WO2018124764A1 - Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same - Google Patents
Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same Download PDFInfo
- Publication number
- WO2018124764A1 WO2018124764A1 PCT/KR2017/015630 KR2017015630W WO2018124764A1 WO 2018124764 A1 WO2018124764 A1 WO 2018124764A1 KR 2017015630 W KR2017015630 W KR 2017015630W WO 2018124764 A1 WO2018124764 A1 WO 2018124764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adhesive layer
- membrane
- interfacial
- electrode assembly
- catalyst layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a membrane-electrode assembly, a method for manufacturing the same, and a fuel cell including the same, wherein the membrane-electrode assembly has improved interfacial adhesion and interfacial stability between the catalyst layer and the ion exchange membrane, and thus hydrogen ion conduction performance of the membrane-electrode assembly.
- Membrane-electrode capable of overcoming degradation issues, reduced gas permeability without increasing interfacial resistance and interfacial bonding problems, resulting in reduced hydrogen gas crossover, and improved performance and durability at high / low humid conditions
- a fuel cell is a battery having a power generation system that directly converts chemical reaction energy such as oxidation / reduction reaction of hydrogen and oxygen contained in hydrocarbon-based fuel materials such as methanol, ethanol and natural gas into electrical energy.
- chemical reaction energy such as oxidation / reduction reaction of hydrogen and oxygen contained in hydrocarbon-based fuel materials such as methanol, ethanol and natural gas
- hydrocarbon-based fuel materials such as methanol, ethanol and natural gas
- This fuel cell has a merit that it can produce a wide range of output by stacking by stacking unit cells, and has attracted attention as a small and portable portable power source because it shows an energy density of 4 to 10 times compared to a small lithium battery. have.
- a stack that substantially generates electricity in a fuel cell is made up of several to dozens of unit cells consisting of a membrane-electrode assembly (MEA) and a separator (also called a bipolar plate).
- MEA membrane-electrode assembly
- separator also called a bipolar plate
- the membrane-electrode assembly has a structure in which an anode (Anode, or fuel electrode) and a cathode (Cathode, or air electrode) are formed on both sides of an electrolyte membrane.
- Fuel cells may be classified into alkali electrolyte fuel cells and polymer electrolyte fuel cells (PEMFCs) according to the state and type of electrolyte.
- PEMFCs polymer electrolyte fuel cells
- polymer electrolyte fuel cells may have a low operating temperature of less than 100 ° C.
- polymer electrolyte fuel cells include hydrogen exchange gas fuel cells (Proton Exchange Membrane Fuel Cell, PEMFC), and direct methanol fuel cell (DMFC) using liquid methanol as fuel. Etc. can be mentioned.
- FCV Fluel Cell Vehicle
- the MEA for a polymer electrolyte fuel cell for FCV has technical limitations such as a decrease in MEA performance and a significant decrease in durability due to long time operation, and major MEA durability / performance degradation issues are as follows.
- the catalyst layer and the catalyst are deteriorated by potential cycling occurring during load cycling, and the carbon carrier is supported by the high cathode potential at startup / shutdown.
- An object of the present invention is to improve the interfacial bonding and interfacial stability between the catalyst layer and the ion exchange membrane to overcome the problem of deterioration of hydrogen ion conduction performance of the membrane-electrode assembly, the gas permeability is reduced without increasing the interfacial resistance and interfacial bonding problems It is to provide a membrane-electrode assembly in which gas crossover is reduced and performance and durability in high temperature / low humidity conditions can be improved.
- Another object of the present invention is to provide a method of manufacturing the membrane-electrode assembly.
- the catalyst layer positioned on the catalyst layer, the interface with the catalyst layer is formed on the interface adhesive layer formed soaking to a depth of the catalyst layer, and is located on the interface adhesive layer, the interface adhesive layer through the An ion exchange membrane is bonded to the catalyst layer, and the interfacial adhesive layer provides a membrane-electrode assembly including a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq.
- EW equivalent weight
- the membrane-electrode assembly includes a first interfacial adhesion layer and a first catalyst layer positioned on one surface of the ion exchange membrane, a second interfacial adhesion layer and a second catalyst layer positioned on the other surface of the ion exchange membrane, and the first interfacial adhesion layer, Any one selected from the group consisting of the second interfacial adhesion layer and both may be the interfacial adhesion layer, and any one selected from the group consisting of the first catalyst layer, the second catalyst layer and both may be the catalyst layer.
- the interfacial adhesive layer may be to infiltrate any one selected from the group consisting of pores (surface recesses) formed on the surface of the catalyst layer, pores present at a predetermined depth from the surface of the catalyst layer, and both.
- the average depth of the interfacial adhesive layer penetrating the catalyst layer may be 1% to 10% of the average thickness of the catalyst layer.
- the average thickness of the interfacial adhesive layer may be 0.01 ⁇ m to 5 ⁇ m.
- the interfacial adhesive layer may include a mixture of the fluorine ionomer and a hydrocarbon ionomer having an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g.
- IEC ion exchange capacity
- the weight ratio of the fluorine-based ionomer and the hydrocarbon-based ionomer may be 20: 1 to 1:20.
- the interfacial adhesive layer may further include nano powder having an average particle diameter of 1 nm to 50 nm.
- the interfacial adhesive layer may include 0.1 wt% to 20 wt% of the nanopowder based on the total weight of the interfacial adhesive layer.
- the nano powder may be any one selected from the group consisting of an ionic conductor, a radical scavenger, an oxygen evolution reaction (OER) catalyst, and a mixture thereof.
- the ion conductor is SnO 2 , fumed silica, clay, alumina, mica, zeolite, phosphotungstic acid, silicon tungstic acid ), Zirconium hydrogen phosphate, and any one hydrophilic inorganic additive selected from the group consisting of a mixture thereof.
- the radical scavengers are cerium, tungsten, ruthenium, palladium, silver, rhodium, cerium, zirconium, yttrium, manganese, molybdenum, lead, vanadium, titanium, ionic forms thereof, oxide forms thereof, salt forms thereof and their It may be any one selected from the group consisting of a mixture.
- the oxygen generation reaction catalyst may be any one platinum-based catalyst selected from the group consisting of platinum, gold, palladium, rhodium, iridium, ruthenium, osmium, platinum alloys, alloys thereof, and mixtures thereof.
- the interface adhesive layer is An interface with the catalyst layer penetrates to a depth of the catalyst layer, wherein the interface adhesive layer includes a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq. It provides a manufacturing method.
- EW equivalent weight
- the interfacial adhesive layer may be formed by spray coating the composition for forming the interfacial adhesive layer on the catalyst layer.
- the interfacial adhesive layer may include a mixture of the fluorine ionomer and a hydrocarbon ionomer having an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g.
- IEC ion exchange capacity
- the interfacial adhesive layer may further include nano powder having a particle diameter of 1 nm to 50 nm.
- a fuel cell including the membrane-electrode assembly.
- the membrane-electrode assembly of the present invention can overcome the problem of deterioration of hydrogen ion conduction performance of the membrane-electrode assembly by improving the interfacial adhesion and interfacial stability between the catalyst layer and the ion exchange membrane, and the gas permeability without increasing the interfacial resistance and interfacial bonding problems. Reduced hydrogen gas crossover can be reduced, and performance and durability in high temperature / low humid conditions can be improved.
- FIG. 1 is a schematic view showing an interface structure of an ion exchange membrane, an interface adhesive layer, and a catalyst layer of a membrane-electrode assembly according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the overall configuration of a fuel cell according to an embodiment of the present invention.
- Example 3 is a graph showing the hydrogen gas permeability measured in Experimental Example 2 of the present invention.
- Membrane electrode assembly is located on the catalyst layer, the catalyst layer, an interface adhesive layer formed by the interface with the catalyst layer penetrates to a depth of the catalyst layer, and is located on the interface adhesive layer, the interface adhesive layer It includes an ion exchange membrane bonded to the catalyst layer via a.
- FIG. 1 is a schematic diagram showing an interface structure of an ion exchange membrane, an adhesive layer, and a catalyst layer in a membrane-electrode assembly according to an embodiment of the present invention.
- an interfacial adhesion layer 20 is interposed between the ion exchange membrane 10 of the membrane-electrode assembly and the catalyst layer 30 including the catalyst particles 31, and the catalyst particles 31.
- the interface between the catalyst layer 30 and the interfacial adhesion layer 20 made of) has a form penetrated between the catalyst particles 31 of the catalyst layer 30.
- the membrane-electrode assembly may further include an electrode substrate 40 on the outer side of the catalyst layer 30.
- the membrane-electrode assembly includes a first interfacial adhesive layer and a first catalyst layer positioned on one surface of the ion exchange membrane 10, a second interfacial adhesive layer and a second catalyst layer positioned on the other surface of the ion exchange membrane 10, Any one selected from the group consisting of the first interfacial adhesive layer, the second interfacial adhesive layer, and both of them is the interfacial adhesive layer 20, and is selected from the group consisting of the first catalyst layer, the second catalyst layer, and both. Any one of which may be the catalyst layer 30.
- the first catalyst layer may be a cathode catalyst layer
- the second catalyst layer may be an anode catalyst layer.
- the interfacial adhesive layer 20 permeates any one selected from the group consisting of pores (surface recesses) formed on the surface of the catalyst layer 30, pores present at a predetermined depth from the surface of the catalyst layer 30, and both. For example, it can be formed while filling them.
- the interfacial adhesive layer 20 fills all empty spaces between the catalyst particles 31 and the ion exchange membrane 10 to maximize the contact area between the catalyst particles 31 and the ion exchange membrane 10. can do. There are no voids between the ion exchange membrane 10 and the catalyst particles 31, and an interface between the catalyst layer 30 and the interface adhesive layer 20 is formed along the surface curvature of the catalyst particles 31. Due to the increased interface area, the ion transfer path increases, and the adhesion strength between the catalyst layer 30 and the ion exchange membrane 10 may be improved.
- the average depth of the interfacial adhesive layer 20 penetrating the catalyst layer 30 may be 1% to 10%, 2% to 5% of the average thickness of the catalyst layer 30, and the permeable interfacial adhesion layer When the average depth of (20) is in the above range, the binding effect between the catalyst layer 30 and the interfacial adhesion layer 20 is high and the output performance is excellent.
- the average depth of the catalyst layer 30 or the average thickness of the catalyst layer 30 may be an average value of the depth or the thickness measured with respect to the entirety of the catalyst layer 30, or at one cross section of the catalyst layer 30. It may be an average value per unit length (eg cm).
- The% (length%) is a percentage value of a value obtained by dividing the average penetration depth of the interfacial adhesive layer 20 in length by the average thickness of the catalyst layer 30 in length.
- the interfacial adhesive layer 20 may include a fluorine ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq, and include a fluorine ionomer having an equivalent weight of 550 g / eq to 950 g / eq. Can be.
- the equivalent weight of the fluorine ionomer is the molecular mass of the fluorine ionomer per one ion conductive functional group contained in the fluorine ionomer.
- the equivalent weight of the fluorine ionomer is less than 500 g / eq, the elution phenomenon of the fluorine ionomer or the permeability of the hydrogen fuel may increase, and when it exceeds 1000 g / eq, the hydrogen ion conductivity may be lowered under high temperature and low humidity conditions. have.
- the fluorine ionomer has a cation exchange group such as protons or an anion exchange group such as hydroxy ions, carbonates or bicarbonates, and includes a fluorine-based polymer containing fluorine in the main chain; Or partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer, and the like, and specific examples thereof include poly (perfluorosulfonic acid), Poly (perfluorocarboxylic acid), a copolymer of tetrafluoroethylene and fluorovinyl ether containing a sulfonic acid group, a defluorinated sulfide polyether ketone or a fluoropolymer comprising a mixture thereof.
- a fluorine-based polymer containing fluorine in the main chain or partially fluorinated polymers such as polysty
- the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group.
- the said fluorine-type ionomer can also be used individually or in mixture of 2 or more types.
- the fluorine-based ionomer may include a mixture of appropriately fluorine-based ionomers exemplified in order to satisfy the equivalent range.
- the interfacial adhesive layer 20 may include a mixture of the fluorine ionomer and the hydrocarbon ionomer.
- gas permeability may be reduced without affecting interfacial bonding, thereby preventing hydrogen crossover.
- the hydrocarbon-based ionomer may have an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g, and 1.0 meq / g to 3.5 meq / g.
- IEC ion exchange capacity
- the ion exchange capacity of the hydrocarbon-based ionomer is within the above range, it is possible to improve the performance of the membrane-electrode assembly without deteriorating the conductivity of hydrogen ions under high temperature / low humidification conditions.
- the ion exchange capacity of the hydrocarbon-based ionomer is less than 0.8 meq / g, it is possible to reduce the migration of hydrogen ions under high temperature and low humidity conditions, and when it exceeds 4.0 meq / g, the interface and transfer resistance may be increased according to the humidity. have.
- the weight ratio of the fluorine-based ionomer and the hydrocarbon-based ionomer may be 20: 1 to 1:20, and 1: 1 to 1:10. Can be.
- the weight ratio of the fluorine-based ionomer and the hydrocarbon-based ionomer is within the above range, hydrogen crossover may be reduced, and interfacial bonding may be increased to improve performance and lifespan of the membrane-electrode assembly.
- the weight ratio of the hydrocarbon-based ionomer is less than 1, it may be difficult to express the effect of reducing the hydrogen fuel permeability, and when it exceeds 20, the ionomer blend may be unevenly distributed and the resistance of the electrolyte membrane may be greatly increased.
- the hydrocarbon-based ionomer has a cation exchange group such as proton or an anion exchange group such as hydroxy ion, carbonate or bicarbonate, and has benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, Polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, polycarbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, poly It may include a hydrocarbon-based polymer such as arylether sulfone, polyphosphazene or polyphenylquinoxaline, and specific examples thereof include sulfonated polyimide (S-PI) and sulfonated polyaryl ether sulfone (sulfonated).
- S-PI sulfonated polyimide
- S-PI sulfonated polyimi
- S-PAES polyarylethersulfone
- SPEEK sulfonated polyetheretherketone
- SPBI sulfonated polybenzimidazole
- S-PSU sulfonated polysulfone
- S-PS sulfonated polystyrene
- Polyphosphazene sulfonated Polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyethersulfone polyether sulfone, sulfonated polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone (sulfonated polyphenylene sulfide sulfone), sulfonated polyphenylene sulfonated polyphenylene sulfone), sul
- interfacial adhesive layer 20 may further include nano powder.
- the nanopowder may impart functionality to the interfacial adhesive layer 20 without degrading the interfacial adhesion of the membrane-electrode assembly or increasing interfacial resistance, thereby overcoming the deterioration in durability of the membrane-electrode assembly and improving performance.
- the nano powder may be any one selected from the group consisting of an ionic conductor, a radical scavenger, an oxygen evolution reaction (OER) catalyst, and a mixture thereof.
- the ion conductor may be excellent in dispersibility to improve hydrogen ion conductivity of the membrane electrode assembly.
- the ion conductor is a hydrophilic inorganic additive, specifically, SnO 2 , fumed silica, clay, alumina, mica, zeolite, phosphotungstic acid It may be any one selected from the group consisting of silicon tungstic acid, zirconium hydrogen phosphate, and mixtures thereof.
- the ion conductor is a hydrophilic inorganic ion additive, it is possible to prevent the phenomenon of deterioration of hydrogen ion conductivity at high temperature and low humidity conditions.
- the radical scavenger may be uniformly dispersed in the interfacial adhesion layer 20 to contribute to stabilization of the membrane-electrode assembly.
- the radical scavenger is a transition metal ion that can decompose hydrogen peroxide into water and oxygen to inhibit the generation of hydroxy radicals, specifically cerium, tungsten, ruthenium, palladium, silver, rhodium, cerium, zirconium, yttrium, manganese. , Molybdenum, lead, vanadium, titanium, and the like, and the metals themselves, their ionic forms, their oxide forms, their salt forms, or other forms are also possible.
- the oxygen generation reaction catalyst may be atomized / uniformly dispersed in the interfacial adhesion layer 20 to improve durability of the catalyst layer 30 through an effective water decomposition reaction.
- the oxygen generation reaction catalyst may include a platinum-based metal active material.
- the platinum-based metal may be used alone or in combination of two or more selected from the group consisting of platinum, gold, palladium, rhodium, iridium, ruthenium, osmium, platinum alloys, alloys thereof, and mixtures thereof.
- the platinum alloy is Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ru-W, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt- Ru-Sn-W, Pt-Co, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir and It can be used individually or in mixture of 2 or more types selected from the group which consists of these combinations.
- the catalyst particles 31 may use a metal black, or may be used by supporting the catalyst metal on a carrier.
- the carrier may include a porous inorganic oxide such as zirconia, alumina, titania, silica, ceria, ITO, WO, SnO 2 , ZnO 2 , or a combination thereof.
- a carbon-based carrier graphite, carbon fiber, carbon sheet, carbon black, carbon nanotube, carbon nanofiber, carbon nanowire, carbon nanoball, carbon nanohorn, carbon nano cage, graphene, stabilized carbon, activated carbon, And it may be any one selected from the group consisting of a mixture thereof.
- the nanoparticles may have an average particle diameter of 1 nm to 50 nm and 2 nm to 35 nm.
- the size of the nano-powder When the size of the nano-powder is in the above range, it may be uniformly dispersed in the interfacial adhesive layer 20, and may implement the membrane-electrode assembly without a large increase in resistance.
- the average particle diameter of the nanopowder When the average particle diameter of the nanopowder is out of the above range, agglomeration phenomenon between the nanopowders or a decrease in dispersibility and phase separation may occur in the composition.
- the interfacial adhesive layer 20 may include 0.1 wt% to 20 wt% of the nanopowder, and may include 0.5 wt% to 15 wt%, based on the total weight of the interfacial adhesive layer 20.
- the interfacial adhesive layer 20 may be uniformly formed without the phase separation in the interfacial adhesive layer 20.
- the content of the nano powder is less than 0.1% by weight, hydrogen ion conductivity enhancement effect, radical generation inhibiting effect and effective water decomposition reaction may be difficult to be achieved, and when the content exceeds 20% by weight, high temperature and low temperature humidity due to a decrease in dispersibility of the nano powder.
- Output performance and durability of the membrane-electrode assembly due to reduced hydrogen ion conductivity, ionic resistance-charge transfer resistance-increased mass transfer resistance and heterogeneous water decomposition reactions under conditions Improvements may not be achieved.
- the average thickness of the interfacial adhesive layer 20 may be 0.01 ⁇ m to 5 ⁇ m, and 0.5 ⁇ m to 3 ⁇ m.
- the sum of the thicknesses of the catalyst layer 30, the interfacial adhesive layer 20, and the ion exchange membrane 10 may be 18 ⁇ m to 40 ⁇ m, and the interfacial adhesive layer
- the sum of the thicknesses of the catalyst layer 30, the interfacial adhesive layer 20, and the ion exchange membrane 10 may be 2 ⁇ m to 35 ⁇ m.
- the interfacial adhesion between the electrolyte membrane and the electrode may not be improved, and when the interfacial adhesive layer 20 exceeds 5 ⁇ m, the interface and the transfer resistance components increase to increase the performance of the membrane-electrode assembly. Can be lowered.
- the catalyst particles 31 of the catalyst layer 30 may be any of those that can be used as a catalyst in the hydrogen oxidation reaction, oxygen reduction reaction, it is preferable to use a platinum-based metal.
- the platinum-based metal is platinum (Pt), palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), platinum-M alloys (the M is palladium (Pd), ruthenium (Ru), iridium ( Ir), osmium (Os), gallium (Ga), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper ( Cu, silver (Ag), gold (Au), zinc (Zn), tin (Sn), molybdenum (Mo), tungsten (W), lanthanum (La) and rhodium (Rh) It may include one selected from the group consisting of) and a combination thereof, and more preferably, a combination of two or more metals selected from the platinum-based catalyst metal group may be used, but is not limited thereto. Platinum-based catalyst metals usable in the art can be used
- the catalyst particles 31 may use a metal black, or may be used by supporting the catalyst metal on a carrier.
- the carrier may be selected from carbon-based carriers, porous inorganic oxides such as zirconia, alumina, titania, silica, ceria, zeolite, and the like.
- the carbon-based carrier is graphite, super P, carbon fiber, carbon sheet, carbon black, Ketjen Black, Denka black, acetylene It may be selected from acetylene black, carbon nano tube (CNT), carbon sphere, carbon ribbon, fullerene, activated carbon and one or more combinations thereof, Without being limited thereto, carriers usable in the art may be used without limitation.
- the catalyst particles 31 may be located on the surface of the carrier, or may penetrate into the carrier while filling the internal pores of the carrier.
- the noble metal supported on the carrier When using the noble metal supported on the carrier as a catalyst, a commercially available commercially available one may be used, or may be prepared by using a noble metal supported on the carrier.
- the process of supporting the noble metal on the carrier is well known in the art, and thus the detailed description thereof will be easily understood by those skilled in the art.
- the catalyst particles 31 may be contained in an amount of 20% to 80% by weight relative to the total weight of the catalyst layer 30, and when contained in less than 20% by weight, there may be a problem of deterioration of activity, and 80% by weight. If it exceeds, the active area is reduced by agglomeration of the catalyst particles 31, so that the catalytic activity may be reversely lowered.
- the catalyst layer 30 may include a binder to improve adhesion of the catalyst layer 30 and transfer hydrogen ions.
- an ionomer having hydrogen ion conductivity is a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
- the ionomer is a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
- the cation exchange group may be any one selected from the group consisting of sulfonic acid groups, carboxyl groups, boronic acid groups, phosphoric acid groups, imide groups, phosphonic acid groups, sulfonimide groups, sulfonamide groups, and combinations thereof, and generally sulfonic acid groups Or a carboxyl group.
- the cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
- the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
- a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
- Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof.
- Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, sulfonated poly Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated polyether ketone polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone
- the cation conductor may also replace H with Na, K, Li, Cs or tetrabutylammonium in the cation exchange group at the side chain end.
- H when H is replaced with Na, NaOH is substituted during the preparation of the catalyst composition, and when tetrabutylammonium is substituted, tetrabutylammonium hydroxide is used, and K, Li, or Cs is also appropriate.
- Substitutions may be used. Since the substitution method is well known in the art, detailed description thereof will be omitted.
- the cationic conductor may be used in the form of a single substance or a mixture, and may also be optionally used with a nonconductive compound for the purpose of further improving adhesion to the ion exchange membrane 10. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
- non-conductive compound examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and ethylene / tetrafluoro Ethylene / tetrafluoroethylene (ETFE), ethylene chlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, copolymer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), dode
- PTFE polytetrafluoroethylene
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- ETFE ethylene / tetrafluoro Ethylene / te
- the anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
- a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
- ionomer examples include nafion, aquibion and the like.
- the ionomer may be included in an amount of 20 to 80 wt% based on the total weight of the catalyst layer 30. If the content of the ionomer is less than 20% by weight, the generated ions may not be transferred well, and if the amount of the ionomer is greater than 80% by weight, pores may be insufficient to supply hydrogen or oxygen (air). This can be reduced.
- the membrane-electrode assembly may further include an electrode substrate 40 outside the catalyst layer 30.
- a porous conductive substrate may be used to smoothly supply hydrogen or oxygen.
- Typical examples thereof include a carbon film, a carbon cloth, a carbon felt, or a metal cloth (a porous film composed of a metal cloth in a fibrous state or a metal film formed on a surface of a cloth formed of polymer fibers). May be used, but is not limited thereto.
- fluorine-based resin examples include polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated ethylene propylene ( Fluorinated ethylene propylene), polychlorotrifluoroethylene or copolymers thereof can be used.
- the electrode substrate 40 may further include a microporous layer (microporous layer) for enhancing the diffusion effect of the reactants.
- microporous layers are generally conductive powders having a small particle diameter, such as carbon powder, carbon black, acetylene black, activated carbon, carbon fiber, fullerene, carbon nanotubes, carbon nanowires, and carbon nanohorns. -horn or carbon nano ring.
- the microporous layer is prepared by coating a composition including a conductive powder, a binder resin, and a solvent on the electrode substrate 40.
- the binder resin may be polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride, alkoxy vinyl ether, polyvinyl alcohol, cellulose acetate Or copolymers thereof and the like can be preferably used.
- alcohols such as ethanol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, and the like, water, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran and the like can be preferably used.
- the coating process may be screen printing, spray coating, or coating using a doctor blade according to the viscosity of the composition, but is not limited thereto.
- the ion exchange membrane 10 includes an ion conductor.
- the ion conductor may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
- the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
- the cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
- the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
- a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
- Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof.
- Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, sulfonated poly Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated polyether ketone polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone
- hydrocarbon-based polymers excellent in ion conductivity and advantageous in terms of price can be preferably used.
- hydrocarbon-based polymers excellent in ion conductivity and advantageous in terms of price can be preferably used.
- the hydrocarbon-based polymer included in the hydrocarbon-based ion conductor and the hydrocarbon-based polymer included in the porous support are the same material type.
- SPI sulfonated polyimide
- adhesion between the hydrocarbon-based ion conductor and the porous support can be further improved. And the interface resistance can be further lowered.
- the anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
- a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
- the ion exchange membrane 10 may be in the form of a reinforcing membrane in which the ion conductor fills pores such as a fluorine-based porous support such as e-PTFE or a porous nanoweb support prepared by electrospinning.
- a method of manufacturing a membrane-electrode assembly forming an interface adhesive layer 20 by applying a composition for forming an interface adhesive layer on a catalyst layer 30, and a catalyst layer on which the interface adhesive layer 20 is formed. 30 and the ion exchange membrane 10 are bonded.
- the catalyst layer 30 is formed using the composition.
- the solvent may be a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and one or more mixtures thereof.
- the hydrophilic solvent is one selected from the group consisting of alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers, and amides containing, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have a functional group or more, they may include an alicyclic or aromatic cyclo compound as at least part of the main chain.
- alcohols include methanol, ethanol, isopropyl alcohol, ethoxy ethanol, n-propyl alcohol, butyl alcohol, 1,2-propanediol, 1-pentanol, 1.5-pentanediol, 1.9-nonanediol, and the like;
- Ketones include heptanone, octanon and the like;
- Aldehydes include benzaldehyde, tolualdehyde and the like; Examples of the ester include methylpentanoate, ethyl-2-hydroxypropanoate, and the like;
- Carboxylic acids include pentanoic acid, heptanoic acid and the like;
- Ethers include methoxybenzene, dimethoxypropane and the like;
- Amides include propanamide, butylamide, dimethylacetamide, and the like.
- the organic solvent may be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran and mixtures thereof.
- the solvent may be contained in an amount of 80 to 95% by weight based on the total weight of the composition for forming the catalyst layer, when less than 80% by weight of the solid content is too high may cause dispersion problems due to cracks and high viscosity when coating the catalyst layer (30) And greater than 95% by weight, which may be detrimental to the catalyst layer 30 activity.
- a catalyst layer 30 may be manufactured by coating the catalyst layer forming composition on a release film as a specific example.
- the catalyst-dispersed catalyst layer-forming composition is continuously or intermittently transferred to a coater, and then uniformly dried at a thickness of 10 ⁇ m to 200 ⁇ m on the release film. It is preferable to apply.
- the slot die is transferred to a coater such as a die, gravure, bar, comma coater, etc. continuously through a pump according to the viscosity of the composition for forming the catalyst layer.
- Coating, bar coating, comma coating, screen printing, spray coating, doctor blade coating, brush, etc. may be used to dry the thickness of the catalyst layer 30 on the decal film from 10 ⁇ m to 200 ⁇ m, more preferably from 10 ⁇ m to 100 ⁇ m. Apply uniformly in ⁇ m, pass through a drying furnace maintained at a constant temperature and volatilize the solvent.
- the composition for forming the catalyst layer When the composition for forming the catalyst layer is coated with a thickness of less than 1 ⁇ m, the activity of the catalyst may be reduced due to the small catalyst content. When the coating with a thickness of more than 200 ⁇ m, the resistance of ions and electrons may be increased to increase resistance. have.
- the drying process may be to dry at least 12 hours at 25 °C to 90 °C.
- the drying temperature is less than 25 °C and the drying time is less than 12 hours may cause a problem that may not form a sufficiently dried catalyst layer 30, when drying at a temperature exceeding 90 °C of the catalyst layer 30 Cracking may occur.
- the method of applying and drying the composition for forming the catalyst layer is not limited to the above.
- the composition for forming the interface adhesive layer is coated on the catalyst layer 30 to form the interface adhesive layer 20.
- the composition for forming an interfacial adhesive layer includes a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq and a solvent. Since the description of the fluorine ionomer is the same as described above, repeated descriptions thereof will be omitted.
- EW equivalent weight
- the composition for forming an interface adhesive layer may include the fluorine-based ionomer at a concentration of 0.1% to 30%, and may include a concentration of 1% to 20%.
- Concentration in the context of the present invention means a percentage concentration, the percentage concentration can be obtained as a percentage of the mass of the solute to the mass of the solution.
- the composition for forming the interfacial adhesive layer includes the fluorine-based ionomer in the concentration range, hydrogen ion conductivity and interfacial bonding may be improved without increasing interfacial resistance of the membrane-electrode assembly.
- concentration of the fluorine ionomer is less than 0.1%, the hydrogen ion transport ability may be lowered, and when the concentration of the fluorine ionomer is greater than 30%, the ionomer distribution may be nonuniformly formed.
- alcohols such as ethanol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, water, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, etc. may be preferably used.
- composition for forming an interfacial adhesive layer may include a mixture of the fluorine ionomer and a hydrocarbon ionomer having an ion exchange capacity of 0.8 meq / g to 4.0 meq / g. Since the description of the hydrocarbon-based ionomer is the same as described above, repeated description is omitted.
- the composition for forming an interfacial adhesive layer may be prepared by mixing a dispersion of the fluorine-based ionomer at a concentration of 0.1% to 30% and a dispersion of the hydrocarbon-based ionomer at a concentration of 0.1% to 30%.
- the composition for forming an interfacial adhesive layer may include the hydrocarbon-based ionomer at a concentration of 0.1% to 30%, and may include a concentration of 1% to 15%.
- the composition for forming the interfacial adhesive layer includes the hydrocarbon-based ionomer in the concentration range, hydrogen ion conductivity and interfacial bonding may be improved without increasing interfacial resistance of the membrane-electrode assembly.
- the concentration of the hydrocarbon-based ionomer is less than 0.1%, the hydrogen ion transport path may not be effectively formed, and when the concentration of the hydrocarbon-based ionomer is greater than 30%, the nonuniform distribution and resistance components of the ionomer may increase.
- composition for forming an interface adhesive layer may further include nanoparticles having a particle diameter of 1 nm to 50 nm. Since the description of the nano-powder is the same as described above, repeated description is omitted.
- the interfacial adhesive layer 20 may be formed by spray coating the interfacial adhesive layer forming composition on the catalyst layer 30.
- the interfacial adhesive layer 20 does not penetrate excessively into the catalyst layer 30, but penetrates to a predetermined depth from the surface of the catalyst layer 30 and fills surface curvature. It has a soothing effect.
- the spray method is applied to the surface of the catalyst layer 30 in a state in which some solvent is volatilized and the viscosity is increased while the composition for forming the interfacial adhesive layer is injected, so that the amount of penetration into the catalyst layer 30 is not excessive and is present on the surface.
- the pores can be selectively filled.
- the catalyst layer 30 and the ion exchange membrane 10 are bonded to each other via the interface adhesive layer 20.
- the catalyst layer 30 and the release film on which the interfacial adhesive layer 20 is formed may be cut to a required size, and then bonded to the ion exchange membrane 10.
- the method of bonding the catalyst layer 30 and the ion exchange membrane 10 through the interfacial adhesive layer 20 may be, for example, a transfer method, and the transfer method may be a metal press alone or a silicon rubber material on a metal press. It may be performed by a hot pressing method of applying heat and pressure by applying a soft plate of the same rubber material.
- the transfer method may be performed under the conditions of 80 °C to 150 °C and 50 kgf / cm 2 to 200 kgf / cm 2 .
- transfer of the catalyst layer 30 on a release film may not be performed properly, and when it exceeds 150 ° C., the polymer of the ion exchange membrane 10 may be There is a risk that structural modification of the catalyst layer 30 may occur, and when hot pressing under a condition exceeding 200 kgf / cm 2 , the effect of compressing the catalyst layer 30 is more effective than the transfer of the catalyst layer 30. It may get bigger and may not be able to transcribe properly.
- a fuel cell according to another embodiment of the present invention includes the membrane-electrode assembly.
- FIG. 2 is a schematic diagram showing the overall configuration of the fuel cell.
- the fuel cell 200 includes a fuel supply unit 210 for supplying a mixed fuel in which fuel and water are mixed, and a reforming unit for reforming the mixed fuel to generate a reformed gas including hydrogen gas ( 220, a stack 230 in which a reformed gas including hydrogen gas supplied from the reformer 220 generates an electrical energy by causing an electrochemical reaction with an oxidant, and an oxidant in the reformer 220 and the stack. It includes an oxidant supply unit 240 for supplying to (230).
- the stack 230 induces an oxidation / reduction reaction of a reforming gas including hydrogen gas supplied from the reformer 220 and an oxidant supplied from the oxidant supply unit 240 to generate a plurality of unit cells for generating electrical energy. Equipped.
- Each unit cell means a cell of a unit for generating electricity, wherein the membrane-electrode assembly for oxidizing / reducing oxygen in an oxidant and a reforming gas containing hydrogen gas, and a reforming gas and an oxidant including hydrogen gas
- a separator also referred to as a bipolar plate, hereinafter referred to as a "bipolar plate" for feeding to the membrane-electrode assembly.
- the separator is disposed on both sides of the membrane-electrode assembly at the center. At this time, the separator plates respectively located at the outermost side of the stack may be specifically referred to as end plates.
- the end plate of the separator plate, the pipe-shaped first supply pipe 231 for injecting the reformed gas containing hydrogen gas supplied from the reforming unit 220, and the pipe-shaped second for injecting oxygen gas The supply pipe 232 is provided, and the other end plate has a first discharge pipe 233 for discharging the reformed gas containing hydrogen gas remaining unreacted in the plurality of unit cells to the outside and the unit cell described above. Finally, the second discharge pipe 234 for discharging the remaining unreacted oxidant to the outside is provided.
- a cathode electrode composition was prepared by dispersing by 88% by weight of PtCo / C Cathode catalyst and 12% by weight of Nafion ® / H 2 O / 2-propanol solution as a binder by stirring and ultrasonic methods.
- the cathode electrode composition was prepared by doctor blade coating on a Teflon release film and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the catalyst loading in the cathode was about 0.40 mg / cm 2 .
- anode (Anode) Nafion ® / H 2 O / 2- propanol solution of 12 wt% to 88 wt% of the catalyst with a binder were dispersed with stirring and an ultrasonic method for the anode electrode composition was prepared.
- the anode electrode composition prepared above was doctorblade coated on a Teflon release film, and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the amount of catalyst loading in the anode was about 0.10 mg / cm 2 .
- a composition for forming an interfacial adhesive layer was prepared, wherein 5 wt% of a fluorine ionomer poly (perfluorosulfonic acid) (PFSA) having an EW of 700 g / eq and 95 wt% of a H 2 O / 2-propanol solution was prepared.
- PFSA fluorine ionomer poly (perfluorosulfonic acid)
- the prepared interfacial adhesive layer-forming composition was spray-coated on the prepared electrode in an amount of 0.11 mg / cm 2 at room temperature to form an interfacial adhesive layer having a thickness of about 0.5 ⁇ m on the electrode surface.
- Example 1 the fluorine-based ionomer PFSA having an EW of 700 g / eq when manufacturing the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was formed in the same manner as in Example 1 except that To prepare a membrane-electrode assembly.
- Example 1 the fluorine-based ionomer PFSA having an EW of 700 g / eq when manufacturing the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was formed in the same manner as in Example 1 except that To prepare a membrane-electrode assembly.
- Example 1 the fluorine-based ionomer PFSA having an EW of 950 g / eq was used to prepare the composition for forming the interfacial adhesive layer, and the thickness of the interfacial adhesive layer was about 0.5 ⁇ m. To prepare a membrane-electrode assembly.
- Example 1 the fluorine-based ionomer PFSA having an EW of 950 g / eq was used to prepare the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was about 1.0 ⁇ m, similar to that of Example 1 above. To prepare a membrane-electrode assembly.
- Example 1 the fluorine-based ionomer PFSA having an EW of 950 g / eq was used to prepare the composition for forming the interfacial adhesive layer, and the thickness of the interfacial adhesive layer was about 2.0 ⁇ m, similar to that of Example 1. To prepare a membrane-electrode assembly.
- a membrane-electrode assembly was manufactured in the same manner as in Example 1, except that the interface adhesive layer was not formed in Example 1.
- Example 1 except that Nafion (manufactured by Dupont) having an EW of 1100 g / eq was used to prepare the composition for forming the interface bonding layer in Example 1, and the thickness of the interface bonding layer was formed to about 1.0 ⁇ m.
- the membrane-electrode assembly was prepared in the same manner as described above.
- a membrane-electrode assembly was prepared in the same manner as in Example 1, except that the thickness of the interface adhesive layer was 0.005 ⁇ m when the composition for forming the interface adhesive layer was formed in Example 1.
- the thickness of the interfacial adhesive layer was formed to 0.005 ⁇ m, performance measurement was impossible because a small amount of coated portions and a plurality of uncoated portions of the interfacial adhesive layer were present on the electrodes.
- Example 1 the fluorine-based ionomer PFSA having an EW of 700 g / eq when manufacturing the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was formed in the same manner as in Example 1 except that To prepare a membrane-electrode assembly.
- a cathode electrode composition was prepared by dispersing by 88% by weight of PtCo / C Cathode catalyst and 12% by weight of Nafion ® / H 2 O / 2-propanol solution as a binder by stirring and ultrasonic methods.
- the cathode electrode composition prepared above was doctorblade coated on a Teflon release film and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the catalyst loading in the cathode was about 0.40 mg / cm 2 .
- a composition for forming an interface adhesive layer was prepared using a fluorine / hydrocarbon ionomer blend having a weight ratio of fluorine-based ionomer PFSA having an EW of 700 g / eq and a sulfonated polyether sulfone (IEC 2.3 meq / g) ionomer blend of 1: 2.
- the interfacial adhesion layer-forming composition included the fluorine ionomer at a concentration of 1.25%, and the hydrocarbon ionomer at a concentration of 2.5%.
- the prepared interfacial adhesive layer-forming composition was spray-coated at room temperature on the prepared electrode to form an interfacial adhesive layer on the electrode surface.
- the loading amount of the fluorine-based hydrocarbon ionomer blend composition was 0.13 mg / cm 2
- the thickness of the fluorine-based hydrocarbon ion interface blend layer was about 0.5 ⁇ m.
- the fluorine-based polyelectrolyte membrane of perfluorosulfonic acid (PFSA) having a thickness of 15 to 20 ⁇ m between the prepared cathode and anode electrode was squeezed for 3 minutes under heat and pressure at 160 ° C. and 20 kgf / cm 2.
- PFSA perfluorosulfonic acid
- a membrane-electrode assembly was prepared in the same manner as in Example 9 except that the thickness of the interface adhesive layer was about 1.0 ⁇ m when the composition for forming the interface adhesive layer was formed in Example 9.
- Example 9 except for changing the weight ratio of the fluorine-based / hydrocarbon-based ionomer blend to 1: 4 and the thickness of the interfacial adhesive layer to about 0.5 ⁇ m when preparing the composition for forming the interfacial adhesive layer in Example 9 In the same manner as in the film-electrode assembly was prepared.
- Example 9 except that the weight ratio of the fluorine / hydrocarbon-based ionomer blend is changed to 1: 4 and the thickness of the interface adhesive layer is formed to about 1.0 ⁇ m when preparing the composition for forming the interface adhesive layer in Example 9 In the same manner as in the film-electrode assembly was prepared.
- a membrane-electrode assembly was prepared in the same manner as in Example 9 except that the thickness of the interface adhesive layer was 0.005 ⁇ m when the composition for forming the interface adhesive layer was formed in Example 9.
- the thickness of the interfacial adhesive layer was formed to 0.005 ⁇ m, performance measurement was impossible because a small amount of coated portions and a plurality of uncoated portions of the interfacial adhesive layer were present on the electrodes.
- Example 9 except that the weight ratio of the fluorine-based hydrocarbon ionomer blend was changed to 1: 4 and the thickness of the interfacial adhesive layer was 6 ⁇ m when the composition for forming the interfacial adhesive layer was formed. In the same manner to prepare a membrane-electrode assembly.
- Example 1 when preparing the composition for forming the interface adhesive layer, SiO 2 nanopowder having an average particle diameter of 7 nm was added in 1 wt%, and the thickness of the interface adhesive layer was formed to about 1.0 ⁇ m. In the same manner as 1 to prepare a membrane-electrode assembly.
- Example 1 when preparing the composition for forming the interface adhesive layer, SiO 2 nanopowder having an average particle diameter of 7 nm was added in 1 wt%, and the thickness of the interface adhesive layer was formed to about 2.0 ⁇ m. In the same manner as 1 to prepare a membrane-electrode assembly.
- SiO 2 having an average particle diameter of 7 nm when preparing the composition for forming an interface adhesive layer in Example 1 A nano-powder was added at 5 wt% and the same procedure as in Example 1 was carried out except that the thickness of the interfacial adhesive layer was about 1.0 ⁇ m, thereby preparing a membrane-electrode assembly.
- Example 1 The preparation of the composition for forming the interface adhesive layer in Example 1 was carried out except that the SiO 2 nanopowder having an average particle diameter of 7 nm was added in a content of 5 wt% and the thickness of the interface adhesive layer was formed to about 2.0 ⁇ m.
- a membrane-electrode assembly was prepared in the same manner as in Example 1.
- Example 1 The preparation of the composition for forming an interface adhesive layer in Example 1 was carried out except that SiO 2 nanopowder having an average particle diameter of 7 nm was added in a content of 0.05 wt%, and the thickness of the interface adhesive layer was formed to about 1.0 ⁇ m.
- a membrane-electrode assembly was prepared in the same manner as in Example 1.
- Example 1 Except for adding the nano-powder at 25% by weight when preparing the composition for forming the interface adhesive layer in Example 1 was carried out in the same manner as in Example 1.
- a membrane-electrode assembly was prepared in the same manner as in Example 15 except that the thickness of the interface adhesive layer was formed to 0.005 ⁇ m when the composition for forming the interface adhesive layer was formed in Example 15.
- the thickness of the interfacial adhesive layer was formed to 0.005 ⁇ m, performance measurement was impossible because a small amount of coated portions and a plurality of uncoated portions of the interfacial adhesive layer were present on the electrodes.
- Example 1 except that 5 wt% of SiO 2 nanopowder having an average particle diameter of 7 nm was added to prepare the composition for forming the interfacial adhesive layer, and the thickness of the interfacial adhesive layer was 6 ⁇ m.
- the membrane-electrode assembly was prepared in the same manner as described above.
- Example 1 Except that the CeO 2 nano powder having an average particle diameter of 25 nm was added in a content of 5 wt% in Example 1, and the thickness of the interfacial adhesive layer was formed to about 1.0 ⁇ m.
- a membrane-electrode assembly was prepared in the same manner as in Example 1.
- Ohm resistance values were measured by comparing the alternating current impedance of 300 mA / cm 2 constant current condition of MEA single cell.
- the x-axis is the impedance real part Z '
- the y-axis is the impedance imaginary part Z'.
- the value of the real part at the point where the impedance curve meets the x-axis is the ohmic resistance, which is the resistance component including the electrolyte membrane resistance and the interface resistance.
- Example 1 0.1683 0.1955 16.2
- Example 2 0.1829 0.1954 6.8
- Example 3 0.2182 0.2307 5.7
- Example 5 0.1959 0.2076 6.0
- Comparative Example 1 0.2421 0.9426 289.3 Comparative Example 2 0.2137 0.2268 6.1
- Example 9 0.1789 0.2132 19.2
- Example 10 0.1985 0.2175 9.6
- Example 12 0.2015 0.2426 20.4
- Example 15 0.2022 0.2415 19.4
- Example 17 0.2047 0.2468 20.6
- Example 18 0.2360 0.2797 18.5
- Example 19 0.2136 0.2531 18.5
- Example 22 0.2636 0.5986 127.1
- the membrane-electrode assembly of Comparative Example 1, in which the interfacial adhesive layer of the present invention was not introduced exhibited a significant increase in resistance after the accelerated evaluation, while the membrane-electrode assembly of the example in which the interfacial adhesive layer was introduced on the catalyst layer. Showed a low increase. Through this, it is possible to confirm the effect of improving the interfacial adhesion stability of the interfacial adhesive layer.
- the hydrogen gas permeability was measured by linear sweep voltammetry (LSV).
- LSV linear sweep voltammetry
- hydrogen and air were supplied in a fully humidified state for evaluating the linear sweep voltametryl LSV, and hydrogen gas permeability was measured under a potential condition of 0.2V.
- the membrane-electrode assembly prepared in Example 9 includes a mixture of a fluorine-based ionomer and a hydrocarbon-based ionomer in the interfacial adhesive layer, thereby comparing hydrogen gas permeability without affecting interfacial bonding. It can be seen that the film-electrode assembly prepared in Example 1 has a 35% reduction effect.
- the membrane-electrode assembly prepared in Example 9 is significantly reduced in hydrogen gas permeability compared to the membrane-electrode assembly prepared in Comparative Example 2 including only the fluorine-based ionomer in the interface adhesive layer.
- Example 1 1.30 0.565 Example 2 1.40 0.585 Example 3 1.35 0.555 Example 5 1.35 0.575 Comparative Example 1 1.25 0.555 Comparative Example 2 1.25 0.565 Example 8 1.20 0.515 Example 9 1.30 0.565 Example 10 1.35 0.575 Example 12 1.25 0.565 Example 14 1.05 0.505 Example 15 1.30 0.560 Example 17 1.45 0.595 Example 18 1.30 0.565 Example 19 1.25 0.550 Example 22 0.95 0.485
- the membrane-electrode assembly prepared in Example shows superior performance compared to the membrane-electrode assembly prepared in Comparative Example. Specifically, when comparing the MEA results including the interfacial adhesive layer of the same thickness, it can be observed that the current density increases as the equivalent (EW) lower under 50% RH conditions.
- the MEA manufactured in the Example has a higher voltage at high current density than the MEA manufactured in the Comparative Example.
- the phenomenon that the voltage at the high current density (2.2 A / cm 2 ) increases as the equivalent EW decreases.
- a unit cell having an electrode area of 25 cm 2 and a microporous layer on both sides were configured, and fuel cells were operated by supplying hydrogen and air passing through a humidifier to both electrodes, respectively.
- the open circuit voltage retention rate was performed through an open circuit voltage operation at 90 ° C. and a relative humidity of 30%, and is represented by a difference between an initial open circuit voltage and an open circuit voltage after 500 hours of operation.
- the membrane-electrode assembly prepared in Comparative Example 2 includes an interfacial adhesive layer, but the open-circuit voltage retention falls below 80% within 100 hours, but the membrane-electrode assembly prepared in Example 23 As the nano-powder is included in the interfacial adhesive layer, it can be seen that after 500 hours, the open-circuit voltage retention does not fall below 80% and maintains 95%.
- stack 231 first supply pipe
- second discharge pipe 240 oxidant supply unit
- the present invention relates to a membrane-electrode assembly, a method for manufacturing the same, and a fuel cell including the same, wherein the membrane-electrode assembly has improved interfacial adhesion and interfacial stability between an electrode and an ion exchange membrane, thereby improving hydrogen ion conduction performance of the membrane-electrode assembly.
- the degradation problem can be overcome, the gas permeability can be reduced without increasing the interfacial resistance and the interfacial bonding problem, thereby reducing the hydrogen gas crossover, and improving the performance and durability at high temperature / low humidification conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
The present invention relates to a membrane-electrode assembly, a method for manufacturing the same, and a fuel cell comprising the same. The membrane-electrode assembly comprises: a catalyst layer; an interfacial adhesion layer disposed on the catalyst layer, an interface between the interface adhesion layer and the catalyst layer penetrating to some depth of the catalyst layer; and an ion exchange membrane disposed on the interfacial adhesion layer and binding with the catalyst layer via the interfacial adhesion layer, wherein the interfacial adhesion layer contains a fluorine-based ionomer having an equivalent weight (EW) of 500 g/eq to 1000 g/eq. In the membrane-electrode assembly, the problem of deterioration in hydrogen ion conductivity performance of the membrane-electrode assembly can be overcome through the improvement of the interfacial binding and interfacial stability between the electrode and the ion-exchange membrane; the hydrogen gas crossover can be reduced through the reduction in gas permeability without increasing interfacial resistance and interfacial binding problems; and the performance and durability under high temperature/low humidity conditions can be improved.
Description
본 발명은 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지에 관한 것으로서, 상기 막-전극 어셈블리는 촉매층과 이온 교환막 사이의 계면 접합성 및 계면 안정성이 개선되어 막-전극 어셈블리의 수소 이온 전도 성능 저하 문제를 극복할 수 있고, 계면 저항 증가 및 계면 접합 문제 없이 가스 투과도가 감소되어 수소 가스 크로스오버(crossover)가 저감되고, 고온/저가습 조건에서의 성능 및 내구성이 향상될 수 있는 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지에 관한 것이다.The present invention relates to a membrane-electrode assembly, a method for manufacturing the same, and a fuel cell including the same, wherein the membrane-electrode assembly has improved interfacial adhesion and interfacial stability between the catalyst layer and the ion exchange membrane, and thus hydrogen ion conduction performance of the membrane-electrode assembly. Membrane-electrode capable of overcoming degradation issues, reduced gas permeability without increasing interfacial resistance and interfacial bonding problems, resulting in reduced hydrogen gas crossover, and improved performance and durability at high / low humid conditions An assembly, a method of manufacturing the same, and a fuel cell including the same.
연료 전지는 메탄올, 에탄올, 천연 기체와 같은 탄화수소 계열의 연료물질 내에 함유되어 있는 수소와 산소의 산화/환원반응과 같은 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템을 구비한 전지로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 인해 화석 에너지를 대체할 수 있는 차세대 청정 에너지원으로 각광받고 있다.A fuel cell is a battery having a power generation system that directly converts chemical reaction energy such as oxidation / reduction reaction of hydrogen and oxygen contained in hydrocarbon-based fuel materials such as methanol, ethanol and natural gas into electrical energy. Eco-friendly features with low efficiency and low pollutant emissions make it a popular next-generation clean energy source that can replace fossil energy.
이러한 연료 전지는 단위 전지의 적층에 의한 스택 구성으로 다양한 범위의 출력을 낼 수 있는 장점을 갖고 있으며, 소형 리튬 전지에 비하여 4 내지 10 배의 에너지 밀도를 나타내기 때문에 소형 및 이동용 휴대전원으로 주목받고 있다.This fuel cell has a merit that it can produce a wide range of output by stacking by stacking unit cells, and has attracted attention as a small and portable portable power source because it shows an energy density of 4 to 10 times compared to a small lithium battery. have.
연료 전지에서 전기를 실질적으로 발생시키는 스택은 막-전극 어셈블리 (Membrane Electrode Assembly, MEA)와 세퍼레이터(separator)(또는 바이폴라 플레이트(Bipolar Plate)라고도 함)로 이루어진 단위 셀이 수 개 내지 수십 개로 적층된 구조를 가지며, 막-전극 어셈블리는 일반적으로 전해질 막을 사이에 두고 그 양쪽에 산화극(Anode, 또는, 연료극)과 환원극(Cathode, 또는 공기극)이 각각 형성된 구조를 이룬다.A stack that substantially generates electricity in a fuel cell is made up of several to dozens of unit cells consisting of a membrane-electrode assembly (MEA) and a separator (also called a bipolar plate). In general, the membrane-electrode assembly has a structure in which an anode (Anode, or fuel electrode) and a cathode (Cathode, or air electrode) are formed on both sides of an electrolyte membrane.
연료 전지는 전해질의 상태 및 종류에 따라 알칼리 전해질 연료 전지, 고분자 전해질 연료 전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등으로 구분될 수 있는데, 그 중에 고분자 전해질 연료 전지는 100 ℃ 미만의 낮은 작동온도, 빠른 시동과 응답특성 및 우수한 내구성 등의 장점으로 인하여 휴대용, 차량용 및 가정용 전원장치로 각광을 받고 있다.Fuel cells may be classified into alkali electrolyte fuel cells and polymer electrolyte fuel cells (PEMFCs) according to the state and type of electrolyte. Among them, polymer electrolyte fuel cells may have a low operating temperature of less than 100 ° C, The advantages of fast start-up, response characteristics, and excellent durability have attracted much attention as portable, automotive, and home power supplies.
고분자 전해질 연료 전지의 대표적인 예로는 수소 가스를 연료로 사용하는 수소이온 교환막 연료 전지 (Proton Exchange Membrane Fuel Cell, PEMFC), 액상의 메탄올을 연료로 사용하는 직접 메탄올 연료 전지 (Direct Methanol Fuel Cell, DMFC) 등을 들 수 있다.Representative examples of polymer electrolyte fuel cells include hydrogen exchange gas fuel cells (Proton Exchange Membrane Fuel Cell, PEMFC), and direct methanol fuel cell (DMFC) using liquid methanol as fuel. Etc. can be mentioned.
고분자 전해질 연료 전지에서 일어나는 반응을 요약하면, 우선, 수소가스와 같은 연료가 산화극에 공급되면, 산화극에서는 수소의 산화반응에 의해 수소이온(H+)과 전자(e-)가 생성된다. 생성된 수소이온은 고분자 전해질 막을 통해 환원극으로 전달되고, 생성된 전자는 외부회로를 통해 환원극에 전달된다. 환원극에서는 산소가 공급되고, 산소가 수소이온 및 전자와 결합하여 산소의 환원반응에 의해 물이 생성된다.Summarizing the reaction occurring in the polymer electrolyte fuel cell, first, when a fuel such as hydrogen gas is supplied to the anode, hydrogen ions (H + ) and electrons (e − ) are produced by the oxidation of hydrogen at the anode. The generated hydrogen ions are transferred to the reduction electrode through the polymer electrolyte membrane, and the generated electrons are transferred to the reduction electrode through an external circuit. Oxygen is supplied from the reduction electrode, and oxygen is combined with hydrogen ions and electrons to generate water by a reduction reaction of oxygen.
한편, 상기 연료 전지를 FCV(Fuel Cell Vehicle)에 적용하기 위해서는 연료 전지 시스템의 소형화가 필수적이며, 이를 위해서는 단위 면적당 우수한 출력 밀도를 나타낼 수 있는 막-전극 어셈블리(Membrane Electrode Assembly, MEA)의 개발이 요구되고, 특히 FCV의 실제적인 운행을 위해서는 MEA 촉매층의 내구성 증대가 필요하다.Meanwhile, miniaturization of a fuel cell system is essential for applying the fuel cell to a FCV (Fuel Cell Vehicle). To this end, the development of a membrane electrode assembly (MEA), which can exhibit an excellent power density per unit area, is required. In particular, increasing the durability of the MEA catalyst layer is necessary for the actual operation of the FCV.
현재 FCV 분야에 적용하기 위한 고분자 전해질 연료 전지용 MEA는 장시간 운전에 따른 MEA 성능 저하 및 내구성의 현저한 감소 등의 기술적 한계를 지니고 있으며, 주요 MEA 내구성/성능 저하 이슈는 다음과 같다.Currently, the MEA for a polymer electrolyte fuel cell for FCV has technical limitations such as a decrease in MEA performance and a significant decrease in durability due to long time operation, and major MEA durability / performance degradation issues are as follows.
즉, 로드 사이클링(Load cycling)시 발생하는 포텐셜 사이클링(potential cycling)에 의하여 촉매층 및 촉매가 열화되는 문제, 스타트업(Startup)/셧다운(Shutdown)시 하이 캐소드 포텐셜(high cathode potential)에 의하여 탄소 담체가 부식되는 문제, 전도성 증대를 위한 박막형 고분자 전해질 막의 물리적, 화학적 내구성 저하 문제, 계면에서의 기능성 저하 및 저항 증가에 따른 MEA의 성능 및 내구성 열화 문제 등이다.That is, the catalyst layer and the catalyst are deteriorated by potential cycling occurring during load cycling, and the carbon carrier is supported by the high cathode potential at startup / shutdown. Problems of corrosion, degradation of physical and chemical durability of thin-film polymer electrolyte membranes to increase conductivity, degradation of performance and durability of MEA due to degradation of functionality and increased resistance at interfaces.
또한, 고분자 전해질 연료 전지 운전 중에 발생하는 MEA의 내구성 저하 및 EOL(End-of-life) 성능 저하는 촉매 열화, 탄소 담체 부식, 고분자 전해질 막의 내구성 저하 및 각 구성요소 간 계면에서의 문제점 발생에 기인하는 것으로 알려져 있다.In addition, the degradation of MEA and end-of-life performance during the operation of the polymer electrolyte fuel cell are caused by catalyst degradation, carbon carrier corrosion, durability of the polymer electrolyte membrane, and problems at the interface between the components. It is known.
이중, MEA 계면에서 일어나는 현상으로 기인되는 성능 저하 및 내구성 열화에 따른 문제점을 해결하기 위해서는 MEA의 성능 저하 없이 계면 접착력을 향상시킬 수 있는 기술의 개발이 필요하다.Of these, in order to solve the problems caused by the degradation in performance and degradation caused by the phenomenon occurring at the MEA interface, it is necessary to develop a technology that can improve the interface adhesion without degradation of the MEA performance.
본 발명의 목적은 촉매층과 이온 교환막 사이의 계면 접합성 및 계면 안정성이 개선되어 막-전극 어셈블리의 수소 이온 전도 성능 저하 문제를 극복할 수 있고, 계면 저항 증가 및 계면 접합 문제 없이 가스 투과도가 감소되어 수소 가스 크로스오버(crossover)가 저감되고, 고온/저가습 조건에서의 성능 및 내구성이 향상될 수 있는 막-전극 어셈블리를 제공하는 것이다.An object of the present invention is to improve the interfacial bonding and interfacial stability between the catalyst layer and the ion exchange membrane to overcome the problem of deterioration of hydrogen ion conduction performance of the membrane-electrode assembly, the gas permeability is reduced without increasing the interfacial resistance and interfacial bonding problems It is to provide a membrane-electrode assembly in which gas crossover is reduced and performance and durability in high temperature / low humidity conditions can be improved.
본 발명의 다른 목적은 상기 막-전극 어셈블리의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing the membrane-electrode assembly.
본 발명의 또 다른 목적은 상기 막-전극 어셈블리를 포함하는 연료 전지를 제공하는 것이다.It is another object of the present invention to provide a fuel cell comprising the membrane-electrode assembly.
본 발명의 일 실시예에 따르면, 촉매층, 상기 촉매층 위에 위치하며, 상기 촉매층과의 계면이 상기 촉매층의 일부 깊이까지 스며들어 형성된 계면 접착층, 그리고 상기 계면 접착층 위에 위치하며, 상기 계면 접착층을 매개로 상기 촉매층과 접합되는 이온 교환막을 포함하며, 상기 계면 접착층은 당량(equivalent weight, EW)이 500 g/eq 내지 1000 g/eq인 불소계 이오노머를 포함하는 막-전극 어셈블리를 제공한다.According to an embodiment of the present invention, the catalyst layer, positioned on the catalyst layer, the interface with the catalyst layer is formed on the interface adhesive layer formed soaking to a depth of the catalyst layer, and is located on the interface adhesive layer, the interface adhesive layer through the An ion exchange membrane is bonded to the catalyst layer, and the interfacial adhesive layer provides a membrane-electrode assembly including a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq.
상기 막-전극 어셈블리는 상기 이온 교환막의 일면에 위치하는 제 1 계면 접착층 및 제 1 촉매층, 상기 이온 교환막의 다른 일면에 위치하는 제 2 계면 접착층 및 제 2 촉매층을 포함하며, 상기 제 1 계면 접착층, 상기 제 2 계면 접착층 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 계면 접착층이고, 상기 제 1 촉매층, 상기 제 2 촉매층 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 촉매층일 수 있다.The membrane-electrode assembly includes a first interfacial adhesion layer and a first catalyst layer positioned on one surface of the ion exchange membrane, a second interfacial adhesion layer and a second catalyst layer positioned on the other surface of the ion exchange membrane, and the first interfacial adhesion layer, Any one selected from the group consisting of the second interfacial adhesion layer and both may be the interfacial adhesion layer, and any one selected from the group consisting of the first catalyst layer, the second catalyst layer and both may be the catalyst layer. .
상기 계면 접착층은 상기 촉매층의 표면에 형성된 기공(surface recesses), 촉매층의 표면으로부터 일정 깊이에 존재하는 기공 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나를 스며들어 채우는 것일 수 있다.The interfacial adhesive layer may be to infiltrate any one selected from the group consisting of pores (surface recesses) formed on the surface of the catalyst layer, pores present at a predetermined depth from the surface of the catalyst layer, and both.
상기 계면 접착층이 상기 촉매층에 스며든 평균 깊이는 상기 촉매층의 평균 두께의 1 % 내지 10 %일 수 있다.The average depth of the interfacial adhesive layer penetrating the catalyst layer may be 1% to 10% of the average thickness of the catalyst layer.
상기 계면 접착층의 평균 두께는 0.01 ㎛ 내지 5 ㎛일 수 있다.The average thickness of the interfacial adhesive layer may be 0.01 μm to 5 μm.
상기 계면 접착층은 상기 불소계 이오노머와 이온 교환 용량(ion exchange capacity, IEC)이 0.8 meq/g 내지 4.0 meq/g인 탄화수소계 이오노머의 혼합물을 포함할 수 있다.The interfacial adhesive layer may include a mixture of the fluorine ionomer and a hydrocarbon ionomer having an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g.
상기 불소계 이오노머와 상기 탄화수소계 이오노머의 중량비는 20:1 내지 1:20일 수 있다.The weight ratio of the fluorine-based ionomer and the hydrocarbon-based ionomer may be 20: 1 to 1:20.
상기 계면 접착층은 평균 입경이 1 nm 내지 50 nm인 나노 분체를 더 포함할 수 있다.The interfacial adhesive layer may further include nano powder having an average particle diameter of 1 nm to 50 nm.
상기 계면 접착층은 상기 계면 접착층 전체 중량에 대하여 상기 나노 분체를 0.1 중량% 내지 20 중량%로 포함할 수 있다.The interfacial adhesive layer may include 0.1 wt% to 20 wt% of the nanopowder based on the total weight of the interfacial adhesive layer.
상기 나노 분체는 이온 전도체(ionic conductor), 라디칼 스캐빈저(radical scavenger), 산소 발생 반응(oxygen evolution reaction, OER) 촉매 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.The nano powder may be any one selected from the group consisting of an ionic conductor, a radical scavenger, an oxygen evolution reaction (OER) catalyst, and a mixture thereof.
상기 이온 전도체는 SnO2, 퓸드 실리카(fumed silica), 클레이(clay), 알루미나(alumina), 운모(mica), 제올라이트(zeolite), 포스포텅스텐산(phosphotungstic acid), 실리콘 텅스텐산(silicon tungstic acid), 지르코늄 하이드로겐 포스페이트(zirconiumhydrogen phosphate), 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 친수성 무기 첨가제일 수 있다.The ion conductor is SnO 2 , fumed silica, clay, alumina, mica, zeolite, phosphotungstic acid, silicon tungstic acid ), Zirconium hydrogen phosphate, and any one hydrophilic inorganic additive selected from the group consisting of a mixture thereof.
상기 라디칼 스캐빈저는 세륨, 텅스텐, 루테늄, 팔라듐, 은, 로듐, 세륨, 지르코늄, 이트륨, 망간, 몰리브덴, 납, 바나듐, 티타늄, 이들의 이온 형태, 이들의 산화물 형태, 이들의 염 형태 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.The radical scavengers are cerium, tungsten, ruthenium, palladium, silver, rhodium, cerium, zirconium, yttrium, manganese, molybdenum, lead, vanadium, titanium, ionic forms thereof, oxide forms thereof, salt forms thereof and their It may be any one selected from the group consisting of a mixture.
상기 산소 발생 반응 촉매는 백금, 금, 팔라듐, 로듐, 이리듐, 루테늄, 오스뮴, 백금 합금, 이들의 합금 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 백금계 촉매일 수 있다.The oxygen generation reaction catalyst may be any one platinum-based catalyst selected from the group consisting of platinum, gold, palladium, rhodium, iridium, ruthenium, osmium, platinum alloys, alloys thereof, and mixtures thereof.
본 발명의 다른 일 실시예에 따르면, 촉매층 위에 계면 접착층 형성용 조성물을 도포하여 계면 접착층을 형성하는 단계, 그리고 상기 계면 접착층이 형성된 촉매층과 이온 교환막을 접합하는 단계를 포함하며, 상기 계면 접착층은 상기 촉매층과의 계면이 상기 촉매층의 일부 깊이까지 스며들어 형성되며, 상기 계면 접착층은 당량(equivalent weight, EW)이 500 g/eq 내지 1000 g/eq인 불소계 이오노머를 포함하는 것인 막-전극 어셈블리의 제조 방법을 제공한다.According to another embodiment of the present invention, applying the composition for forming an interface adhesive layer on the catalyst layer to form an interface adhesive layer, and bonding the catalyst layer and the ion exchange membrane formed with the interface adhesive layer, the interface adhesive layer is An interface with the catalyst layer penetrates to a depth of the catalyst layer, wherein the interface adhesive layer includes a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq. It provides a manufacturing method.
상기 계면 접착층은 상기 계면 접착층 형성용 조성물을 상기 촉매층 위에 스프레이 코팅하여 형성될 수 있다.The interfacial adhesive layer may be formed by spray coating the composition for forming the interfacial adhesive layer on the catalyst layer.
상기 계면 접착층은 상기 불소계 이오노머와 이온 교환 용량(ion exchange capacity, IEC)이 0.8 meq/g 내지 4.0 meq/g인 탄화수소계 이오노머의 혼합물을 포함할 수 있다.The interfacial adhesive layer may include a mixture of the fluorine ionomer and a hydrocarbon ionomer having an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g.
상기 계면 접착층은 입경이 1 nm 내지 50 nm인 나노 분체를 더 포함할 수 있다.The interfacial adhesive layer may further include nano powder having a particle diameter of 1 nm to 50 nm.
본 발명의 또 다른 일 실시예에 따르면, 상기 막-전극 어셈블리를 포함하는 연료 전지를 제공한다.According to another embodiment of the present invention, there is provided a fuel cell including the membrane-electrode assembly.
본 발명의 막-전극 어셈블리는 촉매층과 이온 교환막 사이의 계면 접합성 및 계면 안정성이 개선되어 막-전극 어셈블리의 수소 이온 전도 성능 저하 문제를 극복할 수 있고, 계면 저항 증가 및 계면 접합 문제 없이 가스 투과도가 감소되어 수소 가스 크로스오버(crossover)가 저감되고, 고온/저가습 조건에서의 성능 및 내구성이 향상될 수 있다.The membrane-electrode assembly of the present invention can overcome the problem of deterioration of hydrogen ion conduction performance of the membrane-electrode assembly by improving the interfacial adhesion and interfacial stability between the catalyst layer and the ion exchange membrane, and the gas permeability without increasing the interfacial resistance and interfacial bonding problems. Reduced hydrogen gas crossover can be reduced, and performance and durability in high temperature / low humid conditions can be improved.
도 1은 본 발명의 일 실시예에 따른 막-전극 어셈블리의 이온 교환막, 계면 접착층 및 촉매층의 계면 구조를 나타내는 개략도이다.1 is a schematic view showing an interface structure of an ion exchange membrane, an interface adhesive layer, and a catalyst layer of a membrane-electrode assembly according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 연료 전지의 전체적인 구성을 도시한 모식도이다.2 is a schematic diagram showing the overall configuration of a fuel cell according to an embodiment of the present invention.
도 3은 본 발명의 실험예 2에서 측정한 수소 가스 투과도를 나타내는 그래프이다.3 is a graph showing the hydrogen gas permeability measured in Experimental Example 2 of the present invention.
도 4는 본 발명의 실험예 5에서 측정한 개회로 전압(Open circuit voltage, OCV) 보존율을 나타내는 그래프이다.4 is a graph showing an open circuit voltage (OCV) retention rate measured in Experimental Example 5 of the present invention.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 명세서에서 특별한 언급이 없는 한, 층, 막, 영역, 판 등의 부분이 다른 부분 '위에' 있다고 할 때, 이는 다른 부분 '바로 위에' 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.Unless stated otherwise in the present specification, when a part such as a layer, a film, an area, or a plate is 'above' another part, it is not only when the other part is 'just above', but also when there is another part in the middle. Include.
본 발명의 일 실시예에 따른 막-전극 어셈블리는 촉매층, 상기 촉매층 위에 위치하며, 상기 촉매층과의 계면이 상기 촉매층의 일부 깊이까지 스며들어 형성된 계면 접착층, 그리고 상기 계면 접착층 위에 위치하며, 상기 계면 접착층을 매개로 상기 촉매층과 접합되는 이온 교환막을 포함한다.Membrane electrode assembly according to an embodiment of the present invention is located on the catalyst layer, the catalyst layer, an interface adhesive layer formed by the interface with the catalyst layer penetrates to a depth of the catalyst layer, and is located on the interface adhesive layer, the interface adhesive layer It includes an ion exchange membrane bonded to the catalyst layer via a.
도 1은 본 발명의 일 실시예에 따른 막-전극 어셈블리에서 이온 교환막, 접착층 및 촉매층의 계면 구조를 나타내는 개략도이다.1 is a schematic diagram showing an interface structure of an ion exchange membrane, an adhesive layer, and a catalyst layer in a membrane-electrode assembly according to an embodiment of the present invention.
상기 도 1에 도시된 바와 같이, 상기 막-전극 어셈블리의 이온 교환막(10)과 촉매 입자(31)로 이루어진 촉매층(30)의 사이에는 계면 접착층(20)이 개재되어 있고, 상기 촉매 입자(31)로 이루어진 촉매층(30)과 상기 계면 접착층(20)의 계면은 상기 촉매층(30)의 촉매 입자(31) 사이로 침투된 형태를 갖는다. 상기 막-전극 어셈블리는 상기 촉매층(30)의 바깥쪽에 전극 기재(40)를 더 포함할 수 있다.As shown in FIG. 1, an interfacial adhesion layer 20 is interposed between the ion exchange membrane 10 of the membrane-electrode assembly and the catalyst layer 30 including the catalyst particles 31, and the catalyst particles 31. The interface between the catalyst layer 30 and the interfacial adhesion layer 20 made of) has a form penetrated between the catalyst particles 31 of the catalyst layer 30. The membrane-electrode assembly may further include an electrode substrate 40 on the outer side of the catalyst layer 30.
상기 막-전극 어셈블리는 상기 이온 교환막(10)의 일면에 위치하는 제 1 계면 접착층 및 제 1 촉매층, 상기 이온 교환막(10)의 다른 일면에 위치하는 제 2 계면 접착층 및 제 2 촉매층을 포함하며, 상기 제 1 계면 접착층, 상기 제 2 계면 접착층 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 계면 접착층(20)이고, 상기 제 1 촉매층, 상기 제 2 촉매층 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 촉매층(30)일 수 있다. 여기서, 상기 제 1 촉매층은 캐소드 촉매층일 수 있고, 상기 제 2 촉매층은 애노드 촉매층일 수 있다.The membrane-electrode assembly includes a first interfacial adhesive layer and a first catalyst layer positioned on one surface of the ion exchange membrane 10, a second interfacial adhesive layer and a second catalyst layer positioned on the other surface of the ion exchange membrane 10, Any one selected from the group consisting of the first interfacial adhesive layer, the second interfacial adhesive layer, and both of them is the interfacial adhesive layer 20, and is selected from the group consisting of the first catalyst layer, the second catalyst layer, and both. Any one of which may be the catalyst layer 30. Here, the first catalyst layer may be a cathode catalyst layer, the second catalyst layer may be an anode catalyst layer.
상기 계면 접착층(20)은 상기 촉매층(30)의 표면에 형성된 기공(surface recesses), 상기 촉매층(30)의 표면으로부터 일정 깊이에 존재하는 기공 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나에 스며들어 이들을 채우며 형성될 수 있다.The interfacial adhesive layer 20 permeates any one selected from the group consisting of pores (surface recesses) formed on the surface of the catalyst layer 30, pores present at a predetermined depth from the surface of the catalyst layer 30, and both. For example, it can be formed while filling them.
이에 따라, 상기 계면 접착층(20)은 상기 촉매 입자(31)와 상기 이온 교환막(10)과의 사이에 빈 공간을 모두 채워 상기 촉매 입자(31)와 상기 이온 교환막(10)의 접촉 면적을 극대화할 수 있다. 상기 이온 교환막(10)과 상기 촉매 입자(31)의 사이에는 공극이 존재하지 않고, 상기 촉매 입자(31)들의 표면 굴곡을 따라서 상기 촉매층(30)과 상기 계면 접착층(20)의 계면이 형성되어, 넓어진 계면 면적으로 인하여 이온 전달 경로가 많아지고, 상기 촉매층(30)과 상기 이온 교환막(10)의 접착 강도가 향상될 수 있다.Accordingly, the interfacial adhesive layer 20 fills all empty spaces between the catalyst particles 31 and the ion exchange membrane 10 to maximize the contact area between the catalyst particles 31 and the ion exchange membrane 10. can do. There are no voids between the ion exchange membrane 10 and the catalyst particles 31, and an interface between the catalyst layer 30 and the interface adhesive layer 20 is formed along the surface curvature of the catalyst particles 31. Due to the increased interface area, the ion transfer path increases, and the adhesion strength between the catalyst layer 30 and the ion exchange membrane 10 may be improved.
상기 계면 접착층(20)이 상기 촉매층(30)에 스며든 평균 깊이는 상기 촉매층(30)의 평균 두께의 1 % 내지 10 %일 수 있고, 2 % 내지 5 %일 수도 있으며, 침투된 상기 계면 접착층(20)의 평균 깊이가 상기 범위인 경우에 상기 촉매층(30)과 상기 계면 접착층(20) 간의 결착 효과가 높으면서 출력 성능이 우수한 효과가 있다. 상기 촉매층(30)에 스며든 평균 깊이 또는 상기 촉매층(30)의 평균 두께는 상기 촉매층(30)의 전체에 대하여 측정한 깊이 또는 두께의 평균 값일 수도 있고, 상기 촉매층(30)의 일 단면에서의 단위 길이(예를 들어, cm) 당 평균 값일 수도 있다. 상기 %(길이 %)는 길이 단위인 상기 계면 접착층(20)의 평균 침투 깊이를 길이 단위인 상기 촉매층(30)의 평균 두께로 나눈 값의 백분율 값이다.The average depth of the interfacial adhesive layer 20 penetrating the catalyst layer 30 may be 1% to 10%, 2% to 5% of the average thickness of the catalyst layer 30, and the permeable interfacial adhesion layer When the average depth of (20) is in the above range, the binding effect between the catalyst layer 30 and the interfacial adhesion layer 20 is high and the output performance is excellent. The average depth of the catalyst layer 30 or the average thickness of the catalyst layer 30 may be an average value of the depth or the thickness measured with respect to the entirety of the catalyst layer 30, or at one cross section of the catalyst layer 30. It may be an average value per unit length (eg cm). The% (length%) is a percentage value of a value obtained by dividing the average penetration depth of the interfacial adhesive layer 20 in length by the average thickness of the catalyst layer 30 in length.
상기 계면 접착층(20)은 당량(equivalent weight, EW)이 500 g/eq 내지 1000 g/eq인 불소계 이오노머를 포함할 수 있고, 당량이 550 g/eq 내지 950 g/eq인 불소계 이오노머를 포함할 수 있다. 상기 불소계 이오노머의 당량은 상기 불소계 이오노머가 포함하는 이온 전도성 관능기 1개 당 상기 불소계 이오노머의 분자량(molecular mass)이다.The interfacial adhesive layer 20 may include a fluorine ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq, and include a fluorine ionomer having an equivalent weight of 550 g / eq to 950 g / eq. Can be. The equivalent weight of the fluorine ionomer is the molecular mass of the fluorine ionomer per one ion conductive functional group contained in the fluorine ionomer.
상기 계면 접착층(20)이 포함하는 상기 불소계 이오노머의 당량 조절을 통해 저가습 조건에서 상기 막-전극 어셈블리의 물 관리에 긍정적인 효과를 줄 수 있으며, 상기 당량을 가지는 불소계 이오노머를 사용하는 경우, 수소 이온의 전도성 저하 없이 상기 막-전극 어셈블리의 성능을 개선할 수 있다. 한편, 상기 불소계 이오노머의 당량이 500 g/eq 미만인 경우 불소계 이오노머의 용출 현상 또는 수소 연료의 투과도가 증가할 수 있고, 1000 g/eq을 초과하는 경우 고온 저가습 조건에서 수소 이온 전도성이 저하될 수 있다.By controlling the equivalent weight of the fluorine ionomer included in the interfacial adhesive layer 20, it is possible to give a positive effect on the water management of the membrane-electrode assembly under low-humidity conditions, and when using the fluorine ionomer having the equivalent weight, hydrogen It is possible to improve the performance of the membrane-electrode assembly without deteriorating the conductivity of the ions. On the other hand, when the equivalent weight of the fluorine ionomer is less than 500 g / eq, the elution phenomenon of the fluorine ionomer or the permeability of the hydrogen fuel may increase, and when it exceeds 1000 g / eq, the hydrogen ion conductivity may be lowered under high temperature and low humidity conditions. have.
상기 불소계 이오노머는 프로톤과 같은 양이온 교환 그룹, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지며, 주쇄에 불소를 포함하는 플루오르계 고분자; 또는 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자 등을 들 수 있고, 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자일 수 있다. 상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다. 또한, 상기 불소계 이오노머는 단독으로 또는 2종 이상 혼합하여 사용할 수도 있다. The fluorine ionomer has a cation exchange group such as protons or an anion exchange group such as hydroxy ions, carbonates or bicarbonates, and includes a fluorine-based polymer containing fluorine in the main chain; Or partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer, and the like, and specific examples thereof include poly (perfluorosulfonic acid), Poly (perfluorocarboxylic acid), a copolymer of tetrafluoroethylene and fluorovinyl ether containing a sulfonic acid group, a defluorinated sulfide polyether ketone or a fluoropolymer comprising a mixture thereof. The cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have. In addition, the said fluorine-type ionomer can also be used individually or in mixture of 2 or more types.
상기 불소계 이오노머는 상기 당량 범위를 만족시키기 위하여 상기 예시된 불소계 이오노머들을 적절하게 혼합한 혼합물을 포함할 수도 있다.The fluorine-based ionomer may include a mixture of appropriately fluorine-based ionomers exemplified in order to satisfy the equivalent range.
또한, 상기 계면 접착층(20)은 상기 불소계 이오노머와 탄화수소계 이오노머의 혼합물을 포함할 수도 있다. 상기 계면 접착층(20)이 상기 불소계 이오노머와 탄화수소계 이오노머의 혼합물을 포함하는 경우 계면 접합에 영향을 주지 않으면서 가스 투과도를 감소시켜, 수소 크로스오버 현상을 방지할 수 있다.In addition, the interfacial adhesive layer 20 may include a mixture of the fluorine ionomer and the hydrocarbon ionomer. When the interfacial adhesive layer 20 includes a mixture of the fluorine-based ionomer and the hydrocarbon-based ionomer, gas permeability may be reduced without affecting interfacial bonding, thereby preventing hydrogen crossover.
이때, 상기 탄화수소계 이오노머는 이온 교환 용량(ion exchange capacity, IEC)이 0.8 meq/g 내지 4.0 meq/g일 수 있고, 1.0 meq/g 내지 3.5 meq/g일 수 있다. 상기 탄화수소계 이오노머의 이온 교환 용량이 상기 범위 내인 경우 고온/저가습 조건에서 수소 이온의 전도성 저하 없이 상기 막-전극 어셈블리의 성능을 개선할 수 있다. 상기 탄화수소계 이오노머의 이온 교환 용량이 0.8 meq/g 미만인 경우 고온 저가습 조건에서 수소 이온의 이동을 저하시킬 수 있고, 4.0 meq/g를 초과하는 경우 가습도에 따라 계면 및 전달 저항을 증가시킬 수 있다.In this case, the hydrocarbon-based ionomer may have an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g, and 1.0 meq / g to 3.5 meq / g. When the ion exchange capacity of the hydrocarbon-based ionomer is within the above range, it is possible to improve the performance of the membrane-electrode assembly without deteriorating the conductivity of hydrogen ions under high temperature / low humidification conditions. When the ion exchange capacity of the hydrocarbon-based ionomer is less than 0.8 meq / g, it is possible to reduce the migration of hydrogen ions under high temperature and low humidity conditions, and when it exceeds 4.0 meq / g, the interface and transfer resistance may be increased according to the humidity. have.
또한, 상기 불소계 이오노머와 상기 탄화수소계 이오노머의 중량비는 20:1 내지 1:20일 수 있고, 1:1 내지 1:10 일 수 있다. 상기 불소계 이오노머와 상기 탄화수소계 이오노머의 중량비가 상기 범위 내인 경우 수소 크로스오버 현상을 감소시킬 수 있고, 계면 접합성을 증대시켜 막-전극 어셈블리의 성능 및 수명을 개선할 수 있다. 상기 탄화수소계 이오노머의 중량비가 1 미만인 경우 수소 연료 투과도 저감 효과 발현이 어려울 수 있고, 20을 초과하는 경우 상기 이오노머 블렌드가 불균일하게 분포할 수 있고, 전해질 막의 저항이 크게 증가할 수 있다.In addition, the weight ratio of the fluorine-based ionomer and the hydrocarbon-based ionomer may be 20: 1 to 1:20, and 1: 1 to 1:10. Can be. When the weight ratio of the fluorine-based ionomer and the hydrocarbon-based ionomer is within the above range, hydrogen crossover may be reduced, and interfacial bonding may be increased to improve performance and lifespan of the membrane-electrode assembly. When the weight ratio of the hydrocarbon-based ionomer is less than 1, it may be difficult to express the effect of reducing the hydrogen fuel permeability, and when it exceeds 20, the ionomer blend may be unevenly distributed and the resistance of the electrolyte membrane may be greatly increased.
상기 탄화수소계 이오노머는 프로톤과 같은 양이온 교환 그룹, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지며, 주쇄에 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자를 포함하는 것일 수 있으며, 구체적인 예로는 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 탄화수계 이오노머는 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
The hydrocarbon-based ionomer has a cation exchange group such as proton or an anion exchange group such as hydroxy ion, carbonate or bicarbonate, and has benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, Polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, polycarbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, poly It may include a hydrocarbon-based polymer such as arylether sulfone, polyphosphazene or polyphenylquinoxaline, and specific examples thereof include sulfonated polyimide (S-PI) and sulfonated polyaryl ether sulfone (sulfonated). polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (s ulfonated polyetheretherketone (SPEEK), sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated Polyphosphazene, sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyethersulfone polyether sulfone, sulfonated polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone (sulfonated polyphenylene sulfide sulfone), sulfonated polyphenylene sulfide sulfone nitrile, sulfonated polyarylene ether d polyarylene ether, sulfonated polyarylene ether nitrile, sulfonated polyarylene ether ether nitrile, sulfonated polyarylene ether sulfone ketone And hydrocarbon-based polymers including a mixture thereof, but are not limited thereto. In addition, the hydrocarbon-based ionomer may be used alone or in combination of two or more thereof.
또한, 상기 계면 접착층(20)은 나노 분체를 더 포함할 수도 있다.In addition, the interfacial adhesive layer 20 may further include nano powder.
상기 나노 분체는 상기 막-전극 어셈블리의 계면 접착성을 저하시키거나 계면 저항 증가 없이 상기 계면 접착층(20)에 기능성을 부여하여 상기 막-전극 어셈블리의 내구성 저하를 극복하고 성능을 향상시킬 수 있다.The nanopowder may impart functionality to the interfacial adhesive layer 20 without degrading the interfacial adhesion of the membrane-electrode assembly or increasing interfacial resistance, thereby overcoming the deterioration in durability of the membrane-electrode assembly and improving performance.
상기 나노 분체는 이온 전도체(ionic conductor), 라디칼 스캐빈저(radical scavenger), 산소 발생 반응(oxygen evolution reaction, OER) 촉매 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다. The nano powder may be any one selected from the group consisting of an ionic conductor, a radical scavenger, an oxygen evolution reaction (OER) catalyst, and a mixture thereof.
상기 이온 전도체는 분산성이 우수하여 상기 막-전극 어셈블리의 수소 이온 전도성을 향상시킬 수 있다. 상기 이온 전도체는 친수성 무기 첨가제로서, 구체적으로는 SnO2, 퓸드 실리카(fumed silica), 클레이(clay), 알루미나(alumina), 운모(mica), 제올라이트(zeolite), 포스포텅스텐산(phosphotungstic acid), 실리콘 텅스텐산(silicon tungstic acid), 지르코늄 하이드로겐 포스페이트(zirconiumhydrogen phosphate), 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다. 상기 이온 전도체는 친수성 무기 이온 첨가제로, 고온 저가습 조건에서 수소 이온 전도도 저하 현상을 방지할 수 있다.The ion conductor may be excellent in dispersibility to improve hydrogen ion conductivity of the membrane electrode assembly. The ion conductor is a hydrophilic inorganic additive, specifically, SnO 2 , fumed silica, clay, alumina, mica, zeolite, phosphotungstic acid It may be any one selected from the group consisting of silicon tungstic acid, zirconium hydrogen phosphate, and mixtures thereof. The ion conductor is a hydrophilic inorganic ion additive, it is possible to prevent the phenomenon of deterioration of hydrogen ion conductivity at high temperature and low humidity conditions.
상기 라디칼 스캐빈저는 상기 계면 접착층(20) 내에서 균일하게 분산되어 상기 막-전극 어셈블리의 안정화에 기여할 수 있다. 상기 라디칼 스캐빈저는 과산화수소를 물 및 산소로 분해하여 하이드록시 라디칼의 발생을 억제할 수 있는 천이 금속의 이온으로서, 구체적으로 세륨, 텅스텐, 루테늄, 팔라듐, 은, 로듐, 세륨, 지르코늄, 이트륨, 망간, 몰리브덴, 납, 바나듐, 티타늄 등을 들 수 있고, 상기 금속 자체, 이들의 이온 형태, 이들의 산화물 형태, 이들의 염 형태 또는 다른 형태인 것도 가능하다. The radical scavenger may be uniformly dispersed in the interfacial adhesion layer 20 to contribute to stabilization of the membrane-electrode assembly. The radical scavenger is a transition metal ion that can decompose hydrogen peroxide into water and oxygen to inhibit the generation of hydroxy radicals, specifically cerium, tungsten, ruthenium, palladium, silver, rhodium, cerium, zirconium, yttrium, manganese. , Molybdenum, lead, vanadium, titanium, and the like, and the metals themselves, their ionic forms, their oxide forms, their salt forms, or other forms are also possible.
더욱 구체적으로, 상기 라디컬 포착제는 CeO2, MnO2, CsO2, ZrO2, Ru, Ag, RuO2, WO3, Fe3O4, CePO4, CrPO4, AlPO4, FePO4, CeF3, FeF3, Ce2(CO3)3·8H2O, Ce(CHCOO)3·H2O, CeCl3·6 H2O, Ce(NO3)6·6H2O, Ce(NH4)2(NO3)6, Ce(NH4)4(SO4)4·4H2O, Ce(CH3COCHCOCH3)3·3H2O, Fe-포르피린, Co-포르피린 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있고, 이들의 1종 이상의 혼합물 또는 화합물을 사용할 수 있다.More specifically, the radical trapping agent CeO 2 , MnO 2 , CsO 2 , ZrO 2 , Ru, Ag, RuO 2 , WO 3 , Fe 3 O 4 , CePO 4 , CrPO 4 , AlPO 4 , FePO 4 , CeF 3, FeF 3, Ce 2 ( CO 3) 3 · 8H 2 O, Ce (CHCOO) 3 · H 2 O, CeCl 3 · 6 H 2 O, Ce (NO 3) 6 · 6H 2 O, Ce (NH 4 ) 2 (NO 3 ) 6 , Ce (NH 4 ) 4 (SO 4 ) 4 · 4H 2 O, Ce (CH 3 COCHCOCH 3 ) 3 · 3H 2 O, Fe-porphyrin, Co-porphyrin and mixtures thereof It may be any one selected from the group, and one or more mixtures or compounds thereof may be used.
상기 산소 발생 반응 촉매는 상기 계면 접착층(20) 내에서 미립화/균일하게 분산되어 효과적인 물 분해 반응을 통해 상기 촉매층(30)의 내구성을 향상시킬 수 있다.The oxygen generation reaction catalyst may be atomized / uniformly dispersed in the interfacial adhesion layer 20 to improve durability of the catalyst layer 30 through an effective water decomposition reaction.
상기 산소 발생 반응 촉매는 백금계 금속 활성 물질을 포함할 수 있다. 상기백금계 금속은 백금, 금, 팔라듐, 로듐, 이리듐, 루테늄, 오스뮴, 백금 합금, 이들의 합금 및 이들의 혼합물으로 이루어진 군에서 선택되는 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 상기 백금 합금은 Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ru-W, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Co, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe,Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir 및 이들의 조합으로 이루어진 군에서 선택되는 단독 또는 2종 이상 혼합하여 사용할 수 있다. The oxygen generation reaction catalyst may include a platinum-based metal active material. The platinum-based metal may be used alone or in combination of two or more selected from the group consisting of platinum, gold, palladium, rhodium, iridium, ruthenium, osmium, platinum alloys, alloys thereof, and mixtures thereof. The platinum alloy is Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ru-W, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt- Ru-Sn-W, Pt-Co, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir and It can be used individually or in mixture of 2 or more types selected from the group which consists of these combinations.
또한, 상기 촉매 입자(31)는 금속 자체(black)을 사용할 수도 있고, 촉매 금속을 담체에 담지시켜 사용할 수도 있다. 상기 담체는 지르코니아, 알루미나, 티타니아, 실리카, 세리아, ITO, WO, SnO2, ZnO2 등의 다공성 무기산화물 또는 이들의 조합을 포함할 수 있다. 또한, 탄소계 담체로 흑연, 탄소섬유, 탄소시트, 카본블랙, 카본나노튜브, 카본 나노 파이버, 카본 나노 와이어, 카본 나노 볼, 카본 나노 혼, 카본 나노 케이지, 그래핀, 안정화 카본, 활성화 카본, 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.In addition, the catalyst particles 31 may use a metal black, or may be used by supporting the catalyst metal on a carrier. The carrier may include a porous inorganic oxide such as zirconia, alumina, titania, silica, ceria, ITO, WO, SnO 2 , ZnO 2 , or a combination thereof. In addition, as a carbon-based carrier, graphite, carbon fiber, carbon sheet, carbon black, carbon nanotube, carbon nanofiber, carbon nanowire, carbon nanoball, carbon nanohorn, carbon nano cage, graphene, stabilized carbon, activated carbon, And it may be any one selected from the group consisting of a mixture thereof.
상기 나노 분체의 크기는 평균 입경이 1 nm 내지 50 nm일 수 있고, 2 nm 내지 35 nm일 수 있다. 상기 나노 분체의 크기가 상기 범위 내인 경우 상기 계면 접착층(20) 내에서 균일하게 분산되고, 저항의 큰 증가 없이 상기 막-전극 어셈블리를 구현할 수 있다. 상기 나노 분체의 평균 입경이 상기 범위를 벗어나는 경우, 나노 분체 간의 응집 현상 또는 상기 조성물 내에서 분산성 저하 및 상분리 현상이 발생할 수 있다. The nanoparticles may have an average particle diameter of 1 nm to 50 nm and 2 nm to 35 nm. When the size of the nano-powder is in the above range, it may be uniformly dispersed in the interfacial adhesive layer 20, and may implement the membrane-electrode assembly without a large increase in resistance. When the average particle diameter of the nanopowder is out of the above range, agglomeration phenomenon between the nanopowders or a decrease in dispersibility and phase separation may occur in the composition.
상기 계면 접착층(20)은 상기 계면 접착층(20) 전체 중량에 대하여 상기 나노 분체를 0.1 중량% 내지 20 중량%로 포함할 수 있고, 0.5 중량% 내지 15 중량%로 포함할 수 있다. 상기 나노 분체의 함량이 상기 범위 내인 경우 상기 계면 접착층(20) 내 상 분리 없이 균일하게 상기 나노 분체를 포함할 수 있는 계면 접착층(20)을 형성할 수 있다. 상기 나노 분체의 함량이 0.1 중량% 미만인 경우 수소 이온 전도도 향상 효과, 라디칼 발생 억제 효과 및 효과적인 물 분해 반응이 달성되기 어려울 수 있고, 20 중량%를 초과하는 경우 나노 분체의 분산성 저하로 고온 저가습 조건에서 수소 이온 전도도의 저하, 이온 저항(ionic resistance) - 전하 이동 저항(charge transfer resistance) - 물질 전달 저항(mass transfer resistance) 증가 및 불균일한 물 분해 반응으로 인해 막-전극 어셈블리의 출력 성능 및 내구성 향상 효과를 달성하지 못할 수 있다.The interfacial adhesive layer 20 may include 0.1 wt% to 20 wt% of the nanopowder, and may include 0.5 wt% to 15 wt%, based on the total weight of the interfacial adhesive layer 20. When the content of the nano powder is within the above range, the interfacial adhesive layer 20 may be uniformly formed without the phase separation in the interfacial adhesive layer 20. When the content of the nano powder is less than 0.1% by weight, hydrogen ion conductivity enhancement effect, radical generation inhibiting effect and effective water decomposition reaction may be difficult to be achieved, and when the content exceeds 20% by weight, high temperature and low temperature humidity due to a decrease in dispersibility of the nano powder. Output performance and durability of the membrane-electrode assembly due to reduced hydrogen ion conductivity, ionic resistance-charge transfer resistance-increased mass transfer resistance and heterogeneous water decomposition reactions under conditions Improvements may not be achieved.
상기 계면 접착층(20)의 평균 두께는 0.01 ㎛ 내지 5 ㎛이고, 0.5 ㎛ 내지 3 ㎛일 수 있다. 상기 계면 접착층(20)이 캐소드 측에 위치하는 경우, 상기 촉매층(30), 상기 계면 접착층(20) 및 상기 이온 교환막(10)의 두께의 합은 18 ㎛ 내지 40 ㎛일 수 있고, 상기 계면 접착층(20)이 애노드 측에 위치하는 경우, 상기 촉매층(30), 상기 계면 접착층(20) 및 상기 이온 교환막(10)의 두께의 합은 2 ㎛ 내지 35 ㎛일 수 있다.The average thickness of the interfacial adhesive layer 20 may be 0.01 μm to 5 μm, and 0.5 μm to 3 μm. When the interfacial adhesive layer 20 is located on the cathode side, the sum of the thicknesses of the catalyst layer 30, the interfacial adhesive layer 20, and the ion exchange membrane 10 may be 18 μm to 40 μm, and the interfacial adhesive layer When the 20 is located at the anode side, the sum of the thicknesses of the catalyst layer 30, the interfacial adhesive layer 20, and the ion exchange membrane 10 may be 2 μm to 35 μm.
상기 계면 접착층(20)의 평균 두께가 0.01 ㎛ 미만인 경우 전해질 막과 전극사이의 계면 접합성을 향상시키지 못 할 수 있고, 5 ㎛를 초과하는 경우 계면 및 전달 저항 성분이 증가하여 막-전극 어셈블리의 성능을 저하시킬 수 있다.When the average thickness of the interfacial adhesive layer 20 is less than 0.01 μm, the interfacial adhesion between the electrolyte membrane and the electrode may not be improved, and when the interfacial adhesive layer 20 exceeds 5 μm, the interface and the transfer resistance components increase to increase the performance of the membrane-electrode assembly. Can be lowered.
한편, 상기 촉매층(30)의 촉매 입자(31)는 수소 산화반응, 산소 환원반응에 촉매로 사용될 수 있는 것은 어느 것을 사용하여도 무방하며, 바람직하게는 백금계 금속을 사용하는 것이 좋다.On the other hand, the catalyst particles 31 of the catalyst layer 30 may be any of those that can be used as a catalyst in the hydrogen oxidation reaction, oxygen reduction reaction, it is preferable to use a platinum-based metal.
상기 백금계 금속은 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 백금-M 합금(상기 M은 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 갈륨(Ga), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 은(Ag), 금(Au), 아연(Zn), 주석(Sn), 몰리브덴(Mo), 텅스텐(W), 란탄(La) 및 로듐(Rh)으로 이루어진 군에서 선택되는 어느 하나 이상) 및 이들의 조합으로 이루어진 군에서 선택되는 하나를 포함할 수 있으며, 보다 바람직하게는 상기 백금계 촉매 금속 군에서 선택된 2종 이상의 금속을 조합한 것을 사용할 수 있으나, 이에 한정되는 것은 아니며, 본 기술 분야에서 사용 가능한 백금계 촉매 금속이라면 제한 없이 사용할 수 있다.The platinum-based metal is platinum (Pt), palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), platinum-M alloys (the M is palladium (Pd), ruthenium (Ru), iridium ( Ir), osmium (Os), gallium (Ga), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper ( Cu, silver (Ag), gold (Au), zinc (Zn), tin (Sn), molybdenum (Mo), tungsten (W), lanthanum (La) and rhodium (Rh) It may include one selected from the group consisting of) and a combination thereof, and more preferably, a combination of two or more metals selected from the platinum-based catalyst metal group may be used, but is not limited thereto. Platinum-based catalyst metals usable in the art can be used without limitation.
또한, 상기 촉매 입자(31)는 금속 자체(black)을 사용할 수도 있고, 촉매 금속을 담체에 담지시켜 사용할 수도 있다.In addition, the catalyst particles 31 may use a metal black, or may be used by supporting the catalyst metal on a carrier.
상기 담체는 탄소계 담체, 지르코니아, 알루미나, 티타니아, 실리카, 세리아 등의 다공성 무기산화물, 제올라이트 등에서 선택될 수 있다. 상기 탄소계 담체는 흑연, 수퍼피(super P), 탄소섬유(carbon fiber), 탄소시트(carbon sheet), 카본블랙(carbon black), 케첸블랙(Ketjen Black), 덴카 블랙(Denka black), 아세틸렌 블랙 (acetylene black), 카본나노튜브(carbon nano tube, CNT), 탄소구체(carbon sphere), 탄소리본(carbon ribbon), 풀러렌(fullerene), 활성탄소 및 이들의 하나 이상의 조합에서 선택될 수 있으나, 이에 한정되는 것은 아니며, 본 기술분야에서 사용가능한 담체는 제한 없이 사용할 수 있다.The carrier may be selected from carbon-based carriers, porous inorganic oxides such as zirconia, alumina, titania, silica, ceria, zeolite, and the like. The carbon-based carrier is graphite, super P, carbon fiber, carbon sheet, carbon black, Ketjen Black, Denka black, acetylene It may be selected from acetylene black, carbon nano tube (CNT), carbon sphere, carbon ribbon, fullerene, activated carbon and one or more combinations thereof, Without being limited thereto, carriers usable in the art may be used without limitation.
상기 촉매 입자(31)는 담체의 표면 위에 위치할 수도 있고, 담체의 내부 기공(pore)을 채우면서 담체 내부로 침투할 수도 있다.The catalyst particles 31 may be located on the surface of the carrier, or may penetrate into the carrier while filling the internal pores of the carrier.
상기 담체에 담지된 귀금속을 촉매로 사용하는 경우에는 상용화된 시판된 것을 사용할 수도 있고, 또한 담체에 귀금속을 담지시켜 제조하여 사용할 수도 있다. 상기 담체에 귀금속을 담지시키는 공정은 당해 분야에서 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하여도, 당해 분야에 종사하는 사람들에게 쉽게 이해될 수 있는 내용이다.When using the noble metal supported on the carrier as a catalyst, a commercially available commercially available one may be used, or may be prepared by using a noble metal supported on the carrier. The process of supporting the noble metal on the carrier is well known in the art, and thus the detailed description thereof will be easily understood by those skilled in the art.
상기 촉매 입자(31)는 상기 촉매층(30)의 전체 중량 대비 20 중량% 내지 80 중량%로 함유될 수 있으며, 20 중량% 미만으로 함유될 경우에는 활성 저하의 문제가 있을 수 있고, 80 중량%를 초과할 경우에는 상기 촉매 입자(31)의 응집으로 활성 면적이 줄어들어 촉매 활성이 반대로 저하될 수 있다.The catalyst particles 31 may be contained in an amount of 20% to 80% by weight relative to the total weight of the catalyst layer 30, and when contained in less than 20% by weight, there may be a problem of deterioration of activity, and 80% by weight. If it exceeds, the active area is reduced by agglomeration of the catalyst particles 31, so that the catalytic activity may be reversely lowered.
또한, 상기 촉매층(30)은 상기 촉매층(30)의 접착력 향상 및 수소 이온의 전달을 위하여 바인더를 포함할 수 있다.In addition, the catalyst layer 30 may include a binder to improve adhesion of the catalyst layer 30 and transfer hydrogen ions.
상기 바인더로는 수소 이온 전도성을 갖는 이오노머를 사용하는 것이 바람직하고, 상기 이오노머는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다.It is preferable to use an ionomer having hydrogen ion conductivity as the binder, and the ionomer is a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate. Can be.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 포스포닌산기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.The cation exchange group may be any one selected from the group consisting of sulfonic acid groups, carboxyl groups, boronic acid groups, phosphoric acid groups, imide groups, phosphonic acid groups, sulfonimide groups, sulfonamide groups, and combinations thereof, and generally sulfonic acid groups Or a carboxyl group.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.The cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.More specifically, when the cationic conductor is a hydrogen ion cationic conductor, the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof. Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof. Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, sulfonated poly Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated polyether ketone polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone polyphenylene sulfide sulfone, sulfonated polyphenylene sulfide sulfone nitrile, sulfonated polyarylene ether, sulfonated polyarylene ether nitrile, Hydrocarbon-based polymers including a sulfonated polyarylene ether ether nitrile, a sulfonated polyarylene ether sulfone ketone, and mixtures thereof, but are not limited thereto. no.
또한, 상기 양이온 전도체는 측쇄 말단의 양이온 교환 그룹에서 H를 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 상기 측쇄 말단의 양이온 교환 그룹에서 H를 Na으로 치환하는 경우에는 촉매 조성물 제조시 NaOH를, 테트라부틸암모늄으로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 상기 치환 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다.The cation conductor may also replace H with Na, K, Li, Cs or tetrabutylammonium in the cation exchange group at the side chain end. In the cation exchange group at the side chain terminal, when H is replaced with Na, NaOH is substituted during the preparation of the catalyst composition, and when tetrabutylammonium is substituted, tetrabutylammonium hydroxide is used, and K, Li, or Cs is also appropriate. Substitutions may be used. Since the substitution method is well known in the art, detailed description thereof will be omitted.
상기 양이온 전도체는 단일물 또는 혼합물 형태로 사용가능하며, 또한 선택적으로 이온 교환막(10)과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 함께 사용될 수도 있다. 그 사용량은 사용 목적에 적합하도록 조절하여 사용하는 것이 바람직하다.The cationic conductor may be used in the form of a single substance or a mixture, and may also be optionally used with a nonconductive compound for the purpose of further improving adhesion to the ion exchange membrane 10. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
상기 비전도성 화합물로는 폴리테트라플루오로에틸렌(PTFE), 테트라플루오로에틸렌-헥사플루오르프로필렌 공중합체(FEP), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체(PFA), 에틸렌/테트라플루오로에틸렌(ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌공중합체(ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 도데실벤젠술폰산 및 소르비톨(sorbitol)로 이루어진 군에서 선택된 1종 이상의 것이 사용될 수 있다.Examples of the non-conductive compound include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and ethylene / tetrafluoro Ethylene / tetrafluoroethylene (ETFE), ethylene chlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, copolymer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), dode One or more selected from the group consisting of silbenzenesulfonic acid and sorbitol can be used.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.The anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.As the anion conductor, a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
상기 이오노머의 상업적으로 상용화된 예로는 나피온, 아퀴비온 등을 들 수 있다.Commercially available examples of the ionomer include nafion, aquibion and the like.
상기 이오노머는 상기 촉매층(30) 전체 중량에 대하여 20 내지 80 중량%로 포함될 수 있다. 상기 이오노머의 함량이 20 중량% 미만일 경우에는 생성된 이온이 잘 전달되지 못할 수 있고, 80 중량%를 초과하는 경우에는 기공이 부족하여 수소 또는 산소(공기)의 공급이 어려우며 반응할 수 있는 활성면적이 줄어들 수 있다.The ionomer may be included in an amount of 20 to 80 wt% based on the total weight of the catalyst layer 30. If the content of the ionomer is less than 20% by weight, the generated ions may not be transferred well, and if the amount of the ionomer is greater than 80% by weight, pores may be insufficient to supply hydrogen or oxygen (air). This can be reduced.
한편, 상기 막-전극 어셈블리는 상기 촉매층(30) 바깥쪽에 전극 기재(40)를 더 포함할 수 있다.The membrane-electrode assembly may further include an electrode substrate 40 outside the catalyst layer 30.
상기 전극 기재(40)로는 수소 또는 산소의 원활한 공급이 이루어질 수 있도록 다공성의 도전성 기재가 사용될 수 있다. 그 대표적인 예로 탄소 페이퍼(carbon paper), 탄소 천(carbon cloth), 탄소 펠트(carbon felt) 또는 금속천(섬유 상태의 금속천으로 구성된 다공성의 필름 또는 고분자 섬유로 형성된 천의 표면에 금속 필름이 형성된 것을 말함)이 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 전극 기재(40)는 불소 계열 수지로 발수 처리한 것을 사용하는 것이 연료 전지의 구동시 발생되는 물에 의하여 반응물 확산 효율이 저하되는 것을 방지할 수 있어 바람직하다. 상기 불소 계열 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드알콕시비닐 에테르, 플루오리네이티드 에틸렌 프로필렌(Fluorinated ethylene propylene), 폴리클로로트리플루오로에틸렌 또는 이들의 코폴리머를 사용할 수 있다.As the electrode substrate 40, a porous conductive substrate may be used to smoothly supply hydrogen or oxygen. Typical examples thereof include a carbon film, a carbon cloth, a carbon felt, or a metal cloth (a porous film composed of a metal cloth in a fibrous state or a metal film formed on a surface of a cloth formed of polymer fibers). May be used, but is not limited thereto. In addition, it is preferable to use the water repellent treated with the fluorine-based resin as the electrode substrate 40 because it can prevent the reactant diffusion efficiency from being lowered by water generated when the fuel cell is driven. Examples of the fluorine-based resin include polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated ethylene propylene ( Fluorinated ethylene propylene), polychlorotrifluoroethylene or copolymers thereof can be used.
또한, 상기 전극 기재(40)에서의 반응물 확산 효과를 증진시키기 위한 미세 기공층(microporous layer)을 더욱 포함할 수도 있다. 이 미세 기공층은 일반적으로 입경이 작은 도전성 분말, 예를 들어 탄소 분말, 카본 블랙, 아세틸렌 블랙, 활성 탄소, 카본 파이버, 플러렌(fullerene), 카본 나노 튜브, 카본 나노 와이어, 카본 나노 혼(carbon nano-horn) 또는 카본 나노 링(carbon nano ring)을 포함할 수 있다.In addition, the electrode substrate 40 may further include a microporous layer (microporous layer) for enhancing the diffusion effect of the reactants. These microporous layers are generally conductive powders having a small particle diameter, such as carbon powder, carbon black, acetylene black, activated carbon, carbon fiber, fullerene, carbon nanotubes, carbon nanowires, and carbon nanohorns. -horn or carbon nano ring.
상기 미세 기공층은 도전성 분말, 바인더 수지 및 용매를 포함하는 조성물을 상기 전극 기재(40)에 코팅하여 제조된다. 상기 바인더 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드, 알콕시비닐 에테르, 폴리비닐알코올, 셀룰로오스아세테이트 또는 이들의 코폴리머 등이 바람직하게 사용될 수 있다. 상기 용매로는 에탄올, 이소프로필 알코올, n-프로필알코올, 부틸알코올 등과 같은 알코올, 물, 디메틸아세트아마이드, 디메틸술폭사이드, N-메틸피롤리돈, 테트라하이드로퓨란 등이 바람직하게 사용될 수 있다. 코팅 공정은 조성물의 점성에 따라 스크린 프린팅법, 스프레이 코팅법 또는 닥터 블레이드를 이용한 코팅법 등이 사용될 수 있으며, 이에 한정되는 것은 아니다.The microporous layer is prepared by coating a composition including a conductive powder, a binder resin, and a solvent on the electrode substrate 40. The binder resin may be polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride, alkoxy vinyl ether, polyvinyl alcohol, cellulose acetate Or copolymers thereof and the like can be preferably used. As the solvent, alcohols such as ethanol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, and the like, water, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran and the like can be preferably used. The coating process may be screen printing, spray coating, or coating using a doctor blade according to the viscosity of the composition, but is not limited thereto.
한편, 상기 이온 교환막(10)은 이온 전도체를 포함한다. 상기 이온 전도체는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다. On the other hand, the ion exchange membrane 10 includes an ion conductor. The ion conductor may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.The cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.The cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.More specifically, when the cationic conductor is a hydrogen ion cationic conductor, the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof. Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof. Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, sulfonated poly Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated polyether ketone polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone polyphenylene sulfide sulfone, sulfonated polyphenylene sulfide sulfone nitrile, sulfonated polyarylene ether, sulfonated polyarylene ether nitrile, Hydrocarbon-based polymers including a sulfonated polyarylene ether ether nitrile, a sulfonated polyarylene ether sulfone ketone, and mixtures thereof, but are not limited thereto. no.
한편, 상기 양이온 전도체 중에서 이온 전도 기능이 우수하고 가격면에서도 유리한 탄화수소계 고분자를 바람직하게 이용할 수 있다. 또한, 상기 이온 전도체로서 탄화수소계 고분자를 사용하고, 상기 다공성 지지체로서 탄화수소계 고분자를 사용하는 경우, 상기 탄화수소계 이온 전도체에 포함된 탄화수소계 고분자와 상기 다공성 지지체에 포함된 탄화수소계 고분자를 서로 동일한 물질계로 구성할 수 있으며, 구체적으로는 상기 탄화수소계 이온 전도체로서 SPI(sulfonated polyimide)를 이용하고 상기 다공성 지지체로서 폴리이미드를 이용할 경우 상기 탄화수소계 이온 전도체와 상기 다공성 지지체 사이의 접착성을 더욱 향상시킬 수 있고, 계면 저항을 더욱 낮출 수 있다.On the other hand, among the cationic conductors, hydrocarbon-based polymers excellent in ion conductivity and advantageous in terms of price can be preferably used. In addition, when a hydrocarbon-based polymer is used as the ion conductor and a hydrocarbon-based polymer is used as the porous support, the hydrocarbon-based polymer included in the hydrocarbon-based ion conductor and the hydrocarbon-based polymer included in the porous support are the same material type. In particular, when using SPI (sulfonated polyimide) as the hydrocarbon-based ion conductor and polyimide as the porous support, adhesion between the hydrocarbon-based ion conductor and the porous support can be further improved. And the interface resistance can be further lowered.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.The anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.As the anion conductor, a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
한편, 상기 이온 교환막(10)은 e-PTFE와 같은 불소계 다공성 지지체 또는 전기 방사 등에 의하여 제조된 다공성 나노웹 지지체 등의 공극을 상기 이온 전도체가 채우고 있는 강화막 형태일 수도 있다.The ion exchange membrane 10 may be in the form of a reinforcing membrane in which the ion conductor fills pores such as a fluorine-based porous support such as e-PTFE or a porous nanoweb support prepared by electrospinning.
본 발명의 다른 일 실시예에 따른 막-전극 어셈블리의 제조 방법은 촉매층(30) 위에 계면 접착층 형성용 조성물을 도포하여 계면 접착층(20)을 형성하는 단계, 그리고 상기 계면 접착층(20)이 형성된 촉매층(30)과 이온 교환막(10)을 접합하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a membrane-electrode assembly, forming an interface adhesive layer 20 by applying a composition for forming an interface adhesive layer on a catalyst layer 30, and a catalyst layer on which the interface adhesive layer 20 is formed. 30 and the ion exchange membrane 10 are bonded.
우선, 촉매, 이오노머 및 용매를 포함하는 촉매층 형성용 조성물을 제조한 후, 이를 이용하여 촉매층(30)을 형성한다.First, after preparing a composition for forming a catalyst layer including a catalyst, an ionomer and a solvent, the catalyst layer 30 is formed using the composition.
상기 용매는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매일 수 있다.The solvent may be a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and one or more mixtures thereof.
상기 친수성 용매는 탄소수 1 내지 12의 직쇄상, 분지상의 포화 또는 불포화 탄화수소를 주쇄로서 포함하는 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 것일 수 있으며, 이들은 지환식 또는 방향족 사이클로 화합물을 주쇄의 최소한 일부로 포함할 수 있다. 구체적인 예로 알코올에는 메탄올, 에탄올, 이소프로필알코올, 에톡시 에탄올, n-프로필알코올, 부틸알코올, 1,2-프로판디올, 1-펜탄올, 1.5-펜탄디올, 1.9-노난디올 등; 케톤에는 헵타논, 옥타논 등; 알데히드에는 벤즈알데하이드, 톨루알데하이드 등; 에스터에는 메틸펜타노에이트, 에틸-2-하이드록시프로파노에이트 등; 카르복실산에는 펜타노익산, 헵타노익산 등; 에테르에는 메톡시벤젠, 다이메톡시프로판 등; 아미드에는 프로판아미드, 뷰틸아미드, 디메틸아세트아마이드 등이 있다.The hydrophilic solvent is one selected from the group consisting of alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers, and amides containing, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have a functional group or more, they may include an alicyclic or aromatic cyclo compound as at least part of the main chain. Specific examples of alcohols include methanol, ethanol, isopropyl alcohol, ethoxy ethanol, n-propyl alcohol, butyl alcohol, 1,2-propanediol, 1-pentanol, 1.5-pentanediol, 1.9-nonanediol, and the like; Ketones include heptanone, octanon and the like; Aldehydes include benzaldehyde, tolualdehyde and the like; Examples of the ester include methylpentanoate, ethyl-2-hydroxypropanoate, and the like; Carboxylic acids include pentanoic acid, heptanoic acid and the like; Ethers include methoxybenzene, dimethoxypropane and the like; Amides include propanamide, butylamide, dimethylacetamide, and the like.
상기 유기용매는 N-메틸피롤리돈, 디메틸술폭사이드, 테트라하이드로퓨란 및 이들의 혼합물에서 선택할 수 있다.The organic solvent may be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran and mixtures thereof.
상기 용매는 상기 촉매층 형성용 조성물 전제 중량에 대하여 80 내지 95 중량%로 함유될 수 있으며, 80 중량% 미만일 경우에는 고형분의 함량이 너무 높아 촉매층(30) 코팅시 균열 및 고점도로 인한 분산 문제가 있을 수 있고, 95 중량%를 초과하는 경우에는 촉매층(30) 활성에 불리할 수 있다.The solvent may be contained in an amount of 80 to 95% by weight based on the total weight of the composition for forming the catalyst layer, when less than 80% by weight of the solid content is too high may cause dispersion problems due to cracks and high viscosity when coating the catalyst layer (30) And greater than 95% by weight, which may be detrimental to the catalyst layer 30 activity.
상기 촉매층 형성용 조성물을 이용하여 상기 촉매층(30)을 제조하는 단계는 구체적인 일 예시로 상기 촉매층 형성용 조성물을 이형필름에 코팅하여 촉매층(30)을 제조할 수 있다.In the preparing of the catalyst layer 30 using the catalyst layer forming composition, a catalyst layer 30 may be manufactured by coating the catalyst layer forming composition on a release film as a specific example.
상기 촉매층 형성용 조성물을 상기 이형필름 위에 코팅할 때는 상기 촉매가 분산된 촉매층 형성용 조성물을 연속적 또는 간헐적으로 코터(coater)에 이송시킨 후 이형필름 상에 10 ㎛ 내지 200 ㎛의 건조두께로 균일하게 도포하는 것이 바람직하다.When coating the catalyst layer-forming composition on the release film, the catalyst-dispersed catalyst layer-forming composition is continuously or intermittently transferred to a coater, and then uniformly dried at a thickness of 10 μm to 200 μm on the release film. It is preferable to apply.
더욱 상세하게는, 상기 촉매층 형성용 조성물의 점성에 따라 펌프를 통해서 연속적으로 다이(die), 그라비아(gravure), 바(bar), 콤마 코터(comma coater) 등의 코터에 이송한 후, 슬롯다이 코팅, 바 코팅, 콤마 코팅, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드 코팅, 브러시 등의 방법이 사용하여 데칼필름 위에 촉매층(30)의 건조두께가 10 ㎛ 내지 200 ㎛, 더욱 바람직하게는 10 ㎛ 내지 100 ㎛로 균일하게 도포하고 일정한 온도로 유지된 건조로를 통과시키며 용매를 휘발시킨다.More specifically, the slot die is transferred to a coater such as a die, gravure, bar, comma coater, etc. continuously through a pump according to the viscosity of the composition for forming the catalyst layer. Coating, bar coating, comma coating, screen printing, spray coating, doctor blade coating, brush, etc. may be used to dry the thickness of the catalyst layer 30 on the decal film from 10 μm to 200 μm, more preferably from 10 μm to 100 μm. Apply uniformly in μm, pass through a drying furnace maintained at a constant temperature and volatilize the solvent.
상기 촉매층 형성용 조성물을 1 ㎛ 미만의 두께로 코팅할 경우 촉매 함량이 작아 활성이 떨어질 수 있고, 200 ㎛를 초과하는 두께로 코팅할 경우에는 이온 및 전자의 이동 거리가 증가하여 저항이 증가될 수 있다.When the composition for forming the catalyst layer is coated with a thickness of less than 1 μm, the activity of the catalyst may be reduced due to the small catalyst content. When the coating with a thickness of more than 200 μm, the resistance of ions and electrons may be increased to increase resistance. have.
상기 건조 공정은 25 ℃ 내지 90 ℃에서 12 시간 이상 건조시키는 것일 수 있다. 상기 건조 온도가 25 ℃ 미만이고 건조 시간이 12 시간 미만인 경우에는 충분히 건조된 촉매층(30)을 형성하지 못할 수 있는 문제가 발생될 수 있고, 90 ℃를 초과하는 온도에서 건조시키면 촉매층(30)의 균열 등이 발생할 수 있다. 다만, 상기 촉매층 형성용 조성물을 도포 및 건조하는 방법은 상기에 한정되지 않는다.The drying process may be to dry at least 12 hours at 25 ℃ to 90 ℃. When the drying temperature is less than 25 ℃ and the drying time is less than 12 hours may cause a problem that may not form a sufficiently dried catalyst layer 30, when drying at a temperature exceeding 90 ℃ of the catalyst layer 30 Cracking may occur. However, the method of applying and drying the composition for forming the catalyst layer is not limited to the above.
다음으로, 상기 촉매층(30) 위에 계면 접착층 형성용 조성물을 도포하여 계면 접착층(20)을 형성한다.Next, the composition for forming the interface adhesive layer is coated on the catalyst layer 30 to form the interface adhesive layer 20.
상기 계면 접착층 형성용 조성물은 당량(equivalent weight, EW)이 500 g/eq 내지 1000 g/eq인 불소계 이오노머와 용매를 포함한다. 상기 불소계 이오노머에 대한 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.The composition for forming an interfacial adhesive layer includes a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq and a solvent. Since the description of the fluorine ionomer is the same as described above, repeated descriptions thereof will be omitted.
상기 계면 접착층 형성용 조성물은 상기 불소계 이오노머를 0.1 % 내지 30 %의 농도로 포함할 수 있고, 1 % 내지 20 %의 농도로 포함할 수 있다. 본 발명의 명세서에서 농도는 퍼센트 농도를 의미하는 것으로서, 퍼센트 농도는 용액의 질량에 대한 용질의 질량의 백분율로 구할 수 있다.The composition for forming an interface adhesive layer may include the fluorine-based ionomer at a concentration of 0.1% to 30%, and may include a concentration of 1% to 20%. Concentration in the context of the present invention means a percentage concentration, the percentage concentration can be obtained as a percentage of the mass of the solute to the mass of the solution.
상기 계면 접착층 형성용 조성물이 상기 불소계 이오노머를 상기 농도 범위로 포함하는 경우 상기 막-전극 어셈블리의 계면 저항 증가 없이 수소 이온 전도성과 계면 접합성을 개선할 수 있다. 상기 불소계 이오노머의 농도가 0.1 % 미만인 경우 수소 이온 전달 능력이 저하될 수 있고, 30 %를 초과하는 경우 이오노머 분포가 불균일하게 형성될 수 있다.When the composition for forming the interfacial adhesive layer includes the fluorine-based ionomer in the concentration range, hydrogen ion conductivity and interfacial bonding may be improved without increasing interfacial resistance of the membrane-electrode assembly. When the concentration of the fluorine ionomer is less than 0.1%, the hydrogen ion transport ability may be lowered, and when the concentration of the fluorine ionomer is greater than 30%, the ionomer distribution may be nonuniformly formed.
상기 용매로는 에탄올, 이소프로필알코올, n-프로필알코올, 부틸알코올 등과 같은 알코올, 물, 디메틸아세트아마이드, 디메틸술폭사이드, N-메틸피롤리돈, 테트라하이드로퓨란 등이 바람직하게 사용될 수 있다.As the solvent, alcohols such as ethanol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, water, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, etc. may be preferably used.
또한, 상기 계면 접착층 형성용 조성물은 상기 불소계 이오노머와 이온 교환 용량이 0.8 meq/g 내지 4.0 meq/g인 탄화수소계 이오노머의 혼합물을 포함할 수도 있다. 상기 탄화수소계 이오노머에 대한 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.In addition, the composition for forming an interfacial adhesive layer may include a mixture of the fluorine ionomer and a hydrocarbon ionomer having an ion exchange capacity of 0.8 meq / g to 4.0 meq / g. Since the description of the hydrocarbon-based ionomer is the same as described above, repeated description is omitted.
상기 계면 접착층 형성용 조성물은 0.1 % 내지 30 %의 농도의 상기 불소계 이오노머의 분산액과 0.1 % 내지 30 %의 농도의 상기 탄화수소계 이오노머의 분산액을 혼합하여 제조될 수 있다.The composition for forming an interfacial adhesive layer may be prepared by mixing a dispersion of the fluorine-based ionomer at a concentration of 0.1% to 30% and a dispersion of the hydrocarbon-based ionomer at a concentration of 0.1% to 30%.
상기 계면 접착층 형성용 조성물은 상기 탄화수소계 이오노머를 0.1 % 내지 30 %의 농도로 포함할 수 있고, 1 % 내지 15 %의 농도로 포함할 수 있다. 상기 계면 접착층 형성용 조성물이 상기 탄화수소계 이오노머를 상기 농도 범위로 포함하는 경우 상기 막-전극 어셈블리의 계면 저항 증가 없이 수소 이온 전도성과 계면 접합성을 개선할 수 있다. 상기 탄화수소계 이오노머의 농도가 0.1 % 미만인 경우 수소 이온 전달 경로가 효과적으로 형성되지 못 할 수 있고, 30 %를 초과하는 경우 이오노머의 불균일한 분포 및 저항 성분이 증가할 수 있다.The composition for forming an interfacial adhesive layer may include the hydrocarbon-based ionomer at a concentration of 0.1% to 30%, and may include a concentration of 1% to 15%. When the composition for forming the interfacial adhesive layer includes the hydrocarbon-based ionomer in the concentration range, hydrogen ion conductivity and interfacial bonding may be improved without increasing interfacial resistance of the membrane-electrode assembly. When the concentration of the hydrocarbon-based ionomer is less than 0.1%, the hydrogen ion transport path may not be effectively formed, and when the concentration of the hydrocarbon-based ionomer is greater than 30%, the nonuniform distribution and resistance components of the ionomer may increase.
또한, 상기 계면 접착층 형성용 조성물은 입경이 1 nm 내지 50 nm인 나노 분체를 더 포함할 수 있다. 상기 나노 분체에 대한 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.In addition, the composition for forming an interface adhesive layer may further include nanoparticles having a particle diameter of 1 nm to 50 nm. Since the description of the nano-powder is the same as described above, repeated description is omitted.
상기 계면 접착층(20)은 상기 계면 접착층 형성용 조성물을 상기 촉매층(30) 위에 스프레이 코팅하여 형성될 수 있다. 상기 계면 접착층 형성용 조성물이 스프레이 코팅 방식으로 도포되는 경우 상기 계면 접착층(20)이 상기 촉매층(30) 내부로 과도하게 침투되지 않고, 상기 촉매층(30) 표면에서 일정 깊이까지 침투하며 표면 굴곡을 메우어 주는 효과가 있다. 상기 스프레이 방식은 상기 계면 접착층 형성용 조성물이 분사되면서 일부 용매가 휘발되어 점도가 높아진 상태로 상기 촉매층(30) 표면에 도포되므로 상기 촉매층(30) 내부로 침투하는 양이 과도하지 않으며 표면에 존재하는 기공을 선택적으로 채울 수 있다.The interfacial adhesive layer 20 may be formed by spray coating the interfacial adhesive layer forming composition on the catalyst layer 30. When the composition for forming the interfacial adhesive layer is applied by spray coating, the interfacial adhesive layer 20 does not penetrate excessively into the catalyst layer 30, but penetrates to a predetermined depth from the surface of the catalyst layer 30 and fills surface curvature. It has a soothing effect. The spray method is applied to the surface of the catalyst layer 30 in a state in which some solvent is volatilized and the viscosity is increased while the composition for forming the interfacial adhesive layer is injected, so that the amount of penetration into the catalyst layer 30 is not excessive and is present on the surface. The pores can be selectively filled.
다음으로, 상기 계면 접착층(20)을 매개로 상기 촉매층(30)과 상기 이온 교환막(10)을 접합시킨다.Next, the catalyst layer 30 and the ion exchange membrane 10 are bonded to each other via the interface adhesive layer 20.
선택적으로, 상기 계면 접착층(20)이 형성된 촉매층(30) 및 이형필름을 필요한 크기로 컷팅한 후, 상기 이온 교환막(10)에 접합시킬 수 있다.Optionally, the catalyst layer 30 and the release film on which the interfacial adhesive layer 20 is formed may be cut to a required size, and then bonded to the ion exchange membrane 10.
상기 촉매층(30)과 상기 이온 교환막(10)을 상기 계면 접착층(20)을 매개로 접합하는 방법은 일 예로 전사 방법을 이용할 수 있고, 상기 전사 방법은 금속프레스 단독 또는 금속프레스에 실리콘 고무재 등과 같은 고무재의 연질판을 덧대어 열과 압력을 가하는 핫프레싱(hot pressing) 방법으로 수행될 수 있다.The method of bonding the catalyst layer 30 and the ion exchange membrane 10 through the interfacial adhesive layer 20 may be, for example, a transfer method, and the transfer method may be a metal press alone or a silicon rubber material on a metal press. It may be performed by a hot pressing method of applying heat and pressure by applying a soft plate of the same rubber material.
상기 전사 방법은 80 ℃ 내지 150 ℃ 및 50 kgf/cm2 내지 200 kgf/cm2의 조건에서 이루어질 수 있다. 80 ℃, 50 kgf/cm2 미만의 조건에서 핫프레싱 할 경우, 이형필름상의 상기 촉매층(30)의 전사가 제대로 이루어지지 않을 수 있고, 150 ℃를 초과할 경우에는 상기 이온 교환막(10)의 고분자가 타면서 상기 촉매층(30)의 구조변성이 일어날 우려가 있으며, 200 kgf/cm2을 초과하는 조건에서 핫프레싱 할 경우, 상기 촉매층(30)의 전사보다 상기 촉매층(30)을 압착하는 효과가 더 커져서 전사가 제대로 이루어지지 못할 수 있다.The transfer method may be performed under the conditions of 80 ℃ to 150 ℃ and 50 kgf / cm 2 to 200 kgf / cm 2 . When hot pressing at a temperature of 80 ° C. and less than 50 kgf / cm 2 , transfer of the catalyst layer 30 on a release film may not be performed properly, and when it exceeds 150 ° C., the polymer of the ion exchange membrane 10 may be There is a risk that structural modification of the catalyst layer 30 may occur, and when hot pressing under a condition exceeding 200 kgf / cm 2 , the effect of compressing the catalyst layer 30 is more effective than the transfer of the catalyst layer 30. It may get bigger and may not be able to transcribe properly.
본 발명의 또 다른 일 실시예에 따른 연료 전지는 상기 막-전극 어셈블리를 포함한다. A fuel cell according to another embodiment of the present invention includes the membrane-electrode assembly.
도 2는 상기 연료 전지의 전체적인 구성을 도시한 모식도이다.2 is a schematic diagram showing the overall configuration of the fuel cell.
상기 도 2를 참조하면, 상기 연료 전지(200)는 연료와 물이 혼합된 혼합 연료를 공급하는 연료 공급부(210), 상기 혼합 연료를 개질하여 수소 가스를 포함하는 개질 가스를 발생시키는 개질부(220), 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스가 산화제와 전기 화학적인 반응을 일으켜 전기 에너지를 발생시키는 스택(230), 및 산화제를 상기 개질부(220) 및 상기 스택(230)으로 공급하는 산화제 공급부(240)를 포함한다.2, the fuel cell 200 includes a fuel supply unit 210 for supplying a mixed fuel in which fuel and water are mixed, and a reforming unit for reforming the mixed fuel to generate a reformed gas including hydrogen gas ( 220, a stack 230 in which a reformed gas including hydrogen gas supplied from the reformer 220 generates an electrical energy by causing an electrochemical reaction with an oxidant, and an oxidant in the reformer 220 and the stack. It includes an oxidant supply unit 240 for supplying to (230).
상기 스택(230)은 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스와 산화제 공급부(240)로부터 공급되는 산화제의 산화/환원 반응을 유도하여 전기 에너지를 발생시키는 복수의 단위 셀을 구비한다.The stack 230 induces an oxidation / reduction reaction of a reforming gas including hydrogen gas supplied from the reformer 220 and an oxidant supplied from the oxidant supply unit 240 to generate a plurality of unit cells for generating electrical energy. Equipped.
각각의 단위 셀은 전기를 발생시키는 단위의 셀을 의미하는 것으로서, 수소 가스를 포함하는 개질 가스와 산화제 중의 산소를 산화/환원시키는 상기 막-전극 어셈블리와, 수소 가스를 포함하는 개질 가스와 산화제를 막-전극 어셈블리로 공급하기 위한 분리판(또는 바이폴라 플레이트(bipolar plate)라고도 하며, 이하 '분리판'이라 칭한다)을 포함한다. 상기 분리판은 상기 막-전극 어셈블리를 중심에 두고, 그 양측에 배치된다. 이 때, 상기 스택의 최외측에 각각 위치하는 분리판을 특별히 엔드 플레이트라 칭하기도 한다.Each unit cell means a cell of a unit for generating electricity, wherein the membrane-electrode assembly for oxidizing / reducing oxygen in an oxidant and a reforming gas containing hydrogen gas, and a reforming gas and an oxidant including hydrogen gas A separator (also referred to as a bipolar plate, hereinafter referred to as a "bipolar plate") for feeding to the membrane-electrode assembly. The separator is disposed on both sides of the membrane-electrode assembly at the center. At this time, the separator plates respectively located at the outermost side of the stack may be specifically referred to as end plates.
상기 분리판 중 상기 엔드 플레이트에는 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스를 주입하기 위한 파이프 형상의 제1 공급관(231)과, 산소 가스를 주입하기 위한 파이프 형상의 제2 공급관(232)이 구비되고, 다른 하나의 엔드 플레이트에는 복수의 단위 셀에서 최종적으로 미반응되고 남은 수소 가스를 포함하는 개질 가스를 외부로 배출시키기 위한 제1 배출관(233)과, 상기한 단위 셀에서 최종적으로 미반응되고 남은 산화제를 외부로 배출시키기 위한 제2 배출관(234)이 구비된다.The end plate of the separator plate, the pipe-shaped first supply pipe 231 for injecting the reformed gas containing hydrogen gas supplied from the reforming unit 220, and the pipe-shaped second for injecting oxygen gas The supply pipe 232 is provided, and the other end plate has a first discharge pipe 233 for discharging the reformed gas containing hydrogen gas remaining unreacted in the plurality of unit cells to the outside and the unit cell described above. Finally, the second discharge pipe 234 for discharging the remaining unreacted oxidant to the outside is provided.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되는 것은 아니다. 또한, 여기에 기재되지 않은 내용은 당 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것으로 그 설명을 생략한다.The following presents specific embodiments of the present invention. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and the present invention is not limited thereto. In addition, the contents not described herein may be sufficiently technically inferred by those skilled in the art and description thereof is omitted.
[[
제조예Production Example
: 막-전극 어셈블리의 제조]: Fabrication of Membrane Electrode Assembly]
((
실시예Example
1) One)
PtCo/C 캐소드(Cathode) 촉매 88 중량%와 바인더로 Nafion®/H2O/2-프로판올 용액 12 중량%를 사용하여, 교반 및 초음파 방법으로 분산시켜 캐노드 전극 조성물을 제조하였다. 상기 제조된 캐소드 전극 조성물을 테플론 이형필름에 닥터블레이드 코팅한 후, 60 ℃에서 6 시간 동안 건조시켜 애노드 전극을 제조하였다. 이때, 캐소드 전극에서 촉매 로딩량은 약 0.40 mg/cm2으로 하였다.A cathode electrode composition was prepared by dispersing by 88% by weight of PtCo / C Cathode catalyst and 12% by weight of Nafion ® / H 2 O / 2-propanol solution as a binder by stirring and ultrasonic methods. The cathode electrode composition was prepared by doctor blade coating on a Teflon release film and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the catalyst loading in the cathode was about 0.40 mg / cm 2 .
PtRu/C 애노드(Anode) 촉매 88 중량%와 바인더로 Nafion®/H2O/2-프로판올 용액 12 중량%를 사용하여, 교반 및 초음파 방법으로 분산시켜 애노드 전극 조성물을 제조하였다. 상기 제조된 애노드 전극 조성물을 테플론 이형필름에 닥터블레이드 코팅한 후, 60 ℃에서 6시간 동안 건조시켜 애노드 전극을 제조하였다. 이때, 애노드 전극에서 촉매 로딩량은 약 0.10 mg/cm2으로 하였다.Using PtRu / C anode (Anode) Nafion ® / H 2 O / 2- propanol solution of 12 wt% to 88 wt% of the catalyst with a binder, were dispersed with stirring and an ultrasonic method for the anode electrode composition was prepared. The anode electrode composition prepared above was doctorblade coated on a Teflon release film, and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the amount of catalyst loading in the anode was about 0.10 mg / cm 2 .
EW가 700 g/eq인 불소계 이오노머 폴리(퍼플루오로술폰산)(PFSA)를 5 중량%와 H2O/2-프로판올 용액 95 중량%의 계면 접착층 형성용 조성물을 제조하였다.A composition for forming an interfacial adhesive layer was prepared, wherein 5 wt% of a fluorine ionomer poly (perfluorosulfonic acid) (PFSA) having an EW of 700 g / eq and 95 wt% of a H 2 O / 2-propanol solution was prepared.
상기 제조된 계면 접착층 형성용 조성물을 상기 제조된 전극 위에 상온에서 0.11 mg/cm2의 양으로 스프레이 코팅하여 약 0.5 ㎛ 두께의 계면 접착층을 상기 전극 표면에 형성하였다.The prepared interfacial adhesive layer-forming composition was spray-coated on the prepared electrode in an amount of 0.11 mg / cm 2 at room temperature to form an interfacial adhesive layer having a thickness of about 0.5 μm on the electrode surface.
상기 제조된 캐소드 및 애노드 전극 사이에 15 내지 20 ㎛ 두께를 갖는 퍼플루오로술폰산(PFSA)의 불소계 고분자 전해질 막을 개재하여, 이것을 160 ℃, 20 kgf/cm2조건의 열과 압력으로 3 분간 압착한 후, 상기 캐소드 전극 및 애노드 전극이 고분자 전해질 막에 결착된 막-전극 어셈블리를 제조하였다.After the fluorine-based polyelectrolyte membrane of perfluorosulfonic acid (PFSA) having a thickness of 15 to 20 μm between the prepared cathode and anode electrode, this was pressed for 3 minutes under heat and pressure at 160 ° C. and 20 kgf / cm 2 condition. In addition, a membrane-electrode assembly in which the cathode electrode and the anode electrode were bound to the polymer electrolyte membrane was prepared.
((
실시예Example
2) 2)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 EW가 700 g/eq인 불소계 이오노머 PFSA를 사용하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.In Example 1, the fluorine-based ionomer PFSA having an EW of 700 g / eq when manufacturing the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was formed in the same manner as in Example 1 except that To prepare a membrane-electrode assembly.
((
실시예Example
3) 3)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 EW가 700 g/eq인 불소계 이오노머 PFSA를 사용하고, 상기 계면 접착층의 두께를 약 2.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.In Example 1, the fluorine-based ionomer PFSA having an EW of 700 g / eq when manufacturing the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was formed in the same manner as in Example 1 except that To prepare a membrane-electrode assembly.
((
실시예Example
4) 4)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 EW가 950 g/eq인 불소계 이오노머 PFSA를 사용하고, 상기 계면 접착층의 두께를 약 0.5 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.In Example 1, the fluorine-based ionomer PFSA having an EW of 950 g / eq was used to prepare the composition for forming the interfacial adhesive layer, and the thickness of the interfacial adhesive layer was about 0.5 μm. To prepare a membrane-electrode assembly.
((
실시예Example
5) 5)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 EW가 950 g/eq인 불소계 이오노머 PFSA를 사용하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.In Example 1, the fluorine-based ionomer PFSA having an EW of 950 g / eq was used to prepare the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was about 1.0 μm, similar to that of Example 1 above. To prepare a membrane-electrode assembly.
((
실시예Example
6) 6)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 EW가 950 g/eq인 불소계 이오노머 PFSA를 사용하고, 상기 계면 접착층의 두께를 약 2.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.In Example 1, the fluorine-based ionomer PFSA having an EW of 950 g / eq was used to prepare the composition for forming the interfacial adhesive layer, and the thickness of the interfacial adhesive layer was about 2.0 μm, similar to that of Example 1. To prepare a membrane-electrode assembly.
((
비교예Comparative example
1) One)
상기 실시예 1에서 상기 계면 접착층을 형성하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.A membrane-electrode assembly was manufactured in the same manner as in Example 1, except that the interface adhesive layer was not formed in Example 1.
((
비교예Comparative example
2) 2)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 EW가 1100 g/eq인 Nafion(Dupont사 제품)을 사용하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.Example 1, except that Nafion (manufactured by Dupont) having an EW of 1100 g / eq was used to prepare the composition for forming the interface bonding layer in Example 1, and the thickness of the interface bonding layer was formed to about 1.0 μm. The membrane-electrode assembly was prepared in the same manner as described above.
((
실시예Example
7) 7)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 상기 계면 접착층의 두께를 0.005 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.A membrane-electrode assembly was prepared in the same manner as in Example 1, except that the thickness of the interface adhesive layer was 0.005 μm when the composition for forming the interface adhesive layer was formed in Example 1.
그러나, 상기 계면 접착층의 두께를 0.005 ㎛로 형성하는 경우, 전극 위에 상기 계면 접착층이 소량 코팅된 부분과 다수의 코팅되지 않는 부분들이 존재하기 때문에 성능 측정이 불가능하였다.However, when the thickness of the interfacial adhesive layer was formed to 0.005 μm, performance measurement was impossible because a small amount of coated portions and a plurality of uncoated portions of the interfacial adhesive layer were present on the electrodes.
((
실시예Example
8) 8)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 EW가 700 g/eq인 불소계 이오노머 PFSA를 사용하고, 상기 계면 접착층의 두께를 약 5.5 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.In Example 1, the fluorine-based ionomer PFSA having an EW of 700 g / eq when manufacturing the composition for forming the interface adhesive layer, and the thickness of the interface adhesive layer was formed in the same manner as in Example 1 except that To prepare a membrane-electrode assembly.
((
실시예Example
9) 9)
PtCo/C 캐소드(Cathode) 촉매 88 중량%와 바인더로 Nafion®/H2O/2-프로판올 용액 12 중량%를 사용하여, 교반 및 초음파 방법으로 분산시켜 캐노드 전극 조성물을 제조하였다. 상기 제조된 캐소드 전극 조성물을 테플론 이형필름에 닥터블레이드 코팅한 후, 60 ℃에서 6시간 동안 건조시켜 애노드 전극을 제조하였다. 이때, 캐소드 전극에서 촉매 로딩량은 약 0.40 mg/cm2으로 하였다.A cathode electrode composition was prepared by dispersing by 88% by weight of PtCo / C Cathode catalyst and 12% by weight of Nafion ® / H 2 O / 2-propanol solution as a binder by stirring and ultrasonic methods. The cathode electrode composition prepared above was doctorblade coated on a Teflon release film and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the catalyst loading in the cathode was about 0.40 mg / cm 2 .
PtRu/C 애노드(Anode) 촉매 88 중량%와 바인더로 Nafion®/H2O/2-프로판올 용액 12 중량%를 사용하여, 교반 및 초음파 방법으로 분산시켜 애노드 전극 조성물을 제조하였다. 상기 제조된 애노드 전극 조성물을 테플론 이형필름에 닥터블레이드 코팅한 후, 60 ℃에서 6시간 동안 건조시켜 애노드 전극을 제조하였다. 이때, 애노드 전극에서 촉매 로딩량은 약 0.10 mg/cm2으로 하였다Using PtRu / C anode (Anode) Nafion ® / H 2 O / 2- propanol solution of 12 wt% to 88 wt% of the catalyst with a binder, were dispersed with stirring and an ultrasonic method for the anode electrode composition was prepared. The anode electrode composition prepared above was doctorblade coated on a Teflon release film, and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the catalyst loading at the anode was about 0.10 mg / cm 2 .
EW가 700 g/eq인 불소계 이오노머 PFSA와 술폰화된 폴리에테르술폰(IEC 2.3 meq/g) 이오노머 블렌드의 중량비가 1:2인 불소계/탄화수소계 이오노머 블렌드로 계면 접착층 형성용 조성물을 제조하였다. 이때 상기 계면 접착층 형성 조성물은 상기 불소계 이오노머를 1.25 % 농도로 포함하였고, 상기 탄화수소계 이오노머는 2.5 % 농도로 포함하였다.A composition for forming an interface adhesive layer was prepared using a fluorine / hydrocarbon ionomer blend having a weight ratio of fluorine-based ionomer PFSA having an EW of 700 g / eq and a sulfonated polyether sulfone (IEC 2.3 meq / g) ionomer blend of 1: 2. In this case, the interfacial adhesion layer-forming composition included the fluorine ionomer at a concentration of 1.25%, and the hydrocarbon ionomer at a concentration of 2.5%.
상기 제조된 계면 접착층 형성용 조성물을 상기 제조된 전극 위에 상온에서 스프레이 코팅하여 계면 접착층을 상기 전극 표면에 형성하였다. 이때, 불소계/탄화수소계 이오노머 블랜드 조성물의 로딩량은 0.13 mg/cm2이었고, 상기 불소계/탄화수소계 이오노머 블랜드 계면 접착층의 두께는 약 0.5 ㎛이었다.The prepared interfacial adhesive layer-forming composition was spray-coated at room temperature on the prepared electrode to form an interfacial adhesive layer on the electrode surface. At this time, the loading amount of the fluorine-based hydrocarbon ionomer blend composition was 0.13 mg / cm 2 , the thickness of the fluorine-based hydrocarbon ion interface blend layer was about 0.5 ㎛.
상기 제조된 캐소드 및 애노드 전극 사이에 15 내지 20 ㎛ 두께를 갖는 퍼플루오로술폰산(PFSA)의 불소계 고분자 전해질 막을 개재하여, 이것을 160 ℃, 20 kgf/cm2조건의 열과 압력으로 3분간 압착한 수, 상기 캐소드 전극 및 애노드 전극이 고분자 전해질 막에 결착된 막-전극 어셈블리를 제조하였다.The fluorine-based polyelectrolyte membrane of perfluorosulfonic acid (PFSA) having a thickness of 15 to 20 μm between the prepared cathode and anode electrode was squeezed for 3 minutes under heat and pressure at 160 ° C. and 20 kgf / cm 2. In addition, a membrane-electrode assembly in which the cathode electrode and the anode electrode were bound to the polymer electrolyte membrane was prepared.
((
실시예Example
10) 10)
상기 실시예 9에서 상기 계면 접착층 형성용 조성물 제조시 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 막-전극 어셈블리를 제조하였다.A membrane-electrode assembly was prepared in the same manner as in Example 9 except that the thickness of the interface adhesive layer was about 1.0 μm when the composition for forming the interface adhesive layer was formed in Example 9.
((
실시예Example
11) 11)
상기 실시예 9에서 상기 계면 접착층 형성용 조성물 제조시 상기 불소계/탄화수소계 이오노머 블렌드의 중량비를 1:4로 변경하고, 상기 계면 접착층의 두께를 약 0.5 ㎛로 형성한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 막-전극 어셈블리를 제조하였다.Example 9 except for changing the weight ratio of the fluorine-based / hydrocarbon-based ionomer blend to 1: 4 and the thickness of the interfacial adhesive layer to about 0.5 ㎛ when preparing the composition for forming the interfacial adhesive layer in Example 9 In the same manner as in the film-electrode assembly was prepared.
((
실시예Example
12) 12)
상기 실시예 9에서 상기 계면 접착층 형성용 조성물 제조시 상기 불소계/탄화수소계 이오노머 블렌드의 중량비를 1:4로 변경하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 막-전극 어셈블리를 제조하였다.Example 9 except that the weight ratio of the fluorine / hydrocarbon-based ionomer blend is changed to 1: 4 and the thickness of the interface adhesive layer is formed to about 1.0 ㎛ when preparing the composition for forming the interface adhesive layer in Example 9 In the same manner as in the film-electrode assembly was prepared.
((
실시예Example
13) 13)
상기 실시예 9에서 상기 계면 접착층 형성용 조성물 제조시 상기 계면 접착층의 두께를 0.005 ㎛로 형성한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 막-전극 어셈블리를 제조하였다.A membrane-electrode assembly was prepared in the same manner as in Example 9 except that the thickness of the interface adhesive layer was 0.005 μm when the composition for forming the interface adhesive layer was formed in Example 9.
그러나, 상기 계면 접착층의 두께를 0.005 ㎛로 형성하는 경우, 전극 위에 상기 계면 접착층이 소량 코팅된 부분과 다수의 코팅되지 않는 부분들이 존재하기 때문에 성능 측정이 불가능하였다.However, when the thickness of the interfacial adhesive layer was formed to 0.005 μm, performance measurement was impossible because a small amount of coated portions and a plurality of uncoated portions of the interfacial adhesive layer were present on the electrodes.
((
실시예Example
14) 14)
상기 실시예 9에서 상기 계면 접착층 형성용 조성물 제조시 상기 불소계/탄화수소계 이오노머 블렌드의 중량비를 1:4로 변경하고, 상기 계면 접착층의 두께를 6 ㎛로 형성한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 막-전극 어셈블리를 제조하였다In Example 9, except that the weight ratio of the fluorine-based hydrocarbon ionomer blend was changed to 1: 4 and the thickness of the interfacial adhesive layer was 6 μm when the composition for forming the interfacial adhesive layer was formed. In the same manner to prepare a membrane-electrode assembly.
((
실시예Example
15) 15)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 평균 입경이 7 nm인 SiO2 나노 분체를 1 중량%로 첨가하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.Except that in Example 1, when preparing the composition for forming the interface adhesive layer, SiO 2 nanopowder having an average particle diameter of 7 nm was added in 1 wt%, and the thickness of the interface adhesive layer was formed to about 1.0 μm. In the same manner as 1 to prepare a membrane-electrode assembly.
((
실시예Example
16) 16)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 평균 입경이 7 nm인 SiO2 나노 분체를 1 중량%로 첨가하고, 상기 계면 접착층의 두께를 약 2.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.Except that in Example 1, when preparing the composition for forming the interface adhesive layer, SiO 2 nanopowder having an average particle diameter of 7 nm was added in 1 wt%, and the thickness of the interface adhesive layer was formed to about 2.0 μm. In the same manner as 1 to prepare a membrane-electrode assembly.
((
실시예Example
17) 17)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 평균 입경이 7 nm인 SiO2
나노 분체를 5 중량%로 첨가하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.SiO 2 having an average particle diameter of 7 nm when preparing the composition for forming an interface adhesive layer in Example 1 A nano-powder was added at 5 wt% and the same procedure as in Example 1 was carried out except that the thickness of the interfacial adhesive layer was about 1.0 μm, thereby preparing a membrane-electrode assembly.
((
실시예Example
18) 18)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 평균 입경이 7 nm인 SiO2 나노 분체를 5 중량% 함량으로 첨가하고, 상기 계면 접착층의 두께를 약 2.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.The preparation of the composition for forming the interface adhesive layer in Example 1 was carried out except that the SiO 2 nanopowder having an average particle diameter of 7 nm was added in a content of 5 wt% and the thickness of the interface adhesive layer was formed to about 2.0 μm. A membrane-electrode assembly was prepared in the same manner as in Example 1.
((
실시예Example
19) 19)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 평균 입경이 7 nm인 SiO2 나노 분체를 0.05 중량% 함량으로 첨가하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.The preparation of the composition for forming an interface adhesive layer in Example 1 was carried out except that SiO 2 nanopowder having an average particle diameter of 7 nm was added in a content of 0.05 wt%, and the thickness of the interface adhesive layer was formed to about 1.0 μm. A membrane-electrode assembly was prepared in the same manner as in Example 1.
((
실시예Example
20) 20)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 상기 나노 분체를 25 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.Except for adding the nano-powder at 25% by weight when preparing the composition for forming the interface adhesive layer in Example 1 was carried out in the same manner as in Example 1.
그러나, 상기 나노 분체를 25 중량%로 첨가하는 경우, 응집현상이 심하여 스프레이 코팅 불가능하였다.However, when the nano-powder was added at 25% by weight, aggregation was severe and spray coating was impossible.
((
실시예Example
21) 21)
상기 실시예 15에서 상기 계면 접착층 형성용 조성물 제조시 상기 계면 접착층의 두께를 0.005 ㎛로 형성한 것을 제외하고는 상기 실시예 15와 동일하게 실시하여 막-전극 어셈블리를 제조하였다.A membrane-electrode assembly was prepared in the same manner as in Example 15 except that the thickness of the interface adhesive layer was formed to 0.005 μm when the composition for forming the interface adhesive layer was formed in Example 15.
그러나, 상기 계면 접착층의 두께를 0.005 ㎛로 형성하는 경우, 전극 위에 상기 계면 접착층이 소량 코팅된 부분과 다수의 코팅되지 않는 부분들이 존재하기 때문에 성능 측정이 불가능하였다.However, when the thickness of the interfacial adhesive layer was formed to 0.005 μm, performance measurement was impossible because a small amount of coated portions and a plurality of uncoated portions of the interfacial adhesive layer were present on the electrodes.
((
실시예Example
22) 22)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 평균 입경이 7 nm인 SiO2 나노 분체를 5 중량%로 첨가하고, 상기 계면 접착층의 두께를 6 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.In Example 1, except that 5 wt% of SiO 2 nanopowder having an average particle diameter of 7 nm was added to prepare the composition for forming the interfacial adhesive layer, and the thickness of the interfacial adhesive layer was 6 μm. The membrane-electrode assembly was prepared in the same manner as described above.
((
실시예Example
23) 23)
상기 실시예 1에서 상기 계면 접착층 형성용 조성물 제조시 평균 입경이 25 nm인 CeO2 나노 분체를 5 중량% 함량으로 첨가하고, 상기 계면 접착층의 두께를 약 1.0 ㎛로 형성한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.Except that the CeO 2 nano powder having an average particle diameter of 25 nm was added in a content of 5 wt% in Example 1, and the thickness of the interfacial adhesive layer was formed to about 1.0 μm. A membrane-electrode assembly was prepared in the same manner as in Example 1.
[[
실험예Experimental Example
: 막-전극 어셈블리의 성능 측정]: Performance Measurement of Membrane-electrode Assembly]
((
실험예Experimental Example
1: 계면 접착력 측정) 1: Interfacial Adhesion Measurement)
계면 접착력을 평가하기 위하여, 상기 실시예 및 비교예에서 제조된 막-전극 어셈블리를 60 ℃로 유지하면서 각각의 캐소드와 애노드에 질소를 주입하였다. 가습된 질소와 건조된 질소를 반복적으로 주입함으로써, 막-전극 어셈블리의 건조 및 수화에 의한 수축 및 팽창을 반복적으로 유도하여 계면 탈착을 가속화시켰다. 100 % 가습된 질소와 건조된 질소를 10 분 간격으로 반복적으로 주입하였다. 가습된 질소 및 건조된 질소 1 회 주입(총 20 분)을 1 사이클로 하여, 총 5,000 사이클을 진행한 후, 옴 저항 값을 비교하여 하기 표 1에 나타내었다.In order to evaluate the interfacial adhesion, nitrogen was injected into each cathode and anode while maintaining the membrane-electrode assembly prepared in Examples and Comparative Examples at 60 ° C. By repeatedly injecting humidified nitrogen and dried nitrogen, the desorption and expansion by drying and hydration of the membrane-electrode assembly are repeatedly induced to accelerate interfacial desorption. 100% humidified nitrogen and dried nitrogen were repeatedly injected at 10 minute intervals. One cycle of humidified nitrogen and one set of dried nitrogen (total 20 minutes) was carried out for a total of 5,000 cycles, and the ohmic resistance values were compared and shown in Table 1 below.
* MEA 싱글셀의 300 mA/cm2 정전류 조건에서의 교류 임피던스를 비교하여 옴 저항 값을 측정하였다. 임피던스에서 x축은 임피던스 실수부(Z’)이고, y축은 임피던스 허수부(Z”)이다. 임피던스 곡선이 x축과 만나는 점에서의 실수부의 값이 옴 저항으로서 전해질 막 저항 및 계면 저항이 포함되어 있는 저항 성분이다.* Ohm resistance values were measured by comparing the alternating current impedance of 300 mA / cm 2 constant current condition of MEA single cell. In impedance, the x-axis is the impedance real part Z ', and the y-axis is the impedance imaginary part Z'. The value of the real part at the point where the impedance curve meets the x-axis is the ohmic resistance, which is the resistance component including the electrolyte membrane resistance and the interface resistance.
가속 평가 전의 옴 저항(Ωcm2)Ohm resistance (Ωcm 2 ) before acceleration evaluation | 가속 평가 후의 옴 저항(Ωcm2)Ohm resistance after acceleration evaluation (Ωcm 2 ) | 옴 저항 증가율(%)Ohm Resistance Growth (%) | |
실시예 1Example 1 | 0.16830.1683 | 0.19550.1955 | 16.216.2 |
실시예 2Example 2 | 0.18290.1829 | 0.19540.1954 | 6.86.8 |
실시예 3Example 3 | 0.21820.2182 | 0.23070.2307 | 5.75.7 |
실시예 5Example 5 | 0.19590.1959 | 0.20760.2076 | 6.06.0 |
비교예 1Comparative Example 1 | 0.24210.2421 | 0.94260.9426 | 289.3289.3 |
비교예 2Comparative Example 2 | 0.21370.2137 | 0.22680.2268 | 6.16.1 |
실시예 9Example 9 | 0.17890.1789 | 0.21320.2132 | 19.219.2 |
실시예 10Example 10 | 0.19850.1985 | 0.21750.2175 | 9.69.6 |
실시예 12Example 12 | 0.20150.2015 | 0.24260.2426 | 20.420.4 |
실시예 15Example 15 | 0.20220.2022 | 0.24150.2415 | 19.419.4 |
실시예 17Example 17 | 0.20470.2047 | 0.24680.2468 | 20.620.6 |
실시예 18Example 18 | 0.23600.2360 | 0.27970.2797 | 18.518.5 |
실시예 19Example 19 | 0.21360.2136 | 0.25310.2531 | 18.518.5 |
실시예 22Example 22 | 0.26360.2636 | 0.59860.5986 | 127.1127.1 |
상기 표 1에 나타낸 바와 같이, 본 발명의 계면 접착층이 도입되지 않은 비교예 1의 막-전극 어셈블리는 가속 평가 후에는 저항이 크게 증가하는 반면, 촉매층 위에 계면 접착층이 도입된 실시예의 막-전극 어셈블리들은 낮은 증가를 나타내었다. 이를 통하여, 상기 계면 접착층의 계면 접착 안정성의 향상 효과를 확인할 수 있다. As shown in Table 1, the membrane-electrode assembly of Comparative Example 1, in which the interfacial adhesive layer of the present invention was not introduced, exhibited a significant increase in resistance after the accelerated evaluation, while the membrane-electrode assembly of the example in which the interfacial adhesive layer was introduced on the catalyst layer. Showed a low increase. Through this, it is possible to confirm the effect of improving the interfacial adhesion stability of the interfacial adhesive layer.
((
실험예Experimental Example
2: 수소 가스 크로스오버 측정) 2: hydrogen gas crossover measurement)
상기 비교예 1, 비교예 2 및 실시예 9에서 제조된 막-전극 어셈블리에 대하여 수소 가스 투과도를 측정하였고, 그 결과를 도 3에 나타내었다.Hydrogen gas permeability was measured for the membrane-electrode assemblies prepared in Comparative Example 1, Comparative Example 2 and Example 9, and the results are shown in FIG.
상기 수소 가스 투과도는 선형 스윕 전압전류법(Linear Sweep Voltametryl LSV)을 이용하여 측정하였다. 또한 상기 선형 스윕 전압전류법(Linear Sweep Voltametryl LSV) 평가를 위해 수소와 공기(Air)는 완전히 가습된 상태로 공급하였고, 0.2 V의 전위 조건으로 수소 가스투과도를 측정하였다.The hydrogen gas permeability was measured by linear sweep voltammetry (LSV). In addition, hydrogen and air were supplied in a fully humidified state for evaluating the linear sweep voltametryl LSV, and hydrogen gas permeability was measured under a potential condition of 0.2V.
상기 도 3을 참고하면, 상기 실시예 9에서 제조된 막-전극 어셈블리는 상기 계면 접착층에 불소계 이오노머와 탄화수소계 이오노머의 혼합물을 포함함에 따라, 계면 접합에 영향을 주지 않으면서 수소 가스 투과도를 상기 비교예 1에서 제조된 막-전극 어셈블리 대비 35 % 저감하는 효과를 가짐을 확인할 수 있다.Referring to FIG. 3, the membrane-electrode assembly prepared in Example 9 includes a mixture of a fluorine-based ionomer and a hydrocarbon-based ionomer in the interfacial adhesive layer, thereby comparing hydrogen gas permeability without affecting interfacial bonding. It can be seen that the film-electrode assembly prepared in Example 1 has a 35% reduction effect.
또한, 상기 실시예 9에서 제조된 막-전극 어셈블리는 상기 계면 접착층에 불소계 이오노머만을 포함하는 상기 비교예 2에서 제조된 막-전극 어셈블리에 비해서도 수소 가스 투과도가 크게 저감되는 것을 확인할 수 있다.In addition, it can be seen that the membrane-electrode assembly prepared in Example 9 is significantly reduced in hydrogen gas permeability compared to the membrane-electrode assembly prepared in Comparative Example 2 including only the fluorine-based ionomer in the interface adhesive layer.
((
실험예Experimental Example
3: 막-전극 어셈블리의 성능 측정 1) 3: Measurement of performance of membrane-electrode assembly 1)
상기 비교예 및 실시예에서 제조된 막-전극 어셈블리에 대하여 65℃, 50% 상대습도(RH) 조건에서 0.6 V에서의 전류 밀도 및 1.5 A/cm2에서의 전압을 측정하였고, 그 결과를 하기 표 2에 나타내었다.For the membrane-electrode assembly prepared in Comparative Examples and Examples, the current density at 0.6 V and the voltage at 1.5 A / cm 2 were measured at 65 ° C. and 50% relative humidity (RH). Table 2 shows.
Current density (A/cm2)@ 65oC, 50%RHCurrent density (A / cm 2 ) @ 65 o C, 50% RH | Cell voltage (V)@ 65oC, 50%RHCell voltage (V) @ 65 o C, 50% RH | |
실시예 1Example 1 | 1.301.30 | 0.5650.565 |
실시예 2Example 2 | 1.401.40 | 0.5850.585 |
실시예 3Example 3 | 1.351.35 | 0.5550.555 |
실시예 5Example 5 | 1.351.35 | 0.5750.575 |
비교예 1Comparative Example 1 | 1.251.25 | 0.5550.555 |
비교예 2Comparative Example 2 | 1.251.25 | 0.5650.565 |
실시예 8Example 8 | 1.201.20 | 0.5150.515 |
실시예 9Example 9 | 1.301.30 | 0.5650.565 |
실시예 10Example 10 | 1.351.35 | 0.5750.575 |
실시예 12Example 12 | 1.251.25 | 0.5650.565 |
실시예 14Example 14 | 1.051.05 | 0.5050.505 |
실시예 15Example 15 | 1.301.30 | 0.5600.560 |
실시예 17Example 17 | 1.451.45 | 0.5950.595 |
실시예 18Example 18 | 1.301.30 | 0.5650.565 |
실시예 19Example 19 | 1.251.25 | 0.5500.550 |
실시예 22Example 22 | 0.950.95 | 0.4850.485 |
상기 표 2를 참고하면, 실시예에서 제조된 막-전극 어셈블리가 비교예에서 제조된 막-전극 어셈블리에 비하여 우수한 성능을 보임을 확인할 수 있다. 구체적으로, 같은 두께의 계면 접착층을 포함하는 MEA 결과를 비교하면 50%RH 조건에서 당량(EW)이 낮아질수록 전류밀도가 증가하는 현상을 관찰할 수 있다.Referring to Table 2, it can be seen that the membrane-electrode assembly prepared in Example shows superior performance compared to the membrane-electrode assembly prepared in Comparative Example. Specifically, when comparing the MEA results including the interfacial adhesive layer of the same thickness, it can be observed that the current density increases as the equivalent (EW) lower under 50% RH conditions.
((
실험예Experimental Example
4: 막-전극 어셈블리의 성능 측정 2) 4: Measurement of the performance of the membrane-electrode assembly 2)
또한, 상기 비교예 및 실시예에서 제조된 막-전극 어셈블리에 대하여 65℃, 50% 상대습도(RH) 조건에서 각각 1.5 A/cm2 및 2.2 A/cm2에서의 전압을 측정하였고, 그 결과를 하기 표 3에 나타내었다.In addition, the voltage at 1.5 A / cm 2 and 2.2 A / cm 2 was measured at 65 ° C. and 50% relative humidity (RH), respectively, for the membrane-electrode assemblies prepared in Comparative Examples and Examples. It is shown in Table 3 below.
Cell voltage (V)@ 1.5 A/cm2 Cell voltage (V) @ 1.5 A / cm 2 | Cell voltage (V)@ 2.2 A/cm2 Cell voltage (V) @ 2.2 A / cm 2 | |
실시예 2Example 2 | 0.5850.585 | 0.5040.504 |
실시예 5Example 5 | 0.5750.575 | 0.4590.459 |
비교예 1Comparative Example 1 | 0.5550.555 | 0.3360.336 |
비교예 2Comparative Example 2 | 0.5650.565 | 0.3830.383 |
상기 표 3을 참고하면, 실시예에서 제조된 MEA가 비교예에서 제조된 MEA에 비해 고전류밀도에서의 전압이 높은 것을 확인할 수 있다. 그리고, 같은 두께의 계면 접착층을 포함한 MEA 결과를 비교하면 당량(EW)이 낮아질수록 고전류밀도(2.2 A/cm2)에서의 전압이 증가하는 현상을 관찰할 수 있다.Referring to Table 3, it can be seen that the MEA manufactured in the Example has a higher voltage at high current density than the MEA manufactured in the Comparative Example. In addition, when the MEA results including the interfacial adhesive layers having the same thickness are compared, the phenomenon that the voltage at the high current density (2.2 A / cm 2 ) increases as the equivalent EW decreases.
((
실험예Experimental Example
5: 막-전극 어셈블리의 성능 측정 3) 5: Measurement of the performance of the membrane-electrode assembly 3)
상기 비교예 2 및 실시예 23에서 제조된 막-전극 어셈블리에 대하여 개회로 전압(Open circuit voltage, OCV) 보존율을 측정하였고, 그 결과를 도 4에 나타내었다.The open circuit voltage (OCV) retention rates of the membrane-electrode assemblies prepared in Comparative Example 2 and Example 23 were measured, and the results are shown in FIG. 4.
상기 개회로 전압을 측정하기 위하여, 전극 면적 25 cm2의 단위 전지와 양면의 미세 기공층으로 구성하였고, 양쪽의 전극에 가습기를 통과한 수소와 공기를 각각 공급하여 연료 전지 운전을 시행하였다. 상기 개회로 전압 보존율은 90 ℃, 상대습도 30 % 조건에서 개회로 전압 운전을 통해 수행되었고, 초기 개회로 전압과 500 시간 운전 후의 개회로 전압의 차이를 통해 나타내었다.In order to measure the open-circuit voltage, a unit cell having an electrode area of 25 cm 2 and a microporous layer on both sides were configured, and fuel cells were operated by supplying hydrogen and air passing through a humidifier to both electrodes, respectively. The open circuit voltage retention rate was performed through an open circuit voltage operation at 90 ° C. and a relative humidity of 30%, and is represented by a difference between an initial open circuit voltage and an open circuit voltage after 500 hours of operation.
상기 도 4를 참고하면, 상기 비교예 2에서 제조된 막-전극 어셈블리는 계면 접착층을 포함함에도 100 시간 이내에 개회로 전압 보존율이 80 % 아래로 떨어지나, 상기 실시예 23에서 제조된 막-전극 어셈블리는 상기 계면 접착층에 상기 나노 분체를 포함함에 따라 500 시간 이후에도 개회로 전압 보존율이 80 % 아래로 떨어지지 않고, 95 % 대를 유지하는 것을 확인할 수 있다.Referring to FIG. 4, the membrane-electrode assembly prepared in Comparative Example 2 includes an interfacial adhesive layer, but the open-circuit voltage retention falls below 80% within 100 hours, but the membrane-electrode assembly prepared in Example 23 As the nano-powder is included in the interfacial adhesive layer, it can be seen that after 500 hours, the open-circuit voltage retention does not fall below 80% and maintains 95%.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만, 상기한 실시예는 본 발명의 특정한 일 예로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명의 권리범위는 후술할 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the above has been described in detail with respect to preferred embodiments of the present invention, the above embodiments are presented as a specific example of the present invention, whereby the present invention is not limited by the scope of the present invention claims Various modifications and improvements by those skilled in the art using the basic concept of the present invention as defined in the scope of the present invention.
[부호의 설명][Description of the code]
10: 이온 교환막10: ion exchange membrane
20: 계면 접착층20: interfacial adhesive layer
30: 촉매층30: catalyst bed
31: 촉매 입자31: catalyst particles
40: 전극 기재40: electrode substrate
200: 연료 전지200: fuel cell
210: 연료 공급부 220: 개질부210: fuel supply unit 220: reforming unit
230: 스택 231: 제 1 공급관230: stack 231: first supply pipe
232: 제 2 공급관 233: 제 1 배출관232: second supply pipe 233: first discharge pipe
234: 제 2 배출관 240: 산화제 공급부234: second discharge pipe 240: oxidant supply unit
본 발명은 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지에 관한 것으로서, 상기 막-전극 어셈블리는 전극과 이온 교환막 사이의 계면 접합성 및 계면 안정성이 개선되어 막-전극 어셈블리의 수소 이온 전도 성능 저하 문제를 극복할 수 있고, 계면 저항 증가 및 계면 접합 문제 없이 가스 투과도가 감소되어 수소 가스 크로스오버(crossover)가 저감되고, 고온/저가습 조건에서의 성능 및 내구성이 향상될 수 있다.The present invention relates to a membrane-electrode assembly, a method for manufacturing the same, and a fuel cell including the same, wherein the membrane-electrode assembly has improved interfacial adhesion and interfacial stability between an electrode and an ion exchange membrane, thereby improving hydrogen ion conduction performance of the membrane-electrode assembly. The degradation problem can be overcome, the gas permeability can be reduced without increasing the interfacial resistance and the interfacial bonding problem, thereby reducing the hydrogen gas crossover, and improving the performance and durability at high temperature / low humidification conditions.
Claims (18)
- 촉매층,Catalyst layer,상기 촉매층 위에 위치하며, 상기 촉매층과의 계면이 상기 촉매층의 일부 깊이까지 스며들어 형성된 계면 접착층, 그리고An interface adhesive layer positioned on the catalyst layer, the interface with the catalyst layer penetrating to a depth of the catalyst layer, and상기 계면 접착층 위에 위치하며, 상기 계면 접착층을 매개로 상기 촉매층과 접합되는 이온 교환막을 포함하며,Located on the interfacial adhesive layer, and comprises an ion exchange membrane bonded to the catalyst layer via the interfacial adhesive layer,상기 계면 접착층은 당량(equivalent weight, EW)이 500 g/eq 내지 1000 g/eq인 불소계 이오노머를 포함하는 것인The interfacial adhesive layer includes a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq.막-전극 어셈블리.Membrane-electrode assembly.
- 제 1 항에 있어서,The method of claim 1,상기 막-전극 어셈블리는 The membrane-electrode assembly is상기 이온 교환막의 일면에 위치하는 제 1 계면 접착층 및 제 1 촉매층,A first interfacial adhesive layer and a first catalyst layer positioned on one surface of the ion exchange membrane,상기 이온 교환막의 다른 일면에 위치하는 제 2 계면 접착층 및 제 2 촉매층을 포함하며,It includes a second interfacial adhesive layer and a second catalyst layer located on the other side of the ion exchange membrane,상기 제 1 계면 접착층, 상기 제 2 계면 접착층 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 계면 접착층이고,Any one selected from the group consisting of the first interfacial adhesive layer, the second interfacial adhesive layer, and both is the interfacial adhesive layer,상기 제 1 촉매층, 상기 제 2 촉매층 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 촉매층인 것인Any one selected from the group consisting of the first catalyst layer, the second catalyst layer and both are the catalyst layer막-전극 어셈블리.Membrane-electrode assembly.
- 제 1 항에 있어서,The method of claim 1,상기 계면 접착층은 상기 촉매층의 표면에 형성된 기공(surface recesses), 촉매층의 표면으로부터 일정 깊이에 존재하는 기공 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나를 스며들어 채우는 것인 막-전극 어셈블리.The interfacial adhesion layer is a membrane-electrode assembly infiltrating any one selected from the group consisting of pores (surface recesses) formed on the surface of the catalyst layer, pores present at a predetermined depth from the surface of the catalyst layer, and both.
- 제 1 항에 있어서,The method of claim 1,상기 계면 접착층이 상기 촉매층에 스며든 평균 깊이는 상기 촉매층의 평균 두께의 1 % 내지 10 %인 것인 막-전극 어셈블리.And the average depth of the interfacial adhesive layer penetrating the catalyst layer is 1% to 10% of the average thickness of the catalyst layer.
- 제 1 항에 있어서,The method of claim 1,상기 계면 접착층의 평균 두께는 0.01 ㎛ 내지 5 ㎛인 것인 막-전극 어셈블리.The average thickness of the interfacial adhesive layer is 0.01 to 5 ㎛ ㎛ electrode assembly.
- 제 1 항에 있어서,The method of claim 1,상기 계면 접착층은 상기 불소계 이오노머와 이온 교환 용량(ion exchange capacity, IEC)이 0.8 meq/g 내지 4.0 meq/g인 탄화수소계 이오노머의 혼합물을 포함하는 것인 막-전극 어셈블리.The interfacial adhesive layer comprises a mixture of the fluorine ionomer and a hydrocarbon ionomer having an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g.
- 제 6 항에 있어서,The method of claim 6,상기 불소계 이오노머와 상기 탄화수소계 이오노머의 중량비는 20:1 내지 1:20인 것인 막-전극 어셈블리.The weight ratio of the fluorine-based ionomer and the hydrocarbon-based ionomer is 20: 1 to 1:20 membrane-electrode assembly.
- 제 1 항에 있어서,The method of claim 1,상기 계면 접착층은 평균 입경이 1 nm 내지 50 nm인 나노 분체를 더 포함하는 것인 막-전극 어셈블리.The interfacial adhesion layer further comprises a nano-particles having an average particle diameter of 1 nm to 50 nm.
- 제 8 항에 있어서,The method of claim 8,상기 계면 접착층은 상기 계면 접착층 전체 중량에 대하여 상기 나노 분체를 0.1 중량% 내지 20 중량%로 포함하는 것인 막-전극 어셈블리.The interfacial adhesive layer is a membrane-electrode assembly containing 0.1 to 20% by weight of the nano-powder relative to the total weight of the interfacial adhesive layer.
- 제 8 항에 있어서,The method of claim 8,상기 나노 분체는 이온 전도체(ionic conductor), 라디칼 스캐빈저(radical scavenger), 산소 발생 반응(oxygen evolution reaction, OER) 촉매 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것인 막-전극 어셈블리.The nano-powder is any one selected from the group consisting of an ionic conductor, a radical scavenger, an oxygen evolution reaction (OER) catalyst, and a mixture thereof. .
- 제 10 항에 있어서,The method of claim 10,상기 이온 전도체는 SnO2, 퓸드 실리카(fumed silica), 클레이(clay), 알루미나(alumina), 운모(mica), 제올라이트(zeolite), 포스포텅스텐산(phosphotungstic acid), 실리콘 텅스텐산(silicon tungstic acid), 지르코늄 하이드로겐 포스페이트(zirconiumhydrogen phosphate), 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 친수성 무기 첨가제인 것인 막-전극 어셈블리.The ion conductor is SnO 2 , fumed silica, clay, alumina, mica, zeolite, phosphotungstic acid, silicon tungstic acid ), Zirconium hydrogen phosphate, and any one hydrophilic inorganic additive selected from the group consisting of mixtures thereof.
- 제 10 항에 있어서,The method of claim 10,상기 라디칼 스캐빈저는 세륨, 텅스텐, 루테늄, 팔라듐, 은, 로듐, 세륨, 지르코늄, 이트륨, 망간, 몰리브덴, 납, 바나듐, 티타늄, 이들의 이온 형태, 이들의 산화물 형태, 이들의 염 형태 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것인 막-전극 어셈블리.The radical scavengers are cerium, tungsten, ruthenium, palladium, silver, rhodium, cerium, zirconium, yttrium, manganese, molybdenum, lead, vanadium, titanium, ionic forms thereof, oxide forms thereof, salt forms thereof and their Membrane electrode assembly which is any one selected from the group consisting of a mixture.
- 제 10 항에 있어서,The method of claim 10,상기 산소 발생 반응 촉매는 백금, 금, 팔라듐, 로듐, 이리듐, 루테늄, 오스뮴, 백금 합금, 이들의 합금 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 백금계 촉매인 것인 막-전극 어셈블리.The oxygen-generating reaction catalyst is any one platinum-based catalyst selected from the group consisting of platinum, gold, palladium, rhodium, iridium, ruthenium, osmium, platinum alloys, alloys thereof and mixtures thereof.
- 촉매층 위에 계면 접착층 형성용 조성물을 도포하여 계면 접착층을 형성하는 단계, 그리고Applying an composition for forming an interface adhesive layer on the catalyst layer to form an interface adhesive layer, and상기 계면 접착층이 형성된 촉매층과 이온 교환막을 접합하는 단계를 포함하며,Bonding the catalyst layer and the ion exchange membrane on which the interfacial adhesion layer is formed;상기 계면 접착층은 상기 촉매층과의 계면이 상기 촉매층의 일부 깊이까지 스며들어 형성되며, 상기 계면 접착층은 당량(equivalent weight, EW)이 500 g/eq 내지 1000 g/eq인 불소계 이오노머를 포함하는 것인The interfacial adhesive layer is formed by interfacing the interface with the catalyst layer to a part depth of the catalyst layer, wherein the interfacial adhesive layer includes a fluorine-based ionomer having an equivalent weight (EW) of 500 g / eq to 1000 g / eq.막-전극 어셈블리의 제조 방법.Method of manufacturing membrane-electrode assembly.
- 제 14 항에 있어서,The method of claim 14,상기 계면 접착층은 상기 계면 접착층 형성용 조성물을 상기 촉매층 위에 스프레이 코팅하여 형성되는 것인 막-전극 어셈블리의 제조 방법.The interfacial adhesive layer is a method of manufacturing a membrane-electrode assembly formed by spray coating the composition for forming the interfacial adhesive layer on the catalyst layer.
- 제 14 항에 있어서,The method of claim 14,상기 계면 접착층은 상기 불소계 이오노머와 이온 교환 용량(ion exchange capacity, IEC)이 0.8 meq/g 내지 4.0 meq/g인 탄화수소계 이오노머의 혼합물을 포함하는 것인 막-전극 어셈블리의 제조 방법.The interfacial adhesive layer comprises a mixture of the fluorine-based ionomer and a hydrocarbon-based ionomer having an ion exchange capacity (IEC) of 0.8 meq / g to 4.0 meq / g.
- 제 14 항에 있어서,The method of claim 14,상기 계면 접착층은 입경이 1 nm 내지 50 nm인 나노 분체를 더 포함하는 것인 막-전극 어셈블리의 제조 방법.The interfacial adhesive layer further comprises a nano-particle having a particle diameter of 1 nm to 50 nm.
- 제 1 항에 따른 막-전극 어셈블리를 포함하는 연료 전지.A fuel cell comprising the membrane-electrode assembly according to claim 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17887677.7A EP3493311A4 (en) | 2016-12-29 | 2017-12-28 | Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same |
JP2019514019A JP6792067B2 (en) | 2016-12-29 | 2017-12-28 | Membrane-electrode assembly, its manufacturing method, and the fuel cell containing it |
US16/341,138 US10923752B2 (en) | 2016-12-29 | 2017-12-28 | Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same |
CN201780040742.9A CN109417180B (en) | 2016-12-29 | 2017-12-28 | Membrane electrode assembly, method of preparing the same, and fuel cell including the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0182363 | 2016-12-29 | ||
KR20160182363 | 2016-12-29 | ||
KR10-2017-0181852 | 2017-12-28 | ||
KR1020170181852A KR102258909B1 (en) | 2016-12-29 | 2017-12-28 | Membrane-electrode assembly, method for manufacturing the same, and fuel cell comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124764A1 true WO2018124764A1 (en) | 2018-07-05 |
Family
ID=62709715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/015630 WO2018124764A1 (en) | 2016-12-29 | 2017-12-28 | Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018124764A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020149839A (en) * | 2019-03-13 | 2020-09-17 | ダイハツ工業株式会社 | Membrane-electrode assembly |
CN112626539A (en) * | 2020-11-27 | 2021-04-09 | 中氢能源科技(广东)有限公司 | Alloy electrocatalyst for ultra-stable PEM oxygen evolution reaction and preparation method thereof |
CN114388858A (en) * | 2021-12-01 | 2022-04-22 | 北京嘉寓氢能源科技有限公司 | Preparation method of fuel cell membrane electrode |
WO2023105228A1 (en) * | 2021-12-08 | 2023-06-15 | Johnson Matthey Hydrogen Technologies Limited | Method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070055225A (en) * | 2005-11-25 | 2007-05-30 | 삼성에스디아이 주식회사 | Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system comprising same |
KR20080102938A (en) * | 2007-05-21 | 2008-11-26 | 삼성에스디아이 주식회사 | Membrane electrode assembly including porous electrode catalyst layer, manufacturing method thereof, and fuel cell employing the same |
KR20090098217A (en) * | 2008-03-13 | 2009-09-17 | 한국과학기술연구원 | Method for manufacturing mea using low temperature transfer methods, mea manufactured using the method and fuel cell using the mea |
KR20150097024A (en) * | 2014-02-17 | 2015-08-26 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane, membrane electrode assembly and fuel cell including the same |
KR20160120078A (en) * | 2015-04-07 | 2016-10-17 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same |
-
2017
- 2017-12-28 WO PCT/KR2017/015630 patent/WO2018124764A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070055225A (en) * | 2005-11-25 | 2007-05-30 | 삼성에스디아이 주식회사 | Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system comprising same |
KR20080102938A (en) * | 2007-05-21 | 2008-11-26 | 삼성에스디아이 주식회사 | Membrane electrode assembly including porous electrode catalyst layer, manufacturing method thereof, and fuel cell employing the same |
KR20090098217A (en) * | 2008-03-13 | 2009-09-17 | 한국과학기술연구원 | Method for manufacturing mea using low temperature transfer methods, mea manufactured using the method and fuel cell using the mea |
KR20150097024A (en) * | 2014-02-17 | 2015-08-26 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane, membrane electrode assembly and fuel cell including the same |
KR20160120078A (en) * | 2015-04-07 | 2016-10-17 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP3493311A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020149839A (en) * | 2019-03-13 | 2020-09-17 | ダイハツ工業株式会社 | Membrane-electrode assembly |
JP7341680B2 (en) | 2019-03-13 | 2023-09-11 | ダイハツ工業株式会社 | membrane electrode assembly |
CN112626539A (en) * | 2020-11-27 | 2021-04-09 | 中氢能源科技(广东)有限公司 | Alloy electrocatalyst for ultra-stable PEM oxygen evolution reaction and preparation method thereof |
CN114388858A (en) * | 2021-12-01 | 2022-04-22 | 北京嘉寓氢能源科技有限公司 | Preparation method of fuel cell membrane electrode |
WO2023105228A1 (en) * | 2021-12-08 | 2023-06-15 | Johnson Matthey Hydrogen Technologies Limited | Method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109417180B (en) | Membrane electrode assembly, method of preparing the same, and fuel cell including the same | |
WO2020004848A1 (en) | Manufacturing method of membrane electrode assembly, membrane electrode assembly manufactured thereby, and fuel cell comprising membrane electrode assembly | |
KR102246525B1 (en) | Membrane-electrode assembly, method for manufacturing the same, and fuel cell comprising the same | |
WO2019066534A2 (en) | Radical scavenger, manufacturing method therefor, membrane-electrode assembly comprising same, and fuel cell comprising same | |
WO2018124645A1 (en) | Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly | |
WO2018062769A1 (en) | Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell comprising same | |
WO2018124764A1 (en) | Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same | |
WO2020138800A1 (en) | Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same | |
KR20160120078A (en) | Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same | |
WO2020138799A1 (en) | Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same | |
WO2018236119A1 (en) | Electrode comprising organic functional metal oxide, manufacturing method therefor, membrane-electrode assembly comprising same, and fuel cell comprising membrane-electrode assembly | |
KR20070114494A (en) | Catalyst for cathode of fuel cell, membrane-electrode assembly for fuel cell comprising same | |
WO2019132281A1 (en) | Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell | |
KR20070098136A (en) | Membrane-electrode assembly for fuel cell and fuel cell system comprising same | |
KR101561101B1 (en) | Polymer catalyst Slurry composition, porous electrodes produced thereby, membrane-electrode assembly comprising the porous electrodes, and method for the MEA | |
KR100976453B1 (en) | Anode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, and fuel cell system comprising the same | |
KR20080032962A (en) | Cathod for fuel cell, membrane-electrode assembly for fuel cell comprising same, and fuel cell system comprising same | |
WO2023101310A1 (en) | Reinforced composite membrane for fuel cell, manufacturing method therefor, and membrane-electrode assembly comprising same | |
WO2022145748A1 (en) | Membrane-electrode assembly and fuel cell comprising same | |
WO2017188793A1 (en) | Fuel cell membrane-electrode assembly | |
KR101351392B1 (en) | Electrode for fuel cell, and membrane-electrode assembly and fuel cell system including the same | |
KR20090055304A (en) | Membrane electrode assembly for fuel cell, method for preparing same, and fuel cell system inclulding same | |
KR20090032772A (en) | Membrane electrode assembly for fuel cell, method for preparing same, and fuel cell system including same | |
JP2009224031A (en) | Fuel cell electrocatalyst ink, electrocatalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell | |
KR100778437B1 (en) | Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887677 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017887677 Country of ref document: EP Effective date: 20190227 |
|
ENP | Entry into the national phase |
Ref document number: 2019514019 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |