WO2019026485A1 - 熱交換器、弁装置 - Google Patents

熱交換器、弁装置 Download PDF

Info

Publication number
WO2019026485A1
WO2019026485A1 PCT/JP2018/024595 JP2018024595W WO2019026485A1 WO 2019026485 A1 WO2019026485 A1 WO 2019026485A1 JP 2018024595 W JP2018024595 W JP 2018024595W WO 2019026485 A1 WO2019026485 A1 WO 2019026485A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
flow path
core
liquid
Prior art date
Application number
PCT/JP2018/024595
Other languages
English (en)
French (fr)
Inventor
伊藤 哲也
加藤 大輝
川久保 昌章
遼平 杉村
康裕 川瀬
松田 三起夫
Original Assignee
株式会社デンソー
株式会社Soken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社Soken filed Critical 株式会社デンソー
Publication of WO2019026485A1 publication Critical patent/WO2019026485A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present disclosure relates to a heat exchanger and a valve device applied to a heat pump cycle.
  • a refrigeration cycle apparatus which is configured to be able to switch between a cooling operation mode for cooling a temperature control target fluid and a heating operation mode for heating a temperature control target fluid (for example, using a subcool condenser) Patent Document 1).
  • COP Coefficient Of Performance
  • Patent Document 1 in order to improve COP (Coefficient Of Performance) in the heating operation mode, the refrigerant is flowed so as to bypass the supercooling heat exchange portion of the outdoor heat exchanger in the heating operation mode.
  • Refrigerant bypass means are provided.
  • the compressor is protected by mixing oil with refrigerant (that is, refrigerator oil) and circulating the oil together with the refrigerant in the cycle.
  • refrigerant that is, refrigerator oil
  • bypass piping for bypassing the supercooling heat exchange unit in the heating operation mode is provided at the uppermost portion of the liquid receiver of the outdoor heat exchanger via the bypass piping on-off valve. It is connected to the connected communication hole.
  • An object of the present disclosure is to provide a heat exchanger and a valve device capable of suppressing retention of refrigerant containing oil in a liquid reservoir of a liquid receiver in a heating mode for heating a temperature control target fluid.
  • a heat exchanger includes a cooling mode for cooling a fluid to be temperature-controlled by switching a circulation path of a refrigerant containing oil, and a heating mode for heating a fluid to be temperature-controlled. Applied to the heat pump cycle that can be switched.
  • the heat exchanger is A core portion that functions as a condenser that condenses the refrigerant in the cooling mode and that functions as an evaporator that evaporates the refrigerant in the heating mode; A liquid receiver having a liquid reservoir for temporarily storing a part of the refrigerant flowing out of the core in the cooling mode as an excess refrigerant in the cycle; And a valve device for switching the circulation path of the refrigerant in the cycle.
  • the valve device is provided with a suction side flow passage for guiding the refrigerant in the liquid reservoir to the refrigerant suction side of the compressor of the heat pump cycle in the heating mode.
  • the suction side flow passage communicates with the lower side portion of the liquid reservoir closer to the lower end than the upper end.
  • the heat exchanger of the present disclosure is configured to communicate the suction side flow passage provided in the valve device with the lower side portion of the liquid reservoir. According to this, the refrigerant containing the oil present in the liquid reservoir in the heating mode can be flowed to the refrigerant suction side of the compressor via the suction side flow path by its own weight. For this reason, according to the heat exchanger of the present disclosure, it is possible to suppress the retention of the refrigerant including oil in the liquid reservoir of the liquid receiver in the heating mode.
  • the valve device includes a cooling mode for cooling the temperature control target fluid by switching a circulation path of the refrigerant containing oil and a heating mode for heating the temperature control target fluid. Applies to switchable heat pump cycles.
  • the heat pump cycle includes a heat exchanger including a core unit that condenses the refrigerant in the cooling mode and evaporates the refrigerant in the heating mode, and a liquid receiver including a liquid reservoir that stores a part of the refrigerant flowing out of the core unit.
  • the valve device includes a body portion having a plurality of refrigerant flow paths communicating with the liquid storage portion, and a flow path switching portion for switching the refrigerant flow path on the downstream side of the liquid storage portion to any of the plurality of refrigerant flow paths.
  • the plurality of refrigerant flow paths include a suction side flow path that guides the refrigerant in the liquid reservoir to the refrigerant suction side of the compressor of the heat pump cycle in the heating mode.
  • the suction side flow passage communicates with the lower side portion of the liquid reservoir closer to the lower end than the upper end.
  • the valve device of the present disclosure has a configuration in which a suction-side flow passage that guides the refrigerant to the refrigerant suction side of the compressor is in communication with the lower side portion of the liquid storage portion. According to this, the refrigerant containing the oil present in the liquid reservoir in the heating mode can be flowed to the refrigerant suction side of the compressor via the suction side flow path by its own weight. For this reason, according to the valve device of the present disclosure, it is possible to suppress the retention of the refrigerant including oil in the liquid reservoir of the liquid receiver in the heating mode.
  • FIG. 4 is an arrow view of the valve device in the direction indicated by arrow IV in FIG. 3; It is explanatory drawing for demonstrating the relationship between the pulse input to an actuator, and the opening area of each valve of a valve apparatus. It is a typical axial sectional view of a valve device when a core introduction channel will be in a full closing state. It is a typical axial sectional view of a valve device when a core introduction channel will be in a squeezed state.
  • FIG. 1 An example in which the heat exchanger and valve device of the present disclosure are applied to a heat pump cycle 10 of a vehicle air conditioner 1 will be described.
  • the vehicle air conditioner 1 of the present embodiment is mounted on an internal combustion engine (not shown) and a hybrid vehicle or the like that obtains a driving force for vehicle traveling from a traveling electric motor.
  • Hybrid vehicles and electric vehicles have less waste heat in the vehicle than in vehicles in which the driving force for traveling the vehicle can be obtained only by the internal combustion engine, and it is difficult to secure a heat source for heating the vehicle interior.
  • the indoor air conditioning unit 50 heats the vehicle interior with the high-temperature and high-pressure refrigerant discharged from the compressor 12 of the heat pump cycle 10 as a heat source. .
  • the heat pump cycle 10 of the present embodiment employs an HFC refrigerant (for example, R134a) as the refrigerant, and the vapor compression subcritical refrigeration cycle in which the refrigerant pressure on the high pressure side in the cycle does not exceed the critical pressure of the refrigerant.
  • an HFC refrigerant for example, R134a
  • an HFO refrigerant for example, R1234yf
  • part inside the compressor 12 is mixed with the refrigerant
  • the heat pump cycle 10 cools the air blown into the vehicle compartment by switching the circulation path of the refrigerant containing oil and cools the vehicle interior with a cooling mode and heats the air blown into the vehicle compartment to heat the vehicle interior. It is comprised so that switching with heating mode is possible.
  • the blowing air into the vehicle compartment is the fluid to be temperature controlled.
  • the cooling mode corresponds to the cooling mode for cooling the temperature control target fluid
  • the heating mode corresponds to the heating mode for heating the temperature control target fluid.
  • the heat pump cycle 10 includes a compressor 12, a water-refrigerant heat exchanger 14, an outdoor heat exchanger 16, an expansion valve 20 for cooling, an evaporator 22, a valve device 30, and the like.
  • the compressor 12 is disposed inside the bonnet.
  • the compressor 12 is a device that compresses and discharges the sucked refrigerant.
  • the compressor 12 of the present embodiment is configured of an electric compressor driven by an electric motor (not shown).
  • the compressor 12 can change the discharge capacity of the refrigerant according to the number of rotations of the electric motor.
  • the operation of the compressor 12 is controlled by a control signal output from the control device 100 described later.
  • a water-refrigerant heat exchanger 14 is connected to the refrigerant discharge side of the compressor 12.
  • the water-refrigerant heat exchanger 14 includes a first heat exchange unit 142 through which the high-pressure refrigerant discharged from the compressor 12 flows, and a second heat exchange unit 144 through which the antifreeze liquid flows.
  • the first heat exchange unit 142 of the water-refrigerant heat exchanger 14 is connected between the refrigerant discharge side of the compressor 12 and the valve device 30.
  • the water-refrigerant heat exchanger 14 is a radiator that radiates the refrigerant flowing through the first heat exchange unit 142 through heat exchange with the antifreeze liquid flowing through the second heat exchange unit 144.
  • the antifreeze liquid flowing through the second heat exchange unit 144 is heated by the refrigerant flowing through the first heat exchange unit 142.
  • the first heat exchanger 142 of the present embodiment includes an upstream core portion 142a into which the refrigerant from the compressor 12 flows, a gas-liquid separator 142b that separates gas and liquid of the refrigerant flowing out from the upstream core portion 142a, and gas-liquid It has the downstream core part 142c which thermally radiates the refrigerant separated by the separator 142b.
  • the gas-liquid separator 142b functions as a receiver tank that temporarily stores part of the refrigerant flowing out of the upstream core portion 142a.
  • the second heat exchange unit 144 is provided in the antifreeze fluid circulation circuit 60 through which the antifreeze fluid flows.
  • the antifreeze fluid circulation circuit 60 is provided with a circulation pump 62 for circulating the antifreeze fluid, and a heater core 64 for radiating the antifreeze fluid.
  • the operation of the circulation pump 62 is controlled by a control signal from the control device 100 described later.
  • the heater core 64 is disposed in the hot air passage 512 formed in the air conditioning case 51 of the indoor air conditioning unit 50.
  • the heater core 64 is a radiator that dissipates the antifreeze liquid flowing inside by heat exchange with the blowing air passing through the hot air passage 512.
  • the blast air passing through the hot air passage 512 is heated by the antifreeze liquid flowing through the heater core 64.
  • the water-refrigerant heat exchanger 14 of the present embodiment functions as a radiator that indirectly radiates the high pressure refrigerant discharged from the compressor 12 to the blast air through the antifreeze liquid and the heater core 64.
  • a valve device 30 is connected to the refrigerant outlet side of the water-refrigerant heat exchanger 14.
  • the valve device 30 is a device that switches the circulation path of the refrigerant in the heat pump cycle 10.
  • the valve device 30 of the present embodiment is configured as a combined control valve in which a plurality of valves operate in conjunction with one another. The operation of the valve device 30 of the present embodiment is controlled by a control signal from the control device 100 described later.
  • a core introduction flow path 302 As a refrigerant flow path through which the refrigerant flows, a core introduction flow path 302, a supercooling flow path 304, and a suction side flow path 306 are set.
  • the core introduction flow channel 302 is a refrigerant flow channel that guides the refrigerant that has passed through the first heat exchange section 142 of the water-refrigerant heat exchanger 14 to the core inlet section 170 a side of the core section 17 of the outdoor heat exchanger 16.
  • a throttle valve 36 for switching the core introduction flow channel 302 to a fully open state and a variable throttle state on the lower side of the liquid reservoir portion 184 is disposed.
  • the subcooling flow path 304 is a refrigerant flow path for guiding the liquid refrigerant stored in the liquid receiver 18 of the outdoor heat exchanger 16 described later to the refrigerant inlet side of the subcooling portion 19 of the outdoor heat exchanger 16 in the cooling mode. is there.
  • a first flow path opening / closing valve 38 which opens / closes the subcooling flow path 304 on the lower side of the liquid reservoir portion 184 is disposed.
  • the suction side flow passage 306 is a refrigerant flow passage for guiding the refrigerant of the liquid receiver 18 of the outdoor heat exchanger 16 described later to the refrigerant suction side of the compressor 12 in the heating mode.
  • the suction side flow passage 306 functions as a bypass flow passage that bypasses the cooling expansion valve 20 and the evaporator 22 and guides the refrigerant to the refrigerant suction side of the compressor 12.
  • a second flow passage on / off valve 40 for opening and closing the suction side flow passage 306 on the lower side of the liquid reservoir portion 184 is disposed.
  • the first flow path opening / closing valve 38 and the second flow path opening / closing valve 40 are the refrigerant flow path on the downstream side of the liquid reservoir portion 184 of the liquid receiver 18 described later.
  • a flow path switching unit for switching to any of the paths 306 is configured.
  • the valve device 30 of the present embodiment is configured integrally with a liquid receiver 18 of an outdoor heat exchanger 16 described later. A part of the valve device 30 according to the present embodiment is accommodated inside the receiver 18 of the outdoor heat exchanger 16 described later. The detailed configuration of the valve device 30 will be described later.
  • the outdoor heat exchanger 16 is a heat exchanger disposed outside the vehicle so as to be exposed to the air outside the vehicle (that is, outside air).
  • the outdoor heat exchanger 16 is connected to the refrigerant flow downstream side of the core introduction flow path 302 of the valve device 30.
  • the outdoor heat exchanger 16 is a heat exchanger that causes the refrigerant that has passed through the core introduction passage 302 to exchange heat with the outside air.
  • the outdoor heat exchanger 16 dissipates the heat of the liquid refrigerant stored in the core portion 17 which exchanges heat with the outside air, the receiver 18 capable of storing a part of the refrigerant flowing out from the core 17, and the receiver 18.
  • the supercooling unit 19 includes a pair of header tanks 162 and 164. In the present embodiment, one of the pair of header tanks 162 and 164 adjacent to the receiver 18 is taken as a first header tank 162, and the other one is taken as a second header tank 164.
  • the main members of the outdoor heat exchanger 16 are made of a metal material made of aluminum.
  • the outdoor heat exchanger 16 is joined by a brazing material provided at a predetermined portion of each member in a state in which each member made of a metal material is assembled.
  • the core portion 17 constituting the outdoor heat exchanger 16 is a heat absorber which absorbs heat from the outside air or a radiator which releases the heat to the outside air according to the temperature of the refrigerant flowing from the core introduction passage 302 of the valve device 30 and the outside air temperature. Act as.
  • the core portion 17 of the present embodiment functions as a condenser that condenses the refrigerant by heat release to the outside air in the cooling mode, and functions as an evaporator that evaporates the refrigerant by heat absorption from the outside air in the heating mode.
  • the core portion 17 has a lower side core portion 170 located on the lower side and an upper side core portion 171 located on the upper side than the lower side core portion 170. Further, the core inlet portion 170a into which the refrigerant from the core introduction flow path 302 is introduced and the core outlet portion 171a which discharges the refrigerant having passed through the core portion 17 to the liquid reservoir portion 184 of the liquid receiver 18 Is provided.
  • the core inlet 17a is provided on the lower side than the core outlet 171a so that the refrigerant that has passed through the lower core 170 flows into the upper core 171 in the core 17.
  • the core portion 17 is formed of a laminated body in which a plurality of tubes 172 through which the refrigerant flows are laminated vertically.
  • the core portion 17 is provided with fins 174 between the adjacent tubes 172 for promoting heat exchange between the refrigerant and the outside air.
  • Both ends of the tubes 172 constituting the core portion 17 in the longitudinal direction are connected to the pair of header tanks 162, 164 so as to communicate with the inside of the pair of header tanks 162, 164.
  • the liquid receiver 18 functions as a receiver tank that separates the refrigerant flowing out of the core portion 17 into liquid refrigerant and gas refrigerant, and temporarily stores part of the separated liquid refrigerant as surplus refrigerant in the cycle.
  • the receiver 18 is disposed adjacent to the first header tank 162 of the pair of header tanks 162 and 164.
  • the receiver 18 has a housing 182 forming an outer shell.
  • the housing 182 is arranged to extend in the vertical direction as well as the first header tank 162.
  • the housing 182 includes a substantially cylindrical tubular portion 182a and an upper end cap 182b closing an opening on the upper end side of the tubular portion 182a.
  • the lower end side opening of the cylindrical portion 182 a is closed by the body portion 32 of the valve device 30.
  • the housing 182 of the liquid receiver 18 is formed with a liquid reservoir portion 184 for temporarily storing a part of the liquid refrigerant inside thereof.
  • the liquid reservoir portion 184 is formed on the upper portion of the housing 182, that is, on the upper end side cap 182 b side of the housing 182.
  • a body portion 32 of a valve device 30 described later is accommodated inside the housing 182.
  • the body portion 32 of the valve device 30 of the present embodiment is accommodated in the lower portion of the housing 182, that is, the lower side of the liquid reservoir portion 184.
  • a liquid reservoir inlet 183a for introducing the refrigerant having passed through the core portion 17 through the first header tank 162 into the liquid reservoir 184 is formed at a portion where the liquid reservoir 184 is formed.
  • the housing 182 of this embodiment is formed with a single reservoir inlet 183a.
  • a high pressure side inlet 183d, a core side outlet 183e, a suction side outlet 183f, and a supercooling side outlet 183g are formed at a portion where the body portion 32 of the valve device 30 is accommodated.
  • the high pressure side inlet 183 d is an opening for introducing the refrigerant into the core introduction passage 302 of the valve device 30.
  • the core side outlet 183 e is an opening for leading the refrigerant from the core introduction channel 302 of the valve device 30.
  • the suction side outlet 183 f is an opening for leading the refrigerant from the suction side flow passage 306 of the valve device 30.
  • the subcooling side outlet 183 g is an opening for leading the refrigerant from the subcooling flow path 304 of the valve device 30.
  • the supercooling unit 19 is a heat exchange unit that exchanges heat with the outside air to cool the liquid refrigerant stored in the liquid storage unit 184 in the cooling mode.
  • the supercooling unit 19 is disposed below the core unit 17.
  • the supercooling portion 19 is configured by a stacked body in which a plurality of tubes 192 through which the refrigerant flows are stacked vertically.
  • fins 194 are provided between adjacent tubes 192 to promote heat exchange between the refrigerant and the outside air.
  • the plurality of tubes 192 constituting the supercooling unit 19 are connected to the pair of header tanks 162 and 164 at both ends in the longitudinal direction so as to communicate with the inside of the pair of header tanks 162 and 164.
  • the supercooling portion 19 is disposed below the lower core portion 170 in the upper core portion 171 and the lower core portion 170 that constitute the core portion 17.
  • the supercooling unit 19 is disposed adjacent to the lower core unit 170.
  • the pair of header tanks 162 and 164 function as tanks for collecting and distributing the refrigerant flowing through the tubes 172 and 192.
  • a pair of header tanks 162, 164 extend along the stacking direction of the tubes 172, 192 and are connected to the longitudinal ends of the tubes 172, 192.
  • Each header tank 162, 164 has an internal space communicating with the inside of each tube 172, 192.
  • the first header tank 162 is provided with two partition parts 163a and 163b for dividing the internal space communicating with the tubes 172 and 192 into upper and lower parts. Inside the first header tank 162, three spaces such as an upper space 162a, a middle space 162b, and a lower space 162c are formed by two partition parts 163a and 163b.
  • the middle stage space 162 b of the first header tank 162 is in communication with the tubes 172 constituting the lower side core portion 170 located on the lower side of the core portion 17. Further, in the portion forming the middle stage space 162b of the first header tank 162, the core side outlet port 183e in the liquid receiver 18 is formed via the middle stage side connection portion 165 in which the flow passage of the refrigerant is formed. It is linked to the site.
  • the middle stage space 162 b of the first header tank 162 is in communication with the core introduction flow path 302 via the flow passage inside the middle stage side connection portion 165.
  • the refrigerant having passed through the core introduction channel 302 flows into the middle stage space 162 b of the first header tank 162. Then, the refrigerant that has flowed into the middle stage space 162 b of the first header tank 162 is distributed to each of the tubes 172 that constitute the lower side core portion 170 located on the lower side of the core portion 17.
  • the upper stage space 162 a of the first header tank 162 is in communication with the tubes 172 constituting the upper side core portion 171 located on the upper side of the lower side core portion 170 in the core portion 17. Further, the portion forming the upper space 162a of the first header tank 162 is a portion where the liquid reservoir inlet 183a is formed in the liquid receiver 18 via the upper side connecting portion 166 in which the flow passage of the refrigerant is formed. Is linked to The upper space 162 a of the first header tank 162 is in communication with the liquid reservoir 184 via a flow passage inside the upper connection 166.
  • the lower space 162 c of the first header tank 162 is in communication with the tubes 192 constituting the supercooling unit 19. Further, at the part forming the lower space 162c of the first header tank 162, the subcooling side outlet 183g in the liquid receiver 18 is formed via the lower side connecting part 167 in which the flow passage of the refrigerant is formed inside It is linked to the site.
  • the lower space 162 c of the first header tank 162 is in communication with the supercooling flow path 304 via a flow passage inside the lower side connection portion 167.
  • the refrigerant that has passed through the subcooling flow path 304 flows into the lower space 162 c of the first header tank 162. Then, the refrigerant flowing into the lower space 162 c of the first header tank 162 is distributed to the tubes 192 of the supercooling unit 19.
  • the second header tank 164 is provided with one partition portion 164 c that divides the internal space communicating with the tubes 172 and 192 into upper and lower portions. Inside the second header tank 164, two spaces such as an upper space 164a and a lower space 164b are formed by one partition portion 164c.
  • the upper space 164 a of the second header tank 164 is in communication with the tubes 172 that constitute the core portion 17. Further, the lower stage space 164 b of the second header tank 164 is in communication with the tubes 192 constituting the supercooling unit 19.
  • a refrigerant lead-out portion 168 for leading the refrigerant that has passed through the supercooling portion 19 to the outside is provided.
  • the temperature of the refrigerant is the lowest in the outdoor heat exchanger 16.
  • the second header tank 164 a space into which the refrigerant on the core portion 17 side flows and a space into which the refrigerant on the subcooling portion 19 side flows are separated by the partition portion 164c, and the core through the partition portion 164c. There is a possibility that the refrigerant on the part 17 side and the refrigerant on the subcooling part 19 side will exchange heat.
  • the partition portion 164c of the second header tank 164 has a heat insulating structure (for example, an air layer) so that heat exchange between the refrigerant on the core portion 17 side and the refrigerant on the subcooling portion 19 becomes difficult. It is desirable to have a structure).
  • the outdoor heat exchanger 16 of the present embodiment has a structure in which the refrigerant flowing in the lower side core portion 170 and the supercooling portion 19 adjacent to each other in the upper and lower direction flows in the same direction as shown by arrows FL1 and FL3 in FIG. It has become. That is, the outdoor heat exchanger 16 has a structure in which the refrigerant flowing through the lower side core portion 170 and the refrigerant flowing through the subcooling portion 19 are in parallel flow.
  • the cooling expansion valve 20 is provided on the downstream side of the refrigerant flow of the refrigerant lead-out portion 168 of the outdoor heat exchanger 16 so that the refrigerant flowing out of the outdoor heat exchanger 16 flows in.
  • the cooling expansion valve 20 is a pressure reducing device that reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger 16 to a predetermined pressure in the cooling mode.
  • the cooling expansion valve 20 of the present embodiment is a temperature type that reduces and expands the refrigerant flowing into the evaporator 22 by a mechanical mechanism so that the degree of superheat of the refrigerant on the refrigerant outlet side of the evaporator 22 becomes a predetermined range. It consists of an expansion valve.
  • An evaporator 22 is connected to the refrigerant outlet side of the cooling expansion valve 20.
  • the evaporator 22 is disposed on the air flow upstream side of the heater core 64 in the air conditioning case 51 of the indoor air conditioning unit 50.
  • the evaporator 22 is a cooling heat exchanger that cools the blown air by evaporating the refrigerant by heat exchange with the blown air of the low-pressure refrigerant decompressed by the cooling expansion valve 20.
  • the refrigerant outlet side of the evaporator 22 is connected to the refrigerant suction side of the compressor 12.
  • the refrigerant flow downstream side of the evaporator 22 and the refrigerant flow downstream side of the suction side flow path 306 of the valve device 30 are joined between the evaporator 22 and the compressor 12 A merging unit 24 is provided.
  • the indoor air conditioning unit 50 is disposed inside the instrument panel (i.e., the instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 50 has an air conditioning case 51 forming an outer shell and forming an air passage of the blowing air blown into the vehicle compartment inside.
  • An internal / external air switching device 52 is provided on the most upstream side of the air flow of the air conditioning case 51.
  • the internal / external air switching device 52 switches / introduces the air inside the vehicle (ie, the inside air) and the outside air.
  • a blower 53 for directing the air introduced through the inside / outside air switching device 52 toward the vehicle interior and arranging the air is disposed.
  • the blower 53 is configured by an electric blower.
  • the rotation speed of the blower 53 is controlled by a control signal output from the control device 100 described later.
  • An evaporator 22 and a heater core 64 are disposed downstream of the air flow of the blower 53.
  • the evaporator 22 and the heater core 64 are disposed in the order of the evaporator 22 and the heater core 64 with respect to the flow of the blowing air.
  • a warm air passage 512 in which the heater core 64 is disposed and a bypass passage 514 for flowing air around the warm air passage 512 are set downstream of the air flow of the evaporator 22. ing.
  • an air mix door 54 for adjusting the air volume flowing into the hot air passage 512 and the air volume flowing into the bypass passage 514 among the blown air after passing through the evaporator 22 is disposed. .
  • the operation of the air mix door 54 is controlled by a control signal output from the control device 100 described later.
  • the air whose temperature has been adjusted by the evaporator 22 and the heater core 64 is blown out into the vehicle compartment through an opening (not shown).
  • the control device 100 which is an electrical control unit of the vehicle air conditioner 1 will be described.
  • the control device 100 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like, and peripheral circuits thereof.
  • the storage unit of the control device 100 is configured of a non-transitional substantial storage medium.
  • the control device 100 performs various calculations and processing based on a control program stored in a ROM or the like, and the compressor 12 connected to the output side, the expansion valve 20 for cooling, the valve device 30, the circulation pump 62, the blower 53, The operation of each control device such as the air mix door 54 is controlled.
  • control unit 100 is integrally configured with a control unit that controls the operation of each control device connected to the output side.
  • a configuration for example, hardware, software
  • a drive control unit that drives the valve device 30.
  • the valve device 30 includes a body portion 32, a rod 34 constituting a shaft member, a throttle valve 36, a first flow path on-off valve 38, a second flow path on-off valve 40, and an actuator 46.
  • An arrow AD shown in FIGS. 2 to 4 is a direction extending along the axial center CL of the rod 34 of the valve device 30 (ie, the axial direction of the rod 34).
  • the axial center CL of the rod 34 in the present embodiment extends in the vertical direction. For this reason, in the present embodiment, the axial direction AD of the rod 34 is in the same direction as the vertical direction.
  • the body portion 32 is formed of a block-like member made of a metal material excellent in heat resistance and pressure resistance.
  • the body portion 32 is accommodated inside the housing 182 of the liquid receiver 18 below the liquid reservoir portion 184.
  • a core introduction flow channel 302 In the body portion 32 , a core introduction flow channel 302, a supercooling flow channel 304, and a suction side flow channel 306 are formed.
  • the subcooling flow path 304 and the suction side flow path 306 are provided so as to communicate with the lower side portion 184c of the liquid reservoir 184 closer to the lower end 184b than the upper end 184a. ing.
  • the refrigerant inlet 304a of the subcooling flow passage 304 is formed at a position avoiding the central portion.
  • the refrigerant outlet 304b of the supercooling flow path 304 is formed at the lower side of the side surface.
  • a flow passage hole extending in the axial direction AD of the rod 34 is provided in the middle of the flow passage of the supercooling flow passage 304, and the first valve accommodation for accommodating the first flow passage on-off valve 38 by the flow passage hole.
  • a chamber 330 is configured.
  • the body portion 32 substantially includes the lower end portion 184 b of the liquid storage portion 184 so that the suction side flow passage 306 communicates with the lower side portion 184 c of the liquid storage portion 184.
  • a refrigerant inlet 306 a of the suction side flow passage 306 is formed at the central portion.
  • a refrigerant outlet 306b of the suction side channel 306 is formed at a portion of the side surface of the supercooling channel 304 above the refrigerant outlet 304b of the subcooling channel 304.
  • a flow passage hole extending in the axial direction AD of the rod 34 is provided in the middle of the flow passage of the suction side flow passage 306, and the second valve accommodation for accommodating the second flow passage on-off valve 40 by the flow passage hole.
  • a chamber 331 is configured.
  • the refrigerant inlet 302 a of the core introduction flow channel 302 and the refrigerant at the portion positioned between the refrigerant outlet 304 b of the subcooling flow channel 304 and the refrigerant outlet 306 b of the suction side flow channel An outlet 302 b is formed.
  • a flow passage hole extending in the axial direction AD of the rod 34 is provided in the middle of the flow passage of the core introduction flow passage 302, and the third valve storage chamber 332 for containing the throttle valve 36 is configured by the flow passage hole. It is done.
  • the second valve storage chamber 331, the third valve storage chamber 332, and the first valve storage chamber 330 are arranged in series in this order from the upper side to the lower side.
  • Each housing portion 330 to 332 is partitioned by a first support portion 333 that slidably supports the rod 34 and a second support portion 334.
  • the first support portion 333 is formed in the body portion 32.
  • the second support portion 334 is press-fit into the inside of the body portion 32 on the lower side of the first support portion 333.
  • the refrigerant outlet 304 b of the supercooling flow passage 304 in the present embodiment is provided on the lower side than the refrigerant outlet 302 b of the core introduction flow passage 302 and the refrigerant outlet 306 b of the suction side flow passage 306. For this reason, the subcooling flow path 304 is not communicated with the core introduction flow path 302 and the suction side flow path 306 inside the body portion 32, the core introduction flow path 302 and the suction side flow path 306 in the body portion 32 It comprises including the communicating path 304c formed in the avoided part. According to this, the refrigerant in the liquid reservoir portion 184 can be appropriately led to the first valve storage chamber 330 via the communication passage 304 c of the subcooling flow passage 304 formed in the body portion 32.
  • the core portion 17 of the outdoor heat exchanger 16 functions as a condenser in the cooling mode and functions as an evaporator in the heating mode.
  • the gas refrigerant flows in the suction side channel 306 and the liquid refrigerant flows in the subcooling channel 304.
  • the gas refrigerant tends to have a larger pressure loss than the liquid refrigerant.
  • the opening area of the refrigerant inlet 306a of the suction side flow passage 306 is made larger than the opening area of the refrigerant inlet 304a of the supercooling flow passage 304. According to this, the pressure loss of the gas refrigerant flowing through the suction side flow passage 306 can be suppressed.
  • the refrigerant outlet 306 b of the suction side channel 306 is provided above the refrigerant outlet 304 b of the supercooling channel 304. That is, the refrigerant outlet 306 b of the suction side channel 306 is provided at a position closer to the liquid reservoir 184 than the refrigerant outlet 304 b of the supercooling channel 304. According to this, it is possible to reduce the pressure loss of the gas refrigerant flowing through the suction side flow passage 306 by shortening the flow passage length of the suction side flow passage 306 through which the gas refrigerant flows.
  • the valve device 30 of the present embodiment has a configuration in which the suction side flow passage 306 and the subcooling flow passage 304 intersect in a three-dimensional manner inside the valve device 30. According to this, in the cooling mode, the liquid refrigerant in the liquid reservoir 184 is appropriately led to the supercooling unit 19 via the supercooling flow path 304, and in the heating mode, the refrigerant in the liquid reservoir 184 via the suction side flow path 306 Can be appropriately led to the refrigerant suction side of the compressor 12.
  • the pressure of the refrigerant is the lowest on the refrigerant suction side of the compressor 12, and the temperature of the refrigerant tends to be lower as compared to other parts.
  • the suction side flow passage 306 and the subcooling flow passage 304 are three-dimensionally intersected so that the refrigerant flowing through the flow passages mutually exchanges heat. According to this, it is also possible to expect the effect that the refrigerant flowing in the subcooling channel 304 is cooled by heat exchange with the refrigerant in the suction side channel 306. According to this, it is possible to introduce a refrigerant having a high liquid density into the subcooling unit 19 in the cooling mode.
  • the meaning that flow paths intersect in a three-dimensional manner can be interpreted as a state in which flow paths independent of one another overlap in a predetermined direction.
  • first valve storage chamber 330 In the first valve storage chamber 330, a first flow path opening / closing valve 38 for opening / closing the supercooling flow path 304, and an annular first valve seat portion 41 for forming a valve seat for contacting / separating the first flow path opening / closing valve 38 A biasing spring 42 or the like that biases the first flow path opening / closing valve 38 in the valve closing direction is accommodated.
  • the first valve seat portion 41 is fixed to the inside of the first valve storage chamber 330 by press fitting or the like.
  • the first flow path opening / closing valve 38 is a valve body that comes in contact with and separates from the first valve seat portion 41.
  • the first flow path opening / closing valve 38 is formed with an insertion hole 382 through which the rod 34 is inserted.
  • the diameter of the insertion hole 382 is slightly larger than the outer diameter of the rod 34 such that a minute gap passage through which the refrigerant hardly flows is formed between the outside of the rod 34 and the inside of the main valve body 362. ing.
  • the first flow path opening / closing valve 38 of the present embodiment is provided on the upper side of the first valve seat portion 41.
  • the first flow path opening / closing valve 38 is opened when it is pressed upward by the pressing portion 342 provided on the rod 34 when the rod 34 moves upward. Further, when the rod 34 is moved downward and the contact state with the pressing portion 342 is released, the first flow path opening / closing valve 38 is closed by the biasing force of the biasing spring 42.
  • a second flow path opening / closing valve 40 for opening and closing the suction side flow path 306, and an annular second valve seat portion 43 forming a valve seat for contacting / separating the second flow path opening / closing valve 40 Is housed.
  • the second valve seat portion 43 is fixed to the inside of the second valve storage chamber 331 by press fitting or the like.
  • the second flow path opening / closing valve 40 is a valve body that contacts and separates from the second valve seat portion 43.
  • the second channel on-off valve 40 is connected to the rod 34 so as to be displaced integrally with the rod 34.
  • the second flow path opening / closing valve 40 of the present embodiment is provided on the lower side of the second valve seat portion 43.
  • the second flow path opening / closing valve 40 is closed. Further, the second flow path opening / closing valve 40 is opened when the rod 34 is moved downward and the contact state with the second valve seat portion 43 is released.
  • the third valve chamber 332 includes a throttle valve 36 for switching the core introduction passage 302 into a fully open state and a variable throttle state, an annular third valve seat 44 forming a valve seat to which the throttle valve 36 contacts and separates, a throttle valve A biasing spring 45 or the like that biases 36 in the valve closing direction is accommodated.
  • the third valve seat portion 44 of the present embodiment is fixed to the inside of the third valve storage chamber 332 by press fitting or the like.
  • the throttle valve 36 of the present embodiment is provided on the upper side of the third valve seat portion 44.
  • the throttle valve 36 has a main valve body 362 which is configured separately from the rod 34, and a sub valve body 364 which is configured integrally with the rod 34.
  • the auxiliary valve body 364 is formed of a valve body whose outer diameter is smaller than that of the main valve body 362.
  • the main valve body 362 is a valve body that comes in contact with and separates from the third valve seat portion 44.
  • the main valve body 362 is formed with an insertion hole 362 a through which the rod 34 is inserted.
  • the insertion hole 362a has a hole diameter larger than the outer diameter of the rod 34 such that a gap flow path 362b through which the refrigerant flows is formed between the outside of the rod 34 and the inside of the main valve body 362 .
  • the insertion hole 362 a formed in the main valve body 362 has a hole diameter larger than the insertion hole 382 formed in the first flow path opening / closing valve 38.
  • the main valve body 362 is provided with a sub valve contact portion 362 c for contacting the sub valve body 364 and displacing the main valve body 362 to the valve opening side when the rod 34 is moved upward. ing.
  • the sub valve contact portion 362 c is connected to the main valve body 362.
  • the sub valve body 364 has an opening area of the clearance flow path 362 b formed between the outside of the rod 34 and the inside of the main valve body 362 in a state where the main valve body 362 abuts on the third valve seat portion 44. It is a valve body to adjust.
  • the sub valve body 364 of the present embodiment also functions as a pressing portion that presses the main valve body 362 to the valve opening side.
  • the throttle valve 36 is opened when the rod 34 moves upward and the main valve body 362 moves away from the third valve seat 44. In addition, when the rod 34 moves downward and the main valve body 362 abuts on the third valve seat portion 44, the throttle valve 36 is in a throttle state in which the pressure reducing action of the refrigerant is exhibited.
  • the throttle valve 36 can adjust the opening area of the clearance flow path 362 b to a desired size by displacing the sub valve body 364. That is, the throttle valve 36 can reduce the pressure of the refrigerant flowing through the core introduction channel 302 in the throttled state to a desired pressure.
  • the rod 34 is a shaft member that displaces the throttle valve 36, the first flow path opening / closing valve 38, and the second flow path opening / closing valve 40 by moving along the axial center CL.
  • the valve device 30 of the present embodiment is configured to displace the throttle valve 36, the first flow path opening / closing valve 38, and the second flow path opening / closing valve 40 by a single rod 34.
  • the rod 34 is formed of a rod-like member extending along the axis CL.
  • the rod 34 is disposed so as to penetrate the liquid reservoir portion 184, the core introduction flow passage 302, the supercooling flow passage 304, and the suction side flow passage 306, respectively.
  • the rod 34 is slidably supported by a first support portion 333 and a second support portion 334 provided in the body portion 32.
  • the throttle valve 36, the first channel on-off valve 38, and the second channel on-off valve 40 move from the upper side to the lower side, and the second channel on-off valve 40, the throttle valve 36, the first The flow path opening / closing valves 38 are mounted in the order.
  • the rod 34 is integrally provided with a sub valve body 364 of the throttle valve 36 and a pressing portion 342 for pressing the first flow path opening / closing valve 38.
  • the upper end of the rod 34 is connected to the actuator 46, and is moved in the axial direction AD by the driving force output from the actuator 46.
  • the actuator 46 is a device that outputs a driving force that moves the rod 34 in the axial direction AD.
  • the actuator 46 according to the present embodiment is formed of a linear actuator which converts rotational motion into linear motion (i.e., sliding motion) and outputs it.
  • the actuator 46 is disposed above the liquid receiver 18.
  • the actuator 46 of the present embodiment includes an electric motor 462 that generates a rotational drive force by energization, a power conversion mechanism (not shown), and the like.
  • the electric motor 462 of the present embodiment is configured of a stepping motor capable of controlling the rotation angle according to the input pulse signal.
  • the power conversion mechanism is a mechanism that converts the rotational motion of the output shaft of the electric motor 462 into a linear motion to move the rod 34 in the axial direction AD.
  • FIG. 5 is a characteristic diagram showing the relationship between the pulse input to the electric motor 462 of the actuator 46 and the opening area of each of the valves 36, 38, 40 of the valve device 30.
  • the change in the opening area of the throttle valve 36 is indicated by a solid line
  • the change in the opening area of the first flow path opening / closing valve 38 is indicated by a broken line
  • the change in the opening area of the second flow path opening / closing valve 40 is indicated by a dashed dotted line. It shows.
  • the opening area of each of the valves 36, 38 and 40 is a passage sectional area effective for the refrigerant to flow.
  • the valve device 30 can adjust the opening area of each of the valves 36, 38 and 40 by changing the pulse input to the electric motor 462.
  • the valve device 30 can be set to a state in which the second flow path opening / closing valve 40 is opened and the throttle valve 36 and the first flow path opening / closing valve 38 are closed. In this state, since the core introduction flow path 302 is fully closed, the circulation of the refrigerant in the heat pump cycle 10 is stopped.
  • valve device 30 since the sub valve body 364 is connected to the rod 34, the position between the sub valve body 364 is finely adjusted, so that between the outside of the rod 34 and the inside of the main valve body 362 It is possible to change the opening area of the clearance flow path 362b formed in the. That is, the valve device 30 of the present embodiment is in a variable throttling state in which the opening area of the core introduction flow path 302 can be finely adjusted in a state where the suction side flow path 306 is fully open and the subcooling flow path 304 is fully closed. be able to.
  • the valve device 30 closes the second flow on / off valve 40 and the first flow on / off valve 38 as shown in FIG. 8.
  • the main valve body 362 of the throttle valve 36 separates from the third valve seat 44.
  • the core introduction flow path 302 is fully opened, and the refrigerant passing through the core introduction flow path 302 flows into the outdoor heat exchanger 16 with almost no pressure reduction. That is, in the valve device 30 of the present embodiment, the core introduction flow channel 302 can be fully opened while the suction side flow channel 306 is fully closed and the subcooling flow channel 304 is fully open.
  • control device 100 is a valve device so that the core introduction passage 302 and the subcooling passage 304 are fully open and the suction side passage 306 is fully closed in the cooling mode. 30 actuators 46 are controlled.
  • control device 100 has the valve device 30 so that the core introduction flow passage 302 is in the variable throttle state, the subcooling flow passage 304 is in the fully closed state, and the suction side flow passage 306 is in the fully open state. Control the actuator 46 of FIG. The control device 100 adjusts the opening area of the core introduction flow passage 302 so that the degree of superheat of the refrigerant on the refrigerant suction side of the compressor 12 falls within a predetermined range in the heating mode.
  • the vehicle air conditioner 1 of the present embodiment can switch the operation mode to the cooling mode and the heating mode by the control of each control device by the control device 100.
  • the operation in the cooling mode and the heating mode of the vehicle air conditioner 1 will be described with reference to FIGS. 10 to 13. Note that, for convenience, in FIGS. 10 and 12, the reference numerals inside the valve device 30 are partially omitted.
  • control device 100 controls air mix door 54 to a position where bypass passage 514 is opened as shown in FIG. As a result, in the indoor air conditioning unit 50 in the cooling mode, the entire flow rate of the blown air after passing through the evaporator 22 passes through the bypass passage 514.
  • the control device 100 stops the circulation pump 62 so that the heat exchange between the refrigerant and the antifreeze liquid is not performed in the water-refrigerant heat exchanger 14.
  • control device 100 controls the valve device 30 so that the core introduction flow passage 302 and the subcooling flow passage 304 are fully opened, and the suction side flow passage 306 is fully closed. .
  • the control device 100 controls the actuator 46 of the valve device 30 to a position where the second flow path opening / closing valve 40 abuts on the second valve seat portion 43. Push up. At this time, in the valve device 30, by pushing up the rod 34, the sub valve contact portion 362c provided on the main valve body 362 of the throttle valve 36 abuts on the sub valve body 364 so that the main valve body 362 is the third valve. It is displaced to a position away from the valve seat portion 44.
  • the rod 34 is pushed up so that the first flow path opening / closing valve 38 and the pressing portion 342 of the rod 34 abut each other, and the first flow path opening / closing valve 38 separates from the first valve seat portion 41 Displace to position.
  • the heat pump cycle 10 in the cooling mode becomes a refrigerant circuit in which the refrigerant flows as shown in FIG. That is, in the heat pump cycle 10 in the cooling mode, the high pressure refrigerant discharged from the compressor 12 flows into the water-refrigerant heat exchanger 14. At this time, since the circulation pump 62 is stopped, in the water-refrigerant heat exchanger 14, the high pressure refrigerant flows into the valve device 30 with almost no heat exchange with the antifreeze liquid.
  • the high pressure refrigerant flowing into the valve device 30 is hardly depressurized by the valve device 30, and the core of the outdoor heat exchanger 16 is Flow into section 17. Then, the high pressure refrigerant flowing into the core portion 17 dissipates heat to the outside air, and then flows into the liquid reservoir portion 184 of the liquid receiver 18 to be separated into a gas phase refrigerant and a liquid phase refrigerant.
  • the subcooling flow path 304 of the subcooling flow path 304 and the suction side flow path 306 communicating with the lower side portion 184c of the liquid reservoir portion 184 is fully open. For this reason, the liquid refrigerant stored in the liquid reservoir portion 184 of the liquid receiver 18 flows into the supercooling portion 19 via the subcooling flow path 304.
  • the high pressure refrigerant flowing into the supercooling unit 19 dissipates heat to the outside air, and then flows into the cooling expansion valve 20 and is decompressed until it becomes a low pressure refrigerant.
  • control device 100 controls air mix door 54 to a position closing bypass passage 514 as shown in FIG. 12.
  • the indoor air conditioning unit 50 in the heating mode is configured such that the total flow rate of the blown air after passing through the evaporator 22 passes through the hot air passage 512.
  • the control device 100 operates the circulation pump 62 such that the heat exchange between the refrigerant and the antifreeze liquid is performed in the water-refrigerant heat exchanger 14.
  • control device 100 is configured such that the core introduction flow passage 302 is in a variable throttle state, the subcooling flow passage 304 is in a fully closed state, and the suction side flow passage 306 is in a fully open state. Control.
  • control device 100 controls the actuator 46 of the valve device 30 so that the second flow path opening / closing valve 40 is separated from the second valve seat portion 43 and the sub valve body 364 Pushes the rod 34 down to a position where it separates from the sub valve contact portion 362 c of the main valve body 362.
  • the contact of the main valve body 362 with the sub valve body 364 is released, and the biasing force of the biasing spring 45 displaces the main valve body 362 to a position where the main valve body 362 contacts the third valve seat portion 44.
  • the contact between the first flow path opening / closing valve 38 and the pressing portion 342 of the rod 34 is released, and the first flow path opening / closing is performed by the biasing force of the biasing spring 42.
  • the valve 38 is displaced to a position where it abuts on the first valve seat 41.
  • the heat pump cycle 10 in the heating mode becomes a refrigerant circuit in which the refrigerant flows as shown in FIG. That is, in the heat pump cycle 10 in the heating mode, the high pressure refrigerant discharged from the compressor 12 flows into the first heat exchange portion 142 of the water-refrigerant heat exchanger 14, and the heat possessed by the high pressure refrigerant is the antifreeze liquid and the heater core. The heat is dissipated to the blast air through 64.
  • the high-pressure refrigerant discharged from the compressor 12 releases heat to the outside air at the upstream side core portion 142a of the first heat exchange portion 142, and is then gas-liquid separated at the gas-liquid separator 142b. Then, the liquid refrigerant separated by the gas-liquid separator 142 b flows into the downstream core portion 142 c and is subcooled. Then, the liquid refrigerant flowing out of the downstream side core portion 142 c flows into the valve device 30.
  • the core introduction flow path 302 of the valve device 30 is in the variable throttle state, so the high pressure refrigerant flowing into the valve device 30 is depressurized in the core introduction flow path 302 until it becomes a low pressure refrigerant, It flows into the core portion 17 of the outdoor heat exchanger 16.
  • the refrigerant flowing into the core portion 17 absorbs heat from the outside air and evaporates. Then, the gas refrigerant evaporated in the core portion 17 flows into the liquid reservoir portion 184 of the liquid receiver 18.
  • the suction side flow passage 306 of the subcooling flow passage 304 and the suction side flow passage 306 communicating with the lower side portion 184c of the liquid reservoir portion 184 is fully open. Therefore, the refrigerant containing the oil present in the liquid reservoir portion 184 of the liquid receiver 18 flows to the refrigerant suction side of the compressor 12 through the suction side flow passage 306 of the valve device 30, and is compressed again by the compressor 12 Ru.
  • the heat of the high pressure refrigerant in the heat pump cycle 10 indirectly heats the blowing air. Then, the blowing air heated by the indoor air conditioning unit 50 is blown out into the vehicle compartment. Thereby, heating of the vehicle interior is realized.
  • the heat pump cycle 10 can be miniaturized.
  • the outdoor heat exchanger 16 of the present embodiment is configured to allow the suction side flow passage 306 provided in the valve device 30 to communicate with the lower side portion 184 c of the liquid reservoir portion 184 of the liquid receiver 18. According to this, the refrigerant containing the oil present in the liquid reservoir 184 in the heating mode can be returned to the refrigerant suction side of the compressor 12 via the suction side flow passage 306 by its own weight.
  • the outdoor heat exchanger 16 of the present embodiment includes the first flow path opening / closing valve 38 and the second flow path opening / closing valve 40 that constitute the flow path switching unit below the liquid storage portion 184 of the liquid receiver 18. It is provided on the side. According to this, since the refrigerant present on the lower side of the liquid reservoir 184 flows toward the first flow path opening / closing valve 38 and the second flow path opening / closing valve 40 by its own weight, a suction mechanism or the like for sucking up the refrigerant This is unnecessary, and the valve device 30 can be realized with a simple configuration.
  • the refrigerant outlet 306 b of the suction side channel 306 is provided above the refrigerant outlet 304 b of the subcooling channel 304, and the gas refrigerant flows
  • the path length is made to be short. According to this, it is possible to suppress the pressure loss when the gas refrigerant flows through the suction side flow passage 306.
  • the suction side flow passage 306 and the subcooling flow passage 304 intersect in a three-dimensional manner so that the refrigerants present in the respective flow passages exchange heat. According to this, it is possible to expect the effect that the refrigerant flowing in the subcooling flow passage 304 is cooled by heat exchange with the low temperature refrigerant present in the suction side flow passage 306.
  • the refrigerant that has passed through the lower core portion 170 flows into the upper core portion 171.
  • the liquid refrigerant is pushed up to the upper side of the upper core portion 171 by the flow of the gas refrigerant evaporated in the lower core portion 170 in the heating mode.
  • the uneven distribution of the liquid refrigerant in the core portion 17 is suppressed, so that the function as the evaporator can be sufficiently exhibited in the heating mode.
  • valve device 30 of the present embodiment displaces three valves such as the throttle valve 36, the first flow path opening / closing valve 38, and the second flow path opening / closing valve 40 by the driving force output by the single actuator 46. It is a structure. According to this, the valve device 30 can be realized with a simple configuration.
  • the core inlet portion 170 a is provided below the core outlet portion 171 a so that the refrigerant having passed through the lower core portion 170 flows into the upper core portion 171.
  • the throttling valve 36 is also disposed below the liquid storage portion 184 as with the on-off valves 38 and 40. It is desirable to do.
  • the supercooling portion 19 is disposed below the core portion 17.
  • the first flow passage on-off valve 38 it is desirable that the second flow path opening / closing valve 40 be provided above the throttle valve 36 so that the flow path length of the suction side flow path 306 through which the gas refrigerant flows becomes short.
  • the valve device 30 may be configured such that the actuator 46 is disposed below the liquid receiver 18.
  • the rod 34 since it is not necessary to arrange the rod 34 so as to penetrate the liquid reservoir portion 184, there is an advantage that it is possible to avoid an adverse effect due to an axial displacement of the rod 34.
  • the outdoor heat exchanger 16 may be configured such that the core portion 17 and the liquid receiver 18 are connected by a plurality of upper stage side connecting portions 166.
  • a plurality of upper stage side connecting portions 166 of this modification are provided so that the refrigerant can easily flow from the upper side core portion 171 side to the liquid reservoir portion 184 side.
  • a plurality of liquid reservoir inlets 183a to 183c are formed in portions of the housing 182 where the liquid reservoirs 184 are formed, corresponding to the plurality of upper stage side connecting portions 166.
  • the upper cross-sectional area of the flow passage of each upper-stage connecting portion 166 is smaller on the upper side than on the lower side. This is to prevent the liquid refrigerant from flowing biased to the upper side of the upper core portion 171 by the inertial force. That is, by making the flow passage cross-sectional area of the flow passage of each upper stage side connection portion 166 smaller from the lower side to the upper side, it becomes possible to suppress the deviation of the liquid refrigerant in the upper side core portion 171 ing.
  • the outdoor heat exchanger 16 is, as shown in FIG. 16, a refrigerant flowing through each tube 192 of the subcooling unit 19 and a refrigerant flowing through each tube 172 of the core unit 17 between the subcooling unit 19 and the core unit 17.
  • the air gap 160 may be provided to suppress unnecessary heat exchange.
  • the core inlet portion 171 b is closer to the core outlet portion 170 b so that the refrigerant having passed through the upper core portion 171 flows into the lower core portion 170. It is provided on the upper side.
  • the outdoor heat exchanger 16 has a U-turn structure in which the refrigerant having passed through the upper core portion 171 of the core portion 17 flows to the lower core portion 170.
  • the body portion 32 of the valve device 30 is accommodated inside the housing 182.
  • the liquid reservoir portion 184 of the liquid receiver 18 is formed inside the body portion 32 of the valve device 30.
  • the third valve storage chamber 332, the liquid reservoir portion 184, the second valve storage chamber 331, and the first valve storage chamber 330 are arranged in this order. It is provided to line up in series. That is, in the liquid receiver 18 of the present embodiment, the third valve storage chamber 332 is provided on the upper side of the liquid storage portion 184, and the first valve storage chamber 330 and the second valve storage chamber 331 are liquid storage portions. It is provided on the lower side of 184.
  • the third valve storage chamber 332, the liquid reservoir 184, the first valve storage chamber 330, and the second valve storage chamber 331 are partitioned by the first support portion 333, the second support portion 334, and the second valve seat portion 43. It is formed.
  • a liquid reservoir inlet 183a for introducing the refrigerant having passed through the core portion 17 through the first header tank 162 into the liquid reservoir at a portion where the liquid reservoir 184 is formed. It is formed.
  • the housing 182 of this embodiment is formed with a single reservoir inlet 183a.
  • the high pressure side inlet 183d and the core side outlet 183e are formed at the portion where the third valve accommodating chamber 332 is formed.
  • a suction side outlet 183f and a supercooling side outlet 183g are formed at a portion where the first valve storage chamber 330 and the second valve storage chamber 331 are formed.
  • the portion forming the upper stage space 162 a of the first header tank 162 is connected via the upper stage connecting portion 166 to a portion where the core side outlet port 183 e of the receiver 18 is formed. Further, the upper stage space 162 a of the first header tank 162 is in communication with the core introduction flow path 302 via a flow passage inside the upper stage connection portion 166.
  • the refrigerant having passed through the core introduction channel 302 flows into the upper space 162 a of the first header tank 162.
  • the refrigerant that has flowed into the upper space 162 a of the first header tank 162 is distributed to the tubes 172 that constitute the upper core portion 171 of the core portion 17.
  • the portion forming the middle stage space 162 b of the first header tank 162 is connected via the middle stage side connection portion 165 to the portion where the liquid storage inlet 183 a is formed in the liquid receiver 18.
  • the middle stage space 162 b of the first header tank 162 is in communication with the liquid reservoir 184 via a flow passage inside the middle stage connection portion 165.
  • the outdoor heat exchanger 16 of the present embodiment has a structure in which the refrigerant flowing in the lower core portion 170 and the supercooling portion 19 adjacent to each other in the upper and lower directions flow in opposite directions, as shown by arrows FL1 and FL3 in FIG. It has become. That is, the outdoor heat exchanger 16 has a structure in which the refrigerant flowing in the lower side core portion 170 and the refrigerant flowing in the supercooling portion 19 are countercurrent flows.
  • valve device 30 of the present embodiment will be described with reference to FIGS. 17 and 18.
  • the body portion 32 of the valve device 30 is accommodated inside the housing 182 of the receiver 18.
  • a shaft member is configured by the first rod 47 to which the throttle valve 36 is attached, and the second rod 48 to which the on-off valves 38 and 40 are attached.
  • the first rod 47 is disposed to penetrate the third valve storage chamber 332 and the liquid reservoir 184.
  • the first rod 47 is slidably supported by the first support portion 333.
  • the upper end of the first rod 47 is connected to the actuator 46, and is moved in the axial direction AD by the driving force output from the actuator 46.
  • the second rod 48 is disposed to penetrate the first valve storage chamber 330 and the second valve storage chamber 331.
  • the upper end portion of the second rod 48 is exposed to the liquid reservoir 184, and the upper end portion is connected to the first rod 47.
  • the second rod 48 is integrally provided with a pressing portion 482 for pressing the first flow path opening / closing valve 38.
  • a communication passage 484 is formed in the second rod 48 so as to communicate the fluid reservoir 184 and the first valve storage chamber 330 with each other.
  • a refrigerant inlet 484 a of the communication passage 484 is formed at an upper end portion of the second rod 48 exposed to the liquid reservoir portion 184.
  • a refrigerant outlet 484b of the communication passage 484 is formed in a portion of the first valve storage chamber 330 corresponding to the upstream side of the first flow path opening / closing valve 38.
  • the valve device 30 is provided with a core introduction flow channel 302, a supercooling flow channel 304, a suction side flow channel 306, and a liquid reservoir portion 184.
  • the core introduction channel 302 is provided above the upper end portion 184a of the liquid reservoir portion 184, and the supercooling channel 304 and the suction side channel 306 are provided below the lower end portion 184b of the liquid reservoir portion 184. It is done.
  • the subcooling flow passage 304 and the suction side flow passage 306 are provided to communicate with the lower side portion 184 c of the liquid reservoir portion 184.
  • the supercooling flow passage 304 of the present embodiment is configured to include a communication passage 484 formed in the inside of the second rod 48.
  • the body portion 32 is formed with a refrigerant outlet 304 b of the subcooling flow passage 304 at a lower side portion of the side surface.
  • a flow passage hole extending in the axial direction AD of the rod 34 is provided in the middle of the flow passage of the subcooling flow passage 304, and the first valve storage chamber 330 is configured by the flow passage hole.
  • the refrigerant inlet 306a of the suction side flow passage 306 is provided on the side surface corresponding to the lower side portion 184c of the liquid storage portion 184 so that the suction side flow passage 306 communicates with the lower side portion 184c of the liquid storage portion 184. Is formed. Further, in the body portion 32, a refrigerant outlet 306b of the suction side channel 306 is formed at a portion of the side surface of the supercooling channel 304 above the refrigerant outlet 304b of the subcooling channel 304. A flow passage hole extending in the axial direction AD of the rod 34 is provided in the middle of the flow passage of the suction side flow passage 306, and the second valve storage chamber 331 is configured by the flow passage hole.
  • the body portion 32 is formed with a refrigerant inlet 302 a and a refrigerant outlet 302 b of the core introduction flow channel 302 at a portion of the side surface located above the liquid reservoir portion 184.
  • a flow passage hole extending in the axial direction AD of the rod 34 is provided in the middle of the flow passage of the core introduction flow passage 302, and the third valve storage chamber 332 is configured by the flow passage hole.
  • the third valve storage chamber 332, the liquid storage portion 184, the second valve storage chamber 331, and the first valve storage chamber 330 are formed in this order from the upper side to the lower side. ing.
  • the refrigerant outlet 304 b of the supercooling passage 304 in the present embodiment is provided on the lower side than the refrigerant outlet 302 b of the core introduction passage 302 and the refrigerant outlet 306 b of the suction side passage 306.
  • the opening area of the refrigerant inlet 306 a of the suction side flow passage 306 is larger than the opening area of the refrigerant inlet 304 a of the supercooling flow passage 304.
  • the suction side flow passage 306 and the communication passage 484 of the subcooling flow passage 304 of the present embodiment intersect in a three-dimensional manner so that the refrigerants flowing through the flow passages mutually exchange heat. According to this, it is possible to expect the effect that the refrigerant flowing in the communication passage 484 of the subcooling passage 304 is cooled by heat exchange with the refrigerant in the suction side passage 306.
  • the other configuration is the same as that of the first embodiment.
  • the operation in the cooling mode and the heating mode of the vehicle air conditioner 1 will be described with reference to FIGS. 19 to 22.
  • control device 100 controls air mix door 54 to a position where bypass passage 514 is opened as shown in FIG.
  • the control device 100 stops the circulation pump 62 so that the heat exchange between the refrigerant and the antifreeze liquid is not performed in the water-refrigerant heat exchanger 14.
  • the control device 100 controls the actuator 46 of the valve device 30 so that each rod 47, 48 reaches a position where the second flow path opening / closing valve 40 abuts on the second valve seat portion 43. Push up. Under the present circumstances, in the valve apparatus 30, the 1st rod 47 is pushed up, the subvalve contact part 362c and the subvalve body 364 which were provided in the main valve body 362 of the throttle valve 36 contact, and the main valve body 362 It is displaced to a position away from the third valve seat 44.
  • the first channel on-off valve 38 and the pressing portion 482 of the second rod 48 abut each other, and the first channel on-off valve 38 becomes the first valve seat. It is displaced to a position away from the part 41.
  • the rod 34 is pushed up by the actuator 46, whereby the core introduction passage 302 and the subcooling passage 304 are fully opened, and the suction side passage 306 is fully closed. Become.
  • the heat pump cycle 10 in the cooling mode is a refrigerant circuit in which the refrigerant flows as shown in FIG. That is, in the heat pump cycle 10 in the cooling mode, the high pressure refrigerant discharged from the compressor 12 flows into the water-refrigerant heat exchanger 14. At this time, since the circulation pump 62 is stopped, in the water-refrigerant heat exchanger 14, the high pressure refrigerant flows into the valve device 30 with almost no heat exchange with the antifreeze liquid.
  • the high pressure refrigerant flowing into the valve device 30 is hardly depressurized by the valve device 30, and the core of the outdoor heat exchanger 16 is Flow into section 17. Then, the high pressure refrigerant flowing into the core portion 17 dissipates heat to the outside air, and then flows into the liquid reservoir portion 184 of the liquid receiver 18 to be separated into a gas phase refrigerant and a liquid phase refrigerant.
  • the subcooling flow path 304 of the subcooling flow path 304 and the suction side flow path 306 communicating with the lower side portion 184c of the liquid reservoir portion 184 is fully opened. For this reason, the liquid refrigerant stored in the liquid reservoir portion 184 of the liquid receiver 18 flows into the supercooling portion 19 via the subcooling flow path 304.
  • the high pressure refrigerant flowing into the supercooling unit 19 dissipates heat to the outside air, and then flows into the cooling expansion valve 20 and is decompressed until it becomes a low pressure refrigerant.
  • control device 100 controls air mix door 54 at a position closing bypass passage 514 as shown in FIG.
  • the control device 100 operates the circulation pump 62 such that the heat exchange between the refrigerant and the antifreeze liquid is performed in the water-refrigerant heat exchanger 14.
  • the control device 100 controls the actuator 46 of the valve device 30 so that the second flow path on / off valve 40 is separated from the second valve seat portion 43 and the sub valve body 364 is the main valve.
  • Each rod 47, 48 is pushed down to a position away from the auxiliary valve contact portion 362c of the body 362.
  • the contact of the main valve body 362 with the sub valve body 364 is released, and the biasing force of the biasing spring 45 displaces the main valve body 362 to a position where the main valve body 362 contacts the third valve seat portion 44.
  • valve device 30 when the rod 34 is pushed down, the contact between the first flow path opening / closing valve 38 and the pressing portion 482 of the second rod 48 is released, and the biasing force of the biasing spring 42 causes the first flow
  • the road on-off valve 38 is displaced to a position where it abuts on the first valve seat 41.
  • the core introduction passage 302 is in the variable throttle state
  • the supercooling passage 304 is in the fully closed state
  • the suction side passage 306 is It will be fully open.
  • the heat pump cycle 10 in the heating mode is a refrigerant circuit in which the refrigerant flows as shown in FIG. That is, in the heat pump cycle 10 in the heating mode, the high pressure refrigerant discharged from the compressor 12 flows into the first heat exchange portion 142 of the water-refrigerant heat exchanger 14, and the heat possessed by the high pressure refrigerant is the antifreeze liquid and the heater core. The heat is dissipated to the blast air through 64.
  • the high-pressure refrigerant discharged from the compressor 12 releases heat to the outside air at the upstream side core portion 142a of the first heat exchange portion 142, and is then gas-liquid separated at the gas-liquid separator 142b. Then, the liquid refrigerant separated by the gas-liquid separator 142 b flows into the downstream core portion 142 c and is subcooled. Then, the liquid refrigerant flowing out of the downstream side core portion 142 c flows into the valve device 30.
  • the core introduction flow path 302 of the valve device 30 is in the variable throttle state, so the high pressure refrigerant flowing into the valve device 30 is depressurized in the core introduction flow path 302 until it becomes a low pressure refrigerant, It flows into the core portion 17 of the outdoor heat exchanger 16.
  • the refrigerant flowing into the core portion 17 absorbs heat from the outside air and evaporates. Then, the gas refrigerant evaporated in the core portion 17 flows into the liquid reservoir portion 184 of the liquid receiver 18.
  • the suction side flow passage 306 of the subcooling flow passage 304 and the suction side flow passage 306 communicating with the lower side portion 184c of the liquid reservoir portion 184 is fully open. Therefore, the refrigerant containing the oil present in the liquid reservoir portion 184 of the liquid receiver 18 flows to the refrigerant suction side of the compressor 12 through the suction side flow passage 306 of the valve device 30, and is compressed again by the compressor 12 Ru.
  • the heat of the high pressure refrigerant in the heat pump cycle 10 indirectly heats the blowing air. Then, the blowing air heated by the indoor air conditioning unit 50 is blown out into the vehicle compartment. Thereby, heating of the vehicle interior is realized.
  • the outdoor heat exchanger 16 and the valve device 30 of the present embodiment described above can obtain the same advantages as the first embodiment, with the same advantages as those of the first embodiment.
  • the supercooling portion 19 is disposed below the core portion 17, and the core inlet portion 171b is provided above the core outlet portion 170b. .
  • the throttle valve 36 in order to shorten the core introduction flow path 302, it is desirable to arrange the throttle valve 36 above the liquid reservoir portion 184. It is desirable to provide the on-off valves 38 and 40 below the liquid reservoir 184 so that the refrigerant can easily flow from the liquid reservoir 184 into the subcooling flow channel 304 and the suction channel 306. Under the present circumstances, it is desirable to provide about the 2nd flow-path on-off valve 40 above the 1st flow-path on-off valve 38 so that the flow path length of the suction side flow path 306 into which a gas refrigerant flows becomes short.
  • valve device 30 of the present embodiment includes the communication passage 484 formed in the second rod 48 so that the subcooling passage 304 does not communicate with the suction side passage 306 in the body portion 32. It consists of According to this, the refrigerant in the liquid reservoir portion 184 can be appropriately guided to the first valve storage chamber 330 via the communication passage 484 of the subcooling flow passage 304 formed in the body portion 32.
  • each rod 47, 48 is pushed up in the cooling mode, and each rod 47, 48 is pushed down in the heating mode, so that the throttle valve 36, the first channel on-off valve 38, the second channel on-off valve
  • the example which displaces 40 to a desired position was demonstrated, it is not limited to this.
  • the valve device 30 desires the throttle valve 36, the first flow path on-off valve 38, and the second flow path on-off valve 40 by pushing down the respective rods 47, 48 in the cooling mode and pushing up the respective rods 47, 48 in the heating mode. It may be configured to be displaced to the position of.
  • valve device 30 configured as described above will be described below with reference to FIGS. 23 and 24.
  • parts different from the second embodiment described above will be mainly described, and descriptions of parts similar to the second embodiment will be omitted.
  • a first rod 47 to which the throttle valve 36 is attached and a second rod 48 to which the on-off valves 38 and 40 are attached are separately provided.
  • the second rod 48 of the present embodiment is configured to move downward with the first rod 47 by being pressed by the first rod 47 when the first rod 47 is moved downward.
  • the contact state with the first rod 47 is released. In this state, even if the first rod 47 is moved up and down, the second rod 48 is not moved.
  • the first flow path opening / closing valve 38 of the present embodiment is provided on the lower side of the first valve seat portion 41.
  • the first channel on-off valve 38 is connected to the second rod 48.
  • the first flow path opening / closing valve 38 is opened by separating from the first valve seat portion 41.
  • the first flow path on / off valve 38 is moved by the biasing force of the biasing spring 42 when the first rod 47 is moved upward and the contact between the second rod 48 and the first rod 47 is released. 1 Abuts on the valve seat portion 41 and the valve is closed.
  • the second flow path opening / closing valve 40 of the present embodiment is provided on the upper side of the second valve seat portion 43.
  • the second channel on-off valve 40 is connected to the second rod 48.
  • the second flow path opening / closing valve 40 is closed.
  • the second flow path on / off valve 40 moves away from the second valve seat portion 43 when the first rod 47 moves upward and the contact between the second rod 48 and the first rod 47 is released. It will be open.
  • the throttle valve 36 of the present embodiment is provided on the lower side of the third valve seat 44.
  • the throttle valve 36 opens when the first rod 47 moves downward and the main valve body 362 separates from the third valve seat portion 44. Further, when the first rod 47 moves upward and the main valve body 362 abuts on the third valve seat portion 44, the throttle valve 36 is in a throttle state in which the pressure reducing action of the refrigerant is exhibited.
  • the rods 47 and 48 are pushed down by the actuator 46 to a position where the second passage opening / closing valve 40 abuts on the second valve seat portion 43 in the cooling mode.
  • the 1st rod 47 is pushed down, the subvalve contact part 362c provided in the main valve body 362 of the throttle valve 36 and the subvalve body 364 contact
  • the first flow path opening / closing valve 38 is displaced to a position away from the first valve seat portion 41.
  • the valve device 30 in the heating mode, causes the actuator 46 to separate the second flow path on / off valve 40 from the second valve seat portion 43 and the sub valve body 364 to be the main valve body 362.
  • Each rod 47, 48 is pushed up to a position away from the sub valve contact portion 362c.
  • the contact of the main valve body 362 with the sub valve body 364 is released, and the biasing force of the biasing spring 45 displaces the main valve body 362 to a position where the main valve body 362 contacts the third valve seat portion 44.
  • the first flow path on-off valve 38 is displaced to a position where it contacts the first valve seat portion 41 by pushing up the first rod 47.
  • valve device 30 pushes up the rod 34 by the actuator 46 in the heating mode, so that the core introduction passage 302 is in the variable throttle state, the supercooling passage 304 is in the fully closed state, and the suction side passage 306 is fully open. It becomes a state.
  • the other configuration is the same as that of the second embodiment.
  • the same advantages as those of the first embodiment can be obtained from the configuration common to the second embodiment.
  • each embodiment demonstrated the example in which the body part 32 of the valve apparatus 30 was arrange
  • the body portion 32 of the valve device 30 may be disposed outside the housing 182 of the receiver 18.
  • the heat exchanger which has the subcooling part 19 as the outdoor heat exchanger 16 was illustrated, it is not limited to this.
  • a heat exchanger that does not have the subcooling unit 19 may be employed.
  • each embodiment demonstrated the example which comprises the throttle valve 36 by two valve bodies, the main valve body 362 and the sub valve body 364, it is not limited to this.
  • the throttle valve 36 may be configured of a single valve body.
  • the core introduction flow path 302 is provided for the valve device 30 provided with the subcooling flow path 304 and the suction side flow path 306 and the throttle valve 36 is disposed in the core introduction flow path 302
  • the present invention is not limited thereto.
  • the core introduction passage 302 and the throttle valve 36 may be configured separately from the valve device 30 provided with the subcooling passage 304 and the suction side passage 306.
  • a heat exchanger and a valve device include a heat pump cycle capable of switching between a cooling mode for cooling a temperature control target fluid and a heating mode for heating a temperature control target fluid (for example, a home air conditioner). It is widely applicable to
  • the heat exchanger has a core portion for condensing the refrigerant in the cooling mode and a core portion for evaporating the refrigerant in the heating mode, and a receiver having a liquid reservoir.
  • the liquid container includes a valve device that switches the circulation path of the refrigerant in the cycle.
  • the valve device is provided with a suction side flow passage for guiding the refrigerant in the liquid reservoir to the refrigerant suction side of the compressor of the heat pump cycle in the heating mode.
  • the suction side flow passage communicates with the lower side portion of the liquid reservoir closer to the lower end than the upper end.
  • the heat exchanger is provided on the lower side of the core portion, and includes a supercooling unit that radiates the liquid refrigerant stored in the liquid receiver in the cooling mode.
  • the valve device is provided with a supercooling flow passage communicating with the lower side portion and guiding the liquid refrigerant stored in the liquid reservoir to the supercooling portion in the cooling mode.
  • coolant flow out among the suction side flow paths is provided above the refrigerant
  • the core portion of the heat exchanger of the present disclosure functions as a condenser in the cooling mode and as an evaporator in the heating mode. Therefore, basically, the gas refrigerant flows in the suction side flow path, and the liquid refrigerant flows in the subcooling flow path. And, the gas refrigerant tends to have a larger pressure loss than the liquid refrigerant.
  • the refrigerant outlet of the suction side flow passage is provided above the refrigerant outlet of the subcooling flow passage, and the flow passage length of the suction side flow passage through which the gas refrigerant flows becomes short. It is like that. According to this, it is possible to suppress the pressure loss when the gas refrigerant flows through the suction side flow passage.
  • the suction side flow passage and the subcooling flow passage of the valve device intersect in a three-dimensional manner inside the valve device.
  • the liquid refrigerant in the liquid storage portion is appropriately led to the supercooling portion through the subcooling flow path
  • the refrigerant in the liquid storage portion through the suction side flow path is the refrigerant of the compressor It becomes possible to lead appropriately to the inhalation side.
  • the pressure of the refrigerant is the lowest on the refrigerant suction side of the compressor, and the temperature of the refrigerant tends to be lower as compared to other parts.
  • the valve device of the heat exchanger has a flow path switching portion for switching the refrigerant flow path on the downstream side of the liquid storage portion to either the supercooling flow path or the suction side flow path .
  • the flow path switching unit is provided below the liquid storage unit in the liquid receiver.
  • the valve device can be realized with a simple configuration.
  • the valve device of the heat exchanger is provided with a core introduction flow passage for guiding the refrigerant introduced into the heat exchanger to the core portion, and the core introduction flow passage is switched to the fully open state in the cooling mode.
  • a throttle valve is provided to switch the core introduction passage to a variable throttle state in the mode.
  • the throttling valve is provided below the liquid reservoir in the liquid receiver.
  • the core portion is a core inlet portion into which the refrigerant from the core introduction flow path is introduced such that the refrigerant having passed through the lower core portion flows into the upper core portion located above the lower core portion.
  • it is provided on the lower side than the core outlet part which leads the refrigerant which has passed through the core part to the liquid storage part.
  • the liquid refrigerant flows up to the upper side of the upper core by the flow of the gas refrigerant evaporated in the lower core during the heating mode. It is pushed up. Therefore, according to the heat exchanger of the present disclosure, the uneven distribution of the liquid refrigerant in the core portion can be suppressed, so that the function as the evaporator can be sufficiently exhibited in the heating mode.
  • the heat exchanger is configured such that the flow path switching unit includes a first flow path opening / closing valve that opens / closes the subcooling flow path, and a second flow path opening / closing valve that opens and closes the suction side flow path. It is done.
  • the throttling valve, the first flow path opening / closing valve, and the second flow path opening / closing valve are configured to be displaced in conjunction with the axially moving axial member by the driving force output by a single actuator. .
  • the valve device has a simple configuration. It can be realized.
  • the valve device includes a body portion having a plurality of refrigerant channels communicating with the liquid reservoir portion, and a refrigerant downstream of the liquid reservoir portion. And a flow path switching unit configured to switch the flow path to any one of a plurality of refrigerant flow paths.
  • the plurality of refrigerant flow paths include a suction side flow path that guides the refrigerant in the liquid reservoir to the refrigerant suction side of the compressor of the heat pump cycle in the heating mode.
  • the suction side flow passage communicates with the lower side portion of the liquid reservoir closer to the lower end than the upper end.
  • the valve device includes an actuator that outputs a driving force, and a shaft member that moves in the axial direction by the driving force that the actuator outputs.
  • the heat exchanger to which the valve device is applied includes a supercooling unit that radiates the liquid refrigerant stored in the receiver.
  • the plurality of refrigerant flow paths includes a supercooling flow path that leads the liquid refrigerant stored in the liquid storage portion to the supercooling portion in the cooling mode.
  • a core introduction flow passage for guiding the refrigerant discharged from the compressor to the core portion is formed.
  • the flow path switching unit has a first flow path on / off valve for opening and closing the subcooling flow path and a second flow path on / off valve for opening and closing the suction side flow path.
  • the core introduction flow passage is provided with a throttle valve for switching the core introduction flow passage to a fully open state and a variable throttle state.
  • the first flow path opening / closing valve, the second flow path opening / closing valve, and the throttle valve are configured to be displaced in conjunction with the movement of the shaft member in the axial direction. In this way, if the three valves, such as the throttle valve, the first channel on-off valve, and the second channel on-off valve, are displaced by the driving force output by a single actuator, the valve device has a simple configuration. It can be realized.
  • the supercooling portion is disposed below the core portion, and the refrigerant from the core introduction flow path in the core portion is introduced
  • the core inlet portion is provided on the lower side than the core outlet portion for leading the refrigerant having passed through the core portion to the liquid reservoir.
  • the first flow path on-off valve, the second flow path on-off valve, and the throttling valve are the second flow path on-off valve from the upper side to the lower side on the lower side of the liquid reservoir in the liquid receiver.
  • the throttle valve and the first flow path opening / closing valve are attached to the shaft member in this order.
  • the throttle valve is also used to shorten the core introduction flow path.
  • the first flow path opening / closing valve is made smaller than the throttle valve in order to suppress complication of the subcooling flow path and the core introduction flow path in the valve device. It is desirable to provide it also on the lower side.
  • the second flow path on / off valve be provided above the throttle valve so that the flow path length of the suction side flow path through which the gas refrigerant flows becomes short.
  • the supercooling unit is disposed below the core unit, and the core inlet for introducing the refrigerant from the core introduction flow path into the core unit
  • the part is provided on the upper side of the core outlet part which leads the refrigerant having passed through the core part to the liquid reservoir.
  • the first channel on-off valve and the second channel on-off valve are disposed below the liquid reservoir in the liquid receiver.
  • the throttling valve is disposed above the liquid reservoir in the liquid receiver.
  • the first channel on-off valve, the second channel on-off valve, and the throttle valve are the axial members in the order of the throttle valve, the second channel on-off valve, and the first channel on-off valve from the upper side to the lower side. It is attached to.
  • the core inlet portion is disposed above the core outlet portion
  • a valve accommodating chamber for accommodating the first passage on-off valve is provided in the subcooling passage of the valve device.
  • the supercooling flow path is configured to include a communication path that causes the valve storage chamber formed in the body portion to communicate with the liquid storage portion.
  • the communication passage is formed in a portion of the body portion that is apart from the suction side flow passage and the core introduction flow passage. According to this, the refrigerant in the liquid storage portion can be properly guided to the valve storage chamber through the communication path of the subcooling flow path formed in the body portion.
  • a valve accommodating chamber for accommodating the first passage on-off valve is provided in the subcooling passage of the valve device.
  • a communication passage is formed in the shaft member for communicating the valve storage chamber with the liquid reservoir.
  • a supercooling channel is constituted including a communicating channel. According to this, it is possible to appropriately guide the refrigerant in the liquid reservoir to the valve storage chamber through the communication path of the subcooling flow path formed in the shaft member.
  • the shaft member of the valve device is constituted by a single rod on which the first flow passage on-off valve, the second flow passage on-off valve, and the throttle valve are mounted.
  • the valve device for driving the three valves is simplified. Can be realized by
  • the shaft member of the valve device is provided with the throttle valve, and the first rod, which is moved in the axial direction by the driving force output by the actuator, the first passage opening / closing valve and the second passage opening / closing It consists of a second rod fitted with a valve.
  • the second rod is configured to move in the axial direction with the first rod by being pressed by the first rod when the first rod is moved to the one side in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

熱交換機(16)は、オイルを含む冷媒の循環経路を切り替えることで温調対象流体を冷却するための冷却モードと温調対象流体を加熱するための加熱モードとを切替可能なヒートポンプサイクル(10)に適用される。室外熱交換器は、冷却モード時に冷媒を凝縮させ、加熱モード時に冷媒を蒸発させるコア部(17)と、冷却モード時にコア部から流出した冷媒の一部をサイクル内の余剰冷媒として一時的に貯留する液溜め部(184)を有する受液器(18)と、を備える。また、室外熱交換器は、サイクル内の冷媒の循環経路を切り替える弁装置(30)を備える。弁装置には、加熱モード時に液溜め部の冷媒をヒートポンプサイクルの圧縮機(12)の冷媒吸入側に導く吸入側流路(306)が設けられている。そして、吸入側流路は、液溜め部のうち上端部(184a)よりも下端部(184b)に近い下方側部位(184c)に連通している。

Description

熱交換器、弁装置 関連出願への相互参照
 本出願は、2017年7月31日に出願された日本出願番号2017-148295号に基づくものであって、ここにその記載内容を援用する。
 本開示は、ヒートポンプサイクルに適用される熱交換器および弁装置に関する。
 従来、温調対象流体を冷却する冷却運転モードと温調対象流体を加熱する加熱運転モードとを切替可能に構成されると共にサブクール型凝縮器を採用する冷凍サイクル装置が知られている(例えば、特許文献1参照)。特許文献1記載の冷凍サイクル装置は、加熱運転モード時におけるCOP(Coefficient Of Performance)を向上させるために、加熱運転モード時に室外熱交換器の過冷却用熱交換部を迂回するように冷媒を流す冷媒バイパス手段が設けられている。
特開2009-236404号公報
 ところで、冷凍サイクル装置では、冷媒にオイル(すなわち、冷凍機油)を混合させ、サイクル内において冷媒と共にオイルを循環させることで、圧縮機を保護する構成となっている。
 しかしながら、本発明者らが、特許文献1記載の冷凍サイクル装置について検討したところ、圧縮機の保護が不充分となる場合があることが判った。すなわち、特許文献1記載の冷凍サイクル装置は、加熱運転モード時に過冷却用熱交換部を迂回させるバイパス配管が、バイパス配管用開閉弁を介して室外熱交換器の受液器の最上部に設けられた連通穴に接続されている。
 このような構成では、加熱運転モード時に、受液器の下方側に冷媒と共にオイルが滞留することで、圧縮機に対してオイルを適切に戻すことが困難となる。また、受液器の下方側に液冷媒が滞留すると、サイクル内における冷媒の循環量が不足することで、サイクル全体として性能が低下してしまう虞もある。
 本開示は、温調対象流体を加熱する加熱モード時に受液器の液溜め部にオイルを含む冷媒が滞留してしまうことを抑制可能な熱交換器、および弁装置を提供することを目的とする。
 本開示の1つの観点によれば、熱交換器は、オイルを含む冷媒の循環経路を切り替えることで温調対象流体を冷却するための冷却モードと温調対象流体を加熱するための加熱モードとを切替可能なヒートポンプサイクルに適用される。
 熱交換器は、
 冷却モード時に冷媒を凝縮させる凝縮器として機能し、加熱モード時に冷媒を蒸発させる蒸発器として機能するコア部と、
 冷却モード時にコア部から流出した冷媒の一部をサイクル内の余剰冷媒として一時的に貯留する液溜め部を有する受液器と、
 サイクル内の冷媒の循環経路を切り替える弁装置と、を備える。
 弁装置には、加熱モード時に液溜め部の冷媒をヒートポンプサイクルの圧縮機の冷媒吸入側に導く吸入側流路が設けられている。そして、吸入側流路は、液溜め部のうち上端部よりも下端部に近い下方側部位に連通している。
 本開示の熱交換器は、弁装置に設けられた吸入側流路を液溜め部の下方側部位に連通する構成となっている。これによれば、加熱モード時に液溜め部に存在するオイルを含む冷媒を、その自重によって吸入側流路を介して圧縮機の冷媒吸入側に流すことができる。このため、本開示の熱交換器によれば、加熱モード時に受液器の液溜め部にオイルを含む冷媒が滞留することを抑制することが可能となる。
 本開示の別の観点によれば、弁装置は、オイルを含む冷媒の循環経路を切り替えることで温調対象流体を冷却するための冷却モードと温調対象流体を加熱するための加熱モードとを切替可能なヒートポンプサイクルに適用される。
 ヒートポンプサイクルは、冷却モード時に冷媒を凝縮させ加熱モード時に冷媒を蒸発させるコア部、コア部から流出した冷媒の一部を貯留する液溜め部を有する受液器を含む熱交換器を備える。
 弁装置は、液溜め部に連通する複数の冷媒流路を有するボデー部と、液溜め部の下流側の冷媒流路を複数の冷媒流路のいずれかに切り替える流路切替部と、を備える。複数の冷媒流路には、加熱モード時に液溜め部の冷媒をヒートポンプサイクルの圧縮機の冷媒吸入側に導く吸入側流路が含まれている。そして、吸入側流路は、液溜め部のうち上端部よりも下端部に近い下方側部位に連通している。
 本開示の弁装置は、圧縮機の冷媒吸入側に冷媒を導く吸入側流路を液溜め部の下方側部位に連通させる構成となっている。これによれば、加熱モード時に液溜め部に存在するオイルを含む冷媒を、その自重によって吸入側流路を介して圧縮機の冷媒吸入側に流すことができる。このため、本開示の弁装置によれば、加熱モード時に受液器の液溜め部にオイルを含む冷媒が滞留することを抑制することが可能となる。
ヒートポンプサイクルを含む車両用空調装置の概略構成図である。 第1実施形態に係る室外熱交換器の模式図である。 第1実施形態に係る弁装置の一部を示す模式的な軸方向断面図である。 図3の矢印IVで示す方向における弁装置の矢視図である。 アクチュエータへ入力するパルスと弁装置の各弁の開口面積との関係を説明するための説明図である。 コア導入流路が全閉状態となる際の弁装置の模式的な軸方向断面図である。 コア導入流路が絞り状態となる際の弁装置の模式的な軸方向断面図である。 コア導入流路が全開状態となる際の弁装置の模式的な軸方向断面図である。 ヒートポンプサイクルの運転モードと各流路の状態との関係を説明するための説明図である。 第1実施形態のヒートポンプサイクルにおける冷房モード時の冷媒の流れ方を説明するための説明図である。 第1実施形態に係る弁装置の冷房モード時の作動状態を示す模式的な軸方向断面図である。 第1実施形態のヒートポンプサイクルにおける暖房モード時の冷媒の流れ方を説明するための説明図である。 第1実施形態に係る弁装置の暖房モード時の作動状態を示す模式的な軸方向断面図である。 第1実施形態の第1変形例となる室外熱交換器の模式図である。 第1実施形態の第2変形例となる室外熱交換器の模式図である。 第1実施形態の第3変形例となる室外熱交換器の模式図である。 第2実施形態に係る室外熱交換器の模式図である。 第2実施形態に係る弁装置の一部を示す模式的な軸方向断面図である。 第2実施形態のヒートポンプサイクルにおける冷房モード時の冷媒の流れ方を説明するための説明図である。 第2実施形態に係る弁装置の冷房モード時の作動状態を示す模式的な軸方向断面図である。 第2実施形態のヒートポンプサイクルにおける暖房モード時の冷媒の流れ方を説明するための説明図である。 第2実施形態に係る弁装置の暖房モード時の作動状態を示す模式的な軸方向断面図である。 第2実施形態の変形例となる弁装置の冷房モード時の作動状態を示す模式的な軸方向断面図である。 第2実施形態の変形例となる弁装置の暖房モード時の作動状態を示す模式的な軸方向断面図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態について、図1~図13を参照して説明する。本実施形態では、図1に示すように、本開示の熱交換器および弁装置を車両用空調装置1のヒートポンプサイクル10に適用した例について説明する。
 本実施形態の車両用空調装置1は、図示しない内燃機関および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車等に搭載される。ハイブリッド自動車や電気自動車は、内燃機関だけで車両走行用の駆動力を得る車両に比べて、車両における廃熱が小さく、車室内の暖房用の熱源を確保し難い。
 このため、本実施形態の車両用空調装置1では、ヒートポンプサイクル10の圧縮機12から吐出された高温高圧の冷媒を熱源として、室内空調ユニット50で車室内の暖房を実施する構成となっている。
 本実施形態のヒートポンプサイクル10は、冷媒としてHFC系冷媒(例えば、R134a)を採用しており、サイクル内の高圧側の冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。勿論、冷媒としては、HFO系冷媒(例えば、R1234yf)や二酸化炭素等が採用されていてもよい。なお、冷媒には圧縮機12の内部の摺動部位を潤滑するためのオイルが混入されている。このオイルの一部は、冷媒とともにサイクル内を循環する。
 ヒートポンプサイクル10は、オイルを含む冷媒の循環経路を切り替えることで、車室内への送風空気を冷却して車室内を冷房する冷房モードと車室内への送風空気を加熱して車室内を暖房する暖房モードとを切替可能に構成されている。本実施形態では、車室内への送風空気が温調対象流体となる。また、本実施形態では、冷房モードが温調対象流体を冷却するための冷却モードに相当し、暖房モードが温調対象流体を加熱するための加熱モードに相当する。
 図1に示すように、ヒートポンプサイクル10は、圧縮機12、水-冷媒熱交換器14、室外熱交換器16、冷房用膨張弁20、蒸発器22、弁装置30等を備えている。
 圧縮機12は、ボンネットの内側に配置されている。圧縮機12は、吸入した冷媒を圧縮して吐出する機器である。本実施形態の圧縮機12は、図示しない電動モータによって駆動される電動圧縮機で構成されている。圧縮機12は、電動モータの回転数に応じて冷媒の吐出能力が変更可能となっている。なお、圧縮機12は、後述する制御装置100から出力される制御信号によって、その作動が制御される。
 圧縮機12の冷媒吐出側には、水-冷媒熱交換器14が接続されている。水-冷媒熱交換器14は、圧縮機12から吐出された高圧冷媒が流れる第1熱交換部142と、不凍液が流れる第2熱交換部144とを備えている。水-冷媒熱交換器14の第1熱交換部142は、圧縮機12の冷媒吐出側と弁装置30との間に接続されている。
 水-冷媒熱交換器14は、第1熱交換部142を流れる冷媒を、第2熱交換部144を流れる不凍液との熱交換によって放熱させる放熱器である。第2熱交換部144を流れる不凍液は、第1熱交換部142を流れる冷媒によって加熱される。
 本実施形態の第1熱交換部142は、圧縮機12からの冷媒が流入する上流側コア部142a、上流側コア部142aから流出した冷媒の気液を分離する気液分離器142b、気液分離器142bで分離された冷媒を放熱させる下流側コア部142cを有している。なお、気液分離器142bは、上流側コア部142aから流出した冷媒の一部を一時的に貯留するレシーバタンクとして機能する。
 ここで、第2熱交換部144は、不凍液が流れる不凍液循環回路60に設けられている。この不凍液循環回路60には、不凍液を循環させる循環ポンプ62、および不凍液を放熱させるヒータコア64が設けられている。なお、循環ポンプ62は、後述する制御装置100からの制御信号によって、その作動が制御される。
 ヒータコア64は、室内空調ユニット50の空調ケース51内に形成された温風通路512に配置されている。ヒータコア64は、その内部を流れる不凍液を、温風通路512を通過する送風空気との熱交換によって放熱させる放熱器である。温風通路512を通過する送風空気は、ヒータコア64を流れる不凍液によって加熱される。
 従って、本実施形態の水-冷媒熱交換器14は、圧縮機12から吐出された高圧冷媒を、不凍液およびヒータコア64を介して間接的に送風空気に放熱させる放熱器として機能する。
 水-冷媒熱交換器14の冷媒出口側には、弁装置30が接続されている。弁装置30は、ヒートポンプサイクル10における冷媒の循環経路を切り替える装置である。本実施形態の弁装置30は、複数の弁が互いに連動して作動する複合型制御バルブとして構成されている。本実施形態の弁装置30は、後述する制御装置100からの制御信号によって、その作動が制御される。弁装置30には、冷媒が流れる冷媒流路として、コア導入流路302、過冷却流路304、および吸入側流路306が設定されている。
 コア導入流路302は、水-冷媒熱交換器14の第1熱交換部142を通過した冷媒を室外熱交換器16のコア部17のコア入口部170a側に導く冷媒流路である。コア導入流路302には、液溜め部184の下方側においてコア導入流路302を全開状態および可変絞り状態に切り替える絞り弁36が配置されている。
 過冷却流路304は、冷房モード時に、後述する室外熱交換器16の受液器18に貯留された液冷媒を室外熱交換器16の過冷却部19の冷媒入口側に導く冷媒流路である。過冷却流路304には、液溜め部184の下方側において過冷却流路304を開閉する第1流路開閉弁38が配置されている。
 吸入側流路306は、暖房モード時に、後述する室外熱交換器16の受液器18の冷媒を圧縮機12の冷媒吸入側に導く冷媒流路である。吸入側流路306は、冷房用膨張弁20および蒸発器22を迂回して圧縮機12の冷媒吸入側に冷媒を導くバイパス流路として機能する。吸入側流路306には、液溜め部184の下方側において吸入側流路306を開閉する第2流路開閉弁40が配置されている。本実施形態では、第1流路開閉弁38および第2流路開閉弁40が、後述する受液器18の液溜め部184の下流側の冷媒流路を過冷却流路304および吸入側流路306のいずれかに切り替える流路切替部を構成している。
 本実施形態の弁装置30は、後述する室外熱交換器16の受液器18と一体に構成されている。本実施形態の弁装置30は、その一部が後述する室外熱交換器16の受液器18の内側に収容されている。なお、弁装置30の詳細な構成については後述する。
 室外熱交換器16は、車室外空気(すなわち、外気)に晒されるように、車室外に配置された熱交換器である。室外熱交換器16は、弁装置30のコア導入流路302の冷媒流れ下流側に接続されている。室外熱交換器16は、コア導入流路302を通過した冷媒を外気と熱交換させる熱交換器である。
 室外熱交換器16は、冷媒を外気と熱交換させるコア部17、コア部17から流出した冷媒の一部を貯留可能な受液器18、受液器18に貯留された液冷媒を放熱させる過冷却部19、一対のヘッダタンク162、164を含んで構成されている。なお、本実施形態では、一対のヘッダタンク162、164のうち受液器18に隣接する方を第1ヘッダタンク162とし、他方を第2ヘッダタンク164とする。
 室外熱交換器16を構成する主な部材は、アルミニウム製の金属材料で構成されている。室外熱交換器16は、金属材料で構成される各部材が組み付けられた状態で、各部材の所定の部位に設けられたろう材によって接合されている。
 室外熱交換器16を構成するコア部17は、弁装置30のコア導入流路302から流入する冷媒の温度および外気温に応じて、外気から吸熱する吸熱器、または、外気に放熱する放熱器として機能する。本実施形態のコア部17は、冷房モード時に外気への放熱により冷媒を凝縮させる凝縮器として機能し、暖房モード時に外気からの吸熱により冷媒を蒸発させる蒸発器として機能する。
 コア部17は、下方側に位置する下方側コア部170、下方側コア部170よりも上方側に位置する上方側コア部171を有している。また、コア部17には、コア導入流路302からの冷媒が導入されるコア入口部170a、およびコア部17を通過した冷媒を受液器18の液溜め部184に導出するコア出口部171aが設けられている。そして、コア部17は、下方側コア部170を通過した冷媒が上方側コア部171に流入するように、コア入口部170aがコア出口部171aよりも下方側に設けられている。
 具体的には、図2に示すように、コア部17は、内部を冷媒が流通する複数のチューブ172を上下に積層した積層体で構成されている。そして、コア部17には、隣接するチューブ172の間に冷媒と外気との熱交換を促進するフィン174が設けられている。
 コア部17を構成する複数のチューブ172は、一対のヘッダタンク162、164の内部と連通するように、その長手方向の両端部が一対のヘッダタンク162、164に接続されている。
 受液器18は、コア部17から流出した冷媒を液冷媒とガス冷媒に分離して、分離した液冷媒の一部をサイクル内の余剰冷媒として一時的に貯留するレシーバタンクとして機能する。受液器18は、一対のヘッダタンク162、164のうち、第1ヘッダタンク162に隣接して配置されている。
 受液器18は、外殻を構成するハウジング182を有している。ハウジング182は、第1ヘッダタンク162と同様に上下方向に延びるように配置されている。ハウジング182は、略円筒状の筒状部182a、筒状部182aの上端側の開口を閉塞する上端側キャップ182bを有している。筒状部182aの下端側の開口については、弁装置30のボデー部32によって閉塞されている。
 受液器18のハウジング182は、その内側に液冷媒の一部を一時的に貯留する液溜め部184が形成されている。液溜め部184は、ハウジング182の上部、すなわち、ハウジング182のうち上端側キャップ182b側に形成されている。
 ハウジング182の内側には、後述する弁装置30のボデー部32が収容されている。本実施形態の弁装置30のボデー部32は、ハウジング182の下部、すなわち、液溜め部184の下方側に収容されている。
 ハウジング182には、液溜め部184が形成される部位に、第1ヘッダタンク162を介してコア部17を通過した冷媒を液溜め部184に導入するための液溜め入口183aが形成されている。本実施形態のハウジング182には、単一の液溜め入口183aが形成されている。
 また、ハウジング182には、弁装置30のボデー部32が収容される部位に、高圧側入口183d、コア側流出口183e、吸入側出口183f、および過冷却側出口183gが形成されている。高圧側入口183dは、弁装置30のコア導入流路302に冷媒を導入するための開口である。コア側流出口183eは、弁装置30のコア導入流路302から冷媒を導出するための開口である。吸入側出口183fは、弁装置30の吸入側流路306から冷媒を導出するための開口である。過冷却側出口183gは、弁装置30の過冷却流路304から冷媒を導出するための開口である。
 過冷却部19は、冷房モード時に、液溜め部184に貯留された液冷媒を外気と熱交換させて冷却する熱交換部である。過冷却部19は、コア部17よりも下方側に配置されている。
 過冷却部19は、コア部17と同様に、内部を冷媒が流通する複数のチューブ192を上下に積層した積層体で構成されている。そして、過冷却部19には、隣接するチューブ192の間に冷媒と外気との熱交換を促進するフィン194が設けられている。
 過冷却部19を構成する複数のチューブ192は、一対のヘッダタンク162、164の内部と連通するように、その長手方向の両端部が一対のヘッダタンク162、164に接続されている。
 過冷却部19は、コア部17を構成する上方側コア部171および下方側コア部170のうち、下方側コア部170の下方側に配置されている。過冷却部19は、下方側コア部170に隣接するように配置されている。
 一対のヘッダタンク162、164は、各チューブ172、192を流れる冷媒の集合・分配を行うタンクとして機能する。一対のヘッダタンク162、164は、各チューブ172、192の積層方向に沿って延びると共に各チューブ172、192の長手方向の両端部に接続されている。各ヘッダタンク162、164は、各チューブ172、192の内部に連通する内部空間が形成されている。
 第1ヘッダタンク162には、各チューブ172、192に連通する内部空間を上下に仕切る2つの仕切部163a、163bが設けられている。第1ヘッダタンク162の内部には、2つの仕切部163a、163bによって、上段空間162a、中段空間162b、下段空間162cといった3つの空間が形成されている。
 第1ヘッダタンク162の中段空間162bは、コア部17のうち下方側に位置する下方側コア部170を構成する各チューブ172に連通している。また、第1ヘッダタンク162の中段空間162bを形成する部位は、内部に冷媒の流通路が形成された中段側連結部165を介して、受液器18におけるコア側流出口183eが形成された部位に連結されている。そして、第1ヘッダタンク162の中段空間162bは、中段側連結部165の内部の流通路を介して、コア導入流路302に連通している。
 第1ヘッダタンク162の中段空間162bには、コア導入流路302を通過した冷媒が流入する。そして、第1ヘッダタンク162の中段空間162bに流入した冷媒は、コア部17のうち下方側に位置する下方側コア部170を構成する各チューブ172に分配される。
 第1ヘッダタンク162の上段空間162aは、コア部17のうち下方側コア部170の上方側に位置する上方側コア部171を構成する各チューブ172に連通している。また、第1ヘッダタンク162の上段空間162aを形成する部位は、内部に冷媒の流通路が形成された上段側連結部166を介して、受液器18における液溜め入口183aが形成された部位に連結されている。そして、第1ヘッダタンク162の上段空間162aは、上段側連結部166の内部の流通路を介して、液溜め部184に連通している。
 第1ヘッダタンク162の上段空間162aには、コア部17の上方側コア部171を構成する各チューブ172を通過した冷媒が流入する。そして、第1ヘッダタンク162の上段空間162aに流入した冷媒は、受液器18の液溜め部184に導入される。
 第1ヘッダタンク162の下段空間162cは、過冷却部19を構成する各チューブ192に連通している。また、第1ヘッダタンク162の下段空間162cを形成する部位は、内部に冷媒の流通路が形成された下段側連結部167を介して、受液器18における過冷却側出口183gが形成された部位に連結されている。そして、第1ヘッダタンク162の下段空間162cは、下段側連結部167の内部の流通路を介して過冷却流路304に連通している。
 第1ヘッダタンク162の下段空間162cには、過冷却流路304を通過した冷媒が流入する。そして、第1ヘッダタンク162の下段空間162cに流入した冷媒は、過冷却部19の各チューブ192に分配される。
 第2ヘッダタンク164は、各チューブ172、192に連通する内部空間を上下に仕切る1つの仕切部164cが設けられている。第2ヘッダタンク164の内部には、1つの仕切部164cによって、上段空間164a、下段空間164bといった2つの空間が形成されている。第2ヘッダタンク164の上段空間164aは、コア部17を構成する各チューブ172に連通している。また、第2ヘッダタンク164の下段空間164bは、過冷却部19を構成する各チューブ192に連通している。
 第2ヘッダタンク164の下段空間164bを形成する部位には、過冷却部19を通過した冷媒を外部に導出するための冷媒導出部168が設けられている。第2ヘッダタンク164の下段空間164bは、室外熱交換器16の中で最も冷媒の温度が低くなる。
 ここで、第2ヘッダタンク164は、コア部17側の冷媒が流入する空間と過冷却部19側の冷媒が流入する空間とが仕切部164cによって仕切られており、仕切部164cを介してコア部17側の冷媒と過冷却部19側の冷媒とが熱交換してしまう虞がある。
 このため、第2ヘッダタンク164の仕切部164cは、コア部17側の冷媒と過冷却部19側の冷媒とが熱交換し難くなるように、断熱性を有する構造(例えば、空気層を有する構造)になっていることが望ましい。
 このように構成される室外熱交換器16では、図2の矢印FL1、矢印FL2に示すように、コア部17の下方側コア部170を通過した冷媒が上方側コア部171に流れるUターン構造となっている。
 また、本実施形態の室外熱交換器16は、図2の矢印FL1、FL3に示すように、上下に隣り合う下方側コア部170および過冷却部19それぞれを流れる冷媒が同じ向きに流れる構造になっている。すなわち、室外熱交換器16は、下方側コア部170を流れる冷媒と過冷却部19を流れる冷媒とが並行流となる構造になっている。
 図1に戻り、冷房用膨張弁20は、室外熱交換器16から流出した冷媒が流入するように、室外熱交換器16の冷媒導出部168の冷媒流れ下流側に設けられている。冷房用膨張弁20は、冷房モード時に室外熱交換器16から流出した冷媒を所定の圧力まで減圧する減圧機器である。本実施形態の冷房用膨張弁20は、蒸発器22の冷媒出口側の冷媒の過熱度が予め定めた範囲となるように、蒸発器22に流入する冷媒を機械的機構によって減圧膨張させる温度式膨張弁で構成されている。
 冷房用膨張弁20の冷媒出口側には、蒸発器22が接続されている。蒸発器22は、室内空調ユニット50の空調ケース51内のうち、ヒータコア64の空気流れ上流側に配置されている。蒸発器22は、冷房用膨張弁20にて減圧された低圧冷媒を送風空気との熱交換によって冷媒を蒸発させることにより、送風空気を冷却する冷却用熱交換器である。蒸発器22の冷媒出口側は、圧縮機12の冷媒吸入側に接続されている。
 また、本実施形態のヒートポンプサイクル10には、蒸発器22と圧縮機12との間に、蒸発器22の冷媒流れ下流側と弁装置30の吸入側流路306の冷媒流れ下流側とを合流させる合流部24が設けられている。
 続いて、室内空調ユニット50について説明する。室内空調ユニット50は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。室内空調ユニット50は、外殻を形成すると共に、その内部に車室内に送風される送風空気の空気通路を形成する空調ケース51を有している。
 空調ケース51の空気流れ最上流側には、車室内空気(すなわち、内気)と外気とを切替導入する内外気切替装置52が配置されている。そして、内外気切替装置52の空気流れ下流側には、内外気切替装置52を介して導入された空気を車室内へ向けて送風する送風機53が配置されている。送風機53は、電動送風機で構成されている。送風機53は、後述する制御装置100から出力される制御信号によって回転数が制御される。
 送風機53の空気流れ下流側には、蒸発器22およびヒータコア64が配置されている。蒸発器22およびヒータコア64は、送風空気の流れに対して、蒸発器22、ヒータコア64の順に配置されている。
 本実施形態の空調ケース51には、蒸発器22の空気流れ下流側に、ヒータコア64が配置された温風通路512と、温風通路512を迂回して空気を流すバイパス通路514とが設定されている。
 また、空調ケース51内には、蒸発器22を通過した後の送風空気のうち、温風通路512に流入する風量とバイパス通路514に流入する風量を調整するエアミックスドア54が配置されている。エアミックスドア54は、後述する制御装置100から出力される制御信号により、その作動が制御される。
 空調ケース51の空気流れ最下流部には、空調対象空間である車室内へ連通する図示しない開口穴が形成されている。蒸発器22、ヒータコア64によって温度調整された空気は、図示しない開口穴を介して車室内へ吹き出される。
 次に、車両用空調装置1の電気制御部である制御装置100について説明する。制御装置100は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。なお、制御装置100の記憶部は、非遷移的実体的記憶媒体で構成される。
 制御装置100は、ROM等に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された圧縮機12、冷房用膨張弁20、弁装置30、循環ポンプ62、送風機53、エアミックスドア54等の各制御機器の作動を制御する。
 ここで、制御装置100は、その出力側に接続された各制御機器の作動を制御する制御部が一体に構成されている。例えば、本実施形態では、制御装置100における弁装置30の作動を制御する構成(例えば、ハードウェア、ソフトウェア)が、弁装置30を駆動する駆動制御部を構成している。
 続いて、本実施形態の弁装置30の詳細について、図2~図4を参照して説明する。図2および図3に示すように、弁装置30は、ボデー部32、軸部材を構成するロッド34、絞り弁36、第1流路開閉弁38、第2流路開閉弁40、およびアクチュエータ46を備えている。図2~図4に示す矢印ADは、弁装置30のロッド34の軸心CLに沿って延びる方向(すなわち、ロッド34の軸方向)である。本実施形態のロッド34は、その軸心CLが上下方向に沿って延びている。このため、本実施形態では、ロッド34の軸方向ADが上下方向に一致する方向となっている。
 ボデー部32は、耐熱性および耐圧性に優れた金属材料からなるブロック状の部材で構成されている。ボデー部32は、受液器18のハウジング182の内側のうち液溜め部184の下方側に収容されている。
 ボデー部32には、コア導入流路302、過冷却流路304、および吸入側流路306が形成されている。本実施形態のボデー部32には、過冷却流路304および吸入側流路306が、液溜め部184のうち上端部184aよりも下端部184bに近い下方側部位184cに連通するように設けられている。
 ボデー部32には、図3、図4に示すように、過冷却流路304が液溜め部184の下方側部位184cに連通するように、液溜め部184の下端部184bを構成する部位の中央部を避けた位置に過冷却流路304の冷媒入口304aが形成されている。また、ボデー部32には、その側面の下方側の部位に過冷却流路304の冷媒出口304bが形成されている。そして、過冷却流路304の流路途中には、ロッド34の軸方向ADに延びる流路穴が設けられており、当該流路穴によって第1流路開閉弁38を収容する第1弁収容室330が構成されている。
 また、ボデー部32には、図4に示すように、吸入側流路306が液溜め部184の下方側部位184cに連通するように、液溜め部184の下端部184bを構成する部位の略中央部に吸入側流路306の冷媒入口306aが形成されている。また、ボデー部32には、その側面のうち過冷却流路304の冷媒出口304bよりも上方側の部位に吸入側流路306の冷媒出口306bが形成されている。そして、吸入側流路306の流路途中には、ロッド34の軸方向ADに延びる流路穴が設けられており、当該流路穴によって第2流路開閉弁40を収容する第2弁収容室331が構成されている。
 さらに、ボデー部32は、その側面のうち過冷却流路304の冷媒出口304bと吸入側流路306の冷媒出口306bとの間に位置する部位に、コア導入流路302の冷媒入口302aおよび冷媒出口302bが形成されている。そして、コア導入流路302の流路途中には、ロッド34の軸方向ADに延びる流路穴が設けられており、当該流路穴によって絞り弁36を収容する第3弁収容室332が構成されている。
 本実施形態のボデー部32の内側には、上方側から下方側に向かって、第2弁収容室331、第3弁収容室332、第1弁収容室330がこの順序で直列的に並ぶように設けられている。各収容部330~332は、ロッド34を摺動可能に支持する第1支持部333、および第2支持部334によって区画されている。第1支持部333は、ボデー部32に形成されている。第2支持部334は、第1支持部333の下方側においてボデー部32の内側に圧入されている。
 本実施形態の過冷却流路304の冷媒出口304bは、コア導入流路302の冷媒出口302bおよび吸入側流路306の冷媒出口306bよりも下方側に設けられている。このため、過冷却流路304は、ボデー部32の内部でコア導入流路302および吸入側流路306に連通しないように、ボデー部32のうちコア導入流路302および吸入側流路306を避けた部位に形成された連通路304cを含んで構成されている。これによると、ボデー部32に形成された過冷却流路304の連通路304cを介して液溜め部184の冷媒を第1弁収容室330に適切に導くことができる。
 ここで、室外熱交換器16のコア部17は、冷房モード時に凝縮器として機能し、暖房モード時に蒸発器として機能する。このため、基本的には、吸入側流路306にガス冷媒が流れ、過冷却流路304に液冷媒が流れる。そして、ガス冷媒は、液冷媒に比べて圧力損失が大きくなる傾向がある。
 このため、本実施形態では、吸入側流路306の冷媒入口306aの開口面積を過冷却流路304の冷媒入口304aの開口面積よりも大きくしている。これによれば、吸入側流路306を流れるガス冷媒の圧力損失を抑えることができる。
 加えて、本実施形態では、吸入側流路306の冷媒出口306bを過冷却流路304の冷媒出口304bよりも上方側に設けている。すなわち、吸入側流路306の冷媒出口306bは、過冷却流路304の冷媒出口304bよりも液溜め部184に近い位置に設けられている。これによれば、ガス冷媒が流れる吸入側流路306の流路長さを短くして、吸入側流路306を流れるガス冷媒の圧力損失を抑えることができる。
 上述の如く、本実施形態では、吸入側流路306の冷媒出口306bを過冷却流路304の冷媒出口304bよりも上方側に設けている。このため、本実施形態の弁装置30は、吸入側流路306と過冷却流路304とが弁装置30の内部で立体的に交差する構成となっている。これによると、冷房モード時に過冷却流路304を介して液溜め部184の液冷媒を過冷却部19に適切に導くとともに、暖房モード時に吸入側流路306を介して液溜め部184の冷媒を圧縮機12の冷媒吸入側に適切に導くことができる。また、ヒートポンプサイクル10では、圧縮機12の冷媒吸入側において冷媒の圧力が最も低くなり、他の部位に比べて冷媒の温度も低くなる傾向がある。このため、本実施形態では、吸入側流路306と過冷却流路304とが互いの流路を流れる冷媒が熱交換するように立体的に交差する構成になっている。これによると、吸入側流路306の冷媒との熱交換により過冷却流路304を流れる冷媒が冷却されるといった効果も期待できる。これによると、冷房モード時に液密度の高い冷媒を過冷却部19に導入することが可能となる。なお、流路が立体的に交差するとの意味は、互いに独立した流路が所定の方向において重なり合っている状態と解釈することができる。
 第1弁収容室330には、過冷却流路304を開閉する第1流路開閉弁38、第1流路開閉弁38が接離する弁座を形成する環状の第1弁座部41、第1流路開閉弁38を閉弁方向に付勢する付勢バネ42等が収容されている。第1弁座部41は、第1弁収容室330の内側に対して圧入等によって固定されている。
 第1流路開閉弁38は、第1弁座部41に接離する弁体である。第1流路開閉弁38は、ロッド34が挿通される挿通穴382が形成されている。この挿通穴382は、ロッド34の外側と主弁体362の内側との間に殆ど冷媒が流通しない微小な隙間通路が形成されるように、穴径がロッド34の外径よりも若干大きくなっている。
 本実施形態の第1流路開閉弁38は、第1弁座部41の上方側に設けられている。第1流路開閉弁38は、ロッド34が上方側に移動した際にロッド34に設けられた押圧部342によって上方側に押圧されると開弁状態になる。また、第1流路開閉弁38は、ロッド34が下方側に移動して押圧部342との当接状態が解除されると付勢バネ42の付勢力によって閉弁状態になる。
 第2弁収容室331には、吸入側流路306を開閉する第2流路開閉弁40、第2流路開閉弁40が接離する弁座を形成する環状の第2弁座部43等が収容されている。第2弁座部43は、第2弁収容室331の内側に対して圧入等によって固定されている。
 第2流路開閉弁40は、第2弁座部43に接離する弁体である。第2流路開閉弁40は、ロッド34と一体に変位するようにロッド34に対して連結されている。
 本実施形態の第2流路開閉弁40は、第2弁座部43の下方側に設けられている。第2流路開閉弁40は、ロッド34が上方側に移動した際に第2弁座部43に当接すると閉弁状態になる。また、第2流路開閉弁40は、ロッド34が下方側に移動して第2弁座部43との当接状態が解除されると開弁状態になる。
 第3弁収容室332には、コア導入流路302を全開状態および可変絞り状態に切り替える絞り弁36、絞り弁36が接離する弁座を形成する環状の第3弁座部44、絞り弁36を閉弁方向に付勢する付勢バネ45等が収容されている。本実施形態の第3弁座部44は、第3弁収容室332の内側に対して圧入等によって固定されている。本実施形態の絞り弁36は、第3弁座部44の上方側に設けられている。
 絞り弁36は、ロッド34とは別体に構成された主弁体362、ロッド34に対して一体に構成された副弁体364を有している。副弁体364は、主弁体362よりも外径が小さい弁体で構成されている。
 主弁体362は、第3弁座部44に接離する弁体である。絞り弁36は、主弁体362が第3弁座部44から離れると、殆ど減圧作用が発揮されない全開状態となる。主弁体362には、ロッド34が挿通される挿通穴362aが形成されている。この挿通穴362aは、ロッド34の外側と主弁体362の内側との間に冷媒が流通する隙間流路362bが形成されるように、穴径がロッド34の外径よりも大きくなっている。具体的には、主弁体362に形成された挿通穴362aは、第1流路開閉弁38に形成された挿通穴382よりも穴径が大きくなっている。
 また、主弁体362には、ロッド34を上方側に移動させた際に、副弁体364に当接して主弁体362を開弁側に変位させるための副弁当接部362cが設けられている。副弁当接部362cは、主弁体362に対して連結されている。
 副弁体364は、主弁体362が第3弁座部44に当接した状態で、ロッド34の外側と主弁体362の内側との間に形成される隙間流路362bの開口面積を調整する弁体である。本実施形態の副弁体364は、主弁体362を開弁側に押圧する押圧部としても機能する。
 絞り弁36は、ロッド34が上方側に移動して主弁体362が第3弁座部44から離れると開弁状態になる。また、絞り弁36は、ロッド34が下方側に移動して主弁体362が第3弁座部44に当接すると、冷媒の減圧作用を発揮する絞り状態となる。
 絞り弁36は、絞り状態において、副弁体364を変位させることで隙間流路362bの開口面積を所望の大きさに調整可能となっている。すなわち、絞り弁36は、絞り状態においてコア導入流路302を流れる冷媒の圧力を所望の圧力まで減圧することが可能になっている。
 このように、副弁体364を変位させることでコア導入流路302の通路開度を微調整する構成とすれば、主弁体362によってコア導入流路302の通路開度を微調整する場合に比べてロッド34を移動させる際に必要となる駆動力を低減することができる。
 続いて、ロッド34は、その軸心CLに沿って移動することにより絞り弁36、第1流路開閉弁38、および第2流路開閉弁40を変位させる軸部材である。本実施形態の弁装置30は、単一のロッド34によって、絞り弁36、第1流路開閉弁38、および第2流路開閉弁40を変位させる構成となっている。
 ロッド34は、その軸心CLに沿って延びる棒状の部材で構成されている。ロッド34は、液溜め部184、コア導入流路302、過冷却流路304、吸入側流路306それぞれを貫通するように配置されている。ロッド34は、ボデー部32に設けられた第1支持部333および第2支持部334によって摺動可能に支持されている。
 ロッド34には、絞り弁36、第1流路開閉弁38、および第2流路開閉弁40が、上方側から下方側に向かって、第2流路開閉弁40、絞り弁36、第1流路開閉弁38の順序で装着されている。また、ロッド34には、絞り弁36の副弁体364、第1流路開閉弁38を押圧する押圧部342が一体に設けられている。そして、ロッド34は、その上端部がアクチュエータ46に接続され、アクチュエータ46から出力される駆動力によって軸方向ADに移動する。
 アクチュエータ46は、ロッド34を軸方向ADに移動させる駆動力を出力する機器である。本実施形態のアクチュエータ46は、回転運動を直線運動(すなわち、スライド運動)に変換して出力する直動型のアクチュエータで構成されている。
 アクチュエータ46は、受液器18の上方側に配置されている。本実施形態のアクチュエータ46は、通電により回転駆動力を発生させる電動モータ462、図示しない動力変換機構等を備えている。本実施形態の電動モータ462は、入力されるパルス信号に応じて回転角度を制御可能なステッピングモータで構成されている。動力変換機構は、電動モータ462の出力軸の回転運動を直動運動に変換して、ロッド34を軸方向ADに移動させる機構である。
 ここで、図5は、アクチュエータ46の電動モータ462へ入力するパルスと弁装置30の各弁36、38、40の開口面積との関係を示す特性図である。図5では、絞り弁36の開口面積の変化を実線で示し、第1流路開閉弁38の開口面積の変化を破線で示し、第2流路開閉弁40の開口面積の変化を一点鎖線で示している。なお、各弁36、38、40の開口面積は、冷媒が流れるのに有効な通路断面積である。
 弁装置30は、図5に示すように、電動モータ462へ入力するパルスを変化させることで、各弁36、38、40の開口面積を調整可能となっている。
 例えば、弁装置30は、図6に示すように、第2流路開閉弁40が開弁して絞り弁36および第1流路開閉弁38が閉弁する状態に設定可能となっている。この状態では、コア導入流路302が全閉状態となるので、ヒートポンプサイクル10における冷媒の循環が停止される。
 図6に示す状態からロッド34を上方側に移動させると、弁装置30は、図7に示すように、第2流路開閉弁40が開弁すると共に第1流路開閉弁38が閉弁した状態で、絞り弁36の副弁体364が主弁体362に形成された弁座から離れる。これにより、コア導入流路302では、ロッド34の外側と主弁体362の内側との間に形成される隙間流路362bを介して冷媒が流れることで室外熱交換器16に流入する冷媒が所望の圧力まで減圧される。
 本実施形態の弁装置30は、副弁体364がロッド34に連結されているので、副弁体364の位置を微調整することで、ロッド34の外側と主弁体362の内側との間に形成される隙間流路362bの開口面積を変更することができる。すなわち、本実施形態の弁装置30は、吸入側流路306が全開すると共に過冷却流路304が全閉した状態で、コア導入流路302の開口面積を微調整可能な可変絞り状態にすることができる。
 また、図7に示す状態からロッド34をさらに上方側に移動させると、弁装置30は、図8に示すように、第2流路開閉弁40が閉弁すると共に第1流路開閉弁38が開弁した状態で、絞り弁36の主弁体362が第3弁座部44から離れる。これにより、コア導入流路302が全開状態となり、コア導入流路302を通過する冷媒が殆ど減圧されることなく室外熱交換器16に流入する。すなわち、本実施形態の弁装置30は、吸入側流路306が全閉すると共に過冷却流路304が全開した状態で、コア導入流路302を全開状態にすることができる。
 本実施形態の制御装置100は、図9に示すように、冷房モード時に、コア導入流路302および過冷却流路304が全開状態、吸入側流路306が全閉状態となるように弁装置30のアクチュエータ46を制御する。
 また、本実施形態の制御装置100は、暖房モード時に、コア導入流路302が可変絞り状態、過冷却流路304が全閉状態、吸入側流路306が全開状態となるように弁装置30のアクチュエータ46を制御する。制御装置100は、暖房モード時に、圧縮機12の冷媒吸入側の冷媒の過熱度が予め定めた範囲となるように、コア導入流路302の開口面積を調整する。
 次に、本実施形態の車両用空調装置1の作動を説明する。本実施形態の車両用空調装置1は、制御装置100による各制御機器の制御により、運転モードを冷房モードおよび暖房モードに切り替え可能となっている。以下、車両用空調装置1の冷房モードおよび暖房モードにおける作動を図10~図13を参照して説明する。なお、便宜上、図10および図12では、弁装置30内部の参照符号の図示を一部省略している。
 (冷房モード)
 制御装置100は、運転モードが冷房モードに設定されると、図10に示すように、バイパス通路514を開く位置にエアミックスドア54を制御する。これにより、冷房モード時の室内空調ユニット50は、蒸発器22を通過した後の送風空気の全流量がバイパス通路514を通過する構成となる。制御装置100は、水-冷媒熱交換器14にて冷媒と不凍液との熱交換が行われないように、循環ポンプ62を停止させる。
 また、制御装置100は、図9に示すように、コア導入流路302および過冷却流路304が全開状態となり、吸入側流路306が全閉状態となるように、弁装置30を制御する。
 具体的には、制御装置100は、図11に示すように、弁装置30のアクチュエータ46を制御して、第2流路開閉弁40が第2弁座部43に当接する位置まで、ロッド34を押し上げる。この際、弁装置30では、ロッド34が押し上げられることで、絞り弁36の主弁体362に設けられた副弁当接部362cと副弁体364とが当接して主弁体362が第3弁座部44から離れる位置に変位する。また、弁装置30では、ロッド34が押し上げられることで、第1流路開閉弁38とロッド34の押圧部342とが当接して第1流路開閉弁38が第1弁座部41から離れる位置に変位する。
 これにより、冷房モード時のヒートポンプサイクル10は、図10に示すように冷媒が流れる冷媒回路となる。すなわち、冷房モード時のヒートポンプサイクル10では、圧縮機12から吐出された高圧冷媒が、水-冷媒熱交換器14に流入する。この際、循環ポンプ62が停止しているので、水-冷媒熱交換器14では、高圧冷媒が不凍液と殆ど熱交換することなく弁装置30に流入する。
 冷房モード時には、弁装置30のコア導入流路302が全開状態となっているので、弁装置30に流入した高圧冷媒は、弁装置30で殆ど減圧されることなく、室外熱交換器16のコア部17に流入する。そして、コア部17に流入した高圧冷媒は、外気に放熱した後、受液器18の液溜め部184に流入して、気相冷媒と液相冷媒とに分離される。
 冷房モード時には、液溜め部184の下方側部位184cに連通する過冷却流路304および吸入側流路306のうち過冷却流路304が全開状態になっている。このため、受液器18の液溜め部184に貯留された液冷媒が過冷却流路304を介して過冷却部19に流入する。
 過冷却部19に流入した高圧冷媒は、外気に放熱した後、冷房用膨張弁20に流入して、低圧冷媒となるまで減圧される。冷房用膨張弁20にて減圧された冷媒は、蒸発器22に流入し、車室内へ送風する送風空気から吸熱して蒸発した後、再び圧縮機12に吸入される。
 以上の如く、冷房モード時には、ヒートポンプサイクル10の蒸発器22にて送風空気が冷却された後、ヒータコア64にて加熱されることなく車室内に吹き出される。これにより、車室内の冷房が実現される。
 (暖房モード)
 制御装置100は、運転モードが暖房モードに設定されると、図12に示すように、バイパス通路514を閉じる位置にエアミックスドア54を制御する。これにより、暖房モード時の室内空調ユニット50は、蒸発器22を通過した後の送風空気の全流量が温風通路512を通過する構成となる。制御装置100は、水-冷媒熱交換器14にて冷媒と不凍液との熱交換が行われるように、循環ポンプ62を作動させる。
 また、制御装置100は、図9に示すように、コア導入流路302が可変絞り状態、過冷却流路304が全閉状態、吸入側流路306が全開状態となるように、弁装置30を制御する。
 具体的には、制御装置100は、図13に示すように、弁装置30のアクチュエータ46を制御して、第2流路開閉弁40が第2弁座部43から離れると共に、副弁体364が主弁体362の副弁当接部362cから離れる位置までロッド34を押し下げる。
 この際、主弁体362は、副弁体364との当接が解除され、付勢バネ45の付勢力によって主弁体362が第3弁座部44に当接する位置に変位する。また、弁装置30では、ロッド34が押し下げられることで、第1流路開閉弁38とロッド34の押圧部342との当接が解除され、付勢バネ42の付勢力によって第1流路開閉弁38が第1弁座部41に当接する位置に変位する。
 これにより、暖房モード時のヒートポンプサイクル10は、図12に示すように冷媒が流れる冷媒回路となる。すなわち、暖房モード時のヒートポンプサイクル10では、圧縮機12から吐出された高圧冷媒が、水-冷媒熱交換器14の第1熱交換部142に流入し、高圧冷媒が有する熱が、不凍液およびヒータコア64を介して送風空気に放熱される。
 具体的には、圧縮機12から吐出された高圧冷媒は、第1熱交換部142の上流側コア部142aにて外気に放熱した後、気液分離器142bにて気液分離される。そして、気液分離器142bにて分離された液冷媒が下流側コア部142cに流入して過冷却される。そして、下流側コア部142cから流出した液冷媒が弁装置30に流入する。
 暖房モード時には、弁装置30のコア導入流路302が可変絞り状態になっているので、弁装置30に流入した高圧冷媒は、コア導入流路302にて低圧冷媒となるまで減圧された後、室外熱交換器16のコア部17に流入する。コア部17に流入した冷媒は、外気から吸熱して蒸発する。そして、コア部17にて蒸発したガス冷媒は、受液器18の液溜め部184に流入する。
 暖房モード時には、液溜め部184の下方側部位184cに連通する過冷却流路304および吸入側流路306のうち吸入側流路306が全開状態になっている。このため、受液器18の液溜め部184に存在するオイルを含む冷媒が弁装置30の吸入側流路306を介して圧縮機12の冷媒吸入側に流れ、再び圧縮機12にて圧縮される。
 以上の如く、暖房モード時には、ヒートポンプサイクル10における高圧冷媒が有する熱によって、間接的に送風空気が加熱される。そして、室内空調ユニット50で加熱された送風空気が車室内に吹き出される。これにより、車室内の暖房が実現される。
 以上説明した本実施形態のヒートポンプサイクル10に適用される室外熱交換器16は、受液器18のハウジング182に弁装置30のボデー部32を収容しているので、ヒートポンプサイクル10の小型化を図ることができる。
 特に、本実施形態の室外熱交換器16は、弁装置30に設けられた吸入側流路306を受液器18の液溜め部184の下方側部位184cに連通させる構成となっている。これによれば、暖房モード時に液溜め部184に存在するオイルを含む冷媒を、その自重によって吸入側流路306を介して圧縮機12の冷媒吸入側に戻すことができる。
 具体的には、本実施形態の室外熱交換器16は、流路切替部を構成する第1流路開閉弁38および第2流路開閉弁40を受液器18の液溜め部184の下方側に設けている。これによると、液溜め部184の下方側に存在する冷媒が、その自重によって第1流路開閉弁38および第2流路開閉弁40側に流れるので、冷媒を吸い上げるための吸上機構等が不要となり、弁装置30を簡素な構成で実現することができる。
 また、本実施形態の室外熱交換器16は、吸入側流路306の冷媒出口306bを過冷却流路304の冷媒出口304bよりも上方側に設け、ガス冷媒が流れる吸入側流路306の流路長さが短くなるようにしている。これによれば、吸入側流路306をガス冷媒が流れる際の圧力損失を抑えることができる。
 さらに、本実施形態の室外熱交換器16は、吸入側流路306と過冷却流路304とが互いの流路に存在する冷媒が熱交換するように立体的に交差している。これによると、吸入側流路306に存在する低温の冷媒との熱交換により過冷却流路304を流れる冷媒が冷却されるといった効果を期待できる。
 さらにまた、本実施形態では、下方側コア部170を通過した冷媒が上方側コア部171に流入する構成となっている。これによれば、暖房モード時に下方側コア部170で蒸発したガス冷媒の流れによって上方側コア部171の上方側まで液冷媒が押し上げられる。このため、本実施形態の室外熱交換器16では、コア部17における液冷媒の偏在が抑制されることで、暖房モード時に蒸発器としての機能を充分に発揮させることができる。
 ここで、本実施形態の弁装置30は、絞り弁36、第1流路開閉弁38、および第2流路開閉弁40といった3つの弁を単一のアクチュエータ46が出力する駆動力によって変位させる構成となっている。これによると、弁装置30を簡素な構成で実現することができる。
 本実施形態のコア部17は、下方側コア部170を通過した冷媒が上方側コア部171に流入するように、コア入口部170aがコア出口部171aよりも下方側に設けられている。このようなコア部17を有する室外熱交換器16では、コア導入流路302を短縮するために、絞り弁36についても各開閉弁38、40と同様に液溜め部184よりも下方側に配置することが望ましい。
 また、本実施形態の室外熱交換器16は、過冷却部19がコア部17よりも下方側に配置されている。このため、弁装置30内における過冷却流路304およびコア導入流路302の複雑化を抑えるために、第1流路開閉弁38を絞り弁36よりも下方側に設けることが望ましい。この際、第2流路開閉弁40については、ガス冷媒が流れる吸入側流路306の流路長さが短くなるように、絞り弁36よりも上方側に設けることが望ましい。
 (第1実施形態の第1変形例)
 上述の第1実施形態では、弁装置30のアクチュエータ46を受液器18の上方側に配置する例について説明したが、これに限定されない。弁装置30は、例えば、図14に示すように、アクチュエータ46が受液器18の下方側に配置された構成になっていてもよい。このような構成では、液溜め部184を貫通するようにロッド34を配設する必要がないので、ロッド34の軸ブレに起因する弊害を回避可能となるといった利点がある。
 (第1実施形態の第2変形例)
 上述の第1実施形態では、コア部17と受液器18とが単一の上段側連結部166によって連結される例について説明したが、これに限定されない。室外熱交換器16は、図15に示すように、コア部17と受液器18とが複数の上段側連結部166によって連結される構成になっていてもよい。具体的には、図15に示すように、本変形例の上段側連結部166は、上方側コア部171側から液溜め部184側に冷媒が流れ易くなるように複数設けられている。また、本変形例の受液器18には、複数の上段側連結部166に対応して、ハウジング182における液溜め部184が形成される部位に複数の液溜め入口183a~183cが形成されている。そして、各上段側連結部166は、流通路の流路断面積が下方側に比べて上方側の方が小さくなっている。これは、慣性力によって液冷媒が上方側コア部171の上方側に偏って流れることを抑制するためである。すなわち、各上段側連結部166の流通路の流路断面積が下方側から上方側に向かって小さくなっていることで、上方側コア部171における液冷媒の偏りを抑制することが可能になっている。
 (第1実施形態の第3変形例)
 上述の第1実施形態では、コア部17と過冷却部19とが隣接配置される例について説明したが、これに限定されない。室外熱交換器16は、図16に示すように、過冷却部19とコア部17との間に、過冷却部19の各チューブ192を流れる冷媒とコア部17の各チューブ172を流れる冷媒との不必要な熱交換を抑えるために空隙160が設けられた構成になっていてもよい。
 (第2実施形態)
 次に、第2実施形態について、図17~図22を参照して説明する。本実施形態では、室外熱交換器16のコア部17における冷媒の流れ方、および弁装置30の内部構造等が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分についての説明を省略する。
 まず、本実施形態のコア部17は、図17に示すように、上方側コア部171を通過した冷媒が下方側コア部170に流入するように、コア入口部171bがコア出口部170bよりも上方側に設けられている。これにより、室外熱交換器16は、コア部17の上方側コア部171を通過した冷媒が下方側コア部170に流れるUターン構造となっている。
 本実施形態の受液器18は、ハウジング182の内側に弁装置30のボデー部32が収容されている。そして、受液器18の液溜め部184は、弁装置30のボデー部32の内側に形成されている。
 弁装置30のボデー部32の内側には、上方側から下方側に向かって、第3弁収容室332、液溜め部184、第2弁収容室331、第1弁収容室330がこの順序で直列的に並ぶように設けられている。すなわち、本実施形態の受液器18の内部には、第3弁収容室332が液溜め部184の上方側に設けられ、第1弁収容室330および第2弁収容室331が液溜め部184の下方側に設けられている。そして、第3弁収容室332、液溜め部184、第1弁収容室330、および第2弁収容室331は、第1支持部333、第2支持部334、第2弁座部43によって区画形成されている。
 受液器18のハウジング182には、液溜め部184が形成される部位に、第1ヘッダタンク162を介してコア部17を通過した冷媒を液溜め部に導入するための液溜め入口183aが形成されている。本実施形態のハウジング182には、単一の液溜め入口183aが形成されている。加えて、ハウジング182には、第3弁収容室332が形成される部位に、高圧側入口183dおよびコア側流出口183eが形成されている。また、ハウジング182には、第1弁収容室330および第2弁収容室331が形成される部位に吸入側出口183fおよび過冷却側出口183gが形成されている。
 第1ヘッダタンク162の上段空間162aを形成する部位は、上段側連結部166を介して、受液器18におけるコア側流出口183eが形成された部位に連結されている。また、第1ヘッダタンク162の上段空間162aは、上段側連結部166の内部の流通路を介して、コア導入流路302に連通している。
 第1ヘッダタンク162の上段空間162aには、コア導入流路302を通過した冷媒が流入する。そして、第1ヘッダタンク162の上段空間162aに流入した冷媒は、コア部17の上方側コア部171を構成する各チューブ172に分配される。
 第1ヘッダタンク162の中段空間162bを形成する部位は、中段側連結部165を介して受液器18における液溜め入口183aが形成された部位に連結されている。また、第1ヘッダタンク162の中段空間162bは、中段側連結部165の内部の流通路を介して、液溜め部184に連通している。
 第1ヘッダタンク162の中段空間162bには、コア部17の下方側コア部170を構成する各チューブ172を通過した冷媒が流入する。そして、第1ヘッダタンク162の中段空間162bに流入した冷媒は、受液器18の液溜め部184に導入される。
 このように構成される室外熱交換器16では、図17の矢印FL1、矢印FL2に示すように、コア部17の上方側コア部171を通過した冷媒が下方側コア部170に流れるUターン構造となっている。
 また、本実施形態の室外熱交換器16は、図17の矢印FL1、FL3に示すように、上下に隣り合う下方側コア部170および過冷却部19それぞれを流れる冷媒が逆向きに流れる構造になっている。すなわち、室外熱交換器16は、下方側コア部170を流れる冷媒と過冷却部19を流れる冷媒とが対向流となる構造になっている。
 続いて、本実施形態の弁装置30について、図17および図18を参照して説明する。図17および図18に示すように、弁装置30のボデー部32は、受液器18のハウジング182の内側に収容されている。
 本実施形態の弁装置30は、絞り弁36が装着された第1ロッド47、および各開閉弁38、40が装着された第2ロッド48により軸部材が構成されている。第1ロッド47は、第3弁収容室332および液溜め部184を貫通するように配置されている。第1ロッド47は、第1支持部333によって摺動可能に支持されている。第1ロッド47は、その上端部がアクチュエータ46に接続され、アクチュエータ46から出力される駆動力によって軸方向ADに移動する。
 第2ロッド48は、第1弁収容室330および第2弁収容室331を貫通するように配置されている。第2ロッド48は、その上端部が液溜め部184に露出しており、その上端部が第1ロッド47に連結されている。第2ロッド48には、第1流路開閉弁38を押圧する押圧部482が一体に設けられている。
 第2ロッド48には、その内部に液溜め部184と第1弁収容室330とを連通させる連通路484が形成されている。第2ロッド48には、液溜め部184に露出する上端部に当該連通路484の冷媒入口484aが形成されている。また、第2ロッド48には、第1弁収容室330のうち第1流路開閉弁38の上流側に対応する部位に連通路484の冷媒出口484bが形成されている。
 弁装置30には、コア導入流路302、過冷却流路304、吸入側流路306、および液溜め部184が設けられている。弁装置30には、液溜め部184の上端部184aの上方にコア導入流路302が設けられ、液溜め部184の下端部184bの下方に過冷却流路304および吸入側流路306が設けられている。過冷却流路304および吸入側流路306は、液溜め部184のうち下方側部位184cに連通するように設けられている。
 本実施形態の過冷却流路304は、第2ロッド48の内部に形成された連通路484を含んで構成されている。ボデー部32には、その側面の下方側の部位に過冷却流路304の冷媒出口304bが形成されている。そして、過冷却流路304の流路途中には、ロッド34の軸方向ADに延びる流路穴が設けられており、当該流路穴によって第1弁収容室330が構成されている。
 ボデー部32には、吸入側流路306が液溜め部184の下方側部位184cに連通するように、液溜め部184の下方側部位184cに対応する側面に吸入側流路306の冷媒入口306aが形成されている。また、ボデー部32には、その側面のうち過冷却流路304の冷媒出口304bよりも上方側の部位に吸入側流路306の冷媒出口306bが形成されている。そして、吸入側流路306の流路途中には、ロッド34の軸方向ADに延びる流路穴が設けられており、当該流路穴によって第2弁収容室331が構成されている。
 さらに、ボデー部32は、その側面のうち液溜め部184の上方側に位置する部位に、コア導入流路302の冷媒入口302aおよび冷媒出口302bが形成されている。そして、コア導入流路302の流路途中には、ロッド34の軸方向ADに延びる流路穴が設けられており、当該流路穴によって第3弁収容室332が構成されている。
 本実施形態のボデー部32には、上方側から下方側に向かって、第3弁収容室332、液溜め部184、第2弁収容室331、第1弁収容室330がこの順序で形成されている。また、本実施形態の過冷却流路304の冷媒出口304bは、コア導入流路302の冷媒出口302bおよび吸入側流路306の冷媒出口306bよりも下方側に設けられている。さらに、本実施形態では、吸入側流路306の冷媒入口306aの開口面積が過冷却流路304の冷媒入口304aの開口面積よりも大きくなっている。
 本実施形態の吸入側流路306および過冷却流路304の連通路484は、互いの流路を流れる冷媒が熱交換するように立体的に交差している。これによると、吸入側流路306の冷媒との熱交換により過冷却流路304の連通路484を流れる冷媒が冷却されるといった効果を期待できる。
 その他の構成は第1実施形態と同様である。以下、車両用空調装置1の冷房モードおよび暖房モードにおける作動について図19~図22を参照して説明する。
 (冷房モード)
 制御装置100は、運転モードが冷房モードに設定されると、図19に示すように、バイパス通路514を開く位置にエアミックスドア54を制御する。制御装置100は、水-冷媒熱交換器14にて冷媒と不凍液との熱交換が行われないように、循環ポンプ62を停止させる。
 また、制御装置100は、図20に示すように、弁装置30のアクチュエータ46を制御して、第2流路開閉弁40が第2弁座部43に当接する位置まで、各ロッド47、48を押し上げる。この際、弁装置30では、第1ロッド47が押し上げられることで、絞り弁36の主弁体362に設けられた副弁当接部362cと副弁体364とが当接して主弁体362が第3弁座部44から離れる位置に変位する。また、弁装置30では、第2ロッド48が押し上げられることで、第1流路開閉弁38と第2ロッド48の押圧部482とが当接して第1流路開閉弁38が第1弁座部41から離れる位置に変位する。
 このように、弁装置30は、冷房モード時に、アクチュエータ46によってロッド34が押し上げられることで、コア導入流路302および過冷却流路304が全開状態となり、吸入側流路306が全閉状態となる。
 冷房モード時のヒートポンプサイクル10は、図19に示すように冷媒が流れる冷媒回路となる。すなわち、冷房モード時のヒートポンプサイクル10では、圧縮機12から吐出された高圧冷媒が、水-冷媒熱交換器14に流入する。この際、循環ポンプ62が停止しているので、水-冷媒熱交換器14では、高圧冷媒が不凍液と殆ど熱交換することなく弁装置30に流入する。
 冷房モード時には、弁装置30のコア導入流路302が全開状態となっているので、弁装置30に流入した高圧冷媒は、弁装置30で殆ど減圧されることなく、室外熱交換器16のコア部17に流入する。そして、コア部17に流入した高圧冷媒は、外気に放熱した後、受液器18の液溜め部184に流入して、気相冷媒と液相冷媒とに分離される。
 冷房モード時には、液溜め部184の下方側部位184cに連通する過冷却流路304および吸入側流路306のうち過冷却流路304が全開状態になる。このため、受液器18の液溜め部184に貯留された液冷媒が過冷却流路304を介して過冷却部19に流入する。
 過冷却部19に流入した高圧冷媒は、外気に放熱した後、冷房用膨張弁20に流入して、低圧冷媒となるまで減圧される。冷房用膨張弁20にて減圧された冷媒は、蒸発器22に流入し、車室内へ送風する送風空気から吸熱して蒸発した後、再び圧縮機12に吸入される。
 以上の如く、冷房モード時には、ヒートポンプサイクル10の蒸発器22にて送風空気が冷却された後、ヒータコア64にて加熱されることなく、車室内に吹き出される。これにより、車室内の冷房が実現される。
 (暖房モード)
 制御装置100は、運転モードが暖房モードに設定されると、図21に示すように、バイパス通路514を閉じる位置にエアミックスドア54を制御する。制御装置100は、水-冷媒熱交換器14にて冷媒と不凍液との熱交換が行われるように、循環ポンプ62を作動させる。
 また、制御装置100は、図22に示すように、弁装置30のアクチュエータ46を制御して、第2流路開閉弁40が第2弁座部43から離れると共に、副弁体364が主弁体362の副弁当接部362cから離れる位置まで各ロッド47、48を押し下げる。この際、主弁体362は、副弁体364との当接が解除され、付勢バネ45の付勢力によって主弁体362が第3弁座部44に当接する位置に変位する。また、弁装置30では、ロッド34が押し下げられることで、第1流路開閉弁38と第2ロッド48の押圧部482との当接が解除され、付勢バネ42の付勢力によって第1流路開閉弁38が第1弁座部41に当接する位置に変位する。
 このように、弁装置30は、暖房モード時に、アクチュエータ46によってロッド34が押し下げられることで、コア導入流路302が可変絞り状態、過冷却流路304が全閉状態、吸入側流路306が全開状態となる。
 暖房モード時のヒートポンプサイクル10は、図21に示すように冷媒が流れる冷媒回路となる。すなわち、暖房モード時のヒートポンプサイクル10では、圧縮機12から吐出された高圧冷媒が、水-冷媒熱交換器14の第1熱交換部142に流入し、高圧冷媒が有する熱が、不凍液およびヒータコア64を介して送風空気に放熱される。
 具体的には、圧縮機12から吐出された高圧冷媒は、第1熱交換部142の上流側コア部142aにて外気に放熱した後、気液分離器142bにて気液分離される。そして、気液分離器142bにて分離された液冷媒が下流側コア部142cに流入して過冷却される。そして、下流側コア部142cから流出した液冷媒が、弁装置30に流入する。
 暖房モード時には、弁装置30のコア導入流路302が可変絞り状態になっているので、弁装置30に流入した高圧冷媒は、コア導入流路302にて低圧冷媒となるまで減圧された後、室外熱交換器16のコア部17に流入する。コア部17に流入した冷媒は、外気から吸熱して蒸発する。そして、コア部17にて蒸発したガス冷媒は、受液器18の液溜め部184に流入する。
 暖房モード時には、液溜め部184の下方側部位184cに連通する過冷却流路304および吸入側流路306のうち吸入側流路306が全開状態となっている。このため、受液器18の液溜め部184に存在するオイルを含む冷媒が弁装置30の吸入側流路306を介して圧縮機12の冷媒吸入側に流れ、再び圧縮機12にて圧縮される。
 以上の如く、暖房モード時には、ヒートポンプサイクル10における高圧冷媒が有する熱によって、間接的に送風空気が加熱される。そして、室内空調ユニット50で加熱された送風空気が車室内に吹き出される。これにより、車室内の暖房が実現される。
 以上説明した本実施形態の室外熱交換器16および弁装置30は、第1実施形態と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。
 特に、本実施形態の室外熱交換器16は、過冷却部19がコア部17よりも下方側に配置されると共に、コア入口部171bが、コア出口部170bよりも上方側に設けられている。このように構成される室外熱交換器16では、コア導入流路302を短縮するために、絞り弁36を液溜め部184よりも上方側に配置するすることが望ましい。そして、液溜め部184から冷媒が過冷却流路304および吸入側流路306に流入し易くなるように、各開閉弁38、40を液溜め部184よりも下方側に設けることが望ましい。この際、第2流路開閉弁40については、ガス冷媒が流れる吸入側流路306の流路長さが短くなるように、第1流路開閉弁38よりも上方側に設けることが望ましい。
 また、本実施形態の弁装置30は、過冷却流路304が、ボデー部32の内部で吸入側流路306に連通しないように、第2ロッド48の内部に形成された連通路484を含んで構成されている。これによると、ボデー部32に形成された過冷却流路304の連通路484を介して液溜め部184の冷媒を第1弁収容室330に適切に導くことができる。
 (第2実施形態の変形例)
 上述の第2実施形態では、冷房モード時に各ロッド47、48を押し上げ、暖房モード時に各ロッド47、48を押し下げることで、絞り弁36、第1流路開閉弁38、第2流路開閉弁40を所望の位置に変位させる例について説明したが、これに限定されない。
 弁装置30は、冷房モード時に各ロッド47、48を押し下げ、暖房モード時に各ロッド47、48を押し上げることで、絞り弁36、第1流路開閉弁38、第2流路開閉弁40を所望の位置に変位させる構成になっていてもよい。
 このように構成される弁装置30の一例について、以下、図23、図24を参照して説明する。本変形例では、上述の第2実施形態と異なる部分について主に説明し、第2実施形態と同様の部分についての説明を省略する。
 弁装置30は、絞り弁36が装着された第1ロッド47と各開閉弁38、40が装着された第2ロッド48とが別体に構成されている。本実施形態の第2ロッド48は、第1ロッド47を下方側に移動させた際に第1ロッド47に押圧されることで、第1ロッド47と共に下方側に移動する構成となっている。本実施形態の第2ロッド48は、第1ロッド47を上方側に移動させると第1ロッド47との当接状態が解除される。この状態では、第1ロッド47を上下に移動させても、第2ロッド48が移動することはない。
 本実施形態の第1流路開閉弁38は、第1弁座部41の下方側に設けられている。第1流路開閉弁38は、第2ロッド48に連結されている。第1流路開閉弁38は、第2ロッド48が第1ロッド47に押圧されて下方側に移動すると第1弁座部41から離れることで開弁状態になる。また、第1流路開閉弁38は、第1ロッド47が上方側に移動して第2ロッド48と第1ロッド47との当接状態が解除されると付勢バネ42の付勢力によって第1弁座部41に当接して閉弁状態になる。
 本実施形態の第2流路開閉弁40は、第2弁座部43の上方側に設けられている。第2流路開閉弁40は、第2ロッド48に連結されている。第2流路開閉弁40は、第2ロッド48が第1ロッド47に押圧されて下方側に移動し、第2弁座部43に当接すると閉弁状態になる。また、第2流路開閉弁40は、第1ロッド47が上方側に移動して第2ロッド48と第1ロッド47との当接状態が解除されると第2弁座部43から離れて開弁状態になる。
 本実施形態の絞り弁36は、第3弁座部44の下方側に設けられている。絞り弁36は、第1ロッド47が下方側に移動して主弁体362が第3弁座部44から離れると開弁状態になる。また、絞り弁36は、第1ロッド47が上方側に移動して主弁体362が第3弁座部44に当接すると冷媒の減圧作用を発揮する絞り状態となる。
 図23に示すように、弁装置30は、冷房モード時に、アクチュエータ46によって、第2流路開閉弁40が第2弁座部43に当接する位置まで各ロッド47、48が押し下げられる。この際、弁装置30では、第1ロッド47が押し下げられることで、絞り弁36の主弁体362に設けられた副弁当接部362cと副弁体364とが当接して主弁体362が第3弁座部44から離れる位置に変位する。また、弁装置30では、第2ロッド48が押し下げられることで、第1流路開閉弁38が第1弁座部41から離れる位置に変位する。
 これにより、弁装置30は、冷房モード時に、アクチュエータ46によってロッド34が押し下げられることで、コア導入流路302および過冷却流路304が全開状態となり、吸入側流路306が全閉状態となる。
 また、図24に示すように、弁装置30は、暖房モード時に、アクチュエータ46によって、第2流路開閉弁40が第2弁座部43から離れると共に、副弁体364が主弁体362の副弁当接部362cから離れる位置まで各ロッド47、48を押し上げられる。この際、主弁体362は、副弁体364との当接が解除され、付勢バネ45の付勢力によって主弁体362が第3弁座部44に当接する位置に変位する。また、弁装置30では、第1ロッド47が押し上げられることで、第1流路開閉弁38が第1弁座部41に当接する位置に変位する。
 これにより、弁装置30は、暖房モード時に、アクチュエータ46によってロッド34が押し上げられることで、コア導入流路302が可変絞り状態、過冷却流路304が全閉状態、吸入側流路306が全開状態となる。
 その他の構成は、第2実施形態と同様である。本変形例の弁装置30では、第2実施形態と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の各実施形態では、弁装置30のボデー部32が受液器18のハウジング182の内側に配置される例について説明したが、これに限定されない。弁装置30のボデー部32は、受液器18のハウジング182の外部に配置されていてもよい。
 上述の各実施形態では、室外熱交換器16として過冷却部19を有する熱交換器を例示したが、これに限定されない。室外熱交換器16としては、過冷却部19を有していない熱交換器が採用されていてもよい。
 上述の各実施形態では、絞り弁36を主弁体362および副弁体364の2つ弁体で構成する例について説明したが、これに限定されない。絞り弁36は、単一の弁体で構成されていてもよい。
 上述の各実施形態では、過冷却流路304および吸入側流路306が設けられた弁装置30に対してコア導入流路302を設け、当該コア導入流路302に絞り弁36を配置する例について説明したが、これに限定されない。コア導入流路302および絞り弁36については、過冷却流路304および吸入側流路306が設けられた弁装置30とは別に構成されていてもよい。
 上述の各実施形態では、本開示の熱交換器および弁装置を車両用空調装置1のヒートポンプサイクル10に適用した例について説明したが、これに限定されない。本開示の熱交換器および弁装置は、温調対象流体を冷却する冷却モードと温調対象流体を加熱する加熱モードとを切替可能なヒートポンプサイクルを備える装置(例えば、家庭用の空調装置)に対して広く適用可能である。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、熱交換器は、冷却モード時に冷媒を凝縮させ、加熱モード時に冷媒を蒸発させるコア部、液溜め部を有する受液器、サイクル内の冷媒の循環経路を切り替える弁装置を備える。弁装置には、加熱モード時に液溜め部の冷媒をヒートポンプサイクルの圧縮機の冷媒吸入側に導く吸入側流路が設けられている。そして、吸入側流路は、液溜め部のうち上端部よりも下端部に近い下方側部位に連通している。
 第2の観点によれば、熱交換器は、コア部の下方側に設置され、冷却モード時に受液器に貯留された液冷媒を放熱させる過冷却部を備える。弁装置には、下方側部位に連通すると共に冷却モード時に液溜め部に貯留された液冷媒を過冷却部に導く過冷却流路が設けられている。そして、吸入側流路のうち冷媒を流出させる冷媒出口は、過冷却流路のうち冷媒を流出させる冷媒出口よりも上方側に設けられている。
 本開示の熱交換器のコア部は、冷却モード時に凝縮器として機能し、加熱モード時に蒸発器として機能する。このため、基本的には、吸入側流路にガス冷媒が流れ、過冷却流路に液冷媒が流れる。そして、ガス冷媒は、液冷媒に比べて圧力損失が大きくなる傾向がある。
 このため、本開示の熱交換器では、吸入側流路の冷媒出口を、過冷却流路の冷媒出口よりも上方側に設け、ガス冷媒が流れる吸入側流路の流路長さが短くなるようにしている。これによれば、吸入側流路をガス冷媒が流れる際の圧力損失を抑えることができる。
 第3の観点によれば、熱交換器は、弁装置の吸入側流路および過冷却流路が、弁装置の内部で立体的に交差している。
 これによると、冷却モード時に過冷却流路を介して液溜め部の液冷媒を過冷却部に適切に導くとともに、加熱モード時に吸入側流路を介して液溜め部の冷媒を圧縮機の冷媒吸入側に適切に導くことが可能となる。また、ヒートポンプサイクルでは、圧縮機の冷媒吸入側において冷媒の圧力が最も低くなり、他の部位に比べて冷媒の温度も低くなる傾向がある。このため、吸入側流路と過冷却流路とを互いの流路に存在する冷媒が熱交換するように立体的に交差させる構成とすれば、吸入側流路の冷媒との熱交換により過冷却流路を流れる冷媒が冷却されるといった効果も期待できる。これによると、冷却モード時に液密度の高い冷媒を過冷却部に導入することが可能となる。
 第4の観点によれば、熱交換器の弁装置は、液溜め部の下流側の冷媒流路を過冷却流路および吸入側流路のいずれかに切り替える流路切替部を有している。そして、流路切替部は、受液器のうち液溜め部の下方側に設けられている。
 液溜め部の上方側に流路切替部を設けることも考えられるが、この場合、液溜め部の下方側に存在する冷媒を流路切替部まで吸い上げる吸上機構等が必要となる。このことは、弁装置を含む受液器が複雑化する要因となってしまう。
 これに対して、液溜め部の下方側に流路切替部を設ける構成とすれば、液溜め部の下方側に存在する冷媒がその自重によって流路切替部側に流れるので、前述の吸上機構等が不要となる。このため、本開示によれば、弁装置を簡素な構成で実現することができる。
 第5の観点によれば、熱交換器の弁装置は、熱交換器に導入する冷媒をコア部に導くコア導入流路が設けられると共に、冷却モード時にコア導入流路を全開状態に切り替え加熱モード時にコア導入流路を可変絞り状態に切り替える絞り弁を有している。
 これよると、コア部の冷媒流れ上流側の絞り弁、およびコア部の冷媒流れ下流側の流路切替部が弁装置に集約されることで、ヒートポンプサイクルのサイクル構成の簡素化を図ることができる。
 第6の観点によれば、熱交換器は、絞り弁が受液器のうち液溜め部の下方側に設けられている。そして、コア部は、下方側コア部を通過した冷媒が下方側コア部よりも上方側に位置する上方側コア部に流入するように、コア導入流路からの冷媒が導入されるコア入口部が、コア部を通過した冷媒を液溜め部に導出するコア出口部よりも下方側に設けられている。
 このように、下方側コア部を通過した冷媒が上方側コア部に流入する構成では、加熱モード時に、下方側コア部で蒸発したガス冷媒の流れによって上方側コア部の上方側まで液冷媒が押し上げられる。このため、本開示の熱交換器によれば、コア部における液冷媒の偏在が抑制されることで、加熱モード時に蒸発器としての機能を充分に発揮させることができる。
 第7の観点によれば、熱交換器は、流路切替部が、過冷却流路を開閉する第1流路開閉弁、吸入側流路を開閉する第2流路開閉弁を含んで構成されている。そして、絞り弁、第1流路開閉弁、および第2流路開閉弁は、単一のアクチュエータが出力する駆動力によって軸方向に移動する軸部材と連動して変位するように構成されている。
 このように、絞り弁、第1流路開閉弁、および第2流路開閉弁といった3つの弁を単一のアクチュエータが出力する駆動力によって変位させる構成とすれば、弁装置を簡素な構成で実現することができる。
 上述の実施形態の一部または全部で示された第8の観点によれば、弁装置は、液溜め部に連通する複数の冷媒流路を有するボデー部と、液溜め部の下流側の冷媒流路を複数の冷媒流路のいずれかに切り替える流路切替部と、を備える。複数の冷媒流路には、加熱モード時に液溜め部の冷媒をヒートポンプサイクルの圧縮機の冷媒吸入側に導く吸入側流路が含まれている。そして、吸入側流路は、液溜め部のうち上端部よりも下端部に近い下方側部位に連通している。
 第9の観点によれば、弁装置は、駆動力を出力するアクチュエータと、アクチュエータが出力する駆動力によって軸方向に移動する軸部材と、を備える。弁装置が適用される熱交換器は、受液器に貯留された液冷媒を放熱させる過冷却部を含んでいる。複数の冷媒流路には、冷却モード時に液溜め部に貯留された液冷媒を過冷却部に導く過冷却流路が含まれている。ボデー部には、圧縮機から吐出された冷媒をコア部に導くコア導入流路が形成されている。流路切替部は、過冷却流路を開閉する第1流路開閉弁および吸入側流路を開閉する第2流路開閉弁を有している。コア導入流路には、コア導入流路を全開状態および可変絞り状態に切り替えるための絞り弁が設けられている。そして、第1流路開閉弁、第2流路開閉弁、および絞り弁は、軸部材の軸方向への移動に連動して変位するように構成されている。このように、絞り弁、第1流路開閉弁、および第2流路開閉弁といった3つの弁を単一のアクチュエータが出力する駆動力によって変位させる構成とすれば、弁装置を簡素な構成で実現することができる。
 第10の観点によれば、弁装置が適用される熱交換器は、過冷却部がコア部よりも下方側に配置されると共に、コア部のうちコア導入流路からの冷媒が導入されるコア入口部が、コア部を通過した冷媒を液溜め部に導出するコア出口部よりも下方側に設けられている。そして、第1流路開閉弁、第2流路開閉弁、および絞り弁は、受液器のうち液溜め部よりも下方側において、上方側から下方側に向かって第2流路開閉弁、絞り弁、第1流路開閉弁の順序で軸部材に装着されている。
 コア入口部がコア出口部よりも下方側に配置されると共に、過冷却部がコア部よりも下方側に配置された熱交換器では、コア導入流路を短縮するために、絞り弁についても各開閉弁と同様に液溜め部よりも下方側に配置することが望ましい。そして、過冷却部がコア部よりも下方側に配置されているので、弁装置内における過冷却流路およびコア導入流路の複雑化を抑えるために、第1流路開閉弁を絞り弁よりも下方側に設けることが望ましい。この際、第2流路開閉弁については、ガス冷媒が流れる吸入側流路の流路長さが短くなるように、絞り弁よりも上方側に設けることが望ましい。
 第11の観点によれば、弁装置が搭載される熱交換器は、過冷却部がコア部よりも下方側に配置されると共に、コア導入流路からの冷媒をコア部に導入するコア入口部が、コア部を通過した冷媒を液溜め部に導出するコア出口部よりも上方側に設けられている。第1流路開閉弁および第2流路開閉弁は、受液器のうち液溜め部よりも下方側に配置されている。絞り弁は、受液器のうち液溜め部よりも上方側に配置されている。そして、第1流路開閉弁、第2流路開閉弁、および絞り弁は、上方側から下方側に向かって絞り弁、第2流路開閉弁、第1流路開閉弁の順序で軸部材に装着されている。
 コア入口部がコア出口部よりも上方側に配置された熱交換器では、コア導入流路を短縮するために、絞り弁を液溜め部よりも上方側に配置するすることが望ましい。そして、液溜め部から冷媒が過冷却流路および吸入側流路に流入し易くなるように、各開閉弁を液溜め部よりも下方側に設けることが望ましい。この際、第2流路開閉弁については、ガス冷媒が流れる吸入側流路の流路長さが短くなるように、第1流路開閉弁よりも上方側に設けることが望ましい。
 第12の観点によれば、弁装置の過冷却流路には、第1流路開閉弁を収容する弁収容室が設けられている。過冷却流路は、ボデー部に形成された弁収容室と液溜め部とを連通させる連通路を含んで構成されている。そして、連通路は、ボデー部のうち吸入側流路、コア導入流路を避けた部位に形成されている。これによると、ボデー部に形成された過冷却流路の連通路を介して液溜め部の冷媒を弁収容室に適切に導くことができる。
 第13の観点によれば、弁装置の過冷却流路には、第1流路開閉弁を収容する弁収容室が設けられている。軸部材の内部には、弁収容室と液溜め部とを連通させる連通路が形成されている。そして、過冷却流路は、連通路を含んで構成されている。これによると、軸部材に形成された過冷却流路の連通路を介して液溜め部の冷媒を弁収容室に適切に導くことができる。
 第14の観点によれば、弁装置の軸部材は、第1流路開閉弁、第2流路開閉弁、および絞り弁が装着された単一のロッドで構成されている。このように、絞り弁、第1流路開閉弁、および第2流路開閉弁といった3つの弁を単一のロッドに装着する構成とすれば、3つの弁を駆動する弁装置を簡素な構成で実現することができる。
 第15の観点によれば、弁装置の軸部材は、絞り弁が装着されると共にアクチュエータが出力する駆動力によって軸方向に移動する第1ロッド、第1流路開閉弁および第2流路開閉弁が装着された第2ロッドで構成されている。そして、第2ロッドは、第1ロッドを軸方向の一方側に移動させた際に第1ロッドに押圧されることで、第1ロッドと共に軸方向の一方側に移動するように構成されている。このように、絞り弁を第1ロッドに装着し、第1流路開閉弁および第2流路開閉弁を第2ロッドに装着する構成としても、3つの弁を駆動する弁装置を実現することができる。

Claims (15)

  1.  オイルを含む冷媒の循環経路を切り替えることで温調対象流体を冷却するための冷却モードと温調対象流体を加熱するための加熱モードとを切替可能なヒートポンプサイクル(10)に適用される熱交換器であって、
     前記冷却モード時に冷媒を凝縮させる凝縮器として機能し、前記加熱モード時に冷媒を蒸発させる蒸発器として機能するコア部(17)と、
     前記冷却モード時に前記コア部から流出した冷媒の一部をサイクル内の余剰冷媒として一時的に貯留する液溜め部(184)を有する受液器(18)と、
     サイクル内の冷媒の循環経路を切り替える弁装置(30)と、を備え、
     前記弁装置には、前記加熱モード時に前記液溜め部の冷媒を前記ヒートポンプサイクルの圧縮機(12)の冷媒吸入側に導く吸入側流路(306)が設けられており、
     前記吸入側流路は、前記液溜め部のうち上端部(184a)よりも下端部(184b)に近い下方側部位(184c)に連通している熱交換器。
  2.  前記コア部の下方側に設置され、前記冷却モード時に前記受液器に貯留された液冷媒を放熱させる過冷却部(19)を備え、
     前記弁装置には、前記下方側部位に連通すると共に前記冷却モード時に前記液溜め部に貯留された液冷媒を前記過冷却部に導く過冷却流路(304)が設けられており、
     前記吸入側流路のうち冷媒を流出させる冷媒出口(306b)は、前記過冷却流路のうち冷媒を流出させる冷媒出口(304b)よりも上方側に設けられている請求項1に記載の熱交換器。
  3.  前記吸入側流路および前記過冷却流路は、前記弁装置の内部で立体的に交差している請求項2に記載の熱交換器。
  4.  前記弁装置は、前記液溜め部の下流側の冷媒流路を前記過冷却流路および前記吸入側流路のいずれかに切り替える流路切替部(38、40)を有しており、
     前記流路切替部は、前記受液器のうち前記液溜め部の下方側に設けられている請求項2または3に記載の熱交換器。
  5.  前記弁装置は、前記熱交換器に導入する冷媒を前記コア部に導くコア導入流路(302)が設けられると共に、前記冷却モード時に前記コア導入流路を全開状態に切り替え前記加熱モード時に前記コア導入流路を可変絞り状態に切り替える絞り弁(36)を有している請求項4に記載の熱交換器。
  6.  前記絞り弁は、前記受液器のうち前記液溜め部の下方側に設けられており、
     前記コア部は、下方側に位置する下方側コア部(170)を通過した冷媒が前記下方側コア部よりも上方側に位置する上方側コア部(171)に流入するように、前記コア導入流路からの冷媒が導入されるコア入口部(170a)が、前記コア部を通過した冷媒を前記液溜め部に導出するコア出口部(171a)よりも下方側に設けられている請求項5に記載の熱交換器。
  7.  前記流路切替部は、前記過冷却流路を開閉する第1流路開閉弁(38)、前記吸入側流路を開閉する第2流路開閉弁(40)を含んで構成されており、
     前記絞り弁、前記第1流路開閉弁、および前記第2流路開閉弁は、単一のアクチュエータが出力する駆動力によって軸方向に移動する軸部材(34、47、48)と連動して変位するように構成されている請求項5または6に記載の熱交換器。
  8.  オイルを含む冷媒の循環経路を切り替えることで温調対象流体を冷却するための冷却モードと温調対象流体を加熱するための加熱モードとを切替可能に構成され、前記冷却モード時に冷媒を凝縮させ、前記加熱モード時に冷媒を蒸発させるコア部(17)、前記コア部から流出した冷媒の一部を一時的に貯留する液溜め部(184)を有する受液器(18)を含む熱交換器(16)を備えるヒートポンプサイクル(10)に適用される弁装置であって、
     前記液溜め部に連通する複数の冷媒流路(304、306)を有するボデー部(32)と、
     前記液溜め部の下流側の冷媒流路を前記複数の冷媒流路のいずれかに切り替える流路切替部(38、40)と、を備え、
     前記複数の冷媒流路には、前記加熱モード時に前記液溜め部の冷媒を前記ヒートポンプサイクルの圧縮機(12)の冷媒吸入側に導く吸入側流路(306)が含まれており、
     前記吸入側流路は、前記液溜め部のうち上端部(184a)よりも下端部(184b)に近い下方側部位(184c)に連通している弁装置。
  9.  駆動力を出力するアクチュエータ(46)と、
     前記アクチュエータが出力する駆動力によって軸方向に移動する軸部材(34、47、48)と、を備え、
     前記熱交換器は、前記受液器に貯留された液冷媒を放熱させる過冷却部(19)を含んでおり、
     前記複数の冷媒流路には、前記冷却モード時に前記液溜め部に貯留された液冷媒を前記過冷却部に導く過冷却流路(304)が含まれており、
     前記ボデー部には、前記圧縮機から吐出された冷媒を前記コア部に導くコア導入流路(302)が形成されており、
     前記流路切替部は、前記過冷却流路を開閉する第1流路開閉弁(38)および前記吸入側流路を開閉する第2流路開閉弁(40)を有しており、
     前記コア導入流路には、前記コア導入流路を全開状態および可変絞り状態に切り替えるための絞り弁(36)が設けられており、
     前記第1流路開閉弁、前記第2流路開閉弁、および前記絞り弁は、前記軸部材の前記軸方向への移動に連動して変位するように構成されている請求項8に記載の弁装置。
  10.  前記熱交換器は、前記過冷却部が前記コア部よりも下方側に配置されると共に、前記コア部のうち前記コア導入流路からの冷媒が導入されるコア入口部(170a)が、前記コア部を通過した冷媒を前記液溜め部に導出するコア出口部(171a)よりも下方側に設けられており、
     前記第1流路開閉弁、前記第2流路開閉弁、および前記絞り弁は、前記受液器のうち前記液溜め部よりも下方側において、上方側から下方側に向かって前記第2流路開閉弁、前記絞り弁、前記第1流路開閉弁の順序で前記軸部材に装着されている請求項9に記載の弁装置。
  11.  前記熱交換器は、前記過冷却部が前記コア部よりも下方側に配置されると共に、前記コア導入流路からの冷媒を前記コア部に導入するコア入口部(171b)が、前記コア部を通過した冷媒を前記液溜め部に導出するコア出口部(170b)よりも上方側に設けられており、
     前記第1流路開閉弁および前記第2流路開閉弁は、前記受液器のうち前記液溜め部よりも下方側に配置されており、
     前記絞り弁は、前記受液器のうち前記液溜め部よりも上方側に配置されており、
     前記第1流路開閉弁、前記第2流路開閉弁、および前記絞り弁は、上方側から下方側に向かって前記絞り弁、前記第2流路開閉弁、前記第1流路開閉弁の順序で前記軸部材に装着されている請求項9に記載の弁装置。
  12.  前記過冷却流路には、前記第1流路開閉弁を収容する弁収容室(330)が設けられており、
     前記過冷却流路は、前記ボデー部に形成された前記弁収容室と前記液溜め部とを連通させる連通路(304c)を含んで構成されており、
     前記連通路は、前記ボデー部のうち前記吸入側流路、前記コア導入流路を避けた部位に形成されている請求項9ないし11のいずれか1つに記載の弁装置。
  13.  前記過冷却流路には、前記第1流路開閉弁を収容する弁収容室(330)が設けられており、
     前記軸部材の内部には、前記弁収容室と前記液溜め部とを連通させる連通路(484)が形成されており、
     前記過冷却流路は、前記連通路を含んで構成されている請求項9ないし11のいずれか1つに記載の弁装置。
  14.  前記軸部材は、前記第1流路開閉弁、前記第2流路開閉弁、および前記絞り弁が装着された単一のロッド(34)で構成されている請求項9ないし13のいずれか1つに記載の弁装置。
  15.  前記軸部材は、前記絞り弁が装着されると共に前記アクチュエータが出力する駆動力によって前記軸方向に移動する第1ロッド(47)、前記第1流路開閉弁および前記第2流路開閉弁が装着された第2ロッド(48)で構成されており、
     前記第2ロッドは、前記第1ロッドを前記軸方向の一方側に移動させた際に前記第1ロッドに押圧されることで、前記第1ロッドと共に前記軸方向の一方側に移動するように構成されている請求項9ないし13のいずれか1つに記載の弁装置。
PCT/JP2018/024595 2017-07-31 2018-06-28 熱交換器、弁装置 WO2019026485A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148295A JP6798442B2 (ja) 2017-07-31 2017-07-31 熱交換器、弁装置
JP2017-148295 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026485A1 true WO2019026485A1 (ja) 2019-02-07

Family

ID=65233780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024595 WO2019026485A1 (ja) 2017-07-31 2018-06-28 熱交換器、弁装置

Country Status (2)

Country Link
JP (1) JP6798442B2 (ja)
WO (1) WO2019026485A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535372A (ja) * 2010-08-05 2013-09-12 ヴァレオ システム テルミク 冷媒を受け入れるための装置を備える空調ループ
WO2015111116A1 (ja) * 2014-01-21 2015-07-30 株式会社デンソー ヒートポンプサイクル装置
WO2017022378A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 統合弁
WO2017022487A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 冷凍サイクル装置
JP2017129173A (ja) * 2016-01-18 2017-07-27 株式会社Soken 流路切替弁

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087362B2 (ja) * 1991-08-09 2000-09-11 株式会社日立製作所 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535372A (ja) * 2010-08-05 2013-09-12 ヴァレオ システム テルミク 冷媒を受け入れるための装置を備える空調ループ
WO2015111116A1 (ja) * 2014-01-21 2015-07-30 株式会社デンソー ヒートポンプサイクル装置
WO2017022378A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 統合弁
WO2017022487A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 冷凍サイクル装置
JP2017129173A (ja) * 2016-01-18 2017-07-27 株式会社Soken 流路切替弁

Also Published As

Publication number Publication date
JP2019027695A (ja) 2019-02-21
JP6798442B2 (ja) 2020-12-09

Similar Documents

Publication Publication Date Title
KR100419564B1 (ko) 고온가스 바이패스 구조를 가지는 냉동사이클 시스템
US7891211B2 (en) Cold storage tank unit and refrigeration cycle apparatus using the same
JP4259531B2 (ja) エジェクタ式冷凍サイクル用ユニット
US8099978B2 (en) Evaporator unit
US11391499B2 (en) Heat pump cycle device and valve device
US6935129B2 (en) Heat exchanger and combined cycle system using the same
US11225125B2 (en) Integrated valve device
JP5983387B2 (ja) 熱交換器
JP6760226B2 (ja) 複合型熱交換器
JP4416048B2 (ja) エジェクタ式冷凍サイクル用ユニット
WO2018180291A1 (ja) 冷凍サイクル装置
JP6614184B2 (ja) 冷凍サイクル装置及び熱交換器
JP2008138895A (ja) 蒸発器ユニット
JP5540816B2 (ja) 蒸発器ユニット
JP6798442B2 (ja) 熱交換器、弁装置
US20190299126A1 (en) Gas-Liquid Separator
JP6537928B2 (ja) 熱交換器及びヒートポンプシステム
JP6891711B2 (ja) 複合型熱交換器
US11597258B2 (en) Air conditioning device
WO2017175723A1 (ja) 冷凍サイクル装置及び熱交換器
WO2019073880A1 (ja) 熱交換器
JP3983896B2 (ja) 自動車用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842235

Country of ref document: EP

Kind code of ref document: A1