WO2019024395A1 - 显示装置、像素驱动方法及像素驱动电路 - Google Patents

显示装置、像素驱动方法及像素驱动电路 Download PDF

Info

Publication number
WO2019024395A1
WO2019024395A1 PCT/CN2017/117516 CN2017117516W WO2019024395A1 WO 2019024395 A1 WO2019024395 A1 WO 2019024395A1 CN 2017117516 W CN2017117516 W CN 2017117516W WO 2019024395 A1 WO2019024395 A1 WO 2019024395A1
Authority
WO
WIPO (PCT)
Prior art keywords
control module
reset
light emitting
pixel
compensation
Prior art date
Application number
PCT/CN2017/117516
Other languages
English (en)
French (fr)
Inventor
陈彩琴
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/746,756 priority Critical patent/US20190385520A1/en
Publication of WO2019024395A1 publication Critical patent/WO2019024395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device, a pixel driving method, and a pixel driving circuit.
  • an AMOLED (Active-matrix organic light emitting diode) display device is widely used in various products, and an AMOLED display device is composed of a plurality of rows and columns of AMOLED pixels.
  • AMOLED pixels are typically constructed of thin film transistors (TFTs) to create a pixel drive circuit to provide a corresponding current to the OLED device.
  • TFTs of different pixel driving circuits often have non-uniformity on electrical parameters such as threshold voltage, mobility, etc., and the non-uniformity of threshold voltage and mobility is converted into current difference of OLED display devices, and different current differences cause different The difference in brightness of the pixel driving circuit is perceived by the human eye, thereby reducing the display performance of the display device.
  • a compensation circuit such as a 7T1C structure composed of 7 TFTs and 1 storage capacitor can be constructed, and similar structures include 6T1C, 5T2C, etc.
  • the threshold voltage Vth of the TFT is first stored in the gate-source voltage Vgs during the compensation phase, and the influence of Vgs-Vth on Vth is cancelled in the illuminating phase, thereby improving the current in the pixel driving circuit. Consistency.
  • the current between the AMOLED pixels subjected to the threshold voltage compensation still differs, so that the brightness of the display area is uneven, and the display performance of the display device is lowered.
  • a pixel driving circuit is proposed, which can improve the uniformity of the brightness of the display area of the display device.
  • a pixel driving circuit includes a light emitting device, a light emitting control module, a compensation control module, and a reset control module, wherein the light emitting device, the light emitting control module, and the compensation control module are sequentially connected,
  • the input end of the reset control module receives a reset signal
  • the output end of the reset control module is connected to the input end of the illumination control module
  • the illumination control module receives a drive voltage signal end
  • the compensation control module receives the illumination control signal
  • the compensation control module is connected to the illuminating control module and the reset signal for driving the illuminating device to emit light when the illuminating device enters the illuminating phase;
  • the compensation control module is configured to set the reset signal to a high level when the light emitting device enters a light emitting phase
  • the reset control module is configured to reset the illumination control module when a valid reset level is received.
  • a pixel driving method is proposed, which can improve the uniformity of the brightness of the display area of the display device.
  • a pixel driving method comprising:
  • the light emitting device When the light emitting device enters the light emitting stage, the light emitting device is driven to emit light through the light emitting control module, and the reset signal is set to a high level by the compensation control module;
  • the light emitting device, the light emitting control module and the compensation control module are sequentially connected, an input end of the light emitting control module is connected to an output end of the reset control module, and an input end of the reset control module receives a reset signal,
  • the illumination control module receives a drive voltage signal end, and the compensation control module receives the illumination control signal.
  • the light-emitting device When the light-emitting device enters the light-emitting phase, the light-emitting device is driven to emit light, and the reset signal VI is set to a high level.
  • the VI and Vdd traces of the different vertical and vertical directions can be set to a high level.
  • a mesh-like high-level region is formed in the effective display region, so that the problem of uneven brightness caused by uneven current distribution can be improved.
  • FIG. 1 is a schematic structural diagram of a pixel driving circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a trace structure of VI and Vdd in a display device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another pixel driving circuit according to an embodiment of the present invention.
  • FIG. 4 is a driving timing diagram of a pixel driving circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another pixel driving circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another pixel driving circuit according to an embodiment of the present invention.
  • FIG. 7 is a timing chart of driving of another pixel driving circuit according to an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a pixel circuit compensation method according to an embodiment of the present invention.
  • a pixel driving circuit is proposed, which can improve the uniformity of the brightness of the display area of the display device.
  • FIG. 1 is a schematic structural diagram of a pixel driving circuit according to an embodiment of the present invention.
  • the pixel driving circuit includes: a light emitting device 101, an illumination control module 102, a compensation control module 103, and a reset control module 104, wherein the light emitting device 101, the illumination control module 102, and the compensation control
  • the module 103 is sequentially connected, and the input end of the reset control module 104 receives a reset signal VI (or Vreset), and an output end of the reset control module 104 is connected to an input end of the illumination control module 102, and the illumination control module 102 receives the driving voltage signal terminal Vdd, the lighting control module 102 and the compensation control module 103 receives the lighting control signal EM;
  • VI or Vreset
  • the compensation control module 103 is connected to a reset signal VI (Vreset), and the illumination control module 102 is configured to drive the light emitting device 101 to emit light when the light emitting device 101 enters a light emitting phase;
  • the compensation control module 103 is configured to set the reset signal VI (Vreset) to a high level Vdd when the light emitting device 101 enters a light emitting phase;
  • the reset control module 104 is configured to reset the illumination control module 102 when a valid reset level Vin (Vreset) is received.
  • the light emitting device 101 may be an organic light-emitting diode (OLED).
  • the light emitting device 101 may be an AMOLED, or may be other types of light emitting devices.
  • the light emission control module 102 may be configured to turn on the driving voltage signal terminal Vdd and the light emitting device 101 when the light emission control signal EM is an effective signal, and drive the light emitting device 101 to emit light.
  • the compensation control module 103 turns on VI (Vreset) and the driving voltage signal terminal Vdd when the light emission control signal EM is an effective signal (which will drive the light emitting device 101 to emit light), thereby setting VI (Vreset) to a high level Vdd.
  • the reset control module 104 is configured to reset the illuminating control module before the illuminating device 101 enters the illuminating phase, eliminating the influence of the last illuminating process, and preparing for the illuminating of the illuminating device 101.
  • the reset level Vin(Vreset) can be low.
  • an output of the reset control module 104 is further connected to an input end of the light emitting device 101, and is configured to reset the effective reset level Vin (Vreset) when the virtual reset level is received.
  • the light-emitting device 101 eliminates the influence of the last light-emitting process and prepares for the light-emitting of the light-emitting device 101.
  • the illuminating control module 102 and the reset control module 104 may be a pixel compensation circuit composed of 7 TFTs and a capacitor, that is, a pixel compensation circuit of 7T1C, or a pixel compensation circuit composed of 6 TFTs and a capacitor. That is, the pixel compensation circuit of 6T1C, or the pixel compensation circuit composed of 5 TFTs and 1 capacitor, that is, the pixel compensation circuit of 5T1C.
  • FIG. 2 is a schematic diagram of a trace structure of VI and Vdd in a display device according to an embodiment of the present invention.
  • the light emitting device enters the light emitting phase, the light emitting device is driven to emit light, and the reset signal VI is set to a high level Vdd, and then in the display device.
  • the VI and Vdd traces of the different vertical and vertical directions can be set to a high level Vdd, and a mesh-like high-level region is formed in the effective display region, thereby improving the problem of uneven brightness caused by uneven current distribution.
  • the direction of the routing of the Vdd and the VI is not limited to the different vertical and vertical directions shown in FIG. 2, and may be a horizontal routing in the same direction or a vertical routing in the same direction, which is not limited in this embodiment.
  • FIG. 3 is a schematic structural diagram of another pixel driving circuit according to an embodiment of the present invention.
  • the illumination control module 102 and the reset control module 104 are 7T1C pixel compensation circuits composed of 7 TFTs and 1 capacitor.
  • the seven TFTs may be P-type TFTs, that is, when the gate-source voltage is low, it is an effective signal, and the gate and the drain are turned on.
  • the illumination control module 102 includes P-type thin film transistors T1, T2, T3, T5, and T6, and the connection relationship is as shown in FIG. 3, for compensating for Vth of T1, and is effective for the illumination control signal EM.
  • the light emitting device 101 is controlled to emit light.
  • the compensation control module 103 is a P-type TFT.
  • the VI is set to a high level Vdd to turn on VI and Vdd.
  • the reset control module 104 is a P-type TFT T4 for resetting the A-point level to Vin (low level) when Scan(n-1) is at an active level (low level).
  • the gate level of the thin film transistor T1 is a low level, where the thin film transistor T1 is a driving thin film transistor.
  • the output of the reset control module 104 is also coupled to the input of the light emitting device 101 via T7 for resetting the light emitting device upon receiving a valid reset level.
  • the gate of T7 is connected to Scan(n) or XScan(n), and when the scan signal Scan(n) is active, the anode input end of the OLED 101, that is, the OLED is reset.
  • the pixel drive circuit has three operating phases: reset t1, compensation t2, and illumination t3.
  • the reset phase t1 is to set the input level of the light emitting device 101 to 0, and reset the light emission control module 102 to prevent the residual power of the previous stage of the light emitting process from affecting the current light emitting process; and store the threshold voltage Vth of the TFT in the gate source during the compensation phase.
  • Vgs In the voltage Vgs; in the illuminating phase t3, Vgs-Vth is converted into a current, because Vgs already contains Vth, and the effect of Vth is cancelled when converted to current, thereby achieving uniformity of current between different pixels.
  • Vth cannot be completely cancelled due to the influence of parasitic parameters and driving speed, so the compensation range of the circuit is limited. Moreover, the current between the pixels subjected to the threshold voltage compensation still differs, so that the brightness of the display area is uneven, which reduces the display performance of the display device.
  • the light-emitting device 101 enters the light-emitting phase, the light-emitting device 101 is driven to emit light, and the reset signal VI is set to a high level Vdd, then in the display device, the VI and Vdd of different orientations can be taken in the vertical and vertical directions.
  • the line is set to a high level Vdd, and a high-level region of a mesh shape is formed in the effective display region, thereby improving the problem of uneven brightness caused by uneven current distribution.
  • the TFTs are all P-type, the effective level is low.
  • FIG. 4 is a timing diagram of driving of a pixel driving circuit according to an embodiment of the present invention.
  • VI Vreset
  • Scan(n-1) is the n-1th scan signal
  • Scan(n) is the nth scan signal
  • XScan(n) is the signal related to Scan(n). It may be the same signal as Scan(n)
  • EM is the illumination control signal.
  • Scan(n-1) is a low level, which is an active level, so in FIG. 3, the transistor T4 is turned on, and the remaining transistors are turned off, and the point A is The electrical position is Vin and can be zero level.
  • This phase is the preparation phase of the compensation phase.
  • Scan(n-1) is high and is inactive
  • Scan(n) and XScan(n) are low, active
  • transistors T1, T2, T3 and T7 is turned on.
  • T1 is equivalent to a diode, and the conduction direction is from point B to point C, and Vdata is turned on with point A.
  • the transistor T1 is turned off.
  • the transistor T7 is turned on to set the input level of the light emitting device to a low level Vin. This stage prepares for the lighting phase.
  • Scan(n-1), Scan(n), and XScan(n) are both high level, that is, the inactive level, and the light emission control signal is set to a low level, that is, an active level.
  • T5 and T6 are turned on, and the level of point A is Vdata-Vth, which is still low level, and T1 can be turned on, then Vdd is connected with the light emitting device 101, and the light emitting device 101 can be an OLED, and then the saturation current of the OLED is turned on at this time.
  • I OLED K(Vsg-Vth) 2
  • Vgs is the gate-source voltage of T1
  • Vth is the threshold voltage of T1
  • Vsg Vdd-(Vdata-Vth)
  • I OLED K(Vdd-Vdata) 2
  • the one-way trace Vdd is at a high level during the light-emitting phase, and the phenomenon that the current distribution is uneven is obvious.
  • the reset signal VI is set to a high level
  • the VI and Vdd traces of the vertical and vertical directions can be set to a high level.
  • a mesh-like high-level region is formed in the effective display region, so that the problem of uneven brightness caused by uneven current distribution can be improved.
  • the seven TFT tubes may also be N-type, and the corresponding high level is an active level, that is, the source and the drain of the transistor are turned on when the gate-source voltage is high.
  • the corresponding Scan(n-1), Scan(n), and XScan(n) are inverted at three stages. Vdd, Vdata, and VI remain unchanged.
  • FIG. 5 is a schematic structural diagram of still another pixel driving circuit according to an embodiment of the present invention.
  • the illumination control module 102 and the reset control module 104 are 6T1C pixel compensation circuits composed of 6 TFTs and 1 capacitor.
  • the illumination control module 102 includes P-type thin film transistors T1, T2, T3, T5, and T6, and the connection relationship is as shown in FIG. 5, for compensating for Vth of T1, and is effective for the illumination control signal EM.
  • the light emitting device 101 is controlled to emit light.
  • the effective signal of EM is low.
  • the compensation control module 103 is a P-type TFT.
  • the reset control module 104 is a P-type TFT T4 for resetting the A-point level to Vin (low level) when Scan(n-1) is an active level (low level), and the gate potential of the thin film transistor T1.
  • Low level where the thin film transistor T1 is a driving thin film transistor.
  • the 6T1C pixel compensation circuit Similar to the 7T1C, the 6T1C pixel compensation circuit also includes three working phases: reset t1, compensation t2, and illuminating t3. And the driving timing chart of the corresponding pixel driving circuit is as shown in FIG. 4.
  • the difference is that the 6T1C does not reset the light-emitting device during the reset phase.
  • the working process of the 6T1C can refer to FIG. 3 and the working process of the pixel driving circuit described, and details are not described herein again.
  • the light emitting device when the light emitting device enters the light emitting phase, the light emitting device is driven to emit light, and the reset signal VI is set to a high level Vdd, in which the horizontal and vertical directions can be different in the display device.
  • Both the VI and Vdd traces are set to a high level Vdd, and a high-level region of the mesh is formed in the effective display region, thereby improving the problem of uneven brightness caused by uneven current distribution.
  • FIG. 6 is a schematic structural diagram of still another pixel driving circuit according to an embodiment of the present invention.
  • the illumination control module 102 and the reset control module 104 are 5T1C pixel compensation circuits composed of 5 TFTs and 1 capacitor.
  • the illuminating control module 102 includes P-type thin film transistors M1, M2, M3, and M5, and the connection relationship is as shown in FIG. 6, for compensating for Vth of M1, and controlling the illuminating device during the illuminating phase. 101 light.
  • the compensation control module 103 is a P-type TFT.
  • the reset control module 104 is a P-type TFT M4 for resetting the level of the gate of M1 to Vin (low level) when S1 is at an active level (low level), where the thin film transistor M1 is a driving thin film transistor.
  • the 5T1C pixel compensation circuit also contains three working phases: reset t1, compensation t2, and illumination t3. Please refer to FIG. 7.
  • FIG. 7 is a timing diagram of driving of another pixel driving circuit according to an embodiment of the present invention.
  • the reset process t1 that is, initialization, eliminates one frame of data and reduces the influence on the next frame of data.
  • S1 is low
  • S2 is high
  • TFTs M1, M4, and M5 are turned on
  • the gate voltage of M1 and the anode voltage of the OLED are both initialized to Vin, which is generally low.
  • the compensation phase t2 S1 is high level, S2 is low level, TFT M3 is turned on, and Vdata output from the driving chip is transmitted to the source of M2 through M3.
  • the gate of M1 is initialized to Vin low level.
  • Vdata comes, the gate of M1 starts to charge, and when the potential of the gate of M1 is Vdata-Vth, charging stops.
  • Vth is the threshold voltage of M1.
  • both S1 and S2 are at a high level
  • TFTs M3, M4, and M5 are both in an off state
  • M1 is in an open state
  • the gate voltage is maintained at Vdata-Vth
  • the current flowing through the OLED and the threshold of M1 The voltage Vth is independent and acts to compensate the current.
  • the EM-controlled TFT that is, the compensation control module 103 is turned on, sets VI (Vreset) to a high level Vdd.
  • the light-emitting device When the light-emitting device enters the light-emitting phase, the light-emitting device is driven to emit light, and the reset signal VI is set to a high level Vdd.
  • the VI and Vdd traces of the different vertical and vertical directions can be set to a high level Vdd.
  • a mesh-like high-level region is formed in the effective display region, so that the problem of uneven brightness caused by uneven current distribution can be improved.
  • the light emission control module 102 and the reset control module 104 are not limited to the above-described pixel compensation circuit, and may have other configurations, such as a 6T2C pixel compensation circuit composed of six TFTs and two capacitors.
  • the illumination control module 102 and the reset control module 104 include the reset signal VI (Vreset), the reset signal VI (Vreset) can be set to a high level during the illumination phase. Therefore, the structure of the illuminating control module 102 and the reset control module 104 is not limited in this embodiment.
  • FIG. 8 is a schematic flowchart diagram of a pixel circuit compensation method according to an embodiment of the present invention. As shown in FIG. 8, the pixel driving method includes:
  • S101 Providing a pixel driving circuit, wherein the pixel driving circuit is composed of a light emitting device, a light emitting control module, a compensation control module, and a reset control module.
  • the light emitting device, the light emitting control module and the compensation control module are sequentially connected, the input end of the light emitting control module is connected with the output end of the reset control module, the input end of the reset control module receives the reset signal, the light emitting control module receives the driving voltage signal end, and the compensation control module Receiving an illumination control signal.
  • the light emitting device when the light emitting device enters the light emitting phase, the light emitting device is driven to emit light, and the reset signal VI is set to a high level Vdd, in which the horizontal and vertical directions can be different in the display device.
  • Both the VI and Vdd traces are set to a high level Vdd, and a high-level region of the mesh is formed in the effective display region, thereby improving the problem of uneven brightness caused by uneven current distribution.
  • a display device in order to solve the technical problem that the display area has low display brightness and low display performance in the prior art, a display device is provided, and the display device includes FIG. 1, FIG. 3, FIG. 5 and FIG. A pixel driving circuit as described in any of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明实施例公开了一种显示装置、像素驱动方法及像素驱动电路,该像素驱动电路包括:发光器件、发光控制模块和补偿控制模块依次连接,复位控制模块的输入端接收复位信号,复位控制模块的输出端与发光控制模块的输入端连接,发光控制模块接收驱动电压信号端,补偿控制模块接收发光控制信号;补偿控制模块与复位信号连接发光控制模块,用于在发光器件进入发光阶段时,驱动发光器件发光;补偿控制模块,用于在发光器件进入发光阶段时,将复位信号置为高电平;复位控制模块,用于在接收到有效的复位电平时,复位发光控制模块。实施本发明实施例,可以提高显示装置的显示区域亮度的均匀性。

Description

显示装置、像素驱动方法及像素驱动电路 技术领域
本发明涉及显示技术领域,尤其涉及一种显示装置、像素驱动方法及像素驱动电路。
背景技术
目前,AMOLED(Active-matrix organic light emitting diode)显示装置广泛应用于各类产品中,AMOLED显示装置由多行、多列的AMOLED像素组成。AMOLED像素通常由薄膜晶体管(thin film transistor,TFT)构建像素驱动电路为OLED器件提供相应的电流。然而,不同像素驱动电路的TFT常常在诸如阈值电压、迁移率等电学参数上具有非均匀性,阈值电压和迁移率的非均匀性会转化为OLED显示器件的电流差异,不同的电流差异引起不同的像素驱动电路的亮度差异,并被人眼所感知,从而降低了显示装置的显示性能。
为解决不同像素驱动电路之间阈值电压不同引起的显示区域亮度不均匀,可以构建补偿电路,如由7个TFT和1个存储电容组成的7T1C结构,类似的结构还有6T1C,5T2C等,经过复位、补偿、发光三个阶段,在补偿阶段把TFT的阈值电压Vth先储存在栅源电压Vgs内,在发光阶段,通过Vgs-Vth对Vth的影响进行抵消,从而提高了像素驱动电路中电流的一致性。
然而,由于OLED启动电压等参数会随时间变化,进行过阈值电压补偿的AMOLED像素之间电流仍然存在差异,以致显示区域亮度不均匀,降低了显示装置的显示性能。
发明内容
基于此,为解决现有技术中显示区域亮度不均匀,显示装置的显示性能较低的技术问题,特提出了一种像素驱动电路,可以提高显示装置的显示区域亮度的均匀性。
一种像素驱动电路,所述像素驱动电路包含发光器件、发光控制模块、补偿控制模块和复位控制模块,其中,所述发光器件、所述发光控制模块和所述补偿控制模块依次连接,所述复位控制模块的输入端接收复位信号,所述复位 控制模块的输出端与所述发光控制模块的输入端连接,所述发光控制模块接收驱动电压信号端,所述补偿控制模块接收发光控制信号;
所述补偿控制模块与复位信号连接所述发光控制模块,用于在所述发光器件进入发光阶段时,驱动所述发光器件发光;
所述补偿控制模块,用于在所述发光器件进入发光阶段时,将所述复位信号置为高电平;
所述复位控制模块,用于在接收到有效的复位电平时,复位所述发光控制模块。
此外,为解决现有技术中显示区域亮度不均匀,显示装置的显示性能较低的技术问题,特提出了一种像素驱动方法,可以提高显示装置的显示区域亮度的均匀性。
一种像素驱动方法,所述方法包括:
在所述发光器件进入发光阶段时,通过发光控制模块驱动发光器件发光,通过补偿控制模块将复位信号置为高电平;
所述发光器件、所述发光控制模块和所述补偿控制模块依次连接,所述发光控制模块的输入端与复位控制模块的输出端连接,所述复位控制模块的输入端接收复位信号,所述发光控制模块接收驱动电压信号端,所述补偿控制模块接收发光控制信号。
此外,为解决现有技术中显示区域亮度不均匀,显示装置的显示性能较低的技术问题,特提出了一种显示装置,所述显示装置包含上述的像素驱动电路。
实施本发明实施例,将具有如下有益效果:
在发光器件进入发光阶段时,驱动发光器件发光,并将复位信号VI置为高电平,则在显示装置中,可以将横竖向不同走向的VI和Vdd走线都置为高电平,在有效显示区域内形成网状的高电平区域,从而可以改善电流分布不均引起的亮度不均匀的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1是本发明实施例提供的一种像素驱动电路的结构示意图;
图2是本发明实施例提供的一种显示装置中VI和Vdd的走线结构示意图;
图3是本发明实施例提供的另一种像素驱动电路的结构示意图;
图4是本发明实施例提供的一种像素驱动电路的驱动时序图;
图5是本发明实施例提供的又一种像素驱动电路的结构示意图;
图6是本发明实施例提供的再一种像素驱动电路的结构示意图;
图7是本发明实施例提供的另一种像素驱动电路的驱动时序图;
图8是本发明实施例提供的一种像素电路补偿方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为解决现有技术中显示区域亮度不均匀,显示装置的显示性能较低的技术问题,特提出了一种像素驱动电路,可以提高显示装置的显示区域亮度的均匀性。
请参阅图1,图1为本发明实施例提供的一种像素驱动电路的结构示意图。如图1所示,该像素驱动电路包括:发光器件101、发光控制模块102、补偿控制模块103和复位控制模块104,其中,所述发光器件101、所述发光控制模块102和所述补偿控制模块103依次连接,所述复位控制模块104的输入端接收复位信号VI(或者是Vreset),所述复位控制模块104的输出端与所述发 光控制模块102的输入端连接,所述发光控制模块102接收驱动电压信号端Vdd,所述发光控制模块102和所述补偿控制模块103接收发光控制信号EM;
所述补偿控制模块103与复位信号VI(Vreset)连接,所述发光控制模块102,用于在所述发光器件101进入发光阶段时,驱动所述发光器件101发光;
所述补偿控制模块103,用于在所述发光器件101进入发光阶段时,将所述复位信号VI(Vreset)置为高电平Vdd;
所述复位控制模块104,用于在接收到有效的复位电平Vin(Vreset)时,复位所述发光控制模块102。
本发明实施例中,发光器件101可以是有机发光二极管(organic light-emitting diode,OLED),具体地,发光器件101可以是AMOLED,也可以是其他类型的发光器件。发光控制模块102可以是在发光控制信号EM为有效信号时,将驱动电压信号端Vdd与发光器件101导通,驱动发光器件101发光。补偿控制模块103在发光控制信号EM为有效信号(将驱动发光器件101发光)时,将VI(Vreset)与驱动电压信号端Vdd导通,从而将VI(Vreset)置为高电平Vdd。复位控制模块104用于在发光器件101进入发光阶段前,对发光控制模块进行复位,消除上次发光过程的影响,为本次发光器件101的发光作准备。一般地,复位电平Vin(Vreset)可以为低电平。
作为一种可能的实施方式,所述复位控制模块104的输出端还与所述发光器件101的输入端连接,用于在接收到所述有效的复位电平Vin(Vreset)时,复位所述发光器件101,消除上次发光过程的影响,为本次发光器件101的发光作准备。
其中,所述发光控制模块102和所述复位控制模块104,可以是由7个TFT和一个电容组成的像素补偿电路,即7T1C的像素补偿电路,或者6个TFT和一个电容组成的像素补偿电路,即6T1C的像素补偿电路,或者5个TFT和1个电容组成的像素补偿电路,即5T1C的像素补偿电路。
请参阅图2,图2为本发明实施例提供的一种显示装置中VI和Vdd的走线结构示意图。如图2所示,在图1所描述的像素驱动电路的结构示意图中,在发光器件进入发光阶段时,驱动发光器件发光,并将复位信号VI置为高电平Vdd,则在显示装置中,可以将横竖向不同走向的VI和Vdd走线都置为高 电平Vdd,在有效显示区域内形成网状的高电平区域,从而可以改善电流分布不均引起的亮度不均匀的问题。
需要说明的是,Vdd和VI的走线方向不限于图2所示的横竖向不同的走向,也可以是同一方向的水平走线,或者同一方向的竖直走线,本实施例不作限定。
请参阅图3,图3为本发明实施例提供的另一种像素驱动电路的结构示意图。如图3所示,发光控制模块102和复位控制模块104为7个TFT和1个电容组成的7T1C的像素补偿电路。其中,7个TFT可以是P型的TFT,即在栅源电压为低电平时,为有效信号,栅极和漏极导通。如图3所示,发光控制模块102包含P型薄膜晶体管T1、T2、T3、T5和T6,连接关系如图3所示,用于对T1的Vth进行补偿,并在发光控制信号EM为有效信号时,控制所述发光器件101发光。这里的EM的有效信号为低电平。补偿控制模块103为P型TFT,在发光控制信号EM为有效信号(低电平)时,将VI置为高电平Vdd,使VI与Vdd导通。复位控制模块104为P型TFT T4,用于在Scan(n-1)为有效电平(低电平)时复位A点电平为Vin(低电平)。则薄膜晶体管T1的栅极电平为低电平,这里薄膜晶体管T1为驱动薄膜晶体管。其中,复位控制模块104的输出端还通过T7与发光器件101的输入端连接,用于在接收到有效的复位电平时,复位所述发光器件。具体地,T7的栅极与Scan(n)或者XScan(n)连接,在扫描信号Scan(n)有效时,复位发光器件101即OLED的阳极输入端。
该像素驱动电路有三个工作阶段:复位t1、补偿t2和发光t3。复位阶段t1是将发光器件101的输入电平置为0,并且复位发光控制模块102,避免上一阶段发光过程残余电量影响本次发光过程;在补偿阶段把TFT的阈值电压Vth储存在栅源电压Vgs中;在发光阶段t3,把Vgs-Vth转换为电流,因为Vgs已包含Vth,在转换为电流时把Vth的影响抵消,从而实现不同的像素之间电流的一致性。但是,现有技术中,实际上由于寄生参数和驱动速度的影响,Vth并不能完全抵消,故该电路的补偿范围是有限的。且进行过阈值电压补偿的像素之间电流仍然存在差异,以致显示区域亮度不均匀,降低了显示装置的 显示性能。本发明实施例中,在发光器件101进入发光阶段时,驱动发光器件101发光,并将复位信号VI置为高电平Vdd,则在显示装置中,可以将横竖向不同走向的VI和Vdd走线都置为高电平Vdd,在有效显示区域内形成网状的高电平区域,从而可以改善电流分布不均引起的亮度不均匀的问题。其中,由于TFT均为P型,则有效电平为低电平。
具体的,请参阅图4,图4是本发明实施例提供的一种像素驱动电路的驱动时序图。其中,VI(Vreset)为复位信号,Scan(n-1)为第n-1个扫描信号,Scan(n)为第n个扫描信号,XScan(n)为与Scan(n)相关的信号,可以是与Scan(n)相同的信号,EM为发光控制信号。如图4所示,在t1阶段(复位阶段),Scan(n-1)为低电平,是有效电平,因此在图3中,晶体管T4打开,其余晶体管处于关闭状态,将A点的电位置为Vin,可以是零电平。该阶段为补偿阶段的准备阶段。在t2阶段(补偿阶段),Scan(n-1)为高电平,为无效电平,Scan(n)和XScan(n)为低电平,为有效电平,晶体管T1、T2、T3和T7打开,对于晶体管T1来说,由于T3导通,T1的栅极和源极导通,此时T1相当于一个二极管,导通方向为从B点到C点,Vdata与A点导通,当A点电位为Vdata-Vth时,晶体管T1截止。另外晶体管T7打开,将发光器件的输入电平置为低电平Vin。该阶段为发光阶段做准备。在t3阶段(发光阶段),Scan(n-1)、Scan(n)和XScan(n)均为高电平,即无效电平,将发光控制信号置为低电平,即有效电平,则T5和T6导通,且A点电平为Vdata-Vth,仍然是低电平,可以开启T1,则Vdd与发光器件101连通,发光器件101可以是OLED,则此时通过OLED的饱和电流为:
I OLED=K(Vsg-Vth) 2
其中,K为与T1相关的参数,Vgs为T1的栅源电压,Vth为T1的阈值电压,Vsg=Vdd-(Vdata-Vth),则:
I OLED=K(Vdd-Vdata) 2
由上式可以知道,此时的电流不再受阈值电压Vth的影响,实现对电流的补偿,消除Vth的影响。
现有技术中,在发光阶段仅仅单向走线Vdd为高电平,电流分布不均匀的现象明显。在本发明实施例中,在发光阶段t3,将复位信号VI置为高电平, 则在OLED的显示装置中,可以将横竖向不同走向的VI和Vdd走线都置为高电平,在有效显示区域内形成网状的高电平区域,从而可以改善电流分布不均引起的亮度不均匀的问题。
本发明实施例中,7个TFT管也可以是N型的,则相应的高电平为有效电平,即栅源电压为高电平时晶体管的源极和漏极导通。相应的Scan(n-1)、Scan(n)和XScan(n)在三个阶段电平反置。Vdd、Vdata和VI仍然不变。
请参阅图5,图5是本发明实施例提供的又一种像素驱动电路的结构示意图。如图5所示,发光控制模块102和复位控制模块104为6个TFT和1个电容组成的6T1C的像素补偿电路。如图5所示,发光控制模块102包含P型薄膜晶体管T1、T2、T3、T5和T6,连接关系如图5所示,用于对T1的Vth进行补偿,并在发光控制信号EM为有效信号时,控制所述发光器件101发光。这里的EM的有效信号为低电平。补偿控制模块103为P型TFT,在发光控制信号EM为有效信号(低电平)时,将VI置为高电平Vdd,使VI与Vdd导通。复位控制模块104为P型TFT T4,用于在Scan(n-1)为有效电平(低电平)时复位A点电平为Vin(低电平),则薄膜晶体管T1的栅极电位为低电平,这里薄膜晶体管T1为驱动薄膜晶体管。与7T1C类似,6T1C的像素补偿电路也包含三个工作阶段:复位t1、补偿t2和发光t3。且对应的像素驱动电路的驱动时序图如图4所示。与7T1C相比,区别在于在复位阶段,6T1C未对发光器件进行复位。6T1C的工作过程可参考图3和所描述的像素驱动电路的工作过程,这里不再赘述。
在图5所描述的像素驱动电路的结构示意图中,在发光器件进入发光阶段时,驱动发光器件发光,并将复位信号VI置为高电平Vdd,则在显示装置中,可以将横竖向不同走向的VI和Vdd走线都置为高电平Vdd,在有效显示区域内形成网状的高电平区域,从而可以改善电流分布不均引起的亮度不均匀的问题。
请参阅图6,图6是本发明实施例提供的再一种像素驱动电路的结构示意图。如图6所示,发光控制模块102和复位控制模块104为5个TFT和1个 电容组成的5T1C的像素补偿电路。如图6所示,发光控制模块102包含P型薄膜晶体管M1、M2、M3和M5,连接关系如图6所示,用于对M1的Vth进行补偿,并在发光阶段,控制所述发光器件101发光。补偿控制模块103为P型TFT,在发光控制信号EM为有效信号(低电平)时,将VI置为高电平Vdd,使VI与Vdd导通。复位控制模块104为P型TFT M4,用于在S1为有效电平(低电平)时复位M1的栅极的电平为Vin(低电平),这里薄膜晶体管M1为驱动薄膜晶体管。
5T1C的像素补偿电路也包含三个工作阶段:复位t1、补偿t2和发光t3。请参阅图7,图7是本发明实施例提供的另一种像素驱动电路的驱动时序图。如图7所示,复位过程t1,即初始化,消除一帧数据,减少对下一帧数据的影响。在复位阶段,S1为低电平,S2为高电平,TFT M1、M4和M5导通,M1的栅极电压和OLED的阳极电压均初始化为Vin,一般为低电平。在补偿阶段t2,S1为高电平,S2为低电平,TFT M3导通,从驱动芯片输出的Vdata通过M3传输到M2的源极,在复位阶段,M1栅极初始化为Vin低电平,当Vdata来临时,M1的栅极开始充电,当M1的栅极的电位为Vdata-Vth时,停止充电。Vth为M1的阈值电压。在发光阶段t3,S1和S2均为高电平,TFT M3、M4和M5均处于截止状态,M1处于打开状态,且由于栅极电压保持在Vdata-Vth,流过OLED的电流与M1的阈值电压Vth无关,起到对电流的补偿作用。在发光阶段t3,EM控制的TFT,即补偿控制模块103打开,将VI(Vreset)置为高电平Vdd。
在发光器件进入发光阶段时,驱动发光器件发光,并将复位信号VI置为高电平Vdd,则在显示装置中,可以将横竖向不同走向的VI和Vdd走线都置为高电平Vdd,在有效显示区域内形成网状的高电平区域,从而可以改善电流分布不均引起的亮度不均匀的问题。
需要进行说明的是,发光控制模块102和复位控制模块104不限于上述的像素补偿电路,也可以是其他的结构,例如由6个TFT和2个电容组成的6T2C结构的像素补偿电路等。只要是发光控制模块102和复位控制模块104中包含复位信号VI(Vreset),则可以在发光阶段,将复位信号VI(Vreset)置为高电平。因此对于发光控制模块102和复位控制模块104的结构,本实施例不作 限定。
此外,为解决现有技术中显示区域亮度不均匀,显示装置的显示性能较低的技术问题,特提出了一种像素驱动方法,可以提高显示装置的显示区域亮度的均匀性。请参阅图8,图8是本发明实施例提供的一种像素电路补偿方法的流程示意图。如图8所示,该像素驱动方法包括:
S101:提供一种像素驱动电路,该像素驱动电路由发光器件、发光控制模块、补偿控制模块和复位控制模块组成。发光器件、发光控制模块和补偿控制模块依次连接,发光控制模块的输入端与复位控制模块的输出端连接,复位控制模块的输入端接收复位信号,发光控制模块接收驱动电压信号端,补偿控制模块接收发光控制信号。
S102:在所述发光器件进入发光阶段时,通过发光控制模块驱动发光器件发光,通过补偿控制模块将复位信号置为高电平。
该像素驱动方法的具体过程可以参看图1-图7所描述的像素驱动电路的具体描述,这里不再赘述。
在图8所描述的像素电路补偿方法中,在发光器件进入发光阶段时,驱动发光器件发光,并将复位信号VI置为高电平Vdd,则在显示装置中,可以将横竖向不同走向的VI和Vdd走线都置为高电平Vdd,在有效显示区域内形成网状的高电平区域,从而可以改善电流分布不均引起的亮度不均匀的问题。
此外,为解决现有技术中显示区域亮度不均匀,显示装置的显示性能较低的技术问题,特提出了一种显示装置,所述显示装置包含图1、图3、图5和图6中任一项所描述的像素驱动电路。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这 些改进和润饰也视为本发明的保护范围。

Claims (13)

  1. 一种像素驱动电路,其特征在于,所述像素驱动电路包含发光器件、发光控制模块、补偿控制模块和复位控制模块,其中,所述发光器件、所述发光控制模块和所述补偿控制模块依次连接,所述复位控制模块的输入端接收复位信号,所述复位控制模块的输出端与所述发光控制模块的输入端连接,所述发光控制模块接收驱动电压信号端,所述补偿控制模块接收发光控制信号;
    所述发光控制模块,用于在所述发光器件进入发光阶段时,驱动所述发光器件发光;
    所述补偿控制模块,用于在所述发光器件进入发光阶段时,将所述复位信号置为高电平;
    所述复位控制模块,用于在接收到有效的复位电平时,复位所述发光控制模块。
  2. 根据权利要求1所述的像素驱动电路,其特征在于,所述发光控制模块,具体用于在所述发光控制信号为有效信号时,驱动所述发光器件发光。
  3. 根据权利要求1所述的像素驱动电路,其特征在于,所述补偿控制模块,具体用于在所述发光控制信号为有效信号时,将所述复位信号置为高电平。
  4. 根据权利要求1所述的像素驱动电路,其特征在于,所述复位控制模块的输出端还与所述发光器件的输入端连接,用于在接收到所述有效的复位电平时,复位所述发光器件。
  5. 根据权利要求1所述的像素驱动电路,其特征在于,所述发光控制模块和所述复位控制模块,是由7个薄膜晶体管和一个电容组成的像素补偿电路,或者6个薄膜晶体管和一个电容组成的像素补偿电路,或者5个薄膜晶体管和1个电容组成的像素补偿电路。
  6. 根据权利要求2所述的像素驱动电路,其特征在于,所述发光控制模块和所述复位控制模块,是由7个薄膜晶体管和一个电容组成的像素补偿电路,或者6个薄膜晶体管和一个电容组成的像素补偿电路,或者5个薄膜晶体管和1个电容组成的像素补偿电路。
  7. 根据权利要求3所述的像素驱动电路,其特征在于,所述发光控制模块和所述复位控制模块,是由7个薄膜晶体管和一个电容组成的像素补偿电路,或者6个薄膜晶体管和一个电容组成的像素补偿电路,或者5个薄膜晶体管和1个电容组成的像素补偿电路。
  8. 根据权利要求4所述的像素驱动电路,其特征在于,所述发光控制模块和所述复位控制模块,是由7个薄膜晶体管和一个电容组成的像素补偿电路,或者6个薄膜晶体管和一个电容组成的像素补偿电路,或者5个薄膜晶体管和1个电容组成的像素补偿电路。
  9. 根据权利要求5所述的像素驱动电路,其特征在于,所述7个薄膜晶体管或者,所述6个薄膜晶体管,或者5个薄膜晶体管为P型薄膜晶体管。
  10. 根据权利要求5所述的像素驱动电路,其特征在于,所述复位控制模块的输出端与所述薄膜晶体管中的驱动薄膜晶体管连接,用于复位所述驱动薄膜晶体管的栅极电位。
  11. 一种像素驱动方法,其特征在于,所述方法包括:
    在所述发光器件进入发光阶段时,通过发光控制模块驱动发光器件发光,通过补偿控制模块将复位信号置为高电平;
    所述发光器件、所述发光控制模块和所述补偿控制模块依次连接,所述发光控制模块的输入端与复位控制模块的输出端连接,所述复位控制模块的输入端接收复位信号,所述发光控制模块接收驱动电压信号端,所述补偿控制模块接收发光控制信号。
  12. 根据权利要求11所述的像素驱动方法,其特征在于,所述在所述发光器件进入发光阶段时,通过发光控制模块驱动发光器件发光,通过补偿控制模块将复位信号置为高电平,包括:
    在所述发光控制信号为有效信号时,通过发光控制模块驱动发光器件发光,通过补偿控制模块将复位信号置为高电平。
  13. 一种显示装置,其特征在于,所述显示装置包含如权利要求1所述的像素驱动电路。
PCT/CN2017/117516 2017-07-31 2017-12-20 显示装置、像素驱动方法及像素驱动电路 WO2019024395A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/746,756 US20190385520A1 (en) 2017-07-31 2017-12-20 Display device, pixel driving method and pixel driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710637672.7 2017-07-31
CN201710637672.7A CN107256694B (zh) 2017-07-31 2017-07-31 显示装置、像素驱动方法及像素驱动电路

Publications (1)

Publication Number Publication Date
WO2019024395A1 true WO2019024395A1 (zh) 2019-02-07

Family

ID=60025307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117516 WO2019024395A1 (zh) 2017-07-31 2017-12-20 显示装置、像素驱动方法及像素驱动电路

Country Status (3)

Country Link
US (1) US20190385520A1 (zh)
CN (1) CN107256694B (zh)
WO (1) WO2019024395A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289260A (zh) * 2019-07-25 2021-01-29 乐金显示有限公司 显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256694B (zh) * 2017-07-31 2019-11-05 武汉华星光电半导体显示技术有限公司 显示装置、像素驱动方法及像素驱动电路
CN109671396A (zh) * 2017-10-17 2019-04-23 伊格尼斯创新公司 像素电路、显示装置和方法
TWI675361B (zh) * 2018-03-27 2019-10-21 友達光電股份有限公司 顯示裝置
CN109003586B (zh) * 2018-08-03 2020-03-17 武汉华星光电半导体显示技术有限公司 一种像素驱动电路及液晶显示面板
CN109036159B (zh) 2018-08-13 2020-11-03 武汉华星光电半导体显示技术有限公司 可弯折的背板结构及oled显示组件
US11462165B2 (en) * 2019-07-02 2022-10-04 Beijing Boe Technology Development Co., Ltd. Pixel driving circuit, related driving method, pixel circuit, and display panel
CN113096602A (zh) * 2019-12-23 2021-07-09 深圳市柔宇科技股份有限公司 像素单元、显示面板与电子装置
CN111627388B (zh) * 2020-06-28 2022-01-14 武汉天马微电子有限公司 显示面板及其驱动方法、显示装置
CN114974111A (zh) * 2022-05-26 2022-08-30 厦门天马显示科技有限公司 像素电路、显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140070184A1 (en) * 2012-09-13 2014-03-13 Samsung Display Co., Ltd. Organic light emitting diode display
CN105185305A (zh) * 2015-09-10 2015-12-23 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
US20160055792A1 (en) * 2014-08-25 2016-02-25 Samsung Display Co., Ltd. Pixel and organic light-emitting diode (oled) display
CN106558287A (zh) * 2017-01-25 2017-04-05 上海天马有机发光显示技术有限公司 有机发光像素驱动电路、驱动方法及有机发光显示面板
CN107256694A (zh) * 2017-07-31 2017-10-17 武汉华星光电半导体显示技术有限公司 显示装置、像素驱动方法及像素驱动电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956185B (zh) * 2012-10-26 2015-05-13 京东方科技集团股份有限公司 一种像素电路及显示装置
CN103077680B (zh) * 2013-01-10 2016-04-20 上海和辉光电有限公司 一种oled像素驱动电路
JP2014219516A (ja) * 2013-05-07 2014-11-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 画素回路及びその駆動方法
CN103383835B (zh) * 2013-07-02 2015-09-09 京东方科技集团股份有限公司 一种像素电路、显示面板及显示装置
CN104409051A (zh) * 2014-12-24 2015-03-11 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN104465715B (zh) * 2014-12-30 2017-11-07 上海天马有机发光显示技术有限公司 像素电路、驱动方法、显示面板及显示装置
CN105225626B (zh) * 2015-10-13 2018-02-02 上海天马有机发光显示技术有限公司 有机发光二极管像素驱动电路、其显示面板及显示装置
CN107665672B (zh) * 2016-07-27 2020-01-31 上海和辉光电有限公司 像素电路及其驱动方法
CN106531076B (zh) * 2017-01-12 2019-03-01 京东方科技集团股份有限公司 一种像素电路、显示面板及其驱动方法
CN106952615B (zh) * 2017-05-18 2019-02-01 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140070184A1 (en) * 2012-09-13 2014-03-13 Samsung Display Co., Ltd. Organic light emitting diode display
US20160055792A1 (en) * 2014-08-25 2016-02-25 Samsung Display Co., Ltd. Pixel and organic light-emitting diode (oled) display
CN105185305A (zh) * 2015-09-10 2015-12-23 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN106558287A (zh) * 2017-01-25 2017-04-05 上海天马有机发光显示技术有限公司 有机发光像素驱动电路、驱动方法及有机发光显示面板
CN107256694A (zh) * 2017-07-31 2017-10-17 武汉华星光电半导体显示技术有限公司 显示装置、像素驱动方法及像素驱动电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289260A (zh) * 2019-07-25 2021-01-29 乐金显示有限公司 显示装置
US11289024B2 (en) 2019-07-25 2022-03-29 Lg Display Co., Ltd. Display device
CN112289260B (zh) * 2019-07-25 2022-07-08 乐金显示有限公司 显示装置

Also Published As

Publication number Publication date
CN107256694B (zh) 2019-11-05
US20190385520A1 (en) 2019-12-19
CN107256694A (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
US11710455B2 (en) Pixel, organic light emitting display device using the same, and method of driving the organic light emitting display device
WO2019024395A1 (zh) 显示装置、像素驱动方法及像素驱动电路
WO2023005621A1 (zh) 像素电路及其驱动方法、显示面板
WO2020062802A1 (zh) 显示面板及像素电路的驱动方法
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2019037499A1 (zh) 像素电路及其驱动方法、显示装置
WO2016150232A1 (zh) 像素电路及其驱动方法、显示装置
WO2018045667A1 (zh) Amoled像素驱动电路及驱动方法
CN107346654B (zh) 一种像素电路及其驱动方法、显示装置
WO2018219209A1 (zh) 像素补偿电路及补偿方法、显示装置
WO2018032899A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
WO2017117983A1 (zh) 像素补偿电路及amoled显示装置
WO2018228202A1 (zh) 像素电路、像素驱动方法和显示装置
TW202125483A (zh) 電致發光顯示裝置
WO2018149008A1 (zh) Amoled像素驱动电路及amoled像素驱动方法
WO2016161896A1 (zh) 像素驱动电路、显示装置和像素驱动方法
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
US10235940B2 (en) Pixel-driving circuit, the driving method thereof, and display device
CN108389551B (zh) 一种像素电路及其驱动方法、显示装置
CN108777131B (zh) Amoled像素驱动电路及驱动方法
KR20200019253A (ko) Amoled 픽셀 구동 회로 및 픽셀 구동 방법
KR20150101027A (ko) 유기전계발광 표시장치
US20190385528A1 (en) Pixel driving circuit and liquid crystal display device thereof
CN107369412B (zh) 一种像素电路及其驱动方法、显示装置
WO2017156828A1 (zh) Amoled像素驱动电路及像素驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920172

Country of ref document: EP

Kind code of ref document: A1