WO2017175890A1 - Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same - Google Patents

Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same Download PDF

Info

Publication number
WO2017175890A1
WO2017175890A1 PCT/KR2016/003554 KR2016003554W WO2017175890A1 WO 2017175890 A1 WO2017175890 A1 WO 2017175890A1 KR 2016003554 W KR2016003554 W KR 2016003554W WO 2017175890 A1 WO2017175890 A1 WO 2017175890A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrolyte membrane
composite electrolyte
porous support
membrane
Prior art date
Application number
PCT/KR2016/003554
Other languages
French (fr)
Korean (ko)
Inventor
정지홍
정성기
서영균
권정오
장태호
양연화
양의석
Original Assignee
(주)상아프론테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)상아프론테크 filed Critical (주)상아프론테크
Publication of WO2017175890A1 publication Critical patent/WO2017175890A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1079Inducing porosity into non porous precursors membranes, e.g. leaching, pore stretching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/109After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte membrane, and more particularly, to a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, a fuel cell including the same, and a method of manufacturing the same.
  • a fuel cell is a power generation system that directly converts chemical energy generated by electrochemical reaction between fuel (hydrogen or methanol) and oxidant (oxygen) to electrical energy.It is an eco-friendly feature with high energy efficiency and low emission of pollutants. Research and development.
  • the fuel cell can be used by selecting a fuel cell for high temperature and low temperature according to the application field, and is generally classified according to the type of electrolyte. For high temperature, a solid oxide fuel cell (SOFC) and molten carbonate are used.
  • SOFC solid oxide fuel cell
  • MCFC molten carbonate
  • Fuel cell Molten Carbonate Fuel Cell, MCFC
  • AFC Alkaline Fuel Cell
  • PEMFC Polymer Electrolyte Membrane Fuel Cell
  • PEMFC hydrogen ion exchange membrane fuel cell
  • DMFC Direct Methanol Fuel Cell
  • the unit cell structure of the fuel cell has a structure in which an anode (anode, fuel electrode) and a cathode (cathode, oxygen electrode) are coated on both sides of an electrolyte membrane made of a polymer material, which is a membrane-electrode assembly (Membrane). Electrode Assembly (MEA).
  • the membrane-electrode assembly (MEA) is a portion in which an electrochemical reaction between hydrogen and oxygen occurs and is composed of a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane (eg, a hydrogen ion conductive electrolyte membrane).
  • hydrogen or methanol which is a fuel, is supplied to generate an oxidation reaction of hydrogen to generate hydrogen ions and electrons.
  • water is generated by a reduction reaction of oxygen by combining hydrogen ions and oxygen that have passed through the polymer electrolyte membrane. .
  • the membrane-electrode assembly has a form in which the electrode catalyst layers of the anode and the cathode are coated on both sides of the ion conductive electrolyte membrane, and the material forming the electrode catalyst layer is Pt (platinum), Pt-Ru (platinum-ruthenium), or the like.
  • the catalyst substance of is supported on the carbon carrier.
  • Membrane-electrode assembly (MEA) which can be seen as a key component of the electrochemical reaction of fuel cells, is especially used for ion-conducting electrolyte membranes and platinum catalysts, which have a high price ratio, and is directly related to power production efficiency. It is considered as the most important part in improving the performance and increasing the price competitiveness.
  • Conventional methods for preparing MEAs that are commonly used include preparing a paste by mixing a catalyst material, a hydrogen ion conductive binder, ie, a fluorine-based Nafion ionomer, and water and / or an alcohol solvent, It is coated with a carbon cloth or carbon paper that serves as an electrode support that supports the catalyst layer and at the same time serves as a gas diffusion layer, and then dry and heat-bond the hydrogen ion conductive electrolyte membrane.
  • Redox reaction of hydrogen and oxygen by the catalyst in the catalyst layer Transfer of electrons by tightly bonded carbon particles; Securing passages for supplying hydrogen, oxygen and moisture and for discharging excess gas after the reaction;
  • the movement of oxidized hydrogen ions must be carried out at the same time.
  • the area of the triple phase boundary where the feed fuel, the catalyst and the ion conductive polymer electrolyte membrane meet must be increased to reduce the activation polarization, and the interface between the catalyst layer and the electrolyte membrane and the catalyst layer The interface between the gas diffusion layer and the gas must be uniformly bonded to reduce ohmic polarization at the interface.
  • the MEA having the above-described structure typically uses a thick electrolyte membrane, the transfer of hydrogen ions may be delayed, thereby degrading performance.
  • the interface between the catalyst layer and the electrolyte membrane and the interface bonding between the catalyst layer and the gas diffusion layer become weak and are separated from each other.
  • when applied to the fuel cell may cause a decrease in the performance of the fuel cell.
  • the present invention has been made to solve the above problems, and has a simplified structure, a composite electrolyte membrane for a fuel cell that can improve the interfacial properties, a membrane-electrode assembly comprising the same, a fuel cell comprising the same, and their production
  • the purpose is to provide a method.
  • the present invention also provides a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, a fuel cell including the same, and the like, which can prevent delivery delay of hydrogen ions and improve mechanical properties to improve fuel cell performance. It is another object to provide a manufacturing method.
  • Another object of the present invention is to provide a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, and a method for manufacturing a fuel cell including the same, which can simplify the manufacturing process.
  • Method for producing a composite electrolyte membrane for a fuel cell of the present invention for solving the above problems is a step of forming a PTFE porous support comprising pores having a predetermined aspect ratio; Impregnating the PTFE porous support with a fluorine-based ionomer solution containing hollow silica; And drying and heat-treating the impregnated PTFE porous support. It includes.
  • the fuel cell composite electrolyte membrane may have a thickness variation coefficient (CV1) value of the relational expression 1 below 15%, and a weight variation coefficient CV2 value of the relational expression 2 below 170% or more.
  • CV1 thickness variation coefficient
  • CV2 weight variation coefficient
  • Thickness variation coefficient (CV1,%) (Composite electrolyte membrane thickness for fuel cell-PTFE porous support thickness / PTFE porous support thickness) ⁇ 100
  • Weight variation coefficient (CV2,%) (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) ⁇ 100
  • the average pore size of the PTFE porous support of the first step is 0.10 ⁇ 0.50 ⁇ m, porosity may be 60 ⁇ 90%.
  • the PTFE porous support may be formed by sintering a biaxially stretched PTFE sheet and the uniaxial draw ratio and biaxial draw ratio may be 1: 5 to 15.
  • the sintering process may be performed at a temperature of 250 ⁇ 450.
  • the PTFE sheet forming a paste containing 10 to 20 parts by weight of lubricant with respect to 100 parts by weight of PTFE fine powder; Aging the paste at a temperature of 50-90 for 10-15 hours; Compressing the aged paste in a compressor to produce a PTFE block; Pressing the PTFE block at 400 to 800 psi pressure and calendering to form a PTFE sheet; Drying the PTFE sheet to remove the lubricant; And stretching the sheet from which the lubricant has been removed.
  • the hollow silica is spherical, the average particle diameter is 10 ⁇ 300 nm, the diameter of the hollow may be 5 ⁇ 100 nm.
  • the fluorine-based ionomer solution may further include one or more moisture absorbents selected from the group consisting of zeolite, titania, zirconia, and montmorillonite.
  • the fluorine-based ionomer solution may include 0.05 to 5 wt% of hollow silica.
  • the fluorine-based ionomer may include one or more selected from the group consisting of Nafion, Flemion, and Aciplex.
  • the drying of the third step is performed for 1 to 30 minutes at 60 ⁇ 100 temperature
  • the heat treatment may be performed for 1 to 5 minutes at 100 ⁇ 200 temperature.
  • the PTFE porous support heat-treated in three steps may have a volume of the occluded pores of 90% by volume or more relative to the total pore volume.
  • the composite electrolyte membrane for a fuel cell includes a PTFE porous support including pores having a predetermined aspect ratio; And a fluorine ionomer solution containing hollow silica in the surface of the PTFE porous support and the pores of the support.
  • the weight variation coefficient CV2 value of relation 2 may be 170% or more.
  • Weight variation coefficient (CV2,%) (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) ⁇ 100
  • the volume of the pores occluded in the PTFE porous support may be greater than 90% by volume relative to the total pore volume.
  • the aspect ratio may be 1: 5 to 15.
  • the fluorine-based ionomer may include one or more selected from the group consisting of Nafion, Flemion, and Aciplex.
  • the method of manufacturing the membrane-electrode assembly may include preparing a composite electrolyte membrane for a fuel cell by the manufacturing method of the composite electrolyte membrane for a fuel cell of the present invention; And a catalyst layer and a gas diffusion layer on both surfaces of the composite electrolyte membrane for a fuel cell.
  • the fuel cell manufacturing method includes the steps of manufacturing the membrane-electrode assembly through the method of manufacturing the membrane-electrode assembly of the present invention; Forming an electricity generating unit including a membrane-electrode assembly and a separator, the electricity generating unit generating electricity through an electrochemical reaction between a fuel and an oxidant; Forming a stack between the membrane and the electrode assembly through a separator; Forming a fuel supply unit supplying fuel to the electricity generation unit; And forming an oxidant supply unit for supplying an oxidant to the electricity generating unit. It includes.
  • the fuel cell includes a membrane-electrode assembly and a separator of the present invention, the electricity generating unit for generating electricity through the electrochemical reaction of the fuel and the oxidant; A fuel supply unit supplying fuel to the electricity generation unit; And an oxidant supply unit for supplying an oxidant to the generator. It includes.
  • a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, a fuel cell including the same, and a method for manufacturing the same have a simplified structure and have an effect of improving interface characteristics.
  • the manufacturing process can be simplified.
  • FIG. 1 is a schematic diagram of a membrane-electrode assembly according to an embodiment of the present invention.
  • the method for manufacturing a composite electrolyte membrane for a fuel cell includes the steps of uniaxially stretching a PTFE sheet, two stages of biaxially stretching the uniaxially stretched PTFE sheet, and sintering the biaxially stretched PTFE sheet. 3 to form a PTFE porous support, 4 steps of impregnating the sintered PTFE porous support with a fluorine-based ionomer solution containing hollow silica, and 5 steps of drying and heat-treating the impregnated PTFE porous support.
  • the polytetrafluoroethylene (PTFE) sheet is uniaxially stretched.
  • the PTFE sheet (1) forming a paste containing a PTFE fine powder and a lubricant, (2) the step of ripening the paste, compressing the aged paste to produce a PTFE block (3) (4) pressing and extruding the PTFE block, (5) removing the lubricant by drying the pressure-extruded PTFE, and stretching (6) the PTFE sheet from which the lubricant is removed.
  • the average particle diameter of the PTFE powder in step (1) may be 300 ⁇ 5700 ⁇ m but is not limited thereto.
  • the lubricant is a liquid lubricant, in addition to hydrocarbon oils such as liquid paraffin, naphtha, white oil, toluene, xylene, various alcohols, ketones, esters and the like can be used.
  • the lubricant may include 10 to 20 parts by weight of the lubricant, and more preferably 13 to 17 parts by weight, based on 100 parts by weight of the PTFE fine powder.
  • the porosity may be lowered when forming the PTFE porous support by the biaxial stretching process described below, and when the amount exceeds 20 parts by weight, the pore size when the PTFE porous support is formed. It may increase the strength of the electrolyte membrane.
  • the paste may be aged at a temperature of 50 to 90 for 10 to 15 hours, more preferably at 11 to 13 hours at a temperature of 60 to 80.
  • the aging temperature is less than 50 or the aging time is less than 10 hours, the elongation of the PTFE sheet may be limited during biaxial stretching described below.
  • the aging temperature exceeds 90 or the aging time exceeds 15 hours, the size of the pores increases when the PTFE porous support is formed, thereby weakening the strength of the electrolyte membrane.
  • step (3) the paste is compressed to produce a PTFE block using a paste.
  • the PTFE block may be pressurized at 400 to 800 psi pressure, and more preferably at 500 to 700 psi pressure.
  • the pressure to extrude the PTFE is less than 400 psi, the size of the pores increases when the PTFE porous support is formed, and thus the strength of the electrolyte membrane may be weakened.
  • the PTFE porous support is formed by a biaxial stretching process described below. Porosity can be lowered during formation.
  • the uniaxial stretching may specifically be carried out in the longitudinal direction by using a speed difference between rollers in which a common PTFE sheet is transferred through a roller.
  • the present invention is not limited thereto and may be stretched according to the stretching method used in manufacturing a conventional sheet.
  • Strain ratio in the longitudinal direction may be 1: 1.1 to 2. If the strain ratio in the longitudinal direction is less than 1: 1.1, the pore size of the PTFE porous support formed by biaxial stretching is small, so that the impregnation amount of the fluorine-based ionomer described later may be limited. In addition, when the strain ratio in the longitudinal direction exceeds 2, the thickness of the uniaxial stretched sheet may be difficult to give a thickness gradient. In addition, the stretching temperature may be 150 ⁇ 250 °C but is not limited thereto.
  • the uniaxially stretched PTFE sheet is biaxially stretched in two steps. At this time, as described above, the biaxial stretching process is performed at a draw ratio different from the uniaxial stretching. As a result, the pores of the biaxially stretched PTFE porous support have a predetermined aspect ratio. Therefore, when the composite electrolyte membrane for a fuel cell according to an embodiment of the present invention is applied to the membrane-electrode assembly, the direction of the major axis of the pores is arranged to be the direction of the transfer of hydrogen ions, that is, the direction of the current, so that the hydrogen ions in the major axis direction The transmission power is improved. Thus, battery characteristics can be improved.
  • Biaxial stretching may be performed in a direction perpendicular to the uniaxial stretching. Biaxial stretching, like uniaxial stretching, is also carried through the rollers and can be stretched laterally using the speed difference between the rollers.
  • the present invention is not limited thereto and may be stretched according to the stretching method used in manufacturing a conventional sheet.
  • Strain ratio in the transverse direction may be 1: 6 to 30. If the strain ratio in the transverse direction is less than 1: 6, the effect of improving hydrogen ion transfer force may be insignificant as the aspect ratio of the pores of the PTFE porous support decreases. In addition, when the strain ratio in the transverse direction exceeds 30, the fibrils and node structures of the transversely stretched sheet may be destroyed.
  • the uniaxial draw ratio: biaxial draw ratio may be 1: 5 to 15, more preferably 1: 8 to 12.
  • the processes of uniaxially stretching in the longitudinal direction and biaxially stretching in the transverse direction may be performed regardless of the order of each other.
  • step 3 the biaxially stretched PTFE sheet is sintered to form a PTFE porous support.
  • the strength of the PTFE porous support may be improved.
  • the sintering process may be performed at a temperature of 250 to 450, and more preferably at a temperature of 300 to 400 °C.
  • the sintering temperature is less than 250 ° C, the strength of the PTFE porous support may be lowered, and when the sintering temperature is higher than 400 ° C, the sintering effect may be reduced due to the temperature increase.
  • the average pore size of the PTFE porous support on which the biaxial stretching process is performed may be 0.10 to 0.50 ⁇ m, more preferably 0.20 to 0.40 ⁇ m, and a porosity of 60 to 90%, more preferably 80 to 85%.
  • the average pore size of the PTFE porous support is less than 0.10 ⁇ m or the porosity is less than 60%, the degree of impregnation of the fluorine ionomer solution into the pores may be limited.
  • the average pore size exceeds 0.50 ⁇ m or the porosity exceeds 90% the PTFE porous support structure may be deformed when the fluorine-based ionomer solution is impregnated in the four-step process described later.
  • step 4 the sintered PTFE porous support is impregnated with a fluorine-based ionomer solution containing hollow silica.
  • the fluorine ionomer solution is filled in the pores of the PTFE porous support.
  • the hollow silica is included in the fluorine-based ionomer solution to improve the absorption of the PTFE liquid.
  • the fluorine-based ionomer solution does not contain hollow silica, the PTFE has a limited absorption ability to the fluorine-based ionomer solution.
  • the amount of fluorine-based ionomer solution that can be impregnated is limited, and the liquid retention in the PTFE porous support of the fluorine-based ionomer solution is poor. That is, the inclusion of the hollow silica in the fluorine-based ionomer solution can increase the amount of the fluorine-based ionomer solution that can be impregnated in the PTFE porous support and improve the liquid retention after impregnation.
  • the hollow silica it is possible to prevent the volume expansion of the PTFE porous support due to the impregnation of the fluorine-based ionomer solution, as well as improving the absorbency.
  • the hollow silica in the fluorine-based ionomer solution it is possible to improve the absorption of the fluorine-yeonomer solution to the PTFE porous support, and to suppress the volume expansion of the PTFE porous support.
  • the hollow silica is spherical, the average particle diameter may be 10 ⁇ 300 nm, more preferably 10 ⁇ 100 nm.
  • the particle diameter means the diameter when the shape of the hollow silica is spherical, and the maximum distance of the linear distance from one point to the other on the hollow silica surface when the shape is not spherical.
  • the average particle diameter of the hollow silica is less than 10 nm, as the capacity for supporting the fluorine ionomer solution decreases, the absorption capacity of the fluorine ionomer solution may be limited, and when the average diameter exceeds 300 nm, the PTFE porous support The amount of the hollow silica impregnated in the pores may be limited.
  • the hollow part included in the hollow silica may be a space in which the fluorine-based ionomer solution adsorbed and moved through the shell part may be supported.
  • the hollow diameter may be 5 to 100 nm, and more preferably 5 to 50 nm. . If the hollow diameter is less than 5 nm, the amount of the fluorine-based ionomer solution supported may be reduced. If the hollow diameter exceeds 100 nm, the particle size of the hollow silica may be larger than the desired range or may cause the shell to collapse.
  • the fluorine ionomer solution may further include at least one hygroscopic agent selected from the group consisting of zeolite, titania, zirconia, and montmorillonite.
  • the moisture absorbent is further included, the amount of fluorine-based ionomer solution impregnation on the PTFE porous support may be further increased.
  • the fluorine-based ionomer may include one or more selected from the group consisting of Nafion, Flemion, and Aciplex, and more preferably Nafion.
  • the hollow silica may include 0.05 to 5 parts by weight, and more preferably 1 to 3 parts by weight, based on 100 parts by weight of the fluorine-based ionomer solution. If less than 0.05 part by weight of hollow silica is included with respect to 100 parts by weight of the fluorine-based ionomer solution, the impregnating effect of the fluorine-based ionomer solution may be insignificant. The flow of current can be lowered when applied to electrode assemblies.
  • step 5 the PTFE porous support impregnated with the fluorine ionomer solution is dried and heat treated. As the drying and heat treatment processes are performed, the liquid retention property of the impregnated fluorine-based ionomer solution may be improved, and the adhesion to the electrode may be improved when the membrane-electrode assembly is manufactured.
  • the drying may be performed for 1 to 30 minutes at a temperature of 60 to 100, and the heat treatment may be performed for 1 to 5 minutes at a temperature of 100 to 200.
  • the temperature of the drying process is less than 60 °C the liquid-retaining property of the fluorine-based ionomer solution impregnated in the PTFE porous support may be lowered, and if it exceeds 100 °C may be reduced adhesion to the electrode when manufacturing the membrane-electrode assembly have.
  • the heat treatment temperature is less than 100 °C or less than 1 minute in the heat treatment process
  • the liquid-retaining property of the fluorine-based ionomer solution impregnated in the PTFE porous support may be lowered, the temperature exceeds 200 or the time exceeds 5 minutes In this case, adhesion to the electrode may be reduced when the membrane-electrode assembly is manufactured.
  • the volume of pores occluded in the PTFE porous support may be greater than 90% by volume relative to the total pore volume.
  • the composite electrolyte membrane for a fuel cell may have a thickness variation coefficient (CV1) value of the relational expression 1 below 15%, and a weight variation coefficient CV2 value of the relational expression 2 below 170% or more.
  • CV1 thickness variation coefficient
  • CV2 weight variation coefficient
  • Thickness variation coefficient (CV1,%) (Composite electrolyte membrane thickness for fuel cell-PTFE porous support thickness / PTFE porous support thickness) ⁇ 100
  • Weight variation coefficient (CV2,%) (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) ⁇ 100
  • the thickness variation coefficient is one of the indexes for estimating the volume expansion of the PTFE porous support before and after impregnating the PTFE porous support with a fluorine-based ionomer solution. Able to know.
  • the weight variation coefficient is one of the indicators for measuring the weight change of the PTFE porous support before and after the impregnation of the fluorine-based ionomer solution in the PTFE porous support, the larger the value of the fluorine ionomer impregnated in the PTFE porous support It can be seen that the impregnation amount is increased.
  • the thickness variation coefficient satisfies 15% or less, indicating that the volume expansion degree is low even after the fluorine-based ionomer is impregnated in the PTFE porous support.
  • the composite electrolyte membrane for a fuel cell according to the present invention can be seen that the impregnation amount of the fluorine-based ionomer solution impregnated in the PTFE porous support by satisfying the weight variation coefficient of 170% or more.
  • the composite electrolyte membrane for a fuel cell according to the present invention has a low volume expansion degree and a high impregnation amount of the fluorine-based ionomer solution.
  • the composite electrolyte membrane for a fuel cell is a fluorine-based ionomer solution comprising a PTFE porous support including pores having a predetermined aspect ratio, and hollow silica impregnated in the pores and the surface of the PTFE porous support.
  • a fluorine-based ionomer solution comprising a PTFE porous support including pores having a predetermined aspect ratio, and hollow silica impregnated in the pores and the surface of the PTFE porous support.
  • the aspect ratio may be 1: 5 to 15, more preferably 1: 7 to 12. When the aspect ratio is less than 1: 5, the current flowability may be decreased, and when the aspect ratio is greater than 1: 15, the strength of the electrolyte membrane may be lowered.
  • the membrane-electrode assembly includes the steps of preparing the composite electrolyte membrane for a fuel cell, and bonding the electrode including a catalyst layer and a gas diffusion layer on both sides of the fuel cell composite electrolyte membrane. .
  • FIG. 1 is a schematic diagram of a membrane-electrode assembly according to an embodiment of the present invention.
  • the membrane-electrode assembly includes an oxide electrode 20 and a reduction electrode 20 ′ positioned to face each other with a composite electrolyte membrane 10 for a fuel cell interposed therebetween.
  • the oxidation electrode 20 and the reduction electrode 20 ' include gas diffusion layers 21 and 21', catalyst layers 22 and 22 ', and electrode substrates 23 and 23', respectively.
  • the anode 20 may include a gas diffusion layer 21 and an oxidation catalyst layer 22.
  • the gas diffusion layer 21 may be provided to prevent rapid diffusion of fuel injected into the fuel cell and to prevent a decrease in ion conductivity.
  • the gas diffusion layer 21 may control the diffusion rate of the fuel through heat treatment or electrochemical treatment.
  • the gas diffusion layer 21 may be carbon fiber or carbon paper.
  • the fuel may be a liquid fuel such as formic acid solution, methanol, formaldehyde, or ethanol.
  • the oxidation catalyst layer 22 is a layer into which the catalyst is introduced, and may include a conductive support and an ion conductive binder (not shown).
  • the oxidation catalyst layer 22 may include a main catalyst attached to the conductive support.
  • the conductive support may be carbon black and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer.
  • the main catalyst may be a metal catalyst, for example, may be platinum (Pt).
  • the oxidation catalyst layer 22 may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
  • the reduction electrode 20 ′ may include a gas diffusion layer 21 ′ and a reduction catalyst layer 22 ′.
  • the gas diffusion layer 21 ′ may be provided to prevent sudden diffusion of the gas injected into the reduction electrode 20 ′ and to uniformly disperse the gas injected into the reduction electrode 20 ′.
  • the gas diffusion layer 21 may be carbon paper or carbon fiber.
  • the reduction catalyst layer 22 ′ is a layer into which the catalyst is introduced, and may include a conductive support and an ion conductive binder (not shown).
  • the reduction catalyst layer 22 ′ may include a main catalyst attached to the conductive support.
  • the conductive support may be carbon black and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer.
  • the main catalyst may be a metal catalyst, for example, may be platinum (Pt).
  • the reduction catalyst layer 22 ′ may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
  • the membrane-electrode assembly may be formed by placing and then fastening each of the anode electrode 20, the composite electrolyte membrane for fuel cell 10, and the cathode 20 ′, or may be formed by pressing them at high temperature and high pressure.
  • Bonding the electrodes 20 and 20 'to both surfaces of the composite electrolyte membrane 10 for a fuel cell may first apply a gas diffusion layer forming material to one surface of the composite electrolyte membrane 10 for a fuel cell, thereby forming a gas diffusion layer 21. 21 ').
  • the gas diffusion layers 21 and 21 ′ serve as current conductors between the composite electrolyte membrane 10 for fuel cells and the catalyst layers 22 and 22 ′, and serve as passages of reactant gases and water as products. Therefore, the gas diffusion layers 21 and 21 ′ may have a porous structure having a porosity of 20 to 90% to allow gas to pass therethrough.
  • the thicknesses of the gas diffusion layers 21 and 21 ' may be appropriately adopted as necessary, and may be, for example, 100 to 400 ⁇ m. When the thickness of the gas diffusion layers 21 and 21 'is 100 ⁇ m or less, the electrical contact resistance increases between the catalyst layer and the electrode substrate, and the structure may become unstable by compression. In addition, when the thickness of the gas diffusion layers 21 and 21 'exceeds 400 ⁇ m, it may be difficult to move the reactant gas.
  • the gas diffusion layers 21 and 21 ′ may be formed of a carbonaceous material and a fluorine resin.
  • Carbonaceous materials include graphite, carbon black, acetylene black, denka black, kecheon black, activated carbon, mesoporous carbon, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon nanorings, carbon nanowires, and fullerenes (C60).
  • super P may include one or more selected from the group consisting of, but is not limited thereto.
  • the copolymer of polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyvinyl alcohol, cellulose acetate, polyvinylidene fluoride-hexafluoropropylene, or styrene-butadiene high part (SBR) may include one or more selected from the group consisting of.
  • catalyst layers 22 and 22 ' are formed on the gas diffusion layers 21 and 21'.
  • the catalyst layers 22, 22 ' are formed on the gas diffusion layers 21 and 21'.
  • the catalyst layers 22 and 22 ' may be formed by applying a catalyst layer forming material on the gas diffusion layers 21 and 21'.
  • the catalyst layer forming material may be a metal catalyst or a metal catalyst supported on a carbon-based support.
  • the metal catalyst at least one selected from the group consisting of platinum, ruthenium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy, and platinum-transition metal alloy may be used.
  • the carbon-based support graphite (graphite), carbon black, acetylene black, denka black, kecheon black, activated carbon, mesoporous carbon, carbon nanotubes, carbon nanofibers, carbon nanohorn, carbon nano ring, carbon nano And at least one selected from the group consisting of wire, fullerene, and superP.
  • the electrode substrates 23 and 23 ' may be a conductive substrate selected from the group consisting of carbon paper, carbon cloth, and carbon felt, but are not limited thereto, and may be a cathode electrode material or an anode electrode material applicable to a polymer electrolyte fuel cell. Are all available.
  • the electrode substrate may be formed through a conventional deposition method, and after forming the catalyst layers 22 and 22 'on the electrode substrates 23 and 23', the catalyst layers on the gas diffusion layers 21 and 21 'are formed. 22 and 22 'and the gas diffusion layers 21 and 21' may be disposed to be in contact with each other.
  • the fuel cell according to an embodiment of the present invention is at least one electricity generating unit for generating electrical energy through the oxidation reaction of the fuel and the reduction reaction of the oxidant, and the fuel for supplying the above-described fuel to the electricity generating unit It comprises a supply part and an oxidant space
  • the membrane-electrode assembly may include one or more, and separators for supplying fuel and an oxidant are disposed at both ends of the membrane-electrode assembly to constitute an electricity generator. At least one of the electricity generating units may be assembled to form a stack.
  • the arrangement or manufacturing method of the fuel cell can be formed without limitation as long as it is applicable to the polymer electrolyte fuel cell, it can be variously applied with reference to the prior art.
  • the PTFE porous support prepared by the above method had a maximum pore size of 0.51 ⁇ m, an average pore size of 0.35 ⁇ m, and a porosity of 82%.
  • the PTFE porous support was fixed on the PET film, and 1 part by weight of a spherical hollow silica with an average particle diameter of 50 nm was applied to 100 parts by weight of Nafion, a fluorine ionomer, by applying a Nafion solution at a temperature of 80 minutes for 10 minutes.
  • a Nafion solution was applied at a temperature of 80 minutes for 10 minutes.
  • the composite electrolyte membrane for a fuel cell was prepared by varying the longitudinal axis draw ratio: transverse axis draw ratio, the average particle diameter of the hollow silica, and the content of the hollow silica as shown in Table 1 below.
  • the composite electrolyte membrane for a fuel cell was manufactured under the same conditions as in Example 1, but using a Nafion solution containing no hollow silica in the fluorine ionomer solution.
  • a composite electrolyte membrane for a fuel cell was prepared by including silica in the Nafion solution in the same content as the hollow silica.
  • Thickness variation coefficient (CV1,%) (Composite electrolyte membrane thickness for fuel cell-porous PTFE support thickness / porous PTFE support thickness) ⁇ 100
  • Weight variation coefficient (CV2,%) (Compound electrolyte membrane weight for fuel cell-weight of porous PTFE support) / (porous PTFE support weight) ⁇ 100
  • Examples 1 to 5 including hollow silica as an adsorbent show high weight variation coefficient characteristics compared to Comparative Examples 1 to 2. Therefore, it can be seen that the composite electrolyte membrane for a fuel cell according to an embodiment of the present invention can retain a larger amount of electrolyte as it includes hollow silica.

Abstract

A composite electrolyte membrane for a fuel cell, and a membrane-electrode assembly and a fuel cell comprising same, according to the present invention, use an electrolyte membrane impregnated with a fluoride-based ionomer solution containing a PTFE porous support which comprises pores having a specific aspect ratio and hollow silica, thereby effectively simplifying the structure of the electrolyte membrane and enhancing performance when applied to the fuel cell.

Description

연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing same
본 발명은 전해질막에 관한 것으로, 더욱 상세하게는 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법에 관한 것이다.The present invention relates to an electrolyte membrane, and more particularly, to a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, a fuel cell including the same, and a method of manufacturing the same.
연료전지는 연료(수소 또는 메탄올)와 산화제(산소)를 전기화학적으로 반응시켜 생기는 화학적 에너지를 직접 전기적 에너지로 변환시키는 발전 시스템으로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 차세대 에너지원으로 연구 개발되고 있다. 연료전지는 적용분야에 따라 고온용 및 저온용 연료전지를 선택하여 사용할 수 있으며, 통상적으로 전해질의 종류에 따라 분류되고 있는데, 고온용에는 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC), 용융탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC) 등이 있고, 저온용에는 알칼리 전해질 연료전지(Alkaline Fuel Cell, AFC) 및 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등이 대표적으로 개발되고 있다.A fuel cell is a power generation system that directly converts chemical energy generated by electrochemical reaction between fuel (hydrogen or methanol) and oxidant (oxygen) to electrical energy.It is an eco-friendly feature with high energy efficiency and low emission of pollutants. Research and development. The fuel cell can be used by selecting a fuel cell for high temperature and low temperature according to the application field, and is generally classified according to the type of electrolyte. For high temperature, a solid oxide fuel cell (SOFC) and molten carbonate are used. Fuel cell (Molten Carbonate Fuel Cell, MCFC) and the like, Alkaline Fuel Cell (AFC) and Polymer Electrolyte Membrane Fuel Cell (PEMFC) are being developed for low temperature.
이중 고분자 전해질 연료전지를 세분하면 수소 가스를 연료로 사용하는 수소이온 교환막 연료전지(PEMFC, Proton Exchange Membrane Fuel Cell)와, 액상의 메탄올을 직접 연료로 산화극(Anode)에 공급하여 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등이 있다. 고분자 전해질 연료전지는 100 미만의 낮은 작동온도, 고체 전해질 사용으로 인한 누수문제 배제, 빠른 시동과 응답 특성, 및 우수한 내구성 등의 장점으로 휴대용, 차량용, 및 가정용 전원장치로 각광을 받고 있다. 특히 다른 형태의 연료전지에 비하여 전류밀도가 큰 고출력 연료전지로서, 소형화가 가능하기 때문에 휴대용 연료전지로의 연구가 계속 진행되고 있다.Subdivided into a double polymer electrolyte fuel cell is a hydrogen ion exchange membrane fuel cell (PEMFC) that uses hydrogen gas as a fuel, and direct methanol that supplies liquid methanol directly to the anode as a fuel. Fuel cell (Direct Methanol Fuel Cell, DMFC). Polymer electrolyte fuel cells have been spotlighted as portable, automotive, and home power supplies for their low operating temperatures of less than 100, elimination of leakage problems due to the use of solid electrolytes, fast startup and response characteristics, and excellent durability. In particular, as a high output fuel cell having a higher current density than other types of fuel cells, it is possible to miniaturize, and thus research into a portable fuel cell continues.
이러한 연료전지의 단위전지 구조는 고분자 물질로 구성된 전해질막을 중심으로 양쪽에 산화극(Anode, 연료극) 및 환원극(Cathode, 산소극)이 도포되어 있는 구조를 이루고 있는데, 이를 막-전극 접합체(Membrane Electrode Assembly, MEA)라 칭한다. 이 막-전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 환원극과 산화극 그리고 전해질막, 즉 이온 전도성 전해질막(예, 수소이온 전도성 전해질막)으로 구성되어 있다.The unit cell structure of the fuel cell has a structure in which an anode (anode, fuel electrode) and a cathode (cathode, oxygen electrode) are coated on both sides of an electrolyte membrane made of a polymer material, which is a membrane-electrode assembly (Membrane). Electrode Assembly (MEA). The membrane-electrode assembly (MEA) is a portion in which an electrochemical reaction between hydrogen and oxygen occurs and is composed of a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane (eg, a hydrogen ion conductive electrolyte membrane).
산화극에서는 연료인 수소 또는 메탄올이 공급되어 수소의 산화 반응이 일어나 수소이온과 전자를 발생시키며, 환원극에서는 고분자 전해질막을 통과한 수소이온과 산소가 결합하여 산소의 환원 반응에 의해 물이 생성된다.In the anode, hydrogen or methanol, which is a fuel, is supplied to generate an oxidation reaction of hydrogen to generate hydrogen ions and electrons. In the cathode, water is generated by a reduction reaction of oxygen by combining hydrogen ions and oxygen that have passed through the polymer electrolyte membrane. .
이 막-전극 접합체는 이러한 산화극과 환원극의 전극 촉매층이 이온 전도성 전해질막의 양면에 도포되어 있는 형태를 이루고, 전극 촉매층을 이루고 있는 물질은 Pt(백금)이나 Pt-Ru(백금-루테늄) 등의 촉매 물질이 카본담체에 담지되어 있는 형태이다. 연료전지의 전기화학적 반응의 핵심부품으로 볼 수 있는 막-전극 접합체(MEA)에는 특히 가격 구성 비율이 높은 이온 전도성 전해질막과 백금 촉매 등이 사용되며, 전력 생산 효율과 직결된 부분이기 때문에 연료전지의 성능향상과 가격경쟁력을 높이는데 가장 중요한 부분으로 간주되고 있다.The membrane-electrode assembly has a form in which the electrode catalyst layers of the anode and the cathode are coated on both sides of the ion conductive electrolyte membrane, and the material forming the electrode catalyst layer is Pt (platinum), Pt-Ru (platinum-ruthenium), or the like. The catalyst substance of is supported on the carbon carrier. Membrane-electrode assembly (MEA), which can be seen as a key component of the electrochemical reaction of fuel cells, is especially used for ion-conducting electrolyte membranes and platinum catalysts, which have a high price ratio, and is directly related to power production efficiency. It is considered as the most important part in improving the performance and increasing the price competitiveness.
일반적으로 사용되고 있는 MEA를 제조하는 기존의 방법은 촉매 물질과 수소이온 전도성 바인더(binder), 즉 불소계 나피온 이오노머(Nafion Ionomer) 그리고 물 및/또는 알코올 용매를 혼합하여 반죽(paste)을 제조하고, 이를 촉매층을 지지해주는 전극 지지체이면서 동시에 기체 확산층의 역할을 하는 카본 천(carbon cloth)이나 카본페이퍼(carbon paper) 등에 코팅한 다음, 건조하고 수소이온 전도성 전해질 막에 열 융착하는 방법을 사용한다.Conventional methods for preparing MEAs that are commonly used include preparing a paste by mixing a catalyst material, a hydrogen ion conductive binder, ie, a fluorine-based Nafion ionomer, and water and / or an alcohol solvent, It is coated with a carbon cloth or carbon paper that serves as an electrode support that supports the catalyst layer and at the same time serves as a gas diffusion layer, and then dry and heat-bond the hydrogen ion conductive electrolyte membrane.
촉매층에서는 촉매에 의한 수소와 산소의 산화환원 반응; 밀착된 탄소 입자에 의한 전자의 이동; 수소, 산소 및 수분을 공급하고 반응 후 잉여 가스를 배출하기 위한 통로의 확보; 산화된 수소이온의 이동 등이 동시에 이루어져야만 한다. 더욱이 성능의 향상을 위해서는 공급연료와 촉매 및 이온 전도성 고분자 전해질막이 만나는 3상 계면영역(Triple Phase Boundary)의 면적을 증대시켜 활성분극(Activation polarization)을 줄여야 하며, 촉매층과 전해질막과의 계면 및 촉매층과 기체확산층과의 계면을 균일하게 접합하여 계면에서의 저항 분극(Ohmic polarization)을 줄여야 한다. 따라서, 촉매층과 전해질막과의 계면 저항을 최대한 감소시킴으로써 연료전지의 성능을 향상시키기 위해서는, MEA 제조시 촉매층과 전해질막의 접합력이 있어야 할 뿐만 아니라, 연료전지 구동 중에도 촉매층과 전해질막 사이의 계면 접합이 계속 유지되어야 한다.Redox reaction of hydrogen and oxygen by the catalyst in the catalyst layer; Transfer of electrons by tightly bonded carbon particles; Securing passages for supplying hydrogen, oxygen and moisture and for discharging excess gas after the reaction; The movement of oxidized hydrogen ions must be carried out at the same time. Furthermore, in order to improve performance, the area of the triple phase boundary where the feed fuel, the catalyst and the ion conductive polymer electrolyte membrane meet must be increased to reduce the activation polarization, and the interface between the catalyst layer and the electrolyte membrane and the catalyst layer The interface between the gas diffusion layer and the gas must be uniformly bonded to reduce ohmic polarization at the interface. Therefore, in order to improve the performance of the fuel cell by reducing the interface resistance between the catalyst layer and the electrolyte membrane as much as possible, not only the bonding force between the catalyst layer and the electrolyte membrane should be provided during MEA production, but also the interface bonding between the catalyst layer and the electrolyte membrane during the fuel cell operation is performed. It must be maintained.
이에, 최근에는 촉매층과 전해질막과의 계면 및 촉매층과 기체확산층과의 계면을 균일하게 접합하기 위한 기술 개발이 활발히 이루어지고 있지만, 계면 균일성이 여전히 제한적인 단점이 있다.Therefore, in recent years, the development of technology for uniformly bonding the interface between the catalyst layer and the electrolyte membrane and the interface between the catalyst layer and the gas diffusion layer has been actively made, but the interface uniformity still has a disadvantage.
또한, 전술된 구조를 갖는 MEA의 경우 통상적으로 두께가 두꺼운 전해질막을 사용하므로, 수소 이온의 전달이 지연되어 성능 저하가 발생할 수 있다.In addition, since the MEA having the above-described structure typically uses a thick electrolyte membrane, the transfer of hydrogen ions may be delayed, thereby degrading performance.
또한, 연료 전지 구동 시 수소 이온의 이동과 사용시간이 길어짐에 따라 촉매층과 전해질막과의 계면 및 촉매층과 기체확산층과의 계면 접합성이 약해져 서로 분리되게 된다. 이에, 연료전지에 적용됐을 때 연료전지의 성능 저하를 야기할 수 있다.In addition, as the movement and use time of the hydrogen ions become longer during driving of the fuel cell, the interface between the catalyst layer and the electrolyte membrane and the interface bonding between the catalyst layer and the gas diffusion layer become weak and are separated from each other. Thus, when applied to the fuel cell may cause a decrease in the performance of the fuel cell.
본 발명은 상기 문제점을 해결하기 위해 안출된 것으로, 단순화된 구조를 갖고, 계면 특성을 향상시킬 수 있는 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above problems, and has a simplified structure, a composite electrolyte membrane for a fuel cell that can improve the interfacial properties, a membrane-electrode assembly comprising the same, a fuel cell comprising the same, and their production The purpose is to provide a method.
또한, 본 발명은 수소 이온의 전달 지연을 방지하고 기계적 특성을 향상시켜 연료 전지의 성능을 향상시킬 수 있는 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법을 제공하는 데 다른 목적이 있다.The present invention also provides a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, a fuel cell including the same, and the like, which can prevent delivery delay of hydrogen ions and improve mechanical properties to improve fuel cell performance. It is another object to provide a manufacturing method.
또한, 본 발명은 제조 공정을 간소화할 수 있는 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지의 제조방법을 제공하는 데 또 다른 목적이 있다.Another object of the present invention is to provide a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, and a method for manufacturing a fuel cell including the same, which can simplify the manufacturing process.
상술한 과제를 해결하기 위한 본 발명의 연료전지용 복합 전해질막의 제조방법은 소정의 종횡비를 갖는 기공을 포함하는 PTFE 다공성 지지체를 형성하는 1단계; PTFE 다공성 지지체에 중공형 실리카를 포함하는 불소계 이오노머 용액을 함침하는 2단계; 및 상기 함침된 PTFE 다공성 지지체를 건조 및 열처리하는 3단계; 를 포함한다.Method for producing a composite electrolyte membrane for a fuel cell of the present invention for solving the above problems is a step of forming a PTFE porous support comprising pores having a predetermined aspect ratio; Impregnating the PTFE porous support with a fluorine-based ionomer solution containing hollow silica; And drying and heat-treating the impregnated PTFE porous support. It includes.
본 발명의 바람직한 일실시예로서, 상기 연료전지용 복합 전해질막은 하기 관계식 1의 두께 변동계수(CV1)값이 15 % 이하이고, 하기 관계식 2의 무게 변동계수(CV2)값이 170 % 이상일 수 있다.In a preferred embodiment of the present invention, the fuel cell composite electrolyte membrane may have a thickness variation coefficient (CV1) value of the relational expression 1 below 15%, and a weight variation coefficient CV2 value of the relational expression 2 below 170% or more.
[관계식 1][Relationship 1]
두께 변동계수(CV1,%) = (연료전지용 복합 전해질막 두께 - PTFE 다공성 지지체 두께 / PTFE 다공성 지지체 두께) × 100Thickness variation coefficient (CV1,%) = (Composite electrolyte membrane thickness for fuel cell-PTFE porous support thickness / PTFE porous support thickness) × 100
[관계식 2] [Relationship 2]
무게 변동계수(CV2,%) = (연료전지용 복합 전해질막 전체 무게 - PTFE 다공성 지지체 무게) / (PTFE 다공성 지지체 무게) × 100Weight variation coefficient (CV2,%) = (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) × 100
본 발명의 바람직한 일실시예로서, 상기 1단계의 상기 PTFE 다공성 지지체의 평균기공 크기는 0.10 ~ 0.50 ㎛이고, 기공률이 60 ~ 90 %일 수 있다.As a preferred embodiment of the present invention, the average pore size of the PTFE porous support of the first step is 0.10 ~ 0.50 ㎛, porosity may be 60 ~ 90%.
본 발명의 바람직한 일실시예로서, 상기 PTFE 다공성 지지체는 2축연신된 PTFE 시트를 소결하여 형성되고 상기 1축연신비 및 2축연신비가 1 : 5 ~ 15일 수 있다.In a preferred embodiment of the present invention, the PTFE porous support may be formed by sintering a biaxially stretched PTFE sheet and the uniaxial draw ratio and biaxial draw ratio may be 1: 5 to 15.
본 발명의 바람직한 일실시예로서, 상기 소결 공정은 250 ~ 450 온도에서 수행될 수 있다.As a preferred embodiment of the present invention, the sintering process may be performed at a temperature of 250 ~ 450.
본 발명의 바람직한 일실시예로서, 상기 PTFE 시트는, PTFE 미세분말 100 중량부에 대하여 윤활제 10 ~ 20 중량부를 포함하는 페이스트를 형성하는 단계; 상기 페이스트를 50 ~ 90 의 온도에서 10 ~ 15 시간 동안 숙성하는 단계; 상기 숙성된 페이스트를 압축기에서 압축하여 PTFE 블록을 제조하는 단계; 상기 PTFE 블록을 400 ~ 800 psi 압력으로 가압압출후 캘린더링 진행하여 PTFE 시트를 형성하는 단계; 상기 PTFE 시트를 건조하여 상기 윤활제를 제거하는 단계; 및 윤활제가 제거된 시트를 연신하는 단계를 포함할 수 있다.In one preferred embodiment of the present invention, the PTFE sheet, forming a paste containing 10 to 20 parts by weight of lubricant with respect to 100 parts by weight of PTFE fine powder; Aging the paste at a temperature of 50-90 for 10-15 hours; Compressing the aged paste in a compressor to produce a PTFE block; Pressing the PTFE block at 400 to 800 psi pressure and calendering to form a PTFE sheet; Drying the PTFE sheet to remove the lubricant; And stretching the sheet from which the lubricant has been removed.
본 발명의 바람직한 일실시예로서, 상기 중공형 실리카는 구상이며, 평균입경은 10 ~ 300 nm이고, 중공의 직경은 5 ~ 100 nm일 수 있다.As a preferred embodiment of the present invention, the hollow silica is spherical, the average particle diameter is 10 ~ 300 nm, the diameter of the hollow may be 5 ~ 100 nm.
본 발명의 바람직한 일실시예로서, 상기 불소계 이오노머 용액은 제올라이트, 티타니아, 지르코니아, 및 몬모릴로나이트로 이루어진 군으로부터 선택되는 하나 이상의 흡습제를 더 포함할 수 있다.In a preferred embodiment of the present invention, the fluorine-based ionomer solution may further include one or more moisture absorbents selected from the group consisting of zeolite, titania, zirconia, and montmorillonite.
본 발명의 바람직한 일실시예로서, 상기 불소계 이오노머 용액에 중공형 실리카 0.05 ~ 5 wt%를 포함할 수 있다. As a preferred embodiment of the present invention, the fluorine-based ionomer solution may include 0.05 to 5 wt% of hollow silica.
본 발명의 바람직한 일실시예로서, 상기 불소계 이오노머는 나피온(Nafion), 플레미온(Flemion), 및 아시플렉스(Aciplex)로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.In a preferred embodiment of the present invention, the fluorine-based ionomer may include one or more selected from the group consisting of Nafion, Flemion, and Aciplex.
본 발명의 바람직한 일실시예로서, 상기 3단계의 상기 건조는 60 ~ 100 온도에서 1 ~ 30 분 동안 수행되고, 상기 열처리는 100 ~ 200 온도에서 1분 ~ 5분 동안 수행될 수 있다.As a preferred embodiment of the present invention, the drying of the third step is performed for 1 to 30 minutes at 60 ~ 100 temperature, the heat treatment may be performed for 1 to 5 minutes at 100 ~ 200 temperature.
본 발명의 바람직한 일실시예로서, 3단계의 열처리된 상기 PTFE 다공성 지지체는 폐색된 기공의 부피가 전체 기공 부피에 대하여 90 부피% 이상일 수 있다.As a preferred embodiment of the present invention, the PTFE porous support heat-treated in three steps may have a volume of the occluded pores of 90% by volume or more relative to the total pore volume.
본 발명의 다른 측면은 연료전지용 복합 전해질막을 제공한다. 상기 연료전지용 복합 전해질막은 소정의 종횡비를 갖는 기공을 포함하는 PTFE 다공성 지지체; 및 상기 PTFE 다공성 지지체의 표면 및 지지체 기공 내에 중공형 실리카를 포함하는 불소계 이오노머 용액;을 포함한다.Another aspect of the present invention provides a composite electrolyte membrane for a fuel cell. The composite electrolyte membrane for a fuel cell includes a PTFE porous support including pores having a predetermined aspect ratio; And a fluorine ionomer solution containing hollow silica in the surface of the PTFE porous support and the pores of the support.
본 발명의 바람직한 일실시예로서, 하기 관계식 2의 무게 변동계수(CV2)값이 170 % 이상일 수 있다.As a preferred embodiment of the present invention, the weight variation coefficient CV2 value of relation 2 may be 170% or more.
[관계식 2] [Relationship 2]
무게 변동계수(CV2,%) = (연료전지용 복합 전해질막 전체 무게 - PTFE 다공성 지지체 무게) / (PTFE 다공성 지지체 무게) × 100Weight variation coefficient (CV2,%) = (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) × 100
본 발명의 바람직한 일실시예로서, 상기 PTFE 다공성 지지체에서 폐색된 기공의 부피는 전체 기공 부피에 대하여 90 부피% 이상일 수 있다.In a preferred embodiment of the present invention, the volume of the pores occluded in the PTFE porous support may be greater than 90% by volume relative to the total pore volume.
본 발명의 바람직한 일실시예로서, 상기 종횡비는 1 : 5 ~ 15 일 수 있다.As a preferred embodiment of the present invention, the aspect ratio may be 1: 5 to 15.
본 발명의 바람직한 일실시예로서, 상기 불소계 이오노머는 나피온(Nafion), 플레미온(Flemion), 및 아시플렉스(Aciplex)로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.In a preferred embodiment of the present invention, the fluorine-based ionomer may include one or more selected from the group consisting of Nafion, Flemion, and Aciplex.
본 발명의 다른 측면은 막-전극 접합체의 제조방법을 제공한다. 상기 막-전극 접합체의 제조방법은 본 발명의 연료전지용 복합 전해질막의 제조방법에 의해 연료전지용 복합 전해질막을 제조하는 단계; 및 상기 연료전지용 복합 전해질막의 양면에 촉매층 및 기체 확산층을 포함한다.Another aspect of the invention provides a method of manufacturing a membrane-electrode assembly. The method of manufacturing the membrane-electrode assembly may include preparing a composite electrolyte membrane for a fuel cell by the manufacturing method of the composite electrolyte membrane for a fuel cell of the present invention; And a catalyst layer and a gas diffusion layer on both surfaces of the composite electrolyte membrane for a fuel cell.
본 발명의 다른 측면은 연료전지의 제조방법을 제공한다. 상기 연료전지의 제조방법은 본 발명의 막-전극 접합체의 제조방법을 통해 막-전극 접합체를 제조하는 단계; 막-전극 접합체 및 세퍼레이터를 포함하고, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 전기 발생부를 형성하는 단계; 상기 막-전극 접합체 사이에 세퍼레이터를 개재하여 스택을 형성하는 단계; 연료를 상기 전기 발생부로 공급하는 연료 공급부를 형성하는 단계; 및 산화제를 상기 전기 발생부로 공급하는 산화제 공급부를 형성하는 단계; 를 포함한다.Another aspect of the invention provides a method of manufacturing a fuel cell. The fuel cell manufacturing method includes the steps of manufacturing the membrane-electrode assembly through the method of manufacturing the membrane-electrode assembly of the present invention; Forming an electricity generating unit including a membrane-electrode assembly and a separator, the electricity generating unit generating electricity through an electrochemical reaction between a fuel and an oxidant; Forming a stack between the membrane and the electrode assembly through a separator; Forming a fuel supply unit supplying fuel to the electricity generation unit; And forming an oxidant supply unit for supplying an oxidant to the electricity generating unit. It includes.
본 발명의 또 다른 측면은 연료전지를 제공한다. 상기 연료전지는 본 발명의 막-전극 접합체 및 세퍼레이터를 포함하고, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 전기 발생부; 연료를 상기 전기 발생부로 공급하는 연료 공급부; 및 산화제를 상기 발생부로 공급하는 산화제 공급부; 를 포함한다.Another aspect of the invention provides a fuel cell. The fuel cell includes a membrane-electrode assembly and a separator of the present invention, the electricity generating unit for generating electricity through the electrochemical reaction of the fuel and the oxidant; A fuel supply unit supplying fuel to the electricity generation unit; And an oxidant supply unit for supplying an oxidant to the generator. It includes.
본 발명에 의한 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법을 따르면 단순화된 구조를 갖고, 계면 특성을 향상시킬 수 있는 효과가 있다. 또한, 수소 이온의 전달 지연을 방지하고 기계적 특성을 향상시켜 연료 전지의 성능을 향상시킬 수 있다.According to the present invention, a composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, a fuel cell including the same, and a method for manufacturing the same have a simplified structure and have an effect of improving interface characteristics. In addition, it is possible to improve the performance of the fuel cell by preventing the delay of delivery of hydrogen ions and improving mechanical properties.
본 발명에 의한 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지의 제조방법을 따르면 제조 공정을 간소화할 수 있는 효과가 있다.According to the composite electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, and a manufacturing method of a fuel cell including the same, the manufacturing process can be simplified.
도 1은 본 발명의 일 실시예에 따른 막-전극 접합체의 개략도이다.1 is a schematic diagram of a membrane-electrode assembly according to an embodiment of the present invention.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to describe the present invention in more detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like numbers refer to like elements throughout.
본 발명의 일실시예에 따른 연료전지용 복합 전해질막의 제조방법은 PTFE 시트를 1축연신하는 1단계, 상기 1축연신된 PTFE 시트를 2축연신하는 2단계, 상기 2축연신된 PTFE 시트를 소결하여 PTFE 다공성 지지체를 형성하는 3단계, 상기 소결된 PTFE 다공성 지지체에 중공형 실리카를 포함하는 불소계 이오노머 용액을 함침하는 4단계, 및 상기 함침된 PTFE 다공성 지지체를 건조 및 열처리하는 5단계를 포함한다.The method for manufacturing a composite electrolyte membrane for a fuel cell according to an embodiment of the present invention includes the steps of uniaxially stretching a PTFE sheet, two stages of biaxially stretching the uniaxially stretched PTFE sheet, and sintering the biaxially stretched PTFE sheet. 3 to form a PTFE porous support, 4 steps of impregnating the sintered PTFE porous support with a fluorine-based ionomer solution containing hollow silica, and 5 steps of drying and heat-treating the impregnated PTFE porous support.
상기 1단계로써, 폴리테트라 플루오로에틸렌 (Polytetrafluoroethylene, PTFE) 시트를 1축연신한다.In the first step, the polytetrafluoroethylene (PTFE) sheet is uniaxially stretched.
또한, 상기 PTFE 시트는, PTFE 미세분말 및 윤활제를 포함하는 페이스트를 형성하는 (1)단계, 상기 페이스트를 숙성하는 (2)단계, 숙성된 상기 페이스트를 압축하여 PTFE 블록을 제조하는 (3)단계, 상기 PTFE 블록을 가압압출하는 (4)단계, 상기 가압압출된 PTFE를 건조하여 상기 윤활제를 제거하는 (5)단계, 및 윤활제가 제거된 PTFE 시트를 연신하는 (6)단계를 포함한다.In addition, the PTFE sheet, (1) forming a paste containing a PTFE fine powder and a lubricant, (2) the step of ripening the paste, compressing the aged paste to produce a PTFE block (3) (4) pressing and extruding the PTFE block, (5) removing the lubricant by drying the pressure-extruded PTFE, and stretching (6) the PTFE sheet from which the lubricant is removed.
상기 (1)단계에서 상기 PTFE 분말의 평균입경은 300 ~ 5700 ㎛일 수 있으나 이에 제한되지 않는다. 상기 윤활제는 액상 윤활제로서, 유동파라핀, 나프타, 화이트 오일, 톨루엔, 크실렌 등의 탄화수소 오일 외에, 각종 알코올류, 케톤류, 에스테르류 등이 사용될 수 있다. 상기 PTFE 미세분말 100 중량부에 대하여 윤활제 10 ~ 20 중량부를 포함할 수 있고, 더욱 바람직하게는 13 ~ 17 중량부를 포함할 수 있다. 상기 PTFE 미세분말 100 중량부에 대하여 윤활제가 10 중량부 미만일 경우 후술되는 2축연신 공정에 의해 PTFE 다공성 지지체 형성 시 기공도가 낮아질 수 있고, 20 중량부를 초과할 경우 PTFE 다공성 지지체 형성 시 기공의 크기가 커져 전해질막의 강도가 약해질 수 있다.The average particle diameter of the PTFE powder in step (1) may be 300 ~ 5700 ㎛ but is not limited thereto. The lubricant is a liquid lubricant, in addition to hydrocarbon oils such as liquid paraffin, naphtha, white oil, toluene, xylene, various alcohols, ketones, esters and the like can be used. The lubricant may include 10 to 20 parts by weight of the lubricant, and more preferably 13 to 17 parts by weight, based on 100 parts by weight of the PTFE fine powder. When the lubricant is less than 10 parts by weight based on 100 parts by weight of the PTFE fine powder, the porosity may be lowered when forming the PTFE porous support by the biaxial stretching process described below, and when the amount exceeds 20 parts by weight, the pore size when the PTFE porous support is formed. It may increase the strength of the electrolyte membrane.
상기 (2)단계에서 상기 페이스트를 50 ~ 90 의 온도에서 10 ~ 15 시간 동안 숙성할 수 있고 더욱 바람직하게는 60 ~ 80 의 온도에서 11 ~ 13 시간 동안 숙성할 수 있다. 상기 숙성 온도가 50 미만이거나 숙성 시간이 10 시간 미만일 경우 후술되는 2축연신 시 PTFE 시트의 연신률이 제한적일 수 있다. 또한, 숙성 온도가 90 를 초과하거나 숙성 시간이 15 시간을 초과할 경우 PTFE 다공성 지지체 형성 시 기공의 크기가 커져 전해질막의 강도가 약해질 수 있다.In the step (2), the paste may be aged at a temperature of 50 to 90 for 10 to 15 hours, more preferably at 11 to 13 hours at a temperature of 60 to 80. When the aging temperature is less than 50 or the aging time is less than 10 hours, the elongation of the PTFE sheet may be limited during biaxial stretching described below. In addition, when the aging temperature exceeds 90 or the aging time exceeds 15 hours, the size of the pores increases when the PTFE porous support is formed, thereby weakening the strength of the electrolyte membrane.
상기 (3)단계는 상기 페이스트를 이용하여 압축기에서 압축하여 PTFE 블록으로 제작한다. In step (3), the paste is compressed to produce a PTFE block using a paste.
상기 (4)단계에서 상기 PTFE 블록을 400 ~ 800 psi 압력으로 가압압출할 수 있다고, 더욱 바람직하게는 500 ~ 700 psi 압력으로 가압압출할 수 있다. 이때, 상기 PTFE를 가압압출하는 압력이 400 psi 미만일 경우 PTFE 다공성 지지체 형성 시 기공의 크기가 커져 전해질막의 강도가 약해질 수 있고, 800 psi를 초과할 경우 후술되는 2축연신 공정에 의해 PTFE 다공성 지지체 형성 시 기공도가 낮아질 수 있다.In the step (4), the PTFE block may be pressurized at 400 to 800 psi pressure, and more preferably at 500 to 700 psi pressure. At this time, when the pressure to extrude the PTFE is less than 400 psi, the size of the pores increases when the PTFE porous support is formed, and thus the strength of the electrolyte membrane may be weakened. When the pressure exceeds 800 psi, the PTFE porous support is formed by a biaxial stretching process described below. Porosity can be lowered during formation.
1단계에서 상기 1축연신은 구체적으로 통상의 PTFE 시트는 롤러를 통해 이송되데 롤러간의 속도차를 이용하여 종방향으로 연신할 수 있다. 그러나, 이에 제한되는 것은 아니며 통상의 시트 제조 시 사용되는 연신방법에 따라 연신될 수 있다.In the first step, the uniaxial stretching may specifically be carried out in the longitudinal direction by using a speed difference between rollers in which a common PTFE sheet is transferred through a roller. However, the present invention is not limited thereto and may be stretched according to the stretching method used in manufacturing a conventional sheet.
종방향에서의 변형비는 1 : 1.1 ~ 2일 수 있다. 만약 종방향에서의 변형비가 1 : 1.1 미만일 경우 2축연신에 의해 형성되는 PTFE 다공성 지지체의 기공 크기가 작아져 후술되는 불소계 이오노머의 함침량이 제한적일 수 있다. 또한, 종방향에서의 변형비가 2를 초과할 경우 1축연신 시트의 두께가 얇아 두께 구배를 부여하기 어려울 수 있다. 또한, 연신온도는 150 ~ 250 ℃일 수 있으나 이에 한정되지 않는다.Strain ratio in the longitudinal direction may be 1: 1.1 to 2. If the strain ratio in the longitudinal direction is less than 1: 1.1, the pore size of the PTFE porous support formed by biaxial stretching is small, so that the impregnation amount of the fluorine-based ionomer described later may be limited. In addition, when the strain ratio in the longitudinal direction exceeds 2, the thickness of the uniaxial stretched sheet may be difficult to give a thickness gradient. In addition, the stretching temperature may be 150 ~ 250 ℃ but is not limited thereto.
2단계로써 상기 1축연신된 PTFE 시트를 2축연신한다. 이때, 전술된 바와 같이 상기 1축연신과 다른 연신비로 2축연신 공정이 수행된다. 이로써, 2축연신한 PTFE 다공성 지지체의 기공은 소정의 종횡비를 갖게된다. 따라서, 본 발명의 일실시예에 따른 연료전지용 복합 전해질막이 막-전극 접합체에 적용될 때 기공의 장축의 방향이 수소이온의 전달방향, 즉 전류의 방향을 향하도록 배치됨에 따라 장축방향으로의 수소 이온 전달력이 향상된다. 이에, 전지 특성이 향상될 수 있다.The uniaxially stretched PTFE sheet is biaxially stretched in two steps. At this time, as described above, the biaxial stretching process is performed at a draw ratio different from the uniaxial stretching. As a result, the pores of the biaxially stretched PTFE porous support have a predetermined aspect ratio. Therefore, when the composite electrolyte membrane for a fuel cell according to an embodiment of the present invention is applied to the membrane-electrode assembly, the direction of the major axis of the pores is arranged to be the direction of the transfer of hydrogen ions, that is, the direction of the current, so that the hydrogen ions in the major axis direction The transmission power is improved. Thus, battery characteristics can be improved.
2축연신의 경우 상기 1축연신과 수직하는 방향으로 수행될 수 있다. 2축연신 또한 1축연신과 마찬가지로 롤러를 통해 이송되데 롤러간의 속도차를 이용하여 횡방향으로 연신할 수 있다. 그러나, 이에 제한되는 것은 아니며 통상의 시트 제조 시 사용되는 연신방법에 따라 연신될 수 있다. 횡방향에서의 변형비는 1 : 6 ~ 30일 수 있다. 만약 횡방향에서의 변형비가 1 : 6 미만일 경우 PTFE 다공성 지지체의 기공의 종횡비가 작아짐에 따라 수소 이온 전달력 향상 효과가 미미할 수 있다. 또한, 횡방향에서의 변형비가 30을 초과할 경우 횡연신 시트의 피브릴과 노드 구조가 파괴될 수 있다.Biaxial stretching may be performed in a direction perpendicular to the uniaxial stretching. Biaxial stretching, like uniaxial stretching, is also carried through the rollers and can be stretched laterally using the speed difference between the rollers. However, the present invention is not limited thereto and may be stretched according to the stretching method used in manufacturing a conventional sheet. Strain ratio in the transverse direction may be 1: 6 to 30. If the strain ratio in the transverse direction is less than 1: 6, the effect of improving hydrogen ion transfer force may be insignificant as the aspect ratio of the pores of the PTFE porous support decreases. In addition, when the strain ratio in the transverse direction exceeds 30, the fibrils and node structures of the transversely stretched sheet may be destroyed.
결과적으로, 상기 1축연신비 : 2축연신비는 1 : 5 ~ 15일 수 있고 더욱 바람직하게는 1 : 8 ~ 12일 수 있다.As a result, the uniaxial draw ratio: biaxial draw ratio may be 1: 5 to 15, more preferably 1: 8 to 12.
또한, 본 발명에서는 종방향으로 1축연신되고 횡방향으로 2축연신되는 공정은 서로의 순서에 관계없이 수행될 수 있다.Further, in the present invention, the processes of uniaxially stretching in the longitudinal direction and biaxially stretching in the transverse direction may be performed regardless of the order of each other.
3단계로써 상기 2축연신된 PTFE 시트를 소결하여 PTFE 다공성 지지체를 형성한다. 소결 공정을 수행함에 따라 상기 PTFE 다공성 지지체의 강도를 향상시킬 수 있다. 이때, 소결 공정은 250 ~ 450 온도에서 수행될 수 있고, 더욱 바람직하게는 300 ~ 400 ℃ 온도에서 수행될 수 있다. 상기 소결 온도가 250 ℃ 미만일 경우 PTFE 다공성 지지체의 강도가 낮아질 수 있고, 400 ℃를 초과할 경우 온도 상승에 따른 소결 효과가 떨어질 수 있다.In step 3, the biaxially stretched PTFE sheet is sintered to form a PTFE porous support. As the sintering process is performed, the strength of the PTFE porous support may be improved. In this case, the sintering process may be performed at a temperature of 250 to 450, and more preferably at a temperature of 300 to 400 ℃. When the sintering temperature is less than 250 ° C, the strength of the PTFE porous support may be lowered, and when the sintering temperature is higher than 400 ° C, the sintering effect may be reduced due to the temperature increase.
이축연신 공정이 수행된 상기 PTFE 다공성 지지체의 평균기공 크기는 0.10 ~ 0.50 ㎛, 더욱 바람직하게는 0.20 ~ 0.40 ㎛이고, 기공률이 60 ~ 90 %, 더욱 바람직하게는 80 ~ 85 % 일 수 있다. 상기 PTFE 다공성 지지체의 평균기공의 크기가 0.10 ㎛ 미만이거나 기공률이 60 % 미만일 경우 기공 내로 불소계 이오노머 용액의 함침 정도가 제한적일 수 있다. 또한, 상기 평균기공의 크기가 0.50 ㎛을 초과하거나 기공률이 90 %를 초과할 경우 후술되는 4단계 공정에서 불소계 이오노머 용액이 함침됐을 때 PTFE 다공성 지지체 구조가 변형될 수 있다.The average pore size of the PTFE porous support on which the biaxial stretching process is performed may be 0.10 to 0.50 μm, more preferably 0.20 to 0.40 μm, and a porosity of 60 to 90%, more preferably 80 to 85%. When the average pore size of the PTFE porous support is less than 0.10 μm or the porosity is less than 60%, the degree of impregnation of the fluorine ionomer solution into the pores may be limited. In addition, when the average pore size exceeds 0.50 μm or the porosity exceeds 90%, the PTFE porous support structure may be deformed when the fluorine-based ionomer solution is impregnated in the four-step process described later.
4단계로써, 상기 소결된 PTFE 다공성 지지체에 중공형 실리카를 포함하는 불소계 이오노머 용액을 함침한다. 이에, 상기 PTFE 다공성 지지체의 기공에 상기 불소계 이오노머 용액이 충진된다. 이때, 상기 불소계 이오노머 용액에 중공형 실리카가 포함됨에 따라 상기 PTFE의 액체에 대한 흡수력을 향상시킨다. 반대로, 상기 불소계 이오노머 용액에 중공형 실리카가 포함되지 않을 경우 상기 PTFE는 불소계 이오노머 용액에 대한 흡수력이 제한적이다. 이에, 함침될 수 있는 불소계 이오노머 용액의 양이 제한적일 뿐만 아니라 불소계 이오노머 용액의 PTFE 다공성 지지체 내의 보액성이 떨어진다. 즉, 상기 불소계 이오노머 용액에 상기 중공형 실리카를 포함함에 따라 PTFE 다공성 지지체 내의 함침될 수 있는 불소계 이오노머 용액의 양을 증가시킬 수 있고 함침 후 보액성을 향상시킬 수 있다.In step 4, the sintered PTFE porous support is impregnated with a fluorine-based ionomer solution containing hollow silica. Thus, the fluorine ionomer solution is filled in the pores of the PTFE porous support. At this time, the hollow silica is included in the fluorine-based ionomer solution to improve the absorption of the PTFE liquid. On the contrary, when the fluorine-based ionomer solution does not contain hollow silica, the PTFE has a limited absorption ability to the fluorine-based ionomer solution. Thus, the amount of fluorine-based ionomer solution that can be impregnated is limited, and the liquid retention in the PTFE porous support of the fluorine-based ionomer solution is poor. That is, the inclusion of the hollow silica in the fluorine-based ionomer solution can increase the amount of the fluorine-based ionomer solution that can be impregnated in the PTFE porous support and improve the liquid retention after impregnation.
또한, 상기 중공형 실리카의 경우 흡수력을 향상시킬 뿐만 아니라, 실리카 내의 중공부를 포함함에 따라 불소계 이오노머 용액 함침에 따른 PTFE 다공성 지지체의 부피 팽창을 방지할 수 있다. 결과적으로, 상기 불소계 이오노머 용액에 중공형 실리카를 포함함에 따라 상기 PTFE 다공성 지지체에 대한 불소예 이오노머 용액의 흡수력을 향상시키고, PTFE 다공성 지지체의 부피 팽창을 억제할 수 있다.In addition, in the case of the hollow silica, it is possible to prevent the volume expansion of the PTFE porous support due to the impregnation of the fluorine-based ionomer solution, as well as improving the absorbency. As a result, by including the hollow silica in the fluorine-based ionomer solution it is possible to improve the absorption of the fluorine-yeonomer solution to the PTFE porous support, and to suppress the volume expansion of the PTFE porous support.
상기 중공형 실리카는 구상이며, 평균입경은 10 ~ 300 nm일 수 있고, 더욱 바람직하게는 10 ~ 100 nm일 수 있다. 여기서 입경의 의미는 중공형 실리카의 형상이 구상일 경우 지름을 의미하고, 구형이 아닌 경우 중공형 실리카 표면의 임의의 한 점에서 다른 한 점까지의 직선거리 중 최대거리를 의미한다. 상기 중공형 실리카의 평균입경이 10 nm 미만일 경우 상기 불소계 이오노머 용액을 담지할 수 있는 용량이 감소함에 따라 상기 불소계 이오노머 용액의 흡수력이 제한적일 수 있고, 평균직경이 300 nm를 초과하는 경우 상기 PTFE 다공성 지지체 기공 내에 상기 중공형 실리카가 함침되는 양이 제한적일 수 있다.The hollow silica is spherical, the average particle diameter may be 10 ~ 300 nm, more preferably 10 ~ 100 nm. Here, the particle diameter means the diameter when the shape of the hollow silica is spherical, and the maximum distance of the linear distance from one point to the other on the hollow silica surface when the shape is not spherical. When the average particle diameter of the hollow silica is less than 10 nm, as the capacity for supporting the fluorine ionomer solution decreases, the absorption capacity of the fluorine ionomer solution may be limited, and when the average diameter exceeds 300 nm, the PTFE porous support The amount of the hollow silica impregnated in the pores may be limited.
상기 중공형 실리카에 포함되는 중공부는 쉘부를 통해 흡착 이동한 불소계 이오노머 용액이 담지되는 공간으로써, 바람직하게는 중공의 직경이 5 ~ 100 nm일 수 있고, 더욱 바람직하게는 5 ~ 50 nm일 수 있다. 만일 중공직경이 5 nm 미만일 경우 담지되는 불소계 이오노머 용액의 양이 적어질 수 있고, 100 nm를 초과할 경우 중공형 실리카의 입경이 목적하는 범위를 초과하여 커지거나 쉘부의 붕괴를 초래할 수 있다.The hollow part included in the hollow silica may be a space in which the fluorine-based ionomer solution adsorbed and moved through the shell part may be supported. Preferably, the hollow diameter may be 5 to 100 nm, and more preferably 5 to 50 nm. . If the hollow diameter is less than 5 nm, the amount of the fluorine-based ionomer solution supported may be reduced. If the hollow diameter exceeds 100 nm, the particle size of the hollow silica may be larger than the desired range or may cause the shell to collapse.
상기 불소계 이오노머 용액은 제올라이트, 티타니아, 지르코니아, 및 몬모릴로나이트로 이루어진 군으로부터 선택되는 하나 이상의 흡습제를 더 포함할 수 있다. 상기 흡습제를 더 포함할 경우 상기 PTFE 다공성 지지체에 불소계 이오노머 용액 함침량을 더 증가시킬 수 있다.The fluorine ionomer solution may further include at least one hygroscopic agent selected from the group consisting of zeolite, titania, zirconia, and montmorillonite. When the moisture absorbent is further included, the amount of fluorine-based ionomer solution impregnation on the PTFE porous support may be further increased.
상기 불소계 이오노머는 나피온(Nafion), 플레미온(Flemion), 및 아시플렉스(Aciplex)로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있으며, 더욱 바람직하게는 나피온일 수 있다.The fluorine-based ionomer may include one or more selected from the group consisting of Nafion, Flemion, and Aciplex, and more preferably Nafion.
상기 불소계 이오노머 용액 100중량부에 대하여 중공형 실리카 0.05 ~ 5 중량부를 포함할 수 있고, 더욱 바람직하게는 1 ~ 3 중량부를 포함할 수 있다. 상기 불소계 이오노머 용액 100 중략부에 대하여 중공형 실리카를 0.05 중량부 미만으로 포함할 경우 불소계 이오노머 용액의 함침 효과가 미미할 수 있고, 5 중량부를 초과할 경우 PTFE 다공성 지지체에서 폐쇄된 기공의 비율이 높아져 막-전극 접합체에 적용 시 전류의 흐름도가 낮아질 수 있다.The hollow silica may include 0.05 to 5 parts by weight, and more preferably 1 to 3 parts by weight, based on 100 parts by weight of the fluorine-based ionomer solution. If less than 0.05 part by weight of hollow silica is included with respect to 100 parts by weight of the fluorine-based ionomer solution, the impregnating effect of the fluorine-based ionomer solution may be insignificant. The flow of current can be lowered when applied to electrode assemblies.
5단계로써, 상기 불소계 이오노머 용액이 함침된 PTFE 다공성 지지체를 건조 및 열처리한다. 상기 건조 및 열처리 공정을 수행함에 따라 상기 함침된 불소계 이오노머 용액의 보액성을 향상시키고, 막-전극 접합체 제조시 전극과의 접착성을 향상시킬 수 있다.In step 5, the PTFE porous support impregnated with the fluorine ionomer solution is dried and heat treated. As the drying and heat treatment processes are performed, the liquid retention property of the impregnated fluorine-based ionomer solution may be improved, and the adhesion to the electrode may be improved when the membrane-electrode assembly is manufactured.
이때, 상기 건조는 60 ~ 100 온도에서 1 ~ 30 분 동안 수행되고, 상기 열처리는 100 ~ 200 온도에서 1 분 ~ 5 분 동안 수행될 수 있다. 상기 건조 공정의 온도가 60 ℃ 미만일 경우 상기 PTFE 다공성 지지체에 함침된 불소계 이오노머 용액의 보액성이 저하될 수 있고, 100 ℃를 초과할 경우 막-전극 접합체 제조시 전극과의 접착성이 저하될 수 있다. 또한, 상기 열처리 공정에서 열처리 온도가 100 ℃ 미만이거나 시간이 1분 미만일 경우 상기 PTFE 다공성 지지체에 함침된 불소계 이오노머 용액의 보액성이 저하될 수 있고, 온도가 200 를 초과하거나 시간이 5분을 초과할 경우 막-전극 접합체 제조 시 전극과의 접착성이 저하될 수 있다.In this case, the drying may be performed for 1 to 30 minutes at a temperature of 60 to 100, and the heat treatment may be performed for 1 to 5 minutes at a temperature of 100 to 200. When the temperature of the drying process is less than 60 ℃ the liquid-retaining property of the fluorine-based ionomer solution impregnated in the PTFE porous support may be lowered, and if it exceeds 100 ℃ may be reduced adhesion to the electrode when manufacturing the membrane-electrode assembly have. In addition, when the heat treatment temperature is less than 100 ℃ or less than 1 minute in the heat treatment process, the liquid-retaining property of the fluorine-based ionomer solution impregnated in the PTFE porous support may be lowered, the temperature exceeds 200 or the time exceeds 5 minutes In this case, adhesion to the electrode may be reduced when the membrane-electrode assembly is manufactured.
5단계 이후, 상기 PTFE 다공성 지지체에서 폐색된 기공의 부피는 전체 기공 부피에 대하여 90 부피% 이상일 수 있다. After step 5, the volume of pores occluded in the PTFE porous support may be greater than 90% by volume relative to the total pore volume.
상기 연료전지용 복합 전해질막은 하기 관계식 1의 두께 변동계수(CV1)값이 15 % 이하이고, 하기 관계식 2의 무게 변동계수(CV2)값이 170 % 이상일 수 있다.The composite electrolyte membrane for a fuel cell may have a thickness variation coefficient (CV1) value of the relational expression 1 below 15%, and a weight variation coefficient CV2 value of the relational expression 2 below 170% or more.
[관계식 1][Relationship 1]
두께 변동계수(CV1,%) = (연료전지용 복합 전해질막 두께 - PTFE 다공성 지지체 두께 / PTFE 다공성 지지체 두께) × 100Thickness variation coefficient (CV1,%) = (Composite electrolyte membrane thickness for fuel cell-PTFE porous support thickness / PTFE porous support thickness) × 100
[관계식 2][Relationship 2]
무게 변동계수(CV2,%) = (연료전지용 복합 전해질막 전체 무게 - PTFE 다공성 지지체 무게) / (PTFE 다공성 지지체 무게) × 100Weight variation coefficient (CV2,%) = (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) × 100
상기 두께 변동계수는 상기 PTFE 다공성 지지체에 불소계 이오노머 용액을 함침시키기 전과 후에 상기 PTFE 다공성 지지체의 부피 팽창 정도를 가늠할 수 있는 지표 중의 하나로써, 그 수치가 작을수록 PTFE 다공성 지지체의 부피 팽창이 억제됐음을 알 수 있다.The thickness variation coefficient is one of the indexes for estimating the volume expansion of the PTFE porous support before and after impregnating the PTFE porous support with a fluorine-based ionomer solution. Able to know.
또한, 상기 무게 변동계수는 상기 PTFE 다공성 지지체에 불소계 이오노머 용액을 함침시키기 전과 후에 상기 PTFE 다공성 지지체의 무게 변화를 가늠할 수 있는 지표 중의 하나로써, 그 수치가 클수록 상기 PTFE 다공성 지지체 내에 함침된 불소계 이오노머의 함침량이 증가됨을 알 수 있다.In addition, the weight variation coefficient is one of the indicators for measuring the weight change of the PTFE porous support before and after the impregnation of the fluorine-based ionomer solution in the PTFE porous support, the larger the value of the fluorine ionomer impregnated in the PTFE porous support It can be seen that the impregnation amount is increased.
본 발명에 따른 연료전지용 복합 전해질막은 상기 두께 변동계수가 15 % 이하를 만족함으로써 상기 PTFE 다공성 지지체 내에 상기 불소계 이오노머가 함침된 후에도 부피 팽창 정도가 낮음을 알 수 있다.In the composite electrolyte membrane for a fuel cell according to the present invention, the thickness variation coefficient satisfies 15% or less, indicating that the volume expansion degree is low even after the fluorine-based ionomer is impregnated in the PTFE porous support.
또한, 본 발명에 따른 연료전지용 복합 전해질막은 상기 무게 변동계수가 170 % 이상을 만족함으로써 상기 PTFE 다공성 지지체 내에 함침된 불소계 이오노머 용액의 함침량이 큰 것을 알 수 있다.In addition, the composite electrolyte membrane for a fuel cell according to the present invention can be seen that the impregnation amount of the fluorine-based ionomer solution impregnated in the PTFE porous support by satisfying the weight variation coefficient of 170% or more.
따라서, 본 발명에 따른 연료전지용 복합 전해질막은 부피 팽창 정도가 낮고 불소계 이오노머 용액의 함침량이 높은 것을 알 수 있다.Therefore, it can be seen that the composite electrolyte membrane for a fuel cell according to the present invention has a low volume expansion degree and a high impregnation amount of the fluorine-based ionomer solution.
따라서, 본 발명의 일 실시예에 따른 연료전지용 복합 전해질막은 소정의 종횡비를 갖는 기공을 포함하는 PTFE 다공성 지지체, 및 상기 PTFE 다공성 지지체의 표면과 기공 내에 함침된 중공형 실리카를 포함하는 불소계 이오노머 용액을 포함한다. 따라서, 기존의 연료전지용 전해질막과 비교하여 구조가 단순화되고, 전극과 접합됐을 때 계면 특성을 향상시킬 수 있다. 또한, 전해질막의 두께가 얇아짐에 따라 수소 이온 전달 지연을 방지할 수 있고, PTFE 다공성 지지체에 불소계 이오노머 용액이 함침되므로 기계적 특성이 우수하므로 연료 전지의 성능을 향상시킬 수 있는 효과가 있다.Therefore, the composite electrolyte membrane for a fuel cell according to an embodiment of the present invention is a fluorine-based ionomer solution comprising a PTFE porous support including pores having a predetermined aspect ratio, and hollow silica impregnated in the pores and the surface of the PTFE porous support. Include. Therefore, compared with the conventional electrolyte membrane for fuel cells, the structure is simplified, and the interface characteristics can be improved when bonded to the electrode. In addition, as the thickness of the electrolyte membrane becomes thin, hydrogen ion transfer delay can be prevented, and since the fluorine-based ionomer solution is impregnated into the PTFE porous support, the mechanical properties are excellent, thereby improving the performance of the fuel cell.
상기 종횡비는 1 : 5 ~ 15일 수 있고 더욱 바람직하게는 1 : 7 ~ 12일 수 있다. 상기 종횡비가 1 : 5 미만일 경우 전류 흐름성이 떨어질 수 있고, 1 : 15를 초과할 경우 전해질막의 강도가 낮아질 수 있다.The aspect ratio may be 1: 5 to 15, more preferably 1: 7 to 12. When the aspect ratio is less than 1: 5, the current flowability may be decreased, and when the aspect ratio is greater than 1: 15, the strength of the electrolyte membrane may be lowered.
한편, 본 발명의 일실시예에 따른 막-전극 접합체는 전술된 연료전지용 복합 전해질막을 제조하는 단계, 및 상기 연료전지용 복합 전해질막의 양면에 촉매층 및 기체 확산층을 포함하는 전극을 접합하는 단계를 포함한다.On the other hand, the membrane-electrode assembly according to an embodiment of the present invention includes the steps of preparing the composite electrolyte membrane for a fuel cell, and bonding the electrode including a catalyst layer and a gas diffusion layer on both sides of the fuel cell composite electrolyte membrane. .
도 1은 본 발명의 일 실시예에 따른 막-전극 접합체의 개략도이다.1 is a schematic diagram of a membrane-electrode assembly according to an embodiment of the present invention.
도 1을 참조하면 본 발명의 일 실시예에 따른 막-전극 접합체는 연료전지용 복합 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 산화 전극(20) 및 환원 전극(20')를 구비한다. 이때, 상기 산화 전극(20) 및 환원 전극(20')은 각각 기체 확산층 (21, 21'), 촉매층(22, 22'), 및 전극 기재(23, 23')를 포함한다.Referring to FIG. 1, the membrane-electrode assembly according to an exemplary embodiment of the present invention includes an oxide electrode 20 and a reduction electrode 20 ′ positioned to face each other with a composite electrolyte membrane 10 for a fuel cell interposed therebetween. . In this case, the oxidation electrode 20 and the reduction electrode 20 'include gas diffusion layers 21 and 21', catalyst layers 22 and 22 ', and electrode substrates 23 and 23', respectively.
상기 연료전지용 복합 전해질막에 대한 상세한 설명은 전술된 내용을 참고하기로 한다.Detailed description of the composite electrolyte membrane for a fuel cell will be referred to the above description.
상기 산화전극(20)은 기체 확산층(21) 및 산화 촉매층(22)을 구비할 수 있다. 상기 기체 확산층(21)은 연료전지에 주입되는 연료의 급격한 확산을 방지하고, 이온 전도도의 저하를 방지하기 위해 구비될 수 있다. 상기 기체 확산층(21)은 열처리 또는 전기화학적 처리를 통하여 연료의 확산 속도를 조절할 수 있다. 상기 기체 확산층(21)은 탄소섬유 또는 탄소종이일 수 있다. 여기서, 상기 연료는 개미산 용액, 메탄올, 포름알데히드, 또는 에탈올과 같은 액체연료일 수 있다. The anode 20 may include a gas diffusion layer 21 and an oxidation catalyst layer 22. The gas diffusion layer 21 may be provided to prevent rapid diffusion of fuel injected into the fuel cell and to prevent a decrease in ion conductivity. The gas diffusion layer 21 may control the diffusion rate of the fuel through heat treatment or electrochemical treatment. The gas diffusion layer 21 may be carbon fiber or carbon paper. Here, the fuel may be a liquid fuel such as formic acid solution, methanol, formaldehyde, or ethanol.
상기 산화 촉매층(22)은 촉매가 도입되는 층으로서, 도전성 지지체 및 이온 전도성 바인더(미도시)를 포함할 수 있다. 이에 더하여, 상기 산화 촉매층(22)은 상기 도전성 지지체에 부착된 주촉매를 포함할 수 있다. 상기 도전성 지지체는 카본 블랙일 수 있고, 상기 이온 전도성 바인더는 나피온 이오노머 또는 술폰화된 폴리머일 수 있다. 또한, 상기 주촉매는 금속촉매일 수 있으며, 일 예로서 백금(Pt)일 수 있다. The oxidation catalyst layer 22 is a layer into which the catalyst is introduced, and may include a conductive support and an ion conductive binder (not shown). In addition, the oxidation catalyst layer 22 may include a main catalyst attached to the conductive support. The conductive support may be carbon black and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer. In addition, the main catalyst may be a metal catalyst, for example, may be platinum (Pt).
상기 산화 촉매층(22)은 전기도금법, 스프레이법, 페인팅법, 닥터블레이드법 또는 전사법을 사용하여 형성할 수 있다. The oxidation catalyst layer 22 may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
상기 환원전극(20')은 기체 확산층(21') 및 환원 촉매층(22')을 포함할 수 있다. 상기 기체 확산층(21')은 상기 환원전극(20')에 주입되는 가스의 급격한 확산을 방지하고, 상기 환원전극(20')에 주입된 가스를 균일하게 분산시켜주기 위해 구비될 수 있다. 상기 기체 확산층은(21') 탄소 종이 또는 탄소 섬유일 수 있다. The reduction electrode 20 ′ may include a gas diffusion layer 21 ′ and a reduction catalyst layer 22 ′. The gas diffusion layer 21 ′ may be provided to prevent sudden diffusion of the gas injected into the reduction electrode 20 ′ and to uniformly disperse the gas injected into the reduction electrode 20 ′. The gas diffusion layer 21 may be carbon paper or carbon fiber.
상기 환원 촉매층(22')은 촉매가 도입되는 층으로서, 도전성 지지체 및 이온 전도성 바인더(미도시)를 포함할 수 있다. 이에 더하여, 상기 환원 촉매층(22')은 상기 도전성 지지체에 부착된 주촉매를 포함할 수 있다. 상기 도전성 지지체는 카본 블랙일 수 있고, 상기 이온 전도성 바인더는 나피온 이오노머 또는 술폰화된 폴리머일 수 있다. 또한, 상기 주촉매는 금속촉매일 수 있으며, 일 예로서 백금(Pt)일수 있다.The reduction catalyst layer 22 ′ is a layer into which the catalyst is introduced, and may include a conductive support and an ion conductive binder (not shown). In addition, the reduction catalyst layer 22 ′ may include a main catalyst attached to the conductive support. The conductive support may be carbon black and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer. In addition, the main catalyst may be a metal catalyst, for example, may be platinum (Pt).
상기 환원 촉매층(22')은 전기도금법, 스프레이법, 페인팅법, 닥터블레이드법 또는 전사법을 사용하여 형성할 수 있다. The reduction catalyst layer 22 ′ may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
상기 막-전극 접합체는 상기 산화전극(20), 연료전지용 복합 전해질막(10) 및 환원전극(20') 각각을 배치시킨 후 체결하여 형성하거나, 이를 고온 및 고압으로 압착하여 형성할 수 있다.The membrane-electrode assembly may be formed by placing and then fastening each of the anode electrode 20, the composite electrolyte membrane for fuel cell 10, and the cathode 20 ′, or may be formed by pressing them at high temperature and high pressure.
상기 연료전지용 복합 전해질막(10)의 양면에 상기 전극(20, 20')을 접합하는 단계는 먼저 상기 연료전지용 복합 전해질막(10)의 일면에 기체 확산층 형성 물질을 도포하여 기체 확산층(21, 21')을 형성하는 단계를 포함할 수 있다.Bonding the electrodes 20 and 20 'to both surfaces of the composite electrolyte membrane 10 for a fuel cell may first apply a gas diffusion layer forming material to one surface of the composite electrolyte membrane 10 for a fuel cell, thereby forming a gas diffusion layer 21. 21 ').
상기 기체 확산층(21, 21')은 상기 연료전지용 복합 전해질막(10)과 상기 촉매층(22, 22') 사이에서 전류 전도체 역할을 수행하며, 반응물인 가스와 생성물인 물의 통로가 된다. 따라서, 기체 확산층(21, 21')은 가스가 잘 통할 수 있도록 기공률이 20 ~ 90 %인 다공성 구조일 수 있다. 기체 확산층(21, 21')의 두께는 필요에 따라 적절하게 채택될 수 있으며, 예를 들면 100 ~ 400 ㎛일 수 있다. 상기 기체 확산층(21, 21')의 두께가 100 ㎛이하일 경우 촉매층과 상기 전극 기재 사이에서 전기 접촉 저항이 커지고, 압축에 의해 구조가 불안정해질 수 있다. 또한, 상기 기체 확산층(21, 21')의 두꼐가 400 ㎛를 초과할 경우 반응물인 가스의 이동이 어려워질 수 있다.The gas diffusion layers 21 and 21 ′ serve as current conductors between the composite electrolyte membrane 10 for fuel cells and the catalyst layers 22 and 22 ′, and serve as passages of reactant gases and water as products. Therefore, the gas diffusion layers 21 and 21 ′ may have a porous structure having a porosity of 20 to 90% to allow gas to pass therethrough. The thicknesses of the gas diffusion layers 21 and 21 'may be appropriately adopted as necessary, and may be, for example, 100 to 400 µm. When the thickness of the gas diffusion layers 21 and 21 'is 100 µm or less, the electrical contact resistance increases between the catalyst layer and the electrode substrate, and the structure may become unstable by compression. In addition, when the thickness of the gas diffusion layers 21 and 21 'exceeds 400 μm, it may be difficult to move the reactant gas.
상기 기체 확산층(21, 21')은 탄소계 물질 및 불소계 수지를 포함하여 형성될 수 있다. 탄소계 물질로는 흑연, 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 케천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 및 수퍼P로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있으나 이에 한정되지 않는다. 또한, 불소계 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐알코올, 셀룰로오스 아세테이트, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머, 또는 스티렌-부타디엔고부(SBR)로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다. The gas diffusion layers 21 and 21 ′ may be formed of a carbonaceous material and a fluorine resin. Carbonaceous materials include graphite, carbon black, acetylene black, denka black, kecheon black, activated carbon, mesoporous carbon, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon nanorings, carbon nanowires, and fullerenes (C60). And super P may include one or more selected from the group consisting of, but is not limited thereto. In addition, as a fluorine-type resin, the copolymer of polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyvinyl alcohol, cellulose acetate, polyvinylidene fluoride-hexafluoropropylene, or styrene-butadiene high part (SBR) It may include one or more selected from the group consisting of.
다음으로, 상기 기체 확산층(21, 21') 상에 촉매층(22, 22')을 형성한다. 상기 촉매층(22,22')은 Next, catalyst layers 22 and 22 'are formed on the gas diffusion layers 21 and 21'. The catalyst layers 22, 22 '
상기 촉매층(22, 22')은 상기 기체 확산층(21, 21') 상에 촉매층 형성 물질을 도포하여 형성될 수 있다.The catalyst layers 22 and 22 'may be formed by applying a catalyst layer forming material on the gas diffusion layers 21 and 21'.
상기 촉매층 형성 물질은 금속촉매 또는 탄소계 지지체에 담지된 금속촉매를 사용할 수 있다. 금속 촉매로는 대표적으로 백금, 루테늄, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금, 및 백금-전이금속 합금으로 이루어진 군으로부터 선택되는 하나 이상을 사용할 수 있다. 또한, 상기 탄소계 지지체로는 흑연(그라파이트), 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 케천 블랙, 활성카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌 및 수퍼P로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.The catalyst layer forming material may be a metal catalyst or a metal catalyst supported on a carbon-based support. As the metal catalyst, at least one selected from the group consisting of platinum, ruthenium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy, and platinum-transition metal alloy may be used. In addition, the carbon-based support, graphite (graphite), carbon black, acetylene black, denka black, kecheon black, activated carbon, mesoporous carbon, carbon nanotubes, carbon nanofibers, carbon nanohorn, carbon nano ring, carbon nano And at least one selected from the group consisting of wire, fullerene, and superP.
상기 전극 기재(23, 23')는 탄소페이퍼, 탄소천, 및 탄소펠트로 이루어진 군으로부터 선택되는 도전성 기재를 사용할 수 있으나 이에 한정되지 않고, 고분자 전해질 연료전지에 적용이 가능한 캐소드 전극 물질 또는 애노드 전극 물질은 모두 사용이 가능하다. 상기 전극 기재는 통상의 증착 방법을 통해 형성될 수 있고, 상기 전극 기재(23, 23')에 상기 촉매층(22, 22')을 형성한 뒤 상기 기체 확산층(21, 21') 상에 상기 촉매층(22, 22') 및 상기 기체 확산층(21, 21')이 접하도록 배치시켜 형성될 수 있다.The electrode substrates 23 and 23 'may be a conductive substrate selected from the group consisting of carbon paper, carbon cloth, and carbon felt, but are not limited thereto, and may be a cathode electrode material or an anode electrode material applicable to a polymer electrolyte fuel cell. Are all available. The electrode substrate may be formed through a conventional deposition method, and after forming the catalyst layers 22 and 22 'on the electrode substrates 23 and 23', the catalyst layers on the gas diffusion layers 21 and 21 'are formed. 22 and 22 'and the gas diffusion layers 21 and 21' may be disposed to be in contact with each other.
다른 한편, 본 발명의 일실시예에 따른 연료전지는 연료의 산화 반응과 산화제의 환원반응을 통해 전기 에너지를 발생시키는 적어도 하나의 전기 발생부와, 전술된 연료를 상기 전기 발생부에 공급하는 연료 공급부와, 산화제를 상기 전기 발생부로 공급하는 산화제 공극부를 포함하여 구성된다.On the other hand, the fuel cell according to an embodiment of the present invention is at least one electricity generating unit for generating electrical energy through the oxidation reaction of the fuel and the reduction reaction of the oxidant, and the fuel for supplying the above-described fuel to the electricity generating unit It comprises a supply part and an oxidant space | gap part which supplies an oxidant to the said electricity generating part.
상기 막-전극 접합체는 하나 이상을 포함할 수 있고, 상기 막-전극 접합체의 양단에 연료와 산화제를 공급하기 위한 세퍼레이터가 배치되어 전기 발생부가 구성된다. 이러한 전기 발생부 적어도 하나가 모여서 스택을 구성할 수 있다..The membrane-electrode assembly may include one or more, and separators for supplying fuel and an oxidant are disposed at both ends of the membrane-electrode assembly to constitute an electricity generator. At least one of the electricity generating units may be assembled to form a stack.
이때, 상기 연료전지의 배치 형태 또는 제조 방법은 고분자 전해질 연료전지에 적용 가능한 형태라면 제한없이 형성이 가능하므로, 종래 기술을 참조하여 다양하게 적용할 수 있다.At this time, the arrangement or manufacturing method of the fuel cell can be formed without limitation as long as it is applicable to the polymer electrolyte fuel cell, it can be variously applied with reference to the prior art.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(example)를 제시한다. 다만, 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples will be presented to aid in understanding the present invention. However, the following examples are only for the understanding of the present invention, and the present invention is not limited to the following experimental examples.
<준비예-PTFE 시트의 준비>Preparation Example-Preparation of PTFE Sheet
PTFE 미세 파우더 100 중량부에 대하여 액상 윤활제 15 중량부를 혼합하여 블렌딩 하고 12 시간 동안 70 에서 숙성 후, 성형 지그를 이용하여 블록을 제조하였다.After mixing and blending 15 parts by weight of the liquid lubricant with respect to 100 parts by weight of PTFE fine powder and aged at 70 for 12 hours, a block was prepared using a molding jig.
상기 블록을 압출금형에 투입 후 600 psi 압력 하에서 가압압출을 실시하였고, 압연롤을 통해 두께 0.3t로 시트화한 후 건조과정을 통해 윤활제를 제거하여 PTFE 시트를 준비했다.After the block was put in an extrusion mold, pressure extrusion was carried out under a pressure of 600 psi, the sheet was rolled to a thickness of 0.3t through a rolling roll, and a lubricant was removed through a drying process to prepare a PTFE sheet.
<실시예 1> <Example 1>
상기 준비예에서 준비된 PTFE 시트를 종축 연신비 : 횡축 연신비 = 1 : 10 으로 2축 연신 후 360 에서 소결하여 PTFE 다공성 지지체를 제조하였다. 상기 방법으로 제조된 PTFE 다공성 지지체는 최대기공크기 0.51 ㎛, 평균기공크기가 0.35 ㎛, 기공률이 82 %였다.The PTFE sheet prepared in the preparation example was biaxially stretched with a longitudinal stretch ratio: transverse stretch ratio = 1: 10, and then sintered at 360 to prepare a PTFE porous support. The PTFE porous support prepared by the above method had a maximum pore size of 0.51 μm, an average pore size of 0.35 μm, and a porosity of 82%.
다음으로, PTFE 다공성 지지체를 PET 필름위에 고정하고, 불소계 이오노머인 나피온 100 중량부에 대하여 평균입경이 50 nm인 구형의 중공형 실리카 1 중량부를 나피온 용액을 도포하여 80 의 온도에서, 10 분 동안 진공오븐에서 건조하였고, 160 의 온도에서, 3 분 동안 열처리를 진행하여 20 ㎛ 두께의 투명한 연료전지용 복합 전해질막을 제조했다.Next, the PTFE porous support was fixed on the PET film, and 1 part by weight of a spherical hollow silica with an average particle diameter of 50 nm was applied to 100 parts by weight of Nafion, a fluorine ionomer, by applying a Nafion solution at a temperature of 80 minutes for 10 minutes. Was dried in a vacuum oven, and heat treated for 3 minutes at a temperature of 160 to prepare a transparent electrolyte membrane for a fuel cell having a thickness of 20 μm.
<실시예 2 ~ 5><Examples 2 to 5>
상기 실시예 1과 동일한 조건으로 제조하되, 하기 표 1과 같이 종축 연신비 : 횡축 연신비, 중공형 실리카의 평균입경, 및 중공형 실리카의 함량을 달리하여 연료전지용 복합 전해질막을 제조했다.Prepared under the same conditions as in Example 1, the composite electrolyte membrane for a fuel cell was prepared by varying the longitudinal axis draw ratio: transverse axis draw ratio, the average particle diameter of the hollow silica, and the content of the hollow silica as shown in Table 1 below.
<비교예 1>Comparative Example 1
상기 실시예 1과 동일한 조건으로 제조하되, 불소계 이오노머 용액에 있어서, 중공형 실리카를 포함하지 않은 나피온 용액을 사용하여 연료전지용 복합 전해질막을 제조했다.The composite electrolyte membrane for a fuel cell was manufactured under the same conditions as in Example 1, but using a Nafion solution containing no hollow silica in the fluorine ionomer solution.
<비교예 2>Comparative Example 2
상기 실시예 1과 동일한 조건으로 제조하되, 불소계 이오노머 용액에 있어서, 나피온 용액에 중공형 실리카가 아닌 실리카를 동일한 함량으로 포함시켜 연료전지용 복합 전해질막을 제조했다.Prepared under the same conditions as in Example 1, in the fluorine-based ionomer solution, a composite electrolyte membrane for a fuel cell was prepared by including silica in the Nafion solution in the same content as the hollow silica.
실험예 1 - 인장강도Experimental Example 1-Tensile Strength
상기 제조예 1 ~ 5, 비교예 1 및 2의 종방향 및 횡방향의 인장강도를 하기 표 1에 나타냈다.The tensile strengths in the longitudinal and transverse directions of Preparation Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1 below.
실험예 2 - 두께 변동 계수Experimental Example 2-Thickness variation coefficient
제조예 1 ~ 5, 비교예 1 및 2에서 제조된 PTFE 다공성 지지체와 연료전지용 복합 전해질막의 2축 방향으로 10 지점의 두께를 측정하였고, 상기 10 지점의 두께값의 평균값을 하기 두께 변동계수에서 두께 값으로 적용하여 하기 관계식 1을 통해 계산하였다.Ten thicknesses were measured in the biaxial directions of the PTFE porous support prepared in Preparation Examples 1 to 5 and Comparative Examples 1 and 2 and the composite electrolyte membrane for the fuel cell, and the average value of the thickness values of the ten points was measured at the following thickness variation coefficient. It was calculated by the following relational formula 1 by applying as a value.
두께 변동계수(CV1,%) = (연료전지용 복합 전해질막 두께 - 다공성 PTFE 지지체 두께 / 다공성 PTFE 지지체 두께) × 100Thickness variation coefficient (CV1,%) = (Composite electrolyte membrane thickness for fuel cell-porous PTFE support thickness / porous PTFE support thickness) × 100
실험예 3 - 무게 변동 계수Experimental Example 3-Weight Variation Factor
제조예 1 ~ 5, 비교예 1 및 2에서 제조된 PTFE 다공성 지지체와 연료전지용 복합 전해질막의 무게를 측정하여 하기 관계식 2를 통해 계산하였다.The weight of the PTFE porous support prepared in Preparation Examples 1 to 5, Comparative Examples 1 and 2 and the composite electrolyte membrane for a fuel cell was measured and calculated through the following Equation 2.
무게 변동계수(CV2,%) = (연료전지용 복합 전해질막 전체 무게 - 다공성 PTFE 지지체 무게) / (다공성 PTFE 지지체 무게) × 100Weight variation coefficient (CV2,%) = (Compound electrolyte membrane weight for fuel cell-weight of porous PTFE support) / (porous PTFE support weight) × 100
구분division 중공형 실리카 포함 여부Whether hollow silica is included 종축 연신비 : 횡축 연신비Longitudinal Drawing Ratio: Horizontal Drawing Ratio 중공형 실리카 평균 입경(nm)Hollow Silica Average Particle Size (nm) 이오노머 용액100 중량부에 대한 중공형 실리카 함량(중량부)Hollow silica content (parts by weight) with respect to 100 parts by weight of ionomer solution 인장강도The tensile strength 두께 변동계수(CV1)Thickness variation coefficient (CV1) 무게 변동계수(CV2)Weight variation coefficient (CV2)
종방향Longitudinal direction 횡방향Transverse
실시예 1Example 1 1 : 101: 10 5050 1One 55 265265
실시예 2Example 2 1 : 101: 10 5050 33 44 268268
실시예 3Example 3 1 : 71: 7 5050 1One 55 271271
실시예 4Example 4 1 : 111: 11 5050 1One 66 282282
실시예 5Example 5 1 : 51: 5 5050 1One 1010 200200
실시예 6Example 6 1 : 141: 14 5050 1One 1414 220220
실시예 7Example 7 1 : 101: 10 350350 1One 1515 171171
비교예 1Comparative Example 1 ×× 1 : 101: 10 5050 1One 5050 130130
비교예 2Comparative Example 2 ×× 1 : 101: 10 5050 1One 2828 160160
◎ : 매우우수, : 우수, : 양호, : 나쁨, : 매우나쁨◎: Very good,: Excellent,: Good,: Bad,: Very bad
상기 표 1을 참조하면 흡착제로 중공형 실리카를 포함하는 실시예 1 ~ 5의 경우 비교예 1 ~ 2와 비교하여 높은 무게 변동 계수 특성을 나타냄을 알 수 있다. 따라서, 본 발명의 일 실시예에 따른 연료전지용 복합 전해질막은 중공형 실리카를 포함함에 따라 더 많은 양의 전해액을 보액할 수 있음을 알 수 있다.Referring to Table 1, it can be seen that Examples 1 to 5 including hollow silica as an adsorbent show high weight variation coefficient characteristics compared to Comparative Examples 1 to 2. Therefore, it can be seen that the composite electrolyte membrane for a fuel cell according to an embodiment of the present invention can retain a larger amount of electrolyte as it includes hollow silica.
이상, 본 발명을 바람직한 실시예 및 실험예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예 및 실험예에 의해 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.As mentioned above, although the present invention has been described in detail with reference to preferred examples and experimental examples, the present invention is not limited to the above examples and experimental examples, and has ordinary knowledge in the art within the spirit and scope of the present invention. Many modifications and variations are possible.

Claims (22)

  1. 소정의 종횡비를 갖는 기공을 포함하는 PTFE 다공성 지지체를 형성하는 1단계;A step of forming a PTFE porous support comprising pores having a predetermined aspect ratio;
    상기 PTFE 다공성 지지체에 중공형 실리카를 포함하는 불소계 이오노머 용액을 함침하는 2단계; 및Impregnating the PTFE porous support with a fluorine-based ionomer solution containing hollow silica; And
    상기 함침된 PTFE 다공성 지지체를 건조 및 열처리하는 3단계; 를 포함하는 연료전지용 복합 전해질막의 제조방법.Drying and heat-treating the impregnated PTFE porous support; Method for producing a composite electrolyte membrane for a fuel cell comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 연료전지용 복합 전해질막은 하기 관계식 1의 두께 변동계수(CV1)값이 15 % 이하이고, 하기 관계식 2의 무게 변동계수(CV2)값이 170 % 이상인 연료전지용 복합 전해질막의 제조방법.The composite electrolyte membrane for a fuel cell has a thickness variation coefficient (CV1) value of 15% or less in the following relation 1, and a weight variation coefficient (CV2) value of the following formula 2 has a 170% or more composite electrolyte membrane for a fuel cell.
    [관계식 1][Relationship 1]
    두께 변동계수(CV1,%) = (연료전지용 복합 전해질막 두께 - PTFE 다공성 지지체 두께 / PTFE 다공성 지지체 두께) × 100Thickness variation coefficient (CV1,%) = (Composite electrolyte membrane thickness for fuel cell-PTFE porous support thickness / PTFE porous support thickness) × 100
    [관계식 2] [Relationship 2]
    무게 변동계수(CV2,%) = (연료전지용 복합 전해질막 전체 무게 - PTFE 다공성 지지체 무게) / (PTFE 다공성 지지체 무게) × 100Weight variation coefficient (CV2,%) = (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) × 100
  3. 제1항에 있어서,The method of claim 1,
    상기 1단계의 상기 PTFE 다공성 지지체의 평균기공 크기는 0.10 ~ 0.50 ㎛이고, 기공률이 60 ~ 90 %인 연료전지용 복합 전해질막의 제조방법.The average pore size of the PTFE porous support of the first step is 0.10 ~ 0.50 ㎛, porosity of 60 ~ 90% of the manufacturing method of a composite electrolyte membrane for a fuel cell.
  4. 제1항에 있어서,The method of claim 1,
    상기 PTFE 다공성 지지체는 2축연신된 PTFE 시트를 소결하여 형성되고,The PTFE porous support is formed by sintering a biaxially stretched PTFE sheet,
    상기 2축 연신에서, 1축연신비 및 2축연신비가 1 : 5 ~ 15인 연료전지용 복합 전해질막의 제조방법.In the biaxial stretching, the uniaxial stretching ratio and the biaxial stretching ratio is 1: 5 to 15 manufacturing method of a composite electrolyte membrane for a fuel cell.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 1단계의 소결 공정은 250 ~ 450 ℃ 온도에서 수행되는 연료전지용 복합 전해질막의 제조방법.The sintering process of the first step is a method of manufacturing a composite electrolyte membrane for a fuel cell is carried out at a temperature of 250 ~ 450 ℃.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 PTFE 시트는,The PTFE sheet,
    PTFE 미세분말 100 중량부에 대하여 윤활제 10 ~ 20 중량부를 포함하는 페이스트를 형성하는 단계;Forming a paste including 10 to 20 parts by weight of lubricant based on 100 parts by weight of PTFE fine powder;
    상기 페이스트를 50 ~ 90 ℃의 온도에서 10 ~ 15 시간 동안 숙성하는 단계;Aging the paste at a temperature of 50-90 ° C. for 10-15 hours;
    상기 숙성된 페이스트를 압축기에서 압축하여 PTFE 블록을 제조하는 단계;Compressing the aged paste in a compressor to produce a PTFE block;
    상기 PTFE 블록을 400 ~ 800 psi 압력으로 가압압출 후 캘린더링 진행하여 PTFE 시트를 형성하는 단계; 및Pressing and extruding the PTFE block at a pressure of 400 to 800 psi to form a PTFE sheet by calendering; And
    상기 PTFE 시트를 건조하여 상기 윤활제를 제거하는 단계; 및Drying the PTFE sheet to remove the lubricant; And
    윤활제가 제거된 시트를 연신하는 단계를 포함하는 연료전지용 복합 전해질막의 제조방법.A method of manufacturing a composite electrolyte membrane for a fuel cell comprising the step of stretching the sheet from which the lubricant is removed.
  7. 제1항에 있어서,The method of claim 1,
    상기 중공형 실리카는 구상이며, 평균입경은 10 ~ 300 nm이고, 중공의 직경이 5 ~ 100 nm인 연료전지용 복합 전해질막의 제조방법.The hollow silica is spherical, the average particle diameter is 10 ~ 300 nm, the diameter of the hollow 5 ~ 100 nm manufacturing method of a composite electrolyte membrane for a fuel cell.
  8. 제1항에 있어서,The method of claim 1,
    상기 불소계 이오노머 용액은 중공형 실리카를 0.05 ~ 5 wt% 포함하는 연료전지용 복합 전해질막의 제조방법.The fluorine-based ionomer solution is a method for producing a composite electrolyte membrane for a fuel cell containing 0.05 to 5 wt% hollow silica.
  9. 제1항에 있어서,The method of claim 1,
    상기 불소계 이오노머는 나피온(Nafion), 플레미온(Flemion), 및 아시플렉스(Aciplex)로 이루어진 군으로부터 선택되는 하나 이상을 포함하는 연료전지용 복합 전해질막의 제조방법.The fluorine-based ionomer is a method for producing a composite electrolyte membrane for a fuel cell comprising at least one selected from the group consisting of Nafion, Flemion, and Aciplex.
  10. 제1항에 있어서,The method of claim 1,
    상기 불소계 이오노머 용액은 제올라이트, 티타니아, 지르코니아, 및 몬모릴로나이트로 이루어진 군으로부터 선택되는 하나 이상의 흡습제를 더 포함하는 연료전지용 복합 전해질막의 제조방법.The fluorine-based ionomer solution further comprises at least one moisture absorbent selected from the group consisting of zeolite, titania, zirconia, and montmorillonite.
  11. 제1항에 있어서,The method of claim 1,
    상기 3단계의 상기 건조는 60 ~ 100 온도에서 1 ~ 30 분 동안 수행되고, 상기 열처리는 100 ~ 200 온도에서 1분 ~ 5분 동안 수행되는 연료전지용 복합 전해질막의 제조방법.The drying of the third step is performed for 1 to 30 minutes at 60 to 100 temperature, the heat treatment is carried out for 1 to 5 minutes at 100 to 200 temperature method of manufacturing a composite electrolyte membrane for a fuel cell.
  12. 제1항에 있어서,The method of claim 1,
    3단계의 열처리한 상기 PTFE 다공성 지지체는 폐색된 기공의 부피가 전체 기공 부피에 대하여 90 부피% 이상인 연료전지용 복합 전해질막의 제조방법.The PTFE porous support subjected to the heat treatment in three steps has a volume of the occluded pores of 90% by volume or more based on the total pore volume of the composite electrolyte membrane for a fuel cell.
  13. 소정의 종횡비를 갖는 기공을 포함하는 PTFE 다공성 지지체; 및A PTFE porous support comprising pores having a predetermined aspect ratio; And
    상기 PTFE 다공성 지지체의 표면 및 지지체의 기공 내에 중공형 실리카를 포함하는 불소계 이오노머 용액;을 포함하는 연료전지용 복합 전해질막.And a fluorine-based ionomer solution containing hollow silica in the pores of the support and the surface of the PTFE porous support.
  14. 제13항에 있어서,The method of claim 13,
    하기 관계식 2의 무게 변동계수(CV2)값이 170 % 이상인 연료전지용 복합 전해질막.A composite electrolyte membrane for a fuel cell having a weight variation coefficient (CV2) value of the relation 2 below.
    [관계식 2] [Relationship 2]
    무게 변동계수(CV2,%) = (연료전지용 복합 전해질막 전체 무게 - PTFE 다공성 지지체 무게) / (PTFE 다공성 지지체 무게) × 100Weight variation coefficient (CV2,%) = (Complex electrolyte membrane weight for fuel cell-PTFE porous support weight) / (PTFE porous support weight) × 100
  15. 제13항에 있어서,The method of claim 13,
    상기 PTFE 다공성 지지체에서 폐색된 기공의 부피는 전체 기공 부피에 대하여 90 부피% 이상인 연료전지용 복합 전해질막.The volume of pores occluded in the PTFE porous support is 90% by volume or more based on the total pore volume of the composite electrolyte membrane for a fuel cell.
  16. 제13항에 있어서,The method of claim 13,
    상기 종횡비는 1 : 5 ~ 15인 연료전지용 복합 전해질막.The aspect ratio is 1: 5 to 15 composite electrolyte membrane for a fuel cell.
  17. 제13항에 있어서,The method of claim 13,
    상기 불소계 이오노머는 나피온(Nafion), 플레미온(Flemion), 및 아시플렉스(Aciplex)로 이루어진 군으로부터 선택되는 하나 이상을 포함하는 연료전지용 복합 전해질막의 제조방법.The fluorine-based ionomer is a method for producing a composite electrolyte membrane for a fuel cell comprising at least one selected from the group consisting of Nafion, Flemion, and Aciplex.
  18. 제1항 내지 제12항 중 어느 한 항의 연료전지용 복합 전해질막의 제조방법에 의해 연료전지용 복합 전해질막을 제조하는 단계; 및A method of manufacturing a composite electrolyte membrane for a fuel cell according to any one of claims 1 to 12, the method comprising: preparing a composite electrolyte membrane for a fuel cell; And
    상기 연료전지용 복합 전해질막의 양면에 촉매층 및 기체 확산층을 포함하는 전극을 접합하는 단계; 를 포함하는 막-전극 접합체의 제조방법.Bonding electrodes including a catalyst layer and a gas diffusion layer to both surfaces of the fuel cell composite electrolyte membrane; Method of producing a membrane-electrode assembly comprising a.
  19. 제18항의 막-전극 접합체의 제조방법을 통해 막-전극 접합체를 제조하는 단계;Manufacturing a membrane-electrode assembly through the method of manufacturing the membrane-electrode assembly of claim 18;
    막-전극 접합체 및 세퍼레이터를 포함하고, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 전기 발생부를 형성하는 단계; Forming an electricity generating unit including a membrane-electrode assembly and a separator, the electricity generating unit generating electricity through an electrochemical reaction between a fuel and an oxidant;
    상기 막-전극 접합체 사이에 세퍼레이터를 개재하여 스택을 형성하는 단계;Forming a stack between the membrane and the electrode assembly through a separator;
    연료를 상기 전기 발생부로 공급하는 연료 공급부를 형성하는 단계; 및Forming a fuel supply unit supplying fuel to the electricity generation unit; And
    산화제를 상기 전기 발생부로 공급하는 산화제 공급부를 형성하는 단계; 를 포함하는 연료전지의 제조방법.Forming an oxidant supply unit for supplying an oxidant to the electricity generating unit; Fuel cell manufacturing method comprising a.
  20. 제13항에 의한 연료전지용 복합 전해질막; 및The composite electrolyte membrane for a fuel cell according to claim 13; And
    상기 연료전지용 복합 전해질막 양면에 접합되고, 촉매층 및 기체 확산층을 포함하는 전극; 을 포함하는 막-전극 접합체.Electrodes bonded to both surfaces of the composite electrolyte membrane for a fuel cell and including a catalyst layer and a gas diffusion layer; Membrane-electrode assembly comprising a.
  21. 제20항에 있어서,The method of claim 20,
    상기 PTFE 다공성 지지체는 상기 기공의 장축이 상기 전극 사이에 흐르는 전류의 방향을 향하도록 배치되는 막-전극 접합체.The PTFE porous support is a membrane-electrode assembly disposed so that the major axis of the pores toward the direction of the current flowing between the electrodes.
  22. 제20항 내지 제21항 중 어느 한 항의 막-전극 접합체 및 세퍼레이터를 포함하고, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 전기 발생부;22. An electric generator comprising the membrane-electrode assembly and the separator of any one of claims 20 to 21, the electric generator generating electricity through an electrochemical reaction between a fuel and an oxidant;
    연료를 상기 전기 발생부로 공급하는 연료 공급부; 및A fuel supply unit supplying fuel to the electricity generation unit; And
    산화제를 상기 발생부로 공급하는 산화제 공급부; 를 포함하는 연료전지.An oxidant supply unit for supplying an oxidant to the generator; Fuel cell comprising a.
PCT/KR2016/003554 2016-04-05 2016-04-06 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same WO2017175890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160041846A KR101877750B1 (en) 2016-04-05 2016-04-05 Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
KR10-2016-0041846 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175890A1 true WO2017175890A1 (en) 2017-10-12

Family

ID=60001269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003554 WO2017175890A1 (en) 2016-04-05 2016-04-06 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same

Country Status (2)

Country Link
KR (1) KR101877750B1 (en)
WO (1) WO2017175890A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190124942A (en) 2018-04-27 2019-11-06 코오롱머티리얼 주식회사 Electrolyte Membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078051A (en) * 2006-09-22 2008-04-03 Sekisui Chem Co Ltd Membrane-electrode assembly and manufacturing method therefor, and polymer electrolyte fuel cell
KR20080045461A (en) * 2006-11-20 2008-05-23 삼성에스디아이 주식회사 Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising for fuel cell and fuel cell system comprising same
KR20080108998A (en) * 2006-03-20 2008-12-16 니뽄 고어-텍스 인크. Electrolyte membrane and solid polymer fuel cell
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite
JP2015128060A (en) * 2013-11-29 2015-07-09 旭化成イーマテリアルズ株式会社 Polymer electrolyte membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091409A1 (en) * 2004-03-19 2005-09-29 Toagosei Co., Ltd. Electrolyte film and fuel cell
KR101491611B1 (en) * 2012-12-24 2015-02-11 뉴로엘리싯 주식회사 Manufacturing method of organic-inorganic hybrid porous seperation membrane and organic-inorganic hybrid porous seperation membrane using the same method
KR20150135116A (en) * 2014-05-22 2015-12-02 단국대학교 천안캠퍼스 산학협력단 Composite electrolyte membranes, Preparation Method thereof and Uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080108998A (en) * 2006-03-20 2008-12-16 니뽄 고어-텍스 인크. Electrolyte membrane and solid polymer fuel cell
JP2008078051A (en) * 2006-09-22 2008-04-03 Sekisui Chem Co Ltd Membrane-electrode assembly and manufacturing method therefor, and polymer electrolyte fuel cell
KR20080045461A (en) * 2006-11-20 2008-05-23 삼성에스디아이 주식회사 Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising for fuel cell and fuel cell system comprising same
JP2015128060A (en) * 2013-11-29 2015-07-09 旭化成イーマテリアルズ株式会社 Polymer electrolyte membrane
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Also Published As

Publication number Publication date
KR20170114609A (en) 2017-10-16
KR101877750B1 (en) 2018-07-13

Similar Documents

Publication Publication Date Title
KR101860873B1 (en) Fuel cell-electrolyte membrane containing the same, and manufacturing method thereof
WO2017175891A1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
KR101879622B1 (en) Electrolyte membrane having density gradient for fuel cell, Manufacturing method thereof, Membrane-electrode assembly including thereof, and fuel cell including thereof
KR20190131690A (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
WO2017175892A1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
KR102321252B1 (en) Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same
WO2021137518A1 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
KR20180004592A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell comprising the same
KR20190131687A (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
WO2017175890A1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2018101591A1 (en) Method for preparing membrane-electrode assembly, membrane-electrode assembly prepared therefrom, and fuel cell comprising same
WO2021137513A1 (en) Electrode for fuel cell having high durability, method for manufacturing same, and membrane-electrode assembly comprising same
KR101860856B1 (en) Porous support with high elongation for fuel cell-electrolyte membrane, and manufacturing method thereof
KR102321256B1 (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
KR101317510B1 (en) Polybenzimidazole-based film with hydrazinium sulfate and membrane for fuel cell comprising the same
KR102321255B1 (en) Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same
KR20210007559A (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR20210007563A (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR20210007560A (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102085208B1 (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
KR20210007561A (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
WO2023096114A1 (en) Multilayer reinforced composite electrolyte membrane and method for manufacturing same
KR102300430B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
WO2023101333A1 (en) Fuel cell catalyst, method for manufacturing same, and fuel cell comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897995

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897995

Country of ref document: EP

Kind code of ref document: A1