WO2019024632A1 - 控制车集中制动控制系统、方法及动车组制动控制系统 - Google Patents

控制车集中制动控制系统、方法及动车组制动控制系统 Download PDF

Info

Publication number
WO2019024632A1
WO2019024632A1 PCT/CN2018/093545 CN2018093545W WO2019024632A1 WO 2019024632 A1 WO2019024632 A1 WO 2019024632A1 CN 2018093545 W CN2018093545 W CN 2018093545W WO 2019024632 A1 WO2019024632 A1 WO 2019024632A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
pressure
train
solenoid valve
valve
Prior art date
Application number
PCT/CN2018/093545
Other languages
English (en)
French (fr)
Inventor
梁建全
司丽
刘中华
李俐
张新永
陈磊
张冬冬
张兴旺
张会智
高珊
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Priority to US16/627,330 priority Critical patent/US11180128B2/en
Publication of WO2019024632A1 publication Critical patent/WO2019024632A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • B61H11/06Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types of hydrostatic, hydrodynamic, or aerodynamic brakes
    • B61H11/10Aerodynamic brakes with control flaps, e.g. spoilers, attached to the vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/26Compressed-air systems
    • B60T13/266Systems with both direct and indirect application, e.g. in railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/683Electrical control in fluid-pressure brake systems by electrically-controlled valves in pneumatic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present application relates to rail transit control technology, and in particular to a control vehicle centralized brake control system, method and an EMU brake control system.
  • Domestically operated passenger trains are mainly divided into two categories according to the grouping form, one is in the form of locomotive + passenger car, and the other is in the form of EMU.
  • the brake control system of the locomotive + bus group mainly refers to the brake control system of the locomotive.
  • the locomotive widely adopts the microcomputer-controlled automatic brake control system, and the brake is controlled by the microcomputer according to the brake controller or the train monitoring system.
  • the command precisely controls the train pipe pressure and transmits the train braking demand through the train pipe pressure change.
  • the passenger car adopts an automatic electric air brake to generate the corresponding brake cylinder pressure according to the pressure change of the train pipe.
  • This kind of control process needs to cooperate with the related equipment of the locomotive, such as the traction system, the control process is more complicated, and the running cost is relatively high.
  • the EMU adopts a microcomputer-controlled, straight-through brake control system, which requires each vehicle to be equipped with a brake control unit (BCU), brake controller or train monitoring system brake command, which is transmitted to each vehicle through a network or electric command line.
  • the brake control unit of the vehicle, the brake control unit includes two parts: an electronic brake control unit (EBCU) and an air brake control unit (PBCU).
  • the EBCU is a microcomputer processor that is responsible for receiving the brake command and is based on the system. The command calculates and distributes the braking force of the air brake, controls the solenoid valve of the PBCU, generates the pre-control pressure of the air brake, and converts it into the brake cylinder pressure through the relay valve.
  • This existing EMU brake control system requires a brake control unit on each vehicle, which is costly.
  • the EBCU and PBCU are integrated in one cabinet and have a large volume. Moreover, it cannot be operated in conjunction with a passenger car that uses automatic air brake.
  • the brake commands are transmitted over the network and are limited by the network.
  • the brake system cannot be flexibly grouped.
  • the present application provides a method for controlling a centralized brake control of a vehicle, the method comprising:
  • the train pipe pressure is controlled by the total air duct according to the braking request and the relationship between the real-time pressure of the train pipe and the target pressure of the train pipe.
  • the target pressure of the train tube is calculated as: when the brake request is a common brake request, the brake level corresponding to the common brake request is calculated to correspond to the brake level.
  • the target pressure of the train pipe is calculated as: when the brake request is a common brake request, the brake level corresponding to the common brake request is calculated to correspond to the brake level. The target pressure of the train pipe.
  • the process of controlling the train pipe pressure through the total air duct according to the braking request and the relationship between the real-time pressure of the train pipe and the target pressure of the train pipe includes:
  • the penalty brake is released, and the real-time pressure of the train tube is lower than the target pressure, the total air duct is controlled to charge the train tube;
  • the request level is unchanged and the real-time pressure of the train pipe is equal to the target pressure, if the train pipe leaks, the total air duct is controlled to fill the train pipe.
  • the braking request is issued by a brake controller that is implemented using an automatic brake handle, and the brake controller includes at least a running position and a reconnection Two gear positions.
  • controlling the train tube pressure according to the braking request and the relationship between the real-time pressure of the train tube and the target pressure of the train tube further includes:
  • the total air duct is controlled to fill the train tube
  • the method further includes: generating a control signal according to the braking request and the real-time pressure of the train tube and transmitting the control signal to the electromagnetic valve, and controlling the total air duct to charge and exhaust the train tube through the electromagnetic valve.
  • the present application provides a control vehicle centralized brake control system, the system comprising: a pressure collection device and a train tube control device, the pressure collection device collecting a total duct pressure, a pressure collection device The pressure signal output end is connected to the pressure signal input end of the train tube control device, and the brake signal input end of the train tube control device is connected to the brake controller brake signal output end, and the train tube control device respectively and the total The duct and the train pipe are pneumatically connected.
  • the pressure collecting device includes a first pressure switch, a second pressure switch, and a third pressure switch, and the first pressure switch, the second pressure switch, and the third pressure switch respectively collect the total wind The tube pressure, the pressure signal output end of the first pressure switch, the pressure signal output end of the second pressure switch, and the pressure signal output end of the third pressure switch are simultaneously connected to the pressure signal input end of the train tube control device.
  • the pressure collection device further includes a test port for checking the closing pressure and the combined pressure of the first pressure switch, the second pressure switch, and the third pressure switch.
  • the train tube control device includes a balance air cylinder, a first cut-off plug, a filter, a flow meter, a first mitigation solenoid valve, a second mitigation solenoid valve, and a first brake solenoid valve.
  • second brake solenoid valve air charging solenoid valve, neutral valve, relay valve, blocking valve, first emergency brake solenoid valve, second emergency brake solenoid valve, emergency brake exhaust valve, throttle valve and The second truncated plug,
  • the pressure signal output end of the pressure collecting device is connected to the air inlet of the first mitigation solenoid valve, the air inlet of the second mitigation solenoid valve, and the input port of the flow meter via the first intercepting plug door;
  • the air outlet of the flow meter is connected to the air inlet of the neutral valve
  • the air outlet of the neutral valve is connected to the E port of the relay valve
  • the C port of the relay valve is simultaneously connected with the intake port of the first brake solenoid valve, the intake port of the second brake solenoid valve, the intake port of the balance air cylinder, the intake port of the air charging solenoid valve, and the first a relief valve outlet port and a second relief solenoid valve outlet connection;
  • An air outlet of the first brake solenoid valve and an air outlet of the second brake solenoid valve are in communication with the atmosphere;
  • the O port of the relay valve is connected to the air inlet of the blocking valve
  • the inlet of the tube is connected;
  • the air outlet of the first emergency brake solenoid valve is connected to the air outlet of the second emergency brake solenoid valve, the pilot control port of the emergency brake air exhaust valve, and the air inlet of the second cut gate;
  • the air inlet of the throttle valve is connected with the pilot control port of the emergency brake air exhaust valve, and the air outlet of the throttle valve is connected with the air inlet of the emergency brake air exhaust valve;
  • the third port of the first emergency brake solenoid valve is connected to the third port of the second emergency brake solenoid valve and connected to the explosion-proof device.
  • the neutral valve includes a two-position three-way solenoid valve and a two-position two-way solenoid valve, the air outlet of the flow meter and the two-way three-way solenoid valve inlet and two-position two
  • the air inlet of the solenoid valve is connected, and the air outlet of the two-way three-way solenoid valve is connected with the pilot control port of the two-way two-way solenoid valve, and the air outlet of the two-way two-way solenoid valve is connected with the E port of the relay valve.
  • the shutoff valve includes a two-position three-way solenoid valve and a two-position two-way solenoid valve, the O-port of the relay valve and the intake port of the two-position three-way solenoid valve and two The air inlet of the two-way solenoid valve is connected, the air outlet of the two-way three-way solenoid valve is connected with the pilot control port of the two-way two-way solenoid valve, the air outlet of the two-way two-way solenoid valve and the air outlet of the air-filling solenoid valve, The intake port of the first emergency brake solenoid valve, the intake port of the second emergency brake solenoid valve, the air outlet of the second shutoff plug door, and the intake port of the train tube are connected.
  • the train tube control device further includes a pressure reducing valve measuring point and a total duct pressure sensor, and the total duct pressure sensor is disposed on the pressure reducing valve measuring point for collecting the total wind Tube pressure value.
  • the train tube control device further includes a train tube pre-control measuring point and a train tube pre-control sensor, wherein the train tube pre-control sensor is disposed on the train tube pre-control measuring point for collecting Balance the pressure value of the air cylinder.
  • the train control device further includes a train tube measuring point and a train tube pressure sensor, and the train tube pressure sensor is disposed at the train tube measuring point for collecting the train tube pressure value.
  • system further includes an emergency bleed valve that simultaneously connects the train tube and the shut-off valve for turning on the train tube and the atmosphere when the train tube pressure drop rate exceeds a predetermined value path.
  • system further includes an auxiliary control device coupled to the train control device for supplying air to the train assisting wind device.
  • an EMU brake control system comprising: the above-mentioned control vehicle centralized brake control system, a brake controller, a power vehicle brake control system, and Automatic electric air brake;
  • the brake controller is configured to send a brake request to the control vehicle centralized brake control system and the power vehicle brake control system;
  • the power vehicle brake control system is configured to control a pressure value generated by the train brake cylinder according to a brake request and a real-time pressure of the train tube;
  • the automatic electric air brake is installed in the control vehicle and the intermediate trailer for controlling the application and mitigation of the train air brake according to the real-time pressure of the train tube.
  • system further includes a backup braking system for controlling the train tube pressure when the vehicle centralized brake control system and/or the power vehicle brake control system fails.
  • This application controls the change of the train pipe pressure and the five-wire control signal according to the brake request output by the brake controller and the real-time pressure detection of the train tube, which can realize flexible grouping.
  • This application can set the brake control system only in the control car. Other intermediate trailers do not need to set the brake control system.
  • the existing automatic electric air brake can be used, which saves the installation space of the trailer and reduces the cost.
  • the automatic brake control system is used to control the change of the train pipe pressure, the train can be operated in conjunction with the passenger car adopting the automatic air brake.
  • FIG. 1 is a flow chart of a method for controlling centralized brake control of a control vehicle according to the present application
  • FIG. 2 is a schematic diagram of the principle of the centralized braking control system for controlling a vehicle according to the present application
  • FIG. 3 is a schematic diagram of the principle of the train tube control device B02 according to the present application.
  • FIG. 4 is a schematic diagram of the principle of the pressure collecting device A01 according to the present application.
  • FIG. 5 is a schematic diagram of the principle of the auxiliary control device A02 according to the present application.
  • FIG. 6 is a schematic diagram of the principle of the brake control system for the EMU of the present application.
  • an embodiment of the present application provides a method for controlling a centralized brake control of a vehicle, where the method includes:
  • the braking request described in this embodiment is sent by the brake controller, and a brake controller is disposed in both the control vehicle and the power vehicle of the train, and the brake controller adopts an automatic brake handle.
  • Pushing from the near driver to the front is the running position, the initial position, the braking area, the full position, the suppression position, the reconnection position and the emergency position.
  • the functions of each position are as follows:
  • Operation position The train tube is controlled by the constant pressure for air charging, which is the position where the train brakes to charge and relieve the wind.
  • Braking zone Starting from the initial braking position, stopping at the full braking position. From the initial braking position to the full braking position, the train pipe pressure should continue to decrease, and the decompression amount is linearly related to the position of the handle.
  • the train tube When the handle is placed in this position, the train tube should generate the maximum amount of decompression of the common brake (decompression to 360 kPa or 430 kPa).
  • the train tube When the handle is pushed from the suppression position to the reconnection position, the train tube should be controlled to linearly decrease from the maximum decompression amount of the common brake to 0 kPa. After the handle is stabilized at the reconnection position, the train tube is controlled only during emergency braking. Exhaust the wind.
  • the real-time pressure of the train pipe is mainly realized by the train pipe pressure sensor, and provides continuous pressure data for the subsequent control of the train pipe pressure.
  • the decompression amount of the train pipe can be braked by the driver between the minimum effective decompression amount (50 kPa) and the maximum effective decompression amount (140 kPa when the train pipe constant pressure is 500 kPa and 170 kPa when the constant pressure is 600 kPa).
  • the controller's handle is moved to the brake zone for active triggering.
  • Emergency braking triggered by the emergency position of the handle, or pressing the emergency brake button, or when there is an emergency braking request, or when the train pipe exhaust rate exceeds 80 kPa/s, the train tube will be controlled to exceed 80 kPa/s.
  • the decompression rate reduces the train tube pressure to zero.
  • Penalty brake The brake that is not actively applied by the driver is automatically triggered according to the state of the vehicle. Depending on the level of the request, it can be an emergency brake or a common brake.
  • the corresponding train pipe target pressure is calculated, and the train is controlled by the total air duct according to the braking request and the relationship between the real-time pressure of the train pipe and the target pressure of the train pipe. Tube pressure.
  • the process of controlling the train pipe pressure through the total air duct according to the braking request and the relationship between the real-time pressure of the train pipe and the target pressure of the train pipe includes:
  • the penalty brake is released, and the real-time pressure of the train pipe is lower than the target pressure, the train pipe is filled with air through the total air duct;
  • the request level is unchanged and the real-time pressure of the train pipe is equal to the target pressure, if the train pipe leaks, the train pipe is supplemented by the total air duct;
  • the method of the embodiment further includes: generating a control signal according to the braking request and the real-time pressure of the train tube and transmitting the control signal to the electromagnetic valve, and controlling the total air duct to charge and exhaust the train tube through the electromagnetic valve.
  • control signal is a five-wire conductor signal for controlling the state of the electromagnetic valve in the electric air brake installed in the control vehicle and the intermediate trailer, to assist in controlling the charging and exhausting of the train, and improving the braking Response time.
  • electric air brakes mainly include F8 electric air brakes and 104 electric air brakes.
  • F8 electric air brakes include brake solenoid valves, mitigation solenoid valves and emergency solenoid valves, and 104 electric air brakes.
  • Brake wire for controlling the state of the brake solenoid valve of the F8 electro-pneumatic brake and the 104 electro-pneumatic brake
  • a mitigation wire for mitigating the state of the solenoid valve for controlling the F8 electro-pneumatic brake and the 104 electro-pneumatic brake
  • a pressure maintaining wire for controlling the state of the pressure maintaining solenoid valve of the 104 electric air brake
  • An emergency solenoid valve for controlling the F8 electric air brake and an emergency wire for the 104 electric air brake as an inspection line
  • the control vehicle centralized brake control system comprises: a pressure collecting device A01 and a train tube control device B02, the pressure collecting device A01 collects the total duct pressure, the pressure signal output end of the pressure collecting device A01 and the train tube control device B02 The pressure signal input end is connected, the brake signal input end of the train tube control device B02 is connected to the brake controller brake signal output end, and the train tube control device B02 is pneumatically connected to the main air duct and the train tube, respectively.
  • the pressure collecting device A01 is used to provide a pressure signal to the air compressor.
  • the pressure collecting device A01 includes three pressure switches and one test port.
  • the closing pressure of the pressure switch A01.71 is 750kPa (the falling edge is valid), the reset pressure is 900kPa (the rising edge is valid); the closing pressure of the pressure switch A01.72 is 680kPa (the falling edge is valid), the reset pressure is 900kPa (the rising edge is valid)
  • the closing pressure of the pressure switch A01.73 is 500 kPa (the falling edge is effective), and the reset pressure is 600 kPa (the rising edge is effective).
  • the pressure switch When the total duct pressure is lower than the closing pressure of the pressure switch, the pressure switch is closed and the circuit is turned on; when the pressure is reset above the pressure switch, the pressure switch is reset and the circuit is disconnected.
  • Test port A01.91 is used to check the closing and reset pressure of the pressure switch.
  • the train tube control device B02 mainly has the following components:
  • a balanced air cylinder N01 for controlling the change of the train pipe pressure
  • a charging air solenoid valve B02.08 for quickly charging the train tube when the brake is completely relieved
  • Neutral valve B02.10 for intercepting the total wind direction train pipe when power is off
  • a relay valve B02.11 for controlling the pressure change of the train tube according to the pressure change of the equalization air cylinder NO1, thereby completing the braking, holding pressure and mitigation of the train;
  • shut-off valve B02.12 for cutting off the passage of the relay valve B02.11 and the train pipe when reconnecting
  • the first emergency brake solenoid valve B02.14/1 for exhausting the train tube and controlling the pilot pressure of the emergency brake exhaust valve B02.15;
  • a second emergency brake solenoid valve B02.14/2 for use as a redundancy, when receiving an emergency brake signal, exhausting the train tube, and controlling the pilot pressure of the emergency brake exhaust valve B02.15;
  • a throttle valve B02.16 for limiting the flow and preventing the emergency brake damper B02.15 from malfunctioning during normal braking
  • a second truncated plug door B02.17 for intercepting the control function of the emergency valve to the train pipe pressure
  • a pressure reducing valve measuring point B02.91 for detecting the pressure value of the equalizing air cylinder NO1 after passing through the pressure reducing valve
  • the pressure signal output end of the pressure collecting device A01 passes through the first cut-off plug B02.01 and the air inlet of the first mitigation solenoid valve B02.06/1 and the second mitigation solenoid valve B02.06/2
  • the air inlet and the input port of the flow meter B02.04 are connected;
  • the air outlet of the flow meter B02.04 is connected to the air inlet of the neutral valve B02.10;
  • the air outlet of the neutral valve B02.10 is connected to the E port of the relay valve B02.11;
  • the C port of the relay valve B02.11 is simultaneously with the intake port of the first brake solenoid valve B02.07/1, the intake port of the second brake solenoid valve B02.07/2, and the balance air cylinder N01.
  • the air outlet of the first brake solenoid valve B02.07/1 and the air outlet of the second brake solenoid valve B02.07/2 are in communication with the atmosphere;
  • the O port of the relay valve B02.11 is connected to the air inlet of the blocking valve B02.12;
  • the air outlet of the shut-off valve B02.12 and the air outlet of the air-filling solenoid valve B02.08, the air inlet of the first emergency brake solenoid valve B02.14/1, and the second emergency brake solenoid valve B02.14/ The intake port of 2, the air outlet of the second cut-off plug B02.17 and the air inlet of the train tube are connected;
  • the air outlet of the first emergency brake solenoid valve B02.14/1 and the air outlet of the second emergency brake solenoid valve B02.14/2, the pilot control port of the emergency brake exhaust valve B02.15, and the emergency brake row The air inlet of the damper B02.15 is connected to the air inlet of the second cut-off plug B02.17;
  • the air inlet of the throttle valve B02.16 is connected with the pilot control port of the emergency brake exhaust valve B02.15, and the air outlet of the throttle valve B02.16 is connected with the air inlet of the emergency brake exhaust valve B02.15. ;
  • the third port of the first emergency brake solenoid valve is connected to the third port of the second emergency brake solenoid valve and connected to the explosion-proof device.
  • the first emergency brake solenoid valve B02.14/1, the second emergency brake solenoid valve B02.14/2, the emergency brake exhaust valve B02.15, the throttle valve B02.16 and the second cut gate B02.17 constitutes the emergency valve module.
  • the compressed air of the train tube is derived from the total air duct, and flows to the train tube after the relay valve B02.11.
  • the pressure change of the train pipe is controlled by the relay valve B02.11; during emergency braking, the pressure change of the train pipe is controlled by the emergency valve module and the relay valve B02.11.
  • the relay valve B02.11 controls the train pipe pressure by adjusting the pressure of the equalization air cylinder NO1 (pre-control pressure).
  • the relay valve B02.11 has four interfaces: the pre-control pressure port connecting the equalization air cylinder NO1.
  • C The compressed air inlet E connecting the main duct, the compressed air outlet O connecting the train tube, and the exhaust port S connecting the atmosphere.
  • the pre-control pressure port C is a small diameter, the pressure is easy to control, the compressed air outlet O port is a large diameter, and the compressed air is supplied by the compressed air inlet E which is also a large diameter, but the pressure is controlled by the pre-controlled pressure port C.
  • the compressed air inlet E When the pressure of the pre-control pressure port C is greater than the pressure of the compressed air outlet O, the compressed air inlet E is connected to the compressed air outlet O; when the pressure of the pre-control pressure port C is less than the pressure of the compressed air outlet O, the compressed air outlet O The compressed air is discharged to the atmosphere through the exhaust port S; when the pressure of the pre-control pressure port C is equal to the pressure of the compressed air outlet O, the compressed air outlet O is not connected to the compressed air inlet E, the compressed air outlet O and the exhaust port S
  • the relay valve B02.11 is in a pressure holding state.
  • the compressed air of the balanced air cylinder NO1 is derived from the total air duct, and the brake control system compares the pressure of the equalizing air cylinder NO1 monitored by the train tube pre-control sensor B02.82 of the balance air cylinder NO1 with the target pressure, and passes the first relief.
  • Open or close control equalization air cylinder of solenoid valve B02.06/1, second mitigation solenoid valve B02.06/2, first brake solenoid valve B02.07/1 and second brake solenoid valve B02.07/2 The pressure of NO1.
  • the components and principles of the neutral valve B02.10 and the blocking valve B02.12 are the same.
  • the function is to control the on-off of the main air duct to the train tube.
  • the difference is that the neutral valve B02.10 controls the total air duct to the relay valve B02.11.
  • the passage, the shut-off valve B02.12 controls the passage of the relay valve B02.11 to the train pipe. During normal operation, the two are always in a power-off state, that is, the total air duct is allowed to charge the train tube.
  • the neutral valve B02.10 can electrically close the passage of the total air duct to the train pipe. During emergency braking, the brake control unit will also close the neutral valve B02.10 to prevent the train tube from refilling the air and causing accidental relief.
  • the neutral valve B02.10 has two electrical contact signals, one for controlling the driver's cab and one for the brake control unit for diagnostics.
  • the blocking valve B02.12 When the control vehicle exits the occupation, the blocking valve B02.12 is energized, and the control passage of the relay valve B02.11 to the train tube is closed. At this time, only during emergency braking, the exhaust of the train tube can be controlled, and the train tube cannot be controlled during normal braking, and the train tube cannot be charged.
  • the emergency valve module is only in emergency braking, the emergency brake exhaust valve B02.15 is connected to the train pipe for rapid exhaust, and the pilot pressure of the emergency brake exhaust valve B02.15 is affected by the first emergency brake solenoid valve B02.
  • the control of the 14/1 and the second emergency brake solenoid valve B02.14/2, when the pilot pressure drop rate exceeds 80 kPa/s, turns on the passage of the train tube and the atmosphere.
  • the second truncated plug door B02.17 is used to close the control function of the train tube when the emergency valve module fails, and the second truncated plug door B02.17 has an electric contact signal, and its state is detected by the brake control unit.
  • the first mitigation solenoid valve B02.06/1 and the second mitigation solenoid valve B02.06/2 are electrically connected, and the first brake solenoid valve B02.07/1 and the second brake solenoid valve B02.07/2 are lost. Electric off, the first emergency brake solenoid valve B02.14/1 and the second emergency brake solenoid valve B02.14/2 are de-energized; the output control relieves the power of the wire, the brake wire, the pressure-maintaining wire and the emergency wire Loss of power.
  • the charge air solenoid valve B02.08 is de-energized and closed.
  • the total duct compressed air is filled with air to the equalization air cylinder NO1 through the first cut-off plug B02.01, the filter B02.02, the first mitigation solenoid valve B02.06/1 and the second mitigation solenoid valve B02.06/2.
  • the train tube control device B02 monitors that the pressure of the equalization air cylinder NO1 rises to the target pressure through the pressure sensor, the first mitigation solenoid valve B02.06/1 and the second mitigation solenoid valve B02.06/2 are de-energized, and the balance is stopped.
  • the air cylinder NO1 is filled with air. Since the pre-control pressure of the pre-control pressure port C of the relay valve B02.11 rises, the pressure of the pre-control pressure port C is greater than the pressure of the compressed air outlet O, and the compressed air inlet E of the relay valve B02.11 is connected to the compressed air outlet O.
  • the total duct compressed air is filled into the train pipe through the flow meter B02.04, the neutral valve B02.10, the relay valve B02.11, and the shut-off valve B02.12. Until the pressure of the pre-control pressure port C is equal to the pressure of the compressed air outlet O, the relay valve B02.11 is closed, and the air supply to the train tube is stopped.
  • the air-filling solenoid valve B02.08 is electrically connected, and the compressed air of the balance air cylinder NO1 can also quickly charge the train pipe through the air-filling solenoid valve B02.08 until the pressure sensor After detecting that the train pipe pressure reaches a constant pressure, the air-filled solenoid valve B02.08 is de-energized and closed.
  • the brake wire is energized, and the wire, the pressure maintaining wire and the emergency wire are relieved. Electricity.
  • the brake control unit detects through the pressure sensor that the pressure of the equalizing cylinder NO1 is reduced to the target pressure, the first brake solenoid valve B02.07/1 and the second brake solenoid valve B02.07/2 are de-energized, and the balance is balanced. The pressure of the air cylinder NO1 no longer drops.
  • the relay valve B02.11 pre-control pressure port C pre-control pressure drops, the pre-control pressure port C pressure is less than the pressure of the compressed air outlet O, the relay valve B02.11 compressed air outlet O and the exhaust port S are connected, the train The compressed air of the pipe is discharged to the atmosphere through the exhaust port S of the shutoff valve B02.12 and the relay valve B02.11. Until the pressure of the pre-control pressure port C is equal to the pressure of the compressed air outlet O, the relay valve B02.11 is closed and the train pipe pressure is no longer lowered.
  • the first mitigation solenoid valve B02.06/1 and the second mitigation solenoid valve B02.06/2 are de-energized, the neutral valve B02.10 is de-energized, and the total air duct is no longer charged to the balance cylinder NO1 and the train tube. .
  • the first emergency brake solenoid valve B02.14/1 and the second emergency brake solenoid valve B02.14/2 are electrically connected, and the pilot pressure of the emergency brake exhaust valve B02.15 is passed through the first emergency brake electromagnetic Valve B02.14/1 and the second emergency brake solenoid valve B02.14/2 are quickly exhausted to the atmosphere at a rate exceeding 80 kPa/s, the emergency brake exhaust valve B02.15 is turned on, and the train tube compressed air passes through the emergency brake row.
  • the damper B02.15 quickly discharges the atmosphere.
  • the first brake solenoid valve B02.07/1 and the second brake solenoid valve B02.07/2 are electrically connected to the atmosphere, and the compressed air of the balance cylinder NO1 passes through the first brake solenoid valve.
  • B02.07/1 and the second brake solenoid valve B02.07/2 are discharged to the atmosphere, causing the pressure of the equalization cylinder NO1 to drop to zero. Since the relay valve B02.11 pre-controls the pressure port C without pressure, the relay valve B02.11 compressed air outlet O is connected to the exhaust port S, and the train pipe compressed air passes through the blocking valve B02.12 and the relay valve B02.11 The exhaust port S is discharged to the atmosphere until the train pipe pressure drops to zero.
  • An emergency windproof valve NO2 is also arranged on the train line.
  • the emergency windproof valve NO2 detects that the train pipe pressure drop rate exceeds 80 kPa/s, the train pipe and the atmosphere are also connected to accelerate the drop of the train pipe pressure.
  • the brake wires and emergency wires are always energized to relieve power loss from the wires and the holding wires.
  • the pressure-maintaining wire is energized, and the brake wire, the mitigation wire, and the emergency wire are de-energized.
  • the train tube control device B02 is in the state of supplemental air, when there is a slight leak in the train tube, the pressure of the compressed air outlet O of the relay valve B02.11 is decreased, and the pressure of the pre-control pressure port C is greater than the pressure of the compressed air outlet O, relaying
  • the valve B02.11 compressed air inlet E is connected to the compressed air outlet O, and the total duct compressed air is supplemented to the train tube through the flow meter B02.04, the neutral valve B02.10, the relay valve B02.11 and the blocking valve B02.12. wind.
  • the relay valve B02.11 is closed, and the supply of air to the train tube is stopped.
  • the train pipe control device B02 If the train pipe control device B02 is in the state of allowing the air supply, when the train pipe has a slight leak, the pressure of the compressed air outlet O of the relay valve B02.11 is decreased, and the pressure of the pre-control pressure port C is greater than the pressure of the compressed air outlet O, the relay valve B02.11 compressed air inlet E is connected to compressed air outlet O. Total air duct compressed air is supplied to the train pipe through flowmeter B02.04, neutral valve B02.10, relay valve B02.11 and blocking valve B02.12. . Until the pressure of the compressed air outlet O is equal to the pressure of the pre-control pressure port C, the relay valve B02.11 is closed, and the supply of air to the train tube is stopped.
  • control vehicle centralized brake control system further includes an auxiliary control device A02. As shown in FIG. 2 and FIG. 5, the auxiliary control device A02 is connected to the train control device for assisting the train. Wind equipment supplies air.
  • the auxiliary control device A02 uses a solenoid valve to control the on/off, and the solenoid valve is in a normally closed state, and is directly driven by an external circuit and is not controlled by the brake control system.
  • the corresponding solenoid valve is directly driven, and when the electromagnetic valve is turned on, the wind device can be supplied with air. After the wind is used, the drive circuit loses power, and the solenoid valve closes the downstream wind equipment passage.
  • the embodiment further provides an EMU brake control system, the system comprising: the above-mentioned control vehicle centralized brake control system, brake controller, power car brake control system and automatic electric system Empty brake
  • the brake controller is configured to send a brake request to the control vehicle centralized brake control system and the power vehicle brake control system;
  • the power vehicle brake control system is configured to control a pressure value generated by the train brake cylinder according to a brake request and a real-time pressure of the train tube;
  • the automatic electric air brake is installed in the control vehicle and the intermediate trailer for controlling the application and mitigation of the train air brake according to the real-time pressure of the train tube.
  • the power brake control system of the embodiment adopts an automatic brake control system controlled by a microcomputer of an organic vehicle, and the main functions of the system are: controlling the pressure change of the train tube according to the brake request of the brake controller, At the same time, control the five-wire conductor signal required by the automatic electric air brake; control the pressure corresponding to the brake cylinder of the vehicle according to the brake request and the pressure change of the train tube; and interact with the traction system of the train itself to the traction
  • the size of the required regenerative braking occurs in the system, and the application of the air brake of the vehicle is controlled according to the feedback of the traction system; the request for parking the brake command is correspondingly controlled to control the application and relief of the parking brake; and in response to the request of the sanding command, the control is performed.
  • the vehicle applies or stops sanding; monitors the total duct pressure, controls the start and stop of the air compressor; data analysis and processing functions, system diagnostic functions, information exchange with the network, upload status information and data, and control according to network signals
  • the action of the dynamic system to generate a response. Since the power car brake control system is a relatively mature system, it will not be elaborated here.
  • the control vehicle and the intermediate trailer are equipped with an automatic electric air brake, which can control the on/off state of the electro-pneumatic brake solenoid valve according to the five-wire conductor signal, and control the application and relief of the electric control motion of the vehicle.
  • the change of the train pipe pressure controls the application and relief of the air brake of the vehicle.
  • the air brake acts as a redundant control of the electric control. When the electric control fails, the air brake can be directly applied.
  • the EMU brake control system further includes a backup brake system for controlling the change of the train pipe pressure by the standby brake handle when the vehicle centralized brake control system and/or the power vehicle brake control system are faulty.
  • the embodiment further provides a train including the above-described EMU brake control system, as shown in FIG. 6, when the power car and/or the control car are occupied, the system of the power car and/or the control car is adopted.
  • the dynamic controller and brake control system work normally.
  • the brake controller outputs a brake request, the brake control system controls the pressure of the train tube and the five-wire conductor signal according to the brake command, and the automatic electric air brake in the control vehicle and the intermediate trailer is based on the five-wire conductor signal and
  • the pressure of the train tube controls the brake pressure of the brake cylinder of the vehicle to generate corresponding pressure.

Abstract

一种控制车集中制动控制系统,所述系统包括:用于采集总风管压力的压力采集装置和列车管控制装置;所述压力采集装置的压力信号输出端与列车管控制装置的压力信号输入端连接;所述列车管控制装置的制动信号输入端与制动控制器制动信号输出端连接,所述列车管控制装置通过气路端分别与总风管和列车管气动连接。本方案节省了拖车的安装空间,降低成本。并且由于采用自动式制动控制系统控制列车管压力变化,列车可与采用自动式空气制动的客车联挂运行根据制动控制器输出的制动请求以及列车管实时压力的检测来控制列车管压力的变化及五线制的控制信号,可实现灵活编组。

Description

控制车集中制动控制系统、方法及动车组制动控制系统 技术领域
本申请涉及轨道交通控制技术,具体地,涉及一种控制车集中制动控制系统、方法及动车组制动控制系统。
背景技术
国内运行的旅客列车按编组形式主要分两大类,一种为机车+客车的形式,一种为动车组的形式。
机车+客车的编组形式的制动控制系统主要指机车的制动控制系统,目前机车广泛采用的为微机控制的自动式制动控制系统,通过微机根据制动控制器或列车监控系统的制动指令,精确控制列车管压力,通过列车管压力变化来传递列车制动需求。客车采用自动式电空制动机,根据列车管的压力变化产生相应的制动缸压力。
该种控制过程需要配合机车的相关设备,如牵引系统等,控制过程较为复杂,运行成本相对较高。
动车组采用微机控制的直通式制动控制系统,需要每辆车均配置制动控制单元(BCU),制动控制器或列车监控系统的制动指令,通过网络或电气指令线传递给每辆车的制动控制单元,制动控制单元包括电子制动控制单元(EBCU)与空气制动控制单元(PBCU)两大部分,EBCU是一种微机处理器,负责接收制动指令,并根据制动指令计算和分配空气制动的制动力,控制PBCU的电磁阀动作,产生空气制动的预控压力,并通过中继阀将其转换成制动缸压力。
这种现有的动车组制动控制系统需要在每辆车上均配置制动控制单元,成本较高,EBCU和PBCU集成在一个箱体里,体积较大。而且无法与采用自动式空气制动的客车联挂运行。制动指令通过网络传输,受网络限制,制动系统无法实现灵活编组。
发明内容
为解决上述技术问题之一,本申请提供了一种控制车集中制动控制方法,所述方法包括:
接收任意一节车厢的制动请求;
接收任意一节车厢的列车管实时压力并计算该列车管的目标压力;
根据制动请求以及列车管实时压力与列车管目标压力之间的关系通过总风管控制列车管压力。
在一些可选的实现方式中,所述列车管的目标压力的计算过程为:当制动请求为常用制动请求时,根据常用制动请求的制动级别计算出与该制动级别相对应的列车管的目标压力。
在一些可选的实现方式中,所述根据制动请求以及列车管实时压力与列车管目标压力之间的关系通过总风管控制列车管压力的过程包括:
当无紧急制动请求、惩罚制动处于解除状态且列车管实时压力低于目标压力时,控制总风管对列车管进行充风;
当有制动请求且列车管实时压力高于目标压力时,对列车管进行排风;
当有常用制动请求、请求级别不变且列车管实时压力等于目标压力时,若列车管发生泄露时,控制总风管对列车管进行补风。
在一些可选的实现方式中,所述制动请求是由制动控制器发出的,所述制动控制器采用自动制动手柄实现,且所述制动控制器至少包括运转位和重联位两个档位。
在一些可选的实现方式中,所述根据制动请求以及列车管实时压力与列车管目标压力之间的关系控制列车管压力的过程还包括:
当制动控制器在预设时间内一直处于运转位时,控制总风管对列车管进行补风;
当制动控制器处于重联位且无紧急制动请求时,不对列车管的压力进行控制。
在一些可选的实现方式中,所述方法还包括:根据所述制动请求和列车管实时压力生成控制信号并发送给电磁阀,通过电磁阀控制总风管对列车管进行充排风。
为解决上述技术问题之一,本申请提供了一种控制车集中制动控制系统,所述系统包括:压力采集装置和列车管控制装置,所述压力采集装置采集总风管压力,压力采集装置的压力信号输出端与列车管控制装置的压力信号输入端连接,所述列车管控制装置的制动信号输入端与制动控制器制动信号输出端连接,所述列车管控制装置分别与总风管和列车管气动连接。
在一些可选的实现方式中,所述压力采集装置包括第一压力开关、第二压力开关和第三压力开关,所述第一压力开关、第二压力开关和第三压力开关分别采集总风管压力,所述第一压力开关的压力信号输出端、第二压力开关的压力信号输出端和第三压力开关的压力信号输出端同时与列车管控制装置的压力信号输入端连接。
在一些可选的实现方式中,所述压力采集装置还包括用于校核第一压力开关、第二压力开关和第三压力开关的闭合压力和复合压力的测试端口。
在一些可选的实现方式中,所述列车管控制装置包括均衡风缸、第一截断塞门、过滤器、流量计、第一缓解电磁阀、第二缓解电磁阀、第一制动电磁阀、第二制动电磁阀、充风电磁阀、中立阀、中继阀、遮断阀、第一紧急制动电磁阀、第二紧急制动电磁阀、紧急制动排风阀、节流阀和第二截断塞门,
所述压力采集装置的压力信号输出端经第一截断塞门与第一缓解电磁阀的进气口、第二缓解电磁阀的进气口以及流量计的输入口连接;
所述流量计的出气口与中立阀的进气口连接;
所述中立阀的出气口与中继阀的E口连接;
所述中继阀的C口同时与第一制动电磁阀的进气口、第二制动电磁阀的进气口、均衡风缸的进气口、充风电磁阀的进气口、第一缓解电磁阀的出气口以及第二缓解电磁阀的出气口连接;
第一制动电磁阀的出气口和第二制动电磁阀的出气口与大气连通;
所述中继阀的O口与遮断阀的进气口连接;
所述遮断阀的出气口与充风电磁阀的出气口、第一紧急制动电磁阀的进气口、第二紧急制动电磁阀的进气口、第二截断塞门的出气口和列车管的进气口连接;
第一紧急制动电磁阀的出气口与第二紧急制动电磁阀的出气口、紧急制动排风阀的先导控制口和第二截断塞门的进气口连接;
第一紧急制动电磁阀的出气口与第二紧急制动电磁阀的出气口、紧急制动排风阀的先导控制口、紧急制动排风阀的进气口和第二截断塞门的进气口连接;
节流阀的进气口与紧急制动排风阀的先导控制口连接,节流阀的出气口与紧急制动排风阀的进气口连接;
第一紧急制动电磁阀的第三口与第二紧急制动电磁阀的第三口连接并接防爆设备。
在一些可选的实现方式中,所述中立阀包括两位三通电磁阀和两位两通电磁阀,所述流量计的出气口与两位三通电磁阀的进气口和两位两通电磁阀的进气口连接,两位三通电磁阀的出气口与两位两通电磁阀的先导控制口连接,两位两通电磁阀的出气口与中继阀的E口连接。
在一些可选的实现方式中,所述遮断阀包括两位三通电磁阀和两位两通电磁阀,所述中继阀的O口与两位三通电磁阀的进气口和两位两通电磁阀的进气口连接,两位三通电磁阀的出气口与两位两通电磁阀的先导控制口连接,两位两通电磁阀的出气口与充风电磁阀的出气口、第一紧急制动电磁阀的进气口、第二紧急制动电磁阀的进气口、第二截断塞门的出气口和列车管的进气口连接。
在一些可选的实现方式中,所述列车管控制装置还包括减压阀测点和总风管压力传感器,所述总风管压力传感器设置在减压阀测点上,用于采集总风管 压力值。
在一些可选的实现方式中,所述列车管控制装置还包括列车管预控测点和列车管预控传感器,所述列车管预控传感器设置在列车管预控测点上,用于采集均衡风缸的压力值。
在一些可选的实现方式中,所述列车控制装置还包括列车管测点和列车管压力传感器,所述列车管压力传感器设置在列车管测点上,用于采集列车管压力值。
在一些可选的实现方式中,所述系统还包括紧急放风阀,所述紧急放风阀同时连接列车管和遮断阀,用于当列车管压力下降速率超过预定值时,接通列车管与大气通路。
在一些可选的实现方式中,所述系统还包括辅助控制装置,所述辅助控制装置与列车控制装置连接,用于向列车辅助用风设备供风。
为解决上述技术问题之一,本申请提供了一种动车组制动控制系统,所述系统包括:上述所述的控制车集中制动控制系统、制动控制器、动力车制动控制系统和自动式电空制动机;
所述制动控制器用于向控制车集中制动控制系统和动力车制动控制系统发送制动请求;
所述动力车制动控制系统用于根据制动请求和列车管实时压力控制列车制动缸产生的压力值;
所述自动式电空制动机安装在控制车和中间拖车中,用于根据列车管实时压力控制列车空气制动的施加和缓解。
在一些可选的实现方式中,所述系统还包括备用制动系统,用于当控制车集中制动控制系统和/或动力车制动控制系统发生故障时,控制列车管压力。
本申请的有益效果如下:
1、本申请根据制动控制器输出的制动请求以及列车管实时压力的检测来控制列车管压力的变化及五线制的控制信号,可实现灵活编组。
2、本申请可以仅在控制车设置制动控制系统,其他中间拖车不需设置制动控制系统,可采用既有的自动式电空制动机,节省了拖车的安装空间,降低成本。并且由于采用自动式制动控制系统控制列车管压力变化,列车可与采用自动式空气制动的客车联挂运行。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请所述控制车集中制动控制方法的流程图;
图2为本申请所述控制车集中制动控制系统的原理示意图;
图3为本申请所述的列车管控制装置B02的原理示意图;
图4为本申请所述的压力采集装置A01的原理示意图;
图5为本申请所述的辅助控制装置A02的原理示意图;
图6为本申请所述动车组制动控制系统的原理示意图。
具体实施方式
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
如图1所示,本申请实施例提供了一种控制车集中制动控制方法,所述方法包括:
S101、接收制动请求。
具体的,本实施例所述的制动请求是通过制动控制器发出的,在列车的控制车和动力车中均设置有制动控制器,所述制动控制器采用自动制动手柄,从近司机端向前推依次为运转位、初制位、制动区、全制位、抑制位、重联位和 紧急位,各位置功能分别如下:
运转位:列车管按定压进行充风控制,是列车制动进行充风和缓解的位置。
初制动位:手柄置于该位置则列车管应减压50kPa。
制动区:起于初制动位,止于全制动位,从初制动位到全制动位,列车管压力应持续下降,且减压量与手柄的位置线性相关。
全制动位:手柄置于该位置则列车管应产生常用制动的最大减压量(减压至360kPa或430kPa)。
抑制位:用于缓解惩罚制动,在对惩罚制动作用进行缓解之前,必须先将制动控制器的手柄推至抑制位并保持至少1秒钟,然后再推至运转位,才能缓解。当手柄推至抑制位的时候列车管减压量同全制动位。
重联位:手柄由抑制位推至重联位时,应控制列车管从常用制动最大减压量线性下降至0kPa,在手柄稳定于重联位后,仅在紧急制动时控制列车管排风。
紧急位:产生紧急制动,列车管快速排至0。
S102、接收列车管实时压力。
具体的,列车管实时压力主要通过列车管压力传感器来实现,为后续列车管压力的控制提供持续的压力数据。
S103、根据所述制动请求和列车管实时压力通过总风管控制列车管压力。
具体的,根据制动控制器的实际应用,根据制动请求的不同可产生3中不同的制动形式:
常用制动:列车管减压量在最小有效减压量(50kPa)和最大有效减压量(列车管定压500kPa时为140kPa,定压600kPa时为170kPa)之间,可通过司机将制动控制器的手柄移至制动区主动触发。
紧急制动:通过手柄置紧急位,或按下紧急制动按钮,或有紧急制动请求时,或列车管排风速率超过80kPa/s时触发,此时将控制列车管以超过80kPa/s的减压速率,将列车管压力降为0。
惩罚制动:非司机主动施加的制动,根据车辆状态自动触发,根据请求的 级别,可以是紧急制动或常用制动。
在常用制动情况下,根据接收到的制动级位,计算出对应的列车管目标压力,并根据制动请求以及列车管实时压力与列车管目标压力之间的关系通过总风管控制列车管压力。
具体的,根据制动请求以及列车管实时压力与列车管目标压力之间的关系通过总风管控制列车管压力的过程包括:
当无紧急制动请求、惩罚制动处于解除状态且列车管实时压力低于目标压力时,通过总风管对列车管进行充风;
当有制动请求且列车管实时压力高于目标压力时,对列车管进行排风;
当有常用制动请求、请求级别不变且列车管实时压力等于目标压力时,若列车管发生泄露时,通过总风管对列车管进行补风;
当制动控制器在预设时间内一直处于运转位时,通过总风管对列车管进行补风;
当制动控制器处于重联位且无紧急制动请求时,不对列车管的压力进行控制。
本实施例所述方法还包括:根据所述制动请求和列车管实时压力生成控制信号并发送给电磁阀,通过电磁阀控制总风管对列车管进行充排风。
具体的,所述控制信号为五线制导线信号,用以控制安装在控制车和中间拖车中的电空制动机中电磁阀的状态,用以辅助控制列车的充排风,提高制动的响应时间。其中电空制动机主要包括F8电空制动机和104电空制动机,F8电空制动机中包括制动电磁阀、缓解电磁阀和紧急电磁阀,104电空制动机中包括制动电磁阀、缓解电磁阀和保压电磁阀,其中5根导线分别为:
用于控制F8电空制动机和104电空制动机的制动电磁阀状态的制动导线;
用于控制F8电空制动机和104电空制动机的缓解电磁阀状态的缓解导线;
用于控制104电空制动机的保压电磁阀状态的保压导线;
用于控制F8电空制动机的紧急电磁阀状态和104电空制动机作为检查线 的紧急导线;
用于接地的电源负线。
进一步的,S103中所述的根据制动请求和列车管实时压力控制列车管压力的过程应用在如图2所示的控制车集中制动控制系统中。所述控制车集中制动控制系统包括:压力采集装置A01和列车管控制装置B02,所述压力采集装置A01采集总风管压力,压力采集装置A01的压力信号输出端与列车管控制装置B02的压力信号输入端连接,所述列车管控制装置B02的制动信号输入端与制动控制器制动信号输出端连接,所述列车管控制装置B02分别与总风管和列车管气动连接。
具体的,所述压力采集装置A01用于向空压机提供压力信号。如图2和图4所示,压力采集装置A01包括3个压力开关和一个测试口。压力开关A01.71的闭合压力是750kPa(下降沿有效),复位压力是900kPa(上升沿有效);压力开关A01.72的闭合压力是680kPa(下降沿有效),复位压力是900kPa(上升沿有效);压力开关A01.73的闭合压力是500kPa(下降沿有效),复位压力是600kPa(上升沿有效)。
当总风管压力低于压力开关的闭合压力时,压力开关闭合,电路接通;高于压力开关的复位压力时,压力开关复位,电路断开。
测试口A01.91用于校核压力开关的闭合和复位压力。
如图3所示,列车管控制装置B02主要有以下部分组成:
用于控制列车管压力变化的均衡风缸N01;
用于控制列车管控制装置B02通断的第一截断塞门B02.01;
用于清洁总风给列车管供风的压缩空气的过滤器B02.02;
用于监测列车管的充风流量的流量计B02.04;
用于控制均衡风缸NO1充风的第一缓解电磁阀B02.06/1;
用于作为冗余控制均衡风缸NO1充风的第二缓解电磁阀B02.06/2;
用于控制均衡风缸NO1排风的第一制动电磁阀B02.07/1;
用于作为冗余控制均衡风缸NO1排风的第二制动电磁阀B02.07/2;
用于制动完全缓解时快速给列车管充风的充风电磁阀B02.08;
用于得电时截断总风向列车管补风的中立阀B02.10;
用于依据均衡风缸NO1的压力变化来控制列车管的压力变化,从而完成列车的制动、保压和缓解的中继阀B02.11;
用于重联时切断中继阀B02.11与列车管的通路的遮断阀B02.12;
用于接收到紧急制动信号时,给列车管排风,控制紧急制动排风阀B02.15的先导压力的第一紧急制动电磁阀B02.14/1;
用于作为冗余,当接收到紧急制动信号时,给列车管排风,控制紧急制动排风阀B02.15的先导压力的第二紧急制动电磁阀B02.14/2;
用于先导压力下降速率超过80kPa/s时,给列车管排风的紧急制动排风阀B02.15;
用于限制流量,防止常用制动时,紧急制动排风阀B02.15误动作的节流阀B02.16;
用于截断紧急阀对列车管压力的控制功能的第二截断塞门B02.17;
用于采集总风管压力的总风管压力传感器B02.81;
用于采集均衡风缸NO1的压力值的列车管预控传感器B02.82;
用于采集列车管压力的列车管压力传感器B02.83;
用于检测经减压阀后进入均衡风缸NO1的压力值的减压阀测点B02.91;
用于检测均衡风缸NO1压力值的列车管预控测点B02.92;
用于检测列车管压力值的列车管测点B02.93。
具体的,所述压力采集装置A01的压力信号输出端经第一截断塞门B02.01与第一缓解电磁阀B02.06/1的进气口、第二缓解电磁阀B02.06/2的进气口以及流量计B02.04的输入口连接;
所述流量计B02.04的出气口与中立阀B02.10的进气口连接;
所述中立阀B02.10的出气口与中继阀B02.11的E口连接;
所述中继阀B02.11的C口同时与第一制动电磁阀B02.07/1的进气口、第二制动电磁阀B02.07/2的进气口、均衡风缸N01的进气口、充风电磁阀B02.08的进气口、第一缓解电磁阀B02.06/1的出气口以及第二缓解电磁阀B02.06/2的出气口连接;
第一制动电磁阀B02.07/1的出气口和第二制动电磁阀B02.07/2的出气口与大气连通;
所述中继阀B02.11的O口与遮断阀B02.12的进气口连接;
所述遮断阀B02.12的出气口与充风电磁阀B02.08的出气口、第一紧急制动电磁阀B02.14/1的进气口、第二紧急制动电磁阀B02.14/2的进气口、第二截断塞门B02.17的出气口和列车管的进气口连接;
第一紧急制动电磁阀B02.14/1的出气口与第二紧急制动电磁阀B02.14/2的出气口、紧急制动排风阀B02.15的先导控制口、紧急制动排风阀B02.15的进气口和第二截断塞门B02.17的进气口连接;
节流阀B02.16的进气口与紧急制动排风阀B02.15的先导控制口连接,节流阀B02.16的出气口与紧急制动排风阀B02.15的进气口连接;
第一紧急制动电磁阀的第三口与第二紧急制动电磁阀的第三口连接并接防爆设备。
其中,第一紧急制动电磁阀B02.14/1、第二紧急制动电磁阀B02.14/2、紧急制动排风阀B02.15、节流阀B02.16和第二截断塞门B02.17组成紧急阀模块。
具体的,列车管的压缩空气来源于总风管,经中继阀B02.11后流向列车管。常规制动时,列车管的压力变化通过中继阀B02.11控制;紧急制动时,列车管的压力变化通过紧急阀模块和中继阀B02.11控制。
中继阀B02.11对列车管压力的控制是通过调整均衡风缸NO1的压力(预控压力)实现的,中继阀B02.11共4个接口:连接均衡风缸NO1的预控压力口C、连接总风管的压缩空气入口E、连接列车管的压缩空气出口O以及连接 大气的排气口S。预控压力口C为小通径,压力大小容易控制,压缩空气出口O口为大通径,其压缩空气由同样为大通径的压缩空气入口E提供,但是压力受预控压力口C控制。当预控压力口C的压力大于压缩空气出口O的压力时,压缩空气入口E与压缩空气出口O接通;当预控压力口C的压力小于压缩空气出口O的压力时,压缩空气出口O压缩空气通过排气口S排向大气;当预控压力口C的压力等于压缩空气出口O的压力时,压缩空气出口O与压缩空气入口E、压缩空气出口O与排气口S均不连通,中继阀B02.11处于保压状态。
均衡风缸NO1的压缩空气来源于总风管,制动控制系统将均衡风缸NO1压力的列车管预控传感器B02.82监测到的均衡风缸NO1压力与目标压力进行对比,通过第一缓解电磁阀B02.06/1、第二缓解电磁阀B02.06/2、第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2的开启或关闭控制均衡风缸NO1的压力。
中立阀B02.10和遮断阀B02.12的部件以及原理相同,作用是控制总风管到列车管的通断,不同的是中立阀B02.10控制总风管到中继阀B02.11的通路,遮断阀B02.12控制中继阀B02.11到列车管的通路。正常运行过程中,二者一直处于失电接通状态,即允许总风管给列车管充风。
当进行气密性测试等不需要列车管补风的操作时,中立阀B02.10得电关闭总风管给列车管充风的通路。在紧急制动时,制动控制单元也将关闭中立阀B02.10,防止列车管再充风导致意外缓解。中立阀B02.10带有两个电触点信号,一个用于控制司机室的指示灯,一个用于制动控制单元进行诊断。
在控制车退出占用时,遮断阀B02.12得电,关闭中继阀B02.11对列车管的控制通路。此时仅在紧急制动时,可控制列车管的排风,常用制动时无法对列车管进行控制,也无法给列车管进行充风。
紧急阀模块仅在紧急制动时,紧急制动排风阀B02.15接通给列车管快速排风,紧急制动排风阀B02.15的先导压力受第一紧急制动电磁阀B02.14/1和第二紧急制动电磁阀B02.14/2的控制,当先导压力下降速率超过80kPa/s时, 接通列车管与大气的通路。通过节流阀B02.16避免常用制动时列车管压力下降,造成紧急制动排风阀B02.15意外排风。第二截断塞门B02.17用于紧急阀模块故障时,关闭其对列车管的控制功能,第二截断塞门B02.17带有电触点信号,其状态由制动控制单元检测。
更进一步的,列车管控制装置B02控制列车管压力以及生成5线制控制信号的过程具体为:
1、列车管充风时
第一缓解电磁阀B02.06/1和第二缓解电磁阀B02.06/2得电接通,第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2失电关闭,第一紧急制动电磁阀B02.14/1和第二紧急制动电磁阀B02.14/2失电接通;输出控制缓解导线得电,制动导线、保压导线和紧急导线失电。
如果列车管控制装置B02接收到的信号为由大级别制动转为小级别制动,但仍有制动请求,则充风电磁阀B02.08失电关闭。总风管压缩空气通过第一截断塞门B02.01、过滤器B02.02、第一缓解电磁阀B02.06/1和第二缓解电磁阀B02.06/2向均衡风缸NO1充风,当列车管控制装置B02通过压力传感器监测到均衡风缸NO1压力上升至目标压力后,第一缓解电磁阀B02.06/1和第二缓解电磁阀B02.06/2失电关闭,停止向均衡风缸NO1充风。由于中继阀B02.11预控压力口C预控压力上升,预控压力口C的压力大于压缩空气出口O的压力,中继阀B02.11压缩空气入口E与压缩空气出口O接通,总风管压缩空气通过流量计B02.04、中立阀B02.10、中继阀B02.11和遮断阀B02.12向列车管充风。直到预控压力口C的压力等于压缩空气出口O的压力时,中继阀B02.11关闭,停止向列车管充风。
如果列车管控制装置B02街道的信号为完全缓解,也就是从制动控制器的手柄由制动区移至运转位,无任何制动请求。即需要列车管充风至定压时,充风电磁阀B02.08得电接通,均衡风缸NO1的压缩空气还可通过充风电磁阀B02.08快速给列车管充风,直到压力传感器检测到列车管压力达到定压后,充 风电磁阀B02.08失电关闭。
2、列车管排风时
2.1、常用制动请求的列车管排风
控制第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2得电与大气导通,均衡风缸NO1的压缩空气可通过第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2排到大气,使均衡风缸NO1的压缩空气压力减小到目标压力,此时制动导线得电,缓解导线、保压导线、紧急导线失电。当制动控制单元通过压力传感器监测到均衡风缸NO1压力减小至目标压力后,第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2失电关闭,均衡风缸NO1压力不再下降。
由于中继阀B02.11预控压力口C预控压力下降,预控压力口C压力小于压缩空气出口O的压力,中继阀B02.11压缩空气出口O与排气口S接通,列车管压缩空气通过遮断阀B02.12、中继阀B02.11的排气口S排向大气。直到预控压力口C的压力等于压缩空气出口O的压力时,中继阀B02.11关闭,列车管压力不再下降。
2.2、紧急制动请求的列车管排风
控制第一缓解电磁阀B02.06/1和第二缓解电磁阀B02.06/2失电关闭,中立阀B02.10失电关闭,总风管不再向均衡风缸NO1及列车管充风。
控制第一紧急制动电磁阀B02.14/1和第二紧急制动电磁阀B02.14/2得电接通,紧急制动排风阀B02.15的先导压力通过第一紧急制动电磁阀B02.14/1和第二紧急制动电磁阀B02.14/2快速排出大气,速率超过80kPa/s,紧急制动排风阀B02.15接通,列车管压缩空气通过紧急制动排风阀B02.15快速排出大气。
同时作为冗余控制,第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2得电与大气导通,均衡风缸NO1的压缩空气通过第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2排到大气,使均衡风缸NO1压力下降为0。由于中继阀B02.11预控压力口C无压力,中继阀B02.11压缩空气出口O 与排气口S接通,列车管压缩空气通过遮断阀B02.12和中继阀B02.11的排气口S排向大气,直至列车管压力下降为0。
在列车管路上还设有紧急防风阀NO2,当紧急防风阀NO2监测到列车管压力下降速率超过80kPa/s时,也将接通列车管与大气的通路,加速列车管压力下降。
紧急制动时,制动导线和紧急导线一直得电,缓解导线、保压导线失电。
3、列车保压时
控制第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2失电关闭;第一紧急制动电磁阀B02.14/1和第二紧急制动电磁阀B02.14/2失电接通;中立阀B02.10和遮断阀B02.12失电接通。保压导线得电,制动导线、缓解导线和紧急导线失电。
如列车管控制装置B02处于补风状态,当列车管有微小泄漏时,中继阀B02.11压缩空气出口O的压力下降,预控压力口C的压力大于压缩空气出口O的压力,中继阀B02.11压缩空气入口E与压缩空气出口O接通,总风管压缩空气通过流量计B02.04、中立阀B02.10、中继阀B02.11和遮断阀B02.12向列车管补风。直到压缩空气出口O的压力等于预控压力口C的压力时,中继阀B02.11关闭,停止向列车管补风。
4、列车管定压时
控制第一缓解电磁阀B02.06/1和第二缓解电磁阀B02.06/2失电关闭,第一制动电磁阀B02.07/1和第二制动电磁阀B02.07/2失电关闭;第一紧急制动电磁阀B02.14/1和第二紧急制动电磁阀B02.14/2失电接通;中立阀B02.10和遮断阀B02.12失电接通。制动导线、缓解导线、保压导线和紧急导线失电。
如列车管控制装置B02处于允许补风状态,当列车管有微小泄漏时,中继阀B02.11压缩空气出口O压力下降,预控压力口C压力大于压缩空气出口O的压力,中继阀B02.11压缩空气入口E与压缩空气出口O接通,总风管压缩空气通过流量计B02.04、中立阀B02.10、中继阀B02.11和遮断阀B02.12向 列车管补风。直到压缩空气出口O的压力等于预控压力口C的压力时,中继阀B02.11关闭,停止向列车管补风。
进一步的,本实施例所述的控制车集中制动控制系统还包括辅助控制装置A02,如图2和图5所示,所述辅助控制装置A02与列车控制装置连接,用于向列车辅助用风设备供风。
具体的,辅助控制装置A02采用电磁阀控制通断,电磁阀为失电常闭状态,由外部电路直接驱动,不受制动控制系统控制。当某一通路需要接通时,直接驱动相应电磁阀,电磁阀接通后可以给用风设备供风。用风完毕后,驱动电路失电,电磁阀关闭下游用风设备通路。
另外的,本实施例还提出了一种动车组制动控制系统,所述系统包括:上述所述的控制车集中制动控制系统、制动控制器、动力车制动控制系统和自动式电空制动机;
所述制动控制器用于向控制车集中制动控制系统和动力车制动控制系统发送制动请求;
所述动力车制动控制系统用于根据制动请求和列车管实时压力控制列车制动缸产生的压力值;
所述自动式电空制动机安装在控制车和中间拖车中,用于根据列车管实时压力控制列车空气制动的施加和缓解。
具体的,本实施例所述的动力车制动控制系统采用既有机车微机控制的自动式制动控制系统,系统的主要功能有:根据制动控制器的制动请求控制列车管压力变化,同时控制自动式电空制动机所需的五线制导线信号;根据制动请求和列车管的压力变化控制本车制动缸对应的压力;与列车本身的牵引系统进行信息交互,向牵引系统发生所需再生制动的大小,同时根据牵引系统的反馈控制本车空气制动的施加;相应停放制动指令的请求,控制停放制动的施加与缓解;响应撒砂指令的请求,控制本车施加或停止撒砂;监控总风管压力,控制空压机的启停;数据的分析处理功能,系统诊断功能,与网络进行信息交互, 上传状态信息及数据,并根据网络信号控制制动系统产生响应的动作等。由于动力车制动控制系统是较为成熟的系统,在此不再进行过多的阐述。
控制车和中间拖车装有自动式电空制动机,既可以根据五线制导线信号控制电空制动机电磁阀通断状态,控制本车电控制动的施加与缓解,同时可根据列车管压力变化控制本车空气制动的施加与缓解。空气制动作为电控制动的冗余,当电控制动失效时,空气制动可以直接施加。
进一步的,所述动车组制动控制系统还包括用于控制车集中制动控制系统和/或动力车制动控制系统发生故障时,通过备用制动手柄控制列车管压力变化的备用制动系统。
另外的,本实施例还提出一种包括上述所述的动车组制动控制系统的列车,如图6所示,当动力车和/或控制车占用时,动力车和/或控制车的制动控制器及制动控制系统正常工作。制动控制器输出制动请求,制动控制系统根据制动指令控制列车管的压力及五线制导线信号,控制车和中间拖车中的自动式电空制动机根据五线制导线信号以及列车管的压力,控制本车制动缸产生相应的压力。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 控制车集中制动控制系统,其特征在于,所述系统包括:用于采集总风管压力的压力采集装置和列车管控制装置;
    所述压力采集装置的压力信号输出端与列车管控制装置的压力信号输入端连接;
    所述列车管控制装置的制动信号输入端与制动控制器制动信号输出端连接,所述列车管控制装置通过气路端分别与总风管和列车管气动连接。
  2. 根据权利要求1所述的控制车集中制动控制系统,其特征在于,所述压力采集装置包括:第一压力开关、第二压力开关和第三压力开关,所述第一压力开关、第二压力开关和第三压力开关分别采集总风管压力,所述第一压力开关的压力信号输出端、第二压力开关的压力信号输出端和第三压力开关的压力信号输出端同时与列车管控制装置的压力信号输入端连接。
  3. 根据权利要求2所述的控制车集中制动控制系统,其特征在于,所述压力采集装置还包括:用于校核第一压力开关、第二压力开关和第三压力开关的闭合压力和复合压力的测试端口。
  4. 根据权利要求3所述的控制车集中制动控制系统,其特征在于,所述列车管控制装置包括:均衡风缸N01、第一截断塞门B02.01、过滤器B02.02、流量计B02.04、第一缓解电磁阀B02.06/1、第二缓解电磁阀B02.06/2、第一制动电磁阀B02.07/1、第二制动电磁阀B02.07/2、充风电磁阀B02.08、中立阀B02.10、中继阀B02.11、遮断阀B02.12、第一紧急制动电磁阀B02.14/1、第二紧急制动电磁阀B02.14/2、紧急制动排风阀B02.15、节流阀B02.16和第二截断塞门B02.17,
    所述压力采集装置的压力信号输出端经第一截断塞门与第一缓解电磁阀的进气口、第二缓解电磁阀的进气口以及流量计的输入口连接;
    所述流量计的出气口与中立阀的进气口连接;
    所述中立阀的出气口与中继阀的E口连接;
    所述中继阀的C口同时与第一制动电磁阀的进气口、第二制动电磁阀的进气口、均衡风缸的进气口、充风电磁阀的进气口、第一缓解电磁阀的出气口以及第二缓解电磁阀的出气口连接;
    第一制动电磁阀的出气口和第二制动电磁阀的出气口与大气连通;
    所述中继阀的O口与遮断阀的进气口连接;
    所述遮断阀的出气口与充风电磁阀的出气口、第一紧急制动电磁阀的进气口、第二紧急制动电磁阀的进气口、第二截断塞门的出气口和列车管的进气口连接;
    第一紧急制动电磁阀的出气口与第二紧急制动电磁阀的出气口、紧急制动排风阀的先导控制口和第二截断塞门的进气口连接;
    第一紧急制动电磁阀的出气口与第二紧急制动电磁阀的出气口、紧急制动排风阀的先导控制口、紧急制动排风阀的进气口和第二截断塞门的进气口连接;
    节流阀的进气口与紧急制动排风阀的先导控制口连接,节流阀的出气口与紧急制动排风阀的进气口连接;
    第一紧急制动电磁阀的第三口与第二紧急制动电磁阀的第三口连接并接防爆设备。
  5. 根据权利要求4所述的控制车集中制动控制系统,其特征在于,所述中立阀包括:两位三通电磁阀和两位两通电磁阀,所述流量计的出气口与两位三通电磁阀的进气口和两位两通电磁阀的进气口连接,两位三通电磁阀的出气口与两位两通电磁阀的先导控制口连接,两位两通电磁阀的出气口与中继阀的E口连接。
  6. 根据权利要求4或5所述的控制车集中制动控制系统,其特征在于,所述遮断阀包括:两位三通电磁阀和两位两通电磁阀,所述中继阀的O口与两位三通电磁阀的进气口和两位两通电磁阀的进气口连接,两位三通电磁阀的出气口与两位两通电磁阀的先导控制口连接,两位两通电磁阀的出气口与充风电 磁阀的出气口、第一紧急制动电磁阀的进气口、第二紧急制动电磁阀的进气口、第二截断塞门的出气口和列车管的进气口连接。
  7. 根据权利要求4所述的控制车集中制动控制系统,其特征在于,所述列车管控制装置还包括:减压阀测点和总风管压力传感器,所述总风管压力传感器设置在减压阀测点上,用于采集总风管压力值。
  8. 根据权利要求4所述的控制车集中制动控制系统,其特征在于,所述列车管控制装置还包括:列车管预控测点和列车管预控传感器,所述列车管预控传感器设置在列车管预控测点上,用于采集均衡风缸的压力值。
  9. 根据权利要求4所述的控制车集中制动控制系统,其特征在于,所述列车控制装置还包括:列车管测点和列车管压力传感器,所述列车管压力传感器设置在列车管测点上,用于采集列车管压力值。
  10. 根据权利要求4所述的控制车集中制动控制系统,其特征在于,所述系统还包括:紧急放风阀,所述紧急放风阀同时连接列车管和遮断阀,用于当列车管压力下降速率超过预定值时,接通列车管与大气通路。
  11. 根据权利要求4所述的控制车集中制动控制系统,其特征在于,所述系统还包括:辅助控制装置,所述辅助控制装置与列车控制装置连接,用于向列车辅助用风设备供风。
  12. 动车组制动控制系统,其特征在于,所述系统包括:权利要求1至11任一项所述的控制车集中制动控制系统、制动控制器、动力车制动控制系统和自动式电空制动机;
    所述制动控制器用于向控制车集中制动控制系统和动力车制动控制系统发送制动请求;
    所述动力车制动控制系统用于根据制动请求和列车管实时压力控制列车制动缸产生的压力值;
    所述自动式电空制动机安装在控制车和中间拖车中,用于根据列车管实时压力控制列车空气制动的施加和缓解。
  13. 根据权利要求12所述的动车组制动控制系统,其特征在于,所述系统还包括备用制动系统,用于当控制车集中制动控制系统和/或动力车制动控制系统发生故障时,控制列车管压力。
  14. 控制车集中制动控制方法,其特征在于,所述方法包括:
    接收任意一节车厢的制动请求;
    接收任意一节车厢的列车管实时压力并计算该列车管的目标压力;
    根据制动请求以及列车管实时压力与列车管目标压力之间的关系通过总风管控制列车管压力。
  15. 根据权利要求14所述的控制车集中制动控制方法,其特征在于,所述列车管的目标压力的计算过程为:当制动请求为常用制动请求时,根据常用制动请求的制动级别计算出与该制动级别相对应的列车管的目标压力。
  16. 根据权利要求14或15所述的控制车集中制动控制方法,其特征在于,所述根据制动请求以及列车管实时压力与列车管目标压力之间的关系通过总风管控制列车管压力的过程包括:
    当无紧急制动请求、惩罚制动处于解除状态且列车管实时压力低于目标压力时,控制总风管对列车管进行充风;
    当有制动请求且列车管实时压力高于目标压力时,对列车管进行排风;
    当有常用制动请求、请求级别不变且列车管实时压力等于目标压力时,若列车管发生泄露时,控制总风管对列车管进行补风。
  17. 根据权利要求16所述的控制车集中制动控制方法,其特征在于,所述制动请求是由制动控制器发出的,所述制动控制器采用自动制动手柄实现,且所述制动控制器至少包括运转位和重联位两个档位。
  18. 根据权利要求17所述的控制车集中制动控制方法,其特征在于,所述根据制动请求以及列车管实时压力与列车管目标压力之间的关系控制列车管压力的过程还包括:
    当制动控制器在预设时间内一直处于运转位时,控制总风管对列车管进行 补风;
    当制动控制器处于重联位且无紧急制动请求时,不对列车管的压力进行控制。
  19. 根据权利要求14或18所述的控制车集中制动控制方法,其特征在于,所述方法还包括:根据所述制动请求和列车管实时压力生成控制信号并发送给电磁阀,通过电磁阀控制总风管对列车管进行充排风。
PCT/CN2018/093545 2017-08-03 2018-06-29 控制车集中制动控制系统、方法及动车组制动控制系统 WO2019024632A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,330 US11180128B2 (en) 2017-08-03 2018-06-29 System and method for controlling centralized brake of vehicles, a motor train set brake control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710657029.0 2017-08-03
CN201710657029.0A CN109383554B (zh) 2017-08-03 2017-08-03 控制车集中制动控制系统、方法及动车组制动控制系统

Publications (1)

Publication Number Publication Date
WO2019024632A1 true WO2019024632A1 (zh) 2019-02-07

Family

ID=65232259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093545 WO2019024632A1 (zh) 2017-08-03 2018-06-29 控制车集中制动控制系统、方法及动车组制动控制系统

Country Status (3)

Country Link
US (1) US11180128B2 (zh)
CN (1) CN109383554B (zh)
WO (1) WO2019024632A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117284342A (zh) * 2023-10-21 2023-12-26 兰州交通大学 一种抗侧风分块式风阻制动装置的协同控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110116737B (zh) * 2019-06-05 2022-06-10 湖南中车时代通信信号有限公司 一种机车自动制动的控制装置及方法
CN111580719B (zh) * 2020-05-06 2021-07-23 中车青岛四方机车车辆股份有限公司 一种动车组总风保压的检测方法及系统
CN111891171B (zh) * 2020-08-10 2021-07-16 中车株洲电力机车有限公司 一种动力集中动车组主压缩机控制方法及系统
CN112124277B (zh) * 2020-09-27 2021-11-16 中车唐山机车车辆有限公司 轨道车辆制动缸压力控制方法、装置及轨道车辆
CN112326278A (zh) * 2020-11-06 2021-02-05 大秦铁路股份有限公司科学技术研究所 基于无线重联模式下列车管的贯通测试方法
CN112849200A (zh) * 2021-02-08 2021-05-28 中车青岛四方机车车辆股份有限公司 一种车辆保持制动控制方法、装置、系统及车辆
CN113665547B (zh) * 2021-09-13 2022-05-06 中车洛阳机车有限公司 一种提高jz-7制动系统制动速度的辅助装置
CN113844489B (zh) * 2021-09-30 2022-10-14 中车株洲电力机车有限公司 一种无人警惕紧急制动的控制系统及控制方法
CN114179848B (zh) * 2021-12-17 2023-08-22 山东莱钢永锋钢铁有限公司 一种用于铁路车辆制动的空气制动机
CN114162107B (zh) * 2021-12-24 2024-03-19 大秦铁路股份有限公司科学技术研究所 一种重载组合列车的漏泄测试方法
CN114394073B (zh) * 2022-01-05 2023-02-24 中车唐山机车车辆有限公司 一种制动系统、制动方法和无轨电车
CN114572270B (zh) * 2022-04-07 2023-09-01 中国铁道科学研究院集团有限公司 轴控式制动控制系统及轨道交通车辆
CN115056760B (zh) * 2022-06-14 2024-04-05 中车制动系统有限公司 城轨车辆制动控制系统
CN115009246B (zh) * 2022-06-29 2023-03-31 中车制动系统有限公司 适配既有轨道工程车制动系统的微机控制空气制动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020180264A1 (en) * 2001-05-16 2002-12-05 Robert Moffitt Pneumatic brake pipe system with separate service and emergency portions
CN201102538Y (zh) * 2007-09-26 2008-08-20 中国北车集团北京二七机车厂有限责任公司 一种简化空气管路的制动机机车制动系统
CN101423056A (zh) * 2008-10-31 2009-05-06 南车株洲电力机车有限公司 用于城轨车辆整列编挂铁路运输用的控制装置及其方法
CN105564402A (zh) * 2016-01-05 2016-05-11 青岛思锐科技有限公司 机车制动列车管智能控制模块
CN106740785A (zh) * 2016-12-14 2017-05-31 中车株洲电力机车有限公司 一种机车、制动缸压力控制系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172316A (en) * 1989-12-08 1992-12-15 New York Air Brake Computer controlled railway brake equipment
US5967620A (en) * 1996-09-06 1999-10-19 New York Air Brake Corporation Electropneumatic brake control valve
US6883874B2 (en) * 2000-09-14 2005-04-26 New York Air Brake Corporation Pressure sensor module
US6950732B2 (en) * 2000-09-15 2005-09-27 New York Air Brake Corproation Car control device electronics
US6484085B2 (en) * 2001-04-04 2002-11-19 New York Air Brake Corporation Entering and exiting ECP mode for an integrated ECP/EAB system
US9731690B2 (en) * 2015-04-30 2017-08-15 Electro-Motive Diesel, Inc. Automatic braking system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020180264A1 (en) * 2001-05-16 2002-12-05 Robert Moffitt Pneumatic brake pipe system with separate service and emergency portions
CN201102538Y (zh) * 2007-09-26 2008-08-20 中国北车集团北京二七机车厂有限责任公司 一种简化空气管路的制动机机车制动系统
CN101423056A (zh) * 2008-10-31 2009-05-06 南车株洲电力机车有限公司 用于城轨车辆整列编挂铁路运输用的控制装置及其方法
CN105564402A (zh) * 2016-01-05 2016-05-11 青岛思锐科技有限公司 机车制动列车管智能控制模块
CN106740785A (zh) * 2016-12-14 2017-05-31 中车株洲电力机车有限公司 一种机车、制动缸压力控制系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117284342A (zh) * 2023-10-21 2023-12-26 兰州交通大学 一种抗侧风分块式风阻制动装置的协同控制方法
CN117284342B (zh) * 2023-10-21 2024-04-23 兰州交通大学 一种抗侧风分块式风阻制动装置的协同控制方法

Also Published As

Publication number Publication date
CN109383554A (zh) 2019-02-26
US20200164847A1 (en) 2020-05-28
CN109383554B (zh) 2020-05-19
US11180128B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2019024632A1 (zh) 控制车集中制动控制系统、方法及动车组制动控制系统
CN110667638B (zh) 空气制动控制单元、制动控制系统及制动控制方法
EP3636504B1 (en) A system for controlling backup air brake for a locomotive
CN102963347B (zh) 一种apm车辆用空气制动系统
CA2619322C (en) Pneumatic emergency brake assurance module
CN113002584B (zh) 机车制动缸和平均管压力控制系统及控制方法
WO2020134180A1 (zh) 一种动车组回送救援用指令转换装置
JP2010540328A (ja) 車両列車におけるトレーラの制動機の駐車制動機能を制御するための電気空気式駐車制動調整器
EP3617014B1 (en) Locomotive and dual mode brake control system thereof
CN101767583A (zh) 一种用于机车均衡风缸的压力控制装置
CN209037583U (zh) 一种轨道车辆救援用停放制动控制系统
KR100732566B1 (ko) 기관차의 공기제동장치
CN206344814U (zh) 一种动车组踏面清扫控制系统
CN109703595B (zh) 一种轨道车辆双模式救援转换装置、方法及车辆
CN106080650A (zh) 一种轨道车辆用气制动控制单元
CN201573638U (zh) 一种用于机车均衡风缸的压力控制装置
CN106627650A (zh) 一种停放制动远程隔离系统及控制方法
CN113104058B (zh) 轨道车辆空气制动控制单元、制动控制装置及方法
CN112026734A (zh) 轨道车辆空气制动隔离装置及紧急制动互锁的控制电路
CN109080611B (zh) 一种被救援模式下实现远程缓解的停放制动控制装置
CN114572270B (zh) 轴控式制动控制系统及轨道交通车辆
CN114954388B (zh) 紧急制动控制系统及方法
CA3140741A1 (en) Brake control system for a rail car
CN115009246B (zh) 适配既有轨道工程车制动系统的微机控制空气制动装置
RU211025U1 (ru) Кран машиниста железнодорожного транспортного средства

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841733

Country of ref document: EP

Kind code of ref document: A1