WO2019026234A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019026234A1
WO2019026234A1 PCT/JP2017/028239 JP2017028239W WO2019026234A1 WO 2019026234 A1 WO2019026234 A1 WO 2019026234A1 JP 2017028239 W JP2017028239 W JP 2017028239W WO 2019026234 A1 WO2019026234 A1 WO 2019026234A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
flow path
heat
circuit
refrigeration cycle
Prior art date
Application number
PCT/JP2017/028239
Other languages
English (en)
French (fr)
Inventor
圭 岡本
純 三重野
肇 藤本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1918816.8A priority Critical patent/GB2578533B/en
Priority to JP2019533820A priority patent/JP6861821B2/ja
Priority to PCT/JP2017/028239 priority patent/WO2019026234A1/ja
Publication of WO2019026234A1 publication Critical patent/WO2019026234A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1351Mass flow of refrigerants through the evaporator of the cooled fluid upstream or downstream of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus for supplying heat and cold heat to a load side by heat exchange between a heat medium containing water or brine and a refrigerant heated or cooled by a refrigeration cycle.
  • a cooler having a condenser and two evaporators connected in parallel to the condenser is disclosed (see, for example, Patent Document 1).
  • a pipe in which a heat medium that exchanges heat with a refrigerant in two evaporators flows is installed such that the two evaporators are connected in series.
  • the heat medium is cooled stepwise by two evaporators.
  • the evaporation temperature of the evaporator of the first stage is set to a temperature higher than the evaporation temperature of the evaporator of the second stage, whereby the refrigeration efficiency is high. I am driving.
  • the pressure loss to which the heat medium is subjected increases as the number of evaporators connected in series through which the heat medium passes is increased.
  • the pressure drop depends on the viscosity and the velocity of the heat transfer medium.
  • connecting a plurality of evaporators in series increases the load on the pump.
  • the refrigeration efficiency is reduced by several percent as compared with the configuration in which the plurality of evaporators are connected in series.
  • the present invention has been made to solve the problems as described above, and provides a refrigeration cycle apparatus in which the operation efficiency is improved by suppressing the influence of pressure loss.
  • the refrigeration cycle apparatus is provided for each of a plurality of refrigerant circuits to which a compressor, a heat source side heat exchanger and a pressure reducing device are connected, and each of the plurality of refrigerant circuits, and the refrigerant and the heat medium exchange heat.
  • a heat transfer medium circuit having a plurality of heat transfer medium heat exchangers, the heat transfer medium circuit including a serial flow path connecting the plurality of heat transfer medium heat exchangers in series, and the plurality of heat transfer medium heat exchanges And a flow path switching device for switching between the parallel flow paths connecting the devices in parallel.
  • the flow path with high operation efficiency can be formed in the heat medium circuit, so that the operation efficiency of the entire device can be improved.
  • FIG. 1 is a view showing a configuration example of a refrigeration cycle apparatus according to a first embodiment of the present invention.
  • the refrigeration cycle apparatus 1 includes a heat medium circuit including refrigerant circuits 2a and 2b, and heat medium heat exchangers 6a and 6b for exchanging heat between the refrigerant circulating through the refrigerant circuits 2a and 2b and the heat medium.
  • the control unit 40 is provided in the refrigeration cycle apparatus 1.
  • the heat medium circuit 30 is connected to the load side unit 60.
  • the heat medium circulating between the load side unit 60 and the heat medium circuit 30 is water or brine.
  • the refrigerant circuits 2a and 2b supply the heat generated in the refrigeration cycle to the heat medium circuit 30.
  • the refrigerant circuit 2a includes a compressor 3a, a heat source side heat exchanger 4a, and a pressure reducing device 5a.
  • the heat source side heat exchanger 4a is provided with a fan 7a that supplies outside air to the heat source side heat exchanger 4a.
  • the refrigerant circuit 2a is connected to the heat medium heat exchanger 6a.
  • the refrigerant circuit 2b includes a compressor 3b, a heat source side heat exchanger 4b, and a pressure reducing device 5b.
  • the heat source side heat exchanger 4b is provided with a fan 7b that supplies outside air to the heat source side heat exchanger 4b.
  • the refrigerant circuit 2b is connected to the heat medium heat exchanger 6b. Since the refrigerant circuits 2a and 2b have the same configuration, the configuration of the refrigerant circuit 2a will be described.
  • the compressor 3a compresses and discharges the refrigerant.
  • the compressor 3a is an inverter compressor in which rotation number control is performed by an inverter, and the capacity is changed according to the rotation number.
  • the compressor 3a may be a type of compressor whose rotation speed is constant speed and whose capacity is changed in another way.
  • the heat source side heat exchanger 4a exchanges heat with the refrigerant and is made of, for example, a plate fin heat exchanger.
  • the heat source side heat exchanger 4a functions as a condenser of the refrigerant circuit 2a.
  • the pressure reducing device 5a expands the refrigerant.
  • the decompression device 5a may be an electronic expansion valve capable of adjusting the opening degree, or may be a capillary tube.
  • the displacement control of the compressors 3a and 3b is not limited to the rotational speed control by the inverter, and other control may be used.
  • displacement control may be used which mechanically changes the stroke volume of the compressors 3a and 3b.
  • a plurality of compressors 3a may be provided in each of the refrigerant circuits 2a and 2b, and the capacity control of the compressors may be performed by changing the number of compressors 3a operated. Even in these cases, the operation of the refrigeration cycle of each of the refrigerant circuits 2a and 2b can be performed in a well-balanced manner by controlling the operation of the compressors 3a and 3b in the same manner as controlling the rotation speed with the inverter. Efficient operation can be realized.
  • the configuration of the heat source side heat exchangers 4a and 4b is not limited to the plate fin heat exchanger, and may be another type such as a corrugated fin, for example.
  • the target with which the refrigerant exchanges heat is not limited to air, and may be another medium such as water.
  • the heat medium circuit 30 causes the heat medium to exchange heat with the refrigerant circulating through the refrigerant circuits 2a and 2b, and then supplies the heat medium after the heat exchange to the load side unit 60.
  • a pipe 31 in which the heat medium returns from the load side unit 60 to the heat medium circuit 30 is connected.
  • a pipe 32 for supplying the heat medium from the heat medium circuit 30 to the load side unit 60 is connected to the heat medium outlet side of the heat medium circuit 30.
  • the pipe 31 branches into a pipe 33 passing through the heat medium heat exchanger 6 a and a pipe 34 passing through the heat medium heat exchanger 6 b.
  • the piping 33 and the piping 34 merge and are connected to the piping 32.
  • the load side unit 60, the pipe 31, and the pipe 32 are connected to configure a load side flow path through which the heat medium circulates.
  • the heat medium transfer device 8 is provided in the pipe 31 as a power for circulating the heat medium to the load side unit 60.
  • the heat medium transport device 8 is a pump.
  • FIG. 1 shows the case where the heat medium transport device 8 is provided outside the refrigeration cycle apparatus 1, the heat medium transport device 8 may be provided in the refrigeration cycle device 1.
  • the heat medium circuit 30 has a plurality of heat medium heat exchangers 6a and 6b.
  • the heat medium heat exchanger 6 a exchanges heat with the heat medium by the refrigerant circulating in the refrigerant circuit 2 a and is, for example, a plate type heat exchanger.
  • the heat medium heat exchanger 6a functions as an evaporator of the refrigerant circuit 2a.
  • the heat medium heat exchanger 6 b exchanges heat with the heat medium by the refrigerant circulating in the refrigerant circuit 2 b, and is formed of, for example, a plate type heat exchanger.
  • the heat medium heat exchanger 6b functions as an evaporator of the refrigerant circuit 2b.
  • the configuration of the heat medium heat exchangers 6a and 6b is not limited to the plate type heat exchanger, but may be another type.
  • the heat medium heat exchangers 6a and 6b may be, for example, of a shell tube type or a double pipe type.
  • the heat medium circulating between the heat medium circuit 30 and the load side unit 60 is not limited to water or brine, and may be any medium as long as it is a medium that transfers heat by sensible heat.
  • the heat medium heat exchanger 6a and the heat medium heat exchanger 6b are configured such that the refrigerant and the heat medium flow in opposite directions. Since heat exchange is performed in a state in which the refrigerant and the heat medium flow in opposite directions, the efficiency of heat exchange is improved.
  • the heat medium heat exchanger 6a and the heat medium heat exchanger 6b are described as a single heat exchanger, but the heat medium heat exchanger 6a and the heat medium heat exchanger 6b are integrated. It may be formed in In this case, in the refrigeration cycle apparatus 1, the installation area occupied by the heat medium heat exchanger can be reduced, and space saving can be achieved.
  • the heat source side heat exchangers 4a and 4b function as a condenser, and the heat medium heat exchangers 6a and 6b function as an evaporator of the refrigerant circuits 2a and 2b.
  • the heat source side heat exchangers 4a and 4b may be evaporators.
  • the refrigerant circuits 2 a and 2 b provide heat to the heat medium circuit 30.
  • the heat medium circuit 30 includes a series flow path in which the heat medium heat exchangers 6a and 6b are connected in series, a parallel flow path in which the heat medium heat exchangers 6a and 6b are connected in parallel, and the heat medium heat exchanger 6a. Or it has the flow-path switching apparatus 50 which switches with the single-system flow path which distribute
  • the flow path switching device 50 connects the downstream side of the heat medium heat exchanger 6b with the upstream side of the heat medium heat exchanger 6a, and the inflow of the heat medium to the heat medium heat exchanger 6a and the line 35.
  • the pipe 35 is provided with the third valve 10.
  • the first valve 9, the second valve 11 and the third valve 10 are, for example, solenoid valves.
  • the first valve 9 is provided between the pipe 31 and the heat medium heat exchanger 6 a in the pipe 33 and on the upstream side of a point where the pipe 35 is connected to the pipe 33.
  • the second valve 11 is provided between the heat medium heat exchanger 6 b and the pipe 32 in the pipe 34 and on the downstream side of a point where the pipe 35 is connected to the pipe 34.
  • the pipe 35 is connected to the pipe 33 between the first valve 9 and the heat medium heat exchanger 6a, and connected to the pipe 34 between the second valve 11 and the heat medium heat exchanger 6b.
  • the first valve 9, the second valve 11, and the third valve 10 are two-way valves and control the flow of the heat medium by opening and closing. Note that, instead of the first valve 9 and the third valve 10, a three-way valve may be provided. Also, instead of the second valve 11 and the third valve 10, a three-way valve may be provided.
  • the refrigeration cycle apparatus 1 measures an inlet pressure sensor 12 that measures the inlet pressure of the heat medium flowing into the heat medium circuit 30, and measures the outlet pressure of the heat medium flowing out of the heat medium circuit 30.
  • an outlet pressure sensor 13 In the configuration example shown in FIG. 1, the inlet pressure sensor 12 is provided in the pipe 31, and the outlet pressure sensor 13 is provided in the pipe 32.
  • the pipe 32 is provided with a flowmeter 45 that measures the flow rate of the heat medium flowing through the pipe 32.
  • FIG. 2 is a functional block diagram showing one configuration example of the control unit shown in FIG.
  • the control unit 40 illustrated in FIG. 1 is, for example, a microcomputer.
  • Control unit 40 has a memory for storing a program, and a CPU (Central Processing Unit) for executing processing in accordance with the program.
  • a CPU Central Processing Unit
  • FIG. 2 the illustration of the memory and the CPU is omitted.
  • the control unit 40 is connected to the inlet pressure sensor 12, the outlet pressure sensor 13, and the flow meter 45 by signal lines.
  • the control unit 40 is connected to the compressors 3a and 3b, the fans 7a and 7b, and the pressure reducing devices 5a and 5b by signal lines.
  • the control unit 40 is connected to the flow path switching device 50 by a signal line.
  • the control unit 40 is connected to the first valve 9, the second valve 11 and the third valve 10 by signal lines.
  • the control unit 40 is connected to the heat medium transport device 8 by a signal line.
  • the communication connection means between each device and each sensor and the control unit 40 is wired, but the communication connection means may be wireless.
  • the control unit 40 includes a refrigeration cycle control unit 41, an efficiency calculation unit 42, and a flow path determination unit 43.
  • the refrigeration cycle control means 41 operates the operating frequency of the compressors 3a and 3b, the number of rotations of the fans 7a and 7b, the opening degree of the pressure reducing devices 5a and 5b, and the heat medium according to the heat quantity required by the load side unit 60.
  • the rotation speed of the transfer device 8 is controlled.
  • the refrigeration cycle control means 41 transmits, to the flow path determination means 43 via the efficiency calculation means 42, the operation stop information including the information of the refrigerant circuit which has stopped operation when the operation of the refrigerant circuits 2a and 2b is stopped. .
  • the refrigeration cycle control means 41 controls the refrigeration cycle in accordance with the flow path formed in the heat medium circuit 30.
  • the efficiency calculating unit 42 calculates a pressure difference between the inlet pressure and the outlet pressure of the heat medium circuit 30 as the pressure loss in the heat medium circuit 30.
  • the efficiency calculating means 42 may calculate the pressure loss using the flow rate measured by the flow meter 45.
  • the efficiency calculating means 42 uses the calculated pressure loss to calculate a value used to determine the flow channel selection.
  • the flow path determination means 43 compares the value calculated by the efficiency calculation means 42 with the set value, and selects a flow path to be formed in the heat medium circuit 30 from the serial flow path and the parallel flow path. Further, when the flow path determination means 43 receives the operation stop information from the refrigeration cycle control means 41 via the efficiency calculation means 42, one of the two single flow paths is selected according to the operation stop information. Do.
  • the flow path determination unit 43 controls the flow path switching device 50 in accordance with the selected flow path.
  • the flow path determination means 43 notifies the refrigeration cycle control means 41 of the selected flow path.
  • FIG. 3 is a diagram showing a configuration in which serial flow paths are formed in the heat medium circuit shown in FIG.
  • the flow path determining means 43 controls the first valve 9 in the closed state, controls the third valve 10 in the open state, and controls the second valve 11 in the closed state.
  • the heat medium heat exchanger 6b and the heat medium heat exchanger 6a are connected in series.
  • the pipe 35 functions as a connecting flow path connecting the heat medium heat exchangers 6a and 6b in series.
  • the heat medium flows from the pipe 31 into the pipe 34, flows through the heat medium heat exchanger 6 b, and flows out into the pipe 35. Subsequently, the heat medium flows from the pipe 35 into the pipe 33, flows through the heat medium heat exchanger 6a, and flows out from the pipe 33 into the pipe 32.
  • the heat medium circuit 30 is formed with a serial flow path in which the heat medium flows through the heat medium heat exchanger 6b, the connection flow path, and the heat medium heat exchanger 6a in this order.
  • FIG. 4 is a diagram showing a configuration in which parallel flow paths are formed in the heat medium circuit shown in FIG.
  • the flow path determining means 43 controls the first valve 9 in the open state, controls the third valve 10 in the closed state, and controls the second valve 11 in the open state.
  • the heat medium heat exchanger 6b and the heat medium heat exchanger 6a are connected in parallel.
  • the heat medium is branched from the pipe 31 to the pipes 33 and 34.
  • the heat medium flowing through the pipe 33 flows through the heat medium heat exchanger 6a.
  • the heat medium flowing through the pipe 34 flows through the heat medium heat exchanger 6 b.
  • the heat medium flowing through the pipe 33 and the heat medium flowing through the pipe 34 join together and flow out to the pipe 32. In this manner, a parallel flow path including the flow path through which the heat medium flows through the heat medium heat exchanger 6a and the flow path through which the heat medium flows through the heat medium heat exchanger 6b is formed in the heat medium circuit 30.
  • FIG. 5 is a diagram showing a configuration in which a single system flow path is formed in the heat medium circuit shown in FIG.
  • FIG. 5 shows the case where the refrigerant circuit 2b is in operation among the refrigerant circuits 2a and 2b, but the operation is stopped by the refrigerant circuit 2a.
  • the flow path determining means 43 controls the first valve 9 and the third valve 10 in the closed state, and controls the second valve 11 in the open state.
  • the heat medium flows from the pipe 31 into the pipe 34, flows through the heat medium heat exchanger 6 b, and then flows out from the pipe 34 into the pipe 32.
  • the heat medium does not flow through the heat medium heat exchanger 6a, and a single system flow path through which the heat medium heat exchanger 6b flows is formed in the heat medium circuit 30.
  • FIG. 6 is a diagram showing a configuration in which a single system flow channel different from the single system flow channel shown in FIG. 5 is formed.
  • FIG. 6 shows the case where the refrigerant circuit 2a is in operation among the refrigerant circuits 2a and 2b, but the operation is stopped by the refrigerant circuit 2b.
  • the flow path determining means 43 controls the first valve 9 in the open state, and controls the second valve 11 and the third valve 10 in the closed state.
  • the heat medium flows from the pipe 31 into the pipe 33, flows through the heat medium heat exchanger 6 a, and then flows out from the pipe 33 into the pipe 32.
  • the heat medium does not flow through the heat medium heat exchanger 6b, and a single system flow path through which the heat medium heat exchanger 6a flows is formed in the heat medium circuit 30.
  • the flow path determination means 43 compares the refrigeration efficiency different for each flow path formed in the heat medium circuit 30 with the power efficiency of the heat medium transport device 8 to select a flow path with a better operation efficiency.
  • coefficient of performance (amount of heat available [kW] / input to compressor [kW]).
  • COP coefficient of performance
  • the ratio of the available heat amount to the power efficiency of the heat medium transport device 8 is calculated for each flow channel as the coefficient of performance.
  • COPs be a serial coefficient of performance which is a coefficient of performance in the case of a serial channel
  • COPp be a coefficient of parallel coefficient which is a coefficient of performance in the case of a parallel channel.
  • the heat quantity generated by the refrigerant circuits 2a and 2b is Qs in the case of the serial flow path, and the heat quantity generated by the refrigerant circuits 2a and 2b in the parallel flow path is referred to as Qp.
  • the heat quantities Qs and Qp are values when the refrigerant circuits 2a and 2b are operated under a constant condition, but the refrigeration cycle control means 41 may calculate the heat quantities Qs and Qp.
  • the pressure loss ⁇ P is a pressure loss before and after the heat medium circuit 30.
  • Uref A set value serving as a reference for channel selection with respect to the system improvement rate U.
  • the set value Uref is a value determined that the operation efficiency is higher in the serial flow path than in the parallel flow path when the system improvement rate U is larger than the set value Uref.
  • the control unit 40 stores the values of the heat amounts Qs and Qp and the set value Uref.
  • FIG. 7 is a flowchart showing an example of the flow path selection procedure executed by the control unit shown in FIG.
  • the efficiency calculating unit 42 controls the flow path switching device 50 to set the serial flow path in the heat medium circuit 30 (step ST101).
  • the efficiency calculating unit 42 acquires information on the power consumption Ws of the heat medium transport device 8 from the refrigeration cycle control unit 41.
  • the efficiency calculating means 42 calculates a pressure difference between the inlet pressure measured by the inlet pressure sensor 12 and the outlet pressure measured by the outlet pressure sensor 13 (step ST102). The calculated pressure difference is taken as pressure loss ⁇ Ps.
  • the efficiency calculating unit 42 controls the flow path switching device 50 to set parallel flow paths in the heat medium circuit 30 (step ST103).
  • the efficiency calculating unit 42 acquires information on the power consumption Wp of the heat medium transport device 8 from the refrigeration cycle control unit 41. Then, the efficiency calculating means 42 calculates the pressure difference between the inlet pressure and the outlet pressure (step ST104). The pressure difference calculated is referred to as pressure loss ⁇ Pp.
  • the efficiency calculating unit 42 calculates the coefficient of performance COPs using the power consumption Ws, the heat quantity Qs, and the pressure loss ⁇ Ps of the heat medium transport device 8 regarding the serial flow path. Further, the efficiency calculating unit 42 calculates the coefficient of performance COPp using the power consumption Wp, the heat quantity Qp, and the pressure loss ⁇ Pp of the heat medium transport device 8 regarding the parallel flow path (step ST105). Then, the efficiency calculating means 42 calculates the system improvement rate U using COPs and COPp, and notifies the flow path determining means 43 of the calculated system improvement rate U.
  • the flow path determination unit 43 compares the system improvement rate U received from the efficiency calculation unit 42 with the set value Uref (step ST106). If the system improvement rate U is larger than the set value Uref, the flow path determining unit 43 selects the serial flow path as the flow path formed in the heat medium circuit 30 (step ST107). If it is determined in step ST106 that the system improvement rate U is equal to or less than the set value Uref, the flow path determination unit 43 selects a parallel flow path as the flow path formed in the heat medium circuit 30 (step ST108). Thereafter, the flow path determination unit 43 controls the flow path switching device 50 to form the flow path selected in the determination of step ST106 in the heat medium circuit 30.
  • the pressure difference in the case where the efficiency calculating means 42 calculates the pressure difference in the case of the parallel flow channel is calculated earlier than the pressure difference in the case of the parallel flow channel with reference to FIG. Either one may come first. Further, in the procedure shown in FIG. 7, power consumption Ws may be power consumption Wp.
  • the efficiency calculating means 42 can calculate the system improvement rate U more smoothly.
  • the flow path determining unit 43 switches the flow path using the flow rate of the heat medium flowing through the heat medium circuit 30. It is also good.
  • the efficiency calculating means 42 calculates a pressure loss using the physical property value of the heat medium and the flow rate measured by the flow meter 45 for each flow path of the serial flow path and the parallel flow path.
  • ⁇ P [kPa] is a pressure loss that occurs when the heat medium passes through the heat medium heat exchangers 6a and 6b.
  • a (V) is a coefficient specific to the heat medium heat exchanger, and is a value dependent on the flow velocity V. The flow velocity V differs between the serial flow channel and the parallel flow channel.
  • ⁇ [kg / m 3 ] is the density of the heat medium, and ⁇ [mPa ⁇ s] is the viscosity coefficient of the heat medium.
  • the control unit 40 stores these physical property values.
  • the efficiency calculating unit 42 calculates pressure losses ⁇ Ps and ⁇ Pp using the flow rate measured by the flow meter 45 and the equation (1). Thereafter, as described with reference to FIG. 7, the efficiency calculating unit 42 calculates the system improvement rate U (step ST105). As described with reference to FIG. 7, the flow path determining unit 43 compares the system improvement rate U with the set value Uref (step ST106), and the flow path to be formed in the heat medium circuit 30 according to the comparison result. It determines (step ST107 or step ST108). Also in this case, the power consumption Ws may be equal to the power consumption Wp.
  • the flow path determination unit 43 may switch the flow path using the kinematic viscosity of the heat medium. This flow path switching is effective when the pressure of the heat medium before and after the heat medium circuit 30 and the flow rate of the heat medium flowing through the heat medium circuit 30 are unknown.
  • the power of the heat medium transport device 8 largely depends on the kinematic viscosity of the heat medium. Generally, when the viscosity of the heat medium is 10 [mPa ⁇ s] or less, the viscosity hardly affects the power of the pump, but when the viscosity of the heat medium is 100 [mPa ⁇ s] or more, the viscosity is Significant impact on power. For example, 30 [mPa ⁇ s] is stored in the control unit 40 as a threshold serving as a selection criterion of the flow path regarding the viscosity.
  • the flow path determination unit 43 selects the parallel flow path when the viscosity of the heat medium to be used is equal to or more than the threshold value, and selects the serial flow path when the viscosity of the heat medium is less than the threshold value.
  • the value of the viscosity of the heat medium to be used may be input to the control unit 40 by the operator. Thereby, the control part 40 compares the influence with respect to the operating efficiency of the pressure loss for every flow path, and selects the flow path with a favorable operating efficiency.
  • the control unit 40 controls the flow path switching device 50 to determine whether or not to switch to the single system flow path.
  • the flow path determining means 43 determines whether or not there is a refrigerant circuit whose refrigeration cycle is stopped among the refrigerant circuits 2a and 2b.
  • the flow path determining means 43 is a heat medium heat exchanger connected to the refrigerant circuit of the stopped refrigeration cycle.
  • the flow path switching device 50 is controlled so that the heat medium does not flow.
  • the flow path determination unit 43 controls the flow path switching device 50 so that the heat medium does not flow into the heat medium heat exchanger 6 a connected to the refrigerant circuit 2 a. Specifically, the flow path switching unit 43 switches the flow path so that the first valve 9 is closed, the third valve 10 is closed, and the second valve 11 is open. Control the device 50; Thereby, a single system flow path through which the heat medium flows through the heat medium heat exchanger 6 b is formed in the heat medium circuit 30.
  • the refrigeration cycle apparatus having a plurality of refrigerant circuits stops the operation of the compressors of some of the refrigerant circuits when the heat load decreases, but the circulation of the heat medium to the evaporator of the refrigerant circuits whose compressors are stopped Cause unnecessary pressure loss.
  • the heat medium does not flow to the heat medium heat exchanger connected to the refrigerant circuit which is not operating among the plurality of refrigerant circuits. Therefore, unnecessary increase in pressure loss can be prevented, and the operation of the device can be made more efficient.
  • the refrigeration cycle control means 41 has been described in the case of stopping the operation of the compressor 3a of the refrigerant circuit 2a connected to the heat medium heat exchanger 6a.
  • the operating frequency may be reduced without stopping the compressor 3a.
  • the refrigeration cycle control means 41 reduces the capacity and continues the operation of the compressor 3a. In this case, freezing of the refrigerant in the refrigerant circuit 2a of the compressor 3a having a reduced capacity is suppressed, and temperature unevenness between the refrigerant circuits 2a and 2b, which occurs when the compressor 3a recovers to the normal operation capacity, is suppressed. Ru.
  • the refrigeration cycle control means 41 is connected to the heat medium heat exchanger 6a with the number of rotations of the compressor 3b of the refrigerant circuit 2b connected to the heat medium heat exchanger 6b.
  • the rotational speed of the compressor 3a of the refrigerant circuit 2a may be set to a higher value.
  • the refrigeration cycle control means 41 may make the opening degree of the pressure reducing device 5b larger than the opening degree of the pressure reducing device 5a. In this case, by increasing the circulating amount of the refrigerant in the refrigerant circuit 2b on the upstream side, the operation efficiency of the refrigeration cycle apparatus 1 can be improved.
  • the refrigeration cycle control means 41 controls the heat medium transport device 8 so that the flow rate of the heat medium is smaller than when the parallel flow path is formed. It is also good. In this case, the flow rate of the heat medium is reduced, and the heat medium performs sufficient heat exchange with the refrigerant in each heat exchanger in the order of the heat medium heat exchanger 6b and the heat medium heat exchanger 6a. As a result, the difference between the temperature of the heat medium flowing into the heat medium circuit 30 and the temperature of the heat medium flowing out of the heat medium circuit 30 becomes large.
  • This control is effective, for example, when the heat load is large as when the refrigeration cycle apparatus 1 is started, or when it is necessary to make the temperature difference of the heat medium large.
  • control unit 40 may switch the flow path according to the load.
  • the flow path determination unit 43 selects the serial flow path. After that, in the normal operation in which the refrigeration cycle apparatus 1 operates stably, the flow path determining unit 43 selects the parallel flow path or the single system flow path in order to reduce the power consumption of the heat medium transfer device 8. Thus, the operation efficiency of the refrigeration cycle apparatus 1 can be improved.
  • the first valve 9, the second valve 11, and the third valve 10 may be ball valves manually operated by the operator.
  • the operator may set the flow path in the heat medium circuit 30 by performing the procedure shown in FIG. 7. Further, the operator may set a flow path in the heat medium circuit 30 according to the viscosity of the heat medium. For example, when changing the heat medium from a high viscosity brine to a low viscosity brine, the operator operates the flow path switching device 50 to switch the parallel flow paths formed in the heat medium circuit 30 into serial flow paths. Just do it. On the other hand, when changing the heat medium from low viscosity brine to high viscosity brine, the operator operates the flow path switching device 50 to switch the serial flow path formed in the heat medium circuit 30 to the parallel flow path May be
  • the number of refrigerant circuits provided in the refrigeration cycle apparatus 1 is two is described in the first embodiment, the number of refrigerant circuits is not limited to two.
  • the refrigeration cycle apparatus 1 may be provided with three or more refrigerant circuits. Even in this case, by configuring the plurality of heat medium heat exchangers to be switched between series connection and parallel connection, high efficiency of operation of the refrigeration cycle apparatus 1 can be achieved.
  • the flow path switching device 50 includes, in the heat medium circuit 30, a series flow path connecting a plurality of heat medium heat exchangers 6a and 6b in series and a plurality of heats. And the parallel flow path connecting the medium heat exchangers 6a and 6b in parallel.
  • the first embodiment it is possible to form, among the series flow path and the parallel flow path, a flow path with good operation efficiency. As a result, the operation efficiency can be improved as a whole.
  • the viscosity of the brine used in the brine cooler is about 4.0 to 100.0 [mPa ⁇ s], and the variation is large compared to water (0.8 [mPa ⁇ s]).
  • the flow rate and viscosity of the brine used will vary depending on the environment used. For example, in areas where it is necessary to prevent the heat medium from freezing in winter, high viscosity brine is used as the heat medium. In this case, since the pressure loss due to the series connection of the plurality of evaporators has a large influence on the operation efficiency, a configuration in which the plurality of evaporators are connected in parallel is suitable.
  • the pressure loss due to the series connection of a plurality of evaporators may have less influence on the operation efficiency.
  • a configuration in which a plurality of evaporators are connected in parallel is adopted in consideration of the magnitude of variation in viscosity.
  • the flow path determination unit 43 determines the flow path with higher operation efficiency according to the viscosity of the heat medium. Therefore, the operating efficiency of the refrigeration cycle apparatus 1 is improved.
  • the viscosity of the brine used may be changed from high to low.
  • the refrigeration cycle apparatus in the configuration in which a plurality of evaporators are connected in parallel, the refrigeration cycle apparatus is operated with the refrigeration efficiency reduced.
  • the refrigeration cycle apparatus 1 according to the first embodiment is configured to switch between a serial flow path and a parallel flow path. Even after the installation of the refrigeration cycle apparatus 1, any one of the series flow path and the parallel flow path is formed in the heat medium circuit 30 according to the viscosity of the heat medium. As a result, the connection configuration of the plurality of evaporators can be optimized.
  • FIG. 8 is a view showing a configuration example of a refrigeration cycle apparatus according to a second embodiment of the present invention.
  • the same components as those of the first embodiment are designated by the same reference numerals and their detailed description will be omitted.
  • a flow rate adjuster 20 is provided at the position of the third valve 10 as compared with the configuration shown in FIG. 1.
  • the flow rate regulator 20 regulates the flow rate of the heat medium flowing through the pipe 35.
  • the flow rate regulator 20 has a motor-operated valve capable of adjusting the opening degree, and a reduced diameter portion incapable of adjusting the opening degree.
  • the connection flow path provided with the flow rate regulator 20 has larger flow path resistance than the flow path provided with the heat medium heat exchanger 6 a and the flow path provided with the heat medium heat exchanger 6 b. Therefore, when the serial flow path is formed in the heat medium circuit 30, the flow rate of the heat medium is reduced.
  • the heat flow between the refrigerant and the heat medium is made more reliable by reducing the flow velocity of the heat medium, the temperature change of the heat medium can be made wider.
  • the flow path resistance of the connection flow path provided with the flow rate regulator 20 is large, the heat medium does not easily flow in the connection flow path even when the parallel flow path is formed.
  • the reduced diameter portion of the flow rate regulator 20 or the piping 35 itself makes it difficult for the heat medium to flow.
  • the parallel flow path when the parallel flow path is formed, a part of the heat medium flows in the connection flow path provided with the flow rate regulator 20. In such a configuration, freezing of the heat medium is suppressed in the connection flow path. Furthermore, when the parallel flow path is formed, a part of the heat medium flows in the connection flow path provided with the flow rate regulator 20, so when the flow path switching device 50 switches from the parallel flow path to the serial flow path For example, it is possible to suppress the occurrence of unevenness in the temperature of the heat medium flowing out of the heat medium circuit 30.
  • the case where the third valve 10 is provided in the pipe 35 is described, and in the second embodiment, the case where the flow regulator 20 is provided in the pipe 35 has been described.
  • the flow rate regulator may not be provided.
  • the heat medium flowing through the pipe 34 changes the flow direction largely and enters the pipe 35, and again the heat medium heat exchanger has the flow direction.
  • the heat medium flows through the piping 33 so as to be parallel to 6 b.
  • the flow velocity of the heat medium in the entire heat medium circuit 30 is reduced by the heat medium passing through the pipe 35, even though the flow regulator 20 is not provided in the pipe 35.
  • the heat flow between the refrigerant and the heat medium is more reliably exchanged because the flow velocity of the heat medium is reduced.
  • the flow rate of the heat medium is low even if the heat medium flows in the pipe 35, so the flow rate of the heat medium flowing in the pipe 35 is small, and the influence on the heat exchange efficiency is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍サイクル装置は、圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、を有し、熱媒体回路は、複数の熱媒体熱交換器を直列に接続する直列流路と、複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備えるものである。

Description

冷凍サイクル装置
 本発明は、水またはブラインを含む熱媒体を冷凍サイクルで加熱または冷却した冷媒と熱交換させて、冷温熱を負荷側に供給する冷凍サイクル装置に関する。
 冷温熱を負荷側に供給する冷凍サイクル装置の一例として、凝縮器と、凝縮器に並列に接続された2つの蒸発器とを有する冷却器が開示されている(例えば、特許文献1参照)。特許文献1に開示された冷却器では、2つの蒸発器で冷媒と熱交換を行う熱媒体が流通する配管が、2つの蒸発器が直列に接続されるように設置されている。熱媒体は、2つの蒸発器で段階的に冷却される。この冷却器では、直列に接続される2つの蒸発器のうち、1段目の蒸発器の蒸発温度を2段目の蒸発器の蒸発温度よりも高い温度に設定することで、冷凍効率の高い運転を行っている。
特開2006-329601号公報
 特許文献1に開示された冷却器において、熱媒体が受ける圧力損失は、熱媒体が通過する直列接続される蒸発器が多くなるほど大きくなる。圧力損失は熱媒体の粘性および速度に依存する。熱媒体の粘度が高い場合、複数の蒸発器を直列に接続すると、ポンプの負荷が大きくなる。一方、複数の蒸発器を並列に設置することも考えられる。しかし、複数の蒸発器が並列に接続された構成は、複数の蒸発器が直列に接続された構成に比べて、冷凍効率が数パーセント低下してしまう。
 本発明は、上記のような課題を解決するためになされたもので、圧力損失の影響を抑制して運転効率を向上させた冷凍サイクル装置を提供するものである。
 本発明に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、前記複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、を有し、前記熱媒体回路は、前記複数の熱媒体熱交換器を直列に接続する直列流路と、前記複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備えるものである。
 本発明によれば、直列流路および並列流路のうち、運転効率のよい流路を熱媒体回路に形成できるため、装置全体として運転効率を向上させることができる。
本発明の実施の形態1の冷凍サイクル装置の一構成例を示す図である。 図1に示した制御部の一構成例を示す機能ブロック図である。 図1に示した熱媒体回路に直列流路が形成される構成を示す図である。 図1に示した熱媒体回路に並列流路が形成される構成を示す図である。 図1に示した熱媒体回路に片系統流路が形成される構成を示す図である。 図5に示した片系統流路とは別の片系統流路が形成される構成を示す図である。 図2に示した制御部が実行する流路選択の手順の一例を示すフローチャートである。 本発明の実施の形態2の冷凍サイクル装置の一構成例を示す図である。
実施の形態1.
 本実施の形態1の冷凍サイクル装置の構成を説明する。図1は、本発明の実施の形態1の冷凍サイクル装置の一構成例を示す図である。図1に示すように、冷凍サイクル装置1は、冷媒回路2aおよび2bと、冷媒回路2aおよび2bを循環する冷媒と熱媒体が熱交換する熱媒体熱交換器6aおよび6bを備えた熱媒体回路30とを有する。冷凍サイクル装置1に、制御部40が設けられている。熱媒体回路30は負荷側ユニット60と接続されている。負荷側ユニット60と熱媒体回路30との間を循環する熱媒体は、水またはブラインである。
 冷媒回路2aおよび2bは、冷凍サイクルで生成される熱を熱媒体回路30に供給する。冷媒回路2aは、圧縮機3a、熱源側熱交換器4a、および減圧装置5aを有する。熱源側熱交換器4aには、外気を熱源側熱交換器4aに供給するファン7aが設けられている。冷媒回路2aは、熱媒体熱交換器6aと接続されている。冷媒回路2bは、圧縮機3b、熱源側熱交換器4b、および減圧装置5bを有する。熱源側熱交換器4bには、外気を熱源側熱交換器4bに供給するファン7bが設けられている。冷媒回路2bは、熱媒体熱交換器6bと接続されている。冷媒回路2aおよび2bは同様な構成のため、冷媒回路2aの構成について説明する。
 圧縮機3aは冷媒を圧縮して吐出する。圧縮機3aは、インバータで回転数制御が行われるインバータ圧縮機であり、回転数に応じて容量を変化させる。圧縮機3aは、回転数が一定速で、別の方法で容量を変化させるタイプの圧縮機であってもよい。熱源側熱交換器4aは、冷媒が空気と熱交換するものであり、例えば、プレートフィン熱交換器からなる。熱源側熱交換器4aは、冷媒回路2aの凝縮器として機能する。減圧装置5aは、冷媒を膨張させる。減圧装置5aは、開度を調整できる電子膨張弁であってもよく、キャピラリーチューブであってもよい。
 なお、圧縮機3aおよび3bの容量制御は、インバータによる回転数制御に限らず、他の制御を用いてもよい。例えば、機械的に圧縮機3aおよび3bのストロークボリュームを変更する容量制御を用いてもよい。また、各冷媒回路2aおよび2bに、圧縮機3aを複数台設け、圧縮機3aの運転台数を変更することで、圧縮機の容量制御を行ってもよい。これらの場合でも、インバータで回転数を制御する場合と同様に圧縮機3aおよび3bの運転制御を行うことで、各冷媒回路2aおよび2bの冷凍サイクルの運転をバランスよく実施でき、冷凍サイクルの高効率の運転を実現できる。
 また、熱源側熱交換器4aおよび4bの構成は、プレートフィン熱交換器に限らず、例えば、コルゲートフィンなど他の形式であってもよい。熱源側熱交換器4aおよび4bにおいて、冷媒が熱交換する対象は空気に限らず、水など他の媒体であってもよい。
 熱媒体回路30は、熱媒体に冷媒回路2aおよび2bを循環する冷媒と熱交換させた後、熱交換後の熱媒体を負荷側ユニット60に供給する。熱媒体回路30の熱媒体の流入口側には、熱媒体が負荷側ユニット60から熱媒体回路30に戻る配管31が接続されている。また、熱媒体回路30の熱媒体の流出口側には、熱媒が熱媒体回路30から負荷側ユニット60に供給される配管32が接続されている。配管31は、熱媒体熱交換器6aを通る配管33と、熱媒体熱交換器6bを通る配管34とに分岐する。配管33および配管34は合流して配管32と接続されている。
 負荷側ユニット60と、配管31と、配管32とが接続され、熱媒体が循環する負荷側流路が構成される。配管31には、負荷側ユニット60に熱媒体を循環させる動力として、熱媒体搬送装置8が設けられている。熱媒体搬送装置8はポンプである。図1では、熱媒体搬送装置8が冷凍サイクル装置1の外部に設けられている場合を示しているが、熱媒体搬送装置8は冷凍サイクル装置1内に設けられていてもよい。
 熱媒体回路30は、複数の熱媒体熱交換器6aおよび6bを有する。熱媒体熱交換器6aは、冷媒回路2aを循環する冷媒が熱媒体と熱交換するものであり、例えば、プレート式熱交換器からなる。熱媒体熱交換器6aは、冷媒回路2aの蒸発器として機能する。熱媒体熱交換器6bは、冷媒回路2bを循環する冷媒が熱媒体と熱交換するものであり、例えば、プレート式熱交換器からなる。熱媒体熱交換器6bは、冷媒回路2bの蒸発器として機能する。
 なお、熱媒体熱交換器6aおよび6bの構成は、プレート式熱交換器に限らず、他の形式であってもよい。熱媒体熱交換器6aおよび6bは、例えば、シェルチューブ型または二重管式などの形式であってもよい。また、熱媒体回路30と負荷側ユニット60との間を循環する熱媒体は、水またはブラインに限らず、顕熱で熱を授受する媒体であれば他の媒体であってもよい。
 本実施の形態1では、熱媒体熱交換器6aおよび熱媒体熱交換器6bは、冷媒と熱媒体とが対向流となる構成である。冷媒と熱媒体とが対向流となった状態で熱交換を行うため、熱交換の効率が向上する。
 本実施の形態1では、熱媒体熱交換器6aおよび熱媒体熱交換器6bが単体の熱交換器の場合で説明するが、熱媒体熱交換器6aと熱媒体熱交換器6bとが一体的に形成されていてもよい。この場合、冷凍サイクル装置1において、熱媒体熱交換器が占める設置面積を小さくすることができ、省スペース化を図れる。
 また、図1に示す構成では、熱源側熱交換器4aおよび4bが凝縮器として機能し、熱媒体熱交換器6aおよび6bが冷媒回路2aおよび2bの蒸発器として機能する場合を示しているが、熱源側熱交換器4aおよび4bを蒸発器としてもよい。この場合、冷媒回路2aおよび2bは温熱を熱媒体回路30に提供する。
 熱媒体回路30は、熱媒体熱交換器6aおよび6bが直列に接続される直列流路と、熱媒体熱交換器6aおよび6bが並列に接続される並列流路と、熱媒体熱交換器6aまたは6bに冷媒を流通する片系統流路とを、切り替える流路切替装置50を有する。流路切替装置50は、熱媒体熱交換器6bの下流側と熱媒体熱交換器6aの上流側とを接続する配管35と、熱媒体熱交換器6aおよび配管35への熱媒体の流入を制御する第1の弁9と、熱媒体熱交換器6bからの熱媒体の流出を制御する第2の弁11とを有する。本実施の形態1では、配管35に第3の弁10が設けられている。第1の弁9、第2の弁11および第3の弁10は、例えば、電磁弁である。
 第1の弁9は、配管33において、配管31と熱媒体熱交換器6aとの間であって、配管35が配管33と接続される箇所よりも上流側に設けられている。第2の弁11は、配管34において、熱媒体熱交換器6bと配管32との間であって、配管35が配管34と接続される箇所よりも下流側に設けられている。配管35は、第1の弁9と熱媒体熱交換器6aとの間で配管33と接続され、第2の弁11と熱媒体熱交換器6bとの間で配管34と接続されている。第1の弁9、第2の弁11および第3の弁10は、二方弁であって、開閉により熱媒体の流通を制御する。なお、第1の弁9および第3の弁10の代わりに、三方弁が設けられてもよい。また、第2の弁11および第3の弁10の代わりに、三方弁が設けられてもよい。
 また、図1に示すように、冷凍サイクル装置1は、熱媒体回路30に流入する熱媒体の入口圧力を測定する入口圧力センサ12と、熱媒体回路30から流出する熱媒体の出口圧力を測定する出口圧力センサ13とを有する。図1に示す構成例では、入口圧力センサ12は配管31に設けられ、出口圧力センサ13は配管32に設けられている。配管32には、配管32に流れる熱媒体の流量を測定する流量計45が設けられている。
 図2は、図1に示した制御部の一構成例を示す機能ブロック図である。図1に示す制御部40は、例えば、マイクロコンピュータである。制御部40は、プログラムを記憶するメモリと、プログラムにしたがって処理を実行するCPU(Central Processing Unit)とを有する。図2では、メモリおよびCPUを図に示すことを省略している。
 制御部40は、入口圧力センサ12、出口圧力センサ13および流量計45と信号線で接続されている。制御部40は、圧縮機3aおよび3bと、ファン7aおよび7bと、減圧装置5aおよび5bと信号線で接続されている。制御部40は、流路切替装置50と信号線で接続されている。具体的には、制御部40は、第1の弁9、第2の弁11および第3の弁10と信号線で接続されている。制御部40は、熱媒体搬送装置8と信号線で接続されている。本実施の形態1では、各機器および各センサと制御部40との通信接続手段が有線の場合で説明するが、通信接続手段は無線であってもよい。
 図2に示すように、制御部40は、冷凍サイクル制御手段41と、効率算出手段42と、流路決定手段43とを有する。冷凍サイクル制御手段41は、負荷側ユニット60が必要とする熱量にしたがって、圧縮機3aおよび3bの運転周波数と、ファン7aおよび7bの回転数と、減圧装置5aおよび5bの開度と、熱媒体搬送装置8の回転数とを制御する。冷凍サイクル制御手段41は、冷媒回路2aおよび2bについて、運転を停止した場合、運転を停止した冷媒回路の情報を含む運転停止情報を、効率算出手段42を介して流路決定手段43に送信する。冷凍サイクル制御手段41は、熱媒体回路30に形成された流路にしたがって冷凍サイクルを制御する。
 効率算出手段42は、熱媒体回路30における圧力損失として、熱媒体回路30の入口圧力と出口圧力との圧力差を算出する。効率算出手段42は、流量計45が測定する流量を用いて圧力損失を算出してもよい。効率算出手段42は、算出した圧力損失を用いて、流路選択の判定に用いる値を算出する。流路決定手段43は、効率算出手段42が算出した値と設定値とを比較し、直列流路および並列流路から熱媒体回路30に形成する流路を選択する。また、流路決定手段43は、運転停止情報を冷凍サイクル制御手段41から効率算出手段42を介して受信すると、運転停止情報にしたがって2つの片系統流路のうち、いずれかの流路を選択する。流路決定手段43は、選択した流路にしたがって流路切替装置50を制御する。流路決定手段43は、選択した流路を冷凍サイクル制御手段41に通知する。
 次に、図1に示した熱媒体回路30に直列流路が形成される場合について説明する。図3は、図1に示した熱媒体回路に直列流路が形成される構成を示す図である。図3では、熱媒体が流れる方向を矢印で示す。流路決定手段43は、第1の弁9を閉状態に制御し、第3の弁10を開状態に制御し、第2の弁11を閉状態に制御する。これにより、熱媒体熱交換器6bと熱媒体熱交換器6aとが直列に接続される。このとき、配管35は、熱媒体熱交換器6aおよび6bを直列に接続する接続流路として機能する。
 図3に示す構成では、熱媒体は、配管31から配管34に流入し、熱媒体熱交換器6bを流通して配管35に流出する。続いて、熱媒体は、配管35から配管33に流入し、熱媒体熱交換器6aを流通して配管33から配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6b、接続流路および熱媒体熱交換器6aを順に流通する直列流路が、熱媒体回路30に形成される。
 次に、図1に示した熱媒体回路30に並列流路が形成される場合を説明する。図4は、図1に示した熱媒体回路に並列流路が形成される構成を示す図である。流路決定手段43は、第1の弁9を開状態に制御し、第3の弁10を閉状態に制御し、第2の弁11を開状態に制御する。これにより、熱媒体熱交換器6bと熱媒体熱交換器6aとが並列に接続される。
 図4に示す構成では、熱媒体は、配管31から配管33および34に分流する。配管33を流れる熱媒体は、熱媒体熱交換器6aを流通する。一方、配管34を流れる熱媒体は、熱媒体熱交換器6bを流通する。配管33を流れる熱媒体と配管34を流れる熱媒体とが合流して配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6aを流れる流路と熱媒体が熱媒体熱交換器6bを流れる流路とからなる並列流路が、熱媒体回路30に形成される。
 次に、図1に示した熱媒体回路30に片系統流路が形成される場合を説明する。図5は、図1に示した熱媒体回路に片系統流路が形成される構成を示す図である。図5は、冷媒回路2aおよび2bのうち、冷媒回路2bが運転しているが、冷媒回路2aが運転を停止している場合である。流路決定手段43は、第1の弁9および第3の弁10を閉状態に制御し、第2の弁11を開状態に制御する。図5に示す構成では、熱媒体は、配管31から配管34に流入し、熱媒体熱交換器6bを流通した後、配管34から配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6aを流通せず、熱媒体熱交換器6bを流通する片系統流路が、熱媒体回路30に形成される。
 図6は、図5に示した片系統流路とは別の片系統流路が形成される構成を示す図である。図6は、冷媒回路2aおよび2bのうち、冷媒回路2aが運転しているが、冷媒回路2bが運転を停止している場合である。流路決定手段43は、第1の弁9を開状態に制御し、第2の弁11および第3の弁10を閉状態に制御する。図6に示す構成では、熱媒体は、配管31から配管33に流入し、熱媒体熱交換器6aを流通した後、配管33から配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6bを流通せず、熱媒体熱交換器6aを流通する片系統流路が、熱媒体回路30に形成される。
 次に、制御部40が熱媒体回路30に形成する流路を選択する場合について説明する。流路決定手段43は、熱媒体回路30に形成される流路毎に異なる冷凍効率と熱媒体搬送装置8の動力効率とを比較して、より運転効率のよい流路を選択する。
 一般的には、冷凍サイクルの成績係数(COP:Coefficient Of Performance)は、COP=(利用できる熱量[kW]/圧縮機への入力[kW])で表される。この成績係数の式を基にして、利用できる熱量と熱媒体搬送装置8の動力効率との比を成績係数として流路毎に算出する。直列流路の場合の成績係数となる直列成績係数をCOPsとし、並列流路の場合の成績係数となる並列成績係数をCOPpとする。
 直列流路の場合に冷媒回路2aおよび2bが生成する熱量をQsとし、並列流路の場合に冷媒回路2aおよび2bが生成する熱量をQpとする。本実施の形態1では、熱量QsおよびQpは、冷媒回路2aおよび2bが一定の条件で運転している場合の値とするが、冷凍サイクル制御手段41が熱量QsおよびQpを算出してもよい。熱媒体搬送装置8の動力効率の逆数Eを、E=(圧力損失ΔP/消費電力W)と表す。圧力損失ΔPは、熱媒体回路30の前後の圧力損失である。直列流路の場合の逆数Esを、Es=(圧力損失ΔPs/消費電力Ws)とする。並列流路の場合の逆数Epを、Ep=(圧力損失ΔPp/消費電力Wp)とする。
 これらの値から、COPsを、COPs=(Qs/Es)と表す。COPpを、COPp=(Qp/Ep)と表す。COPs/COPpの値をシステム改善率Uとする。システム改善率Uに対する流路選択の基準となる設定値をUrefとする。設定値Urefは、システム改善率Uが設定値Urefより大きい場合に、運転効率が並列流路よりも直列流路の方がよいと判定される値である。熱量QsおよびQpの値と、設定値Urefとを制御部40が記憶している。
 図7は、図2に示した制御部が実行する流路選択の手順の一例を示すフローチャートである。効率算出手段42は、流路切替装置50を制御して、直列流路を熱媒体回路30に設定する(ステップST101)。効率算出手段42は、熱媒体搬送装置8の消費電力Wsの情報を冷凍サイクル制御手段41から取得する。効率算出手段42は、入口圧力センサ12が測定する入口圧力と出口圧力センサ13が測定する出口圧力との圧力差を算出する(ステップST102)。算出される圧力差を圧力損失ΔPsとする。続いて、効率算出手段42は、流路切替装置50を制御して、並列流路を熱媒体回路30に設定する(ステップST103)。効率算出手段42は、熱媒体搬送装置8の消費電力Wpの情報を冷凍サイクル制御手段41から取得する。そして、効率算出手段42は、入口圧力と出口圧力との圧力差を算出する(ステップST104)。算出される圧力差を圧力損失ΔPpとする。
 効率算出手段42は、直列流路に関して、熱媒体搬送装置8の消費電力Ws、熱量Qsおよび圧力損失ΔPsを用いて、成績係数COPsを算出する。また、効率算出手段42は、並列流路に関して、熱媒体搬送装置8の消費電力Wp、熱量Qpおよび圧力損失ΔPpを用いて、成績係数COPpを算出する(ステップST105)。そして、効率算出手段42は、COPsおよびCOPpを用いてシステム改善率Uを算出し、算出したシステム改善率Uを流路決定手段43に通知する。
 流路決定手段43は、効率算出手段42から受け取ったシステム改善率Uと設定値Urefとを比較する(ステップST106)。システム改善率Uが設定値Urefより大きい場合、流路決定手段43は、熱媒体回路30に形成する流路として直列流路を選択する(ステップST107)。ステップST106の判定において、システム改善率Uが設定値Uref以下である場合、流路決定手段43は、熱媒体回路30に形成する流路として並列流路を選択する(ステップST108)。その後、流路決定手段43は、流路切替装置50を制御して、ステップST106の判定で選択した流路を熱媒体回路30に形成する。
 なお、図7を参照して、効率算出手段42が直列流路の場合の圧力差を並列流路の場合の圧力差よりも先に算出する場合で説明したが、これらの圧力差の算出はいずれが先であってもよい。また、図7に示した手順において、消費電力Ws=消費電力Wpとしてもよい。この場合、システム改善率Uの演算処理において、変数は圧力損失ΔPsおよびΔPpだけとなり、システム改善率U=COPs/COPp=(Qs/ΔPs)/(Qp/ΔPp)となる。効率算出手段42はシステム改善率Uをよりスムーズに算出できる。
 入口圧力センサ12および出口圧力センサ13が測定した圧力の値を用いる場合を例示したが、熱媒体回路30を熱媒体が流通する流量を用いて、流路決定手段43は、流路を切り替えてもよい。
 効率算出手段42は、直列流路および並列流路の流路毎に、熱媒体の物性値と流量計45が測定する流量とを用いて、圧力損失を算出する。圧力損失ΔPは、以下の式1から算出される。
 ΔP=A(V)×ρ^3/4×μ^1/4  ・・・(1)
 式(1)において、ΔP[kPa]は、熱媒体熱交換器6aおよび6bを熱媒体が通過する際に発生する圧力損失である。A(V)は、熱媒体熱交換器固有の係数であり、流速Vに依存する値である。流速Vは、直列流路の場合と並列流路の場合とで異なる。ρ[kg/m]は、熱媒体の密度であり、μ[mPa・s]は、熱媒体の粘性係数である。これらの物性値を制御部40が記憶している。
 図7に示したステップST101~ST104において、効率算出手段42は、流量計45が計測する流量と式(1)とを用いて、圧力損失ΔPsおよびΔPpを算出する。その後、図7を参照して説明したように、効率算出手段42は、システム改善率Uを算出する(ステップST105)。図7を参照して説明したように、流路決定手段43は、システム改善率Uと設定値Urefとを比較し(ステップST106)、比較結果にしたがって、熱媒体回路30に形成する流路を決定する(ステップST107またはステップST108)。この場合においても、消費電力Ws=消費電力Wpであってもよい。
 さらに、流路決定手段43は、熱媒体の動粘度を用いて流路を切り替えてもよい。この流路切替は、熱媒体回路30の前後の熱媒体の圧力と熱媒体回路30を流通する熱媒体の流量とが不明な場合に有効である。
 熱媒体搬送装置8の動力は熱媒体の動粘度に大きく依存する。一般的に、熱媒体の粘度が10[mPa・s]以下である場合、粘度はポンプの動力にほとんど影響ないが、熱媒体の粘度が100[mPa・s]以上の場合、粘度はポンプの動力に重大な影響を及ぼす。粘度に関する流路の選択基準となる閾値として、例えば、30[mPa・s]が制御部40に格納されている。この場合、流路決定手段43は、使用される熱媒体の粘度が閾値以上である場合、並列流路を選択し、熱媒体の粘度が閾値未満である場合、直列流路を選択する。また、使用される熱媒体の粘度の値は、作業者によって制御部40に入力されてもよい。これにより、制御部40は、流路毎の圧力損失の運転効率に対する影響を比較し、運転効率のよい流路を選択する。
 次に、熱媒体回路30に直列流路または並列流路が形成されている場合に、制御部40が流路切替装置50を制御して片系統流路に切り替えるか否かを判定する場合を説明する。流路決定手段43は、冷媒回路2aおよび2bのうち、冷凍サイクルが停止している冷媒回路があるか否かを判定する。冷媒回路2aおよび2bのうち、いずれか一方の冷媒回路の冷凍サイクルが停止している場合、流路決定手段43は、停止している冷凍サイクルの冷媒回路に接続される熱媒体熱交換器に熱媒体が流入しないように流路切替装置50を制御する。
 ここでは、一例として、冷媒回路2aの冷凍サイクルが停止している場合を説明する。流路決定手段43は、冷媒回路2aに接続される熱媒体熱交換器6aに熱媒体が流入しないように、流路切替装置50を制御する。具体的には、流路決定手段43は、第1の弁9が閉状態になり、第3の弁10が閉状態になり、第2の弁11が開状態になるように、流路切替装置50を制御する。これにより、熱媒体が熱媒体熱交換器6bを流通する片系統流路が熱媒体回路30に形成される。
 従来、複数の冷媒回路を有する冷凍サイクル装置は、熱負荷が小さくなると、一部の冷媒回路の圧縮機の運転を停止するが、圧縮機を停止した冷媒回路の蒸発器への熱媒体の流通を継続するため、不要な圧力損失が発生する。これに対して、本実施の形態1では、上述したように、複数の冷媒回路のうち、運転していない冷媒回路に接続される熱媒体熱交換器に熱媒体が流れないようにしている。そのため、不要な圧力損失の増加を防ぎ、装置の運転を高効率化することができる。
 なお、熱媒体熱交換器6aに熱媒体が流れない場合、冷凍サイクル制御手段41は、熱媒体熱交換器6aと接続される冷媒回路2aの圧縮機3aの運転を停止する場合で説明したが、圧縮機3aを停止せずに運転周波数を小さくしてもよい。消費電力の低減の観点からは圧縮機3aを停止させることが望ましいが、冷凍サイクル制御手段41は、能力を落として圧縮機3aの運転を継続させる。この場合、能力が低下した圧縮機3aの冷媒回路2aにおける冷媒の凍結が抑制され、圧縮機3aが通常運転の能力まで復帰したときに発生する、冷媒回路2aおよび2b間の温度ムラが抑制される。
 また、直列流路が形成されている場合、冷凍サイクル制御手段41は、熱媒体熱交換器6bに接続された冷媒回路2bの圧縮機3bの回転数を、熱媒体熱交換器6aに接続された冷媒回路2aの圧縮機3aの回転数よりも高い値に設定してもよい。または、冷凍サイクル制御手段41は、圧縮機3bの代わりに、減圧装置5bの開度を減圧装置5aの開度よりも大きくしてもよい。この場合、上流側の冷媒回路2bの冷媒の循環量を多くすることで、冷凍サイクル装置1の運転の高効率化を図ることができる。
 また、直列流路が形成されている場合、並列流路が形成されている場合と比べて、冷凍サイクル制御手段41は、熱媒体の流量が少なくなるように熱媒体搬送装置8を制御してもよい。この場合、熱媒体の流速が遅くなり、熱媒体は熱媒体熱交換器6bおよび熱媒体熱交換器6aの順に各熱交換器で十分に冷媒と熱交換を行う。その結果、熱媒体回路30に流入する熱媒体の温度と、熱媒体回路30から流出する熱媒体の温度との差が大きくなる。例えば、冷凍サイクル装置1の立ち上げ時のように熱負荷が大きいとき、または熱媒体の温度差を大きくとる必要性があるとき、この制御は、有効である。
 また、制御部40は、負荷に応じて流路を切り替えてもよい。冷凍サイクル装置1の立ち上げ時のように、熱負荷が大きいとき、熱媒体回路30に流入する熱媒体の温度と、熱媒体回路30から流出する熱媒体の温度との温度差を大きくする必要がある。そこで、熱負荷が大きいとき、流路決定手段43は、直列流路を選択する。その後、冷凍サイクル装置1が安定的に動作する通常運転では、熱媒体搬送装置8の低消費電力化を図るために、流路決定手段43は、並列流路または片系統流路を選択する。このようにして、冷凍サイクル装置1の運転効率の向上を図ることができる。
 また、第1の弁9、第2の弁11および第3の弁10は、作業者が手動で操作するボールバルブであってもよい。図7に示した手順を、作業者が行って熱媒体回路30に流路を設定してもよい。また、熱媒体の粘度に応じて、作業者が熱媒体回路30に流路を設定してもよい。例えば、熱媒体を粘度の高いブラインから粘度の低いブラインに変更する場合、作業者が流路切替装置50を操作して、熱媒体回路30に形成されている並列流路を直列流路に切り替えればよい。一方、熱媒体を粘度の低いブラインから粘度の高いブラインに変更する場合、作業者が流路切替装置50を操作して、熱媒体回路30に形成されている直列流路を並列流路に切り替えてもよい。
 さらに、本実施の形態1では、冷凍サイクル装置1に設けられる冷媒回路の数が2つの場合で説明したが、冷媒回路の数は2つに限定されない。冷凍サイクル装置1に冷媒回路が3つ以上設けられていてもよい。この場合でも、複数の熱媒体熱交換器が直列接続と並列接続とを切り替えられるように構成されることで、冷凍サイクル装置1の運転の高効率化を図ることができる。
 本実施の形態1の冷凍サイクル装置1によれば、流路切替装置50は、熱媒体回路30において、複数の熱媒体熱交換器6aおよび6bを直列に接続する直列流路と、複数の熱媒体熱交換器6aおよび6bを並列に接続する並列流路と、を切り替えるものである。
 本実施の形態1によれば、直列流路および並列流路のうち、運転効率のよい流路を形成することができる。その結果、装置全体として運転効率を向上させることができる。
 ブラインクーラで使用されるブラインの粘度は、約4.0~100.0[mPa・s]であり、水(0.8[mPa・s])と比べて、バラつきが大きい。また、使用されるブラインの流量および粘度は使用される環境などによって異なる。例えば、冬季に熱媒体が凍結することを防止する必要がある地域では、熱媒体に粘度の高いブラインが使用される。この場合、複数の蒸発器の直列接続による圧力損失が運転効率に及ぼす影響が大きいため、複数の蒸発器が並列に接続される構成が適している。
 一方、熱媒体に粘度の低いブラインが使用される場合、複数の蒸発器の直列接続による圧力損失が運転効率に及ぼす影響が小さいこともある。このような場合であっても、従来、ブラインが熱媒体に使用される冷凍サイクル装置では、粘度のバラツキの大きさを考慮して、複数の蒸発器が並列に接続された構成が採用されている。これに対して、本実施の形態1では、流路決定手段43が熱媒体の粘度に応じて、より運転効率のよい流路を決定している。そのため、冷凍サイクル装置1の運転効率が向上する。
 また、使用されるブラインの粘度が高いものから低いものに変更されることがある。この場合、複数の蒸発器が並列に接続された構成では、冷凍効率が低下した状態で冷凍サイクル装置が運転されることになる。本実施の形態1の冷凍サイクル装置1は、直列流路と並列流路とが切り替えられる構成である。冷凍サイクル装置1の設置後でも、熱媒体の粘度に応じて、直列流路および並列流路のうち、いずれかの流路が熱媒体回路30に形成される。その結果、複数の蒸発器の接続構成を最適化することができる。
実施の形態2.
 図8は、本発明の実施の形態2の冷凍サイクル装置の一構成例を示す図である。本実施の形態2では、実施の形態1と同様な構成については同一の符号を付し、その詳細な説明を省略する。図8に示すように、本実施の形態2の冷凍サイクル装置1aでは、図1に示した構成と比較すると、第3の弁10の位置に流量調整器20が設けられている。
 流量調整器20は、配管35に流れる熱媒体の流量を調整する。流量調整器20は、開度を調整できる電動弁と、開度を調整できない縮径部とを有する。流量調整器20が設けられた接続流路は、熱媒体熱交換器6aが設けられた流路および熱媒体熱交換器6bが設けられた流路よりも、流路抵抗が大きい。そのため、熱媒体回路30に直列流路が形成されたとき、熱媒体の流速が遅くなる。
 熱媒体回路30において、熱媒体の流速が遅くなることで、冷媒と熱媒体との熱交換がより確実にされるため、熱媒体の温度変化の幅を大きくとることができる。また、流量調整器20が設けられた接続流路の流路抵抗が大きいため、並列流路が形成された場合であっても、接続流路には、熱媒体が流れにくくなる。流量調整器20の縮径部または配管35自体によって、熱媒体が流れにくくなる。
 また、並列流路が形成されている場合、流量調整器20が設けられた接続流路に熱媒体の一部が流れる。このような構成では、接続流路において、熱媒体の凍結が抑制される。さらに、並列流路が形成されている場合、流量調整器20が設けられた接続流路に熱媒体の一部が流れるので、流路切替装置50が並列流路から直列流路に切り替えたときなどに、熱媒体回路30から流出する熱媒体の温度にムラが発生することを抑制できる。
 なお、実施の形態1では配管35に第3の弁10が設けられ場合を説明し、実施の形態2では配管35に流量調整器20が設けられた場合を説明したが、配管35に弁および流量調整器が設けられていなくてもよい。配管35に弁および流量調整器が設けられていない場合、装置の低コスト化を図ることができる。
 例えば、図8において、配管35に流量調整器20が設けられていない場合、配管34を流通する熱媒体は、流通方向を大きく変えて配管35に入り、再び、流通方向が熱媒体熱交換器6bと平行になるように、熱媒体が配管33を流通する。直列流路が形成された場合、配管35に流量調整器20が設けられていなくも、熱媒体が配管35を経由することで、熱媒体回路30全体における熱媒体の流速が遅くなる。熱媒体回路30において、熱媒体の流速が遅くなることで、冷媒と熱媒体との熱交換がより確実に行われる。なお、並列流路の場合、配管35に熱媒体が流れても熱媒体の流速が遅いので、配管35を流れる熱媒体の流量が少なく、熱交換効率に対する影響が抑制される。
 1、1a 冷凍サイクル装置、2a、2b 冷媒回路、3a、3b 圧縮機、4a、4b 熱源側熱交換器、5a、5b 減圧装置、6a、6b 熱媒体熱交換器、7a、7b ファン、8 熱媒体搬送装置、9 第1の弁、10 第3の弁、11 第2の弁、12 入口圧力センサ、13 出口圧力センサ、20 流量調整器、30 熱媒体回路、31~35 配管、40 制御部、41 冷凍サイクル制御手段、42 効率算出手段、43 流路決定手段、45 流量計、50 流路切替装置、60 負荷側ユニット。

Claims (14)

  1.  圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、
     前記複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、を有し、
     前記熱媒体回路は、前記複数の熱媒体熱交換器を直列に接続する直列流路と、前記複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備える、
     冷凍サイクル装置。
  2.  前記流路切替装置を制御する制御部をさらに有し、
     前記制御部は、
     前記複数の冷媒回路の一部の冷媒回路に接続される熱媒体熱交換器への前記熱媒体の流通を停止するとき、前記流路切替装置を制御して、該一部の冷媒回路を除く他の冷媒回路に接続される熱媒体熱交換器に前記熱媒体を流す片系統流路を前記熱媒体回路に形成させる、請求項1に記載の冷凍サイクル装置。
  3.  前記制御部は、
     前記熱媒体回路に前記片系統流路が形成されている場合、前記一部の冷媒回路の前記圧縮機の運転を停止する、または該圧縮機の運転周波数を下げる、請求項2に記載の冷凍サイクル装置。
  4.  前記流路切替装置は、
     前記複数の熱媒体熱交換器に含まれる2つの熱媒体熱交換器のうち、一方の熱媒体熱交換器の下流側と他方の熱媒体熱交換器の上流側とを接続する接続流路と、
     前記熱媒体回路に流入する熱媒体のうち、前記他方の熱媒体交換器に分流する熱媒体に対して該他方の熱媒体熱交換器および前記接続流路への流入を制御する、該接続流路の上流側に設けられた第1の弁と、
     前記熱媒体回路に流入する熱媒体のうち、前記一方の熱媒体交換器に分流する熱媒体に対して該一方の熱媒体熱交換器からの流出を制御する、前記接続流路の下流側に設けられた第2の弁と、
    を有する、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5.  前記接続流路は、前記熱媒体の流量を調整する流量調整器を有する、請求項4に記載の冷凍サイクル装置。
  6.  前記熱媒体回路に前記並列流路が形成されている場合に、前記熱媒体の一部が前記流量調整器を流通する、請求項5に記載の冷凍サイクル装置。
  7.  前記圧縮機を制御する制御部をさらに有し、
     前記制御部は、
     前記熱媒体回路に前記直列流路が形成されている場合、上流側の前記熱媒体熱交換器に接続される前記冷媒回路の圧縮機の回転数を、下流側の前記熱媒体熱交換器に接続される前記冷媒回路の圧縮機の回転数よりも高くする、請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  8.  前記減圧装置を制御する制御部をさらに有し、
     前記制御部は、
     前記熱媒体回路に前記直列流路が形成されている場合、上流側の前記熱媒体熱交換器に接続される前記冷媒回路の減圧装置の開度を、下流側の前記熱媒体熱交換器に接続される前記冷媒回路の減圧装置の開度よりも大きくする、請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  9.  前記熱媒体回路と負荷側との間に前記熱媒体を循環させる熱媒体搬送装置と、
     前記熱媒体搬送装置を制御する制御部と、をさらに有し、
     前記制御部は、
     前記直列流路が形成されている場合の前記熱媒体の流量が、前記並列流路が形成されている場合の前記熱媒体の流量よりも少なくなるように、前記熱媒体搬送装置を制御する、請求項1~8のいずれか1項に記載の冷凍サイクル装置。
  10.  前記熱媒体回路に流入する前記熱媒体の入口圧力を測定する入口圧力センサと、
     前記熱媒体回路から流出する前記熱媒体の出口圧力を測定する出口圧力センサと、
     前記流路切替装置を制御する制御部と、をさらに有し、
     前記制御部は、
     前記直列流路の場合における前記複数の冷媒回路が生成する熱量の前記入口圧力と前記出口圧力との圧力差に対する比である直列成績係数と、前記並列流路の場合における前記複数の冷媒回路が生成する熱量の前記入口圧力と前記出口圧力との圧力差に対する比である並列成績係数とを算出し、前記直列成績係数の前記並列成績係数に対する比である改善率を算出する効率算出手段と、
     前記改善率と設定値とを比較し、該改善率が該設定値より大きい場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成し、該改善率が該設定値以下である場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成する流路決定手段と、
    を有する、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
  11.  前記熱媒体回路から流出する前記熱媒体の流量を測定する流量計と、
     前記流路切替装置を制御する制御部と、をさらに有し、
     前記制御部は、
     前記直列流路の場合における前記複数の冷媒回路が生成する熱量の前記流量計の流量に基づく圧力損失に対する比である直列成績係数と、前記並列流路の場合における前記複数の冷媒回路が生成する熱量の前記流量計の流量に基づく圧力損失に対する比である並列成績係数とを算出し、前記直列成績係数の前記並列成績係数に対する比である改善率を算出する効率算出手段と、
     前記改善率と設定値とを比較し、該改善率が該設定値より大きい場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成し、該改善率が該設定値以下である場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成する流路決定手段と、
    を有する、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
  12.  前記流路切替装置を制御する制御部をさらに有し、
     前記制御部は、
     前記熱媒体の粘度と閾値とを比較し、該粘度が該閾値より大きい場合、前記流路切替装置を制御して前記熱媒体回路に前記並列流路を形成し、該粘度が該閾値以下である場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成する流路決定手段を有する、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
  13.  前記複数の熱媒体熱交換器は、前記冷媒と前記熱媒体とが対向流となる構成である、請求項1~12のいずれか1項に記載の冷凍サイクル装置。
  14.  前記複数の熱媒体熱交換器が一体的に形成されている、請求項1~13のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2017/028239 2017-08-03 2017-08-03 冷凍サイクル装置 WO2019026234A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1918816.8A GB2578533B (en) 2017-08-03 2017-08-03 Refrigeration cycle apparatus
JP2019533820A JP6861821B2 (ja) 2017-08-03 2017-08-03 冷凍サイクル装置
PCT/JP2017/028239 WO2019026234A1 (ja) 2017-08-03 2017-08-03 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028239 WO2019026234A1 (ja) 2017-08-03 2017-08-03 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019026234A1 true WO2019026234A1 (ja) 2019-02-07

Family

ID=65232385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028239 WO2019026234A1 (ja) 2017-08-03 2017-08-03 冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP6861821B2 (ja)
GB (1) GB2578533B (ja)
WO (1) WO2019026234A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230564A1 (ja) * 2019-05-14 2020-11-19 株式会社デンソー 冷却水回路
WO2021166040A1 (ja) * 2020-02-17 2021-08-26 三菱電機株式会社 冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108696A (ja) * 2011-11-22 2013-06-06 Mitsubishi Heavy Ind Ltd ヒートポンプシステム
WO2015194020A1 (ja) * 2014-06-19 2015-12-23 三菱電機株式会社 冷凍サイクル装置および冷凍サイクルシステム
JP2016028935A (ja) * 2014-07-23 2016-03-03 株式会社デンソー 冷凍サイクル装置
JP2016065701A (ja) * 2014-09-26 2016-04-28 東芝キヤリア株式会社 ヒートポンプ式加熱機及びその運転方法
WO2016077559A1 (en) * 2014-11-14 2016-05-19 Carrier Corporation On board chiller capacity calculation
WO2016088262A1 (ja) * 2014-12-05 2016-06-09 三菱電機株式会社 冷凍サイクル装置
JP2016223749A (ja) * 2015-06-03 2016-12-28 三菱電機株式会社 空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108696A (ja) * 2011-11-22 2013-06-06 Mitsubishi Heavy Ind Ltd ヒートポンプシステム
WO2015194020A1 (ja) * 2014-06-19 2015-12-23 三菱電機株式会社 冷凍サイクル装置および冷凍サイクルシステム
JP2016028935A (ja) * 2014-07-23 2016-03-03 株式会社デンソー 冷凍サイクル装置
JP2016065701A (ja) * 2014-09-26 2016-04-28 東芝キヤリア株式会社 ヒートポンプ式加熱機及びその運転方法
WO2016077559A1 (en) * 2014-11-14 2016-05-19 Carrier Corporation On board chiller capacity calculation
WO2016088262A1 (ja) * 2014-12-05 2016-06-09 三菱電機株式会社 冷凍サイクル装置
JP2016223749A (ja) * 2015-06-03 2016-12-28 三菱電機株式会社 空気調和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230564A1 (ja) * 2019-05-14 2020-11-19 株式会社デンソー 冷却水回路
WO2021166040A1 (ja) * 2020-02-17 2021-08-26 三菱電機株式会社 冷凍サイクル装置
JPWO2021166040A1 (ja) * 2020-02-17 2021-08-26
JP7209892B2 (ja) 2020-02-17 2023-01-20 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP6861821B2 (ja) 2021-04-21
GB2578533B (en) 2021-07-28
GB2578533A (en) 2020-05-13
JPWO2019026234A1 (ja) 2020-02-27
GB201918816D0 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US11506430B2 (en) Air conditioning system with capacity control and controlled hot water generation
JP6644154B2 (ja) 空気調和装置
US9316421B2 (en) Air-conditioning apparatus including unit for increasing heating capacity
JP6707192B2 (ja) チリングユニット及び水循環温調システム
JP5501179B2 (ja) フリークーリング併用中温熱源システム
WO2018025318A1 (ja) ヒートポンプ装置
US11274851B2 (en) Air conditioning apparatus
CN108076653B (zh) 液体调温装置及温度控制系统
JP5300889B2 (ja) 冷凍サイクル装置
WO2017068631A1 (ja) 熱源システム
WO2020174618A1 (ja) 空気調和装置
JP6861821B2 (ja) 冷凍サイクル装置
WO2019167250A1 (ja) 空気調和機
JP2009243761A (ja) 冷凍空気調和装置
JP2011012844A (ja) 冷凍サイクル装置
JP2013124843A (ja) 冷凍サイクルシステム
JP2011127785A (ja) 冷凍装置
WO2019167249A1 (ja) 空気調和機
JP6664503B2 (ja) 空気調和装置
JP2018173191A (ja) 空気調和装置
JP4929519B2 (ja) チリング式冷凍システム
JP7179068B2 (ja) 熱源システム
JP2004150664A (ja) 冷却装置
JP7306582B2 (ja) 冷凍サイクル装置
JP2009281595A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533820

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201918816

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170803

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920564

Country of ref document: EP

Kind code of ref document: A1