WO2019024753A1 - 一种互易型差动式调频连续波干涉保偏光纤陀螺仪 - Google Patents

一种互易型差动式调频连续波干涉保偏光纤陀螺仪 Download PDF

Info

Publication number
WO2019024753A1
WO2019024753A1 PCT/CN2018/097182 CN2018097182W WO2019024753A1 WO 2019024753 A1 WO2019024753 A1 WO 2019024753A1 CN 2018097182 W CN2018097182 W CN 2018097182W WO 2019024753 A1 WO2019024753 A1 WO 2019024753A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
maintaining fiber
beam splitter
power beam
fiber collimator
Prior art date
Application number
PCT/CN2018/097182
Other languages
English (en)
French (fr)
Inventor
郑刚
刘卫国
高明
陈海滨
张雄星
王伟
Original Assignee
西安工业大学
郑刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安工业大学, 郑刚 filed Critical 西安工业大学
Publication of WO2019024753A1 publication Critical patent/WO2019024753A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details

Definitions

  • the invention relates to the technical field of measuring relative angular velocity of a carrier relative to inertia space, in particular to a reciprocal differential frequency modulated continuous wave interference polarization maintaining fiber optic gyroscope.
  • Optical frequency modulation continuous wave interference is derived from radio radar technology. Because it naturally generates a dynamic signal, the phase subdivision, the phase shift direction judgment, and the calculation of the whole cycle number are very convenient. Therefore, the measurement accuracy of optical frequency modulated continuous wave interference is very convenient. And the dynamic range is higher than the traditional optical zero-beat interference technology; the optical frequency modulation continuous wave interference technology for the measurement of the rotational angular velocity can not only solve the uncertainty of the traditional fiber-optic gyroscope such as zero-sensitive point, nonlinear response, phase shift direction and Problems such as ⁇ phase shift limitation, and can provide higher angular velocity measurement resolution than conventional fiber optic gyroscopes.
  • Optical frequency modulated continuous wave interference is used for the measurement of rotational angular velocity, which requires the interference optical path of the gyroscope to be unbalanced, so as to obtain a beat signal with appropriate frequency.
  • this requirement will cause the gyroscope to have non-reciprocity, resulting in environmental parameters.
  • Non-reciprocal phase drift occurs when (such as temperature) changes, which seriously affects the measurement accuracy of the angular velocity of the optical frequency modulated continuous wave gyroscope.
  • a differential birefringence fiber-frequency continuous wave Saanak gyroscope is proposed in CN101360969.
  • the gyroscope consists of an FM laser, an X-type polarization-maintaining fiber coupler, and a single mode. Birefringent fiber coil, two fiber connectors, one polarization beam splitter, and two photodetectors, using a single mode polarization-maintaining fiber ring with a polarization main axis at both ends as a double unbalanced fiber-frequency continuous-wavelength.
  • the Gonak interferometer uses the phase difference of the two beat signals formed by the interference from the single-mode polarization-maintaining fiber loop through a non-polarized power beam splitter to determine the rotational angular velocity, since the two signals are reciprocal Therefore, the non-reciprocity problem of the single-channel FM continuous wave interference fiber optic gyroscope can be avoided.
  • the gyroscope has a problem that the optical path between the X-type polarization maintaining fiber coupler and the polarization beam splitter is a polarization-maintaining fiber, in which one interference signal travels the fast axis, and one interference signal moves the slow axis, thus forming an additional
  • the non-reciprocal error causes the environmental factors such as temperature and vibration to cause non-reciprocal phase drift of the detection signal, resulting in an unsatisfactory measurement accuracy of the gyroscope diagonal velocity.
  • the object of the present invention is to provide a reciprocal differential frequency modulation continuous wave interference polarization maintaining fiber gyro to overcome the problem that the measurement accuracy of the prior art is not ideal.
  • a reciprocal differential frequency modulation continuous wave interference polarization maintaining fiber gyro includes a single mode FM laser with single mode polarization maintaining pigtail, a polarization maintaining fiber isolators, and three polarization maintaining fiber collimators.
  • the polarization-maintaining pigtail is consistent with the slow axis of the incident pigtail of the polarization-maintaining fiber isolator and is welded.
  • the exit pigtail of the polarization-maintaining fiber isolator is aligned with the slow axis of the first polarization-maintaining fiber collimator and is welded.
  • the slow axis direction of the partial fiber collimator is 45° to the main plane of the non-polarization power beam splitter at 50:50, and the slow axis direction of the second polarization maintaining fiber collimator and the third polarization maintaining fiber collimator
  • the angle between the single-mode polarization-maintaining fiber ring and the second polarization-maintaining fiber are respectively at 0° and 90° (or 90° and 0°) with the main plane of the 50:50 split-light non-polarization power beam splitter.
  • the direction of the slow axis of the collimator and the third polarization-maintaining fiber collimator is uniform and welded, and the polarization beam splitter is 5
  • the 0:50 splitting is consistent with the main plane of the unpolarized power beam splitter
  • the main direction of the first polarizer is the same as the polarization direction of the p-light emitted by the polarizing beam splitter
  • the main direction of the second polarizer and the polarizing beam splitter are The polarization direction of the outgoing s-light is the same;
  • the linearly polarized laser emitted by the single-mode FM laser passes through the polarization-maintaining fiber isolator, passes through the first polarization-maintaining fiber collimator, and is split by power such as a non-polarization power beam splitter.
  • the laser is coupled to the two ends of the single-mode polarization-maintaining fiber ring via the second polarization-maintaining fiber collimator and the third polarization-maintaining fiber collimator respectively, and the laser light emitted from both ends of the single-mode polarization-maintaining fiber ring is along the original optical path.
  • the beam splitting interference on the polarization power beam splitter is separated by a polarization beam splitter, and respectively received by the first polarizer and the second polarizer, respectively, by two photodetectors, wherein
  • the exiting light of a polarization-maintaining fiber collimator is incident on the unpolarized power beam splitter at a 45° polarization angle, and the slow axis (or fast axis) of the polarization-maintaining fiber collimator is respectively opposite to the incident surface of the unpolarized power beam splitter.
  • 0 degrees and 90 degrees both ends of the single mode polarization-maintaining fiber ring and two polarization-maintaining Fiber pigtail collimator welded to the slow axis angle of 0 °.
  • a 50:50 split ratio non-polarized power beam splitter a first 50:50 split ratio non-polarized power beam splitter, a second 50:50 split ratio non-polarized power beam splitter and a principal plane of the polarizing beam splitter
  • the slow axis directions of the second polarization-maintaining fiber collimator and the third polarization-maintaining fiber collimator are respectively at an angle of 0° and an angle of 90° with respect to the main plane of the second 50:50 split-light non-polarization power beam splitter ( Or 90° angle and 0° angle);
  • the laser emitted by the first polarization-maintaining fiber collimator passes through the first 50:50 split-light ratio non-polarization power beam splitter, and then passes through the second 50:50 split-light ratio non-polarization
  • the second polarization-maintaining fiber collimator and the third polarization-maintaining fiber collimator are
  • the exit pigtail of the polarization maintaining fiber isolator is at an angle of 45° to the slow axis direction of the incident pigtail of the first polarization maintaining fiber collimator, and the slow axis direction of the first polarization maintaining fiber collimator is 50:50.
  • the splitting is parallel to the main plane of the unpolarized power beam splitter;
  • the slow axis directions of the second polarization maintaining fiber collimator and the third polarization maintaining fiber collimator are respectively consistent with the main plane of the 50:50 splitting ratio non-polarization power beam splitter, and the two ends of the single mode polarization maintaining fiber ring They are welded at an angle of 0° and an angle of 90° (or an angle of 90° and an angle of 0°), respectively.
  • the 50:50 split ratio non-polarization power beam splitter is a non-polarization cube beam splitter or a 45° incident flat type non-polarization power beam splitter.
  • the combination of the three polarization-maintaining fiber collimators, one non-polarization power beam splitter, one polarization beam splitter, two polarizers and two photodetectors are closely adhered, seamlessly bonded, or The combined device is fabricated on a TEC element.
  • the invention eliminates the non-reciprocity between the X-type polarization maintaining fiber coupler and the polarization beam splitter in the original system.
  • a polarization-maintaining fiber path utilizing a combination of three polarization-maintaining fiber collimators, a 50:50 split-light non-polarization power beam splitter, a polarization beam splitter, two polarizers, and two photodetectors,
  • the polarization splitting, combining, separating and detecting functions of the differential frequency modulated continuous wave interference fiber optic gyroscope are completed, the non-reciprocity of the optical path is eliminated, and the polarization of the light emitted by the polarization beam splitter is improved by using an additional polarizer.
  • the extinction ratio thereby solving the temperature drift and polarization crosstalk of the gyroscope;
  • Embodiment 1 is a schematic structural view of Embodiment 1;
  • Embodiment 2 is a schematic view showing the structure of Embodiment 2.
  • a reciprocal differential frequency modulation continuous wave interference polarization maintaining fiber gyro comprising a single mode FM laser with single mode polarization maintaining pigtails, a polarization maintaining fiber isolator 2, and three polarization maintaining fiber collimating 3, 4, 5, a 50:50 split ratio non-polarization power beam splitter 6, a single mode polarization maintaining fiber ring 7, a polarization beam splitter 8, two polarizers 9, 10 and two photodetectors 11 and 12,
  • the single-mode polarization-maintaining pigtail of the single-mode FM laser 1 is consistent with the slow axis of the incident pigtail of the polarization-maintaining fiber isolator 2, and the exit pigtail of the polarization-maintaining fiber isolator 2 and the first polarization-maintaining
  • the slow axis direction of the fiber collimator 3 is uniform and welded, and the slow axis direction of the first polarization maintaining fiber collimator 3 is opposite to the
  • the two ends of the single mode polarization maintaining fiber ring 7 are respectively aligned with the slow axis direction of the second polarization maintaining fiber collimator 4 and the third polarization maintaining fiber collimator 5, and are welded
  • the polarization beam splitter 8 is identical to the 50:50 splitting ratio of the principal plane of the non-polarization power beam splitter 6, the main direction of the first polarizer 9 and the polarization direction of the p-light emitted by the polarization beam splitter 8 are identical, and the second polarizer
  • the main direction of 10 is the same as the polarization direction of the light emitted by the polarization beam splitter 8; the linearly polarized laser light emitted by the single mode FM laser 1 passes through the polarization maintaining fiber isolator 2, and then passes through the first polarization maintaining fiber collimator 3,
  • the power beam is split by the unpolarized power beam splitter 6 and the split laser light is coupled to the two ends of the single mode polarization maintaining fiber ring 7 via the second
  • the laser light emitted from both ends of the single mode polarization maintaining fiber ring 7 is combined and interfered on the unpolarized power beam splitter 6 along the original optical path, and the two beat signal signals formed are separated by the polarization beam splitter 8 and respectively passed through the first After the polarizer 9 and the second polarizer 10 are respectively received by the two photodetectors 11, 12, the outgoing light of the first polarization maintaining fiber collimator 3 is incident on the unpolarized power beam splitter at a polarization angle of 45°. 6.
  • the slow axis (or fast axis) of the polarization maintaining fiber collimators 4, 5 and the incident surface of the unpolarized power beam splitter 6 are respectively 0. Degree and 90 degrees, both ends of the single mode polarization-maintaining fiber ring 7 are welded to the slow axis of the polarization-maintaining fiber collimator 4 and the 5 pigtail at an angle of 0°.
  • a 50:50 split ratio non-polarization power beam splitter 13 a first 50:50 split ratio non-polarization power beam splitter 6, a second 50:50 split ratio non-polarization power beam splitter 13 and a polarization beam splitter
  • the principal planes of 8 are identical, and the slow axis directions of the second polarization maintaining fiber collimator 4 and the third polarization maintaining fiber collimator 5 are respectively 0 with respect to the main plane of the second 50:50 splitting ratio unpolarized power beam splitter 13.
  • the laser light emitted by the first polarization-maintaining fiber collimator 3 passes through the first 50:50 splitting ratio non-polarization power beam splitter 6, and then passes through After the second 50:50 splitting split is split than the unpolarized power splitter 13, the second polarization maintaining fiber collimator 4 and the third polarization maintaining fiber collimator 5 are respectively coupled to the two of the single mode polarization maintaining fiber ring 7 At the end, the laser light emitted from both ends of the single mode polarization maintaining fiber ring 7 passes through the second 50:50 splitting ratio non-polarizing power beam splitter 13 and then passes through the first 50:50 splitting ratio non-polarizing power beam splitter 6 points. After the beam, the polarizing beam splitter 8 is reached.
  • the exit pigtail of the polarization maintaining fiber isolator 2 is at an angle of 45° to the slow axis direction of the incident pigtail of the first polarization maintaining fiber collimator 3, and the slow axis direction of the first polarization maintaining fiber collimator 3 is
  • the 50:50 splitting is parallel to the main plane of the unpolarized power beam splitter 6.
  • the slow axis directions of the second polarization maintaining fiber collimator 4 and the third polarization maintaining fiber collimator 5 are respectively consistent with the main plane of the 50:50 splitting ratio non-polarizing power beam splitter 6, and the single mode polarization maintaining fiber ring Both ends of 7 are welded at an angle of 0° and an angle of 90° (or an angle of 90° and an angle of 0°), respectively.
  • the 50:50 split ratio non-polarization power beam splitter 6 is a non-polarization cube beam splitter or a 45° incident flat type non-polarization power beam splitter.
  • the combination of the three polarization-maintaining fiber collimators, one non-polarization power beam splitter, one polarization beam splitter, two polarizers and two photodetectors are closely adhered, seamlessly bonded, or The combined device is fabricated on a TEC element.
  • the linearly polarized laser light emitted by the single mode FM laser 1 passes through the polarization maintaining fiber isolator 2, passes through the first polarization maintaining fiber collimator 3, and is split by power of the unpolarized power beam splitter 6, and after splitting.
  • the laser light is coupled to the two ends of the single mode polarization maintaining fiber ring 7 via the second polarization maintaining fiber collimator 4 and the third polarization maintaining fiber collimator 5, respectively, and the laser edge exiting from both ends of the single mode polarization maintaining fiber ring 7
  • the original optical path is combined and interfered on the non-polarization power beam splitter 6, and the two beat signal signals formed are separated by the polarization beam splitter 8 and passed through the first polarizer 9 and the second polarizer 10 respectively, and the two photoelectric signals are respectively
  • the detectors 11, 12 are respectively received, wherein the outgoing light of the first polarization-maintaining fiber collimator 3 is incident on the unpolarized power beam splitter 6 at a 45° polarization angle, and the slow axis of the polarization-maintaining fiber collimators 4, 5 ( Or the fast axis) is 0 degrees and 90 degrees respectively with the incident surface of the unpolarized power beam splitter 6, and the slow axis of the single mode
  • both laser beams emitted from the unpolarized power beam splitter 6 contain equal powers S and P.
  • the polarization component, and the slow axis (or fast axis) of the polarization maintaining fiber collimators 4, 5, respectively, are 0 degrees and 90 degrees with the incident surface of the unpolarized power beam splitter 6, and the single mode polarization maintaining fiber ring 7 is
  • the end and the polarization-maintaining fiber collimator 4 and the slow axis of the 5 pigtail are welded at an angle of 0°, so the s component propagating clockwise will propagate along the slow axis of the fiber ring, and the s component of counterclockwise propagation along the ring of light.
  • the fast axis propagation, when the two beams are back-propagated and merged on the unpolarized power beam splitter 6, the first beat signal is generated; for the same reason, the p-component of clockwise propagation will be fast along the fiber ring.
  • the axis propagates, and the s component propagating counterclockwise propagates along the slow axis of the ray ring.
  • a second beat signal is generated.
  • the two orthogonal beat signals are separated by a polarization beam splitter 8 and passed through polarizers 9 and 10, respectively, and received by two photodetectors 11 and 12, respectively, and polarization directions and polarization beam splitters of polarizers 9 and 10.
  • the polarization directions of the two outgoing lights are respectively equal to further enhance the polarization extinction ratio of the two beat signals.
  • the single mode polarization maintaining fiber optic ring 7 is rotated about its vertical axis, the two beat signals produce opposite phase shifts due to the Sagnac effect. Therefore, by comparing the phase differences of the two beat signals, the angular velocity of the gyroscope rotation can be determined.
  • the exit pigtail of the polarization maintaining fiber isolator 2 and the slow axis direction of the incident pigtail of the first polarization maintaining fiber collimator 3 may be welded at an angle of 45°, and the first polarization maintaining fiber collimator 3 is slow.
  • the axial direction is parallel to the 50:50 splitting plane than the main plane of the unpolarized power beam splitter 6.
  • Both ends of the optical fiber ring 7 are welded at an angle of 0° and an angle of 90° (or an angle of 90° and an angle of 0°), respectively.
  • the 50:50 splitting ratio non-polarization power beam splitter 6 is a non-polarization cube beam splitter, and a 45° incident flat type non-polarization power beam splitter can also be used.
  • the reciprocal differential frequency-modulated continuous wave interference polarization-maintaining fiber gyro can also use two 50:50 split-light ratio non-polarization power beam splitters to further eliminate the non-reciprocity of the split-band signal splitting optical path portion, as shown in the figure. 2 is shown.
  • Embodiment 1 The difference from Embodiment 1 is:
  • the first 50:50 split ratio non-polarization power beam splitter 6, the second 50:50 split ratio non-polarization power beam splitter 13 coincides with the principal plane of the polarization beam splitter 8, the second polarization maintaining fiber collimator 4 and
  • the slow axis direction of the third polarization maintaining fiber collimator 5 is respectively at an angle of 0° and a angle of 90° (or an angle of 90° and an angle of 0°) to the principal plane of the second 50:50 splitting ratio of the unpolarized power beam splitter 13 respectively. .
  • the laser light emitted by the first polarization maintaining fiber collimator 3 passes through the first 50:50 splitting ratio non-polarization power beam splitter 6 and then splits through the second 50:50 splitting ratio unpolarized power beam splitter 13
  • the second polarization-maintaining fiber collimator 4 and the third polarization-maintaining fiber collimator 5 are respectively coupled to the two ends of the single-mode polarization-maintaining optical fiber ring 7, and the laser light emitted from the two ends of the single-mode polarization-maintaining optical fiber ring 7 is first After passing through the second 50:50 splitting ratio non-polarization power beam splitter 13, the first 50:50 splitting beam splits the non-polarizing power beam splitter 6 to reach the polarization beam splitter 8.
  • the components can be miniaturized and closely adhered, seamlessly bonded to form a combined device, and the combined device can be fabricated on the TEC element to further improve the temperature drift resistance of the gyroscope.

Abstract

一种互易型差动式调频连续波干涉保偏光纤陀螺仪,利用由一个带有单模保偏尾纤的单模调频激光器(1)、一个保偏光纤隔离器(2)、三个保偏光纤准直器(3、4、5)、一个50:50分光比非偏振功率分束器(6)、一个单模保偏光纤环(7)、一个偏振分束器(8)、两个偏振器(9、10)和两个光电探测器(11、12)构成的组合器件,完成光学干涉信号的偏振光分束、合束、分离和探测功能,利用一个两端偏振主轴相互垂直的单模保偏光纤环(7)作为一个双非平衡光纤调频连续波萨格纳克干涉仪,并利用来自光纤环的两个拍频信号的相位差来确定转动角速度。能有效消除非互易性相位误差,提高光纤陀螺仪对转动角速度的测量精度。

Description

一种互易型差动式调频连续波干涉保偏光纤陀螺仪 技术领域:
本发明涉及载体相对惯性空间转动角速度测量技术领域,具体涉及一种互易型差动式调频连续波干涉保偏光纤陀螺仪。
背景技术:
光学调频连续波干涉源自于无线电雷达技术,由于它自然产生一个动态信号,使得相位细分,相移方向的判断,以及整周期数的计算都非常方便,所以光学调频连续波干涉的测量精度及动态范围均高于传统光学零拍干涉技术;光学调频连续波干涉技术用于转动角速度的测量不仅可以解决传统光纤陀螺仪存在的诸如零敏感点、非线性响应、相移方向判断不明确和π相移限制等问题,并且可以提供比传统光纤陀螺仪更高的角速度测量分辨率。
光学调频连续波干涉用于转动角速度的测量,要求陀螺仪的干涉光路非平衡,如此才能获取一个频率适当的拍频信号,不过,该要求会使陀螺仪存在非互易性,导致当环境参数(如温度)变化时产生非互易性相位漂移,严重影响光学调频连续波陀螺仪对角速度的测量精度。为了解决这个问题,在CN101360969中提出了“一种差动式双折射光纤调频连续波萨纳克陀螺仪”,该陀螺仪由一个调频激光器,一个X-型保偏光纤耦合器,一个单模双折射光纤线圈,两个光纤连接器,一个偏振分光镜,和两个光探测器组成,利用一个两端偏振主轴方向相互垂直的单模保偏光纤环作为一个双非平衡光纤调频连续波萨格纳克干涉仪,并利用来自单模保偏光纤环经一个非偏振功率分束器后干涉形成的两个拍频信号的相位差来确定转动角速度,由于这两个信号之间是互易的,所以可以避免单路调频连续波干涉光纤陀螺的非互易性问题。
但是该陀螺仪存在的问题是,X-型保偏光纤耦合器到偏振分光镜之间的光路是一段保偏光纤,其中一路干涉信号走快轴,一路干涉信号走慢轴,因此形成了额外的非互易误差,使得温度、振动等环境因素会对探测信号引起非互易性相位漂移,造成陀螺仪对角速度的测量精度不够理想。
发明内容:
本发明的目的是要提供一种互易型差动式调频连续波干涉保偏光纤陀螺仪,以克服现有技术存在的测量精度不够理想的问题。
一种互易型差动式调频连续波干涉保偏光纤陀螺仪,包括一个带有单模保偏尾纤的单模调频激光器、一个保偏光纤隔离器、三个保偏光纤准直器、一个50:50分光比非偏振功率分束 器、一个单模保偏光纤环、一个偏振分束器、两个偏振器和两个光电探测器组成,其特征在于:单模调频激光器的单模保偏尾纤与保偏光纤隔离器的入射尾纤慢轴方向一致并熔接,保偏光纤隔离器的出射尾纤与第一保偏光纤准直器的慢轴方向一致并熔接,第一保偏光纤准直器的慢轴方向与50:50分光比非偏振功率分束器的主平面呈45°角,第二保偏光纤准直器和第三保偏光纤准直器的慢轴方向分别与50:50分光比非偏振功率分束器的主平面呈0°角和90°角(或者90°角和0°角),单模保偏光纤环两端分别与第二保偏光纤准直器和第三保偏光纤准直器的慢轴方向一致并熔接,偏振分束器与50:50分光比非偏振功率分束器的主平面一致,第一偏振器的主方向和偏振分束器所出射p光的偏振方向一致,第二偏振器的主方向和偏振分束器所出射s光的偏振方向一致;单模调频激光器发出的线偏振激光经过保偏光纤隔离器,再经过第一保偏光纤准直器,由非偏振功率分束器等功率分束,分束后的激光经第二保偏光纤准直器、第三保偏光纤准直器分别耦合到单模保偏光纤环的两端,从单模保偏光纤环两端出射的激光沿原光路在非偏振功率分束器上合束干涉,所形成的两个拍频信号经偏振分束器分开,分别经第一偏振器、第二偏振器后,由两个光电探测器分别接收,其中,第一保偏光纤准直器的出射光以45°偏振角入射到非偏振功率分束器,保偏光纤准直器的慢轴(或快轴)分别与非偏振功率分束器的入射面呈0度与90度,单模保偏光纤环两端与两个保偏光纤准直器尾纤的慢轴以0°角熔接。
还包括一个50:50分光比非偏振功率分束器,第一50:50分光比非偏振功率分束器、第二50:50分光比非偏振功率分束器与偏振分束器的主平面一致,第二保偏光纤准直器和第三保偏光纤准直器的慢轴方向分别与第二50:50分光比非偏振功率分束器的主平面呈0°角和90°角(或者90°角和0°角);由第一保偏光纤准直器出射的激光,先经过第一50:50分光比非偏振功率分束器,再经过第二50:50分光比非偏振功率分束器分束后,经第二保偏光纤准直器、第三保偏光纤准直器分别耦合到单模保偏光纤环的两端,从单模保偏光纤环两端出射的激光,先经过第二50:50分光比非偏振功率分束器,再经过第一50:50分光比非偏振功率分束器分束后,到达偏振分束器。
其保偏光纤隔离器的出射尾纤与第一保偏光纤准直器的入射尾纤的慢轴方向呈45°角并熔接,第一保偏光纤准直器的慢轴方向与50:50分光比非偏振功率分束器的主平面平行;
其第二保偏光纤准直器和第三保偏光纤准直器的慢轴方向分别与50:50分光比非偏振功率分束器的主平面一致,与单模保偏光纤环的两端分别以0°角和90°角(或者90°角和0°角)熔接。
所述50:50分光比非偏振功率分束器是非偏振立方分束器或采用45°入射平板型非偏振功率 分束器。
所述的三个保偏光纤准直器、一个非偏振功率分束器、一个偏振分束器、两个偏振器和两个光电探测器构成的组合器件紧密贴合,无缝粘接,或将组合器件制作在TEC元件上。
与现有技术相比,本发明的优点是:
1、有效消除了非互易误差,提高了光纤陀螺仪对角速度的测量精度:本发明取消了原有系统中的X-型保偏光纤耦合器与偏振分束器之间的非互易性保偏光纤光路,利用由三个保偏光纤准直器、一个50:50分光比非偏振功率分束器、一个偏振分束器、两个偏振器和两个光电探测器构成的组合器件,完成了差动式调频连续波干涉光纤陀螺中的偏振光分束、合束、分离和探测功能,消除了光路的非互易性,并且利用附加偏振器提高了偏振分束器出射光的偏振消光比,从而解决了陀螺仪的温度漂移和偏振串话;
2、结构紧凑:本发明的组件可以在设计时紧密贴合,无缝粘接,这样保障了装置的小型化。
附图说明:
图1是实施例1的结构示意图;
图2是实施例2的结构示意图。
具体实施方式:
一种互易型差动式调频连续波干涉保偏光纤陀螺仪,包括一个带有单模保偏尾纤的单模调频激光器1、一个保偏光纤隔离器2、三个保偏光纤准直器3、4、5、一个50:50分光比非偏振功率分束器6、一个单模保偏光纤环7、一个偏振分束器8、两个偏振器9、10和两个光电探测器11、12组成,单模调频激光器1的单模保偏尾纤与保偏光纤隔离器2的入射尾纤慢轴方向一致并熔接,保偏光纤隔离器2的出射尾纤与第一保偏光纤准直器3的慢轴方向一致并熔接,第一保偏光纤准直器3的慢轴方向与50:50分光比非偏振功率分束器(6的主平面呈45°角,第二保偏光纤准直器4和第三保偏光纤准直器5的慢轴方向分别与50:50分光比非偏振功率分束器6的主平面呈0°角和90°角(或者90°角和0°角),单模保偏光纤环7两端分别与第二保偏光纤准直器4和第三保偏光纤准直器5的慢轴方向一致并熔接,偏振分束器8与50:50分光比非偏振功率分束器6的主平面一致,第一偏振器9的主方向和偏振分束器8所出射p光的偏振方向一致,第二偏振器10的主方向和偏振分束器8所出射s光的偏振方向一致;单模调频激光器1发出的线偏振激光经过保偏光纤隔离器2,再经过第一保偏光纤准直器3,由非偏振功率分束器6等功率分束,分束后的激光经第二保偏光纤准直器4、第三保偏光纤准直器5分别耦合到单模保偏光纤环7的两端,从单模保偏光纤环7两 端出射的激光沿原光路在非偏振功率分束器6上合束干涉,所形成的两个拍频信号经偏振分束器8分开,分别经第一偏振器9、第二偏振器10后,由两个光电探测器11、12分别接收,其中,第一保偏光纤准直器3的出射光以45°偏振角入射到非偏振功率分束器6,保偏光纤准直器4、5的慢轴(或快轴)分别与非偏振功率分束器6的入射面呈0度与90度,单模保偏光纤环7两端与保偏光纤准直器4与5尾纤的慢轴以0°角熔接。
还包括一个50:50分光比非偏振功率分束器13,第一50:50分光比非偏振功率分束器6、第二50:50分光比非偏振功率分束器13与偏振分束器8的主平面一致,第二保偏光纤准直器4和第三保偏光纤准直器5的慢轴方向分别与第二50:50分光比非偏振功率分束器13的主平面呈0°角和90°角(或者90°角和0°角);由第一保偏光纤准直器3出射的激光,先经过第一50:50分光比非偏振功率分束器6,再经过第二50:50分光比非偏振功率分束器13分束后,经第二保偏光纤准直器4、第三保偏光纤准直器5分别耦合到单模保偏光纤环7的两端,从单模保偏光纤环7两端出射的激光,先经过第二50:50分光比非偏振功率分束器13,再经过第一50:50分光比非偏振功率分束器6分束后,到达偏振分束器8。
其保偏光纤隔离器2的出射尾纤与第一保偏光纤准直器3的入射尾纤的慢轴方向呈45°角并熔接,第一保偏光纤准直器3的慢轴方向与50:50分光比非偏振功率分束器6的主平面平行。
其第二保偏光纤准直器4和第三保偏光纤准直器5的慢轴方向分别与50:50分光比非偏振功率分束器6的主平面一致,与单模保偏光纤环7的两端分别以0°角和90°角(或者90°角和0°角)熔接。
所述50:50分光比非偏振功率分束器6是非偏振立方分束器或采用45°入射平板型非偏振功率分束器。
所述的三个保偏光纤准直器、一个非偏振功率分束器、一个偏振分束器、两个偏振器和两个光电探测器构成的组合器件紧密贴合,无缝粘接,或将组合器件制作在TEC元件上。
下面将结合附图对本发明进行详细地描述。
实施例1,
参见图1,单模调频激光器1发出的线偏振激光经过保偏光纤隔离器2,再经过第一保偏光纤准直器3,由非偏振功率分束器6等功率分束,分束后的激光经第二保偏光纤准直器4、第三保偏光纤准直器5分别耦合到单模保偏光纤环7的两端,从单模保偏光纤环7两端出射的激光沿原光路在非偏振功率分束器6上合束干涉,所形成的两个拍频信号经偏振分束器8分开,分别经第一偏振器9、第二偏振器10后,由两个光电探测器11、12分别接收,其 中,第一保偏光纤准直器3的出射光以45°偏振角入射到非偏振功率分束器6,保偏光纤准直器4、5的慢轴(或快轴)分别与非偏振功率分束器6的入射面呈0度与90度,单模保偏光纤环[7]两端与保偏光纤准直器4与5尾纤的慢轴以0°角熔接。
由于第一保偏光纤准直器3的出射光是以45°偏振角入射到非偏振功率分束器6上,所以非偏振功率分束器6出射的两束激光均含有等功率S和P偏振分量,又由于保偏光纤准直器4、5的慢轴(或快轴)分别与非偏振功率分束器6的入射面呈0度与90度,并且单模保偏光纤环7两端与保偏光纤准直器4与5尾纤的慢轴以0°角熔接,所以,顺时针传播的s分量将沿着光纤环的慢轴传播,逆时针传播的s分量沿着光线环的快轴传播,当这两束光反向传播,在非偏振功率分束器6上汇合时,产生第一个拍频信号;同理,顺时针传播的p分量将沿着光纤环的快轴传播,逆时针传播的s分量沿着光线环的慢轴传播,当这两束光正向传播,在非偏振功率分束器6上汇合时,产生第二个拍频信号。这两个正交拍频信号经偏振分束器8分开,分别经偏振器9和10后,由两个光电探测器11和12分别接收,偏振器9和10的偏振方向与偏振分束器两个出射光的偏振方向分别一致,以进一步提升两个拍频信号的偏振消光比。当单模保偏光纤环7围绕它的垂直轴旋转时,由于萨格纳克效应,这两个拍频信号产生相反的相位移动。因此,比较这两个拍频信号的相位差,即可确定陀螺仪旋转的角速度。
其中,也可以将保偏光纤隔离器2的出射尾纤与第一保偏光纤准直器3的入射尾纤的慢轴方向以45°角熔接,第一保偏光纤准直器3的慢轴方向与50:50分光比非偏振功率分束器6的主平面平行。
也可以使第二保偏光纤准直器4和第三保偏光纤准直器5的慢轴方向分别与50:50分光比非偏振功率分束器6的主平面一致,与单模保偏光纤环7的两端分别以0°角和90°角(或者90°角和0°角)熔接。
所述50:50分光比非偏振功率分束器6是非偏振立方分束器,也可以采用45°入射平板型非偏振功率分束器。
实施例2:
互易型差动式调频连续波干涉保偏光纤陀螺仪也可以使用两个50:50分光比非偏振功率分束器,进一步消除拍频信号分光合束光路部分的非互易性,如图2所示。
与实施例1不同的地方是:
第一50:50分光比非偏振功率分束器6、第二50:50分光比非偏振功率分束器13与偏振分束器8的主平面一致,第二保偏光纤准直器4和第三保偏光纤准直器5的慢轴方向分别与第 二50:50分光比非偏振功率分束器13的主平面呈0°角和90°角(或者90°角和0°角)。由第一保偏光纤准直器3出射的激光,先经过第一50:50分光比非偏振功率分束器6,再经过第二50:50分光比非偏振功率分束器13分束后,经第二保偏光纤准直器4、第三保偏光纤准直器5分别耦合到单模保偏光纤环7的两端,从单模保偏光纤环7两端出射的激光,先经过第二50:50分光比非偏振功率分束器13,再经过第一50:50分光比非偏振功率分束器6分束后,到达偏振分束器8。
本陀螺仪中,所说的部件均可小型化并且紧密贴合,无缝粘接,构成组合器件,还可以将组合器件制作在TEC元件上,进一步提高陀螺仪的抗温漂性能。

Claims (6)

  1. 一种互易型差动式调频连续波干涉保偏光纤陀螺仪,包括一个带有单模保偏尾纤的单模调频激光器(1)、一个保偏光纤隔离器(2)、三个保偏光纤准直器(3、4、5)、一个50:50分光比非偏振功率分束器(6)、一个单模保偏光纤环(7)、一个偏振分束器(8)、两个偏振器(9、10)和两个光电探测器(11)(12)组成,其特征在于:单模调频激光器(1)的单模保偏尾纤与保偏光纤隔离器(2)的入射尾纤慢轴方向一致并熔接,保偏光纤隔离器(2)的出射尾纤与第一保偏光纤准直器(3)的慢轴方向一致并熔接,第一保偏光纤准直器(3)的慢轴方向与50:50分光比非偏振功率分束器(6)的主平面呈45°角,第二保偏光纤准直器(4)和第三保偏光纤准直器(5)的慢轴方向分别与50:50分光比非偏振功率分束器(6)的主平面呈0°角和90°角(或者90°角和0°角),单模保偏光纤环(7)两端分别与第二保偏光纤准直器(4)和第三保偏光纤准直器(5)的慢轴方向一致并熔接,偏振分束器(8)与50:50分光比非偏振功率分束器(6)的主平面一致,第一偏振器(9)的主方向和偏振分束器(8)所出射p光的偏振方向一致,第二偏振器(10)的主方向和偏振分束器(8)所出射s光的偏振方向一致;单模调频激光器(1)发出的线偏振激光经过保偏光纤隔离器(2),再经过第一保偏光纤准直器(3),由非偏振功率分束器(6)等功率分束,分束后的激光经第二保偏光纤准直器(4)、第三保偏光纤准直器(5)分别耦合到单模保偏光纤环(7)的两端,从单模保偏光纤环(7)两端出射的激光沿原光路在非偏振功率分束器(6)上合束干涉,所形成的两个拍频信号经偏振分束器(8)分开,分别经第一偏振器(9)、第二偏振器(10)后,由两个光电探测器(11、12)分别接收,其中,第一保偏光纤准直器(3)的出射光以45°偏振角入射到非偏振功率分束器(6),保偏光纤准直器(4、5)的慢轴(或快轴)分别与非偏振功率分束器(6)的入射面呈0度与90度,单模保偏光纤环(7)两端与保偏光纤准直器(4)与(5)尾纤的慢轴以0°角熔接。
  2. 根据权利要求1所述的互易型差动式调频连续波干涉保偏光纤陀螺仪,其特征在于:还包括一个50:50分光比非偏振功率分束器(13),第一50:50分光比非偏振功率分束器(6)、第二50:50分光比非偏振功率分束器(13)与偏振分束器(8)的主平面一致,第二保偏光纤准直器(4)和第三保偏光纤准直器(5)的慢轴方向分别与第二50:50分光比非偏振功率分束器(13)的主平面呈0°角和90°角(或者90°角和0°角);由第一保偏光纤准直器(3)出射的激光,先经过第一50:50分光比非偏振功率分束器(6),再经过第二50:50分光比非偏振功率分束器(13)分束后,经第二保偏光纤准直器(4)、第三保偏光纤准直器(5)分别耦合到单模保偏光纤环(7)的两端,从单模保偏光纤环(7)两端出射的激光,先经过第二50:50分光比非偏振功率分束器(13),再经过第一50:50分光比非偏振功 率分束器(6)分束后,到达偏振分束器(8)。
  3. 如权利要求1或2所述的互易型差动式调频连续波干涉保偏光纤陀螺仪,其特征在于:其保偏光纤隔离器(2)的出射尾纤与第一保偏光纤准直器(3)的入射尾纤的慢轴方向呈45°角并熔接,第一保偏光纤准直器(3)的慢轴方向与50:50分光比非偏振功率分束器(6)的主平面平行。
  4. 如权利要求3所述的互易型差动式调频连续波干涉保偏光纤陀螺仪,其特征在于:其第二保偏光纤准直器(4)和第三保偏光纤准直器(5)的慢轴方向分别与50:50分光比非偏振功率分束器(6)的主平面一致,与单模保偏光纤环(7)的两端分别以0°角和90°角(或者90°角和0°角)熔接。
  5. 如权利要求4所述的互易型差动式调频连续波干涉保偏光纤陀螺仪,其特征在于:所述50:50分光比非偏振功率分束器(6)是非偏振立方分束器或采用45°入射平板型非偏振功率分束器。
  6. 如权利要求5所述的互易型差动式调频连续波干涉保偏光纤陀螺仪,其特征在于:所述的三个保偏光纤准直器、一个非偏振功率分束器、一个偏振分束器、两个偏振器和两个光电探测器构成的组合器件紧密贴合,无缝粘接,或将组合器件制作在TEC元件上。
PCT/CN2018/097182 2017-08-01 2018-07-26 一种互易型差动式调频连续波干涉保偏光纤陀螺仪 WO2019024753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710648073.5A CN107328405B (zh) 2017-08-01 2017-08-01 一种互易型差动式调频连续波干涉保偏光纤陀螺仪
CN201710648073.5 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019024753A1 true WO2019024753A1 (zh) 2019-02-07

Family

ID=60199882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097182 WO2019024753A1 (zh) 2017-08-01 2018-07-26 一种互易型差动式调频连续波干涉保偏光纤陀螺仪

Country Status (2)

Country Link
CN (1) CN107328405B (zh)
WO (1) WO2019024753A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328405B (zh) * 2017-08-01 2019-05-21 西安工业大学 一种互易型差动式调频连续波干涉保偏光纤陀螺仪
CN108680151B (zh) * 2018-06-21 2023-12-08 中国科学院西安光学精密机械研究所 一种开环光纤陀螺
CN109581680A (zh) * 2019-01-09 2019-04-05 邯郸学院 全光纤三阶线偏振轨道角动量生成器
CN110501004B (zh) * 2019-07-16 2023-03-10 南京恒高光电研究院有限公司 容忍模耦合存在基于双端偏振态检测的光纤陀螺结构
CN110864622A (zh) * 2019-11-01 2020-03-06 西安工业大学 一种偏分式双波长调频连续波激光干涉仪
CN110864621A (zh) * 2019-11-01 2020-03-06 西安工业大学 一种空分式多波长调频连续波激光干涉仪
CN111272197B (zh) * 2020-03-12 2023-06-09 湖南航天机电设备与特种材料研究所 一种基于Sagnac干涉仪的单光束提取系统
CN112525374B (zh) * 2020-12-10 2023-06-23 中红外激光研究院(江苏)有限公司 一种基于非互易光纤腔内奇点效应的温度传感器
CN112710615B (zh) * 2020-12-16 2021-12-17 北京航空航天大学 一种基于光学空间互易性的共模差分检测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360969A (zh) * 2005-12-30 2009-02-04 郑刚 差动式双折射光纤调频连续波萨纳克陀螺仪
US20100033729A1 (en) * 2008-08-07 2010-02-11 Honeywell International Inc. Bias-instability reduction in fiber optic gyroscopes
CN102650523A (zh) * 2012-04-25 2012-08-29 北京航空航天大学 一种基于光隔离器的闭环差分双干涉式光纤陀螺仪
CN105091877A (zh) * 2015-05-11 2015-11-25 傅冼溶 基于光的偏振态进行转动传感的方法及其光学陀螺仪
CN107328405A (zh) * 2017-08-01 2017-11-07 西安工业大学 一种互易型差动式调频连续波干涉保偏光纤陀螺仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360969A (zh) * 2005-12-30 2009-02-04 郑刚 差动式双折射光纤调频连续波萨纳克陀螺仪
US20100033729A1 (en) * 2008-08-07 2010-02-11 Honeywell International Inc. Bias-instability reduction in fiber optic gyroscopes
CN102650523A (zh) * 2012-04-25 2012-08-29 北京航空航天大学 一种基于光隔离器的闭环差分双干涉式光纤陀螺仪
CN105091877A (zh) * 2015-05-11 2015-11-25 傅冼溶 基于光的偏振态进行转动传感的方法及其光学陀螺仪
CN107328405A (zh) * 2017-08-01 2017-11-07 西安工业大学 一种互易型差动式调频连续波干涉保偏光纤陀螺仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Theoretical and Technical Study of Interferometric Fiber Optic Gyroscope Using Polarization Maintaining Circulator", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 May 2015 (2015-05-15), ISSN: 1674-0246 *
WANG, XIAO: "Study on Polarization Characteristics of Fiber Rings in Fiber Optic Gyros", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 August 2009 (2009-08-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN107328405B (zh) 2019-05-21
CN107328405A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2019024753A1 (zh) 一种互易型差动式调频连续波干涉保偏光纤陀螺仪
US11268811B2 (en) Non-interferometric optical gyroscope based on polarization sensing
US9506759B2 (en) Energy-efficient optic gyroscope devices
CA1276274C (en) Fiber optic rotation sensor utilizing high birefringence fiber and having reduced intensity type phase errors
JP5448745B2 (ja) 偏光モードにより引き起こされるバイアス誤差が低減されたrfog
CN111089578B (zh) 一种干涉型光纤陀螺仪
KR101978444B1 (ko) 편광 빛살 가르게를 이용한 광섬유 사냑 간섭계
US10041816B2 (en) Sagnac-ring fiber-optic interferometric system with Rayleigh length spaced polarizer
KR20180051694A (ko) 편광 빛살가르게를 이용한 자유공간 사냑 간섭계
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
TWI448662B (zh) 光學干涉裝置
US20100238451A1 (en) Depolarizer for a fiber optic gyroscope (fog) using high birefringence photonic crystal fiber
CN114674302B (zh) 死端光功率回收再利用的双偏振光纤陀螺
JP2004309466A (ja) 光ファイバジャイロ
JPS6221016A (ja) 光フアイバジヤイロ装置
CN107607106A (zh) 一种可调谐光纤陀螺仪
JPS5963514A (ja) 光フアイバジヤイロ
JPS60120207A (ja) 光フアイバ−ジヤイロ
JPS60257313A (ja) 光フアイバ−ジヤイロスコ−プ
JPH0510768A (ja) 光回転検出装置
JPH04106416A (ja) 光フアイバジヤイロ
JPH02266216A (ja) 光ファイバジャイロ
JPS59128409A (ja) 光フアイバジヤイロスコ−プ
JPS5935102A (ja) 偏波面保存光フアイバ形センサ
JPH04106418A (ja) 光フアイバジヤイロ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842057

Country of ref document: EP

Kind code of ref document: A1