.
  • FIG. 5 is a chemical structure of a conventional hydrocarbon-based electrolyte membrane (SPAES-50, SPAES-65) and an F1B-SA-n polymer electrolyte membrane according to an embodiment of the present invention.
  • SPAES-50, SPAES-65 hydrocarbon-based electrolyte membrane
  • F1B-SA-n polymer electrolyte membrane according to an embodiment of the present invention.
  • FIG. 6 is a chemical durability test result of F1B-SA-10 and F1B-SA-30 polymer electrolyte membranes according to an embodiment of the present invention.
  • the fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane of the present invention is characterized in that it includes a polymer having a repeating unit represented by the following [Formula 1].
  • n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
  • a chemically weak bond such as an ether bond is formed in a polymer backbone by using an electrophilic substitution reaction under strong acid conditions, rather than developing a cation exchange material through condensation polymerization under a conventional basic catalyst. designed so that there is no
  • a cation exchange membrane with a fine phase separation structure was developed by synthesizing a polymer precursor with a branched structure in which various ion exchange functional groups can be introduced only to the side chain end of the polymer, and it was applied to a water electrolysis system.
  • a CEM is developed using a polymer electrolyte membrane according to an embodiment of the present invention, the hydrophilic/hydrophobic phase separation effect is maximized and the ion conduction channel structure can be controlled according to the application field.
  • the polymer electrolyte membrane according to an embodiment of the present invention is chemically stable because it is composed of fluorene that is stable to radicals. As the fluorene content in the polymer backbone increases, the free volume between chains increases, resulting in lower crystallinity and higher solubility. That is, when the ratio of fluorene is 0.5 or more, the film is easily broken, so synthesis in an appropriate ratio is required.
  • the polymer electrolyte membrane according to an embodiment of the present invention has excellent chemical stability because the entire polymer main chain is composed of only carbon single bonds.
  • an aryl ether bond (C sp2 -O) or a bond with low binding energy (benzylic CH bond, etc.) exists in a polymer used in CEM, the polymer decomposes under various operating conditions in which CEM is used. problems are being reported. Therefore, in the present invention, a polymer composed of only carbon-carbon bonds, which ultimately does not contain any decomposable weak bonds, was synthesized and used as a precursor material for the branched polymer to be finally developed.
  • the polymer electrolyte membrane according to an embodiment of the present invention is a branched copolymer polymer in which a cation exchange functional group is introduced at the end of a side chain.
  • a cation exchange functional group is introduced at the end of a side chain.
  • the present invention aims to simultaneously improve ionic conduction behavior and physicochemical stability due to a distinct hydrophilic/hydrophobic phase separation effect by synthesizing a branched polymer precursor capable of promoting a hydrophilic/hydrophobic fine phase separation structure.
  • the polymer electrolyte membrane according to an embodiment of the present invention was developed through the use of a monomer that is easy to mass-produce and a synthesis method.
  • Branched polymers were developed using monomers capable of mass-scale and industrialization of actual synthesis.
  • Hydrocarbon-based polymers used in conventional cation exchange membranes can be obtained through condensation polymerization at high temperature and for a long time under a base catalyst, but in the case of the polymer electrolyte membrane developed through the present invention, condensation polymerization at room temperature and 2 to 3 hours under an acid catalyst can be obtained through
  • the polymer electrolyte membrane of the present invention is a branched copolymer based on fluorene and biphenyl represented by Chemical Formula 1, it can exhibit high tensile strength, elongation, ionic conductivity, and ion exchange capacity (IEC).
  • the polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] has a tensile strength of 30 MPa or more and an elongation of 50% or more.
  • the polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion conductivity is 50 to 350 mS/cm under running conditions in water.
  • the polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion exchange capacity (IEC) is 2.0 to 5.0 meq / g.
  • the method for manufacturing a polymer electrolyte membrane of the present invention is 9,9-dimethylfluorene, biphenyl and 7-bromo-1,1,1-trifluoroheptan-2-one (7 -Bromo-1,1,1-trifluoroheptan-2-one) to react to prepare a fluorene-biphenyl-based polymer, the fluorene-biphenyl-based polymer prepared in the first step and potassium thio
  • Step 1 Preparation of fluorene-biphenyl-based polymer (hereinafter referred to as F1BC 7 Br-n)
  • the first step is 9,9-dimethylfluorene (9,9-Dimethylfluorene), biphenyl (Biphenyl) and 7-bromo-1,1,1-trifluoroheptan-2-one (7-Bromo- 1,1,1-trifluoroheptan-2-one) and the 1-2 steps of precipitating the polymer solution produced in the 1-1 step in methanol.
  • the 1-1 step is the 9,9-dimethylfluorene (9,9-Dimethylfluorene), biphenyl (Biphenyl) and 7-bromo-1,1,1-trifluoroheptan-2-one (7 -Bromo-1,1,1-trifluoroheptan-2-one) 20 to 25 parts by weight of dichloromethane (DCM) is mixed with a solvent based on 1 part by weight of the mixture. More preferably, 23 parts by weight of the dichloromethane (DCM) is mixed as a solvent based on 1 part by weight of the mixture. At this time, trifluoromethanesulfonic acid (TFSA) is mixed as a catalyst.
  • DCM dichloromethane
  • TFSA trifluoromethanesulfonic acid
  • the mixture After mixing the mixture, the solvent and the catalyst, the mixture is synthesized by maintaining the mixture at 4 to 6° C. for 20 to 40 minutes and then reacting at room temperature for 3 to 4 hours. More preferably, it is synthesized by maintaining at 5° C. for 30 minutes and then reacting at room temperature for 3.5 hours.
  • step 1-2 the polymer solution produced in step 1-1 is precipitated in methanol, washed several times with methanol, and then dried in a vacuum oven at 35 to 45 °C.
  • Step 2 Preparation of a fluorene-biphenyl-based polymer to which thioacetic acid is bonded (hereinafter referred to as F1B-TA-n)
  • the 2-1 step of reacting F1BC 7 Br-n prepared in the 1st step with potassium thioacetate and the polymer solution produced in the 2-1 step with methanol and hydrochloric acid It consists of the 2-2 step of precipitating in a mixed solution.
  • step 2-1 5 to 10 parts by weight of tetrahydrofuran (THF) is mixed as a solvent with respect to 1 part by weight of the mixture of F1BC 7 Br-n and potassium thioacetate. More preferably, 6 parts by weight of tetrahydrofuran (THF) is mixed as a solvent.
  • THF tetrahydrofuran
  • the solvent and the catalyst After mixing the mixture, the solvent and the catalyst, they are reacted at 45 to 55° C. for 9 to 11 hours. More preferably, it is synthesized by reacting at 50°C for 10 h.
  • step 2-2 the polymer solution produced in step 2-1 is precipitated in a mixture of methanol and hydrochloric acid, washed several times with distilled water, and then dried in a vacuum oven at 35 to 45 °C.
  • Step 3 Preparation of ionomer based on fluorene-biphenyl (hereinafter referred to as F1B-SA-n)
  • the third step after mixing the F1B-TA-n in a mixed solution of formic acid and distilled water, hydrogen peroxide is slowly added to prepare a fluorene-biphenyl-based ionomer (F1B-SA-n) do. More specifically, after mixing the F1B-TA-n with the formic acid and distilled water at a temperature of 55 to 65 ° C, hydrogen peroxide was slowly added, and at 60 to 70 ° C for 5 to 7 hours. synthesize After synthesis, washed several times with distilled water, and then dried with a gel dryer at 40 to 60° C. for 0.5 to 1.5 hours to prepare F1B-SA-n.
  • a gel dryer at 40 to 60° C. for 0.5 to 1.5 hours to prepare F1B-SA-n.
  • the fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane according to the present invention described above is included in the present invention as long as it is used for ion exchangeability in its use.
  • it can be usefully applied as an ion exchange membrane (electrolyte membrane) for electrolysis of water (water electrolysis) or fuel cells.
  • the present invention can provide a water electrolysis device and a fuel cell including the polymer electrolyte membrane.
  • a fuel cell system including the fuel cell may be provided.
  • the water electrolysis device and fuel cell according to the present invention may have the same structure as usual, and if the polymer electrolyte membrane according to the present invention is used as an electrolyte, it is included in the present invention.
  • the water electrolysis device includes, for example, at least a membrane-electrode assembly (MEA) having an electrolyte membrane, anode and cathode catalyst layers formed on both surfaces of the electrolyte membrane, as usual, and supplying electrons, reactants, and products.
  • MEA membrane-electrode assembly
  • It may be configured to include a frame, separator (separation plate), MEA support, gasket (packing), etc. arranged in a form in which excessive discharge is possible.
  • the electrolyte membrane constituting the membrane-electrode assembly is composed of the fluorene and biphenyl-based branched copolymer polymer electrolyte membrane according to the present invention.
  • the fuel cell according to the present invention is, for example, a solid polymer fuel cell (PEFC) having the same structure as usual, and includes an electrolyte membrane, a catalyst layer bonded to both sides of the electrolyte membrane, and a gas diffusion layer bonded to the outside of the catalyst layer.
  • a membrane-electrode assembly (MEA) comprising A separator may be disposed on the membrane-electrode assembly (MEA), and a gas flow path supplying fuel gas or oxidant gas may be formed at a contact portion between the membrane-electrode assembly (MEA) and the separator or in the separator.
  • the electrolyte membrane constituting the membrane-electrode assembly is composed of the polymer electrolyte membrane according to the present invention.
  • the fuel cell system according to the present invention may have a conventional structure, and as long as the fuel cell according to the present invention is used as a constituting fuel cell, it is included in the present invention.
  • the fuel cell system according to the present invention includes a fuel cell, a hydrogen generating device generating hydrogen from source gas and supplying hydrogen to the fuel electrode of the fuel cell, and an oxidant gas (air, oxygen, etc.) to the oxygen electrode of the fuel cell.
  • the fuel gas may include a control device for controlling the opening/closing operation of the opening/closing means, the oxidizing agent gas opening/closing means, and the hydrogen opening/closing means.
  • the fuel cell is composed of a fuel cell including the branched copolymer polymer electrolyte membrane based on fluorene and biphenyl according to the present invention.
  • the water electrolysis device according to the present invention may be applied as the hydrogen generating device constituting the fuel cell system according to the present invention.
  • Example 1 Preparation of fluorene-biphenyl-based polymers (hereinafter referred to as F1BC 7 Br-10 and F1BC 7 Br-30)
  • F1BC 7 Br-10 is 9,9-Dimethylfluorene (1 g, 5.15 mmol), Biphenyl (7.14 g, 46.33 mmol) and 7-Bromo-1,1,1-trifluoroheptan-2-one (13.99 g, 56.62 mmol) as a monomer, Trifluoromethanesulfonic acid (TFSA) (77.25 g, 514.75 mmol) as a catalyst, and 23 wt% Dichloromethane (DCM) as a reaction solvent, maintained at 5 °C for 30 m and then reacted at RT for 3 h 30 m. It became. After the reaction, the resulting polymer solution was precipitated in methanol (1300 ml), washed several times with methanol, and then dried in a vacuum oven at 40 °C.
  • TFSA Trifluoromethanesulfonic acid
  • DCM Dichloromethane
  • F1BC 7 Br-30 is 9,9-Dimethylfluorene (2 g, 10.29 mmol), Biphenyl (3.70 g, 24.02 mmol) and 7-Bromo-1,1,1-trifluoroheptan-2-one (9.33 g, 37.75 mmol) as a monomer, TFSA (51.50 g, 343.17 mmol) as a catalyst, 23 wt% DCM based on the weight of the monomer as a reaction solvent, maintained at 5 ° C, 30 m, and then reacted at RT for 3 h. Precipitation and obtaining method were the same as above do.
  • Example 2 Preparation of thioacetic acid-coupled fluorene-biphenyl-based polymers (hereinafter referred to as F1B-TA-10 and F1B-TA-30)
  • F1B-TA-10 FL1C 7 Br-10 (2 g, 5.16 mmol) and Potassium thioacetate (1.12 g, 9.81 mmol) synthesized above were used as reaction materials, and 6 wt% Tetrahydrofuran (THF) based on the weight of the reactants was used as the reaction solvent. was synthesized by reacting at 50 °C for 10 h. After the reaction, the resulting polymer solution was precipitated in a mixture of methanol (1000 ml) and hydrochloric acid (100 ml, 2M), washed several times with distilled water, and then dried in a vacuum oven at 40 °C.
  • THF Tetrahydrofuran
  • F1B-TA-30 was prepared by using FL1C7Br-30 (2 g, 5.06 mmol) and Potassium thioacetate (1.04 g, 9.11 mmol) synthesized above as reaction materials and 6 wt% Tetrahydrofuran (THF) as a reaction solvent. It was synthesized by reacting at °C, 10 h, and the precipitation and obtaining methods are the same as above.
  • Example 3 Preparation of ionomers based on fluorene-biphenyl (hereinafter referred to as F1B-SA-10 and F1B-SA-30)
  • F1B-SA-10 and F1B-SA-30 A cation exchange membrane using the fluorene-biphenyl-based ionomer (hereinafter referred to as F1B-SA-10 and F1B-SA-30) prepared in Example 3 was prepared, and an F1B-SA-10 polymer electrolyte membrane (a ) and F1B-SA-30 polymer electrolyte membrane (b).
  • the F1B-SA-10 polymer electrolyte membrane (a) and the F1B-SA-30 polymer electrolyte membrane (b) prepared above were tested as follows.
  • the TGA of the electrolyte membrane was measured in the following way. After raising the temperature from room temperature to 120 °C at 20 °C min -1 , the remaining water was removed and stabilized by maintaining for 10 min. Thereafter, after cooling at 20 °C min -1 to 60 °C, the weight change of the polymer sample was measured from 60 °C to 700 °C at 10 °C min -1 in a nitrogen atmosphere.
  • F1B-SA-10 and F1B-SA-30 exhibit stable thermal stability to be introduced into a polymer electrolyte membrane fuel cell system.
  • FIG. 4 and Table 1 as a result of measuring the decomposition temperature of 5 wt.%, it was confirmed that they were 312 °C and 305 °C, respectively.
  • the chemical durability of the electrolyte membrane was measured in the following way. Prepare Fenton's reagent by adding 4 ppm Iron(II) sulfate to 3% (w/w) hydrogen peroxide aqueous solution. The dried electrolyte membrane was cut into a size of 1 cm ⁇ 1 cm, put into a vial together with the prepared Fenton's reagent, placed in an oven at 80 ° C, and the state of the membrane was observed at intervals of 30 minutes to measure chemical durability through decomposition of the membrane. In the case of ⁇ 1 , it means the time when the film starts to decompose, and in the case of ⁇ 2 , it means the time when the film completely decomposes and disappears from the naked eye. Three measurements were taken for each sample.
  • Water absorption and dimensional change were measured in the following manner.
  • the film dried through a desiccator was cut into a size of 1 cm ⁇ 4 cm, and the thickness and weight of the dried film were measured.
  • the membranes whose area, thickness, and weight were measured were placed in a vial, filled with distilled water, and placed in a drying oven at 30 °C and 80 °C, respectively.
  • the swollen film was taken out of the oven, and the area, thickness, and weight were measured, and the dimensional change was measured using the following formula. Measurements were made three times for each sample.
  • W dry and W wet are the weights of the dried and swollen membranes
  • a dry and A wet are the areas of the dried and swollen membranes
  • T dry and T wet are the thicknesses of the dried and swollen membranes
  • Table 3 and FIG. 7 show dimensional changes of the electrolyte membrane at 30° C.
  • Table 4 and FIG. 8 show dimensional changes of the electrolyte membrane at 80° C.
  • F1B-SA-30 had higher water absorption and volumetric change than F1B-SA-10
  • F1B-SA-n had a smaller change with temperature than Nafion 212.
  • the dried polymer electrolyte membrane was weighed, put into a 30 ml vial, 15 ml of 1M NaCl solution was added, and stirred at 60° C. for 6 h or more to prepare a sample.
  • the theoretical IEC of F1B-SA-10 was 2.57 meq g -1 and the experimental IEC was 2.19 meq g -1 , confirming the response rate of 85.2%.
  • the theoretical IEC of F1B-SA-30 was 2.52 meq g -1 and the experimental IEC was 2.22 meq g -1 , confirming the response rate of 87.9%.
  • F1B-SA-10 had higher tensile strength and elongation than F1B-SA-30.
  • a sample of 0.5 ⁇ 3 cm 2 was prepared, connected to a 4-probe cell, and then measured using electrochemical spectroscopy (SP-240, Bio Logic Science Instrument, France) equipment.
  • the measurement condition was 100% RH condition in which the cell was placed in secondary distilled water, and the resistance value according to the temperature change from 30 °C to 90 °C was measured and calculated through the following formula.
  • the resistance value was measured when reaching each temperature from 30 °C to 90 °C at intervals of 10 °C in the distilled water containing the cell, and the resistance value was measured and recorded 6 times at each temperature.
  • the present invention uses an electrophilic substitution reaction under strong acid conditions, rather than developing a cation exchange material through condensation polymerization under a conventional basic catalyst, so that there is no chemically weak bond in the polymer backbone, so that it can be chemically It has a stabilizing effect.
  • the present invention can manufacture a chemically stable polymer electrolyte membrane composed of fluorene that is stable to radicals and a water electrolysis system using the same.
  • a polymer electrolyte membrane having excellent chemical stability and a water electrolysis system using the polymer electrolyte membrane having an entire polymer main chain composed of only carbon single bonds can be manufactured.
  • the present invention is a branched copolymer polymer in which a cation exchange functional group is introduced at the end of a side chain, and a molecular electrolyte membrane that simultaneously improves ion conduction behavior and physicochemical stability due to a distinct hydrophilic or hydrophobic phase separation effect and a water electrolysis system using the same can be manufactured.
  • a molecular electrolyte membrane that can be easily mass-produced and a water electrolysis system using the same can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a fluorine- and biphenyl-based branched copolymer polymer electrolyte membrane that is chemically stable because a polymer main chain thereof is composed of carbon single bonds, and has high hydrogen ion conductivity due to a cation exchange functional group introduced at the end of a carbon branch, and to a water electrolysis device and a fuel cell using same.

Description

플루오렌 및 바이페닐 기반 가지형 공중합체 고분자 전해질 막 및 이를 이용한 수전해 시스템Fluorene and biphenyl-based branched copolymer polymer electrolyte membrane and water electrolysis system using the same
본 발명은 고분자 주쇄가 탄소 단일 결합으로 구성되어 화학적으로 안정하며 탄소 가지 말단에 도입된 양이온 교환 작용기로 높은 수소 이온 전도도를 가지는 플루오렌 및 바이페닐 기반 가지형 공중합체 고분자 전해질 막 및 이를 이용한 수전해 시스템에 관한 것이다. The present invention relates to a fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane having high hydrogen ion conductivity with a cation exchange functional group introduced at the end of a carbon branch and a chemically stable polymer main chain composed of carbon single bonds, and water electrolysis using the same. It's about the system.
수전해 시스템을 비롯한 다양한 에너지 변환 및 저장장치에 사용되는 핵심소재인 양이온 교환 막 (Cation Exchange Membrane, 이하 CEM)은 전해질 및 분리 막으로써 양이온만을 선택적으로 전달해주는 역할을 수행한다. 따라서 CEM은 1) 높은 이온 전도성 (high ion conductivity), 2) 우수한 물리화학적 안정성 (outstanding physicochemical stability), 3) 대량 생산의 용이성 (easy to scalable) 및 4) 저가의 생산비용 (low cost for production) 등의 특성이 요구된다.Cation Exchange Membrane (CEM), a core material used in various energy conversion and storage devices including water electrolysis systems, serves as an electrolyte and separation membrane to selectively transfer only positive ions. Therefore, CEM has 1) high ion conductivity, 2) outstanding physicochemical stability, 3) easy to scalable, and 4) low cost for production. characteristics are required.
현재 가장 널리 사용되고 있는 CEM으로는 듀폰사의 과불소계 전해질인 나피온(Nafion®) 및 고어사의 과불소계 다공 충진 구조막인 고어-셀렉트(Gore-Select®) 이며, 이들 모두 높은 이온 전도도 및 화학적 안정성으로 인해 대부분의 상업용 혹은 시운전용 연료전지, 산화/환원 흐름전지 및 전기화학적 수소 응축 시스템 (electrochemical hydrogen compressor system) 등에 활용되지만 기존의 과불소계 CEM 모두 1) 산소라디칼에 의한 분해 문제, 2) 소각 과정에서 불산 및 오염 물질로 인한 환경오염 발생 문제 및 3) 복잡한 제조 공정으로 인한 높은 단가로 친환경 및 고효율의 저가형 에너지 변환 및 저장 시스템의 확산에 걸림돌로 작용한다.Currently, the most widely used CEMs are DuPont's perfluorine-based electrolyte Nafion® and Gore's perfluorine-based porous filled structural membrane Gore-Select®, both of which have high ionic conductivity and chemical stability. Therefore, it is used in most commercial or pilot fuel cells, oxidation/reduction flow cells, and electrochemical hydrogen compressor systems, but all existing perfluorinated CEMs have 1) decomposition problems due to oxygen radicals, 2) problems in the incineration process. Environmental pollution caused by hydrofluoric acid and pollutants and 3) high unit cost due to complex manufacturing processes act as obstacles to the spread of eco-friendly and high-efficiency low-cost energy conversion and storage systems.
이온 전도도와 기계적 강도가 우수하며 고분자 전해질막 수전해용 막 전극 접합체로의 활용이 용이한 비과불화탄소계 가지형 고분자 전해질 막 개발이 요구된다. It is required to develop a non-perfluorocarbon-based branched polymer electrolyte membrane that has excellent ionic conductivity and mechanical strength and can be easily used as a membrane electrode assembly for polymer electrolyte membrane water electrolysis.
상기 기술한 수소이온 교환 막에 대한 첨가제 제조에 대한 요구특성을 모두 만족하며 수전해 시스템에서 응용이 가능한 전해질 막을 개발하기 위해서는 1) 이온교환 작용기 도입이 용이하며, 2) 화학적 안정성이 우수한 탄소-탄소 결합으로 구성된 가지형 측쇄를 갖고 있으며, 3) 라디칼에 안정적인 플루오렌으로 인해 고분자 사슬간 자유 부피(free volume)가 증가하여 결정성이 낮아지고 용해도가 증가하며, 4) 고온 고압에도 잘 견딜 수 있는 우수한 물리적 안정성이 요구된다. In order to develop an electrolyte membrane that satisfies all the above-described requirements for manufacturing additives for hydrogen ion exchange membranes and can be applied in water electrolysis systems, 1) introduction of ion exchange functional groups is easy, and 2) carbon-carbon with excellent chemical stability is required. It has a branched side chain composed of bonds, 3) free volume between polymer chains increases due to radical stable fluorene, which lowers crystallinity and increases solubility, 4) can withstand high temperature and high pressure. Excellent physical stability is required.
본 발명은 상기의 문제점을 해결하기 위해서 안출된 것으로서, 본 발명의 목적은 수소이온 전도도와 기계적 물성이 우수하고, 고온 및 가압 조건에서 구동되는 수전해용 고분자 전해질 막을 제공하는 것이다. The present invention has been made to solve the above problems, and an object of the present invention is to provide a polymer electrolyte membrane for water electrolysis, which has excellent hydrogen ion conductivity and mechanical properties, and operates under high temperature and pressurized conditions.
또한, 본 발명은 과불소계 수전해용 전해질막의 문제점인 산소라디칼 분해 문제 및 불산 소각에 따른 환경오염 발생을 해결할 수 있는 수전해용 고분자 전해질 막을 제공하는 것이다. In addition, the present invention is to provide a polymer electrolyte membrane for water electrolysis that can solve the problem of decomposition of oxygen radicals and environmental pollution caused by incineration of hydrofluoric acid, which are problems of the perfluorine-based electrolyte membrane for water electrolysis.
또한, 본 발명은 이온교환 작용기 도입이 용이하고, 화학적 안정성이 우수한 탄소 단일결합으로 구성된 가지형 측쇄를 갖고 있는 수전해용 고분자 전해질 막을 제공하는 것이다. In addition, the present invention provides a polymer electrolyte membrane for water electrolysis having a branched side chain composed of carbon single bonds with easy introduction of ion exchange functional groups and excellent chemical stability.
또한, 본 발명은 라디칼에 안정적이고 고분자 사슬간 자유 부피(free volume)가 증가하여 결정성이 낮고 용해도가 증가된 수전해용 고분자 전해질 막을 제공하는 것이다. In addition, the present invention is to provide a polymer electrolyte membrane for water electrolysis that is stable to radicals and has low crystallinity and increased solubility due to an increase in free volume between polymer chains.
발명이 해결하고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be solved by the invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.
본 발명인 고분자 전해질 막은 아래 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 것을 특징으로 한다.The polymer electrolyte membrane of the present invention is characterized by including a polymer having a repeating unit represented by the following [Formula 1].
[화학식 1] [Formula 1]
Figure PCTKR2022014151-appb-img-000001
Figure PCTKR2022014151-appb-img-000001
(여기서, n은 1-50의 정수 및 m은 1-3의 정수이고, R은 SO3H 또는 CH2-SO3H 임). (Where n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은 인장강도가 30 MPa 이상이고, 연신율이 50 % 이상인 것을 특징으로 한다.The polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] has a tensile strength of 30 MPa or more and an elongation of 50% or more.
상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은 물속 구동조건에서 이온전도도가 50 내지 350 mS/㎝인 것을 특징으로 한다.The polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion conductivity is 50 to 350 mS/cm under running conditions in water.
상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은 이온교환용량(IEC)이 2.0 내지 5.0 meq /g 인 것을 특징으로 한다. The polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion exchange capacity (IEC) is 2.0 to 5.0 meq / g.
본 발명인 고분자 전해질 막 제조방법은,The method for manufacturing a polymer electrolyte membrane of the present invention,
9,9-디메틸플루오렌(9,9-Dimethylfluorene), 바이페닐(Biphenyl) 및 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-Bromo-1,1,1-trifluoroheptan-2-one)을 반응시켜 플루오렌-바이페닐 기반 고분자를 제조하는 제1단계;9,9-Dimethylfluorene, Biphenyl and 7-Bromo-1,1,1-trifluoroheptan-2-one (7-Bromo-1,1,1 A first step of preparing a fluorene-biphenyl-based polymer by reacting -trifluoroheptan-2-one);
상기 제1단계에서 제조한 플루오렌-바이페닐 기반 고분자와 포타슘 싸이오아세테이트(Potassium thioacetate)를 반응시켜 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자를 제조하는 제2단계; 및A second step of preparing a fluorene-biphenyl-based polymer to which thioacetic acid is bonded by reacting the fluorene-biphenyl-based polymer prepared in the first step with potassium thioacetate; and
포름산(Formic acid) 및 증류수 혼합 용액에 상기 제2단계에서 제조한 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자를 혼합 후 과산화수소(hydrogen peroxide)을 천천히 추가하여 플루오렌-바이페닐 기반 이오노머를 제조하는 제3단계;를 포함하는 것을 특징으로 한다. After mixing the thioacetic acid-coupled fluorene-biphenyl-based polymer prepared in the second step with a mixed solution of formic acid and distilled water, hydrogen peroxide is slowly added to prepare a fluorene-biphenyl-based ionomer It is characterized in that it includes; a third step to do.
본 발명인 수전해 장치는 아래 [화학식 1]의 반복단위를 갖는 중합체를 포함한 고분자 전해질 막을 포함하는 것을 특징으로 한다.The water electrolysis device of the present invention is characterized in that it includes a polymer electrolyte membrane including a polymer having a repeating unit represented by the following [Chemical Formula 1].
[화학식 1] [Formula 1]
Figure PCTKR2022014151-appb-img-000002
Figure PCTKR2022014151-appb-img-000002
(여기서, n은 1-50의 정수 및 m은 1-3의 정수이고, R은 SO3H 또는 CH2-SO3H 임). (Where n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
본 발명인 연료 전지는 아래 [화학식 1]의 반복단위를 갖는 중합체를 포함한 고분자 전해질 막을 포함하는 것을 특징으로 한다.The fuel cell of the present invention is characterized in that it includes a polymer electrolyte membrane including a polymer having a repeating unit of [Formula 1] below.
[화학식 1] [Formula 1]
Figure PCTKR2022014151-appb-img-000003
Figure PCTKR2022014151-appb-img-000003
(여기서, n은 1-50의 정수 및 m은 1-3의 정수이고, R은 SO3H 또는 CH2-SO3H 임). (Where n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
상기 과제의 해결 수단에 의해, 본 발명은 종래의 염기성 촉매하에서 축합 중합을 통한 양이온 교환 소재 개발이 아닌, 강산 조건에서의 친전자성 치환반응을 이용하여 고분자 주쇄에 화학적으로 약한 결합이 없어 화학적으로 안정한 효과가 있다. By means of solving the above problems, the present invention uses an electrophilic substitution reaction under strong acid conditions, rather than developing a cation exchange material through condensation polymerization under a conventional basic catalyst, so that there is no chemically weak bond in the polymer backbone, so that it can be chemically It has a stabilizing effect.
또한, 본 발명은 라디칼에 안정적인 플루오렌으로 구성되어 화학적으로 안정한 고분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. In addition, the present invention can manufacture a chemically stable polymer electrolyte membrane composed of fluorene that is stable to radicals and a water electrolysis system using the same.
또한, 본 발명은 고분자 주쇄 전체가 오직 탄소 단일 결합으로만 구성되어 화학적 안정성이 우수한 고분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. In addition, according to the present invention, a polymer electrolyte membrane having excellent chemical stability and a water electrolysis system using the polymer electrolyte membrane having an entire polymer main chain composed of only carbon single bonds can be manufactured.
또한, 본 발명은 양이온 교환 작용기가 곁사슬 말단에 도입된 가지형 공중합체 고분자로, 뚜렷한 친수성 또는 소수성 상분리 효과로 인해 이온전도 거동 및 물리화학적 안정성을 동시에 향상시킨 분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. In addition, the present invention is a branched copolymer polymer in which a cation exchange functional group is introduced at the end of a side chain, and a molecular electrolyte membrane that simultaneously improves ion conduction behavior and physicochemical stability due to a distinct hydrophilic or hydrophobic phase separation effect and a water electrolysis system using the same can be manufactured
또한, 본 발명은 산 촉매하의 상온에서 축합 중합을 통해 수득되므로, 대량생산이 용이한 분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. In addition, since the present invention is obtained through condensation polymerization at room temperature under an acid catalyst, a molecular electrolyte membrane that can be easily mass-produced and a water electrolysis system using the same can be manufactured.
도 1은 본 발명의 일실시예에 따른 F1B-SA-10 고분자 전해질 막(a) 및 F1B-SA-30 고분자 전해질 막(b)이다. 1 is an F1B-SA-10 polymer electrolyte membrane (a) and an F1B-SA-30 polymer electrolyte membrane (b) according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 F1BC7Br-10, F1B-TA-30, F1B-SA-30의 1H-NMR 분석 결과이다. 2 is a 1 H-NMR analysis result of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30 according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 F1BC7Br-10, F1B-TA-30, F1B-SA-30의 FT-IR 분석 결과이다. 3 is an FT-IR analysis result of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30 according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 F1BC7Br-10, F1B-TA-30, F1B-SA-30의 TGA 분석 결과 결과이다. 4 is a TGA analysis result of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30 according to an embodiment of the present invention.
도 5는 종래 탄화수소계 기반 전해질 막 (SPAES-50, SPAES-65)과 본 발명의 일실시예에 따른 F1B-SA-n 고분자 전해질 막의 화학 구조이다. 5 is a chemical structure of a conventional hydrocarbon-based electrolyte membrane (SPAES-50, SPAES-65) and an F1B-SA-n polymer electrolyte membrane according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 F1B-SA-10, F1B-SA-30 고분자 전해질 막의 화학적 내구성 실험 결과이다. 6 is a chemical durability test result of F1B-SA-10 and F1B-SA-30 polymer electrolyte membranes according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 F1B-SA-10, F1B-SA-30 고분자 전해질 막의 30 ℃에서 수분 흡수도 및 치수 변화 실험 결과이다.7 is a water absorption and dimensional change test results at 30 ° C. of F1B-SA-10 and F1B-SA-30 polymer electrolyte membranes according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 F1B-SA-10, F1B-SA-30 고분자 전해질 막의 80 ℃에서 수분 흡수도 및 치수 변화 실험 결과이다.8 is a test result of water absorption and dimensional change at 80 ° C. of F1B-SA-10 and F1B-SA-30 polymer electrolyte membranes according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 F1B-SA-10, F1B-SA-30 고분자 전해질 막의 기계적물성(strain-stress) 평가 결과이다. 9 is an evaluation result of mechanical properties (strain-stress) of F1B-SA-10 and F1B-SA-30 polymer electrolyte membranes according to an embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 F1B-SA-10, F1B-SA-30 고분자 전해질 막의 수소이온전도도 평가 결과이다. 10 is an evaluation result of proton conductivity of F1B-SA-10 and F1B-SA-30 polymer electrolyte membranes according to an embodiment of the present invention.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.The terms used in this specification will be briefly described, and the present invention will be described in detail.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention have been selected from general terms that are currently widely used as much as possible while considering the functions in the present invention, but these may vary depending on the intention of a person skilled in the art or precedent, the emergence of new technologies, and the like. Therefore, the term used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, not simply the name of the term.
명세서 전체에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.In the entire specification, when a part is said to "include" a certain component, it means that it may further include other components, not excluding other components unless otherwise stated.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시 예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다.The specific details, including the problem to be solved, the means for solving the problem, and the effect of the invention with respect to the present invention are included in the embodiments and drawings to be described below. Advantages and features of the present invention, and methods for achieving them, will become clear with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
본 발명인 플루오렌 및 바이페닐 기반 가지형 공중합체 고분자 전해질 막은 아래 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 것을 특징으로 한다. The fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane of the present invention is characterized in that it includes a polymer having a repeating unit represented by the following [Formula 1].
[화학식 1] [Formula 1]
Figure PCTKR2022014151-appb-img-000004
Figure PCTKR2022014151-appb-img-000004
(여기서, n은 1-50의 정수 및 m은 1-3의 정수이고, R은 SO3H 또는 CH2-SO3H 임). (Where n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
본 발명의 일실시예에 따른 고분자 전해질 막은 종래의 염기성 촉매하에서 축합중합을 통한 양이온 교환 소재 개발이 아닌, 강산 조건하에서 친전자성 치환반응을 이용하여 에테르 결합과 같은 화학적으로 약한 결합이 고분자 주쇄에 없도록 설계하한다. 또한, 다양한 이온교환 작용기가 고분자의 측쇄 말단에만 도입 가능한 가지형 구조의 고분자 전구체를 합성하여 미세 상분리 구조가 촉진된 양이온 교환 막을 개발하고 이를 수전해 시스템에 응용하였다. 본 발명의 일실시예에 따른 고분자 전해질 막을 이용하여 CEM이 개발될 경우 친수성/소수성의 상분리 효과가 극대화됨과 동시에 응용분야에 맞춰 이온 전도 채널 구조 제어가 가능하다. In the polymer electrolyte membrane according to an embodiment of the present invention, a chemically weak bond such as an ether bond is formed in a polymer backbone by using an electrophilic substitution reaction under strong acid conditions, rather than developing a cation exchange material through condensation polymerization under a conventional basic catalyst. designed so that there is no In addition, a cation exchange membrane with a fine phase separation structure was developed by synthesizing a polymer precursor with a branched structure in which various ion exchange functional groups can be introduced only to the side chain end of the polymer, and it was applied to a water electrolysis system. When a CEM is developed using a polymer electrolyte membrane according to an embodiment of the present invention, the hydrophilic/hydrophobic phase separation effect is maximized and the ion conduction channel structure can be controlled according to the application field.
본 발명에 일실시예에 따른 고분자 전해질 막은 라디칼에 안정적인 플루오렌으로 구성되어 화학적으로 안정하다. 고분자 주쇄에 플루오렌 함량이 증가할수록 사슬간 자유 부피(free volume)가 증가하여 결정성이 낮아지고 용해도가 증가한다. 즉, 플루오렌의 비율이 0.5 이상일 경우 막이 깨지기 쉬워 적절한 비율로 합성이 요구된다. The polymer electrolyte membrane according to an embodiment of the present invention is chemically stable because it is composed of fluorene that is stable to radicals. As the fluorene content in the polymer backbone increases, the free volume between chains increases, resulting in lower crystallinity and higher solubility. That is, when the ratio of fluorene is 0.5 or more, the film is easily broken, so synthesis in an appropriate ratio is required.
또한, 본 발명에 일실시예에 따른 고분자 전해질 막은 고분자 주쇄 전체가 오직 탄소 단일 결합으로만 구성되어 화학적 안정성이 우수하다. 최근 다양한 연구결과에서 CEM에 사용되는 고분자에 아릴 에테르 (aryl ether) 결합 (Csp2-O) 혹은 결합에너지가 낮은 결합 (benzylic C-H bond 등)이 존재할 경우 CEM이 활용되는 다양한 구동조건에서 고분자가 분해되는 문제들이 보고되고 있다. 따라서 본 발명에서는 궁극적으로 분해가 가능한 약한 결합이 존재하지 않는 카본-카본 결합으로만 구성된 고분자를 합성하여 최종적으로 개발될 가지형 고분자의 전구체 물질로 활용하고자 하였다. In addition, the polymer electrolyte membrane according to an embodiment of the present invention has excellent chemical stability because the entire polymer main chain is composed of only carbon single bonds. According to recent research results, when an aryl ether bond (C sp2 -O) or a bond with low binding energy (benzylic CH bond, etc.) exists in a polymer used in CEM, the polymer decomposes under various operating conditions in which CEM is used. problems are being reported. Therefore, in the present invention, a polymer composed of only carbon-carbon bonds, which ultimately does not contain any decomposable weak bonds, was synthesized and used as a precursor material for the branched polymer to be finally developed.
또한, 본 발명에 일실시예에 따른 고분자 전해질 막은 양이온 교환 작용기가 곁사슬 말단에 도입된 가지형 공중합체 고분자이다. CEM의 이온 전도에 중요한 역할을 하는 수분/전해액의 경우 대부분 이온교환 작용기 주위에 분포한다. 따라서 본 발명은 친수성/소수성의 미세 상분리 구조를 촉진할 수 있는 가지형태의 고분자 전구체를 합성함으로써 뚜렷한 친수성/소수성 상분리 효과로 인해 이온전도 거동 및 물리화학적 안정성을 동시에 향상시키고자 하였다. In addition, the polymer electrolyte membrane according to an embodiment of the present invention is a branched copolymer polymer in which a cation exchange functional group is introduced at the end of a side chain. In the case of water/electrolyte, which plays an important role in the ion conduction of CEM, most of them are distributed around the ion exchange functional groups. Therefore, the present invention aims to simultaneously improve ionic conduction behavior and physicochemical stability due to a distinct hydrophilic/hydrophobic phase separation effect by synthesizing a branched polymer precursor capable of promoting a hydrophilic/hydrophobic fine phase separation structure.
또한, 본 발명에 일실시예에 따른 고분자 전해질 막은 대량생산이 용이한 단량체의 사용과 합성법 통해 개발하였다. 실제 합성의 대량화 및 산업화가 가능한 단량체를 이용하여 가지형 고분자를 개발하였다. 기존의 양이온 교환 막에 사용되는 탄화수소계 고분자의 경우 염기 촉매 하에서 고온 및 장시간 축합 중합을 통해 수득이 가능하였으나, 본 발명을 통해 개발된 고분자 전해질 막의 경우 산 촉매하에서 상온 및 2 내지 3 시간의 축합 중합을 통해 수득이 가능하다. In addition, the polymer electrolyte membrane according to an embodiment of the present invention was developed through the use of a monomer that is easy to mass-produce and a synthesis method. Branched polymers were developed using monomers capable of mass-scale and industrialization of actual synthesis. Hydrocarbon-based polymers used in conventional cation exchange membranes can be obtained through condensation polymerization at high temperature and for a long time under a base catalyst, but in the case of the polymer electrolyte membrane developed through the present invention, condensation polymerization at room temperature and 2 to 3 hours under an acid catalyst can be obtained through
이와 같은 본 발명의 고분자 전해질 막은 상기 화학식 1로 표시되는 풀루오렌 및 바이페닐 기반 가지형 공중합체 이므로 높은 인장강도 및 연신율, 이온전도도 및 이온교환용량(IEC)을 나타낼 수 있다. 상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은 인장강도가 30 MPa 이상이고, 연신율이 50 % 이상인 것을 특징으로 한다. 상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은 물속 구동조건에서 이온전도도가 50 내지 350 mS/㎝인 것을 특징으로 한다. 상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은 이온교환용량(IEC)이 2.0 내지 5.0 meq /g 인 것을 특징으로 한다. Since the polymer electrolyte membrane of the present invention is a branched copolymer based on fluorene and biphenyl represented by Chemical Formula 1, it can exhibit high tensile strength, elongation, ionic conductivity, and ion exchange capacity (IEC). The polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] has a tensile strength of 30 MPa or more and an elongation of 50% or more. The polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion conductivity is 50 to 350 mS/cm under running conditions in water. The polymer electrolyte membrane including the polymer having the repeating unit of [Formula 1] is characterized in that the ion exchange capacity (IEC) is 2.0 to 5.0 meq / g.
본 발명인 고분자 전해질 막 제조방법은 9,9-디메틸플루오렌(9,9-Dimethylfluorene), 바이페닐(Biphenyl) 및 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-Bromo-1,1,1-trifluoroheptan-2-one)을 반응시켜 플루오렌-바이페닐 기반 고분자를 제조하는 제1단계, 상기 제1단계에서 제조한 플루오렌-바이페닐 기반 고분자와 포타슘 싸이오아세테이트(Potassium thioacetate)를 반응시켜 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자를 제조하는 제2단계 및 Formic acid 및 증류수 혼합 용액에 상기 제2단계에서 제조한 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자를 혼합 후 과산화수소(hydrogen peroxide)을 천천히 추가하여 플루오렌-바이페닐 기반 이오노머를 제조하는 제3단계를 포함하는 것을 특징으로 한다. The method for manufacturing a polymer electrolyte membrane of the present invention is 9,9-dimethylfluorene, biphenyl and 7-bromo-1,1,1-trifluoroheptan-2-one (7 -Bromo-1,1,1-trifluoroheptan-2-one) to react to prepare a fluorene-biphenyl-based polymer, the fluorene-biphenyl-based polymer prepared in the first step and potassium thio The second step of preparing a thioacetic acid-bound fluorene-biphenyl-based polymer by reacting acetate (Potassium thioacetate) and the fluorene-biphenyl-based polymer prepared in the second step in a mixed solution of formic acid and distilled water. It is characterized in that it comprises a third step of preparing a fluorene-biphenyl-based ionomer by mixing a phenyl-based polymer and then slowly adding hydrogen peroxide.
아래 합성 모식도(화학식 2)에 나타난 바와 같이, 상기 각 단계를 상세히 설명하면 다음과 같다. As shown in the synthetic schematic diagram (Formula 2) below, the detailed description of each step is as follows.
[화학식 2][Formula 2]
Figure PCTKR2022014151-appb-img-000005
Figure PCTKR2022014151-appb-img-000005
제1단계 : 플루오렌-바이페닐 기반 고분자 제조(이하, F1BC7Br-n)Step 1: Preparation of fluorene-biphenyl-based polymer (hereinafter referred to as F1BC 7 Br-n)
상기 제1단계는 9,9-디메틸플루오렌(9,9-Dimethylfluorene), 바이페닐(Biphenyl) 및 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-Bromo-1,1,1-trifluoroheptan-2-one)을 반응하는 제1-1단계 및 상기 제1-1단계에서 생성된 고분자 용액을 메탄올에 침전하는 제1-2단계로 구성된다. The first step is 9,9-dimethylfluorene (9,9-Dimethylfluorene), biphenyl (Biphenyl) and 7-bromo-1,1,1-trifluoroheptan-2-one (7-Bromo- 1,1,1-trifluoroheptan-2-one) and the 1-2 steps of precipitating the polymer solution produced in the 1-1 step in methanol.
상기 제1-1단계는 상기 9,9-디메틸플루오렌(9,9-Dimethylfluorene), 바이페닐(Biphenyl) 및 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-Bromo-1,1,1-trifluoroheptan-2-one) 혼합물 1 중량부에 대하여 디클로로메탄(Dichloromethane, DCM) 20 내지 25 중량부의 용매로 혼합한다. 보다 바람직하게는 상기 혼합물 1 중량부에 대하여 상기 디클로로메탄(Dichloromethane, DCM) 23 중량부를 용매로 혼합한다. 이 때, 트라이플루오로메탄설폰산(Trifluoromethanesulfonic acid, TFSA)를 촉매로 혼합한다. The 1-1 step is the 9,9-dimethylfluorene (9,9-Dimethylfluorene), biphenyl (Biphenyl) and 7-bromo-1,1,1-trifluoroheptan-2-one (7 -Bromo-1,1,1-trifluoroheptan-2-one) 20 to 25 parts by weight of dichloromethane (DCM) is mixed with a solvent based on 1 part by weight of the mixture. More preferably, 23 parts by weight of the dichloromethane (DCM) is mixed as a solvent based on 1 part by weight of the mixture. At this time, trifluoromethanesulfonic acid (TFSA) is mixed as a catalyst.
상기 혼합물, 용매 및 촉매를 혼합 후 4 내지 6 ℃에서 20 내지 40 분 동안 유지 후, 상온에서 3 내지 4시간 동안 반응하여 합성한다. 보다 바람직하게는 5 ℃에서 30 분 동안 유지 후, 상온에서 3.5 시간 동안 반응하여 합성한다. After mixing the mixture, the solvent and the catalyst, the mixture is synthesized by maintaining the mixture at 4 to 6° C. for 20 to 40 minutes and then reacting at room temperature for 3 to 4 hours. More preferably, it is synthesized by maintaining at 5° C. for 30 minutes and then reacting at room temperature for 3.5 hours.
상기 제1-2단계는 상기 제1-1단계에서 생성된 고분자 용액을 메탄올에 침전시킨 후, 메탄올로 수회 세척 한 다음 35 내지 45 ℃의 진공 오븐에서 건조한다. In step 1-2, the polymer solution produced in step 1-1 is precipitated in methanol, washed several times with methanol, and then dried in a vacuum oven at 35 to 45 °C.
제2단계 : 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자를 제조(이하, F1B-TA-n)Step 2: Preparation of a fluorene-biphenyl-based polymer to which thioacetic acid is bonded (hereinafter referred to as F1B-TA-n)
상기 제2단계는 상기 제1단계에서 제조한 F1BC7Br-n와 포타슘 싸이오아세테이트(Potassium thioacetate)를 반응하는 제2-1단계 및 상기 제2-1단계에서 생성된 고분자 용액을 메탄올 및 염산을 혼합한 용액에 침전하는 제2-2단계로 구성된다. In the second step, the 2-1 step of reacting F1BC 7 Br-n prepared in the 1st step with potassium thioacetate and the polymer solution produced in the 2-1 step with methanol and hydrochloric acid It consists of the 2-2 step of precipitating in a mixed solution.
상기 제2-1단계는 상기 F1BC7Br-n와 포타슘 싸이오아세테이트(Potassium thioacetate) 혼합물 1 중량부에 대하여 테트라하이드로퓨란(Tetrahydrofuran, THF) 5 내지 10 중량부를 용매로 혼합한다. 보다 바람직하게는 상기 테트라하이드로퓨란(Tetrahydrofuran, THF) 6 중량부를 용매로 혼합한다. In step 2-1, 5 to 10 parts by weight of tetrahydrofuran (THF) is mixed as a solvent with respect to 1 part by weight of the mixture of F1BC 7 Br-n and potassium thioacetate. More preferably, 6 parts by weight of tetrahydrofuran (THF) is mixed as a solvent.
상기 혼합물, 용매 및 촉매를 혼합 후 45 내지 55℃에서 9 내지 11시간 동안 반응한다. 보다 바람직하게는 50 ℃, 10 h 반응하여 합성한다. After mixing the mixture, the solvent and the catalyst, they are reacted at 45 to 55° C. for 9 to 11 hours. More preferably, it is synthesized by reacting at 50°C for 10 h.
상기 제2-2단계는 상기 제2-1단계에서 생성된 고분자용액을 메탄올 및 염산을 혼합한 용액에 침전 시킨 후, 증류수로 수회 세척한 다음 35 내지 45 ℃의 진공 오븐에서 건조한다. In step 2-2, the polymer solution produced in step 2-1 is precipitated in a mixture of methanol and hydrochloric acid, washed several times with distilled water, and then dried in a vacuum oven at 35 to 45 °C.
제3단계 : 플루오렌-바이페닐 기반 이오노머 제조(이하, F1B-SA-n)Step 3: Preparation of ionomer based on fluorene-biphenyl (hereinafter referred to as F1B-SA-n)
상기 제3단계는 포름산(Formic acid) 및 증류수 혼합 용액에 상기 F1B-TA-n를 혼합 후, 과산화수소(hydrogen peroxide)을 천천히 추가하여 플루오렌-바이페닐 기반 이오노머(F1B-SA-n)를 제조한다. 보다 구체적으로, 상기 포름산(Formic acid) 및 증류수는 55 내지 65 ℃의 온도로 하여 상기 F1B-TA-n를 혼합 후, 과산화수소(hydrogen peroxide)을 천천히 추가하고 60 내지 70 ℃에서 5 내지 7시간 동안 합성한다. 합성 후, 증류수로 수회 세척한 다음 40 내지 60 ℃에서 0.5 내지 1.5 시간 동안 젤 건조기(gel dryer)로 건조하여 F1B-SA-n를 제조한다. In the third step, after mixing the F1B-TA-n in a mixed solution of formic acid and distilled water, hydrogen peroxide is slowly added to prepare a fluorene-biphenyl-based ionomer (F1B-SA-n) do. More specifically, after mixing the F1B-TA-n with the formic acid and distilled water at a temperature of 55 to 65 ° C, hydrogen peroxide was slowly added, and at 60 to 70 ° C for 5 to 7 hours. synthesize After synthesis, washed several times with distilled water, and then dried with a gel dryer at 40 to 60° C. for 0.5 to 1.5 hours to prepare F1B-SA-n.
이상에서 설명한 본 발명에 따른 플루오렌 및 바이페닐 기반 가지형 공중합체 고분자 전해질 막은, 그 용도에 있어서 이온 교환성을 위해 사용되는 것이면 본 발명에 포함한다. 바람직하게는 물의 전기분해(수전해)나 연료 전지 등의 이온 교환막(전해질 막)으로 유용하게 적용될 수 있다.The fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane according to the present invention described above is included in the present invention as long as it is used for ion exchangeability in its use. Preferably, it can be usefully applied as an ion exchange membrane (electrolyte membrane) for electrolysis of water (water electrolysis) or fuel cells.
따라서 본 발명은 상기 고분자 전해질 막을 포함하는 수전해 장치 및 연료전지를 제공할 수 있다. 또한 상기 연료전지를 포함하는 연료전지 시스템을 제공할 수 있다.Accordingly, the present invention can provide a water electrolysis device and a fuel cell including the polymer electrolyte membrane. In addition, a fuel cell system including the fuel cell may be provided.
한편, 본 발명에 따른 수전해 장치 및 연료 전지는 통상과 같은 구조를 가질 수 있으며, 전해질로서 상기 본 발명에 따른 고분자 전해질 막을 사용하는 것이면 본 발명에 포함한다.On the other hand, the water electrolysis device and fuel cell according to the present invention may have the same structure as usual, and if the polymer electrolyte membrane according to the present invention is used as an electrolyte, it is included in the present invention.
본 발명에 따른 수전해 장치는, 예를 들어 통상과 같이 전해질 막, 상기 전해질 막의 양 표면에 형성된 양극 및 음극 촉매층을 가지는 막-전극 접합체(MEA)를 적어도 포함하되, 전자와 반응물 및 생성물의 공급과 배출이 가능한 형태로 배열된 프레임, 세퍼레이터(분리판), MEA 지지체 및 가스켓(패킹) 등을 포함하여 구성될 수 있다.The water electrolysis device according to the present invention includes, for example, at least a membrane-electrode assembly (MEA) having an electrolyte membrane, anode and cathode catalyst layers formed on both surfaces of the electrolyte membrane, as usual, and supplying electrons, reactants, and products. It may be configured to include a frame, separator (separation plate), MEA support, gasket (packing), etc. arranged in a form in which excessive discharge is possible.
이때, 상기 막-전극 접합체(MEA)를 구성하는 전해질 막은 상기 본 발명에 따른 플루오렌 및 바이페닐 기반 가지형 공중합체 고분자 전해질 막으로 구성된다.In this case, the electrolyte membrane constituting the membrane-electrode assembly (MEA) is composed of the fluorene and biphenyl-based branched copolymer polymer electrolyte membrane according to the present invention.
또한, 본 발명에 따른 연료 전지는, 예를 들어 통상과 같은 구조의 고체 고분자형 연료 전지(PEFC)로서, 전해질 막, 상기 전해질 막의 양쪽에 접합된 촉매층, 상기 촉매층의 외측에 접합된 가스 확산층을 포함하는 막-전극 접합체(MEA)를 가질 수 있다. 그리고 상기 막-전극 접합체(MEA)에는 세퍼레이터가 배치되고, 연료 가스 또는 산화제 가스를 공급하는 가스 유로가 막-전극 접합체(MEA)와 세퍼레이터의 접촉 부분 또는 세퍼레이터 내에 형성될 수 있다. 아울러, 수소나 메탄올 등의 연료 가스가 공급되는 연료극과, 공기나 산소 등의 산화제 가스가 공급되는 산소극을 갖는다. 이때, 상기 막-전극 접합체(MEA)를 구성하는 전해질 막은 상기 본 발명에 따른 고분자 전해질 막으로 구성된다.In addition, the fuel cell according to the present invention is, for example, a solid polymer fuel cell (PEFC) having the same structure as usual, and includes an electrolyte membrane, a catalyst layer bonded to both sides of the electrolyte membrane, and a gas diffusion layer bonded to the outside of the catalyst layer. A membrane-electrode assembly (MEA) comprising A separator may be disposed on the membrane-electrode assembly (MEA), and a gas flow path supplying fuel gas or oxidant gas may be formed at a contact portion between the membrane-electrode assembly (MEA) and the separator or in the separator. In addition, it has a fuel electrode to which fuel gas such as hydrogen or methanol is supplied, and an oxygen electrode to which oxidant gas such as air or oxygen is supplied. At this time, the electrolyte membrane constituting the membrane-electrode assembly (MEA) is composed of the polymer electrolyte membrane according to the present invention.
또한, 본 발명에 따른 연료 전지 시스템은 통상과 같은 구조를 가질 수 있으며, 이를 구성하는 연료 전지로서 상기 본 발명에 따른 연료 전지를 사용하는 것이면 본 발명에 포함한다. 예를 들어, 본 발명에 따른 연료 전지 시스템은 연료 전지, 원료 가스로부터 수소를 생성하여 상기 연료 전지의 연료극에 수소를 공급하는 수소 생성 장치, 상기 연료 전지의 산소극에 산화제 가스(공기, 산소 등)를 공급하는 산화제 가스 공급 장치, 상기 연료극의 출입구를 개폐하는 연료 가스 개폐 수단, 상기 산소극의 출입구를 개폐하는 산화제 가스 개폐 수단, 상기 수소 생성 장치의 출입구를 개폐하는 수소 개폐 수단, 상기 연료 가스 개폐 수단, 산화제 가스 개폐 수단 및 수소 개폐 수단의 개폐 동작을 제어하는 제어 장치 등을 포함할 수 있다. 이때, 상기 연료 전지는 상기 본 발명에 따른 플루오렌 및 바이페닐 기반 가지형 공중합체 고분자 전해질 막을 포함하는 연료 전지로 구성된다. 또한, 상기 본 발명에 따른 연료 전지 시스템을 구성하는 수소 생성 장치로는 상기 본 발명에 따른 수전해 장치가 적용될 수 있다.In addition, the fuel cell system according to the present invention may have a conventional structure, and as long as the fuel cell according to the present invention is used as a constituting fuel cell, it is included in the present invention. For example, the fuel cell system according to the present invention includes a fuel cell, a hydrogen generating device generating hydrogen from source gas and supplying hydrogen to the fuel electrode of the fuel cell, and an oxidant gas (air, oxygen, etc.) to the oxygen electrode of the fuel cell. ), a fuel gas opening/closing means for opening and closing the entrance and exit of the fuel electrode, an oxidizing agent gas opening and closing means for opening and closing the entrance and exit of the oxygen electrode, a hydrogen opening and closing means for opening and closing the entrance and exit of the hydrogen generating device, the fuel gas It may include a control device for controlling the opening/closing operation of the opening/closing means, the oxidizing agent gas opening/closing means, and the hydrogen opening/closing means. At this time, the fuel cell is composed of a fuel cell including the branched copolymer polymer electrolyte membrane based on fluorene and biphenyl according to the present invention. In addition, the water electrolysis device according to the present invention may be applied as the hydrogen generating device constituting the fuel cell system according to the present invention.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예를 통하여 쉽게 이해될 것이다. 본 발명은 여기서 설명하는 실시예에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서 이하의 실시예에 의해 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in more detail through examples. Objects, features, and advantages of the present invention will be easily understood through the following examples. The present invention is not limited to the embodiments described herein and may be embodied in other forms. The embodiments introduced here are provided to sufficiently convey the spirit of the present invention to those skilled in the art to which the present invention belongs. Therefore, the present invention should not be limited by the following examples.
실시예 1 : 플루오렌-바이페닐 기반 고분자(이하, F1BC7Br-10 및 F1BC7Br-30)의 제조Example 1: Preparation of fluorene-biphenyl-based polymers (hereinafter referred to as F1BC 7 Br-10 and F1BC 7 Br-30)
F1BC7Br-10은 9,9-Dimethylfluorene (1 g, 5.15 mmol), Biphenyl (7.14 g, 46.33 mmol) 및 7-Bromo-1,1,1-trifluoroheptan-2-one (13.99 g, 56.62 mmol)를 단량체로, Trifluoromethanesulfonic acid (TFSA) (77.25 g, 514.75 mmol)를 촉매로, 단량체 무게 대비 23 wt% Dichloromethane (DCM)를 반응 용매로 5 ℃, 30 m 유지 후 RT, 3 h 30 m 반응하여 합성되었다. 반응 후, 생성 된 고분자용액을 메탄올 (1300 ml)에 침전시킨 후 메탄올로 수회 세척 한 다음 40 ℃ 진공 오븐에서 건조시켰다. F1BC 7 Br-10 is 9,9-Dimethylfluorene (1 g, 5.15 mmol), Biphenyl (7.14 g, 46.33 mmol) and 7-Bromo-1,1,1-trifluoroheptan-2-one (13.99 g, 56.62 mmol) as a monomer, Trifluoromethanesulfonic acid (TFSA) (77.25 g, 514.75 mmol) as a catalyst, and 23 wt% Dichloromethane (DCM) as a reaction solvent, maintained at 5 ℃ for 30 m and then reacted at RT for 3 h 30 m. It became. After the reaction, the resulting polymer solution was precipitated in methanol (1300 ml), washed several times with methanol, and then dried in a vacuum oven at 40 °C.
F1BC7Br-30은 9,9-Dimethylfluorene (2 g, 10.29 mmol), Biphenyl (3.70 g, 24.02 mmol) 및 7-Bromo-1,1,1-trifluoroheptan-2-one (9.33 g, 37.75 mmol)를 단량체로, TFSA (51.50 g, 343.17 mmol)를 촉매로, 단량체 무게 대비 23 wt% DCM을 반응 용매로 5 ℃, 30 m 유지 후 RT, 3 h 반응하여 합성되었으며, 침전 및 수득방법은 위와 동일하다.F1BC 7 Br-30 is 9,9-Dimethylfluorene (2 g, 10.29 mmol), Biphenyl (3.70 g, 24.02 mmol) and 7-Bromo-1,1,1-trifluoroheptan-2-one (9.33 g, 37.75 mmol) as a monomer, TFSA (51.50 g, 343.17 mmol) as a catalyst, 23 wt% DCM based on the weight of the monomer as a reaction solvent, maintained at 5 ° C, 30 m, and then reacted at RT for 3 h. Precipitation and obtaining method were the same as above do.
실시예 2 : 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자(이하, F1B-TA-10 및 F1B-TA-30)를 제조Example 2: Preparation of thioacetic acid-coupled fluorene-biphenyl-based polymers (hereinafter referred to as F1B-TA-10 and F1B-TA-30)
F1B-TA-10은 앞서 합성한 FL1C7Br-10 (2 g, 5.16 mmol) 및 Potassium thioacetate (1.12 g, 9.81 mmol)를 반응 물질로, 반응 물질 무게 대비 6 wt% Tetrahydrofuran (THF) 를 반응 용매로 50 ℃, 10 h 반응하여 합성되었다. 반응 후, 생성 된 고분자용액을 메탄올 (1000 ml)와 Hydrochloric acid (100 ml, 2M)을 혼합한 용액에 침전시킨 후 증류수로 수회 세척 한 다음 40 ℃ 진공오븐에서 건조시켰다. For F1B-TA-10, FL1C 7 Br-10 (2 g, 5.16 mmol) and Potassium thioacetate (1.12 g, 9.81 mmol) synthesized above were used as reaction materials, and 6 wt% Tetrahydrofuran (THF) based on the weight of the reactants was used as the reaction solvent. was synthesized by reacting at 50 °C for 10 h. After the reaction, the resulting polymer solution was precipitated in a mixture of methanol (1000 ml) and hydrochloric acid (100 ml, 2M), washed several times with distilled water, and then dried in a vacuum oven at 40 °C.
F1B-TA-30은 앞서 합성한 FL1C7Br-30 (2 g, 5.06 mmol) 및 Potassium thioacetate (1.04 g, 9.11 mmol)를 반응 물질로, 반응 물질 무게 대비 6 wt% Tetrahydrofuran (THF) 를 반응 용매로 50 ℃, 10 h 반응하여 합성되었으며, 침전 및 수득방법은 위와 동일하다.F1B-TA-30 was prepared by using FL1C7Br-30 (2 g, 5.06 mmol) and Potassium thioacetate (1.04 g, 9.11 mmol) synthesized above as reaction materials and 6 wt% Tetrahydrofuran (THF) as a reaction solvent. It was synthesized by reacting at ℃, 10 h, and the precipitation and obtaining methods are the same as above.
실시예 3 : 플루오렌-바이페닐 기반 이오노머(이하, F1B-SA-10 및 F1B-SA-30) 제조Example 3: Preparation of ionomers based on fluorene-biphenyl (hereinafter referred to as F1B-SA-10 and F1B-SA-30)
F1B-SA-n (n = 10, 30)을 사용한 양이온 교환막은 다음 과정에 의해 제조되었다. A cation exchange membrane using F1B-SA-n (n = 10, 30) was prepared by the following process.
100 ml 비색관에 60 ℃ Formic acid 15 ml, distilled water 60 ml 용액에 8x8 ㎝2, 50 im의 F1B-TA-n (n = 10, 30) 멤브레인을 넣고 30 m 유지 후 hydrogen peroxide 15 ml를 천천히 추가하고 65 ℃ , 6h 동안 합성되었다. 반응 후 증류수로 수회 세척 한 다음 50 ℃, 1h gel dryer로 건조시키는 방법으로 제조되었다. In a 100 ml colorimetric tube, put an 8x8 cm2, 50 im F1B-TA-n (n = 10, 30) membrane in a solution of 15 ml of formic acid and 60 ml of distilled water at 60 ° C. After maintaining for 30 m, slowly add 15 ml of hydrogen peroxide. added and synthesized at 65 °C for 6 h. After the reaction, it was prepared by washing several times with distilled water and then drying with a 50 ℃, 1h gel dryer.
실시예 3에 의해 제조된 플루오렌-바이페닐 기반 이오노머(이하, F1B-SA-10 및 F1B-SA-30)를 사용한 양이온 교환막을 제조하여, 도 1에 F1B-SA-10 고분자 전해질 막(a) 및 F1B-SA-30 고분자 전해질 막(b)에 나타내었다. A cation exchange membrane using the fluorene-biphenyl-based ionomer (hereinafter referred to as F1B-SA-10 and F1B-SA-30) prepared in Example 3 was prepared, and an F1B-SA-10 polymer electrolyte membrane (a ) and F1B-SA-30 polymer electrolyte membrane (b).
상기 제조된 F1B-SA-10 고분자 전해질 막(a) 및 F1B-SA-30 고분자 전해질 막(b)에 대해, 아래와 같이 실험을 실시하였다. The F1B-SA-10 polymer electrolyte membrane (a) and the F1B-SA-30 polymer electrolyte membrane (b) prepared above were tested as follows.
실험예 1 : F1BC7Br-10, F1B-TA-30, F1B-SA-30의 1H NMR 분석 결과Experimental Example 1: Results of 1H NMR analysis of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30
F1BC7Br-10, F1B-TA-30, F1B-SA-30의 1H-NMR 확인 결과는 도 2에 나타내었다. F1BC7Br-30 가지 말단의 개질 가능한 위치(-Br) 옆의 CH2 (11)의 NMR 피크의 변화를 통해 반응의 진행여부를 파악하였다. 1 H-NMR confirmation results of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30 are shown in FIG. 2 . The progress of the reaction was determined by changing the NMR peak of CH 2 (11) next to the modifyable position (-Br) at the terminal of the F1BC 7 Br-30 branch.
F1B-TA-30 데이터에서, 반응 전 물질인 F1BC7Br-30의 11번 피크의 완전한 이동(11’) 및 12번 피크의 생성을 통해 100 % 전환율로 합성되었음을 확인하였다. 또한, F1B-SA-30 데이터에서, 11’ 피크의 이동 및 12번 피크가 사라진 것으로 반응이 진행되었음을 확인하였다. From the F1B-TA-30 data, it was confirmed that F1BC 7 Br-30, a pre-reaction material, was synthesized at 100% conversion through complete shift (11') of peak 11 and generation of peak 12. In addition, in the F1B-SA-30 data, it was confirmed that the reaction proceeded as the 11' peak shifted and the 12 peak disappeared.
실험예 2 : F1BC7Br-10, F1B-TA-30, F1B-SA-30의 FT-IR 분석 결과Experimental Example 2: FT-IR analysis results of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30
F1BC7Br-10, F1B-TA-30, F1B-SA-30의 FT-IR을 확인 한 결과 3000-2840 ㎝-1 부근의 C-H 피크를 확인 할 수 있으며, 1725-1705 ㎝-1 부근의 C=O 피크를 확인 하여 말단 작용기의 변화를 확인하였다. 또한, 1400-1000 ㎝-1 부근의 C-F 피크와 1070-1030 ㎝-1 부근의 S=O 피크를 확인 할 수 있다. As a result of checking the FT-IR of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30, a CH peak around 3000-2840 cm -1 can be confirmed, and C around 1725-1705 cm -1 The =O peak was confirmed to confirm the change of the terminal functional group. In addition, a CF peak around 1400-1000 cm -1 and an S=O peak around 1070-1030 cm -1 can be confirmed.
실험예 3 : F1BC7Br-10, F1B-TA-30, F1B-SA-30의 TGA 분석 결과Experimental Example 3: TGA analysis results of F1BC 7 Br-10, F1B-TA-30, and F1B-SA-30
전해질 막의 TGA는 다음과 같은 방법으로 측정 되었다. 상온에서 120 ℃ 까지 20 ℃ min-1 으로 올린 후 10 min 동안 유지하여 잔여수분 제거 및 안정화를 실시하였다. 이 후 60 ℃ 까지 20 ℃ min-1 으로 냉각한 뒤 60 ℃ 에서 700 ℃ 까지 10 ℃ min-1 으로 질소 분위기에서 고분자 시료의 무게변화를 측정하였다. The TGA of the electrolyte membrane was measured in the following way. After raising the temperature from room temperature to 120 °C at 20 °C min -1 , the remaining water was removed and stabilized by maintaining for 10 min. Thereafter, after cooling at 20 °C min -1 to 60 °C, the weight change of the polymer sample was measured from 60 °C to 700 °C at 10 °C min -1 in a nitrogen atmosphere.
도 4에 나타난 바와 같이, F1B-SA-10 및 F1B-SA-30은 고분자 전해질 막 연료전지 시스템에 도입되기에 안정한 열적 안정성을 나타냄을 확인 하였다. 도 4 및 표 1에 나타난 바와 같이, 5 wt.%의 분해 온도를 측정해 본 결과 각각 312 ℃, 305 ℃ 를 나타내는 것을 확인하였다. As shown in FIG. 4, it was confirmed that F1B-SA-10 and F1B-SA-30 exhibit stable thermal stability to be introduced into a polymer electrolyte membrane fuel cell system. As shown in FIG. 4 and Table 1, as a result of measuring the decomposition temperature of 5 wt.%, it was confirmed that they were 312 °C and 305 °C, respectively.
F1B-SA-10F1B-SA-10 F1B-SA-30F1B-SA-30
Td5 ( ℃ )T d5 ( ℃ ) 312312 305305
실험예 4 : F1B-SA-10, F1B-SA-30 전해질 막의 화학적 구성Experimental Example 4: Chemical composition of F1B-SA-10 and F1B-SA-30 electrolyte membranes
전해질 막의 화학적 내구성은 다음과 같은 방법으로 측정 되었다. 3%(w/w) Hydrogen peroxide 수용액에 4 ppm Iron(II) sulfate를 넣어 Fenton's reagent를 제조한다. 건조 된 전해질 막을 1 ㎝ × 1 ㎝ 크기로 자른 다음 제조 된 Fenton's reagent 와 함께 vial 에 넣은 뒤 80 ℃ 오븐에 놓고 30분 간격으로 막의 상태를 관찰하여 막의 분해 여부를 통해 화학적 내구성을 측정하였다. τ1 의 경우 막이 분해가 되기 시작하는 시간을 의미하며 τ2 의 경우 막이 완전히 분해되어 육안에서 사라지는 시간을 의미한다. 각 샘플 당 3회를 측정하였다. The chemical durability of the electrolyte membrane was measured in the following way. Prepare Fenton's reagent by adding 4 ppm Iron(II) sulfate to 3% (w/w) hydrogen peroxide aqueous solution. The dried electrolyte membrane was cut into a size of 1 cm × 1 cm, put into a vial together with the prepared Fenton's reagent, placed in an oven at 80 ° C, and the state of the membrane was observed at intervals of 30 minutes to measure chemical durability through decomposition of the membrane. In the case of τ 1 , it means the time when the film starts to decompose, and in the case of τ 2 , it means the time when the film completely decomposes and disappears from the naked eye. Three measurements were taken for each sample.
도 5에 나타난 탄화수소계 기반 전해질 막 (SPAES-50, SPAES-65)과 본 발명의 일실시예에 의해 제조된 고분자 전해질 막 비교 시, 도 6 및 표 2에 나타난 바와 같이, 첫 분해 및 최종 분해까지 걸리는 시간이 2 내지 6 배 까지 증가하여 화학적으로 안정되었음을 확인하였다. When comparing the hydrocarbon-based electrolyte membranes (SPAES-50, SPAES-65) shown in FIG. 5 with the polymer electrolyte membrane prepared according to an embodiment of the present invention, as shown in FIG. 6 and Table 2, first decomposition and final decomposition It was confirmed that it was chemically stable by increasing the time taken to 2 to 6 times.
SampleSample SPAES-65SPAES-65 SPAES-50SPAES-50 F1B-SA-10F1B-SA-10 F1B-SA-30F1B-SA-30
τ 1 τ 1 65 ± 8.765 ± 8.7 210 ± 0.0210±0.0 420 ± 0.0420±0.0 385 ± 8.7385 ± 8.7
τ 2 τ 2 95 ± 8.795 ± 8.7 240 ± 0.0240±0.0 610 ± 0.0610±0.0 568 ± 36568 ± 36
실험예 5 : F1B-SA-10, F1B-SA-30 전해질 막의 수분 흡수도 및 치수 변화Experimental Example 5: Water absorption and dimensional change of F1B-SA-10 and F1B-SA-30 electrolyte membranes
수분 흡수도 및 치수 변화는 다음과 같은 방법으로 측정하였다. 데시케이터를 통해 건조 된 막을 1 ㎝ × 4 ㎝ 크기로 자른 다음 두께와 건조 된 막의 무게를 측정하였다. 그 후 건조 상태에서 면적, 두께, 무게가 측정 된 막을 바이알에 넣고 증류수를 채운 뒤 30 ℃와 80 ℃ 건조 오븐에 각각 넣었다. 12 h 뒤 오븐에서 팽윤된 막을 꺼내 면적, 두께 및 무게를 측정하여 아래와 같은 공식을 사용해 치수 변화를 측정하였다. 각 샘플 당 3회 씩 측정하였다. Water absorption and dimensional change were measured in the following manner. The film dried through a desiccator was cut into a size of 1 cm × 4 cm, and the thickness and weight of the dried film were measured. Then, in a dry state, the membranes whose area, thickness, and weight were measured were placed in a vial, filled with distilled water, and placed in a drying oven at 30 °C and 80 °C, respectively. After 12 h, the swollen film was taken out of the oven, and the area, thickness, and weight were measured, and the dimensional change was measured using the following formula. Measurements were made three times for each sample.
Water uptake [%] = [(Wwet - Wdry) / Wdry] × 100Water uptake [%] = [(W wet - W dry ) / W dry ] × 100
Change in dimension [%] = [((Awet × Twet) - (Adry × Tdry)) / (Adry × Tdry)] × 100 Change in dimension [%] = [((A wet × T wet ) - (A dry × T dry )) / (A dry × T dry )] × 100
(여기서, Wdry 와 Wwet는 건조 된 막과 팽윤 된 막의 무게, Adry 와 Awet는 건조 된 막과 팽윤 된 막의 면적, Tdry와 Twet는 건조 된 막과 팽윤 된 막의 두께임)(Where, W dry and W wet are the weights of the dried and swollen membranes, A dry and A wet are the areas of the dried and swollen membranes, and T dry and T wet are the thicknesses of the dried and swollen membranes)
WU (%)WU (%) △V (%)△V (%) △A (%)△A (%)
F1B SA-10
(IEC : 2.19 meq/g)
F1B SA-10
(IEC : 2.19 meq/g)
50.84 ± 2.5150.84 ± 2.51 56.14 ± 5.9656.14 ± 5.96 37.01 ± 2.0837.01 ± 2.08
F1B SA-30
(IEC : 2.22 meq/g)
F1B SA-30
(IEC: 2.22 meq/g)
53.23 ± 0.4353.23 ± 0.43 58.34 ± 1.8458.34 ± 1.84 41.50 ± 0.7141.50 ± 0.71
WU (%)WU (%) △V (%)△V (%) △A (%)△A (%)
F1B SA-10
(IEC : 2.19 meq/g)
F1B SA-10
(IEC: 2.19 meq/g)
58.59 ± 2.7658.59 ± 2.76 70.06 ± 2.6270.06 ± 2.62 48.67 ± 1.9648.67 ± 1.96
F1B SA-30
(IEC : 2.22 meq/g)
F1B SA-30
(IEC: 2.22 meq/g)
61.49 ± 1.9961.49 ± 1.99 69.75 ± 2.2369.75 ± 2.23 50.00 ± 1.2250.00 ± 1.22
Nafion 212 Nafion 212 27.74 ± 0.2927.74 ± 0.29 51.25 ± 1.8451.25 ± 1.84 27.99 ± 4.4027.99 ± 4.40
표 3 및 도 7은 30 ℃에서의 전해질 막 치수 변화이고, 표 4 및 도 8은 80 ℃에서의 전해질 막 치수 변화이다. 30 ℃ 및 80 ℃ 에서 F1B-SA-30이 F1B-SA-10보다 수분흡수율 및 체적변화율이 높았고, F1B-SA-n은 Nafion 212에 비해 온도에 따른 변화가 작았다. Table 3 and FIG. 7 show dimensional changes of the electrolyte membrane at 30° C., and Table 4 and FIG. 8 show dimensional changes of the electrolyte membrane at 80° C. At 30 ° C and 80 ° C, F1B-SA-30 had higher water absorption and volumetric change than F1B-SA-10, and F1B-SA-n had a smaller change with temperature than Nafion 212.
실험예 6 : F1B-SA-10, F1B-SA-30 전해질 막의 이온교환용량 측정Experimental Example 6: Measurement of ion exchange capacity of F1B-SA-10 and F1B-SA-30 electrolyte membranes
이온교환용량을 측정하기 위해 건조된 고분자 전해질 막의 무게 측정 후 30 ml 바이알에 넣고 1M NaCl 용액 15 ml 추가 및 60℃, 6h 이상 교반을 시켜 샘플을 준비하였다. 0.01M NaOH 용액을 자동 전위차 적정기 [Potentiometric titrator (TITRANDO 888)]를 이용하여 고분자 전해질 막이 담겨있는 용액이 pH= 7.0 이 될 때까지 들어간 NaOH의 부피를 확인한 후 다음의 공식을 통해 계산하였다. To measure the ion exchange capacity, the dried polymer electrolyte membrane was weighed, put into a 30 ml vial, 15 ml of 1M NaCl solution was added, and stirred at 60° C. for 6 h or more to prepare a sample. A 0.01M NaOH solution was checked using an automatic potentiometric titrator [Potentiometric titrator (TITRANDO 888)] until the pH of the solution containing the polymer electrolyte membrane reached pH = 7.0, and then the volume of NaOH entered was calculated using the following formula.
IECw = ( CNaOH * △VNaOH / Ws ) * 1000 [meq/g]IEC w = ( C NaOH * ΔV NaOH / W s ) * 1000 [meq/g]
(여기서, CNaOH는 NaOH 농도 (0.01M), △VNaOH 는 NaOH 부피, Ws는 건조된 막의 무게임)(Where C NaOH is the NaOH concentration (0.01M), ΔV NaOH is the volume of NaOH, and W s is the weight of the dried film)
SampleSample Theoretical IEC
(meq /g)
Theoretical IEC
(meq/g)
Experimental IEC
(meq /g)
Experimental IEC
(meq/g)
Conversion
(%)
Conversion
(%)
F1B-SA-10F1B-SA-10 2.572.57 2.19 ± 0.002.19±0.00 85.285.2
F1B-SA-30F1B-SA-30 2.522.52 2.22 ± 0.012.22 ± 0.01 87.987.9
표 5에 나타난 바와 같이, F1B-SA-10의 이론적 IEC는 2.57 meq g-1이고, 실험적 IEC는 2.19 meq g-1 으로, 반응률 85.2%로 확인되었다. F1B-SA-30의 이론적 IEC는 2.52 meq g-1이고, 실험적 IEC는 2.22 meq g-1 으로, 반응률 87.9%로 확인되었다. As shown in Table 5, the theoretical IEC of F1B-SA-10 was 2.57 meq g -1 and the experimental IEC was 2.19 meq g -1 , confirming the response rate of 85.2%. The theoretical IEC of F1B-SA-30 was 2.52 meq g -1 and the experimental IEC was 2.22 meq g -1 , confirming the response rate of 87.9%.
실험예 7 : F1B-SA-10, F1B-SA-30 전해질 막의 기계적물성 평가Experimental Example 7: Evaluation of mechanical properties of F1B-SA-10 and F1B-SA-30 electrolyte membranes
기계적 물성을 측정하기 위해 LLOYD UTM LS1 기기에 250 N의 Load cell 결합 후, ASTM D 638 type Ⅴ로 자른 시편을 체결하였다. Extension rate는 5 mm/min으로 전해질 막 종류별 6개 이상을 측정하여 strain-stress 곡선 및 영률 및 연신율의 평균과 표준편차를 구하였다. In order to measure the mechanical properties, after coupling a load cell of 250 N to the LLOYD UTM LS1 device, specimens cut according to ASTM D 638 type V were fastened. The extension rate was 5 mm/min, and at least 6 samples were measured for each type of electrolyte membrane to obtain the average and standard deviation of the strain-stress curve, Young's modulus, and elongation.
SampleSample Tensile Strength
(MPa)
Tensile Strength
(MPa)
Young's Modulus
(MPa)
Young's Modulus
(MPa)
Elongation at Break
(%)
Elongation at Break
(%)
F1B-SA-10F1B-SA-10 39.28 ± 4.6439.28 ± 4.64 695.41 ± 11.56695.41 ± 11.56 66.78 ± 9.0566.78 ± 9.05
F1B-SA-30F1B-SA-30 34.11 ± 2.3334.11 ± 2.33 877.30 ± 8.60877.30 ± 8.60 60.09 ± 2.3560.09 ± 2.35
표 6 및 도 9에 나타난 바와 같이, F1B-SA-30 보다 F1B-SA-10이 인장강도와 연신율이 높음을 확인하였다. As shown in Table 6 and FIG. 9, it was confirmed that F1B-SA-10 had higher tensile strength and elongation than F1B-SA-30.
실험예 8 : F1B-SA-10, F1B-SA-30 전해질 막의 수소이온전도도Experimental Example 8: Proton Conductivity of F1B-SA-10 and F1B-SA-30 Electrolyte Membrane
수소이온 전도도 측정을 위해 0.5 × 3 ㎠의 샘플을 제조하여 4-probe cell에 체결한 후 electrochemical spectroscopy(SP-240, Bio Logic Science Instrument, France) 장비를 이용하여 측정하였다. 측정조건은 2차 증류수에 cell을 넣은 100% RH 조건으로, 30 ℃부터 90 ℃까지 온도변화에 따른 저항 값을 측정하여 다음의 공식을 통해 계산하였다. To measure the hydrogen ion conductivity, a sample of 0.5 × 3 cm 2 was prepared, connected to a 4-probe cell, and then measured using electrochemical spectroscopy (SP-240, Bio Logic Science Instrument, France) equipment. The measurement condition was 100% RH condition in which the cell was placed in secondary distilled water, and the resistance value according to the temperature change from 30 ℃ to 90 ℃ was measured and calculated through the following formula.
Proton conductivity (σ) [mS ㎝-1] = d/RSProton conductivity (σ) [mS cm -1 ] = d/RS
(여기서, D는 전극사이의 거리, R은 저항 값, S은 샘플의 두께*폭임) (Where, D is the distance between electrodes, R is the resistance value, and S is the thickness * width of the sample)
Cell이 담겨있는 증류수에 30 ℃부터 10 ℃간격으로 90 ℃까지의 각 온도에 도달 시 저항 값을 측정하였으며, 각 온도마다 저항 값 6회 측정 및 기록하였다. The resistance value was measured when reaching each temperature from 30 ℃ to 90 ℃ at intervals of 10 ℃ in the distilled water containing the cell, and the resistance value was measured and recorded 6 times at each temperature.
Nafion 212 Nafion 212 F1B-SA-10
IEC : 2.19
F1B-SA-10
IEC:2.19
F1B-SA-30
IEC : 2.22
F1B-SA-30
IEC: 2.22
3030 76.29 ± 0.5376.29 ± 0.53 116.65 ± 2.67116.65 ± 2.67 124.22 ± 1.63124.22 ± 1.63
4040 91.47 ± 1.7391.47 ± 1.73 138.01 ± 1.80138.01 ± 1.80 141.01 ± 3.15141.01 ± 3.15
5050 105.34 ± 2.02105.34 ± 2.02 157.38 ± 1.05157.38 ± 1.05 157.82 ± 2.02157.82 ± 2.02
6060 125.44 ± 1.79125.44 ± 1.79 172.95 ± 1.73172.95 ± 1.73 177.17 ± 1.43177.17 ± 1.43
7070 139.24 ± 1.41139.24 ± 1.41 194.11 ± 1.61194.11 ± 1.61 194.76 ± 1.71194.76 ± 1.71
8080 161.39 ± 3.09161.39 ± 3.09 215.03 ± 1.35215.03 ± 1.35 213.55 ± 0.86213.55 ± 0.86
9090 185.79 ± 3.51185.79 ± 3.51 226.43 ± 2.50226.43 ± 2.50 228.61 ± 1.73228.61 ± 1.73
표 7 및 도 10에 나타난 바와 같이, F1B-SA-n의 수소이온 전도도는 모든 온도에서 Nafion 212 보다 높았으며, F1B-SA-30과 F1B-SA-10은 유사한 전도도 값을 나타냈다. As shown in Table 7 and FIG. 10, the proton conductivity of F1B-SA-n was higher than that of Nafion 212 at all temperatures, and F1B-SA-30 and F1B-SA-10 showed similar conductivity values.
상기 과제의 해결 수단에 의해, 본 발명은 종래의 염기성 촉매하에서 축합 중합을 통한 양이온 교환 소재 개발이 아닌, 강산 조건에서의 친전자성 치환반응을 이용하여 고분자 주쇄에 화학적으로 약한 결합이 없어 화학적으로 안정한 효과가 있다. 또한, 본 발명은 라디칼에 안정적인 플루오렌으로 구성되어 화학적으로 안정한 고분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. 또한, 본 발명은 고분자 주쇄 전체가 오직 탄소 단일 결합으로만 구성되어 화학적 안정성이 우수한 고분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. 또한, 본 발명은 양이온 교환 작용기가 곁사슬 말단에 도입된 가지형 공중합체 고분자로, 뚜렷한 친수성 또는 소수성 상분리 효과로 인해 이온전도 거동 및 물리화학적 안정성을 동시에 향상시킨 분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. 또한, 본 발명은 산 촉매하의 상온에서 축합 중합을 통해 수득되므로, 대량생산이 용이한 분자 전해질 막 및 이를 이용한 수전해 시스템을 제조할 수 있다. By means of solving the above problems, the present invention uses an electrophilic substitution reaction under strong acid conditions, rather than developing a cation exchange material through condensation polymerization under a conventional basic catalyst, so that there is no chemically weak bond in the polymer backbone, so that it can be chemically It has a stabilizing effect. In addition, the present invention can manufacture a chemically stable polymer electrolyte membrane composed of fluorene that is stable to radicals and a water electrolysis system using the same. In addition, according to the present invention, a polymer electrolyte membrane having excellent chemical stability and a water electrolysis system using the polymer electrolyte membrane having an entire polymer main chain composed of only carbon single bonds can be manufactured. In addition, the present invention is a branched copolymer polymer in which a cation exchange functional group is introduced at the end of a side chain, and a molecular electrolyte membrane that simultaneously improves ion conduction behavior and physicochemical stability due to a distinct hydrophilic or hydrophobic phase separation effect and a water electrolysis system using the same can be manufactured In addition, since the present invention is obtained through condensation polymerization at room temperature under an acid catalyst, a molecular electrolyte membrane that can be easily mass-produced and a water electrolysis system using the same can be manufactured.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, it will be understood that the technical configuration of the present invention described above can be implemented in other specific forms without changing the technical spirit or essential features of the present invention by those skilled in the art to which the present invention pertains.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments described above should be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the claims to be described later rather than the detailed description, and the meaning and scope of the claims and their All changes or modified forms derived from equivalent concepts should be construed as being included in the scope of the present invention.

Claims (15)

  1. 아래 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 것을 특징으로 하는 고분자 전해질 막 :A polymer electrolyte membrane comprising a polymer having a repeating unit of the following [Formula 1]:
    [화학식 1] [Formula 1]
    Figure PCTKR2022014151-appb-img-000006
    Figure PCTKR2022014151-appb-img-000006
    (여기서, n은 1-50의 정수 및 m은 1-3의 정수이고, R은 SO3H 또는 CH2-SO3H 임). (Where n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
  2. 제 1항에 있어서,According to claim 1,
    상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은,A polymer electrolyte membrane comprising a polymer having a repeating unit of Formula 1,
    인장강도가 30 MPa 이상이고, 연신율이 50 % 이상인 것을 특징으로 하는 고분자 전해질 막. A polymer electrolyte membrane having a tensile strength of 30 MPa or more and an elongation of 50% or more.
  3. 제 1항에 있어서,According to claim 1,
    상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은,A polymer electrolyte membrane comprising a polymer having a repeating unit of Formula 1,
    이온전도도가 50 내지 350 mS/㎝인 것을 특징으로 하는 고분자 전해질 막. A polymer electrolyte membrane, characterized in that the ion conductivity is 50 to 350 mS / cm.
  4. 제 1항에 있어서,According to claim 1,
    상기 [화학식 1]의 반복단위를 갖는 중합체를 포함하는 고분자 전해질 막은,A polymer electrolyte membrane comprising a polymer having a repeating unit of Formula 1,
    이온교환용량(IEC)이 2.0 내지 5.0 meq /g 인 것을 특징으로 하는 고분자 전해질 막. A polymer electrolyte membrane, characterized in that the ion exchange capacity (IEC) is 2.0 to 5.0 meq / g.
  5. 9,9-디메틸플루오렌(9,9-Dimethylfluorene), 바이페닐(Biphenyl) 및 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-Bromo-1,1,1-trifluoroheptan-2-one)을 반응시켜 플루오렌-바이페닐 기반 고분자를 제조하는 제1단계;9,9-Dimethylfluorene, Biphenyl and 7-Bromo-1,1,1-trifluoroheptan-2-one (7-Bromo-1,1,1 A first step of preparing a fluorene-biphenyl-based polymer by reacting -trifluoroheptan-2-one);
    상기 제1단계에서 제조한 플루오렌-바이페닐 기반 고분자와 포타슘 싸이오아세테이트(Potassium thioacetate)를 반응시켜 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자를 제조하는 제2단계;A second step of preparing a fluorene-biphenyl-based polymer to which thioacetic acid is bonded by reacting the fluorene-biphenyl-based polymer prepared in the first step with potassium thioacetate;
    포름산(Formic acid) 및 증류수 혼합 용액에 상기 제2단계에서 제조한 티오아세트산이 결합된 플루오렌-바이페닐 기반 고분자를 혼합 후 과산화수소(hydrogen peroxide)을 천천히 추가하여 플루오렌-바이페닐 기반 이오노머를 제조하는 제3단계;를 포함하는 것을 특징으로 하는 고분자 전해질 막 제조방법.After mixing the thioacetic acid-coupled fluorene-biphenyl-based polymer prepared in the second step with a mixed solution of formic acid and distilled water, hydrogen peroxide is slowly added to prepare a fluorene-biphenyl-based ionomer A polymer electrolyte membrane manufacturing method comprising the; third step of doing.
  6. 제 5항에 있어서,According to claim 5,
    상기 제1단계는,The first step is
    9,9-디메틸플루오렌(9,9-Dimethylfluorene), 바이페닐(Biphenyl) 및 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-Bromo-1,1,1-trifluoroheptan-2-one)을 반응하는 제1-1단계; 및9,9-Dimethylfluorene, Biphenyl and 7-Bromo-1,1,1-trifluoroheptan-2-one (7-Bromo-1,1,1 -1-1st step of reacting with trifluoroheptan-2-one); and
    상기 제1-1단계에서 생성된 고분자 용액을 메탄올에 침전하는 제1-2단계;를 포함하는 것을 특징으로 하는 고분자 전해질 막 제조방법.A method for manufacturing a polymer electrolyte membrane comprising a 1-2 step of precipitating the polymer solution produced in the 1-1 step in methanol.
  7. 제 5항에 있어서,According to claim 5,
    상기 제2단계는,The second step is
    상기 제1단계에서 제조한 플루오렌-바이페닐 기반 고분자와 포타슘 싸이오아세테이트(Potassium thioacetate)를 반응하는 제2-1단계; 및Step 2-1 of reacting the fluorene-biphenyl-based polymer prepared in step 1 with potassium thioacetate; and
    상기 제2-1단계에서 생성된 고분자 용액을 메탄올 및 염산을 혼합한 용액에 침전하는 제2-2단계;를 포함하는 것을 특징으로 하는 고분자 전해질 막 제조방법.A method for manufacturing a polymer electrolyte membrane comprising a 2-2 step of precipitating the polymer solution produced in the 2-1 step in a mixture of methanol and hydrochloric acid.
  8. 제 5항에 있어서,According to claim 5,
    상기 제1단계는 트라이플루오로메탄설폰산(Trifluoromethanesulfonic acid, TFSA)를 촉매로 사용하는 것을 특징으로 하는 고분자 전해질 막 제조방법.The first step is a polymer electrolyte membrane manufacturing method, characterized in that using trifluoromethanesulfonic acid (TFSA) as a catalyst.
  9. 제 5항에 있어서,According to claim 5,
    상기 제1단계는,The first step is
    상기 9,9-디메틸플루오렌(9,9-Dimethylfluorene), 바이페닐(Biphenyl) 및 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-Bromo-1,1,1-trifluoroheptan-2-one) 혼합물 1 중량부에 대하여 디클로로메탄(Dichloromethane, DCM) 20 내지 25 중량부의 용매로 사용하는 것을 특징으로 하는 고분자 전해질 막 제조방법.The 9,9-dimethylfluorene (9,9-Dimethylfluorene), biphenyl (Biphenyl) and 7-bromo-1,1,1-trifluoroheptan-2-one (7-Bromo-1,1, A method for producing a polymer electrolyte membrane, characterized in that 20 to 25 parts by weight of dichloromethane (DCM) is used as a solvent based on 1 part by weight of a 1-trifluoroheptan-2-one) mixture.
  10. 제 5항에 있어서,According to claim 5,
    상기 제1단계는,The first step is
    상온에서 3 내지 4시간 동안 반응하는 것을 특징으로 하는 고분자 전해질 막 제조방법.Polymer electrolyte membrane manufacturing method, characterized in that the reaction for 3 to 4 hours at room temperature.
  11. 제 5항에 있어서,According to claim 5,
    상기 제2단계는,The second step is
    상기 제1단계에서 제조한 플루오렌-바이페닐 기반 고분자와 포타슘 싸이오아세테이트(Potassium thioacetate) 혼합물 1 중량부에 대하여 테트라하이드로퓨란(Tetrahydrofuran, THF) 5 내지 10 중량부를 용매로 사용하는 것을 특징으로 하는 고분자 전해질 막 제조방법.Characterized in that 5 to 10 parts by weight of tetrahydrofuran (THF) is used as a solvent based on 1 part by weight of the mixture of the fluorene-biphenyl-based polymer and potassium thioacetate prepared in the first step Polymer electrolyte membrane manufacturing method.
  12. 제 5항에 있어서,According to claim 5,
    상기 제2단계는,In the second step,
    45 내지 55℃에서 9 내지 11시간 동안 반응하는 것을 특징으로 하는 고분자 전해질 막 제조방법.A method for producing a polymer electrolyte membrane, characterized by reacting at 45 to 55 ° C. for 9 to 11 hours.
  13. 제 5항에 있어서,According to claim 5,
    상기 제3단계는,The third step,
    60 내지 70℃에서 5 내지 7시간 동안 반응하는 것을 특징으로 하는 고분자 전해질 막 제조방법.Polymer electrolyte membrane manufacturing method, characterized in that the reaction for 5 to 7 hours at 60 to 70 ℃.
  14. 아래 [화학식 1]의 반복단위를 갖는 중합체를 포함한 고분자 전해질 막을 포함하는 것을 특징으로 하는 수전해 장치 :A water electrolysis device comprising a polymer electrolyte membrane including a polymer having a repeating unit of the following [Formula 1]:
    [화학식 1] [Formula 1]
    Figure PCTKR2022014151-appb-img-000007
    Figure PCTKR2022014151-appb-img-000007
    (여기서, n은 1-50의 정수 및 m은 1-3의 정수이고, R은 SO3H 또는 CH2-SO3H 임). (Where n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
  15. 아래 [화학식 1]의 반복단위를 갖는 중합체를 포함한 고분자 전해질 막을 포함하는 것을 특징으로 하는 연료 전지 :A fuel cell comprising a polymer electrolyte membrane including a polymer having a repeating unit of the following [Formula 1]:
    [화학식 1] [Formula 1]
    Figure PCTKR2022014151-appb-img-000008
    Figure PCTKR2022014151-appb-img-000008
    (여기서, n은 1-50의 정수 및 m은 1-3의 정수이고, R은 SO3H 또는 CH2-SO3H 임). (Where n is an integer of 1-50 and m is an integer of 1-3, R is SO 3 H or CH 2 -SO 3 H).
PCT/KR2022/014151 2021-11-11 2022-09-22 Fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane and water electrolysis system using same WO2023085592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0154527 2021-11-11
KR1020210154527A KR20230068584A (en) 2021-11-11 2021-11-11 Fluorene and biphenyl based comb-shaped copolymer polymer electrolyte membranes and water electrolysis system thereof

Publications (1)

Publication Number Publication Date
WO2023085592A1 true WO2023085592A1 (en) 2023-05-19

Family

ID=86336282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014151 WO2023085592A1 (en) 2021-11-11 2022-09-22 Fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane and water electrolysis system using same

Country Status (2)

Country Link
KR (1) KR20230068584A (en)
WO (1) WO2023085592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106828A1 (en) * 2022-11-15 2024-05-23 경상국립대학교산학협력단 Fluorene-based branched copolymer polymer electrolyte membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095867A (en) * 2014-11-18 2017-08-23 렌슬러 폴리테크닉 인스티튜트 Novel polymers and methods for their manufacture
KR20210071810A (en) * 2019-12-06 2021-06-16 한양대학교 산학협력단 A novel polyfluorene-based ionomer, an anion exchange membrane and method for preparing the same
CN113583279A (en) * 2021-08-11 2021-11-02 中国科学院山西煤炭化学研究所 Anion exchange membrane containing strong rigid structure, preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461417B1 (en) 2013-08-16 2014-11-19 한양대학교 산학협력단 Perfluorosulfonic acid membrane modified with amine compounds and method for the preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095867A (en) * 2014-11-18 2017-08-23 렌슬러 폴리테크닉 인스티튜트 Novel polymers and methods for their manufacture
KR20210071810A (en) * 2019-12-06 2021-06-16 한양대학교 산학협력단 A novel polyfluorene-based ionomer, an anion exchange membrane and method for preparing the same
CN113583279A (en) * 2021-08-11 2021-11-02 中国科学院山西煤炭化学研究所 Anion exchange membrane containing strong rigid structure, preparation method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAGELS MICHAEL K., ADHIKARI SANTOSH, WALGAMA RAMALI C., SINGH ASHEESH, HAN JUNYOUNG, SHIN DONGWON, BAE CHULSUNG: "One-Pot Synthesis of Proton Exchange Membranes from Anion Exchange Membrane Precursors", ACS MACRO LETTERS, vol. 9, no. 10, 20 October 2020 (2020-10-20), pages 1489 - 1493, XP093065761, ISSN: 2161-1653, DOI: 10.1021/acsmacrolett.0c00550 *
WOO-HYUNG LEE, YU SEUNG KIM, CHULSUNG BAE: "Robust Hydroxide Ion Conducting Poly(biphenyl alkylene)s for Alkaline Fuel Cell Membranes", ACS MACRO LETTERS, vol. 4, no. 8, 18 August 2015 (2015-08-18), pages 814 - 818, XP055481849, ISSN: 2161-1653, DOI: 10.1021/acsmacrolett.5b00375 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106828A1 (en) * 2022-11-15 2024-05-23 경상국립대학교산학협력단 Fluorene-based branched copolymer polymer electrolyte membrane

Also Published As

Publication number Publication date
KR20230068584A (en) 2023-05-18

Similar Documents

Publication Publication Date Title
WO2013081437A1 (en) Sulphonate based compound, polymer electrolyte membrane comprising same and fuel cell comprising same
WO2021172706A1 (en) Carbazole-based anion exchange material, preparation method therefor, and use thereof
WO2014178619A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
WO2023085592A1 (en) Fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane and water electrolysis system using same
WO2022270934A1 (en) Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same
WO2012134254A2 (en) Polymer electrolyte and preparation method thereof
WO2015080475A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
WO2021112420A1 (en) Novel polyfluorene-based ionomer, anion exchange membrane, and method for producing same
WO2010053297A2 (en) Polymer electrolyte membrane
WO2018048134A1 (en) Membrane-electrode interface adhesion layer for fuel cell, and membrane-electrode assembly and fuel cell using same
WO2012134095A2 (en) Hydrogen ion-conducting copolymer including a diphenyl fluorene group in which a sulfonic acid group is introduced, method for preparing same, polymer electrolyte membrane produced therefrom, membrane/electrolyte assembly using same, and polymer electrolyte membrane fuel cell adopting same
WO2016122200A1 (en) Compound comprising aromatic ring, and polyelectrolyte membrane using same
WO2023234725A1 (en) Novel branch-containing poly(aryl piperidinium) copolymer ionomer, anion exchange membrane, and preparation method therefor
WO2010076911A1 (en) Post-sulfonated copolymers containing perfluorocyclobutane groups and preparation method and use thereof
WO2015064908A1 (en) Polymer electrolyte membrane for a fuel cell, method for manufacturing same, and fuel cell comprising same
WO2016068606A1 (en) Polymerization composition, polymer using polymerization composition, and polymer electrolyte membrane using polymer
WO2024039146A1 (en) Anion exchange membrane and method for manufacturing same
WO2024063333A1 (en) Polymer electrolyte membrane of fluorene- and biphenyl-based branched copolymer having condensed aliphatic sulfonic acid groups and water electrolysis system using same
WO2023249360A1 (en) Antioxidant based on graphene oxide-cerium polyphosphate nanocomposite and method for preparing same
WO2024106828A1 (en) Fluorene-based branched copolymer polymer electrolyte membrane
WO2023106657A1 (en) Polycarbazole-based cation-exchange ion conductor and method for manufacturing same
WO2019054622A1 (en) Secondary battery solid electrolyte composition and solid electrolyte prepared therefrom
WO2013154238A1 (en) Novel sulfonated conjugated tetraphenylethylene polyimides, and proton exchange membrane for fuel cell using same
WO2022131665A1 (en) Novel polyfluorene-based cross-linked copolymer, method for producing same, and anion exchange membrane for alkaline fuel cell using same
WO2016122195A1 (en) Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893015

Country of ref document: EP

Kind code of ref document: A1