WO2019024552A1 - Palier d'amortissement et d'isolation sismiques tridimensionnel à pendule à frottement à réinitialisation automatique - Google Patents

Palier d'amortissement et d'isolation sismiques tridimensionnel à pendule à frottement à réinitialisation automatique Download PDF

Info

Publication number
WO2019024552A1
WO2019024552A1 PCT/CN2018/084952 CN2018084952W WO2019024552A1 WO 2019024552 A1 WO2019024552 A1 WO 2019024552A1 CN 2018084952 W CN2018084952 W CN 2018084952W WO 2019024552 A1 WO2019024552 A1 WO 2019024552A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
support plate
horizontal
damping
self
Prior art date
Application number
PCT/CN2018/084952
Other languages
English (en)
Chinese (zh)
Inventor
王浩
郑文智
祝青鑫
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2019024552A1 publication Critical patent/WO2019024552A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids

Definitions

  • the invention relates to a self-resetting friction pendulum three-dimensional seismic isolation bearing, belonging to the technical field of seismic isolation (vibration) control of bridges, houses and the like in the field of civil engineering.
  • the key to the problem is that the energy consumption of the traditional friction pendulum isolation bearing is mainly based on the friction material itself, and the friction damping material performance is mainly used.
  • Earthquake is a random load.
  • the damping coefficient of the friction damping material of the traditional friction pendulum isolation bearing is constant, and its energy consumption capacity mainly depends on the energy consumption capacity of the friction damping material. As the use time increases, the material performance will gradually degrade and cannot reach the expected. The effect is difficult to adapt to the structural damping control under various extreme loads.
  • the viscoelastic high damping rubber material is a new functional material with strong deformation. It uses the strong viscoelasticity of its own to dampen the structural vibration. It has many advantages such as lighter weight, better fatigue resistance and better vibration damping performance. . At the same time, when subjected to external loads, the material's own viscoelasticity is used to dampen energy consumption, and external energy is converted into heat energy by viscous internal friction between molecular chains to consume external energy. This material is widely used in construction engineering and bridge engineering. In the field of mechanical engineering.
  • the object of the present invention is to provide a self-resetting friction pendulum three-dimensional seismic isolation bearing.
  • the energy consumption performance of the conventional friction pendulum isolation bearing limiting device is poor, and the energy-consuming friction material decreases with time, and is difficult to replace.
  • the utility model can only realize the horizontal isolation and can not realize the difficulty of vertical isolation.
  • the invention adopts the horizontal damping spring and the viscoelastic high damping rubber material to improve the durability and the seismic isolation performance of the friction pendulum isolation bearing.
  • the viscoelastic high damping rubber material is used to realize the flexible connection of the contact surface, avoiding the local damage of the member under the sudden extreme load such as strong earthquake, and realizing the three-dimensional seismic isolation under the extreme loads such as earthquake and typhoon.
  • a self-resetting friction pendulum three-dimensional seismic isolation mount comprises an upper support plate, an articulated slide, a spherical slide plate, a lower support plate, a horizontal shock absorption spring, a reaction force plate, a shock absorption layer, and a vertical a damping spring, a friction pad, a dust seal, a bolt hole, a slider cavity, a power consumption ring, a guide rod; wherein a concave blind hole is formed in a middle portion of the lower support plate, The bottom of the blind hole is provided with a vertical damping spring, the upper part of the vertical damping spring is connected with the spherical sliding plate, the upper part of the spherical sliding plate is provided with an articulated slider, and the upper spherical surface of the hinged sliding block is located at the lower part of the upper supporting plate In the cavity, a reaction plate is arranged around the upper part of the lower support, and the horizontal damping spring is located between the reaction plate and the outer peripheral wall of the slider cavity.
  • the upper support plate and the hinged slider are flexibly connected through the shock absorbing layer, and the hinged slider can be freely rotated at any angle in the slider cavity to realize vertical energy absorbing shock, and the shock absorbing layer is a viscoelastic high damping material. (such as high damping rubber).
  • the hinged slider and the spherical sliding plate are closely connected by a friction pad, and the friction pad is a low friction material.
  • the inner bottom surface of the lower support plate and the lower surface of the spherical slide plate are both rough surfaces to increase the connection between the shock absorbing layer and the lower support plate and the spherical slide plate.
  • the horizontal damping spring is provided with a horizontal guiding rod, and the horizontal guiding rod is freely expandable and contractible with the horizontal damping spring.
  • the horizontal damping spring is provided with an energy consumption ring, and the horizontal damping spring can consume energy through the energy consumption ring when the compression is compressed, and the energy consumption ring is a viscoelastic high damping material (such as high damping rubber).
  • the top of the reaction plate and the lower part of the upper support plate are flexibly connected by a dustproof ring, and bolt holes are provided on the outer periphery of the upper support plate and the lower support plate to achieve a firm connection with the upper structure and the lower structure.
  • the maximum amount of compression of the horizontal damper spring when pressed is the distance from the inner surface of the reaction plate to the outer edge of the spherical slider.
  • the bottom of the inner cavity of the lower support plate is provided with a shock absorbing layer of a vertical damper spring, and the lower support plate and the spherical slide plate are connected to the vertical damper spring through the shock absorbing layer.
  • the horizontal damping spring is used to make the limit plate uniformly stressed by the horizontal damping spring when the horizontal displacement of the friction pendulum isolation bearing occurs;
  • the pressure-receiving side and the tension-side horizontal damping spring both provide the reaction force, and the horizontal damping spring makes the reaction plate evenly stressed;
  • the friction pendulum isolation bearing When the maximum allowable displacement is reached under strong earthquakes, the horizontal damping spring on the pressure side reaches the maximum compression amount, providing horizontal pressure.
  • the horizontal damping spring realizes the deformation energy consumption by compressing the energy consumption circle, and the horizontal damping spring on the tension side The horizontal pulling force is still provided, which doubles the self-resetting ability of the friction pendulum isolation bearing.
  • the reaction plate plays the role of the limit plate. Due to the action of the horizontal spring, the impact resistance of the self-resetting friction pendulum isolation support is obviously improved, and the position plate is prevented from being partially caused by the collision with the hinged slider. Damage, even serious damage.
  • the friction pendulum isolation bearing is provided with a damping layer and a vertical damping spring in the lower part of the spherical sliding plate, which has significant deformation and friction energy consumption capability.
  • the spherical slide plate and the lower support plate are connected by a shock absorbing layer and a vertical damper spring.
  • the damping layer under the spherical sliding plate at the hinged slider and the vertical damping spring compress and deform the energy, and the vibration damping under the other side of the spherical sliding plate
  • the layer and vertical damping springs are subjected to tensile deformation and energy consumption, and vertical shock absorption can be realized.
  • the design idea of the invention is to enhance the support limit capability and realize multi-dimensional shock absorption.
  • the energy consumption circle is used to realize the compression deformation energy consumption.
  • the present invention multiplies the performance of the horizontal damping spring while increasing the energy consumption performance on the basis of the uniform force of the reaction plate.
  • the invention is applicable to various engineering structures, and the three-dimensional seismic isolation and isolation can be realized by the horizontal damping spring, the energy consumption ring and the vertical damping layer.
  • Figure 1 is a cross-sectional view of the self-resetting friction pendulum three-dimensional seismic isolation mount of the present invention
  • FIG. 2 is a top plan view of a three-dimensional seismic isolation mount of a self-resetting friction swing of the present invention
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 4 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 5 is a detailed view of the member 13 of Figure 1;
  • the figure includes: upper support plate 1; hinge slide 2; spherical slide 3; lower support plate 4; horizontal shock absorbing spring 5; reaction plate 6; shock absorbing layer 7; vertical damper spring 8; Pad 9; dust ring 10; bolt hole 11; slider cavity 12; energy consuming ring 13; horizontal guide bar 14.
  • the invention relates to a self-resetting friction pendulum three-dimensional seismic isolation bearing, comprising an upper support plate; an articulated sliding block; a spherical sliding plate; a lower supporting plate; a horizontal damping spring; a reaction plate; a damping layer; Shock absorbing spring; friction pad; dust ring; bolt hole; slider cavity; energy consumption ring;
  • the bottom of the inner cavity of the lower support plate is provided with a shock absorbing layer and a vertical damper spring, and the lower support plate and the spherical slide plate are connected with the vertical damper spring through the shock absorbing layer, and the inner bottom surface of the lower support plate and the spherical slide plate
  • the bottom surface is a rough surface, which can enhance the connection between the shock absorbing layer and the lower support plate and the spherical slide plate.
  • the hinged slider and the spherical sliding plate are closely connected by a friction pad, and the friction pad is a low friction material and has a uniform thickness.
  • the upper support plate and the hinged slider are flexibly connected by the shock absorbing layer, and the hinged slider is freely rotatable at any angle in the slider cavity, and vertical energy absorbing shock can be realized.
  • One end of the horizontal damping spring is connected with the upper support plate, the other end is connected with the reaction plate, the horizontal damping spring is provided with an energy consumption ring, and the outer circumference is provided with a horizontal guide bar, and the horizontal guide bar can be freely extended and contracted with the horizontal damping spring. And to ensure that the damping spring is deformed in the horizontal direction, when the horizontal damping spring is pressed, the energy consumption ring can realize energy consumption by compression deformation.
  • the bottom of the reaction plate and the lower end of the outer end of the upper support plate are flexibly connected by a dustproof ring, and bolt holes are provided on the outer periphery of the upper support plate and the lower support plate to achieve a firm connection with the upper structure and the lower structure.
  • the maximum amount of compression of the horizontal damper spring when pressed is the distance from the inner surface of the reaction plate to the outer edge of the spherical slider.
  • the horizontal damper spring is evenly arranged along the center of the reaction plate and the upper support plate to ensure that the horizontal damper spring and the reaction plate are uniformly stressed; the vertical damper spring is evenly arranged on the inner bottom surface of the lower support plate
  • the two ends of the guiding rod are respectively connected with the inner side of the reaction plate and the upper supporting plate, and a certain rotation angle can occur.
  • the shock absorbing layer and the energy consuming ring are viscoelastic high damping materials, maintain a suitable thickness, and utilize the strong deformation capability to realize energy consumption.
  • a lower gap is formed between the lowermost end of the slider cavity and the outermost end of the hinged slider, so that a certain rotation angle of the hinged slider during the sliding process can be ensured, and the upper support plate is co-deformed.
  • the initial stiffness of the spring is set according to the seismic fortification requirements.
  • the self-resetting friction pendulum three-dimensional seismic isolation mount comprises: an upper support plate 1; a hinged slide 2; a spherical slide plate 3; a lower support plate 4; Spring 5; reaction plate 6; shock absorbing layer 7; vertical damper spring 8; friction pad 9; dust ring 10; bolt hole 11; slider cavity 12; energy consuming ring 13; horizontal guide bar 14.
  • the bottom of the inner cavity of the lower support plate 4 is provided with a shock absorbing layer 7, a vertical damper spring 8, and the lower support plate 4 and the spherical slide plate 3 pass through the shock absorbing layer 7, vertical
  • the shock absorbing springs 8 are connected, and the inner bottom surface of the lower support plate 4 and the lower surface of the spherical slide plate 3 are both rough surfaces, and the connection between the shock absorbing layer 7 and the lower support plate 4 and the spherical slide plate 3 can be enhanced.
  • the articulated slide 2 is intimately connected to the spherical slide 3 via a friction pad 9.
  • the upper support plate 1 and the hinged slider 2 are flexibly connected by the shock absorbing layer 7, and the hinged slider 2 is freely rotatable at any angle in the slider cavity 12, and vertical energy absorbing shock can be realized.
  • the top edge of the upper support plate 1 is evenly provided with bolt holes 11 to achieve a firm connection with the upper structure.
  • the bottom edge of the bottom plate of the lower support plate 4 is evenly provided with bolt holes 11 to achieve a firm connection with the lower structure.
  • One end of the horizontal shock absorbing spring 5 is connected to the upper support plate 1 , the other end is connected to the reaction force plate 6 , the horizontal shock absorbing spring 5 is provided with an energy consumption ring 13 , and the outer circumference is provided with a horizontal guide rod 14 , and the horizontal guide rod 14 can be
  • the horizontal damper spring 5 is freely stretched and contracted, and the horizontal damper spring 5 is deformed in the horizontal direction; when the horizontal damper spring 5 is compressed and deformed, the energy consuming ring 13 can be consumed by compression deformation.
  • the top of the reaction plate 6 and the lower end of the outer end of the upper support plate 1 are flexibly connected by the dust seal 10, and the dust seal 10 can be freely extended and contracted horizontally and vertically.
  • the maximum amount of compression when the horizontal damper spring 5 is pressed is the distance from the inner surface of the reaction plate 6 to the outer edge of the spherical slider 3.
  • the reaction plate 6 plays a limiting role. Due to the action of the horizontal damping spring 5, the impact resistance of the self-resetting friction pendulum isolation bearing is obviously improved, and the reaction plate 6 is avoided and the hinged slider 2 is avoided. Local damage occurs even in the event of a collision.
  • the self-resetting friction pendulum three-dimensional seismic isolation bearing is provided with a damping layer 7 and a vertical damping spring 8 at the lower portion of the spherical sliding plate 3, which has significant deformation and friction energy consuming capability.
  • the spherical skateboard 3 and the lower support plate 4 are connected by the shock absorbing layer 7 and the vertical damper spring 8, and under the vertical earthquake, when the hinged slider 2 slides toward the edge of the spherical slide 3, the hinge is slid
  • the damping layer 7 below the spherical sliding plate 3 at block 2 the vertical damping spring 8 consumes energy by compression deformation, and the damping layer 7 on the other side of the spherical sliding plate 3 and the vertical damping spring 8 are subjected to tensile deformation and energy consumption.
  • Vertical shock absorption is provided with a damping layer 7 and a vertical damping spring 8 at the lower portion of the spherical sliding plate 3, which has significant deformation and friction energy consuming capability.

Abstract

La présente invention concerne un palier d'amortissement et d'isolation sismiques tridimensionnel à pendule à frottement à réinitialisation automatique. Un trou borgne évidé est disposé dans une partie centrale d'une plaque de palier inférieure (4). Une couche d'amortissement (7) et un ressort d'amortissement vertical (8) sont disposés au fond du trou borgne évidé. Une partie supérieure du ressort d'amortissement vertical (8) est reliée à une plaque coulissante sphérique (3). Un coulisseau articulé (2) est disposé sur une partie supérieure de la plaque coulissante sphérique (3), et une surface sphérique supérieure du coulisseau articulé (2) est située à l'intérieur d'une cavité de réception de coulisseau (12) disposée au niveau d'une partie inférieure d'une plaque de palier supérieure (1). Une plaque de réaction (6) est disposée sur la périphérie d'une partie supérieure de la plaque de palier inférieure (4), et un ressort d'amortissement horizontal (5) est situé entre la plaque de réaction (6) et une paroi périphérique externe de la cavité de réception de coulisseau (12). Le ressort d'amortissement horizontal (5) et la couche d'amortissement verticale (7) sont utilisés pour améliorer la durabilité et les performances d'isolation sismique d'un palier d'isolation à pendule à frottement. L'utilisation du ressort d'amortissement horizontal (5) tire parti des pleines capacités d'absorption d'énergie de la plaque de réaction pour assurer que la structure peut effectuer un amortissement et une isolation sismiques sous des charges extrêmes telles que des tremblements de terre et des typhons.
PCT/CN2018/084952 2017-08-04 2018-04-27 Palier d'amortissement et d'isolation sismiques tridimensionnel à pendule à frottement à réinitialisation automatique WO2019024552A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710660562.2A CN107604810A (zh) 2017-08-04 2017-08-04 一种自复位摩擦摆三维减隔震支座
CN201710660562.2 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024552A1 true WO2019024552A1 (fr) 2019-02-07

Family

ID=61064478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084952 WO2019024552A1 (fr) 2017-08-04 2018-04-27 Palier d'amortissement et d'isolation sismiques tridimensionnel à pendule à frottement à réinitialisation automatique

Country Status (2)

Country Link
CN (1) CN107604810A (fr)
WO (1) WO2019024552A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763581A (zh) * 2019-03-06 2019-05-17 李鑫 具有三维隔震减振的建筑结构基础模块
CN109944151A (zh) * 2019-04-30 2019-06-28 上海材料研究所 一种自复位单向滑移抗拉支座
CN110453789A (zh) * 2019-08-20 2019-11-15 四川省建筑科学研究院有限公司 自复位隔震支座及隔震装置
CN110656711A (zh) * 2019-10-25 2020-01-07 衡水震泰隔震器材有限公司 防倾覆摩擦摆隔震支座及其装配方法
CN110656712A (zh) * 2019-10-25 2020-01-07 衡水震泰隔震器材有限公司 一种防倾覆摩擦摆隔震支座及其装配方法
CN110985579A (zh) * 2019-12-31 2020-04-10 东南大学 一种高阻尼自限位隔减震装置及使用方法
CN111894173A (zh) * 2020-08-31 2020-11-06 福州大学 应用于装配式框架的耗能阻尼摇摆墙及耗能方法
CN112095457A (zh) * 2020-10-13 2020-12-18 河南城建学院 一种可稳定安装且结构稳定的桥梁支座
CN112411365A (zh) * 2020-12-22 2021-02-26 重庆交通大学 隔、减、锁复合式万向抗震支座
CN112555104A (zh) * 2020-12-01 2021-03-26 江苏铁科新材料股份有限公司 风力发电机组塔筒用防扭转复合质量阻尼器
CN112567953A (zh) * 2020-12-10 2021-03-30 赵七后 一种具有智能化灌溉装置的农业机械
CN113174989A (zh) * 2021-04-28 2021-07-27 同济大学 一种内外罐分离式lng储液罐隔震体系及其施工方法
CN113250339A (zh) * 2021-05-31 2021-08-13 哈尔滨工业大学 一种自复位准零刚度形状记忆合金隔震器
CN113375714A (zh) * 2021-05-06 2021-09-10 四川省亚通工程咨询有限公司 桥梁安全监测分析管理系统
CN113463788A (zh) * 2021-07-22 2021-10-01 青岛腾远设计事务所有限公司 一种高层建筑隔震减震装置
CN113699880A (zh) * 2021-08-25 2021-11-26 江苏泊翔结构加固工程有限公司 一种桥梁用单支座支撑结构及其更换方法
CN113738170A (zh) * 2021-09-17 2021-12-03 上海大学 一种装配式隔震结构体系
CN113819945A (zh) * 2021-09-03 2021-12-21 上海路博减振科技股份有限公司 一种监测支座变形与受力状态的方法
CN113914475A (zh) * 2021-09-28 2022-01-11 哈尔滨工业大学 摩擦摆式隔震层及大跨空间组件
CN114411993A (zh) * 2021-12-22 2022-04-29 中国建材国际工程集团有限公司 一种具有抗拉功能的三维摩擦摆隔震支座
CN114481814A (zh) * 2022-01-13 2022-05-13 洛阳双瑞特种装备有限公司 一种支承桥墩摇摆的复位器
CN114482316A (zh) * 2022-02-22 2022-05-13 广州大学 一种双向变曲率变摩擦摆式调谐质量阻尼器
CN114753240A (zh) * 2022-03-18 2022-07-15 中铁第一勘察设计院集团有限公司 一种新型磁控半主动摩擦型自复位隔震支座
CN115182476A (zh) * 2022-08-11 2022-10-14 安徽工业大学 一种平时弹性限位和工作时可单侧限位的三维隔震系统
CN115370030A (zh) * 2022-09-05 2022-11-22 安徽工业大学 地震预警后启动并移动平衡位置的防碰撞三维隔震支座
CN115788067A (zh) * 2023-02-10 2023-03-14 北京市第三建筑工程有限公司 一种钢结构拱壳三维摩擦摆隔震支座施工方法
CN116720239A (zh) * 2023-05-05 2023-09-08 中交公路长大桥建设国家工程研究中心有限公司 一种各向异性摩擦摆减隔震支座设计方法及系统
CN112411365B (zh) * 2020-12-22 2024-05-10 重庆交通大学 隔、减、锁复合式万向抗震支座

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604810A (zh) * 2017-08-04 2018-01-19 东南大学 一种自复位摩擦摆三维减隔震支座
CN108867911A (zh) * 2018-07-02 2018-11-23 东南大学 一种抗拔型三维橡胶摩擦摆隔震支座
CN208501955U (zh) * 2018-07-13 2019-02-15 陆寿仙 晃撞即开式摩擦隔震装置
CN108869623A (zh) * 2018-08-13 2018-11-23 上海电力学院 一种用于高压电气设备隔震的组合式隔震支座
CN109296244A (zh) * 2018-10-10 2019-02-01 同济大学 摩擦摆型惯容隔震系统
CN109112956B (zh) * 2018-10-18 2024-01-30 卢家骥 基于tmd的多向抗拉拔自复位摩擦支座
CN109139786A (zh) * 2018-11-01 2019-01-04 西安建筑科技大学 一种具有缓冲限位装置的三维摩擦摆隔震支座
CN109518596A (zh) * 2018-12-26 2019-03-26 洛阳双瑞特种装备有限公司 一种减震耗能球型支座
CN109457600B (zh) * 2018-12-30 2024-04-26 桥致通(武汉)技术有限公司 复合阻尼减隔震支座
CN109881784B (zh) * 2019-01-22 2021-08-31 上海大学 一种弧面滑移型三维隔震支座
CN109611507B (zh) * 2019-02-14 2020-09-25 中国石油大学(华东) 一种多维缓冲减震机构
CN109750889A (zh) * 2019-02-15 2019-05-14 浙江农林大学暨阳学院 大跨网格结构多向承载、抗震球铰支座节点
CN110130500A (zh) * 2019-05-31 2019-08-16 天津大学 一种空气弹簧-摩擦摆多维隔震支座
CN110093986A (zh) * 2019-05-31 2019-08-06 天津大学 一种空气弹簧-摩擦多维隔震支座
CN110438891B (zh) * 2019-07-15 2024-04-02 广州大学 具有位移测量与监测功能的摩擦摆支座
CN110409643B (zh) * 2019-08-03 2020-06-19 安徽亚强节能科技有限公司 一种装配整体式夹芯保温复合板
CN110965460B (zh) * 2019-11-25 2024-04-26 中南大学 一种三维减隔震支座
CN111288119B (zh) * 2020-02-14 2021-09-14 同济大学 一种惯容和摩擦摆支座组合的三维隔振装置
KR102353007B1 (ko) * 2020-09-02 2022-01-21 알엠에스테크놀러지(주) 동흡진기를 장착한 원전설비용 3차원 통합 면진장치
CN112648330B (zh) * 2020-09-15 2021-12-14 西南科技大学 一种半主动控制的摆式三维展柜隔震装置
CN112359971B (zh) * 2020-10-19 2021-09-28 青岛理工大学 高耗能的木框架结构体系
CN112663487A (zh) * 2020-12-04 2021-04-16 株洲时代新材料科技股份有限公司 一种具有预偏可调及状态自复位功能的减震支座
CN112663488A (zh) * 2020-12-08 2021-04-16 株洲时代新材料科技股份有限公司 一种隔震支座
CN113737958B (zh) * 2021-09-16 2022-11-15 广州大学 一种自复位振震双控隔震支座及隔震支座组件
CN113863756B (zh) * 2021-11-15 2022-09-13 东莞理工学院 一种适用于建筑密集区的三相邻结构减震控制体系
CN114892800B (zh) * 2022-04-20 2023-06-30 山东建筑大学 一种装配式梁柱节点减震结构及施工方法
CN114991332B (zh) * 2022-06-02 2022-11-15 北京市科学技术研究院城市安全与环境科学研究所 一种具有负泊松比效应的振震双控三维隔振组合支护构件
CN115110827A (zh) * 2022-08-08 2022-09-27 科宁工程科技(南京)有限公司 摩擦阻尼隔震橡胶支座
CN116537622B (zh) * 2023-05-26 2024-01-26 中铁四局集团有限公司 一种大跨度空间钢结构支座

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241208A (ja) * 2000-03-01 2001-09-04 Bando Chem Ind Ltd 建築物用制振装置
JP2003269530A (ja) * 2002-03-12 2003-09-25 Hitachi Ltd 免震装置
CN103122969A (zh) * 2013-02-05 2013-05-29 上海大学 三维隔震装置
CN103850358A (zh) * 2014-02-21 2014-06-11 上海大学 一种三维隔震装置
CN203782881U (zh) * 2014-04-18 2014-08-20 北京建筑大学 一种隔震支座
CN206220260U (zh) * 2016-11-22 2017-06-06 山东科技大学 一种建筑用自复位三维减震耗能支座
CN107604810A (zh) * 2017-08-04 2018-01-19 东南大学 一种自复位摩擦摆三维减隔震支座

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060375A1 (de) * 2005-12-16 2007-06-21 Steelpat Gmbh & Co. Kg Gleitpendellager
CN103306316A (zh) * 2013-05-09 2013-09-18 东北林业大学 基于非线性能量阱的三维复合摩擦摆隔震器
CN104652259B (zh) * 2015-02-13 2016-08-24 北京九州一轨隔振技术有限公司 一种阻尼弹簧盆式支座
CN104763057A (zh) * 2015-03-26 2015-07-08 东南大学 Sma-摩擦摆间隙复合隔震支座

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241208A (ja) * 2000-03-01 2001-09-04 Bando Chem Ind Ltd 建築物用制振装置
JP2003269530A (ja) * 2002-03-12 2003-09-25 Hitachi Ltd 免震装置
CN103122969A (zh) * 2013-02-05 2013-05-29 上海大学 三维隔震装置
CN103850358A (zh) * 2014-02-21 2014-06-11 上海大学 一种三维隔震装置
CN203782881U (zh) * 2014-04-18 2014-08-20 北京建筑大学 一种隔震支座
CN206220260U (zh) * 2016-11-22 2017-06-06 山东科技大学 一种建筑用自复位三维减震耗能支座
CN107604810A (zh) * 2017-08-04 2018-01-19 东南大学 一种自复位摩擦摆三维减隔震支座

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763581B (zh) * 2019-03-06 2023-04-11 李鑫 具有三维隔震减振的建筑结构基础模块
CN109763581A (zh) * 2019-03-06 2019-05-17 李鑫 具有三维隔震减振的建筑结构基础模块
CN109944151A (zh) * 2019-04-30 2019-06-28 上海材料研究所 一种自复位单向滑移抗拉支座
CN109944151B (zh) * 2019-04-30 2024-03-22 上海材料研究所有限公司 一种自复位单向滑移抗拉支座
CN110453789A (zh) * 2019-08-20 2019-11-15 四川省建筑科学研究院有限公司 自复位隔震支座及隔震装置
CN110656711A (zh) * 2019-10-25 2020-01-07 衡水震泰隔震器材有限公司 防倾覆摩擦摆隔震支座及其装配方法
CN110656711B (zh) * 2019-10-25 2024-03-08 衡水震泰隔震器材有限公司 防倾覆摩擦摆隔震支座及其装配方法
CN110656712B (zh) * 2019-10-25 2024-03-08 衡水震泰隔震器材有限公司 一种防倾覆摩擦摆隔震支座及其装配方法
CN110656712A (zh) * 2019-10-25 2020-01-07 衡水震泰隔震器材有限公司 一种防倾覆摩擦摆隔震支座及其装配方法
CN110985579A (zh) * 2019-12-31 2020-04-10 东南大学 一种高阻尼自限位隔减震装置及使用方法
CN110985579B (zh) * 2019-12-31 2024-05-07 东南大学 一种高阻尼自限位隔减震装置及使用方法
CN111778843B (zh) * 2020-05-13 2024-05-14 同济大学 一种波形索超弹性自复位减震支座
CN111894173A (zh) * 2020-08-31 2020-11-06 福州大学 应用于装配式框架的耗能阻尼摇摆墙及耗能方法
CN112095457A (zh) * 2020-10-13 2020-12-18 河南城建学院 一种可稳定安装且结构稳定的桥梁支座
CN112555104B (zh) * 2020-12-01 2024-04-16 江苏铁科新材料股份有限公司 风力发电机组塔筒用防扭转复合质量阻尼器
CN112555104A (zh) * 2020-12-01 2021-03-26 江苏铁科新材料股份有限公司 风力发电机组塔筒用防扭转复合质量阻尼器
CN112567953A (zh) * 2020-12-10 2021-03-30 赵七后 一种具有智能化灌溉装置的农业机械
CN112567953B (zh) * 2020-12-10 2023-01-13 湖州生力液压有限公司 一种具有智能化灌溉装置的农业机械
CN112411365B (zh) * 2020-12-22 2024-05-10 重庆交通大学 隔、减、锁复合式万向抗震支座
CN112411365A (zh) * 2020-12-22 2021-02-26 重庆交通大学 隔、减、锁复合式万向抗震支座
CN113174989A (zh) * 2021-04-28 2021-07-27 同济大学 一种内外罐分离式lng储液罐隔震体系及其施工方法
CN113375714A (zh) * 2021-05-06 2021-09-10 四川省亚通工程咨询有限公司 桥梁安全监测分析管理系统
CN113375714B (zh) * 2021-05-06 2023-02-28 四川省亚通工程咨询有限公司 桥梁安全监测分析管理系统
CN113250339A (zh) * 2021-05-31 2021-08-13 哈尔滨工业大学 一种自复位准零刚度形状记忆合金隔震器
CN113463788A (zh) * 2021-07-22 2021-10-01 青岛腾远设计事务所有限公司 一种高层建筑隔震减震装置
CN113699880A (zh) * 2021-08-25 2021-11-26 江苏泊翔结构加固工程有限公司 一种桥梁用单支座支撑结构及其更换方法
CN113819945A (zh) * 2021-09-03 2021-12-21 上海路博减振科技股份有限公司 一种监测支座变形与受力状态的方法
CN113738170A (zh) * 2021-09-17 2021-12-03 上海大学 一种装配式隔震结构体系
CN113914475A (zh) * 2021-09-28 2022-01-11 哈尔滨工业大学 摩擦摆式隔震层及大跨空间组件
CN113914475B (zh) * 2021-09-28 2022-12-27 哈尔滨工业大学 摩擦摆式隔震层及大跨空间组件
CN114411993A (zh) * 2021-12-22 2022-04-29 中国建材国际工程集团有限公司 一种具有抗拉功能的三维摩擦摆隔震支座
CN114481814A (zh) * 2022-01-13 2022-05-13 洛阳双瑞特种装备有限公司 一种支承桥墩摇摆的复位器
CN114481814B (zh) * 2022-01-13 2024-04-19 中船双瑞(洛阳)特种装备股份有限公司 一种支承桥墩摇摆的复位器
CN114482316B (zh) * 2022-02-22 2023-10-03 广州大学 一种双向变曲率变摩擦摆式调谐质量阻尼器
CN114482316A (zh) * 2022-02-22 2022-05-13 广州大学 一种双向变曲率变摩擦摆式调谐质量阻尼器
CN114753240A (zh) * 2022-03-18 2022-07-15 中铁第一勘察设计院集团有限公司 一种新型磁控半主动摩擦型自复位隔震支座
CN115182476B (zh) * 2022-08-11 2024-03-29 安徽工业大学 一种平时弹性限位和工作时可单侧限位的三维隔震系统
CN115182476A (zh) * 2022-08-11 2022-10-14 安徽工业大学 一种平时弹性限位和工作时可单侧限位的三维隔震系统
CN115370030B (zh) * 2022-09-05 2024-03-29 安徽工业大学 地震预警后启动并移动平衡位置的防碰撞三维隔震支座
CN115370030A (zh) * 2022-09-05 2022-11-22 安徽工业大学 地震预警后启动并移动平衡位置的防碰撞三维隔震支座
CN115788067A (zh) * 2023-02-10 2023-03-14 北京市第三建筑工程有限公司 一种钢结构拱壳三维摩擦摆隔震支座施工方法
CN116720239B (zh) * 2023-05-05 2024-02-27 中交公路长大桥建设国家工程研究中心有限公司 一种各向异性摩擦摆减隔震支座设计方法及系统
CN116720239A (zh) * 2023-05-05 2023-09-08 中交公路长大桥建设国家工程研究中心有限公司 一种各向异性摩擦摆减隔震支座设计方法及系统

Also Published As

Publication number Publication date
CN107604810A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2019024552A1 (fr) Palier d'amortissement et d'isolation sismiques tridimensionnel à pendule à frottement à réinitialisation automatique
CN105971148B (zh) 万向摆动轨道支撑式调谐质量阻尼器
CN112922182B (zh) 一种自复位变阻尼变刚度粘弹性及摩擦复合阻尼器
WO2011088603A1 (fr) Support d'isolement sismique avec amortisseurs non linéaires
CN201843226U (zh) 变刚度摩擦型耗能减震装置
CN110258813B (zh) 一种具有双向滑移支撑的高承载力抗拉隔震装置
CN201459597U (zh) 一种可实现类型转换的抗震阻尼球型钢支座
CN103147393B (zh) 抗拉拔桥梁摩擦隔震支座
CN102337761A (zh) 滚珠碟簧隔震装置
CN110258812B (zh) 一种多重可调节滑动面的高承载力抗拉耗能隔震装置
CN110453955B (zh) 一种防异物抗拔复摩擦摆隔震支座
CN110820540B (zh) 一种耗能的滚轴减隔震装置
CN201730196U (zh) 滚珠碟簧隔震装置
CN104389350A (zh) 一种万向铰抗拉隔震支座
CN202610703U (zh) 一种抗拉型叠层橡胶隔震支座
CN103114650A (zh) 辊轴式金属隔震支座
CN108842920B (zh) 一种装配式隔震系统
CN202899302U (zh) 高层建筑隔震支座
CN206256370U (zh) 一种等刚臂速度锁定减隔震支座
CN202611006U (zh) 一种复合叠层橡胶-环状钢棒隔震装置
CN114622661B (zh) 一种自恢复斜面摩擦限位耗能装置
CN211006307U (zh) 一种自复位多向限位耗能抗震挡块结构
CN209741653U (zh) 一种具有钢弹簧和阻尼装置的双曲面球型减隔震支座
CN218323178U (zh) 一种多维环保型减隔震支承座
CN201593162U (zh) 一种非线性阻尼辐减隔震支座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841966

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18841966

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18841966

Country of ref document: EP

Kind code of ref document: A1