WO2017171285A2 - Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same - Google Patents

Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same Download PDF

Info

Publication number
WO2017171285A2
WO2017171285A2 PCT/KR2017/002939 KR2017002939W WO2017171285A2 WO 2017171285 A2 WO2017171285 A2 WO 2017171285A2 KR 2017002939 W KR2017002939 W KR 2017002939W WO 2017171285 A2 WO2017171285 A2 WO 2017171285A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
ion conductor
porous support
ion
exchange membrane
Prior art date
Application number
PCT/KR2017/002939
Other languages
French (fr)
Korean (ko)
Other versions
WO2017171285A3 (en
Inventor
김나영
이동훈
염승집
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201780014559.1A priority Critical patent/CN109071851A/en
Priority to JP2018545648A priority patent/JP2019513164A/en
Publication of WO2017171285A2 publication Critical patent/WO2017171285A2/en
Publication of WO2017171285A3 publication Critical patent/WO2017171285A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an ion exchange membrane, a method for manufacturing the same, and an energy storage device including the same. More specifically, the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane through surface energy control, and the interface resistance is reduced. An exchange membrane, a method for manufacturing the same, and an energy storage device including the same.
  • Renewable energy sources such as solar and wind are used more efficiently than before, but these energy sources are intermittent and unpredictable. These characteristics limit the dependence on these energy sources, and the ratio of renewable energy sources among primary power sources is very low.
  • Rechargeable batteries provide a simple and efficient method of storing electricity, and thus, efforts have been made to utilize them as power sources for intermittent auxiliary power, small appliances such as laptops, tablet PCs, and mobile phones by miniaturizing them to increase mobility.
  • a redox flow battery is a secondary battery capable of storing energy for a long time by repeating charging and discharging by an electrochemical reversible reaction of an electrolyte.
  • the stack and electrolyte tank are independent of each other, which determines the capacity and output characteristics of the battery, freeing cell design and reducing installation space.
  • the redox flow battery has a load leveling function that can be installed in a power plant, a power system, or a building to cope with a sudden increase in power demand, and a function for compensating or suppressing a power failure or an instantaneous low voltage. It is a powerful energy storage technology and is suitable for large scale energy storage.
  • Redox flow cells generally consist of two separate electrolytes. One stores the electroactive material in the negative electrode reaction and the other is used for the positive electrode reaction. In the real redox flow battery, the electrolyte reaction is different from each other at the positive electrode and the negative electrode, and there is a pressure difference between the positive electrode side and the negative electrode side because the electrolyte flow occurs. Reactions of the positive and negative electrolytes in the all-vanadium redox flow battery, which is a typical redox flow battery, are shown in Schemes 1 and 2, respectively.
  • an ion exchange membrane having improved physical and chemical durability is required. It is the core material that accounts for the price of about%.
  • the ion exchange membrane is a key component that determines battery life and price.
  • the ion permeability of the ion exchange membrane must be high and the crossover of the vanadium ions must be low.
  • the resistance must be high, the ionic conductivity must be high, mechanically and chemically stable, high durability, and low cost.
  • DMFC direct methanol fuel cells
  • PEMFC polymer electrolyte membrane fuel cells
  • Numerous researches on ion exchange membranes are actively conducted as mediators for transferring ions used in electrolyte membrane fuel cells, proton exchange membrane fuel cells, redox flow batteries, and water purification equipment.
  • a widely used material for ion exchange membranes is Nafion TM based membrane, a polymer containing perfluorinated sulfonic acid group, DuPont, USA.
  • the membrane has an ion conductivity of 0.08 S / cm at room temperature, excellent mechanical strength and chemical resistance at a saturated water content, and has a stable performance as an electrolyte membrane for use in automotive fuel cells.
  • membranes of a similar type include Asahi Chemicals' Aciplex-S membrane, Dow Chemical's Dow membrane, Asahi Glass's Flemion membrane, Gore & Associate's GoreSelcet membrane, etc., and polymers perfluorinated in alpha or beta form by Ballard Power System of Canada It is under development research.
  • the membranes are expensive and difficult to synthesize, which makes them difficult to mass-produce, as well as crossover in electrical energy systems such as redox flow cells, ions such as low ion conductivity at high or low temperatures.
  • As an exchange membrane there is a disadvantage in that the efficiency is greatly reduced.
  • Another object of the present invention is to provide a method for producing the ion exchange membrane.
  • Still another object of the present invention is to provide an energy storage device including the ion exchange membrane.
  • a porous support comprising a plurality of pores (pore), an ion conductor filling the pores of the porous support, and a silica coating layer located on the surface of the porous support comprising a silica and an ion conductor It provides an ion exchange membrane comprising a.
  • the pores of the porous support may further include silica mixed with the ion conductor.
  • silica contained in the pores of the porous support may be 10 parts by weight or less.
  • the surface of the silica coating layer may include a pattern in which a plurality of grooves are formed regularly or irregularly.
  • the surface of the silica coating layer may have a fine roughness to have a surface roughness.
  • the surface of the silica coating layer may include a surface treated with fluorine gas.
  • a porous support including a plurality of pores (pore) and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support, the ion
  • the surface of the conductor coating layer provides an ion exchange membrane in which a plurality of grooves comprises a pattern formed regularly or irregularly.
  • a porous support including a plurality of pores (pore) and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support,
  • the surface of the ion conductor coating layer provides an ion exchange membrane in which fine irregularities are formed to have a surface roughness.
  • the size of the fine concave-convex may be 0.1 to 20% by length based on the total thickness of the ion conductor coating layer.
  • a porous support including a plurality of pores (pore) and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support,
  • the ion conductor coating layer provides an ion exchange membrane comprising a surface treated with fluorine gas.
  • the ion conductor is a hydrocarbon-based polymer whose main chain includes a benzene ring and an ion exchange group is attached to the benzene ring, and the surface treated with fluorine gas in the ion conductor coating layer is treated with the benzene by the fluorine gas treatment.
  • Fluorine may be substituted in the ring.
  • a fluorine-based ion conductor coating layer may be further included on the surface treated with the fluorine gas of the ion conductor coating layer.
  • the porous support may be a hydrocarbon-based porous support, and the ion conductor may be a hydrocarbon-based ion conductor.
  • the step of preparing a silica-ion conductor mixture by mixing the silica dispersion and the ion conductor, and the silica-ion conductor mixture on the surface of the porous support comprising a plurality of pores (pore) It provides a method for producing an ion exchange membrane comprising the step of coating to form a silica coating layer.
  • the silica-ion conductor mixture may form the silica coating layer on the surface of the porous support while filling the pores of the porous support.
  • Forming the silica coating layer may include filling the pores of the porous support with an ion conductor, and coating the silica-ion conductor mixture on the surface of the porous support to form the silica coating layer.
  • the method of manufacturing the ion exchange membrane may further include etching the surface of the silica coating layer after the forming of the silica coating layer.
  • the method of manufacturing the ion exchange membrane may further include treating the surface of the silica coating layer with fluorine gas after the forming of the silica coating layer.
  • filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor to form an ion conductor coating layer on the surface of the porous support, and the ion conductor coating layer It provides a method for producing an ion exchange membrane comprising the step of etching the surface.
  • the etching treatment may be performed by contacting the surface of the ion conductor coating layer with an etching solution selected from the group consisting of an etching solution including an organic solvent, an etching solution in which an ion conductor is diluted in an organic solvent, and a silica dispersion.
  • an etching solution selected from the group consisting of an etching solution including an organic solvent, an etching solution in which an ion conductor is diluted in an organic solvent, and a silica dispersion.
  • the etching treatment may be performed by any one physical treatment selected from the group consisting of laser irradiation, polishing, corona treatment, and plasma treatment.
  • filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor to form an ion conductor coating layer on the surface of the porous support, and the ion conductor coating layer It provides a method for producing an ion exchange membrane comprising the step of treating the surface with fluorine gas.
  • the method of manufacturing the ion exchange membrane may further include forming a fluorine-based ion conductor coating layer on the fluorine gas treated ion conductor coating layer.
  • an energy storage device including the ion exchange membrane is provided.
  • the energy storage device may be a fuel cell.
  • the energy storage device may be a redox flow battery.
  • the ion exchange membrane of the present invention improves interfacial bonding with other materials to be bonded to the ion exchange membrane through surface energy control, so that long-term durability is stably maintained.
  • the interfacial resistance with other materials can be reduced by controlling the surface energy of the ion exchange membrane, thereby improving the through-plane exchange performance of the ion exchange membrane, thereby improving not only the bonding durability but also the efficiency of the system. You can.
  • FIG. 1 is a schematic diagram schematically showing a full vanadium-based redox battery according to an embodiment of the present invention.
  • an ion exchange membrane includes a porous support including a plurality of pores, an ion conductor filling the pores of the porous support, and a silica and an ion conductor positioned on the surface of the porous support. Silica coating layer.
  • the porous support may include, as one example, a perfluorinated polymer having excellent resistance to thermal and chemical degradation.
  • n is an integer of 1 to 15.
  • the PTFE is commercially available and can be suitably used as the porous support.
  • expanded polytetrafluoroethylene polymer (e-PTFE) having a microstructure of polymer fibrils or microstructures in which nodes are connected to each other by fibrils may be suitably used as the porous support, and the nodes do not exist.
  • a film having a fine structure of polymer fibril, which is not used, can be suitably used as the porous support.
  • the porous support comprising the perfluorinated polymer can be made into a more porous and stronger porous support by extruding the dispersion polymerized PTFE onto the tape in the presence of a lubricant and stretching the material obtained thereby.
  • the amorphous content of PTFE may be increased by heat-treating the e-PTFE at a temperature exceeding the melting point (about 342 ° C.) of the PTFE.
  • the e-PTFE film prepared by the above method may have micropores and porosities having various diameters.
  • the e-PTFE film prepared by the method may have at least 35% of the pores, the diameter of the micropores may be about 0.01 to 1 ⁇ m.
  • the thickness of the porous support including the perfluorinated polymer can be variously changed, for example, may be 2 ⁇ m to 40 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m. If the thickness of the porous support is less than 2 ⁇ m, the mechanical strength may be significantly reduced, whereas if the thickness is more than 40 ⁇ m, the resistance loss may increase, and the weight and integration may be reduced.
  • the porous support may include a nanoweb in which nanofibers are integrated in a nonwoven form including a plurality of pores.
  • the nanofibers have excellent chemical resistance, and can be preferably used hydrocarbon-based polymers which have hydrophobicity and are free of morphological changes due to moisture in a high humidity environment.
  • the hydrocarbon-based polymer may be nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamideimide, polyethylene terephthalate, polyethylene, polypropylene, copolymers thereof, and mixtures thereof
  • the polyimide excellent in heat resistance, chemical resistance, and morphological stability can be used preferably among these, It can select from the group which consists of these.
  • the nanoweb is an aggregate of nanofibers in which nanofibers produced by electrospinning are randomly arranged.
  • 50 to 50 fiber diameters were measured using an electron scanning microscope (Scanning Electron Microscope, JSM6700F, JEOL) and calculated from the average of 40 to 5000 nm. It is preferred to have an average diameter. If the average diameter of the nanofibers is less than 40 nm, the mechanical strength of the porous support may be lowered. If the average diameter of the nanofibers exceeds 5,000 nm, the porosity may be significantly decreased and the thickness may be thickened.
  • the nanoweb is made of the nanofibers as described above, it may have a porosity of 50% or more.
  • the nanoweb preferably has a porosity of 90% or less. If the porosity of the nanoweb exceeds 90%, morphological stability may be lowered, and thus the subsequent process may not proceed smoothly.
  • the porosity may be calculated by the ratio of the air volume to the total nanoweb volume according to Equation 1 below. At this time, the total volume is calculated by measuring the width, length, thickness by preparing a sample of a rectangular shape, the air volume can be obtained by subtracting the total volume of the polymer inverted from the density after measuring the mass of the sample.
  • the nanoweb may have an average thickness of 5 to 50 ⁇ m. If the thickness of the nanoweb is less than 5 ⁇ m mechanical strength can be significantly reduced, while if the thickness is more than 50 ⁇ m the resistance loss is increased, the weight and integration can be reduced. More preferred nanoweb thicknesses range from 10 to 30 ⁇ m.
  • the ion conductor may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
  • the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
  • the cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
  • the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof.
  • Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene and mixtures thereof
  • Hydrocarbon-based polymers include, but are not limited thereto.
  • hydrocarbon-based polymers excellent in ion conductivity and advantageous in terms of price can be preferably used.
  • hydrocarbon-based polymers excellent in ion conductivity and advantageous in terms of price can be preferably used.
  • the hydrocarbon-based polymer included in the hydrocarbon-based ion conductor and the hydrocarbon-based polymer included in the porous support are the same material type.
  • SPI sulfonated polyimide
  • adhesion between the hydrocarbon-based ion conductor and the porous support can be further improved. And the interface resistance can be further lowered.
  • the anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
  • a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
  • the ion conductor may be included in 50 to 99% by weight based on the total weight of the ion exchange membrane. If the content of the ion conductor is less than 50% by weight, the ion conductivity of the ion exchange membrane may be lowered. If the content of the ion conductor is more than 99% by weight, the mechanical strength and dimensional stability of the ion exchange membrane may be reduced. .
  • the ion exchange membrane includes a silica coating layer located on the surface of the porous support.
  • the silica coating layer may be located only on one surface of the ion exchange membrane, or may be located on both sides of the ion exchange membrane.
  • the ion exchange membrane may control its surface energy through the silica coating layer.
  • the silica coating layer is used by bonding the ion exchange membrane with other materials, such as an electrode, it is possible to improve interfacial bonding with other materials and reduce interfacial resistance.
  • the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device.
  • the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
  • the silica coating layer includes silica and an ion conductor. Since the detailed description of the ion conductor is the same as described above, repeated description is omitted.
  • the kind of the silica is not limited in the present invention, and all kinds of commercialized silicas can be used.
  • the particle size of the silica is not limited in the present invention, silica having an average particle diameter of 0.01 to 100 nm can be preferably used.
  • the average particle diameter of the silica is less than 0.01 nm, the dispersibility may be deteriorated, and thus the physical properties may not be uniform.
  • the average particle diameter is greater than 100 nm, the silica may not be uniformly distributed in the silica coating layer and the thickness of the silica coating layer may increase. Accordingly, the mechanical properties of the ion exchange membrane may be lowered.
  • the silica coating layer may include 1 to 50 parts by weight, preferably 5 to 30 parts by weight of the silica with respect to 100 parts by weight of the ion conductor.
  • the silica coating layer may include 1 to 50 parts by weight, preferably 5 to 30 parts by weight of the silica with respect to 100 parts by weight of the ion conductor.
  • the content of the silica is less than 1 part by weight based on 100 parts by weight of the ion conductor, there may be no surface energy improving effect, and when the content of the silica exceeds 50 parts by weight, performance and characteristics may be rather deteriorated due to the silica nanodispersion particles. .
  • the pores of the porous support may further include silica mixed with the ion conductor.
  • the present invention is intended to control the surface energy of the surface of the ion exchange membrane through the silica coating layer, it is more located on the surface of the porous support than the silica is located in the pores of the porous support. It is preferable in terms of.
  • the silica contained in the pores of the porous support is preferably 10 parts by weight or less, preferably 5 parts by weight or less, and more preferably 1 to 5 parts by weight. If the content of silica contained in the pores of the porous support exceeds 10 parts by weight, the through-plane exchange performance of the ion exchange membrane may be reduced.
  • An ion exchange membrane includes a porous support including a plurality of pores (pore), and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support,
  • the surface of the ion conductor coating layer includes a pattern in which a plurality of grooves are formed regularly or irregularly.
  • the porous support and the ion conductor are the same as described above, and thus repeated descriptions thereof will be omitted.
  • the ion conductor not only fills the pores of the porous support, but also forms an ion conductor coating layer made of an ion conductor on the surface of the porous support.
  • the ion exchange membrane may control its surface energy through the ion conductor coating layer on which the pattern is formed.
  • the contact surface area may be increased to improve interfacial bonding with other materials and to reduce interfacial resistance.
  • the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device.
  • the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
  • the ion conductor coating layer includes a pattern in which a plurality of grooves are regularly or irregularly formed on the surface thereof.
  • the cross-sectional shape of the groove may be angled by a triangle or a square, or may be round like a semi-circle or a semi-ellipse, or the like, and the groove may be a line shape extending in the longitudinal direction, or an isolated hole without extension. hole) shape.
  • the line shape may be a straight line or a serpentine line shape
  • the hole shape may be a polygonal shape such as a circle, an ellipse or a rectangle.
  • An ion exchange membrane includes a porous support including a plurality of pores (pore), and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support,
  • the surface of the ion conductor coating layer has a fine roughness is formed to have a surface roughness.
  • the fine unevenness means that the surface of the ion conductor coating layer has a plurality of fine recesses and a plurality of fine convex portions.
  • the porous support and the ion conductor are the same as described above, and thus repeated descriptions thereof will be omitted.
  • the ion conductor not only fills the pores of the porous support, but also forms an ion conductor coating layer made of an ion conductor on the surface of the porous support.
  • the ion exchange membrane may control its surface energy through the ion conductor coating layer in which the fine unevenness is formed.
  • the contact surface area may be increased to improve interfacial bonding with other materials, and also reduce interfacial resistance.
  • the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device.
  • the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
  • the size of the fine unevenness of the ion conductor coating layer may be 0.1 to 20% by length, preferably 0.1 to 5% by length relative to the total thickness of the ion conductor coating layer.
  • the porous support having no conduction performance may be exposed to a surface, thereby degrading the performance of the ion exchange membrane.
  • the size of the fine concavo-convex means the height difference between the highest convex portion of the fine convex portion and the deepest concave portion of the fine concave portion, wherein the total thickness of the ion conductor coating layer is the porous support on one surface of the porous support Means the distance from the surface to the highest convex portion.
  • the length of the fine concavo-convex is 10% by length with respect to the total thickness of the ion conductor coating layer means that the size of the fine concavo-convex is 0.1 ⁇ m when the total thickness of the ion conductor coating layer is 1 ⁇ m.
  • An ion exchange membrane includes a porous support including a plurality of pores, and an ion conductor forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support.
  • the ion conductor coating layer includes a surface treated with fluorine gas.
  • the porous support and the ion conductor are the same as described above, and thus repeated descriptions thereof will be omitted.
  • the ion conductor not only fills the pores of the porous support, but also forms an ion conductor coating layer made of an ion conductor on the surface of the porous support.
  • the ion exchange membrane may control its surface energy through the surface treated with fluorine gas of the ion conductor coating layer.
  • the surface treated with the fluorine gas of the ion conductor coating layer may improve the interfacial adhesion with other materials and reduce the interfacial resistance when the ion exchange membrane is bonded to other materials such as an electrode.
  • the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device.
  • the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
  • the fluorine may be substituted for the benzene ring by the fluorine gas treatment.
  • the substituted fluorine may have a weaker interaction with hydrogen ions, thereby improving ion conductivity of the ion exchange membrane.
  • the hydrophilic region having the attraction force with the hydrogen ions of the ion conductor may be extremely hydrophilized and the hydrophobic region, which is the main chain including the benzene ring, may be extremely hydrophobic to improve the performance of the ion exchange membrane. Accordingly, even when the ion conductor is made of a material that does not contain fluorine, the surface treated with the fluorine gas of the ion conductor coating layer may include a very small amount (ppm) of fluorine.
  • the ion conductor made of a hydrocarbon-based polymer including a benzene ring in the main chain may be, for example, sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES). , Sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU) and mixtures thereof
  • S-PI sulfonated polyimide
  • S-PAES sulfonated polyarylethersulfone
  • SPEEK Sulfonated polyetheretherketone
  • SPBI sulfonated polybenzimidazole
  • S-PSU sulfonated polysulfone
  • the ion exchange membrane may further include a fluorine-based ion conductor coating layer on the surface treated with fluorine gas of the ion conductor coating layer.
  • the fluorine-based ion conductor coating layer may be disposed between the other materials bonded to the ion exchange membrane and the ion exchange membrane to attach the ion exchange membrane to the material, and may act as a movement passage of fuel, ions or by-products.
  • the ion conductor filling the pores of the porous support is a hydrocarbon-based ion conductor
  • the material to be bonded to the ion exchange membrane is an electrode including a fluorine-based ion conductor
  • the fluorine-based ion conductor coating layer may be formed of the ion exchange membrane and the electrode. It can arrange
  • the thickness of the fluorine-based ion conductor coating layer may be 1 to 5 ⁇ m. When the thickness of the fluorine-based ion conductor coating layer is less than 1 ⁇ m, the adhesion of the ion exchange membrane may be weakened, and when the thickness of the fluorine ion conductor coating layer is greater than 5 ⁇ m, movement of fuel or the like may not be smooth.
  • the fluorine-based ion conductor coating layer may be formed of a fluorine-based ion conductor, and the fluorine-based ion conductor may be a fluorine-based polymer containing fluorine in the main chain described above, or a polystyrene-graft-ethylenetetrafluoroethylene copolymer, or a polystyrene- And partially fluorinated polymers such as graft-polytetrafluoroethylene copolymers.
  • the fluorine-based ion conductor is a poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), a copolymer of tetrafluoroethylene and fluorovinyl ether containing a sulfonic acid group, defluorinated sulfide polyether Fluorine-based polymers including ketones or mixtures thereof, and commercially available Nafion (registered trademark) from Du Pont, Premion (registered trademark) from Asahi Glass, Inc. Perfluoro sulfonic acid systems, such as (trademark), etc. can be used.
  • the present invention is not limited thereto, and the means for controlling the surface energy can be combined with each other.
  • the surface of the silica coating layer includes a pattern in which a plurality of grooves are regularly or irregularly formed, or fine irregularities are formed to give a surface roughness. It may have, and also the surface of the silica coating layer may be fluorine gas treatment.
  • the surface of the ion conductor coating layer includes a pattern in which a plurality of grooves are regularly or irregularly formed or fine irregularities are formed to have a surface roughness
  • the surface of the ion conductor coating layer on which the pattern and the fine irregularities are formed is fluorine gas. It can also be processed.
  • a method of manufacturing an ion exchange membrane includes mixing a silica dispersion and an ion conductor to prepare a silica-ion conductor mixture, and the silica on the surface of the porous support including a plurality of pores. Coating the ion conductor mixture to form a silica coating layer.
  • the silica dispersion and the ion conductor are mixed to prepare a silica-ion conductor mixture.
  • the silica-ion conductor mixture may be prepared by adding the ion conductor to the silica dispersion and then adding an additional solvent.
  • the silica dispersion may be used by purchasing a commercially available silica dispersion, or may be prepared by dispersing silica in a solvent.
  • the silica dispersion may preferably be a silica nano dispersion, and the silica nano dispersion refers to a solution in which the silica is dispersed in nano size. Since the method of dispersing the silica in the solvent can be used a conventionally known method, a detailed description thereof will be omitted.
  • a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and a mixture of one or more thereof may be used.
  • the hydrophilic solvent is a group consisting of alcohols, isopropyl alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers, and amides containing, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have one or more functional groups selected from, they may include an alicyclic or aromatic cyclo compound as at least part of the main chain.
  • the organic solvent can be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran and mixtures thereof.
  • the silica-ion conductor mixture is coated on the surface of the porous support to form a silica coating layer.
  • the porous support may be prepared by a method selected from the group consisting of electroblowing, electrospinning, and melt blowing.
  • the silica-ion conductor mixture may be coated on the surface of the porous support using a screen printing method, a spray coating method, a doctor blade method, a laminating method, or the like, depending on the viscosity of the silica-ion conductor mixture.
  • the forming of the silica coating layer may include filling the pores of the porous support with the silica-ion conductor mixture first, and forming the silica coating layer on the surface of the porous support.
  • the porous support may be supported or impregnated in the silica-ion conductor mixture.
  • the present invention is not limited thereto, and even when the screen printing method, the spray coating method, the doctor blade method, the laminating method, and the like are used as described above, the silica-ion conductor mixture may be used to fill the pores of the porous support. It may be.
  • the porous support is supported or impregnated in the silica-ion conductor mixture so that the silica-ion conductor mixture first fills the pores of the porous support, and then sprays the silica-ion conductor mixture on the surface of the porous support. To form the silica coating layer.
  • the impregnation method may be performed by immersing the porous support in the silica-ion conductor mixture.
  • the impregnation temperature and time may be influenced by various factors. For example, it may be influenced by the thickness of the porous support, the concentration of the solution, the type of solvent and the like. However, the impregnation process may be carried out at a temperature of less than 100 °C at any point of the solvent, and more generally may be made for about 5 to 30 minutes at a temperature of 70 °C or less at room temperature (10 to 30 °C). However, the temperature may not be higher than the melting point of the porous support. After the immersion can be dried for about 3 hours or more in a hot air oven about 80 °C, such immersion, drying can be performed 2 to 5 times.
  • the forming of the silica coating layer may include filling the pores of the porous support with the ion conductor, and forming the silica coating layer by coating the silica-ion conductor mixture on the surface of the porous support. .
  • Filling the pores of the porous support with the ion conductor may be made by supporting or impregnating the porous support in a solution containing the ion conductor.
  • the present invention is not limited thereto, and even when the screen printing method, the spray coating method, the doctor blade method, the laminating method, or the like is used, the solution containing the ion conductor may also fill the pores of the porous support. have.
  • the solution containing the ion conductor may be purchased by using a commercially available ion conductor solution, or may be prepared by dispersing the ion conductor in a solvent. Since the method for dispersing the ion conductor in a solvent can be used a conventionally known method, a detailed description thereof will be omitted.
  • a solvent for preparing a solution including the ion conductor a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent, and one or more mixtures thereof may be used. Is omitted.
  • the impregnation method may be performed by immersing the porous support in a solution containing the ion conductor.
  • the impregnation temperature and time may be influenced by various factors. For example, it may be influenced by the thickness of the porous support, the concentration of the solution, the type of solvent and the like. However, the impregnation process may be performed at a temperature of 100 ° C. or less at any point of the solvent, and more generally, about 5 to 30 minutes at a temperature of 70 ° C. or less at room temperature (20 ° C.). However, the temperature may not be higher than the melting point of the porous support. After the immersion can be dried for about 3 hours or more in a hot air oven about 80 °C, such immersion, drying can be performed 2 to 5 times.
  • the silica coating layer is formed on the surface of the porous support in which the pores are filled with the ion conductor.
  • the silica-ion conductor mixture may be coated on the surface of the porous support by using the above-mentioned screen printing method, spray coating method, doctor blade method, laminating method, or the like, or an impregnation method. Detailed description thereof is the same as described above, and thus repetitive description thereof will be omitted.
  • Method of manufacturing an ion exchange membrane comprises the steps of forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor, and Etching the surface of the ion conductor coating layer.
  • porous support and the ion conductor and the method of filling the pores of the porous support with the ion conductor are the same as described above, and thus repetitive description thereof will be omitted.
  • the ion conductor fills the pores of the porous support, and forms the ion conductor coating layer on the surface of the porous support.
  • the impregnation process may be performed several times.
  • the surface of the ion conductor coating layer is etched.
  • a pattern in which a plurality of grooves are regularly or irregularly formed on the surface of the ion conductor coating layer is formed, or fine irregularities are formed to have surface roughness.
  • the etching treatment may be a chemical treatment or a physical treatment.
  • the chemical treatment may be to use an organic solvent.
  • the etching treatment may be performed by contacting an etching solution containing an organic solvent or an etching solution in which the ion conductor is diluted in the organic solvent, on the surface of the ion conductor coating layer.
  • the organic solvent is N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidine, NMP), dimethylformamide (dimethylformamide, DMF), dimethyl acetamide (dimethylacetamide, DMAc), dimethyl sulfoxide (dimethylsulfoxide, DMSO ) And mixtures thereof.
  • the etching solution may include 0 to 3% by weight of the ion conductor relative to the total weight of the etching solution.
  • the etching solution further includes the ion conductor, the polymer electrolyte membrane formed as a thin film is preferable in that the performance may be reduced due to etching, and the content of the ion conductor is 3 based on the total weight of the etching solution. If it exceeds the weight% may be converted to the direction in which the coating layer of the silica nanodispersant and the ion conductor is formed rather than the meaning of etching may cause a problem that the effect of etching is inhibited.
  • the silica dispersion for forming the silica coating layer as the etching solution may be used as the etching solution. Since the detailed description of the silica dispersion is the same as described above, repeated description is omitted. When the silica dispersion is used as the etching solution, an effect of increasing the surface area or further reducing the surface energy of the film may be generated.
  • the etching process may be performed by spraying the etching solution on the surface of the ion conductor coating layer, the intensity of the spray can be appropriately adjusted according to the size of the fine unevenness to be formed, for example, the etching treatment is the etching
  • the solution may be made by contacting the surface of the ion conductor coating layer in an amount of 0.05 to 1 ml / cm 2 . If the etching solution treatment is less than 0.05 ml / cm 2 may cause a problem that the etching effect hardly occurs, and if it exceeds 1 ml / cm 2 may cause a problem of washing off the polymer coating layer to peel off.
  • the physical treatment may be any one selected from the group consisting of laser irradiation, polishing, corona treatment, plasma treatment, and the like, wherein the polishing rubs sandpaper or nip roll cloth with an appropriate strength to form a desired fine unevenness. It can be made to.
  • the chemical treatment or the physical treatment may be performed using a mask having a pattern shape to be formed.
  • Method of manufacturing an ion exchange membrane comprises the steps of forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor, and Treating the surface of the ion conductor coating layer with fluorine gas.
  • porous support and the ion conductor and the method of filling the pores of the porous support with the ion conductor are the same as described above, and thus repetitive description thereof will be omitted.
  • the ion conductor fills the pores of the porous support, and forms the ion conductor coating layer on the surface of the porous support.
  • the impregnation process may be performed several times.
  • the surface of the ion conductor coating layer is treated with fluorine gas.
  • the surface treated with fluorine gas of the ion conductor coating layer by the fluorine gas treatment may include a covalent bond and a fluorine substituent.
  • the fluorine gas treatment may be performed by blowing fluorine gas in several ppm units in a chamber at room temperature (10 to 30 ° C.).
  • the fluorine gas treatment time may be about 5 to 60 minutes, and when the fluorine gas treatment is performed within the treatment time, about 10 to 40 area% of the surface of the ion conductor coating layer may change surface properties.
  • the method of manufacturing the ion exchange membrane may further include forming a fluorine-based ion conductor coating layer on the fluorine gas treated ion conductor coating layer.
  • a solution containing the fluorine ion conductor for forming the fluorine ion conductor coating layer may be purchased by using a solution containing a fluorine ion conductor commercially available in the same manner as the ion conductor, and the fluorine ion conductor is dispersed in a solvent It can also make it. Since the method for dispersing the fluorine-based ion conductor in the solvent can be used a conventionally known method, a detailed description thereof will be omitted.
  • a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent, and a mixture of one or more thereof may be used as a solvent for preparing a solution including the fluorine-based ion conductor, and the same as described above. Repeated explanations are omitted.
  • a screen printing method, a spray coating method, a doctor blade method, a laminating method, or the like may be used.
  • the surface of the silica coating layer may be etched or fluorine gas treated in place of the ion conductor coating layer, or the The surface of the silica coating layer may be etched after the etching process, and the surface of the silica coating layer may be etched after the fluorine gas treatment.
  • the surface of the ion conductor coating layer may be etched after the etching process, the surface of the ion conductor coating layer may be etched after the fluorine gas treatment.
  • Energy storage device includes the ion exchange membrane.
  • the energy storage device is a redox flow battery or a fuel cell will be described in detail.
  • the present invention is not limited thereto, and the ion exchange membrane may be applied to an energy storage device having a secondary battery type.
  • the ion exchange membrane has low vanadium ion permeability by blocking vanadium ions due to small ion channels, so that the vanadium active material crossovers when applied to a vanadium redox flow cell. It is possible to achieve a high energy efficiency by solving the problem of lowering the energy efficiency, the energy storage device may be preferably a redox flow battery (redox flow battery).
  • redox flow battery redox flow battery
  • the redox flow battery may be charged and discharged by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell including a positive electrode and a negative electrode disposed to face each other and the ion exchange membrane disposed between the positive electrode and the negative electrode.
  • the redox flow battery includes an all-vanadium redox battery using a V (IV) / V (V) redox couple as a cathode electrolyte and a V (II) / V (III) redox couple as a cathode electrolyte; Vanadium-based redox cells using a halogen redox couple as a positive electrode and a V (II) / V (III) redox couple as a negative electrolyte; Polysulfidebromine redox cells using a halogen redox couple as the positive electrolyte and a sulfide redox couple as the negative electrolyte; Or a zinc-bromine (Zn-Br) redox battery using a halogen redox couple as a cathode electrolyte and a zinc (Zn) redox couple as a cathode electrolyte, but the type of the redox flow battery in the present invention It is not
  • the redox flow battery is an all-vanadium redox battery
  • the redox flow battery of the present invention is not limited to the all vanadium-based redox battery.
  • 1 is a schematic diagram schematically showing the all-vanadium redox battery.
  • the redox flow battery includes a cell housing 102, the ion exchange membrane 104 installed to bisect the cell housing 102 into a positive cell 102A and a negative cell 102B, and the A positive electrode 106 and a negative electrode 108 positioned in each of the positive cell 102A and the negative cell 102B are included.
  • the redox flow battery may further include a cathode electrolyte storage tank 110 in which the cathode electrolyte is stored and a cathode electrolyte storage tank 112 in which the anode electrolyte is stored.
  • the redox flow battery includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102A, and includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102B. can do.
  • the anode electrolyte stored in the cathode electrolyte storage tank 110 flows into the cathode cell 102A through the anode electrolyte inlet by a pump 114 and then from the cathode cell 102A through the anode electrolyte outlet. Discharged.
  • the negative electrolyte stored in the negative electrolyte storage tank 112 flows into the negative cell 102B through the negative electrolyte inlet by a pump 116, and then through the negative electrolyte outlet 102 through the negative electrolyte outlet. Is discharged from
  • the movement of electrons through the anode 106 occurs according to the operation of the power supply / load 118, and thus an oxidation / reduction reaction of V 5+ ⁇ V 4+ occurs.
  • the cathode cell 102B the movement of electrons through the cathode 108 occurs according to the operation of the power source / load 118, and thus, an oxidation / reduction reaction of V 2+ ⁇ V 3+ occurs.
  • the positive electrolyte and the negative electrolyte are circulated to the positive electrolyte storage tank 110 and the negative electrolyte storage tank 112, respectively.
  • the anode 106 and the cathode 108 are Ru, Ti, Ir.
  • a composite material e.g., a Ti base material comprising an oxide of at least one metal selected from Mn, Pd, Au, and Pt, and an oxide of at least one metal selected from Ru, Ti, Ir, Coated with Ir oxide or Ru oxide), carbon composite containing the composite material, dimensionally stable electrode (DSE) containing the composite material, conductive polymer (for example, electrically conductive polymer such as polyacetylene, polythiophene, etc.) Material), graphite, glassy carbon, conductive diamond, conductive DLC (Diamond-Like Carbon), a nonwoven fabric made of carbon fiber, and a woven fabric made of carbon fiber.
  • DSE dimensionally stable electrode
  • the positive electrode electrolyte and the negative electrode electrolyte may include any one metal ion selected from the group consisting of titanium ions, vanadium ions, chromium ions, zinc ions, tin ions, and mixtures thereof.
  • the negative electrolyte includes vanadium divalent ions (V 2+ ) or vanadium trivalent ions (V 3+ ) as negative electrolyte ions
  • the positive electrolyte includes vanadium tetravalent ions (V 4) as positive electrolyte ions. + ) Or vanadium pentavalent ions (V 5+ ).
  • the concentration of the metal ions included in the cathode electrolyte and cathode electrolyte is preferably 0.3 to 5 M.
  • the solvent of the cathode electrolyte and the cathode electrolyte is H 2 SO 4 , K 2 SO 4 , Na 2 SO 4 , H 3 PO 4 , H 4 P 2 O 7 , K 2 PO 4 , Na 3 PO 4 , K 3 PO Any one selected from the group consisting of 4 , HNO 3 , KNO 3 and NaNO 3 can be used. Since the metal ions serving as the positive electrode and the negative electrode active material are all water soluble, an aqueous solution can be suitably used as a solvent of the positive electrode electrolyte and the negative electrode electrolyte.
  • the polyamic acid / THF spinning solution having a concentration of 12% by weight was electrospun in a state where a voltage of 30 kV was applied, and then a polyamic acid nanoweb precursor was formed, followed by heat treatment in an oven at 350 ° C. for 5 hours to obtain 15 ⁇ m.
  • a polyimide porous support having an average thickness was prepared. At this time, the electrospinning was carried out in a state in which a voltage of 30 kW was applied in a spray jet nozzle at 25 °C.
  • a 10 wt% ion conductor solution was prepared by dissolving sulfonated polyetheretherketone (SPEEK) in N-methyl-2-pyrrolidinone (NMP).
  • the porous support was immersed in the ion conductor solution. Specifically, the immersion process was performed at room temperature for 20 minutes, and a reduced pressure atmosphere was applied for about 1 hour to remove fine bubbles. Thereafter, the mixture was dried in a hot air oven maintained at 80 ° C. for 3 hours to remove NMP.
  • a silica-ion conductor mixture was prepared by dissolving a sulfonated polyetheretherketone (SPEEK) as an ion conductor in a silica dispersion (silica particle diameter of 15 nm, solvent isopropyl alcohol, and silica 25 wt%).
  • SPEEK sulfonated polyetheretherketone
  • the silica-ion conductor mixture contained 10 parts by weight of the silica with respect to 100 parts by weight of the ion conductor.
  • a porous support filled with voids in the ion conductor was immersed in the silica-ion conductor mixture. Specifically, an immersion process was performed at room temperature for 20 minutes, and a reduced pressure atmosphere was applied for about 1 hour to remove fine bubbles. Thereafter, the mixture was dried in a hot air IR oven maintained at 80 ° C. for 3 hours to remove NMP, thereby preparing an ion exchange membrane.
  • etching solution was prepared by diluting an ion conductor, SPEEK (sulfonated polyetheretherketone), in an organic solvent, DMAc.
  • the etching solution includes the ion conductor as 3% by weight based on the total weight of the etching solution.
  • the prepared etching solution was sprayed on the surface of the ion exchange membrane prepared in Example 1-1 at an amount of 0.1 ml / cm 2 at room temperature, and dried and etched in a hot air IR oven maintained at 80 ° C. On the surface of the prepared ion conductor, fine irregularities of 3% by length with respect to the entire thickness of the silica coating layer were formed.
  • Example 1-2 an ion exchange membrane was manufactured in the same manner as in Example 1-2, except that the prepared ion exchange membrane was physically passed through a nip roll instead of the etching treatment with the etching solution. It was. On the surface of the prepared silica coating layer, 5 length% fine unevenness was formed with respect to the entire thickness of the silica coating layer.
  • Example 1-2 except that the stripe pattern having a width of 100 nm and an interval of 100 nm on the surface of the silica coating layer by a plasma treatment method instead of etching with the organic solvent, Example 1-2 In the same manner as in the ion exchange membrane was prepared.
  • Example 1-2 Example 1- except that 10 ppm fluorine gas was treated for 60 minutes in a chamber at room temperature with respect to the 10X10 cm 2 ion exchange membrane instead of etching with the organic solvent. It carried out similarly to 2, and manufactured the ion exchange membrane.
  • the polyamic acid / THF spinning solution having a concentration of 12% by weight was electrospun in a state where a voltage of 30 kV was applied, and then a polyamic acid nanoweb precursor was formed, followed by heat treatment in an oven at 350 ° C. for 5 hours to obtain 15 ⁇ m.
  • a polyimide porous support having an average thickness was prepared. At this time, the electrospinning was carried out in a state in which a voltage of 30 kW was applied in a spray jet nozzle at 25 °C.
  • a 20 wt% ion conductor solution was prepared by dissolving sulfonated polyetheretherketone (SPEEK) in N-methyl-2-pyrrolidinone (NMP).
  • the porous support was immersed in the ion conductor solution. Specifically, the immersion process was performed at room temperature for 20 minutes, and a reduced pressure atmosphere was applied for about 1 hour to remove fine bubbles. Thereafter, the mixture was dried in a hot air oven maintained at 80 ° C. for 3 hours to remove NMP. The immersion and drying process was repeated three times to prepare an ion exchange membrane.
  • an etching solution was prepared by diluting an ion conductor SPEEK (sulfonated polyetheretherketone) in an organic solvent DMAc.
  • the etching solution includes the ion conductor as 3% by weight based on the total weight of the etching solution.
  • the prepared etching solution was sprayed on the surface of the prepared ion exchange membrane at an amount of 0.1 ml / cm 2 at room temperature, and then dried and etched in a hot air IR oven maintained at 80 ° C. On the surface of the prepared ion conductor, fine unevenness of 1% by length with respect to the total thickness of the ion conductor coating layer was formed.
  • Example 2-1 an ion exchange membrane was manufactured in the same manner as in Example 2-1, except that the prepared ion exchange membrane was physically passed through a nip roll instead of the etching treatment with the etching solution. It was. On the surface of the prepared ion exchange membrane, fine lengths of 5% by length of the total thickness of the ion conductor coating layer were formed.
  • Example 2-1 except that the stripe pattern having a width of 100 nm and an interval of 100 nm was formed on the surface of the ion conductor coating layer by plasma treatment instead of etching with the organic solvent. It carried out similarly to 1, and manufactured the ion exchange membrane.
  • Example 2-1 except that 10 ppm fluorine gas was treated for 60 minutes in a chamber at room temperature with respect to the 10X10 cm 2 sized ion exchange membrane instead of etching with the organic solvent, Example 2- It carried out similarly to 1, and manufactured the ion exchange membrane.
  • the Pt / C electrodes were fixed on both sides of the ion exchange membrane prepared in the above example, and the through plane hydrogen ion conductivity was measured at 95% RH and 80 ° C., and the results are shown below.
  • Example 1-1 0.05
  • Example 1-2 0.08
  • Example 1-3 0.06
  • Example 1-4 0.07
  • Example 1-5 0.09
  • Example 2-1 0.04
  • Example 2-2 0.06
  • Example 2-3 0.06
  • Example 3 0.07
  • the ion exchange membranes of Examples 1-1 to 3 showed high hydrogen ion conductivity of 0.04 to 0.09 S / cm.
  • the surface energy of the ion exchange membrane prepared in the above example was evaluated by measuring the contact angle with respect to water, and the results are shown below.
  • Example 1-1 Contact angle (°) Example 1-1 63 Example 1-2 60 Example 1-3 70 Example 1-4 65 Example 1-5 70 Example 2-1 80 Example 2-2 75 Example 2-3 70 Example 3 75
  • the contact angles of Examples 1-1 to 3 including the silica coating layer having a low surface energy, or the surface etching treatment, the patterning process, and the fluorine gas were all 60 ° or more, and the average As high as 69 ° or more.
  • the surface energy of the ion exchange membrane was controlled to reduce the interface resistance by the preferred embodiment of the present invention.
  • the interface bonding property was improved by controlling the surface energy of the ion exchange membrane.
  • an energy storage device including an ion exchange membrane according to an exemplary embodiment of the present invention, particularly a redox flow battery
  • a load leveling function capable of responding to a sudden increase in power demand by installing in a power plant, a power system, or a building, a power failure or an instantaneous low voltage It is suitable for large-scale energy storage because it has the function to compensate or suppress the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an ion-exchange membrane, a method for manufacturing the same, and an energy storing device comprising the same. The ion-exchange membrane comprises: a porous support body comprising multiple pores; an ionic conductor filling the pores of the porous support body; and a silica coating layer that is positioned on the surface of the porous support body and comprises silica and an ionic conductor. An ion-exchange membrane according to an embodiment of the present invention has an improved bondability at an interface with other materials, which are bonded to the ion-exchange membrane, by means of surface energy control. Therefore, the ion-exchange membrane has a long-term durability maintained stably and thus can improve bonding durability not only when applied to an energy storing device, but also when applied to a power generating system. In addition, an ion-exchange membrane according to an embodiment of the present invention has a reduced resistance at an interface with other materials by means of surface energy control, and the through-plane exchange performance of the ion-exchange membrane is accordingly improved, making it possible to improve not only the bonding durability, but also the system efficiency.

Description

이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치Ion-exchange membrane, method for manufacturing same, and energy storage device including same
본 발명은 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치에 관한 것으로서, 보다 상세하게는 표면 에너지 제어를 통하여 이온 교환막과 접합되는 다른 소재들과의 계면 접합성이 향상되고 계면 저항이 감소된 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치에 관한 것이다.The present invention relates to an ion exchange membrane, a method for manufacturing the same, and an energy storage device including the same. More specifically, the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane through surface energy control, and the interface resistance is reduced. An exchange membrane, a method for manufacturing the same, and an energy storage device including the same.
화석 연료의 고갈과 환경 오염에 대한 문제를 해결하기 위하여 사용 효율을 향상시킴으로써 화석 연료를 절약하거나 재생 가능한 에너지를 보다 많은 분야에 적용하고자 하는 노력이 이루어지고 있다.In order to solve the problem of depletion of fossil fuels and environmental pollution, efforts are being made to save fossil fuels or to apply renewable energy to more fields by improving the use efficiency.
태양열 및 풍력과 같은 재생 가능한 에너지원은 이전보다 더 많이 효율적으로 사용되고 있으나, 이들 에너지원은 간헐적이며 예측 불가능하다. 이러한 특성으로 인해 이들 에너지원에 대한 의존도가 제한되며, 현재 일차전력원 중 재생에너지원이 차지하는 비율은 매우 낮다.Renewable energy sources such as solar and wind are used more efficiently than before, but these energy sources are intermittent and unpredictable. These characteristics limit the dependence on these energy sources, and the ratio of renewable energy sources among primary power sources is very low.
재충전 가능한 전지(rechargeable battery)는 단순하고 효율적인 전기 저장 방법을 제공하므로 이를 소형화하여 이동성을 높여 간헐적 보조 전원이나 랩탑, 태블릿 PC, 휴대전화 등의 소형가전의 전원으로 활용하고자하는 노력이 지속되고 있다.Rechargeable batteries provide a simple and efficient method of storing electricity, and thus, efforts have been made to utilize them as power sources for intermittent auxiliary power, small appliances such as laptops, tablet PCs, and mobile phones by miniaturizing them to increase mobility.
그 중 레독스 플로우 전지(RFB; Redox Flow Battery)는 전해질의 전기 화학적인 가역 반응에 의한 충전과 방전을 반복하여 에너지를 장기간 저장하여 사용할 수 있는 2차 전지이다. 전지의 용량과 출력 특성을 각각 좌우하는 스택과 전해질 탱크가 서로 독립적으로 구성되어 있어 전지 설계가 자유로우며 설치 공간 제약도 적다.Among them, a redox flow battery (RFB) is a secondary battery capable of storing energy for a long time by repeating charging and discharging by an electrochemical reversible reaction of an electrolyte. The stack and electrolyte tank are independent of each other, which determines the capacity and output characteristics of the battery, freeing cell design and reducing installation space.
또한, 레독스 플로우 전지는 발전소나 전력계통, 건물에 설치해 급격한 전력 수요 증가에 대응할 수 있는 부하 평준화 기능, 정전이나 순간저전압을 보상하거나 억제하는 기능 등을 가지고 있으며 필요에 따라 자유롭게 조합할 수 있는 매우 유력한 에너지 저장 기술이며 대규모 에너지 저장에 적합한 시스템이다.In addition, the redox flow battery has a load leveling function that can be installed in a power plant, a power system, or a building to cope with a sudden increase in power demand, and a function for compensating or suppressing a power failure or an instantaneous low voltage. It is a powerful energy storage technology and is suitable for large scale energy storage.
레독스 플로우 전지는 일반적으로 두 개의 분리된 전해질로 구성된다. 하나는 음성 전극 반응에서 전기 활성 물질을 저장하며 다른 하나는 양성 전극 반응에 사용된다. 실제 레독스 플로우 전지에서 전해질 반응은 양극과 음극에서 서로 상이하며 전해질액 흐름 현상이 존재하므로 양극 쪽과 음극 쪽에서 압력차가 발생한다. 대표적인 레독스 플로우 전지인 전바나듐계 레독스 플로우 전지에서 양극 및 음극 전해질의 반응은 각각 하기 반응식 1 및 반응식 2와 같다.Redox flow cells generally consist of two separate electrolytes. One stores the electroactive material in the negative electrode reaction and the other is used for the positive electrode reaction. In the real redox flow battery, the electrolyte reaction is different from each other at the positive electrode and the negative electrode, and there is a pressure difference between the positive electrode side and the negative electrode side because the electrolyte flow occurs. Reactions of the positive and negative electrolytes in the all-vanadium redox flow battery, which is a typical redox flow battery, are shown in Schemes 1 and 2, respectively.
[반응식 1]Scheme 1
Figure PCTKR2017002939-appb-I000001
Figure PCTKR2017002939-appb-I000001
[반응식 2]Scheme 2
Figure PCTKR2017002939-appb-I000002
Figure PCTKR2017002939-appb-I000002
따라서, 양 전극에서의 압력차를 극복하고 충전과 방전을 반복하여도 우수한 전지 성능을 나타내기 위해서는 물리적, 화학적 내구성이 향상된 이온 교환막을 필요로 하며, 레독스 플로우 전지에서 이온 교환막은 시스템 중 약 10% 수준에 이르는 가격을 차지하고 있는 핵심 소재이다.Therefore, in order to overcome the pressure difference at both electrodes and to show excellent battery performance even after repeated charging and discharging, an ion exchange membrane having improved physical and chemical durability is required. It is the core material that accounts for the price of about%.
이처럼, 레독스 플로우 전지에서 이온 교환막은 전지 수명과 가격을 결정하는 핵심 부품으로 레독스 플로우 전지의 상용화를 위해서는 이온 교환막의 이온의 선택 투과성이 높아서 바나듐 이온의 크로스오버(crossover)가 낮아야 하고, 전기적 저항이 작아서 이온 전도도가 높아야 하고, 기계적 및 화학적으로 안정하여 내구성이 높으면서도 가격이 저렴해야 한다.As such, in the redox flow battery, the ion exchange membrane is a key component that determines battery life and price. In order to commercialize the redox flow battery, the ion permeability of the ion exchange membrane must be high and the crossover of the vanadium ions must be low. The resistance must be high, the ionic conductivity must be high, mechanically and chemically stable, high durability, and low cost.
한편, 현재 이온 교환막으로 상용화된 고분자 전해질 막은 수 십 년 동안 사용되었을 뿐 아니라 꾸준히 연구되고 있는 분야로서, 최근에도 직접메탄올 연료전지(DMFC; direct methanol fuel cell)나 고분자 전해질막 연료전지(PEMFC; polymer electrolyte membrane fuel cell, proton exchange membrane fuel cell), 레독스 플로우 전지, 수처리 장치(Water purification) 등에 사용되는 이온을 전달하는 매개체로서 이온 교환막에 대한 수많은 연구가 활발히 진행되고 있다.Meanwhile, polymer electrolyte membranes commercialized as ion exchange membranes have been used for decades and are continuously being studied. Recently, direct methanol fuel cells (DMFC) or polymer electrolyte membrane fuel cells (PEMFC; polymer) have been used. Numerous researches on ion exchange membranes are actively conducted as mediators for transferring ions used in electrolyte membrane fuel cells, proton exchange membrane fuel cells, redox flow batteries, and water purification equipment.
현재 이온 교환막으로 널리 사용되는 물질은 미국 듀퐁사의 과불화 술폰산기 함유 고분자인 나피온(Nafion)™ 계열막이 있다. 이 막은 포화 수분 함량일 때, 상온에서 0.08 S/㎝의 이온 전도성과 우수한 기계적 강도 및 내화학성을 가지며, 자동차용 연료전지에 이용될 만큼 전해질막으로서 안정적인 성능을 가지고 있다. 또한, 이와 유사한 형태의 상용막으로는 아사히 케미칼스(Asahi Chemicals)사의 아시플렉스-에스(Aciplex-S)막, 다우케미칼스(Dow Chemicals)사의 다우(Dow)막, 아사히 글래스(Asahi Glass)사의 플레미온(Flemion)막, 고어 & 어쏘시에이트(Gore & Associate)사의 고어셀렉트(GoreSelcet)막 등이 있으며, 캐나다의 발라드 파워 시스템(Ballard Power System)사에서 알파 또는 베타 형태로 과불소화된 고분자가 개발 연구 중에 있다.A widely used material for ion exchange membranes is Nafion ™ based membrane, a polymer containing perfluorinated sulfonic acid group, DuPont, USA. The membrane has an ion conductivity of 0.08 S / cm at room temperature, excellent mechanical strength and chemical resistance at a saturated water content, and has a stable performance as an electrolyte membrane for use in automotive fuel cells. In addition, commercially available membranes of a similar type include Asahi Chemicals' Aciplex-S membrane, Dow Chemical's Dow membrane, Asahi Glass's Flemion membrane, Gore & Associate's GoreSelcet membrane, etc., and polymers perfluorinated in alpha or beta form by Ballard Power System of Canada It is under development research.
그러나, 상기 막들은 가격이 고가이며 합성 방법이 까다로워 대량 생산의 어려움이 있을 뿐만 아니라, 레독스 흐름전지와 같은 전기에너지 시스템에서 크로스오버 현상, 높은 온도나 낮은 온도에서 낮은 이온 전도도를 갖는 등의 이온 교환막으로서 효율성이 크게 떨어지는 단점을 가지고 있다.However, the membranes are expensive and difficult to synthesize, which makes them difficult to mass-produce, as well as crossover in electrical energy systems such as redox flow cells, ions such as low ion conductivity at high or low temperatures. As an exchange membrane, there is a disadvantage in that the efficiency is greatly reduced.
본 발명의 목적은 표면 에너지 제어를 통하여 다른 소재들과의 계면 접합성이 향상되고 계면 저항이 감소된 이온 교환막을 제공하는 것이다.It is an object of the present invention to provide an ion exchange membrane with improved interfacial bonding with other materials and reduced interfacial resistance through surface energy control.
본 발명의 다른 목적은 상기 이온 교환막의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the ion exchange membrane.
본 발명의 또 다른 목적은 상기 이온 교환막을 포함하는 에너지 저장 장치를 제공하는 것이다.Still another object of the present invention is to provide an energy storage device including the ion exchange membrane.
본 발명의 일 실시예에 따르면, 다수의 공극(pore)을 포함하는 다공성 지지체, 상기 다공성 지지체의 공극을 채우고 있는 이온 전도체, 그리고 상기 다공성 지지체의 표면에 위치하며 실리카 및 이온 전도체를 포함하는 실리카 코팅층을 포함하는 이온 교환막을 제공한다.According to one embodiment of the present invention, a porous support comprising a plurality of pores (pore), an ion conductor filling the pores of the porous support, and a silica coating layer located on the surface of the porous support comprising a silica and an ion conductor It provides an ion exchange membrane comprising a.
상기 다공성 지지체의 공극은 상기 이온 전도체와 혼합된 실리카를 더 포함할 수 있다.The pores of the porous support may further include silica mixed with the ion conductor.
상기 실리카 코팅층에 포함된 실리카 100 중량부에 대하여, 상기 다공성 지지체의 공극에 포함된 실리카는 10 중량부 이하일 수 있다. With respect to 100 parts by weight of silica included in the silica coating layer, silica contained in the pores of the porous support may be 10 parts by weight or less.
상기 실리카 코팅층의 표면은 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함할 수 있다.The surface of the silica coating layer may include a pattern in which a plurality of grooves are formed regularly or irregularly.
상기 실리카 코팅층의 표면은 미세 요철이 형성되어 표면 거칠기를 가질 수 있다.The surface of the silica coating layer may have a fine roughness to have a surface roughness.
상기 실리카 코팅층의 표면은 불소 가스로 처리된 표면을 포함할 수 있다.The surface of the silica coating layer may include a surface treated with fluorine gas.
본 발명의 다른 일 실시예에 따르면, 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며, 상기 이온 전도체 코팅층의 표면은 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함하는 것인 이온 교환막을 제공한다.According to another embodiment of the present invention, a porous support including a plurality of pores (pore) and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support, the ion The surface of the conductor coating layer provides an ion exchange membrane in which a plurality of grooves comprises a pattern formed regularly or irregularly.
본 발명의 또 다른 일 실시예에 따르면, 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며, 상기 이온 전도체 코팅층의 표면은 미세 요철이 형성되어 표면 거칠기를 가지는 것인 이온 교환막을 제공한다.According to another embodiment of the present invention, a porous support including a plurality of pores (pore) and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support, The surface of the ion conductor coating layer provides an ion exchange membrane in which fine irregularities are formed to have a surface roughness.
상기 미세 요철의 크기는 이온 전도체 코팅층 전체 두께에 대하여 0.1 내지 20 길이%일 수 있다.The size of the fine concave-convex may be 0.1 to 20% by length based on the total thickness of the ion conductor coating layer.
본 발명의 또 다른 일 실시예에 따르면, 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며, 상기 이온 전도체 코팅층은 불소 가스로 처리된 표면을 포함하는 것인 이온 교환막을 제공한다.According to another embodiment of the present invention, a porous support including a plurality of pores (pore) and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support, The ion conductor coating layer provides an ion exchange membrane comprising a surface treated with fluorine gas.
상기 이온 전도체는 주쇄가 벤젠링을 포함하며 상기 벤젠링에 이온 교환 그룹이 붙어있는 탄화수소계 고분자이고, 상기 이온 전도체 코팅층의 불소 가스로 처리된 표면은 상기 불소 가스 처리에 의하여 상기 이온 전도체의 상기 벤젠링에 불소가 치환될 수 있다.The ion conductor is a hydrocarbon-based polymer whose main chain includes a benzene ring and an ion exchange group is attached to the benzene ring, and the surface treated with fluorine gas in the ion conductor coating layer is treated with the benzene by the fluorine gas treatment. Fluorine may be substituted in the ring.
상기 이온 전도체 코팅층의 불소 가스로 처리된 표면 위에 불소계 이온 전도체 코팅층을 더 포함할 수 있다.A fluorine-based ion conductor coating layer may be further included on the surface treated with the fluorine gas of the ion conductor coating layer.
상기 다공성 지지체는 탄화수소계 다공성 지지체이고, 상기 이온 전도체는 탄화수소계 이온 전도체일 수 있다.The porous support may be a hydrocarbon-based porous support, and the ion conductor may be a hydrocarbon-based ion conductor.
본 발명의 또 다른 일 실시예에 따르면, 실리카 분산액과 이온 전도체를 혼합하여 실리카-이온전도체 혼합물을 제조하는 단계, 그리고 다수의 공극(pore)을 포함하는 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 코팅하여 실리카 코팅층을 형성하는 단계를 포함하는 이온 교환막의 제조 방법을 제공한다.According to another embodiment of the present invention, the step of preparing a silica-ion conductor mixture by mixing the silica dispersion and the ion conductor, and the silica-ion conductor mixture on the surface of the porous support comprising a plurality of pores (pore) It provides a method for producing an ion exchange membrane comprising the step of coating to form a silica coating layer.
상기 실리카 코팅층을 형성하는 단계는 상기 실리카-이온전도체 혼합물이 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 상기 실리카 코팅층을 형성시킬 수 있다.In the forming of the silica coating layer, the silica-ion conductor mixture may form the silica coating layer on the surface of the porous support while filling the pores of the porous support.
상기 실리카 코팅층을 형성하는 단계는 이온 전도체로 상기 다공성 지지체의 공극을 채우는 단계, 및 상기 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 코팅하여 상기 실리카 코팅층을 형성시키는 단계를 포함할 수 있다.Forming the silica coating layer may include filling the pores of the porous support with an ion conductor, and coating the silica-ion conductor mixture on the surface of the porous support to form the silica coating layer.
상기 이온 교환막의 제조 방법은 상기 실리카 코팅층의 형성 단계 이후에, 상기 실리카 코팅층의 표면을 식각 처리하는 단계를 더 포함할 수 있다.The method of manufacturing the ion exchange membrane may further include etching the surface of the silica coating layer after the forming of the silica coating layer.
상기 이온 교환막의 제조 방법은 상기 실리카 코팅층의 형성 단계 이후에, 상기 실리카 코팅층의 표면을 불소 가스로 처리하는 단계를 더 포함할 수 있다.The method of manufacturing the ion exchange membrane may further include treating the surface of the silica coating layer with fluorine gas after the forming of the silica coating layer.
본 발명의 또 다른 일 실시예에 따르면, 다수의 공극(pore)을 포함하는 다공성 지지체의 공극을 이온 전도체로 채우면서 상기 다공성 지지체의 표면에 이온 전도체 코팅층을 형성하는 단계, 그리고 상기 이온 전도체 코팅층의 표면을 식각 처리하는 단계를 포함하는 이온 교환막의 제조 방법을 제공한다.According to another embodiment of the present invention, filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor to form an ion conductor coating layer on the surface of the porous support, and the ion conductor coating layer It provides a method for producing an ion exchange membrane comprising the step of etching the surface.
상기 식각 처리는 유기 용매를 포함하는 식각 용액, 이온 전도체를 유기 용매에 희석시킨 식각 용액 및 실리카 분산액으로 이루어진 군에서 선택되는 어느 하나의 식각 용액을 상기 이온 전도체 코팅층의 표면에 접촉시켜 이루어질 수 있다.The etching treatment may be performed by contacting the surface of the ion conductor coating layer with an etching solution selected from the group consisting of an etching solution including an organic solvent, an etching solution in which an ion conductor is diluted in an organic solvent, and a silica dispersion.
상기 식각 처리는 레이저 조사, 폴리싱(polishing), 코로나 처리 및 플라즈마 처리로 이루어진 군에서 선택되는 어느 하나의 물리적 처리에 의하여 이루어질 수 있다.The etching treatment may be performed by any one physical treatment selected from the group consisting of laser irradiation, polishing, corona treatment, and plasma treatment.
본 발명의 또 다른 일 실시예에 따르면, 다수의 공극(pore)을 포함하는 다공성 지지체의 공극을 이온 전도체로 채우면서 상기 다공성 지지체의 표면에 이온 전도체 코팅층을 형성하는 단계, 그리고 상기 이온 전도체 코팅층의 표면을 불소 가스로 처리하는 단계를 포함하는 이온 교환막의 제조 방법을 제공한다.According to another embodiment of the present invention, filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor to form an ion conductor coating layer on the surface of the porous support, and the ion conductor coating layer It provides a method for producing an ion exchange membrane comprising the step of treating the surface with fluorine gas.
상기 이온 교환막의 제조 방법은 상기 불소 가스 처리된 이온 전도체 코팅층 위에 불소계 이온 전도체 코팅층을 형성하는 단계를 더 포함할 수 있다.The method of manufacturing the ion exchange membrane may further include forming a fluorine-based ion conductor coating layer on the fluorine gas treated ion conductor coating layer.
본 발명의 또 다른 일 실시예에 따르면, 상기 이온 교환막을 포함하는 에너지 저장 장치를 제공한다.According to another embodiment of the present invention, an energy storage device including the ion exchange membrane is provided.
상기 에너지 저장 장치는 연료 전지일 수 있다.The energy storage device may be a fuel cell.
상기 에너지 저장 장치는 레독스 플로우 전지(redox flow battery)일 수 있다.The energy storage device may be a redox flow battery.
본 발명의 이온 교환막은 표면 에너지 제어를 통하여, 이온 교환막과 접합되는 다른 소재들과의 계면 접합성이 향상되어 장기적인 내구성이 안정적으로 유지되므로, 에너지 저장 장치뿐만 아니라 발전용 시스템에 적용시에도 접합 내구성의 향상이 가능하며, 또한 이온 교환막의 표면 에너지 제어를 통하여 다른 소재들과의 계면 저항도 감소되어, 이온 교환막의 두께 방향(through-plane) 교환 성능을 향상시킴으로써, 접합 내구성뿐만 아니라 시스템의 효율도 향상시킬 수 있다.The ion exchange membrane of the present invention improves interfacial bonding with other materials to be bonded to the ion exchange membrane through surface energy control, so that long-term durability is stably maintained. In addition, the interfacial resistance with other materials can be reduced by controlling the surface energy of the ion exchange membrane, thereby improving the through-plane exchange performance of the ion exchange membrane, thereby improving not only the bonding durability but also the efficiency of the system. You can.
도 1은 본 발명의 일 실시예에 따른 전바나듐계 레독스 전지를 개략적으로 나타내는 모식도이다.1 is a schematic diagram schematically showing a full vanadium-based redox battery according to an embodiment of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명의 일 실시예에 따른 이온 교환막은 다수의 공극(pore)을 포함하는 다공성 지지체, 상기 다공성 지지체의 공극을 채우고 있는 이온 전도체, 그리고 상기 다공성 지지체의 표면에 위치하며 실리카 및 이온 전도체를 포함하는 실리카 코팅층을 포함한다.According to an embodiment of the present invention, an ion exchange membrane includes a porous support including a plurality of pores, an ion conductor filling the pores of the porous support, and a silica and an ion conductor positioned on the surface of the porous support. Silica coating layer.
상기 다공성 지지체는, 하나의 예시로서 열적 및 화학적 분해에 대한 저항성이 우수한 과불소화 중합체를 포함할 수 있다. 예를 들면, 상기 다공성 지지체는 폴리테트라플루오로에틸렌(PTFE) 또는 테트라플루오로에틸렌과 CF2=CFCnF2n +1(n은 1 내지 5의 정수) 또는 하기 화학식 1로 표시되는 화합물과의 공중합체일 수 있다.The porous support may include, as one example, a perfluorinated polymer having excellent resistance to thermal and chemical degradation. For example, the porous support may be polytetrafluoroethylene (PTFE) or tetrafluoroethylene and CF 2 = CFC n F 2n +1 (n is an integer of 1 to 5) or a compound represented by Formula 1 below. It may be a copolymer.
[화학식 1][Formula 1]
Figure PCTKR2017002939-appb-I000003
Figure PCTKR2017002939-appb-I000003
상기 화학식 1에서, m은 0 내지 15의 정수이고, n은 1 내지 15의 정수이다.In Formula 1, m is an integer of 0 to 15, n is an integer of 1 to 15.
상기 PTFE는 상업적으로 이용되고 있어 상기 다공성 지지체로서 적합하게 사용할 수 있다. 또한, 고분자 피브릴의 미세 구조, 또는 피브릴에 의해서 마디가 서로 연결된 미세 구조를 가지는 발포 폴리테트라플루오로에틸렌 폴리머(e-PTFE)도 상기 다공성 지지체로서 적합하게 사용할 수 있으며, 상기 마디가 존재하지 않는 고분자 피브릴의 미세 구조를 가지는 필름도 상기 다공성 지지체로서 적합하게 사용할 수 있다. The PTFE is commercially available and can be suitably used as the porous support. In addition, expanded polytetrafluoroethylene polymer (e-PTFE) having a microstructure of polymer fibrils or microstructures in which nodes are connected to each other by fibrils may be suitably used as the porous support, and the nodes do not exist. A film having a fine structure of polymer fibril, which is not used, can be suitably used as the porous support.
상기 과불소화 중합체를 포함하는 다공성 지지체는 분산 중합 PTFE를 윤활제의 존재하에서 테이프에 압출 성형하고, 이에 의하여 얻어진 재료를 연신하여 보다 다공질이며, 보다 강한 다공성 지지체로 제조할 수 있다. 또한, 상기 PTFE의 융점(약 342 ℃)을 초과하는 온도에서 상기 e-PTFE를 열처리함으로써 PTFE의 비정질 함유율을 증가시킬 수도 있다. 상기 방법으로 제조된 e-PTFE 필름은 다양한 지름을 가지는 미세 기공 및 공극율을 가질 수 있다. 상기 방법으로 제조된 e-PTFE 필름은 적어도 35 %의 공극을 가질 수 있으며, 상기 미세 기공의 지름은 약 0.01 내지 1 ㎛일 수 있다. 또한, 상기 과불소화 중합체를 포함하는 다공성 지지체의 두께는 다양하게 변화 가능하나, 일 예로 2 ㎛ 내지 40 ㎛, 바람직하게는 5 ㎛ 내지 20 ㎛일 수 있다. 상기 다공성 지지체의 두께가 2 ㎛ 미만이면 기계적 강도가 현저히 떨어질 수 있고, 반면 두께가 40 ㎛를 초과하면 저항손실이 증가하고, 경량화 및 집적화가 떨어질 수 있다.The porous support comprising the perfluorinated polymer can be made into a more porous and stronger porous support by extruding the dispersion polymerized PTFE onto the tape in the presence of a lubricant and stretching the material obtained thereby. In addition, the amorphous content of PTFE may be increased by heat-treating the e-PTFE at a temperature exceeding the melting point (about 342 ° C.) of the PTFE. The e-PTFE film prepared by the above method may have micropores and porosities having various diameters. The e-PTFE film prepared by the method may have at least 35% of the pores, the diameter of the micropores may be about 0.01 to 1 ㎛. In addition, the thickness of the porous support including the perfluorinated polymer can be variously changed, for example, may be 2 ㎛ to 40 ㎛, preferably 5 ㎛ to 20 ㎛. If the thickness of the porous support is less than 2 μm, the mechanical strength may be significantly reduced, whereas if the thickness is more than 40 μm, the resistance loss may increase, and the weight and integration may be reduced.
상기 다공성 지지체의 다른 하나의 예시로서, 상기 다공성 지지체는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노웹을 포함할 수 있다.As another example of the porous support, the porous support may include a nanoweb in which nanofibers are integrated in a nonwoven form including a plurality of pores.
상기 나노 섬유는 우수한 내화학성을 나타내고, 소수성을 가져 고습의 환경에서 수분에 의한 형태 변형 우려가 없는 탄화수소계 고분자를 바람직하게 사용할 수 있다. 구체적으로 상기 탄화수소계 고분자로는 나일론, 폴리이미드, 폴리아라미드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리아닐린, 폴리에틸렌옥사이드, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트, 스티렌 부타디엔 고무, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐알코올, 폴리비닐리덴 플루오라이드, 폴리비닐 부틸렌, 폴리우레탄, 폴리벤즈옥사졸, 폴리벤즈이미다졸, 폴리아미드이미드, 폴리에틸렌테레프탈레이트, 폴리에틸렌, 폴리프로필렌, 이들의 공중합체, 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있으며, 이중에서도 내열성, 내화학성, 및 형태 안정성이 보다 우수한 폴리이미드를 바람직하게 사용할 수 있다.The nanofibers have excellent chemical resistance, and can be preferably used hydrocarbon-based polymers which have hydrophobicity and are free of morphological changes due to moisture in a high humidity environment. Specifically, the hydrocarbon-based polymer may be nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamideimide, polyethylene terephthalate, polyethylene, polypropylene, copolymers thereof, and mixtures thereof The polyimide excellent in heat resistance, chemical resistance, and morphological stability can be used preferably among these, It can select from the group which consists of these.
상기 나노웹은 전기 방사에 의해 제조된 나노 섬유가 랜덤하게 배열된 나노 섬유의 집합체이다. 이때 상기 나노 섬유는 상기 나노웹의 다공도 및 두께를 고려하여, 전자주사현미경(Scanning Electron Microscope, JSM6700F, JEOL)을 이용하여 50 개의 섬유 직경을 측정하여 그 평균으로부터 계산했을 때, 40 내지 5000 ㎚의 평균 직경을 갖는 것이 바람직하다. 만일 상기 나노 섬유의 평균 직경이 40 ㎚ 미만일 경우 상기 다공성 지지체의 기계적 강도가 저하될 수 있고, 상기 나노 섬유의 평균 직경이 5,000 ㎚를 초과할 경우 다공도가 현저히 떨어지고 두께가 두꺼워질 수 있다. The nanoweb is an aggregate of nanofibers in which nanofibers produced by electrospinning are randomly arranged. In this case, considering the porosity and thickness of the nanoweb, 50 to 50 fiber diameters were measured using an electron scanning microscope (Scanning Electron Microscope, JSM6700F, JEOL) and calculated from the average of 40 to 5000 nm. It is preferred to have an average diameter. If the average diameter of the nanofibers is less than 40 nm, the mechanical strength of the porous support may be lowered. If the average diameter of the nanofibers exceeds 5,000 nm, the porosity may be significantly decreased and the thickness may be thickened.
상기 나노웹은 상기와 같은 나노 섬유로 이루어짐으로써, 50 % 이상의 다공도를 가질 수 있다. 한편, 상기 나노웹은 90 % 이하의 다공도를 갖는 것이 바람직하다. 만일, 상기 나노웹의 다공도가 90 %를 초과할 경우 형태 안정성이 저하됨으로써 후공정이 원활하게 진행되지 않을 수 있다. 상기 다공도는 하기 수학식 1에 따라 상기 나노웹 전체부피 대비 공기부피의 비율에 의하여 계산할 수 있다. 이때, 상기 전체부피는 직사각형 형태의 샘플을 제조하여 가로, 세로, 두께를 측정하여 계산하고, 공기부피는 샘플의 질량을 측정 후 밀도로부터 역산한 고분자 부피를 전체부피에서 빼서 얻을 수 있다.The nanoweb is made of the nanofibers as described above, it may have a porosity of 50% or more. On the other hand, the nanoweb preferably has a porosity of 90% or less. If the porosity of the nanoweb exceeds 90%, morphological stability may be lowered, and thus the subsequent process may not proceed smoothly. The porosity may be calculated by the ratio of the air volume to the total nanoweb volume according to Equation 1 below. At this time, the total volume is calculated by measuring the width, length, thickness by preparing a sample of a rectangular shape, the air volume can be obtained by subtracting the total volume of the polymer inverted from the density after measuring the mass of the sample.
[수학식 1][Equation 1]
다공도(%) = (나노웹 내 공기부피/나노웹의 전체부피) X 100Porosity (%) = (air volume in nanoweb / total volume of nanoweb) X 100
또한, 상기 나노웹은 5 내지 50 ㎛의 평균 두께를 가질 수 있다. 상기 나노웹의 두께가 5 ㎛ 미만이면 기계적 강도가 현저히 떨어질 수 있고, 반면 두께가 50 ㎛를 초과하면 저항손실이 증가하고, 경량화 및 집적화가 떨어질 수 있다. 보다 바람직한 나노웹의 두께는 10 내지 30 ㎛의 범위이다.In addition, the nanoweb may have an average thickness of 5 to 50 ㎛. If the thickness of the nanoweb is less than 5 ㎛ mechanical strength can be significantly reduced, while if the thickness is more than 50 ㎛ the resistance loss is increased, the weight and integration can be reduced. More preferred nanoweb thicknesses range from 10 to 30 μm.
한편, 상기 이온 전도체는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다. Meanwhile, the ion conductor may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.The cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.The cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene) 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.More specifically, when the cationic conductor is a hydrogen ion cationic conductor, the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof. Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof. Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene and mixtures thereof Hydrocarbon-based polymers include, but are not limited thereto.
한편, 상기 양이온 전도체 중에서 이온 전도 기능이 우수하고 가격면에서도 유리한 탄화수소계 고분자를 바람직하게 이용할 수 있다. 또한, 상기 이온 전도체로서 탄화수소계 고분자를 사용하고, 상기 다공성 지지체로서 탄화수소계 고분자를 사용하는 경우, 상기 탄화수소계 이온 전도체에 포함된 탄화수소계 고분자와 상기 다공성 지지체에 포함된 탄화수소계 고분자를 서로 동일한 물질계로 구성할 수 있으며, 구체적으로는 상기 탄화수소계 이온 전도체로서 SPI(sulfonated polyimide)를 이용하고 상기 다공성 지지체로서 폴리이미드를 이용할 경우 상기 탄화수소계 이온 전도체와 상기 다공성 지지체 사이의 접착성을 더욱 향상시킬 수 있고, 계면 저항을 더욱 낮출 수 있다.On the other hand, among the cationic conductors, hydrocarbon-based polymers excellent in ion conductivity and advantageous in terms of price can be preferably used. In addition, when a hydrocarbon-based polymer is used as the ion conductor and a hydrocarbon-based polymer is used as the porous support, the hydrocarbon-based polymer included in the hydrocarbon-based ion conductor and the hydrocarbon-based polymer included in the porous support are the same material type. In particular, when using SPI (sulfonated polyimide) as the hydrocarbon-based ion conductor and polyimide as the porous support, adhesion between the hydrocarbon-based ion conductor and the porous support can be further improved. And the interface resistance can be further lowered.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.The anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.As the anion conductor, a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
상기 이온 전도체는 상기 이온 교환막 전체 중량에 대하여 50 내지 99중량%로 포함될 수 있다. 상기 이온 전도체의 함량이 50 중량% 미만이면 상기 이온 교환막의 이온 전도도가 저하될 우려가 있고, 상기 이온 전도체의 함량이 99 중량%를 초과하면 상기 이온 교환막의 기계적 강도 및 치수안정성이 저하될 수 있다.The ion conductor may be included in 50 to 99% by weight based on the total weight of the ion exchange membrane. If the content of the ion conductor is less than 50% by weight, the ion conductivity of the ion exchange membrane may be lowered. If the content of the ion conductor is more than 99% by weight, the mechanical strength and dimensional stability of the ion exchange membrane may be reduced. .
한편, 상기 이온 교환막은 상기 다공성 지지체의 표면에 위치하는 실리카 코팅층을 포함한다. 상기 실리카 코팅층은 상기 이온 교환막의 일면에만 위치할 수 있고, 상기 이온 교환막의 양면에 모두 위치할 수도 있다.On the other hand, the ion exchange membrane includes a silica coating layer located on the surface of the porous support. The silica coating layer may be located only on one surface of the ion exchange membrane, or may be located on both sides of the ion exchange membrane.
상기 이온 교환막은 상기 실리카 코팅층을 통하여 그 표면 에너지를 제어할 수 있다. 상기 실리카 코팅층은 상기 이온 교환막을 전극과 같은 다른 소재들과 접합하여 사용시, 다른 소재들과의 계면 접합성을 향상시키며, 계면 저항도 감소시킬 수 있다. 이를 통하여, 상기 이온 교환막은 상기 이온 교환막과 접합되는 다른 소재들과의 계면 접합성이 향상되어 장기적인 내구성이 안정적으로 유지되므로, 에너지 저장 장치 뿐만 아니라 발전용 시스템에 적용시에도 접합 내구성의 향상이 가능하며, 또한 상기 이온 교환막은 상기 다른 소재들과의 계면 저항도 감소되어, 이온 교환막의 두께 방향(through-plane) 교환 성능을 향상시킴으로써, 접합 내구성 뿐만 아니라 시스템의 효율도 향상시킬 수 있다.The ion exchange membrane may control its surface energy through the silica coating layer. When the silica coating layer is used by bonding the ion exchange membrane with other materials, such as an electrode, it is possible to improve interfacial bonding with other materials and reduce interfacial resistance. As a result, the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device. In addition, the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
상기 실리카 코팅층은 실리카 및 이온 전도체를 포함한다. 상기 이온 전도체에 대한 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.The silica coating layer includes silica and an ion conductor. Since the detailed description of the ion conductor is the same as described above, repeated description is omitted.
상기 실리카의 종류는 본 발명에서 한정되지 않으며 상용화된 모든 종류의 실리카를 사용할 수 있다. 또한, 상기 실리카의 입자 크기도 본 발명에서 한정되지 않으나, 0.01 내지 100 nm의 평균 입경을 가지는 실리카를 바람직하게 사용할 수 있다. 상기 실리카의 평균 입경이 0.01 nm 미만일 경우 분산성이 저하되어 물성이 균일하지 않을 수 있고, 100 nm를 초과하는 경우 상기 실리카가 상기 실리카 코팅층 내부에 균일하게 분포되기 어렵고 상기 실리카 코팅층의 두께가 증가함에 따라 상기 이온 교환막의 기계적 물성이 저하될 수 있다.The kind of the silica is not limited in the present invention, and all kinds of commercialized silicas can be used. In addition, although the particle size of the silica is not limited in the present invention, silica having an average particle diameter of 0.01 to 100 nm can be preferably used. When the average particle diameter of the silica is less than 0.01 nm, the dispersibility may be deteriorated, and thus the physical properties may not be uniform. When the average particle diameter is greater than 100 nm, the silica may not be uniformly distributed in the silica coating layer and the thickness of the silica coating layer may increase. Accordingly, the mechanical properties of the ion exchange membrane may be lowered.
상기 실리카 코팅층은 상기 이온 전도체 100 중량부에 대하여 상기 실리카를 1 내지 50 중량부, 바람직하게 5 내지 30 중량부로 포함할 수 있다. 상기 실리카의 함량이 상기 이온 전도체 100 중량부에 대하여 1 중량부 미만인 경우 표면 에너지 개선 효과가 없을 수 있고, 50 중량부를 초과하는 경우 상기 실리카 나노 분산 입자들로 인하여 오히려 성능 및 특성이 저하될 수 있다.The silica coating layer may include 1 to 50 parts by weight, preferably 5 to 30 parts by weight of the silica with respect to 100 parts by weight of the ion conductor. When the content of the silica is less than 1 part by weight based on 100 parts by weight of the ion conductor, there may be no surface energy improving effect, and when the content of the silica exceeds 50 parts by weight, performance and characteristics may be rather deteriorated due to the silica nanodispersion particles. .
상기 다공성 지지체의 공극은 상기 이온 전도체와 혼합된 실리카를 더 포함할 수 있다. 다만, 본 발명은 상기 실리카 코팅층을 통해 상기 이온 교환막 표면의 표면 에너지를 제어하기 위한 것이므로, 상기 실리카가 상기 다공성 지지체의 공극 내에 위치하는 것 보다는 상기 다공성 지지체의 표면에 더 많이 위치하는 것이 표면 에너지 제어 측면에서 바람직하다.The pores of the porous support may further include silica mixed with the ion conductor. However, since the present invention is intended to control the surface energy of the surface of the ion exchange membrane through the silica coating layer, it is more located on the surface of the porous support than the silica is located in the pores of the porous support. It is preferable in terms of.
이에 따라, 상기 실리카 코팅층에 포함된 실리카 100 중량부에 대하여, 상기 다공성 지지체의 공극에 포함된 실리카는 10 중량부 이하, 바람직하게 5 중량부 이하, 더욱 바람직하게 1 내지 5 중량부인 것이 바람직하다. 만약, 상기 다공성 지지체의 공극에 포함된 실리카의 함량이 10 중량부를 초과하는 경우 상기 이온 교환막의 두께 방향(through-plane) 교환 성능이 저하될 수 있다.Accordingly, based on 100 parts by weight of silica included in the silica coating layer, the silica contained in the pores of the porous support is preferably 10 parts by weight or less, preferably 5 parts by weight or less, and more preferably 1 to 5 parts by weight. If the content of silica contained in the pores of the porous support exceeds 10 parts by weight, the through-plane exchange performance of the ion exchange membrane may be reduced.
본 발명의 다른 일 실시예에 따른 이온 교환막은 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며, 상기 이온 전도체 코팅층의 표면은 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함한다.An ion exchange membrane according to another embodiment of the present invention includes a porous support including a plurality of pores (pore), and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support, The surface of the ion conductor coating layer includes a pattern in which a plurality of grooves are formed regularly or irregularly.
상기 다공성 지지체 및 이온 전도체에 대한 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다. 다만, 여기에서 상기 이온 전도체는 상기 다공성 지지체의 공극을 채울 뿐만 아니라, 상기 다공성 지지체 표면에 이온 전도체로 이루어지는 이온 전도체 코팅층을 형성한다.Detailed descriptions of the porous support and the ion conductor are the same as described above, and thus repeated descriptions thereof will be omitted. Here, the ion conductor not only fills the pores of the porous support, but also forms an ion conductor coating layer made of an ion conductor on the surface of the porous support.
상기 이온 교환막은 상기 패턴이 형성된 이온 전도체 코팅층을 통하여 그 표면 에너지를 제어할 수 있다. 상기 패턴이 형성된 이온 전도체 코팅층은 상기 이온 교환막을 전극과 같은 다른 소재들과 접합하여 사용시, 접촉 표면적을 증가시켜 다른 소재들과의 계면 접합성을 향상시키며, 계면 저항도 감소시킬 수 있다. 이를 통하여, 상기 이온 교환막은 상기 이온 교환막과 접합되는 다른 소재들과의 계면 접합성이 향상되어 장기적인 내구성이 안정적으로 유지되므로, 에너지 저장 장치 뿐만 아니라 발전용 시스템에 적용시에도 접합 내구성의 향상이 가능하며, 또한 상기 이온 교환막은 상기 다른 소재들과의 계면 저항도 감소되어, 이온 교환막의 두께 방향(through-plane) 교환 성능을 향상시킴으로써, 접합 내구성 뿐만 아니라 시스템의 효율도 향상시킬 수 있다.The ion exchange membrane may control its surface energy through the ion conductor coating layer on which the pattern is formed. When the patterned ion conductor coating layer is used by bonding the ion exchange membrane with other materials such as an electrode, the contact surface area may be increased to improve interfacial bonding with other materials and to reduce interfacial resistance. As a result, the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device. In addition, the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
이때, 상기 이온 전도체 코팅층은 그 표면에 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함한다. 상기 홈의 단면 형상은 삼각 또는 사각 등으로 각이 져 있거나, 반원 또는 반타원 등과 같이 라운드 져 있을 수 있고, 상기 홈은 길이 방향으로 연장된 라인(line) 형상이거나, 연장되지 않고 고립된 홀(hole) 형상일 수 있다. 상기 라인 형상은 직선이거나 구불구불한 선 형태일 수 있고, 상기 홀 형상은 원, 타원 또는 사각형 등의 다각형 형상일 수 있다.In this case, the ion conductor coating layer includes a pattern in which a plurality of grooves are regularly or irregularly formed on the surface thereof. The cross-sectional shape of the groove may be angled by a triangle or a square, or may be round like a semi-circle or a semi-ellipse, or the like, and the groove may be a line shape extending in the longitudinal direction, or an isolated hole without extension. hole) shape. The line shape may be a straight line or a serpentine line shape, and the hole shape may be a polygonal shape such as a circle, an ellipse or a rectangle.
본 발명의 다른 일 실시예에 따른 이온 교환막은 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며, 상기 이온 전도체 코팅층의 표면은 미세 요철이 형성되어 표면 거칠기를 가진다. 여기서, 상기 미세 요철이란 상기 이온 전도체 코팅층의 표면이 다수개의 미세한 오목부와 다수개의 미세한 볼록부를 가지는 것을 의미한다.An ion exchange membrane according to another embodiment of the present invention includes a porous support including a plurality of pores (pore), and an ion conductor for forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support, The surface of the ion conductor coating layer has a fine roughness is formed to have a surface roughness. Here, the fine unevenness means that the surface of the ion conductor coating layer has a plurality of fine recesses and a plurality of fine convex portions.
상기 다공성 지지체 및 이온 전도체에 대한 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다. 다만, 여기에서 상기 이온 전도체는 상기 다공성 지지체의 공극을 채울 뿐만 아니라, 상기 다공성 지지체 표면에 이온 전도체로 이루어지는 이온 전도체 코팅층을 형성한다.Detailed descriptions of the porous support and the ion conductor are the same as described above, and thus repeated descriptions thereof will be omitted. Here, the ion conductor not only fills the pores of the porous support, but also forms an ion conductor coating layer made of an ion conductor on the surface of the porous support.
상기 이온 교환막은 상기 미세 요철이 형성된 이온 전도체 코팅층을 통하여 그 표면 에너지를 제어할 수 있다. 상기 미세 요철이 형성된 이온 전도체 코팅층은 상기 이온 교환막을 전극과 같은 다른 소재들과 접합하여 사용시, 접촉 표면적을 증가시켜 다른 소재들과의 계면 접합성을 향상시키며, 계면 저항도 감소시킬 수 있다. 이를 통하여, 상기 이온 교환막은 상기 이온 교환막과 접합되는 다른 소재들과의 계면 접합성이 향상되어 장기적인 내구성이 안정적으로 유지되므로, 에너지 저장 장치 뿐만 아니라 발전용 시스템에 적용시에도 접합 내구성의 향상이 가능하며, 또한 상기 이온 교환막은 상기 다른 소재들과의 계면 저항도 감소되어, 이온 교환막의 두께 방향(through-plane) 교환 성능을 향상시킴으로써, 접합 내구성 뿐만 아니라 시스템의 효율도 향상시킬 수 있다.The ion exchange membrane may control its surface energy through the ion conductor coating layer in which the fine unevenness is formed. When the ion conductive coating layer having the fine unevenness is used by bonding the ion exchange membrane with other materials such as an electrode, the contact surface area may be increased to improve interfacial bonding with other materials, and also reduce interfacial resistance. As a result, the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device. In addition, the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
상기 이온 전도체 코팅층의 상기 미세 요철의 크기는 상기 이온 전도체 코팅층 전체 두께에 대하여 0.1 내지 20 길이%일 수 있고, 바람직하게 0.1 내지 5 길이%일 수 있다. 상기 미세 요철의 크기가 20 길이%를 초과하는 경우 전도 성능이 없는 상기 다공성 지지체가 표면에 노출되어 상기 이온 교환막의 성능이 저하될 수 있다.The size of the fine unevenness of the ion conductor coating layer may be 0.1 to 20% by length, preferably 0.1 to 5% by length relative to the total thickness of the ion conductor coating layer. When the size of the fine concavo-convex exceeds 20% by length, the porous support having no conduction performance may be exposed to a surface, thereby degrading the performance of the ion exchange membrane.
여기서, 상기 미세 요철의 크기는 상기 미세한 볼록부 중 가장 높은 볼록부와 상기 미세한 오목부 중 가장 깊은 오목부의 높이차를 의미하고, 이때 상기 이온 전도체 코팅층의 전체 두께는 상기 다공성 지지체 일면에서 상기 다공성 지지체 표면으로부터 상기 가장 높은 볼록부 까지의 거리를 의미한다. 예를 들어, 상기 미세 요철의 크기가 상기 이온 전도체 코팅층 전체 두께에 대하여 10 길이%라 함은 상기 이온 전도체 코팅층 전체 두께가 1 ㎛인 경우 상기 미세 요철의 크기가 0.1 ㎛인 것을 의미한다. Here, the size of the fine concavo-convex means the height difference between the highest convex portion of the fine convex portion and the deepest concave portion of the fine concave portion, wherein the total thickness of the ion conductor coating layer is the porous support on one surface of the porous support Means the distance from the surface to the highest convex portion. For example, the length of the fine concavo-convex is 10% by length with respect to the total thickness of the ion conductor coating layer means that the size of the fine concavo-convex is 0.1 μm when the total thickness of the ion conductor coating layer is 1 ㎛.
본 발명의 또 다른 일 실시예에 따른 이온 교환막은 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며, 상기 이온 전도체 코팅층은 불소 가스로 처리된 표면을 포함한다.An ion exchange membrane according to another embodiment of the present invention includes a porous support including a plurality of pores, and an ion conductor forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support. The ion conductor coating layer includes a surface treated with fluorine gas.
상기 다공성 지지체 및 이온 전도체에 대한 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다. 다만, 여기에서 상기 이온 전도체는 상기 다공성 지지체의 공극을 채울 뿐만 아니라, 상기 다공성 지지체 표면에 이온 전도체로 이루어지는 이온 전도체 코팅층을 형성한다.Detailed descriptions of the porous support and the ion conductor are the same as described above, and thus repeated descriptions thereof will be omitted. Here, the ion conductor not only fills the pores of the porous support, but also forms an ion conductor coating layer made of an ion conductor on the surface of the porous support.
상기 이온 교환막은 상기 이온 전도체 코팅층의 불소 가스로 처리된 표면을 통하여 그 표면 에너지를 제어할 수 있다. 상기 이온 전도체 코팅층의 불소 가스로 처리된 표면은 상기 이온 교환막을 전극과 같은 다른 소재들과 접합하여 사용시, 다른 소재들과의 계면 접합성을 향상시키며, 계면 저항도 감소시킬 수 있다. 이를 통하여, 상기 이온 교환막은 상기 이온 교환막과 접합되는 다른 소재들과의 계면 접합성이 향상되어 장기적인 내구성이 안정적으로 유지되므로, 에너지 저장 장치 뿐만 아니라 발전용 시스템에 적용시에도 접합 내구성의 향상이 가능하며, 또한 상기 이온 교환막은 상기 다른 소재들과의 계면 저항도 감소되어, 이온 교환막의 두께 방향(through-plane) 교환 성능을 향상시킴으로써, 접합 내구성 뿐만 아니라 시스템의 효율도 향상시킬 수 있다.The ion exchange membrane may control its surface energy through the surface treated with fluorine gas of the ion conductor coating layer. The surface treated with the fluorine gas of the ion conductor coating layer may improve the interfacial adhesion with other materials and reduce the interfacial resistance when the ion exchange membrane is bonded to other materials such as an electrode. As a result, the ion exchange membrane has improved interfacial bonding with other materials bonded to the ion exchange membrane, so that long-term durability is maintained stably, and thus the bonding durability can be improved when applied to a power generation system as well as an energy storage device. In addition, the ion exchange membrane is also reduced in interfacial resistance with the other materials, thereby improving the through-plane exchange performance of the ion exchange membrane, it is possible to improve the efficiency of the system as well as bonding durability.
또한, 이온 전도체가 주쇄에 벤젠링을 포함하는 탄화수소계 고분자이고 상기 이온 교환 그룹이 상기 벤젠링에 붙어있는 경우, 상기 불소 가스 처리에 의하여 상기 벤젠링에 상기 불소가 치환될 수 있다. 이 경우, 상기 치환된 불소가 상기 이온 교환 그룹의 전자를 잡아 당겨 상기 이온 교환 그룹이 수소 이온과의 인력(interaction)이 약해지면서 상기 이온 교환막의 이온 전도성이 향상될 수 있다. 이처럼, 상기 불소 가스 처리에 의하여 상기 이온 전도체의 수소 이온과 인력을 가지는 친수성 영역은 극 친수화시키고 상기 벤젠링을 포함하는 주쇄인 소수성 영역은 극 소수화시켜 상기 이온 교환막의 성능을 향상시킬 수 있다. 이에 따라, 상기 이온 전도체가 불소를 포함하지 않는 물질로 이루어진 경우에도, 상기 이온 전도체 코팅층의 불소 가스로 처리된 표면은 극소량(ppm 단위)의 불소를 포함할 수 있다.In addition, when the ion conductor is a hydrocarbon-based polymer including a benzene ring in the main chain and the ion exchange group is attached to the benzene ring, the fluorine may be substituted for the benzene ring by the fluorine gas treatment. In this case, as the substituted fluorine pulls electrons of the ion exchange group, the ion exchange group may have a weaker interaction with hydrogen ions, thereby improving ion conductivity of the ion exchange membrane. As described above, the hydrophilic region having the attraction force with the hydrogen ions of the ion conductor may be extremely hydrophilized and the hydrophobic region, which is the main chain including the benzene ring, may be extremely hydrophobic to improve the performance of the ion exchange membrane. Accordingly, even when the ion conductor is made of a material that does not contain fluorine, the surface treated with the fluorine gas of the ion conductor coating layer may include a very small amount (ppm) of fluorine.
상기 주쇄에 벤젠링을 포함하는 탄화수소계 고분자로 이루어진 상기 이온 전도체는 예를 들어, 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나를 들 수 있으나, 본 발명이 이에 한정되는 것은 아니다.The ion conductor made of a hydrocarbon-based polymer including a benzene ring in the main chain may be, for example, sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES). , Sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU) and mixtures thereof One selected may be mentioned, but the present invention is not limited thereto.
또한, 상기 이온 교환막은 상기 이온 전도체 코팅층의 불소 가스로 처리된 표면 위에 불소계 이온 전도체 코팅층을 더 포함할 수 있다.In addition, the ion exchange membrane may further include a fluorine-based ion conductor coating layer on the surface treated with fluorine gas of the ion conductor coating layer.
상기 불소계 이온 전도체 코팅층은 상기 이온 교환막과 접합되는 다른 소재들과 상기 이온 교환막 사이에 배치되어 상기 이온 교환막을 상기 소재에 부착시키는 역할과, 연료, 이온 또는 부산물의 이동 통로로서 작용할 수 있다. 특히, 상기 다공성 지지체의 공극을 채우고 있는 이온 전도체가 탄화수소계 이온 전도체이고, 상기 이온 교환막과 접합되는 소재가 불소계 이온 전도체를 포함하고 있는 전극인 경우, 상기 불소계 이온 전도체 코팅층은 상기 이온 교환막과 상기 전극 사이에 배치되어 이들의 접합성을 더욱 향상시킬 수 있다.The fluorine-based ion conductor coating layer may be disposed between the other materials bonded to the ion exchange membrane and the ion exchange membrane to attach the ion exchange membrane to the material, and may act as a movement passage of fuel, ions or by-products. In particular, when the ion conductor filling the pores of the porous support is a hydrocarbon-based ion conductor, and the material to be bonded to the ion exchange membrane is an electrode including a fluorine-based ion conductor, the fluorine-based ion conductor coating layer may be formed of the ion exchange membrane and the electrode. It can arrange | position between them and can improve these joining further.
상기 불소계 이온 전도체 코팅층의 두께는 1 내지 5 ㎛일 수 있다. 상기 불소계 이온 전도체 코팅층의 두께가 1 ㎛ 미만인 경우에는 상기 이온 교환막의 부착력이 약화될 수 있고, 5 ㎛를 초과하는 경우에는 연료 등의 이동이 원활해지지 않을 수 있다. The thickness of the fluorine-based ion conductor coating layer may be 1 to 5 ㎛. When the thickness of the fluorine-based ion conductor coating layer is less than 1 μm, the adhesion of the ion exchange membrane may be weakened, and when the thickness of the fluorine ion conductor coating layer is greater than 5 μm, movement of fuel or the like may not be smooth.
상기 불소계 이온 전도체 코팅층은 불소계 이온 전도체로 이루어질 수 있는데, 상기 불소계 이온 전도체는 상기에서 예시한 주쇄에 불소를 포함하는 플루오르계 고분자, 또는 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자 등을 들 수 있다.The fluorine-based ion conductor coating layer may be formed of a fluorine-based ion conductor, and the fluorine-based ion conductor may be a fluorine-based polymer containing fluorine in the main chain described above, or a polystyrene-graft-ethylenetetrafluoroethylene copolymer, or a polystyrene- And partially fluorinated polymers such as graft-polytetrafluoroethylene copolymers.
보다 구체적으로, 상기 불소계 이온 전도체는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자를 들 수 있고, 상업적으로는 듀폰(du Pont)사의 나피온(Nafion, 등록상표), 아사히 글라스사의 프레미온(등록상표) 또는 아사히 가세이사의 아시플렉스(등록상표) 등의 퍼플루오로 술폰산계 등을 이용할 수 있다.More specifically, the fluorine-based ion conductor is a poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), a copolymer of tetrafluoroethylene and fluorovinyl ether containing a sulfonic acid group, defluorinated sulfide polyether Fluorine-based polymers including ketones or mixtures thereof, and commercially available Nafion (registered trademark) from Du Pont, Premion (registered trademark) from Asahi Glass, Inc. Perfluoro sulfonic acid systems, such as (trademark), etc. can be used.
한편, 상기 이온 교환막의 표면 에너지를 제어할 수 있는 수단에 대하여 각각 설명하였으나, 본 발명이 이에 한정되는 것은 아니고, 상기 표면 에너지를 제어할 수 있는 수단은 서로 조합하는 것이 가능하다.Meanwhile, although the means for controlling the surface energy of the ion exchange membrane has been described, respectively, the present invention is not limited thereto, and the means for controlling the surface energy can be combined with each other.
예를 들어, 상기 이온 교환막이 상기 실리카 코팅층을 포함하는 경우, 상기 이온 전도체 코팅층을 대신하여 상기 실리카 코팅층의 표면이 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함하거나, 미세 요철이 형성되어 표면 거칠기를 가질 수 있으며, 또한 상기 실리카 코팅층의 표면이 불소 가스 처리될 수 있다.For example, when the ion exchange membrane includes the silica coating layer, instead of the ion conductor coating layer, the surface of the silica coating layer includes a pattern in which a plurality of grooves are regularly or irregularly formed, or fine irregularities are formed to give a surface roughness. It may have, and also the surface of the silica coating layer may be fluorine gas treatment.
또한, 상기 이온 전도체 코팅층의 표면이 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함하거나, 미세 요철이 형성되어 표면 거칠기를 가지는 경우에도, 상기 패턴 및 미세 요철이 형성된 이온 전도체 코팅층 표면을 불소 가스로 처리할 수도 있다.In addition, even when the surface of the ion conductor coating layer includes a pattern in which a plurality of grooves are regularly or irregularly formed or fine irregularities are formed to have a surface roughness, the surface of the ion conductor coating layer on which the pattern and the fine irregularities are formed is fluorine gas. It can also be processed.
본 발명의 또 다른 일 실시예에 따른 이온 교환막의 제조 방법은 실리카 분산액과 이온 전도체를 혼합하여 실리카-이온전도체 혼합물을 제조하는 단계, 그리고 다수의 공극(pore)을 포함하는 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 코팅하여 실리카 코팅층을 형성하는 단계를 포함한다.According to another embodiment of the present invention, a method of manufacturing an ion exchange membrane includes mixing a silica dispersion and an ion conductor to prepare a silica-ion conductor mixture, and the silica on the surface of the porous support including a plurality of pores. Coating the ion conductor mixture to form a silica coating layer.
우선, 상기 실리카 분산액과 이온 전도체를 혼합하여 실리카-이온전도체 혼합물을 제조한다. 상기 실리카-이온전도체 혼합물을 제조는 상기 실리카 분산액에 상기 이온 전도체를 첨가한 후 추가 용매를 첨가함으로써 이루어질 수도 있다.First, the silica dispersion and the ion conductor are mixed to prepare a silica-ion conductor mixture. The silica-ion conductor mixture may be prepared by adding the ion conductor to the silica dispersion and then adding an additional solvent.
상기 실리카와 이온 전도체에 대한 구체적인 설명은 상기한 바와 동일하므로, 반복적인 설명은 생략한다.Since the detailed description of the silica and the ion conductor is the same as described above, repeated description is omitted.
상기 실리카 분산액은 상용화된 실리카 분산액을 구입하여 사용할 수 있고, 실리카를 용매에 분산시켜 제조할 수도 있다. 상기 실리카 분산액은 바람직하게 실리카 나노 분산액일 수 있고, 상기 실리카 나노 분산액은 상기 실리카가 나노 크기로 분산된 용액을 의미한다. 상기 실리카를 용매에 분산시키는 방법은 종래 일반적으로 알려진 방법을 사용하는 것이 가능하므로 구체적인 설명은 생략한다.The silica dispersion may be used by purchasing a commercially available silica dispersion, or may be prepared by dispersing silica in a solvent. The silica dispersion may preferably be a silica nano dispersion, and the silica nano dispersion refers to a solution in which the silica is dispersed in nano size. Since the method of dispersing the silica in the solvent can be used a conventionally known method, a detailed description thereof will be omitted.
상기 실리카 분산액을 제조하기 위한 용매 또는 상기 추가 용매로는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매를 이용할 수 있다.As the solvent for preparing the silica dispersion or the additional solvent, a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and a mixture of one or more thereof may be used.
상기 친수성 용매는 탄소수 1 내지 12의 직쇄상, 분지상의 포화 또는 불포화 탄화수소를 주쇄로서 포함하는 알코올, 이소프로필 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 것일 수 있으며, 이들은 지환식 또는 방향족 사이클로 화합물을 주쇄의 최소한 일부로 포함할 수 있다. The hydrophilic solvent is a group consisting of alcohols, isopropyl alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers, and amides containing, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have one or more functional groups selected from, they may include an alicyclic or aromatic cyclo compound as at least part of the main chain.
상기 유기 용매는 N-메틸피롤리돈, 디메틸술폭사이드, 테트라하이드로퓨란 및 이들의 혼합물에서 선택할 수 있다.The organic solvent can be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran and mixtures thereof.
다음으로, 상기 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 코팅하여 실리카 코팅층을 형성한다.Next, the silica-ion conductor mixture is coated on the surface of the porous support to form a silica coating layer.
상기 다공성 지지체에 대한 구체적인 설명은 상기한 바와 동일하므로, 반복적인 설명은 생략한다. 다만, 상기 다공성 지지체는 일렉트로블로잉(electroblowing), 일렉트로스피닝(electrospinning) 및 멜트 블로잉(melt blowing)으로 이루어진 군에서 선택되는 방법 등에 의해 제조될 수 있다. Since the detailed description of the porous support is the same as described above, repeated description is omitted. However, the porous support may be prepared by a method selected from the group consisting of electroblowing, electrospinning, and melt blowing.
상기 실리카-이온전도체 혼합물을 상기 다공성 지지체 표면에 코팅하는 방법은 상기 실리카-이온전도체 혼합물의 점도에 따라 스크린 프린팅법, 스프레이 코팅법, 닥터 블레이드법, 라미네이팅법 등을 사용할 수 있다.The silica-ion conductor mixture may be coated on the surface of the porous support using a screen printing method, a spray coating method, a doctor blade method, a laminating method, or the like, depending on the viscosity of the silica-ion conductor mixture.
한편, 상기 실리카 코팅층을 형성하는 단계는 상기 실리카-이온전도체 혼합물이 먼저 상기 다공성 지지체의 공극을 채우는 단계, 및 상기 다공성 지지체 표면에 상기 실리카 코팅층이 형성되는 단계를 포함할 수 있다.Meanwhile, the forming of the silica coating layer may include filling the pores of the porous support with the silica-ion conductor mixture first, and forming the silica coating layer on the surface of the porous support.
이를 위하여, 상기 다공성 지지체를 상기 실리카-이온전도체 혼합물에 담지 또는 함침할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니고, 상기한 바와 같이 스크린 프린팅법, 스프레이 코팅법, 닥터 블레이드법, 라미네이팅법 등을 이용하는 경우에도 상기 실리카-이온전도체 혼합물이 상기 다공성 지지체의 공극을 채우도록 할 수도 있다. To this end, the porous support may be supported or impregnated in the silica-ion conductor mixture. However, the present invention is not limited thereto, and even when the screen printing method, the spray coating method, the doctor blade method, the laminating method, and the like are used as described above, the silica-ion conductor mixture may be used to fill the pores of the porous support. It may be.
또한, 상기 다공성 지지체를 상기 실리카-이온전도체 혼합물에 담지 또는 함침시켜, 상기 실리카-이온전도체 혼합물이 먼저 상기 다공성 지지체의 공극을 채우도록 한 후, 상기 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 스프레이 하여 상기 실리카 코팅층을 형성할 수도 있다.In addition, the porous support is supported or impregnated in the silica-ion conductor mixture so that the silica-ion conductor mixture first fills the pores of the porous support, and then sprays the silica-ion conductor mixture on the surface of the porous support. To form the silica coating layer.
구체적으로, 상기 함침하는 방법은 상기 다공성 지지체를 상기 실리카-이온전도체 혼합물에 침지하여 실시할 수 있다. 상기 함침 온도 및 시간은 다양한 요소들의 영향을 받을 수 있다. 예를 들면, 상기 다공성 지지체의 두께, 상기 용액의 농도, 용매의 종류 등에 의하여 영향을 받을 수 있다. 다만, 상기 함침 공정은 상기 용매의 어느점 이상에서 100 ℃ 이하의 온도에서 이루어질 수 있으며, 더욱 일반적으로 상온(10 내지 30 ℃)에서 70 ℃ 이하의 온도에서 약 5 내지 30분 동안 이루어질 수 있다. 다만, 상기 온도는 상기 다공성 지지체의 융점 이상일 수는 없다. 상기 침지한 후 약 80 ℃ 정도 열풍오븐에서 3시간 이상 건조할 수 있고, 이와 같은 침지, 건조 작업을 2 내지 5회 수행할 수 있다.Specifically, the impregnation method may be performed by immersing the porous support in the silica-ion conductor mixture. The impregnation temperature and time may be influenced by various factors. For example, it may be influenced by the thickness of the porous support, the concentration of the solution, the type of solvent and the like. However, the impregnation process may be carried out at a temperature of less than 100 ℃ at any point of the solvent, and more generally may be made for about 5 to 30 minutes at a temperature of 70 ℃ or less at room temperature (10 to 30 ℃). However, the temperature may not be higher than the melting point of the porous support. After the immersion can be dried for about 3 hours or more in a hot air oven about 80 ℃, such immersion, drying can be performed 2 to 5 times.
한편, 상기 실리카 코팅층을 형성하는 단계는 상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 단계, 및 상기 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 코팅하여 상기 실리카 코팅층을 형성시키는 단계를 포함할 수 있다. The forming of the silica coating layer may include filling the pores of the porous support with the ion conductor, and forming the silica coating layer by coating the silica-ion conductor mixture on the surface of the porous support. .
상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 단계는 상기 다공성 지지체를 이온 전도체를 포함하는 용액에 담지 또는 함침하여 이루어질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니고, 상기한 스크린 프린팅법, 스프레이 코팅법, 닥터 블레이드법, 라미네이팅법 등을 이용하는 경우에도 상기 이온 전도체를 포함하는 용액이 상기 다공성 지지체의 공극을 채우도록 할 수도 있다.Filling the pores of the porous support with the ion conductor may be made by supporting or impregnating the porous support in a solution containing the ion conductor. However, the present invention is not limited thereto, and even when the screen printing method, the spray coating method, the doctor blade method, the laminating method, or the like is used, the solution containing the ion conductor may also fill the pores of the porous support. have.
상기 이온 전도체를 포함하는 용액은 상용화된 이온 전도체 용액을 구입하여 사용할 수 있고, 상기 이온 전도체를 용매에 분산시켜 제조할 수도 있다. 상기 이온 전도체를 용매에 분산시키는 방법은 종래 일반적으로 알려진 방법을 사용하는 것이 가능하므로 구체적인 설명은 생략한다.The solution containing the ion conductor may be purchased by using a commercially available ion conductor solution, or may be prepared by dispersing the ion conductor in a solvent. Since the method for dispersing the ion conductor in a solvent can be used a conventionally known method, a detailed description thereof will be omitted.
상기 이온 전도체를 포함하는 용액을 제조하기 위한 용매로는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매를 이용할 수 있고, 이들에 대해서는 상기 설명한 바와 동일하므로 반복적인 설명은 생략한다.As a solvent for preparing a solution including the ion conductor, a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent, and one or more mixtures thereof may be used. Is omitted.
구체적으로, 상기 함침하는 방법은 상기 다공성 지지체를 상기 이온 전도체를 포함하는 용액에 침지하여 실시할 수 있다. 상기 함침 온도 및 시간은 다양한 요소들의 영향을 받을 수 있다. 예를 들면, 상기 다공성 지지체의 두께, 상기 용액의 농도, 용매의 종류 등에 의하여 영향을 받을 수 있다. 다만, 상기 함침 공정은 상기 용매의 어느점 이상에서 100 ℃ 이하의 온도에서 이루어질 수 있으며, 더욱 일반적으로 상온(20 ℃)에서 70 ℃ 이하의 온도에서 약 5 내지 30분 동안 이루어질 수 있다. 다만, 상기 온도는 상기 다공성 지지체의 융점 이상일 수는 없다. 상기 침지한 후 약 80 ℃ 정도 열풍오븐에서 3시간 이상 건조할 수 있고, 이와 같은 침지, 건조 작업을 2 내지 5회 수행할 수 있다.Specifically, the impregnation method may be performed by immersing the porous support in a solution containing the ion conductor. The impregnation temperature and time may be influenced by various factors. For example, it may be influenced by the thickness of the porous support, the concentration of the solution, the type of solvent and the like. However, the impregnation process may be performed at a temperature of 100 ° C. or less at any point of the solvent, and more generally, about 5 to 30 minutes at a temperature of 70 ° C. or less at room temperature (20 ° C.). However, the temperature may not be higher than the melting point of the porous support. After the immersion can be dried for about 3 hours or more in a hot air oven about 80 ℃, such immersion, drying can be performed 2 to 5 times.
다음으로, 상기 공극이 이온 전도체로 채워진 다공성 지지체의 표면에 상기 실리카 코팅층을 형성시킨다. 상기 실리카-이온전도체 혼합물을 상기 다공성 지지체 표면에 코팅하는 방법은 상기 언급한 스크린 프린팅법, 스프레이 코팅법, 닥터 블레이드법, 라미네이팅법 등을 이용한 코팅법, 또는 함침 방법 등이 사용될 수 있다. 이에 대한 구체적인 설명은 상기 설명한 바와 동일하므로 반복적인 설명은 생략한다.Next, the silica coating layer is formed on the surface of the porous support in which the pores are filled with the ion conductor. The silica-ion conductor mixture may be coated on the surface of the porous support by using the above-mentioned screen printing method, spray coating method, doctor blade method, laminating method, or the like, or an impregnation method. Detailed description thereof is the same as described above, and thus repetitive description thereof will be omitted.
본 발명의 또 다른 일 실시예에 따른 이온 교환막의 제조 방법은 다수의 공극(pore)을 포함하는 다공성 지지체의 공극을 이온 전도체로 채우면서 상기 다공성 지지체의 표면에 이온 전도체 코팅층을 형성하는 단계, 그리고 상기 이온 전도체 코팅층의 표면을 식각 처리하는 단계를 포함한다.Method of manufacturing an ion exchange membrane according to another embodiment of the present invention comprises the steps of forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor, and Etching the surface of the ion conductor coating layer.
상기 다공성 지지체 및 이온 전도체에 대한 구체적인 설명과 상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 방법은 상기한 바와 동일하므로 반복적인 설명은 생략한다.A detailed description of the porous support and the ion conductor and the method of filling the pores of the porous support with the ion conductor are the same as described above, and thus repetitive description thereof will be omitted.
다만, 상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 과정에서 상기 이온 전도체는 상기 다공성 지지체의 공극을 채운 후, 상기 다공성 지지체 표면에 상기 이온 전도체 코팅층을 형성시킨다. 이를 위하여, 상기 함침 공정을 여러 번 수행할 수 있다.However, in the process of filling the pores of the porous support with the ion conductor, the ion conductor fills the pores of the porous support, and forms the ion conductor coating layer on the surface of the porous support. To this end, the impregnation process may be performed several times.
다음으로, 상기 이온 전도체 코팅층의 표면을 식각 처리한다. 상기 식각 처리에 의하여 상기 이온 전도체 코팅층의 표면에는 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴이 형성되거나, 미세 요철이 형성되어 표면 거칠기를 가지게 된다.Next, the surface of the ion conductor coating layer is etched. By the etching process, a pattern in which a plurality of grooves are regularly or irregularly formed on the surface of the ion conductor coating layer is formed, or fine irregularities are formed to have surface roughness.
상기 식각 처리는 화학적 처리 또는 물리적 처리일 수 있다.The etching treatment may be a chemical treatment or a physical treatment.
상기 화학적 처리는 유기 용매를 이용하는 것일 수 있다. The chemical treatment may be to use an organic solvent.
구체적으로, 상기 식각 처리는 유기 용매를 포함하는 식각 용액 또는 상기 이온 전도체를 상기 유기 용매에 희석시킨 식각 용액을 상기 이온 전도체 코팅층의 표면에 접촉시켜 이루어질 수 있다.Specifically, the etching treatment may be performed by contacting an etching solution containing an organic solvent or an etching solution in which the ion conductor is diluted in the organic solvent, on the surface of the ion conductor coating layer.
상기 유기 용매는 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidine, NMP), 디메틸포름아마이드(dimethylformamide, DMF), 디메틸 아세트아마이드(dimethylacetamide, DMAc), 디메틸설폭사이드(dimethylsulfoxide, DMSO) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.The organic solvent is N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidine, NMP), dimethylformamide (dimethylformamide, DMF), dimethyl acetamide (dimethylacetamide, DMAc), dimethyl sulfoxide (dimethylsulfoxide, DMSO ) And mixtures thereof.
상기 식각 용액은 상기 이온 전도체를 상기 식각 용액 전체 중량에 대하여 0 내지 3 중량%로 포함할 수 있다. 상기 식각 용액이 상기 이온 전도체를 더 포함하는 경우 박막으로 형성된 고분자 전해질 막이 식각으로 인하여 성능이 저하될 가능성을 저하시킬 수 있는 점에서 바람직하고, 상기 이온 전도체의 함량이 상기 식각 용액 전체 중량에 대하여 3 중량%를 초과하는 경우 식각의 의미 보다는 실리카 나노분산약과 이온전도체의 코팅층이 형성되는 방향으로 전환될 수 있기 때문에 식각의 효과가 저해되는 문제가 발생할 수 있다.The etching solution may include 0 to 3% by weight of the ion conductor relative to the total weight of the etching solution. When the etching solution further includes the ion conductor, the polymer electrolyte membrane formed as a thin film is preferable in that the performance may be reduced due to etching, and the content of the ion conductor is 3 based on the total weight of the etching solution. If it exceeds the weight% may be converted to the direction in which the coating layer of the silica nanodispersant and the ion conductor is formed rather than the meaning of etching may cause a problem that the effect of etching is inhibited.
또한, 상기 식각 용액으로 상기 실리카 코팅층을 형성하기 위한 상기 실리카분산액을 상기 식각 용액으로 이용할 수도 있다. 상기 실리카 분산액에 대한 구체적인 설명은 상기한 바와 동일하므로, 반복적인 설명은 생략한다. 상기 식각 용액으로 상기 실리카 분산액을 이용하면, 표면적을 증가시키거나 막의 표면에너지를 더 감소시킬 수 있는 효과가 발생될 수 있다.In addition, the silica dispersion for forming the silica coating layer as the etching solution may be used as the etching solution. Since the detailed description of the silica dispersion is the same as described above, repeated description is omitted. When the silica dispersion is used as the etching solution, an effect of increasing the surface area or further reducing the surface energy of the film may be generated.
상기 식각 처리는 상기 식각 용액을 상기 이온 전도체 코팅층 표면에 스프레이 함으로써 이루어질 수 있고, 상기 스프레이의 세기는 형성하고자 하는 미세 요철의 크기에 따라 적절하게 조절할 수 있으며, 예를 들어, 상기 식각 처리는 상기 식각 용액을 상기 이온 전도체 코팅층 표면에 0.05 내지 1 ml/㎝2의 양으로 접촉시켜 이루어질 수 있다. 상기 식각 용액 처리가 0.05 ml/㎝2 미만인 경우 식각 효과가 거의 발생하지 않는 문제가 발생할 수 있고, 1 ml/㎝2를 초과하는 경우 고분자 코팅층을 씻겨내려 박리시키는 문제가 발생할 수 있다.The etching process may be performed by spraying the etching solution on the surface of the ion conductor coating layer, the intensity of the spray can be appropriately adjusted according to the size of the fine unevenness to be formed, for example, the etching treatment is the etching The solution may be made by contacting the surface of the ion conductor coating layer in an amount of 0.05 to 1 ml / cm 2 . If the etching solution treatment is less than 0.05 ml / cm 2 may cause a problem that the etching effect hardly occurs, and if it exceeds 1 ml / cm 2 may cause a problem of washing off the polymer coating layer to peel off.
상기 물리적 처리는 레이저 조사, 폴리싱(polishing), 코로나 처리 및 플라즈마 처리 등으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 상기 폴리싱은 사포 또는 닙롤 재직 등을 적절한 강도로 문질러 원하는 미세 요철의 크기를 형성하도록 이루어질 수 있다.The physical treatment may be any one selected from the group consisting of laser irradiation, polishing, corona treatment, plasma treatment, and the like, wherein the polishing rubs sandpaper or nip roll cloth with an appropriate strength to form a desired fine unevenness. It can be made to.
또한, 상기 이온 전도체 코팅층의 표면에 패턴을 형성하기 위해서 상기 식각 처리를 이용하는 경우 형성하고자 하는 패턴 모양의 마스크를 이용하여 상기 화학적 처리 또는 물리적 처리할 수 있다.In addition, when the etching process is used to form a pattern on the surface of the ion conductor coating layer, the chemical treatment or the physical treatment may be performed using a mask having a pattern shape to be formed.
본 발명의 또 다른 일 실시예에 따른 이온 교환막의 제조 방법은 다수의 공극(pore)을 포함하는 다공성 지지체의 공극을 이온 전도체로 채우면서 상기 다공성 지지체의 표면에 이온 전도체 코팅층을 형성하는 단계, 그리고 상기 이온 전도체 코팅층의 표면을 불소 가스로 처리하는 단계를 포함한다.Method of manufacturing an ion exchange membrane according to another embodiment of the present invention comprises the steps of forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support comprising a plurality of pores (pore) with an ion conductor, and Treating the surface of the ion conductor coating layer with fluorine gas.
상기 다공성 지지체 및 이온 전도체에 대한 구체적인 설명과 상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 방법은 상기한 바와 동일하므로 반복적인 설명은 생략한다.A detailed description of the porous support and the ion conductor and the method of filling the pores of the porous support with the ion conductor are the same as described above, and thus repetitive description thereof will be omitted.
다만, 상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 과정에서 상기 이온 전도체는 상기 다공성 지지체의 공극을 채운 후, 상기 다공성 지지체 표면에 상기 이온 전도체 코팅층을 형성시킨다. 이를 위하여, 상기 함침 공정을 여러 번 수행할 수 있다.However, in the process of filling the pores of the porous support with the ion conductor, the ion conductor fills the pores of the porous support, and forms the ion conductor coating layer on the surface of the porous support. To this end, the impregnation process may be performed several times.
다음으로, 상기 이온 전도체 코팅층의 표면을 불소 가스로 처리한다.Next, the surface of the ion conductor coating layer is treated with fluorine gas.
상기 불소 가스 처리에 의하여 상기 이온 전도체 코팅층의 불소 가스로 처리된 표면에는 공유 결합 및 불소 치환기를 포함할 수 있다.The surface treated with fluorine gas of the ion conductor coating layer by the fluorine gas treatment may include a covalent bond and a fluorine substituent.
상기 불소 가스 처리는 상온(10 내지 30 ℃)의 챔버 내에서, 불소 가스를 수 ppm 단위로 불어 넣어 이루어질 수 있다. 상기 불소 가스 처리 시간은 약 5 내지 60 분 정도 이루어질 수 있고, 상기 처리 시간 내에서 상기 불소 가스 처리가 이루어지는 경우 상기 이온 전도체 코팅층 표면의 10 내지 40 면적% 정도가 표면 특성이 변화될 수 있다.The fluorine gas treatment may be performed by blowing fluorine gas in several ppm units in a chamber at room temperature (10 to 30 ° C.). The fluorine gas treatment time may be about 5 to 60 minutes, and when the fluorine gas treatment is performed within the treatment time, about 10 to 40 area% of the surface of the ion conductor coating layer may change surface properties.
상기 이온 교환막의 제조 방법은 상기 불소 가스 처리된 이온 전도체 코팅층 위에 불소계 이온 전도체 코팅층을 형성하는 단계를 더 포함할 수 있다.The method of manufacturing the ion exchange membrane may further include forming a fluorine-based ion conductor coating layer on the fluorine gas treated ion conductor coating layer.
상기 불소계 이온 전도체 코팅층에 대한 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.Since the detailed description of the fluorine-based ion conductor coating layer is the same as described above, repeated description is omitted.
또한, 상기 불소계 이온 전도체 코팅층을 형성하기 위한 상기 불소계 이온 전도체를 포함하는 용액은 상기 이온 전도체와 동일하게 상용화된 불소계 이온 전도체를 포함하는 용액을 구입하여 사용할 수 있고, 상기 불소계 이온 전도체를 용매에 분산시켜 제조할 수도 있다. 상기 불소계 이온 전도체를 상기 용매에 분산시키는 방법은 종래 일반적으로 알려진 방법을 사용하는 것이 가능하므로 구체적인 설명은 생략한다.In addition, a solution containing the fluorine ion conductor for forming the fluorine ion conductor coating layer may be purchased by using a solution containing a fluorine ion conductor commercially available in the same manner as the ion conductor, and the fluorine ion conductor is dispersed in a solvent It can also make it. Since the method for dispersing the fluorine-based ion conductor in the solvent can be used a conventionally known method, a detailed description thereof will be omitted.
또한, 상기 불소계 이온 전도체를 포함하는 용액을 제조하기 위한 용매로는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매를 이용할 수 있고, 이들에 대해서는 상기 설명한 바와 동일하므로 반복적인 설명은 생략한다.In addition, a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent, and a mixture of one or more thereof may be used as a solvent for preparing a solution including the fluorine-based ion conductor, and the same as described above. Repeated explanations are omitted.
상기 불소계 이온 전도체를 포함하는 용액을 상기 불소 가스 처리된 이온 전도체 코팅층 위에 코팅하는 방법으로는 스크린 프린팅법, 스프레이 코팅법, 닥터 블레이드법, 라미네이팅법 등을 사용할 수 있다.As a method of coating the solution containing the fluorine-based ion conductor on the fluorine gas-treated ion conductor coating layer, a screen printing method, a spray coating method, a doctor blade method, a laminating method, or the like may be used.
한편, 상기 이온 교환막의 제조 방법에 대하여 각각 설명하였으나, 본 발명이 이에 한정되는 것은 아니고, 상기 이온 교환막의 제조 방법은 서로 조합되는 것이 가능하다.On the other hand, the respective methods for producing the ion exchange membrane have been described, but the present invention is not limited thereto, and the method for producing the ion exchange membrane can be combined with each other.
예를 들어, 상기 이온 교환막의 제조 방법이 상기 실리카 코팅층을 형성하는 단계를 포함하는 경우, 상기 이온 전도체 코팅층을 대신하여 상기 실리카 코팅층의 표면을 각각 식각 처리하거나, 불소 가스 처리할 수 있고, 또는 상기 실리카 코팅층의 표면을 식각 처리한 후 불소 가스 처리할 수 있고, 상기 실리카 코팅층의 표면을 불소 가스 처리한 후 식각 처리할 수도 있다.For example, when the method of manufacturing the ion exchange membrane includes forming the silica coating layer, the surface of the silica coating layer may be etched or fluorine gas treated in place of the ion conductor coating layer, or the The surface of the silica coating layer may be etched after the etching process, and the surface of the silica coating layer may be etched after the fluorine gas treatment.
또한, 상기 이온 전도체 코팅층의 표면을 식각 처리한 후 불소 가스 처리할 수 있고, 상기 이온 전도체 코팅층의 표면을 불소 가스 처리한 후 식각 처리할 수도 있다. In addition, the surface of the ion conductor coating layer may be etched after the etching process, the surface of the ion conductor coating layer may be etched after the fluorine gas treatment.
본 발명의 또 다른 일 실시예에 따른 에너지 저장 장치는 상기 이온 교환막을 포함한다. 이하, 상기 에너지 저장 장치가 레독스 플로우 전지 또는 연료 전지인 경우에 대하여 상세하게 설명하나, 본 발명이 이에 한정되는 것은 아니고, 상기 이온 교환막은 2차 전지 형태의 에너지 저장 장치에도 적용이 가능하다.Energy storage device according to another embodiment of the present invention includes the ion exchange membrane. Hereinafter, a case where the energy storage device is a redox flow battery or a fuel cell will be described in detail. However, the present invention is not limited thereto, and the ion exchange membrane may be applied to an energy storage device having a secondary battery type.
상기 에너지 저장 장치의 하나의 예시에서, 상기 이온 교환막은 작은 이온 채널로 인하여 바나듐 이온을 블로킹(blocking)함으로써 낮은 바나듐 이온 투과성을 가져 바나듐 레독스 플로우 전지에 적용할 경우 바나듐 활물질이 크로스오버(crossover)되어 에너지 효율을 저하시키는 문제를 해결함으로써 높은 에너지 효율을 달성할 수 있는 바, 상기 에너지 저장 장치는 바람직하게 레독스 플로우 전지(redox flow battery)일 수 있다. In one example of the energy storage device, the ion exchange membrane has low vanadium ion permeability by blocking vanadium ions due to small ion channels, so that the vanadium active material crossovers when applied to a vanadium redox flow cell. It is possible to achieve a high energy efficiency by solving the problem of lowering the energy efficiency, the energy storage device may be preferably a redox flow battery (redox flow battery).
상기 레독스 플로우 전지는 서로 마주보도록 배치되는 양극과 음극 및 상기 양극과 음극 사이에 배치되는 상기 이온 교환막을 포함하는 전지 셀에 양극 전해질 및 음극 전해질을 공급하여 충방전을 행할 수 있다. The redox flow battery may be charged and discharged by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell including a positive electrode and a negative electrode disposed to face each other and the ion exchange membrane disposed between the positive electrode and the negative electrode.
상기 레독스 플로우 전지는 양극 전해질로 V(IV)/V(V) 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 전바나듐계 레독스 전지; 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 바나듐계 레독스 전지; 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 설파이드 레독스 커플을 사용하는 폴리설파이드브로민 레독스 전지; 또는 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 아연(Zn) 레독스 커플을 사용하는 아연-브로민(Zn-Br) 레독스 전지일 수 있으나, 본 발명에서 상기 레독스 플로우 전지의 종류가 한정되지 않는다.The redox flow battery includes an all-vanadium redox battery using a V (IV) / V (V) redox couple as a cathode electrolyte and a V (II) / V (III) redox couple as a cathode electrolyte; Vanadium-based redox cells using a halogen redox couple as a positive electrode and a V (II) / V (III) redox couple as a negative electrolyte; Polysulfidebromine redox cells using a halogen redox couple as the positive electrolyte and a sulfide redox couple as the negative electrolyte; Or a zinc-bromine (Zn-Br) redox battery using a halogen redox couple as a cathode electrolyte and a zinc (Zn) redox couple as a cathode electrolyte, but the type of the redox flow battery in the present invention It is not limited.
이하, 상기 레독스 플로우 전지가 전바나듐계 레독스 전지인 경우를 예로 들어 설명한다. 그러나, 본 발명의 레독스 플로우 전지가 상기 전바나듐계 레독스 전지에 한정되는 것은 아니다.Hereinafter, the case where the redox flow battery is an all-vanadium redox battery will be described as an example. However, the redox flow battery of the present invention is not limited to the all vanadium-based redox battery.
도 1은 상기 전바나듐계 레독스 전지를 개략적으로 나타내는 모식도이다.1 is a schematic diagram schematically showing the all-vanadium redox battery.
상기 도 1을 참고하면, 상기 레독스 플로우 전지는 셀 하우징(102), 상기 셀 하우징(102)을 양극 셀(102A)과 음극 셀(102B)로 양분하도록 설치된 상기 이온 교환막(104), 그리고 상기 양극 셀(102A)과 음극 셀(102B) 각각에 위치하는 양극(106) 및 음극(108)을 포함한다.Referring to FIG. 1, the redox flow battery includes a cell housing 102, the ion exchange membrane 104 installed to bisect the cell housing 102 into a positive cell 102A and a negative cell 102B, and the A positive electrode 106 and a negative electrode 108 positioned in each of the positive cell 102A and the negative cell 102B are included.
또한, 상기 레독스 플로우 전지는 추가적으로 상기 양극 전해질이 저장되는 양극 전해질 저장 탱크(110) 및 상기 음극 전해질이 저장되는 음극 전해질 저장 탱크(112)를 더 포함할 수 있다.In addition, the redox flow battery may further include a cathode electrolyte storage tank 110 in which the cathode electrolyte is stored and a cathode electrolyte storage tank 112 in which the anode electrolyte is stored.
또한, 상기 레독스 플로우 전지는 상기 양극 셀(102A)의 상단 및 하단에 양극 전해질 유입구 및 양극 전해질 유출구를 포함하고, 상기 음극 셀(102B)의 상단 및 하단에 음극 전해질 유입구 및 음극 전해질 유출구를 포함할 수 있다.In addition, the redox flow battery includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102A, and includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102B. can do.
상기 양극 전해질 저장 탱크(110)에 저장된 상기 양극 전해질은 펌프(114)에 의하여 상기 양극 전해질 유입구를 통하여 상기 양극 셀(102A)에 유입된 후, 상기 양극 전해질 유출구를 통하여 상기 양극 셀(102A)로부터 배출된다. The anode electrolyte stored in the cathode electrolyte storage tank 110 flows into the cathode cell 102A through the anode electrolyte inlet by a pump 114 and then from the cathode cell 102A through the anode electrolyte outlet. Discharged.
마찬가지로, 상기 음극 전해질 저장 탱크(112)에 저장된 상기 음극 전해질은 펌프(116)에 의하여 상기 음극 전해질 유입구를 통하여 상기 음극 셀(102B)에 유입된 후, 상기 음극 전해질 유출구를 통하여 상기 음극 셀(102B)로부터 배출된다.Similarly, the negative electrolyte stored in the negative electrolyte storage tank 112 flows into the negative cell 102B through the negative electrolyte inlet by a pump 116, and then through the negative electrolyte outlet 102 through the negative electrolyte outlet. Is discharged from
상기 양극 셀(102A)에서는 전원/부하(118)의 동작에 따라 상기 양극(106)을 통한 전자의 이동이 발생하며, 이에 따라 V5+↔V4+의 산화/환원 반응이 일어난다. 마찬가지로, 상기 음극 셀(102B)에서는 전원/부하(118)의 동작에 따라 상기 음극(108)을 통한 전자의 이동이 발생하며, 이에 따라 V2+↔V3+의 산화/환원 반응이 일어난다. 산화/환원 반응을 마친 양극 전해질과 음극 전해질은 각각 양극 전해질 저장 탱크(110)와 음극 전해질 저장 탱크(112)로 순환된다.In the anode cell 102A, the movement of electrons through the anode 106 occurs according to the operation of the power supply / load 118, and thus an oxidation / reduction reaction of V 5+ ↔ V 4+ occurs. Similarly, in the cathode cell 102B, the movement of electrons through the cathode 108 occurs according to the operation of the power source / load 118, and thus, an oxidation / reduction reaction of V 2+ ↔ V 3+ occurs. After the oxidation / reduction reaction, the positive electrolyte and the negative electrolyte are circulated to the positive electrolyte storage tank 110 and the negative electrolyte storage tank 112, respectively.
상기 양극(106)과 음극(108)은 Ru, Ti, Ir. Mn, Pd, Au 및 Pt 중에서 선택되는 1종 이상의 금속과, Ru, Ti, Ir, Mn, Pd, Au 및 Pt 중에서 선택되는 1종 이상의 금속의 산화물을 포함하는 복합재(예를 들어, Ti 기재에 Ir 산화물이나 Ru 산화물을 도포한 것), 상기 복합재를 포함하는 카본 복합물, 상기 복합재를 포함하는 치수 안정 전극(DSE), 도전성 폴리머(예를 들어, 폴리아세틸렌, 폴리티오펜 등의 전기가 통하는 고분자 재료), 그래파이트, 유리질 카본, 도전성 다이아몬드, 도전성 DLC(Diamond-Like Carbon), 카본 파이버로 이루어지는 부직포 및 카본 파이버로 이루어지는 직포로 이루어진 군에서 선택되는 어느 하나로 구성된 형태일 수 있다.The anode 106 and the cathode 108 are Ru, Ti, Ir. A composite material (e.g., a Ti base material) comprising an oxide of at least one metal selected from Mn, Pd, Au, and Pt, and an oxide of at least one metal selected from Ru, Ti, Ir, Coated with Ir oxide or Ru oxide), carbon composite containing the composite material, dimensionally stable electrode (DSE) containing the composite material, conductive polymer (for example, electrically conductive polymer such as polyacetylene, polythiophene, etc.) Material), graphite, glassy carbon, conductive diamond, conductive DLC (Diamond-Like Carbon), a nonwoven fabric made of carbon fiber, and a woven fabric made of carbon fiber.
상기 양극 전해질 및 음극 전해질은 티탄 이온, 바나듐 이온, 크롬 이온, 아연 이온, 주석 이온 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 금속 이온을 포함할 수 있다.The positive electrode electrolyte and the negative electrode electrolyte may include any one metal ion selected from the group consisting of titanium ions, vanadium ions, chromium ions, zinc ions, tin ions, and mixtures thereof.
예를 들어, 상기 음극 전해질은 음극 전해질 이온으로서 바나듐 2가 이온(V2+) 또는 바나듐 3가 이온(V3+)을 포함하고, 상기 양극 전해질은 양극 전해질 이온으로서 바나듐 4가 이온(V4+) 또는 바나듐 5가 이온(V5+)을 포함할 수 있다.For example, the negative electrolyte includes vanadium divalent ions (V 2+ ) or vanadium trivalent ions (V 3+ ) as negative electrolyte ions, and the positive electrolyte includes vanadium tetravalent ions (V 4) as positive electrolyte ions. + ) Or vanadium pentavalent ions (V 5+ ).
상기 양극 전해질 및 음극 전해질에 포함되는 상기 금속 이온의 농도는 O.3 내지 5 M인 것이 바람직하다. The concentration of the metal ions included in the cathode electrolyte and cathode electrolyte is preferably 0.3 to 5 M.
상기 양극 전해질 및 음극 전해질의 용매로는 H2SO4, K2SO4, Na2SO4, H3PO4, H4P2O7, K2PO4, Na3PO4, K3PO4, HNO3, KNO3 및 NaNO3로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다. 상기 양극 및 음극 활물질이 되는 상기 금속 이온들이 모두 수용성이므로, 상기 양극 전해질 및 음극 전해질의 용매로서 수용액을 적합하게 이용할 수 있다. 특히, 수용액으로서, 상기 황산, 인산, 질산, 황산염, 인산염 및 질산염으로 이루어진 군에서 선택되는 어느 하나를 사용하는 경우 상기 금속 이온의 안정성, 반응성 및 용해도를 향상시킬 수 있다.The solvent of the cathode electrolyte and the cathode electrolyte is H 2 SO 4 , K 2 SO 4 , Na 2 SO 4 , H 3 PO 4 , H 4 P 2 O 7 , K 2 PO 4 , Na 3 PO 4 , K 3 PO Any one selected from the group consisting of 4 , HNO 3 , KNO 3 and NaNO 3 can be used. Since the metal ions serving as the positive electrode and the negative electrode active material are all water soluble, an aqueous solution can be suitably used as a solvent of the positive electrode electrolyte and the negative electrode electrolyte. In particular, when using any one selected from the group consisting of sulfuric acid, phosphoric acid, nitric acid, sulfate, phosphate and nitrate as the aqueous solution, it is possible to improve the stability, reactivity and solubility of the metal ion.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
[[ 실시예Example : 이온 Ion 교환막의Exchange membrane 제조] Produce]
(( 실시예Example 1-1) 1-1)
농도가 12 중량%인 폴리아믹애시드/THF 방사용액을 30 ㎸의 전압이 인가된 상태에서 전기방사한 후 폴리아믹애시드 나노 웹 전구체를 형성한 후 350 ℃의 오븐에서 5 시간 동안 열처리하여 15 ㎛의 평균 두께를 갖는 폴리이미드 다공성 지지체를 제조하였다. 이때, 상기 전기방사는 25 ℃에서 스프레이 젯 노즐에서 30 ㎸의 전압을 인가한 상태에서 수행하였다.The polyamic acid / THF spinning solution having a concentration of 12% by weight was electrospun in a state where a voltage of 30 kV was applied, and then a polyamic acid nanoweb precursor was formed, followed by heat treatment in an oven at 350 ° C. for 5 hours to obtain 15 μm. A polyimide porous support having an average thickness was prepared. At this time, the electrospinning was carried out in a state in which a voltage of 30 kW was applied in a spray jet nozzle at 25 ℃.
N-메틸-2-피롤리돈(N-methyl-2-pyrrolidinone; NMP)에 SPEEK(sulfonated polyetheretherketone)을 용해시켜 10 중량%의 이온 전도체 용액을 제조하였다.A 10 wt% ion conductor solution was prepared by dissolving sulfonated polyetheretherketone (SPEEK) in N-methyl-2-pyrrolidinone (NMP).
상기 이온 전도체 용액에 상기 다공성 지지체를 침지하였는데, 구체적으로는 상온에서 20 분 동안 침지 공정을 수행하였고, 이때 미세 기포 제거를 위해 감압 분위기를 1 시간 가량 적용하였다. 그 후, 80 ℃로 유지된 열풍 오븐에서 3 시간 건조하여 NMP를 제거하였다.The porous support was immersed in the ion conductor solution. Specifically, the immersion process was performed at room temperature for 20 minutes, and a reduced pressure atmosphere was applied for about 1 hour to remove fine bubbles. Thereafter, the mixture was dried in a hot air oven maintained at 80 ° C. for 3 hours to remove NMP.
한편, 실리카 분산액(실리카 입경 15 nm, 용매 이소프로필 알코올, 실리카 25 중량%)에 이온 전도체인 SPEEK(sulfonated polyetheretherketone)을 용해시켜 실리카-이온 전도체 혼합물을 제조하였다. 상기 실리카-이온 전도체 혼합물은 상기 이온 전도체 100 중량부에 대하여 상기 실리카를 10 중량부로 포함하였다.Meanwhile, a silica-ion conductor mixture was prepared by dissolving a sulfonated polyetheretherketone (SPEEK) as an ion conductor in a silica dispersion (silica particle diameter of 15 nm, solvent isopropyl alcohol, and silica 25 wt%). The silica-ion conductor mixture contained 10 parts by weight of the silica with respect to 100 parts by weight of the ion conductor.
상기 이온 전도체가 공극에 채워진 다공성 지지체를 상기 실리카-이온 전도체 혼합물에 침지하였다. 구체적으로는 상온에서 20 분 동안 침지 공정을 수행하였고, 이때 미세 기포 제거를 위해 감압 분위기를 1 시간 가량 적용하였다. 그 후, 80 ℃로 유지된 열풍IR 오븐에서 3 시간 건조하여 NMP를 제거하여 이온 교환막을 제조하였다.A porous support filled with voids in the ion conductor was immersed in the silica-ion conductor mixture. Specifically, an immersion process was performed at room temperature for 20 minutes, and a reduced pressure atmosphere was applied for about 1 hour to remove fine bubbles. Thereafter, the mixture was dried in a hot air IR oven maintained at 80 ° C. for 3 hours to remove NMP, thereby preparing an ion exchange membrane.
(( 실시예Example 1-2) 1-2)
이온 전도체인 SPEEK(sulfonated polyetheretherketone)를 유기 용매인 DMAc에 희석시켜 식각 용액을 제조하였다. 이때, 상기 식각 용액은 상기 이온 전도체를 상기 식각 용액 전체 중량에 대하여 3 중량%로 포함하였다.An etching solution was prepared by diluting an ion conductor, SPEEK (sulfonated polyetheretherketone), in an organic solvent, DMAc. In this case, the etching solution includes the ion conductor as 3% by weight based on the total weight of the etching solution.
상기 실시예 1-1에서 제조된 이온 교환막 표면에 상기 제조된 식각 용액을 상온에서 0.1 ml/㎝2의 양으로 스프레이한 후, 80 ℃ 로 유지된 열풍 IR 오븐에서 건조하여 식각 처리하였다. 상기 제조된 이온 전도체 표면에는 상기 실리카 코팅층 전체 두께에 대하여 3 길이%의 미세 요철이 형성되었다.The prepared etching solution was sprayed on the surface of the ion exchange membrane prepared in Example 1-1 at an amount of 0.1 ml / cm 2 at room temperature, and dried and etched in a hot air IR oven maintained at 80 ° C. On the surface of the prepared ion conductor, fine irregularities of 3% by length with respect to the entire thickness of the silica coating layer were formed.
(( 실시예Example 1-3) 1-3)
상기 실시예 1-2에서, 상기 식각 용액으로 식각 처리한 것 대신에 상기 제조된 이온 교환막을 닙롤에 통과시켜 물리적 처리한 것을 제외하고는 상기 실시예 1-2와 동일하게 실시하여 이온 교환막을 제조하였다. 상기 제조된 실리카 코팅층 표면에는 상기 실리카 코팅층 전체 두께에 대하여 5 길이%의 미세 요철이 형성되었다.In Example 1-2, an ion exchange membrane was manufactured in the same manner as in Example 1-2, except that the prepared ion exchange membrane was physically passed through a nip roll instead of the etching treatment with the etching solution. It was. On the surface of the prepared silica coating layer, 5 length% fine unevenness was formed with respect to the entire thickness of the silica coating layer.
(( 실시예Example 1-4) 1-4)
상기 실시예 1-2에서, 상기 유기 용매로 식각 처리한 것 대신에 플라즈마 처리 방법으로 상기 실리카 코팅층 표면에 폭 100 nm, 간격 100 nm인 스트라이프 패턴을 형성한 것을 제외하고는 상기 실시예 1-2와 동일하게 실시하여 이온 교환막을 제조하였다.In Example 1-2, except that the stripe pattern having a width of 100 nm and an interval of 100 nm on the surface of the silica coating layer by a plasma treatment method instead of etching with the organic solvent, Example 1-2 In the same manner as in the ion exchange membrane was prepared.
(( 실시예Example 1-5) 1-5)
상기 실시예 1-2에서, 상기 유기 용매로 식각 처리한 것 대신에 10X10 ㎝2 크기의 이온 교환막에 대하여 상온의 챔버에서 10 ppm의 불소 가스를 60 분간 처리한 것을 제외하고는 상기 실시예 1-2와 동일하게 실시하여 이온 교환막을 제조하였다.In Example 1-2, Example 1- except that 10 ppm fluorine gas was treated for 60 minutes in a chamber at room temperature with respect to the 10X10 cm 2 ion exchange membrane instead of etching with the organic solvent. It carried out similarly to 2, and manufactured the ion exchange membrane.
(( 실시예Example 2-1) 2-1)
농도가 12 중량%인 폴리아믹애시드/THF 방사용액을 30 ㎸의 전압이 인가된 상태에서 전기방사한 후 폴리아믹애시드 나노 웹 전구체를 형성한 후 350 ℃의 오븐에서 5 시간 동안 열처리하여 15 ㎛의 평균 두께를 갖는 폴리이미드 다공성 지지체를 제조하였다. 이때, 상기 전기방사는 25 ℃에서 스프레이 젯 노즐에서 30 ㎸의 전압을 인가한 상태에서 수행하였다.The polyamic acid / THF spinning solution having a concentration of 12% by weight was electrospun in a state where a voltage of 30 kV was applied, and then a polyamic acid nanoweb precursor was formed, followed by heat treatment in an oven at 350 ° C. for 5 hours to obtain 15 μm. A polyimide porous support having an average thickness was prepared. At this time, the electrospinning was carried out in a state in which a voltage of 30 kW was applied in a spray jet nozzle at 25 ℃.
N-메틸-2-피롤리돈(N-methyl-2-pyrrolidinone; NMP)에 SPEEK(sulfonated polyetheretherketone)을 용해시켜 20 중량%의 이온 전도체 용액을 제조하였다.A 20 wt% ion conductor solution was prepared by dissolving sulfonated polyetheretherketone (SPEEK) in N-methyl-2-pyrrolidinone (NMP).
상기 이온 전도체 용액에 상기 다공성 지지체를 침지하였는데, 구체적으로는 상온에서 20 분 동안 침지 공정을 수행하였고, 이때 미세 기포 제거를 위해 감압 분위기를 1 시간 가량 적용하였다. 그 후, 80 ℃로 유지된 열풍 오븐에서 3 시간 건조하여 NMP를 제거하였다. 상기의 침지, 건조 공정을 3회 반복 수행하여 이온 교환막을 제조하였다.The porous support was immersed in the ion conductor solution. Specifically, the immersion process was performed at room temperature for 20 minutes, and a reduced pressure atmosphere was applied for about 1 hour to remove fine bubbles. Thereafter, the mixture was dried in a hot air oven maintained at 80 ° C. for 3 hours to remove NMP. The immersion and drying process was repeated three times to prepare an ion exchange membrane.
한편, 이온 전도체인 SPEEK(sulfonated polyetheretherketone)를 유기 용매인 DMAc에 희석시켜 식각 용액을 제조하였다. 이때, 상기 식각 용액은 상기 이온 전도체를 상기 식각 용액 전체 중량에 대하여 3 중량%로 포함하였다.Meanwhile, an etching solution was prepared by diluting an ion conductor SPEEK (sulfonated polyetheretherketone) in an organic solvent DMAc. In this case, the etching solution includes the ion conductor as 3% by weight based on the total weight of the etching solution.
상기 제조된 이온 교환막 표면에 상기 제조된 식각 용액을 상온에서 0.1 ml/㎝2의 양으로 스프레이한 후, 80 ℃ 로 유지된 열풍 IR 오븐에서 건조하여 식각 처리하였다. 상기 제조된 이온 전도체 표면에는 이온 전도체 코팅층 전체 두께에 대하여 1 길이%의 미세 요철이 형성되었다.The prepared etching solution was sprayed on the surface of the prepared ion exchange membrane at an amount of 0.1 ml / cm 2 at room temperature, and then dried and etched in a hot air IR oven maintained at 80 ° C. On the surface of the prepared ion conductor, fine unevenness of 1% by length with respect to the total thickness of the ion conductor coating layer was formed.
(( 실시예Example 2-2) 2-2)
상기 실시예 2-1에서, 상기 식각 용액으로 식각 처리한 것 대신에 상기 제조된 이온 교환막을 닙롤에 통과시켜 물리적 처리한 것을 제외하고는 상기 실시예 2-1과 동일하게 실시하여 이온 교환막을 제조하였다. 상기 제조된 이온 교환막 표면에는 상기 이온 전도체 코팅층 전체 두께에 대하여 5 길이%의 미세 요철이 형성되었다.In Example 2-1, an ion exchange membrane was manufactured in the same manner as in Example 2-1, except that the prepared ion exchange membrane was physically passed through a nip roll instead of the etching treatment with the etching solution. It was. On the surface of the prepared ion exchange membrane, fine lengths of 5% by length of the total thickness of the ion conductor coating layer were formed.
(( 실시예Example 2-3) 2-3)
상기 실시예 2-1에서, 상기 유기 용매로 식각 처리한 것 대신에 플라즈마 처리 방법으로 상기 이온 전도체 코팅층 표면에 폭 100 nm, 간격 100 nm인 스트라이프 패턴을 형성한 것을 제외하고는 상기 실시예 2-1과 동일하게 실시하여 이온 교환막을 제조하였다.In Example 2-1, except that the stripe pattern having a width of 100 nm and an interval of 100 nm was formed on the surface of the ion conductor coating layer by plasma treatment instead of etching with the organic solvent. It carried out similarly to 1, and manufactured the ion exchange membrane.
(( 실시예Example 3) 3)
상기 실시예 2-1에서, 상기 유기 용매로 식각 처리한 것 대신에 10X10 ㎝2 크기의 이온 교환막에 대하여 상온의 챔버에서 10 ppm의 불소 가스를 60 분간 처리한 것을 제외하고는 상기 실시예 2-1과 동일하게 실시하여 이온 교환막을 제조하였다.In Example 2-1, except that 10 ppm fluorine gas was treated for 60 minutes in a chamber at room temperature with respect to the 10X10 cm 2 sized ion exchange membrane instead of etching with the organic solvent, Example 2- It carried out similarly to 1, and manufactured the ion exchange membrane.
[[ 실험예Experimental Example 1: 이온  1: ion 교환막의Exchange membrane 이온 전도도] Ion conductivity]
상기 실시예에서 제조된 이온 교환막의 양면에 Pt/C 전극을 고정시키고, 95 %RH, 80 ℃에서 두께 방향(through plane) 수소 이온 전도도를 측정하였고, 그 결과를 아래에 나타내었다. The Pt / C electrodes were fixed on both sides of the ion exchange membrane prepared in the above example, and the through plane hydrogen ion conductivity was measured at 95% RH and 80 ° C., and the results are shown below.
수소이온전도도 (S/cm)Hydrogen ion conductivity (S / cm)
실시예 1-1Example 1-1 0.050.05
실시예 1-2Example 1-2 0.080.08
실시예 1-3Example 1-3 0.060.06
실시예 1-4Example 1-4 0.070.07
실시예 1-5Example 1-5 0.090.09
실시예 2-1Example 2-1 0.040.04
실시예 2-2Example 2-2 0.060.06
실시예 2-3Example 2-3 0.060.06
실시예 3Example 3 0.070.07
위 표 1의 결과와 같이, 상기 실시예 1-1 내지 3의 이온 교환막의 경우 0.04 내지 0.09 S/cm의 높은 수소이온전도도를 보였다.As shown in Table 1 above, the ion exchange membranes of Examples 1-1 to 3 showed high hydrogen ion conductivity of 0.04 to 0.09 S / cm.
[[ 실험예Experimental Example 2: 이온  2: ion 교환막의Exchange membrane 표면 에너지] Surface energy]
상기 실시예에서 제조된 이온 교환막의 표면 에너지를 물에 대한 접촉각 측정으로 평가하였고, 그 결과는 아래에 나타내었다. The surface energy of the ion exchange membrane prepared in the above example was evaluated by measuring the contact angle with respect to water, and the results are shown below.
접촉각 (°)Contact angle (°)
실시예 1-1Example 1-1 6363
실시예 1-2Example 1-2 6060
실시예 1-3Example 1-3 7070
실시예 1-4Example 1-4 6565
실시예 1-5Example 1-5 7070
실시예 2-1Example 2-1 8080
실시예 2-2Example 2-2 7575
실시예 2-3Example 2-3 7070
실시예 3Example 3 7575
상기 표 2의 결과, 낮은 표면 에너지를 가지는 실리카 코팅층을 포함하거나, 표면 식각 처리, 패턴화 공정 및 불소 가스를 처리한 실시예 1-1 내지 실시예 3의 경우 접촉각은 모두 60 ° 이상이었으며, 평균적으로 69 ° 이상으로 높은 값을 나타내었다.As a result of Table 2, the contact angles of Examples 1-1 to 3 including the silica coating layer having a low surface energy, or the surface etching treatment, the patterning process, and the fluorine gas were all 60 ° or more, and the average As high as 69 ° or more.
이와 같이 본 발명의 바람직한 일 실시예에 의해 이온 교환막의 표면 에너지가 제어되어 계면 저항이 감소하였음을 확인할 수 있었다. 또한 이러한 이온 교환막의 표면 에너지의 제어를 통해 계면 접합성의 향상을 확인할 수 있었다.As described above, it was confirmed that the surface energy of the ion exchange membrane was controlled to reduce the interface resistance by the preferred embodiment of the present invention. In addition, it was confirmed that the interface bonding property was improved by controlling the surface energy of the ion exchange membrane.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
본 발명의 바람직한 일 실시예에 의한 이온 교환막을 포함하는 에너지 저장 장치, 특히 레독스 플로우 전지의 경우 발전소나 전력계통, 건물에 설치하여 급격한 전력 수요 증가에 대응할 수 있는 부하 평준화 기능, 정전이나 순간저전압을 보상하거나 억제하는 기능을 가지고 있기 때문에 대규모 에너지 저장에 적합하다.In the case of an energy storage device including an ion exchange membrane according to an exemplary embodiment of the present invention, particularly a redox flow battery, a load leveling function capable of responding to a sudden increase in power demand by installing in a power plant, a power system, or a building, a power failure or an instantaneous low voltage It is suitable for large-scale energy storage because it has the function to compensate or suppress the

Claims (26)

  1. 다수의 공극(pore)을 포함하는 다공성 지지체,A porous support comprising a plurality of pores,
    상기 다공성 지지체의 공극을 채우고 있는 이온 전도체, 그리고An ion conductor filling the pores of the porous support, and
    상기 다공성 지지체의 표면에 위치하며 실리카 및 이온 전도체를 포함하는 실리카 코팅층A silica coating layer located on the surface of the porous support and comprising silica and an ion conductor
    을 포함하는 이온 교환막.Ion exchange membrane comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 다공성 지지체의 공극은 상기 이온 전도체와 혼합된 실리카를 더 포함하는 것인 이온 교환막.The pores of the porous support further comprises silica mixed with the ion conductor.
  3. 제2항에 있어서,The method of claim 2,
    상기 실리카 코팅층에 포함된 실리카 100 중량부에 대하여,Based on 100 parts by weight of silica included in the silica coating layer,
    상기 다공성 지지체의 공극에 포함된 실리카는 10 중량부 이하인 것인 이온 교환막.Silica contained in the pores of the porous support is 10 parts by weight or less.
  4. 제1항에 있어서,The method of claim 1,
    상기 실리카 코팅층의 표면은 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함하는 것인 이온 교환막.The surface of the silica coating layer is ion exchange membrane that comprises a pattern in which a plurality of grooves are formed regularly or irregularly.
  5. 제1항에 있어서,The method of claim 1,
    상기 실리카 코팅층의 표면은 미세 요철이 형성되어 표면 거칠기를 가지는 것인 이온 교환막.The surface of the silica coating layer is fine ion irregularities are formed to have a surface roughness ion exchange membrane.
  6. 제1항에 있어서,The method of claim 1,
    상기 실리카 코팅층의 표면은 불소 가스로 처리된 표면을 포함하는 것인 이온 교환막.The surface of the silica coating layer is an ion exchange membrane comprising a surface treated with fluorine gas.
  7. 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고A porous support comprising a plurality of pores, and
    상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며,Filling the pores of the porous support comprises an ion conductor to form an ion conductor coating layer on the surface of the porous support,
    상기 이온 전도체 코팅층의 표면은 복수개의 홈이 규칙적 또는 불규칙적으로 형성된 패턴을 포함하는 것인 이온 교환막.The surface of the ion conductor coating layer is ion exchange membrane comprising a pattern in which a plurality of grooves are formed regularly or irregularly.
  8. 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고A porous support comprising a plurality of pores, and
    상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며,Filling the pores of the porous support and comprises an ion conductor to form an ion conductor coating layer on the surface of the porous support,
    상기 이온 전도체 코팅층의 표면은 미세 요철이 형성되어 표면 거칠기를 가지는 것인 이온 교환막.The surface of the ion conductor coating layer is an ion exchange membrane that has a surface roughness is formed fine irregularities.
  9. 제8항에 있어서,The method of claim 8,
    상기 미세 요철의 크기는 상기 이온 전도체 코팅층 전체 두께에 대하여 0.1 내지 20 길이%인 것인 이온 교환막.The size of the fine irregularities is 0.1 to 20% by length based on the total thickness of the ion conductor coating layer.
  10. 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고A porous support comprising a plurality of pores, and
    상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 이온 전도체 코팅층을 형성하는 이온 전도체를 포함하며,Filling the pores of the porous support and comprises an ion conductor to form an ion conductor coating layer on the surface of the porous support,
    상기 이온 전도체 코팅층은 불소 가스로 처리된 표면을 포함하는 것인 이온 교환막.And the ion conductor coating layer comprises a surface treated with fluorine gas.
  11. 제10항에 있어서,The method of claim 10,
    상기 이온 전도체는 주쇄가 벤젠링을 포함하며 상기 벤젠링에 이온 교환 그룹이 붙어있는 탄화수소계 고분자이고,The ion conductor is a hydrocarbon-based polymer whose main chain includes a benzene ring and an ion exchange group is attached to the benzene ring,
    상기 이온 전도체 코팅층의 불소 가스로 처리된 표면은 상기 불소 가스 처리에 의하여 상기 이온 전도체의 상기 벤젠링에 불소가 치환된 것인 이온 교환막.The surface treated with the fluorine gas of the ion conductor coating layer is a fluorine-substituted fluorine-substituted by the fluorine gas treatment.
  12. 제10항에 있어서,The method of claim 10,
    상기 이온 전도체 코팅층의 불소 가스로 처리된 표면 위에 불소계 이온 전도체 코팅층을 더 포함하는 것인 이온 교환막.And an fluorine-based ion conductor coating layer on the surface treated with the fluorine gas of the ion conductor coating layer.
  13. 제1항, 제7항, 제8항 및 제10항 중 어느 한 항에 있어서,The method according to any one of claims 1, 7, 8 and 10,
    상기 다공성 지지체는 탄화수소계 다공성 지지체이고,The porous support is a hydrocarbon-based porous support,
    상기 이온 전도체는 탄화수소계 이온 전도체인 것인 이온 교환막.The ion conductor is an ion exchange membrane that is a hydrocarbon-based ion conductor.
  14. 실리카 분산액과 이온 전도체를 혼합하여 실리카-이온전도체 혼합물을 제조하는 단계, 그리고Mixing the silica dispersion with the ion conductor to prepare a silica-ion conductor mixture, and
    다수의 공극(pore)을 포함하는 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 코팅하여 실리카 코팅층을 형성하는 단계Coating the silica-ion conductor mixture on the surface of the porous support including a plurality of pores to form a silica coating layer
    를 포함하는 이온 교환막의 제조 방법.Method for producing an ion exchange membrane comprising a.
  15. 제14항에 있어서,The method of claim 14,
    상기 실리카 코팅층을 형성하는 단계는Forming the silica coating layer
    상기 실리카-이온전도체 혼합물이 상기 다공성 지지체의 공극을 채우면서 상기 다공성 지지체 표면에 상기 실리카 코팅층을 형성시키는 것인The silica-ion conductor mixture forms the silica coating layer on the surface of the porous support while filling the pores of the porous support.
    이온 교환막의 제조 방법.Method for producing an ion exchange membrane.
  16. 제14항에 있어서,The method of claim 14,
    상기 실리카 코팅층을 형성하는 단계는Forming the silica coating layer
    이온 전도체로 상기 다공성 지지체의 공극을 채우는 단계, 및Filling the pores of the porous support with an ion conductor, and
    상기 다공성 지지체 표면에 상기 실리카-이온전도체 혼합물을 코팅하여 상기 실리카 코팅층을 형성시키는 단계Coating the silica-ion conductor mixture on a surface of the porous support to form the silica coating layer
    를 포함하는 것인 이온 교환막의 제조 방법.Method for producing an ion exchange membrane comprising a.
  17. 제14항에 있어서,The method of claim 14,
    상기 실리카 코팅층을 형성하는 단계 이후에, 실리카 코팅층의 표면을 식각 처리하는 단계를 더 포함하는 것인 이온 교환막의 제조 방법.After the step of forming the silica coating layer, the method of producing an ion exchange membrane further comprising the step of etching the surface of the silica coating layer.
  18. 제14항에 있어서,The method of claim 14,
    상기 실리카 코팅층을 형성하는 단계 이후에, 실리카 코팅층의 표면을 불소 가스로 처리하는 단계를 더 포함하는 것인 이온 교환막의 제조 방법.After forming the silica coating layer, the method of manufacturing an ion exchange membrane further comprising the step of treating the surface of the silica coating layer with fluorine gas.
  19. 다수의 공극(pore)을 포함하는 다공성 지지체의 공극을 이온 전도체로 채우면서 상기 다공성 지지체의 표면에 이온 전도체 코팅층을 형성하는 단계, 그리고Forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support including a plurality of pores with the ion conductor, and
    상기 이온 전도체 코팅층의 표면을 식각 처리하는 단계Etching the surface of the ion conductor coating layer
    를 포함하는 이온 교환막의 제조 방법.Method for producing an ion exchange membrane comprising a.
  20. 제19항에 있어서,The method of claim 19,
    상기 식각 처리는 유기 용매를 포함하는 식각 용액, 이온 전도체를 유기 용매에 희석시킨 식각 용액 및 실리카 분산액으로 이루어진 군에서 선택되는 어느 하나의 식각 용액을 상기 이온 전도체 코팅층의 표면에 접촉시켜 이루어지는 것인 이온 교환막의 제조 방법.The etching process is performed by contacting the surface of the ion conductor coating layer with an etching solution selected from the group consisting of an etching solution containing an organic solvent, an etching solution in which an ion conductor is diluted with an organic solvent, and a silica dispersion. Method of producing an exchange membrane.
  21. 제19항에 있어서,The method of claim 19,
    상기 식각 처리는 레이저 조사, 폴리싱(polishing), 코로나 처리 및 플라즈마 처리로 이루어진 군에서 선택되는 어느 하나의 물리적 처리에 의하여 이루어지는 것인 이온 교환막의 제조 방법.The etching process is a method for producing an ion exchange membrane, which is performed by any one of a physical treatment selected from the group consisting of laser irradiation, polishing, corona treatment and plasma treatment.
  22. 다수의 공극(pore)을 포함하는 다공성 지지체의 공극을 이온 전도체로 채우면서 상기 다공성 지지체의 표면에 이온 전도체 코팅층을 형성하는 단계, 그리고Forming an ion conductor coating layer on the surface of the porous support while filling the pores of the porous support including a plurality of pores with the ion conductor, and
    상기 이온 전도체 코팅층의 표면을 불소 가스로 처리하는 단계Treating the surface of the ion conductor coating layer with fluorine gas
    를 포함하는 이온 교환막의 제조 방법.Method for producing an ion exchange membrane comprising a.
  23. 제22항에 있어서,The method of claim 22,
    상기 불소 가스 처리된 이온 전도체 코팅층 위에 불소계 이온 전도체 코팅층을 형성하는 단계를 더 포함하는 것인 이온 교환막의 제조 방법.And forming a fluorine-based ion conductor coating layer on the fluorine-gas treated ion conductor coating layer.
  24. 제1항, 제7항, 제8항 및 제10항 중 어느 한 항에 따른 이온 교환막을 포함하는 에너지 저장 장치.An energy storage device comprising the ion exchange membrane according to any one of claims 1, 7, 8 and 10.
  25. 제24항에 있어서,The method of claim 24,
    상기 에너지 저장 장치는 연료 전지인 것인 에너지 저장 장치.The energy storage device is a fuel cell.
  26. 제24항에 있어서,The method of claim 24,
    상기 에너지 저장 장치는 레독스 플로우 배터리(redox flow battery)인 것인 에너지 저장 장치.The energy storage device is a redox flow battery (redox flow battery).
PCT/KR2017/002939 2016-03-31 2017-03-20 Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same WO2017171285A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780014559.1A CN109071851A (en) 2016-03-31 2017-03-20 Amberplex and its manufacturing method and energy storage device comprising the film
JP2018545648A JP2019513164A (en) 2016-03-31 2017-03-20 Ion exchange membrane, method of manufacturing the same, and energy storage device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0039511 2016-03-31
KR1020160039511A KR101926784B1 (en) 2016-03-31 2016-03-31 Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same

Publications (2)

Publication Number Publication Date
WO2017171285A2 true WO2017171285A2 (en) 2017-10-05
WO2017171285A3 WO2017171285A3 (en) 2018-09-07

Family

ID=59964918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002939 WO2017171285A2 (en) 2016-03-31 2017-03-20 Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same

Country Status (4)

Country Link
JP (2) JP2019513164A (en)
KR (1) KR101926784B1 (en)
CN (1) CN109071851A (en)
WO (1) WO2017171285A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418104A (en) * 2017-11-30 2020-07-14 可隆工业株式会社 Polymer electrolyte membrane, method of preparing the same, and membrane electrode assembly including the same
US20210280889A1 (en) * 2018-12-28 2021-09-09 Panasonic Intellectual Property Management Co., Ltd. Redox flow battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107996A1 (en) * 2017-11-30 2019-06-06 코오롱인더스트리 주식회사 Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same
KR102014970B1 (en) 2018-07-27 2019-08-27 인천대학교 산학협력단 Anion exchange membrane and method for preparing the same
KR102217838B1 (en) 2018-08-27 2021-02-22 인천대학교 산학협력단 Anion exchange membrane and method for preparing the same
KR102251160B1 (en) * 2020-10-27 2021-05-14 한국에너지기술연구원 De-Ash in Biomass at Low-Temperature, Manufacturing Method and System of Fuel Production Connected with Energy Storage System
JP2023532660A (en) * 2020-12-30 2023-07-31 コーロン インダストリーズ インク Polymer electrolyte membrane and membrane electrode assembly including the same
CN114807958B (en) * 2022-06-08 2024-05-07 中国科学院化学研究所 High specific surface area proton exchange membrane electrode and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891728A (en) * 1981-11-27 1983-05-31 Daikin Ind Ltd Polyimide or polyamideimide film having fluorine-treated surface and its bonding
JPH04220957A (en) * 1990-12-20 1992-08-11 Mitsubishi Heavy Ind Ltd Processing method for highpolymer solid electrolyte
JP2003123792A (en) 2001-10-09 2003-04-25 Toray Ind Inc Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
JP4435560B2 (en) * 2002-12-26 2010-03-17 株式会社トクヤマ Ion exchange membrane and method for producing the same
JP4198009B2 (en) * 2003-08-07 2008-12-17 ジャパンゴアテックス株式会社 Solid polymer electrolyte membrane and fuel cell
JP5010823B2 (en) 2004-10-14 2012-08-29 三星エスディアイ株式会社 POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
KR100684730B1 (en) * 2004-10-14 2007-02-20 삼성에스디아이 주식회사 Polymer electrolyte for direct oxidation fuel cell, method of preparing same and direct oxidation fuel cell comprising same
JP2006206671A (en) 2005-01-26 2006-08-10 Toray Ind Inc Polymer electrolyte material, polymer electrolyte component, membrane electrode assembly and polymer electrolyte fuel cell
US8182943B2 (en) * 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
KR101297170B1 (en) * 2006-04-04 2013-08-27 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell, method of preparing same and fuel cell system comprising same
JP4882541B2 (en) * 2006-06-26 2012-02-22 トヨタ自動車株式会社 Manufacturing method of electrolyte membrane for fuel cell and membrane electrode assembly
US20080199753A1 (en) 2007-02-19 2008-08-21 Gm Global Technology Operations, Inc. Fluorine Treatment of Polyelectrolyte Membranes
KR100978609B1 (en) * 2007-11-27 2010-08-27 한양대학교 산학협력단 Proton exchange membrane using surface treatment technique based on direct fluorination, membrane-electrode assembly, and fuel cell comprising the same
JP2010080374A (en) * 2008-09-29 2010-04-08 Toshiba Corp Fuel cell
KR101254121B1 (en) * 2010-08-02 2013-04-12 주식회사 동호 Monitoring Method of Usage Condition of Public Exercising Machine
JP2012059657A (en) * 2010-09-13 2012-03-22 Nitto Denko Corp Proton conductive polymer electrolyte membrane and membrane electrode assembly using the same, and polymer electrolyte fuel cell
EP2721676A1 (en) * 2011-06-17 2014-04-23 E. I. Du Pont de Nemours and Company Improved composite polymer electrolyte membrane
KR101513076B1 (en) * 2012-03-19 2015-04-17 코오롱패션머티리얼(주) Polymer electrolyte membrane for fuel cell and fuel cell comprising same
JP2013218868A (en) 2012-04-09 2013-10-24 Toyobo Co Ltd Ion exchange membrane and method for producing the same, redox flow battery, and fuel cell
JPWO2014034415A1 (en) 2012-08-31 2016-08-08 東洋紡株式会社 Ion exchange membrane for vanadium redox battery, composite, and vanadium redox battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418104A (en) * 2017-11-30 2020-07-14 可隆工业株式会社 Polymer electrolyte membrane, method of preparing the same, and membrane electrode assembly including the same
JP2021503694A (en) * 2017-11-30 2021-02-12 コーロン インダストリーズ インク Polymer electrolyte membrane, its manufacturing method and membrane electrode assembly including it
US11302949B2 (en) 2017-11-30 2022-04-12 Kolon Industries, Inc. Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same
CN111418104B (en) * 2017-11-30 2023-05-16 可隆工业株式会社 Polymer electrolyte membrane, method of preparing the same, and membrane electrode assembly including the same
US20210280889A1 (en) * 2018-12-28 2021-09-09 Panasonic Intellectual Property Management Co., Ltd. Redox flow battery

Also Published As

Publication number Publication date
KR101926784B1 (en) 2018-12-07
CN109071851A (en) 2018-12-21
JP2020194779A (en) 2020-12-03
KR20170112456A (en) 2017-10-12
WO2017171285A3 (en) 2018-09-07
JP2019513164A (en) 2019-05-23
JP7022178B2 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2017171285A2 (en) Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same
WO2013147520A1 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
WO2015130066A1 (en) Porous support, method for manufacturing same, and reinforced membrane comprising same
WO2015047008A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
WO2015147550A1 (en) Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same
WO2011025259A2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
WO2014178619A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
WO2011078465A4 (en) Porous support having improved strength, reinforced composite electrolyte membrane using same, membrane-electrode assembly having same membrane, and fuel cell having same membrane
WO2018199458A1 (en) Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same
WO2019066534A2 (en) Radical scavenger, manufacturing method therefor, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2020005018A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and membrane electrode assembly comprising same
WO2015080475A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
WO2016163773A1 (en) Polymer electrolyte membrane, electrochemical cell and flow cell comprising same, method for manufacturing polymer electrolyte membrane, and flow cell electrolyte
WO2021066544A1 (en) Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
WO2018124764A1 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
WO2016122200A1 (en) Compound comprising aromatic ring, and polyelectrolyte membrane using same
WO2023101310A1 (en) Reinforced composite membrane for fuel cell, manufacturing method therefor, and membrane-electrode assembly comprising same
WO2016122195A1 (en) Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same
WO2017188793A1 (en) Fuel cell membrane-electrode assembly
WO2019139415A1 (en) Gas diffusion layer for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for preparing gas diffusion layer for fuel cell
WO2018182191A1 (en) Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same
WO2021133045A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and electrochemical device comprising same
WO2018194393A1 (en) Method for manufacturing ion exchange membrane using chemical modification and ion exchange membrane manufactured thereby
WO2023195623A1 (en) Polymer electrolyte membrane, method for manufacturing same, and electrochemical device comprising same
WO2022071732A1 (en) Method for manufacturing polymer electrolyte membrane, and electrolyte membrane manufactured by same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545648

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775710

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17775710

Country of ref document: EP

Kind code of ref document: A2