WO2019022342A1 - 기지국장치 및 무선구간의 qos 제어방법 - Google Patents

기지국장치 및 무선구간의 qos 제어방법 Download PDF

Info

Publication number
WO2019022342A1
WO2019022342A1 PCT/KR2018/003974 KR2018003974W WO2019022342A1 WO 2019022342 A1 WO2019022342 A1 WO 2019022342A1 KR 2018003974 W KR2018003974 W KR 2018003974W WO 2019022342 A1 WO2019022342 A1 WO 2019022342A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
service flow
qos parameter
base station
parameter
Prior art date
Application number
PCT/KR2018/003974
Other languages
English (en)
French (fr)
Inventor
나민수
최창순
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to US16/474,317 priority Critical patent/US11337102B2/en
Priority to CN201880005487.9A priority patent/CN110115060B/zh
Publication of WO2019022342A1 publication Critical patent/WO2019022342A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a QoS control technique for transmitting a QoS level of a communication service when a packet is transmitted.
  • the present invention relates to a technique for realizing differentiated QoS control in a more detailed unit in a radio section without increasing the complexity and the load, compared to the existing bearer unit QoS control method.
  • QoS Quality of Service
  • a QoS control is provided for transmitting a packet of a communication service while guaranteeing a QoS level suitable for a media type.
  • the QoS control method provided in the LTE network is a QoS control method in units of EPS bearer (hereinafter, referred to as a bearer-based QoS control method).
  • an EPS Bearer (hereinafter referred to as Bearer) for transmitting data is generated.
  • the EPS bearer or bearer may be a tunnel generated from a terminal to a P-GW by connecting a wireless section connecting between the terminal and the base station and a wire section connecting the base station and the S-GW and the P-GW .
  • Data of a user is transmitted in the form of an IP-based packet through this tunnel, that is, a bearer, and a traffic flow according to packet transmission is called a service flow.
  • the conventional bearer-based QoS control method defines the QoS level (QoS parameter) for each bearer to guarantee the QoS on a per bearer basis, the service flows transmitted through one bearer all have the same QoS (Bearer QoS level) Lt; / RTI >
  • the existing bearer-based QoS control scheme has an advantage of lowering the complexity of QoS control, there is a limit that can not guarantee differentiated QoS for service flows belonging to one bearer.
  • the limitations of the existing bearer-based QoS control method may not be a serious problem in a situation where the type of communication service is relatively limited.
  • the present invention proposes a method of realizing differentiated QoS control in a more detailed unit in a radio section without increasing the complexity and load compared to the conventional bearer unit QoS control method.
  • An object of the present invention is to realize differentiated QoS control in a more detailed unit in a wireless section without increasing complexity and load compared with existing bearer unit QoS control schemes.
  • a method for controlling a QoS of a wireless zone comprising: a base station apparatus for performing a QoS control based on a QoS parameter applied to a service flow of a packet, step; And a transmission step of, when the base station apparatus transmits the packet to the radio section, applying the determined QoS parameter for the radio section.
  • the base station apparatus further includes storing a mapping table in which core network-specific QoS parameters are mapped according to QoS parameters applied to a service flow;
  • the number of QoS parameters may be larger than the number of QoS parameters for radio section only.
  • the base station apparatus further includes storing a mapping table in which core network-specific QoS parameters are mapped according to QoS parameters applied to a service flow;
  • the mapping table may be mapped to one QoS parameter that is different for two or more different QoS parameters.
  • the two or more QoS parameters may be a QoS parameter applied to a communication service in which the core network periodically transmits a small amount of data of a certain size or less, or a matter Internet service.
  • the base station apparatus further includes storing a mapping table in which core network-specific QoS parameters are mapped according to QoS parameters applied to a service flow;
  • the mapping table may map a QoS parameter for a radio section for each QoS included in a service flow for each service flow to which a specific QoS parameter is applied.
  • the specific QoS parameter may be a QoS parameter having a non-GBR service type that guarantees no bandwidth.
  • the checking step identifies the QoS of the content by checking a DSCP field for classifying the service quality type (DiffServ) in the header of the packet , It is possible to confirm the QoS parameter dedicated to the radio section mapped to the QoS of the classified contents in the mapping table.
  • DiffServ service quality type
  • FIG. 1 is a diagram illustrating an existing bearer-based QoS control scheme.
  • FIG. 2 is an exemplary diagram illustrating a flow of realizing a QoS control method of a wireless zone according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a base station apparatus according to an embodiment of the present invention.
  • FIG. 4 and FIG. 5 are control flow charts for explaining a QoS control method of a wireless section according to an embodiment of the present invention.
  • FIG. 6 and FIG. 7 are control flowcharts for explaining a QoS control method of a wireless section according to an embodiment of the present invention.
  • FIGS 8 and 9 are control flowcharts for explaining a QoS control method of a wireless section according to an embodiment of the present invention.
  • the existing bearer-based QoS control method is a method of applying (guaranteeing) QoS to a logical unit called "Bearer" by grouping several types of communication services.
  • Bearer an EPS Bearer which guarantees QoS required in a communication service that a terminal (user) 2 is generated.
  • each of the bearers 1 and 2 may be a default bearer or a dedicated bearer.
  • a service flow 1 of communication service 1 and a service flow 2 of communication service 2 belong to one bearer (Bearer 1)
  • a service flow 3 of communication service 3 and a service flow of communication service 4 4 belong to one bearer (Bearer 2).
  • the same QoS that is, the QoS level of Bearer 1 (QoS parameter A) is applied to the service flows 1 and 2 transmitted through Bearer 1, the service flows 3, 4, the same QoS, that is, the QoS level of Bearer 2 (QoS parameter B) is applied.
  • the present invention proposes a scheme for realizing differentiated QoS control in a granular unit than the conventional bearer-based QoS control scheme, and realizes it in a wireless zone which is a core of QoS control.
  • a scheme (hereinafter referred to as a QoS control method of radio section) capable of realizing differentiated QoS control in a more detailed unit in a radio section while minimizing complexity and load increase compared to existing bearer unit QoS control schemes I would like to propose.
  • the core network 20 transmits a mapping rule for converting the QoS parameters applied to the service flows to the core network 20 into QoS parameters for radio section only, to the base station 100 (S1).
  • the core network 20 can directly support the existing bearer unit QoS control scheme.
  • the QoS parameter applied to the service flow by the core network 20 will be equal to the QoS parameter (QoS level) of the bearer to which the corresponding service flow belongs.
  • the mapping rule includes a QoS parameter to be used for converting the QoS parameter into the QoS parameter for radio section only for each QoS parameter (bearer-based QoS parameter) Mapping rule.
  • the core network 20 may support a service flow unit QoS control method in which different QoS is guaranteed (applied) in units of service flow, unlike the existing bearer unit QoS control method.
  • the QoS parameter applied to the service flow by the core network 20 may be a QoS parameter (QoS level) defined for each service flow.
  • the mapping rule is a function for converting the QoS parameter into the QoS parameter for radio section only for each QoS parameter (service flow unit QoS parameter) Mapping rule.
  • the QoS control scheme of the wireless zone proposed in the present invention is described in the following The same effect can be obtained.
  • the base station 100 may set a mapping rule transmitted from the core network 20 (S2).
  • the information stored in the base station 100 by setting the mapping rule is transmitted to the core network 20 by the QoS parameter (bearer unit QoS parameter or service flow unit QoS parameter) applied to the service flow in the core network 20, It can be in the form of a mapping table mapping parameters.
  • the base station 100 includes the Qos control information in the RRC message and provides the Qos control information to the UE 10 in the RRC (Radio Resource Control) setting process with the terminal 10 connected thereto.
  • RRC Radio Resource Control
  • the Qos control information is information that allows the terminal 10 to identify a QoS parameter dedicated to a radio section that the base station 100 applies for each service flow.
  • the QoS control information may include a QoS parameter dedicated to a radio section to be applied to a service flow provided by the base station 100 to the terminal 10.
  • the terminal 10 can set the QoS control information provided from the base station 100 (S4).
  • the base station 100 confirms QoS parameters (e.g., QoS parameter A) applied to the service flow of this packet when a packet for transfer from the core network 20 to the terminal 10 is received (S5).
  • QoS parameters e.g., QoS parameter A
  • step S6 the base station 100 confirms QoS parameters dedicated to the radio section mapped to the QoS parameters applied to the service flow, in the mapping table stored / stored in advance.
  • the base station 100 maps QoS parameters (for example, QoS parameter A) applied in the core network 20 to QoS parameters (for example, QoS parameter 1) dedicated for radio section for this packet (service flow) (S6), and converts the QoS level at the end of the core network 20 to the QoS level dedicated for the radio section.
  • QoS parameters for example, QoS parameter A
  • QoS parameters for example, QoS parameter 1
  • S6 service flow
  • the base station 100 applies the QoS parameter (e.g., QoS parameter 1) dedicated to the radio section, which has been confirmed in advance, to the packet at the time of transmitting the packet to the terminal 10 (S7).
  • QoS parameter e.g., QoS parameter 1
  • the base station 100 converts this packet into a QoS level dedicated to the radio section at the QoS level applied by the core network 20, and transmits the QoS level.
  • the terminal 10 transmits a QoS parameter (for example, a QoS parameter (for example, a QoS parameter) to be used for the radio section, which is applied by the base station 100 in the downlink of this service flow, based on the QoS control information set in step S8 1) are applied in the same manner to transmit the uplink packet (S9).
  • a QoS parameter for example, a QoS parameter (for example, a QoS parameter) to be used for the radio section
  • the terminal 10 can transmit the uplink packet at the QoS level dedicated to the radio section, which is the same as that at the time of downlink, based on the previously set QoS control information.
  • the base station 100 When the uplink packet is received from the terminal 10, the base station 100 performs the above-described QoS mapping in the step S6 in reverse, and transmits the uplink packet to the QoS (Quality of Service) Level (S10).
  • QoS Quality of Service
  • the base station 100 transmits a QoS parameter (for example, QoS parameter 1) dedicated to a radio section to a QoS parameter (for example, a QoS parameter A ), And then transmits the QoS parameter (e.g., QoS parameter A) in the uplink packet transmission (S10).
  • a QoS parameter for example, QoS parameter 1
  • the base station apparatus 100 of the present invention includes an acknowledgment unit 110 and a transmission unit 130. As shown in FIG.
  • the confirmation unit 110 performs a function of confirming a QoS parameter dedicated to the radio section mapped to the QoS parameter, based on the QoS parameter applied to the service flow, with respect to the packet to be transmitted to the terminal.
  • the transmission unit 130 converts the packet into a QoS level dedicated to the radio section at the QoS level applied by the core network and transmits the packet by applying the QoS parameter exclusively for the radio section identified by the confirmation unit 110 at the time of packet transmission .
  • the terminal is a terminal that connects to the base station apparatus 100 and uses a communication service, and can simultaneously use various communication services through the base station apparatus 100.
  • the confirmation unit 110 Upon receipt of a packet for transmission from the core network 20 to the terminal 10, the confirmation unit 110 confirms the QoS parameter applied to the service flow of the packet.
  • the downlink packet header received from the core network 20 may include the QoS parameter applied to the service flow of the corresponding packet in the core network 20.
  • the verification unit 110 can verify QoS parameters applied to the service flow of the packet by extracting / checking the QoS parameters included in the packet header for transmission to the terminal 10.
  • the downlink packet header received from the core network 20 may include a separate QoS identifier for identifying the QoS parameter applied to the service flow of the corresponding packet in the core network 20.
  • the confirmation unit 110 can confirm QoS parameters applied to the service flow of the packet by extracting / confirming the QoS identifier included in the packet header for transmission to the terminal 10.
  • the base station apparatus 100 may store policy information on which QoS parameters (bearer-based QoS parameters, or service-flow-unit QoS parameters) are to be applied to each service flow in the core network 20.
  • QoS parameters bearer-based QoS parameters, or service-flow-unit QoS parameters
  • the verification unit 110 identifies the service flow of the packet based on the 5-tuple in the packet header to be transmitted to the terminal 10, that is, the Source IP, the Destination IP, the Source Port, the Destination Port,
  • the QoS parameters applied to the service flow of the packet can be confirmed by the core network 20 by confirming the QoS parameters to be applied to the core network 20 in the service flow classified based on the above-mentioned policy information.
  • the confirmation unit 110 confirms the QoS parameter applied to the service flow of the packet. Then, when the confirmation unit 110 confirms the QoS parameter applied to the service flow of the packet, the confirmation unit 110 confirms the QoS parameter dedicated to the radio interval mapped to the QoS parameter.
  • the base station apparatus 100 may further include a storage unit 120 for storing a mapping table in which the QoS parameters to be applied to the service flows are mapped in the core network 20.
  • the specific equipment (not shown) designated in the core network 20 transmits a mapping rule for converting the QoS parameter applied to the service flow to the QoS parameter for the radio section in the core network 20, 100).
  • the core network 20 can directly support the existing bearer unit QoS control scheme.
  • the QoS parameter applied to the service flow by the core network 20 will be equal to the QoS parameter (QoS level) of the bearer to which the corresponding service flow belongs.
  • the mapping rule includes a QoS parameter to be used for converting the QoS parameter into the QoS parameter for radio section only for each QoS parameter (bearer-based QoS parameter) Mapping rule.
  • the core network 20 may support a service flow unit QoS control method in which different QoS is guaranteed (applied) in units of service flow, unlike the existing bearer unit QoS control method.
  • the QoS parameter applied to the service flow by the core network 20 may be a QoS parameter (QoS level) defined for each service flow.
  • the mapping rule is a function for converting the QoS parameter into the QoS parameter for radio section only for each QoS parameter (service flow unit QoS parameter) Mapping rule.
  • the QoS control scheme of the wireless zone proposed in the present invention is described in the following The same effect can be obtained.
  • the base station apparatus 100 sets a mapping rule transmitted from the core network 20 and sets QoS parameters to be applied to the service flow at the core network 20 in the storage unit 120 in the process of setting the mapping rules
  • a bearer-based QoS parameter, or a service-flow-unit QoS parameter) a mapping table in which QoS parameters for radio section are mapped is stored.
  • the confirmation unit 110 confirms the QoS parameters applied to the service flow of the packet, and confirms the QoS parameters dedicated to the wireless interval mapped to the QoS parameters in the mapping table stored in the storage unit 120.
  • the confirmation unit 110 maps the QoS level applied to the core network 20 to the QoS parameter applied to the core network 20 by mapping the QoS parameter applied to the core network 20 to the QoS parameter dedicated to the radio section for this packet (service flow) To the QoS level dedicated for the interval.
  • the transmission unit 130 applies the QoS parameters dedicated to the radio section confirmed by the confirmation unit 110 at the time of transmitting the packet to the terminal 10 so that the packet is transmitted to the core network 20 at the QoS level applied by the core network 20, And transmits the QoS level.
  • the transmitter 130 transmits a QoS parameter (QoS level) dedicated to the radio section instead of the QoS parameter (QoS level) applied to the service flow of the corresponding packet in the core network 20, And transmits the data.
  • QoS level QoS parameter dedicated to the radio section instead of the QoS parameter (QoS level) applied to the service flow of the corresponding packet in the core network 20, And transmits the data.
  • the present invention provides QoS control between accesses from the UE to the core network and QoS control between the core networks
  • the QoS control of the radio section between the terminal and the access terminal (base station) can be implemented separately.
  • the most sensitive radio section which is the core of QoS control
  • a DRB Data Radio Bearer
  • the radio zone QoS control method of the present invention has been described based on the downlink traffic.
  • the base station apparatus 100 of the present invention further includes a control information transmitting unit 140.
  • the control information transmitting unit 140 transmits to the UE 10 an RRC message including Qos control information for identifying the QoS parameters dedicated to the radio zone identified by the checking unit 110.
  • an RRC (Radio Resource Control) setting procedure is performed between the base station apparatus 100 and the terminal 10.
  • control information delivery unit 140 includes the Qos control information in the RRC message and provides the RRC message to the UE 10 in the RRC establishment process.
  • the Qos control information is information that enables the terminal 10 to identify a QoS parameter dedicated to a radio section that the base station apparatus 100 applies for each service flow.
  • the Qos control information may include a QoS parameter dedicated to a radio section applied to a service flow provided by the base station apparatus 100 to the terminal 10.
  • the Qos control information has a form mapping 5-tuple (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) used for service flow classification and QoS parameters dedicated to a radio section, May be information that enables the device 100 to identify a QoS parameter dedicated to a radio section applied for each service flow.
  • a form mapping 5-tuple (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) used for service flow classification and QoS parameters dedicated to a radio section, May be information that enables the device 100 to identify a QoS parameter dedicated to a radio section applied for each service flow.
  • the UE 10 can set the Qos control information provided from the base station apparatus 100 to know information (QoS control information) necessary for the radio section QoS control.
  • the UE 10 can transmit the uplink packet by applying the same QoS parameters for the radio section applied by the base station apparatus 100 in the downlink of the present service flow.
  • the terminal 10 can transmit the uplink packet at the QoS level dedicated to the radio section same as that at the time of downlink transmission.
  • the information (QoS control information) necessary for the radio section QoS control is transmitted to the terminal while minimizing the complexity and load increase by using only the minimum message Can be informed.
  • the performance obtained through the QoS control in the wireless section may vary depending on how the mapping rule (mapping table) is defined.
  • mapping rule mapping table
  • DRBs 1: 1 mapping table of service flows: DRBs, which can guarantee a QoS level (DRB) dedicated to different radio segments on a service flow basis.
  • DRBs QoS level
  • Such a service flow in the case of 1: 1 mapping of DRBs, it is possible to guarantee the optimal DRB for radio sections independent of each service flow, so that in the aspect of differential QoS control of service flow units, It will be excellent.
  • mapping rule mapping table
  • the core network 20 supports the service flow unit QoS control method.
  • a QoS parameter (QoS level) defined for each service flow is applied to a service flow received in the core network 20.
  • M N mapping of a service flow: DRB is proposed (M> N).
  • the mapping table is characterized in that the number of QoS parameters is larger than the number of QoS parameters dedicated for radio section.
  • M QoS parameters (QoS levels) applied to each of the M service flows are divided into N (M > N) (QoS level)
  • service flow defines the M: N mapping rule (mapping table) of the DRB.
  • the M N embodiment of the DRB
  • the overhead due to the mapping process at the access terminal (base station) and the cost due to the DRB management are superior to the case of 1: Increase.
  • mapping relationship between the M QoS parameters and the N radio dedicated QoS parameters will be determined at the time of defining the mapping rule (mapping table).
  • a service flow: M: 1 mapping of DRB is proposed.
  • the mapping table is characterized in that two or more different QoS parameters are mapped to one QoS parameter dedicated to a radio section.
  • the service flow maps the M QoS parameters (QoS levels) applied to each of the M service flows received in the core network 20 to one QoS parameter (QoS level) It defines the mapping rule (mapping table).
  • the M QoS parameters (QoS level) applied to each of the M service flows may be a communication service that periodically transmits a small amount of data of a specific size or less at the core network 20, (QoS level) to be applied to the MAC layer.
  • IoT Internet
  • IoT Internet
  • LoRa Long Range
  • the M service flows of the Internet (IoT) service are all mapped to the same QoS parameter (QoS level)
  • QoS level QoS parameter
  • a 1: N mapping of a service flow: DRB is proposed.
  • the mapping table is characterized in that, for one service flow to which a specific QoS parameter is applied, a QoS parameter for a wireless section is mapped for each QoS of each content included in the service flow.
  • a service flow mapping 1 specific QoS parameter (specific QoS level) applied to one service flow received in the core network 20 to N radio section dedicated QoS parameters (QoS level) N mapping rule (mapping table).
  • the specific QoS parameter refers to a QoS parameter having a Non-GBR (Guaranteed Bit Rate) service type that guarantees a non-guaranteed bandwidth.
  • GRR Guard Bit Rate
  • the QoS parameters applied in the core network 20 include a resource type, a QoS class identifier (QCI), an allocation and retention priority (ARP), and the like.
  • the service type is a parameter indicating whether the bandwidth is GBR for transmission or non-GBR that does not guarantee bandwidth.
  • the QCI is a parameter expressing the QoS priority as integer values 1 to 9.
  • ARP is a parameter involved in generation or rejection when bearer generation according to the service flow is required.
  • the QoS parameter may also include other parameters than the above-mentioned parameters.
  • a single service flow in which a QoS parameter of a Non-GBR that does not guarantee a bandwidth is applied may include packets of each content having a different QoS requirement in the service flow.
  • each content included in the service flow (each content classified based on the QoS Requirement) It is possible to differentiate the wireless section QoS control in the most specific manner by mapping the dedicated QoS parameters for different wireless sections.
  • N a further configuration is required to distinguish each content (content QoS) included in the service flow.
  • the verification unit 110 checks QoS parameters applied to the service flow of the packet, Check whether it is a specific QoS parameter of GBR.
  • the verification unit 110 may determine that the differentiated services code point (DSCP) for the service quality type (DiffServ) ) Field to identify the QoS (QoS Requirement) of the content.
  • DSCP differentiated services code point
  • DiffServ service quality type
  • the confirming unit 110 confirms QoS parameters dedicated to the radio section mapped to the QoS (QoS Requirement) of each of the classified contents in the mapping table (1: N mapping) according to the third embodiment.
  • the transmitting unit 130 transmits the QoS parameter for the wireless section, which is confirmed by the confirming unit 110 (the QoS parameter (QoS Requirement) (QoS parameters dedicated to the radio section for each content), and transmits the current packet at the QoS level (for each content in the service flow) converted from the QoS level applied by the core network 20 to the wireless section only.
  • the QoS parameter QoS Requirement
  • the current packet at the QoS level for each content in the service flow
  • the existing QoS control Method (bearer unit, or service flow unit).
  • the radio section between a terminal and an access terminal (base station) independently of an access and a QoS control method between a core network and a core network, ), It is possible to independently implement the DRB-based QoS control in the radio section.
  • mapping rule mapping table
  • differentiated QoS control can be realized in a more detailed unit in the wireless section without increasing the complexity and load compared to the existing bearer unit QoS control method, (Service quality) is applied.
  • FIG. 4 a QoS control method for a wireless section according to various embodiments of the present invention will be described with reference to FIGS. 4 to 9.
  • FIG. 4 a QoS control method for a wireless section according to various embodiments of the present invention will be described with reference to FIGS. 4 to 9.
  • the method of controlling the QoS of the wireless section according to the present invention is implemented in the base station 100, the following description will be referred to as a wireless section QoS control method of the base station 100 for convenience of explanation.
  • a method of controlling a QoS of a wireless zone according to the present invention includes a mapping table according to the first embodiment, that is, a service flow: The table is stored (S100).
  • the base station 100 checks the QoS parameter applied to the service flow of the packet, that is, the QoS parameter applied by the core network 20, when a packet to the terminal 10 is received (S110) (S120).
  • the base station 100 checks the QoS parameter for the wireless section, which is mapped to the QoS parameter, in the M: N mapping table (S130).
  • the QoS control method of the base station 100 applies the QoS parameters dedicated for the radio section and transmits the packet to the core network 20 during the transmission of the packet to the terminal 10, Level to the QoS level converted to the wireless section only (S140).
  • the base station 100 confirms the QoS parameters A, B, and C applied to the service flows of the packets 1, 2, and 3, and then transmits the QoS parameters A, B, And performs QoS mapping for the wireless section, which confirms QoS parameters in the M: N mapping table.
  • the QoS parameters A and B are mapped to the QoS parameter 1 dedicated to the wireless section
  • the QoS parameter C is mapped to the QoS parameter 2 dedicated to the wireless section.
  • the base station 100 applies the QoS parameter 1 dedicated to the radio section when transmitting the packets 1 and 2 to the terminal 10, and applies the QoS parameter 2 dedicated to the radio section when transmitting the packet 3 to the terminal 10 , It is possible to transmit the packets 1, 2, and 3 at the QoS level for exclusive use of the M: N radio section, which converts the packets 1, 2, 3 to the QoS level dedicated for the radio section at the QoS level applied by the core network 20.
  • the base station 100 stores a mapping table according to the second embodiment, that is, a service flow: an M: 1 mapping table of DRBs (S200).
  • the base station 100 checks the QoS parameter applied to the service flow of the packet, that is, the QoS parameter applied by the core network 20, when a packet to the terminal 10 is received (S210) (S220).
  • step S230 the base station 100 checks the QoS parameter for the wireless section, which is mapped to the QoS parameter, in the M: N mapping table, in step S220.
  • the radio zone QoS control method of the base station 100 transmits the current packet to the core network 20 at the time of transmitting the current packet to the terminal 10 by applying the QoS parameters dedicated for the radio section, It is possible to transmit at the QoS level converted to the wireless section only at the applied QoS level (S240).
  • the base station 100 confirms the QoS parameters D, E, and F applied to the service flows of the packets 1, 2, and 3 and then transmits the dedicated QoS parameters D, E, And performs QoS mapping for radio section dedicated to confirm QoS parameters in the M: 1 mapping table.
  • the service flows of packets 1, 2 and 3 are Internet Internet Service (IoT) services specialized for wide coverage / low-speed transmission ( ⁇ 1 kbps) / low power / small amount of data.
  • IoT Internet Internet Service
  • the base station 100 applies the QoS parameter 3 dedicated to the radio section when transmitting the packets 1, 2, and 3 to the terminal 10, Level QoS level for M: 1 radio section, which is converted into a dedicated QoS level for the radio section.
  • a method of controlling a radio zone of a base station 100 stores a mapping table according to the third embodiment, that is, a service flow: a 1: N mapping table of a DRB (S300).
  • the base station 100 checks the QoS parameter applied to the service flow of the packet, that is, the QoS parameter applied by the core network 20, when receiving a packet to the terminal 10 (S310) (S320).
  • the method of controlling the QoS of the base station 100 may include a service quality type (DiffServ ) Differentiated services code point (DSCP) field for distinguishing a QoS requirement of a content.
  • DiffServ service quality type
  • DSCP Differentiated services code point
  • step S330 a QoS parameter for a wireless section, which is mapped to a QoS requirement of the content segmented by the DSCP field, is checked in a 1: N mapping table.
  • the radio zone QoS control method of the base station 100 is a method of controlling the QoS of the radio section for the radio section (the QoS requirement of the content in one service flow as a reference) (QoS parameters dedicated to the radio section for each content to be distinguished), and transmits the current packet with the QoS level (per contents in the service flow) converted from the QoS level applied by the core network 20 stage to the radio section dedicated (step S340 ).
  • the base station 100 confirms the QoS parameter G applied to the service flows of the packets 1, 2, and 3, it is determined that the header of each packet 1, 2, (DSCP) field to distinguish QoS (QoS Requirement) of the content.
  • packets 1 and 2 are divided into contents of the same QoS, and packet 3 is classified into contents of different QoS.
  • the base station 100 confirms the QoS parameters dedicated to the radio section mapped to the contents (QoS) of the packets 1 and 2 in the 1: M mapping table, And performs QoS mapping for the wireless section, which confirms the QoS parameters in the 1: M mapping table.
  • the QoS parameter 4 dedicated to the radio section is mapped to the contents of the packets 1 and 2 contained in one service flow and the QoS parameter 5 dedicated to the radio section is mapped to the contents of the packet 3 do.
  • the base station 100 applies the QoS parameter 4 dedicated to the radio section when transmitting the packets 1 and 2 to the terminal 10, and applies the QoS parameter 5 dedicated to the radio section when transmitting the packet 3 to the terminal 10 , It is possible to transmit the packets 1, 2, and 3 at the QoS level dedicated to the 1: N radio section that converts the QoS level applied by the core network 20 to the QoS level dedicated to the radio section.
  • the QoS control method of the wireless section of the present invention realizes differentiated QoS control in a more detailed unit in the radio section without increasing the complexity and the load compared to the existing bearer unit QoS control method, And derives the effect of applying more different QoS (Quality of Service).
  • the QoS control method of the wireless zone can be implemented in the form of a program command that can be executed through various computer means and recorded in a computer readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, and the like, alone or in combination.
  • the program instructions recorded on the medium may be those specially designed and constructed for the present invention or may be available to those skilled in the art of computer software.
  • Examples of computer-readable media include magnetic media such as hard disks, floppy disks and magnetic tape; optical media such as CD-ROMs and DVDs; magnetic media such as floppy disks; Magneto-optical media, and hardware devices specifically configured to store and execute program instructions such as ROM, RAM, flash memory, and the like.
  • program instructions include machine language code such as those produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Transmitters (AREA)
  • Radio Relay Systems (AREA)

Abstract

본 발명은, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가 없이 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현함으로써, 통신서비스 별로 보다 차등적인 QoS 즉 서비스 품질을 적용할 수 있는 기술을 개시한다.

Description

기지국장치 및 무선구간의 QOS 제어방법
본 발명은, 통신서비스의 패킷 전송 시 QoS 레벨을 달리하여 전송하는 QoS 제어 기술에 관한 것이다.
구체적으로, 본 발명은, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가 없이 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현하기 위한 기술에 관한 것이다.
이동통신 시스템에서는, 단말(사용자)이 이용하는 통신서비스의 미디어 유형에 따라 QoS(Quality of Service) 레벨을 다르게 하고 있다. 그리고, 이동통신 시스템에서는, 통신서비스의 패킷 전송 시, 미디어 유형에 맞는 QoS 레벨을 보장하여 전송하는 QoS 제어를 제공하고 있다.
LTE 네트워크에서 제공하는 QoS 제어 방식은, EPS Bearer 단위의 QoS 제어 방식(이하, 베어러 단위 QoS 제어 방식)이다.
LTE 네트워크에서 단말(사용자)이 통신서비스를 이용하기 위해서는, 데이터를 전송하기 위한 EPS Bearer(이하, Bearer로 통칭)를 생성하게 된다. 이러한 EPS Bearer 즉 Bearer는, 단말 및 기지국 사이를 연결하는 무선구간과, 기지국 및 S-GW 및 P-GW 사이를 연결하는 유선구간을 연결하여, 단말에서 P-GW까지 생성되는 터널이라고 할 수 있다.
사용자(단말)의 데이터는, 이 터널 즉 Bearer를 통해 IP기반의 패킷 형태로 전송되며, 패킷 전송에 따른 트래픽 흐름을 서비스 플로우(Service Flow)라고 한다.
즉, 기존에는, 단말(사용자)에게 제공하던 통신서비스의 종류가 비교적 한정적이었으므로, 몇 개 종류의 통신서비스를 묶어 "Bearer" 라는 논리적 단위로 QoS를 보장(적용)하는 베어러 단위 QoS 제어 방식을 사용한 것이다.
따라서, 기존의 베어러 단위 QoS 제어 방식은, Bearer 별로 QoS 레벨(QoS 파라미터)을 정의하여 베어러 단위로 QoS를 보장하기 때문에, 하나의 Bearer를 통해 전송되는 서비스 플로우들은 모두 동일한 QoS(Bearer의 QoS 레벨)로 전송된다.
결국, 기존의 베어러 단위 QoS 제어 방식은, QoS 제어의 복잡도를 낮출 수 있는 장점이 있지만, 하나의 베어러에 속한 서비스 플로우들에 대해서 차등적인 QoS를 보장할 수 없는 한계가 있다.
이와 같이 기존의 베어러 단위 QoS 제어 방식이 갖는 한계는, 통신서비스의 종류가 비교적 한정적이었던 상황에서는 큰 문제가 되지 않을 수 있다.
하지만, 다양한 종류의 통신서비스들이 빠르게 개발/등장하고 있는 현재 또는 앞으로의 상황(예: 5G)에서는, 기존의 베어러 단위 QoS 제어 방식이 갖는 한계를 반드시 개선해야 할 것이다.
이에, 본 발명에서는, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가 없이도 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현하는 방안을 제안하고자 한다.
본 발명에서 도달하고자 하는 목적은, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가 없이 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현하는데 있다.
본 발명의 일 실시예에 따르면, 무선구간의 QoS 제어방법는, 기지국장치가, 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터에 기초하여, 상기 QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 확인하는 확인단계; 및 상기 기지국장치가, 상기 패킷을 무선구간으로 송신할 때 상기 확인한 무선구간 전용의 QoS 파라미터를 적용하여 송신하는 송신단계를 포함한다.
구체적으로, 상기 기지국장치가, 코어망 단에서 서비스 플로우에 적용하는 QoS 파라미터 별로 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블을 저장하는 단계를 더 포함하며; 상기 맵핑테이블은, 무선구간 전용 QoS 파라미터의 개수 보다 QoS 파라미터의 개수가 더 많을 수 있다.
구체적으로, 상기 기지국장치가, 코어망 단에서 서비스 플로우에 적용하는 QoS 파라미터 별로 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블을 저장하는 단계를 더 포함하며; 상기 맵핑테이블은, 서로 다른 2 이상의 QoS 파라미터가 동일한 하나의 무선구간 전용 QoS 파라미터와 맵핑될 수 있다.
구체적으로, 상기 2 이상의 QoS 파라미터는, 코어망 단이, 특정 크기 이하의 소량 데이터를 주기적으로 전송하는 통신서비스, 또는 사물인터넷 서비스에 적용하는 QoS 파라미터일 수 있다.
구체적으로, 상기 기지국장치가, 코어망 단에서 서비스 플로우에 적용하는 QoS 파라미터 별로 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블을 저장하는 단계를 더 포함하며; 상기 맵핑테이블은, 특정 QoS 파라미터가 적용되는 하나의 서비스 플로우에 대하여, 서비스 플로우 내 포함된 각 컨텐츠의 QoS 별로 무선구간 전용 QoS 파라미터가 맵핑될 수 있다.
구체적으로, 상기 특정 QoS 파라미터는, 대역폭을 미 보장하는 Non-GBR을 서비스타입으로 가지는 QoS 파라미터일 수 있다.
구체적으로, 상기 확인단계는, 상기 서비스 플로우에 적용되어 있는 QoS 파라미터가 상기 특정 QoS 파라미터인 경우, 상기 패킷의 헤더에서 서비스품질 유형(DiffServ) 구분을 위한 DSCP 필드를 확인하여 컨텐츠의 QoS를 구분하고, 상기 맵핑테이블에서 상기 구분한 컨텐츠의 QoS에 맵핑된 무선구간 전용의 QoS 파라미터를 확인할 수 있다.
본 발명의 실시예들에 따르면, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가 없이 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현할 수 있다.
이로 인해, 본 발명의 실시예들에 따르면, 무선구간에서 세부적인 단위의 차등적인 QoS 제어를 실현함으로써, 통신서비스 별로 보다 차등적인 QoS 즉 서비스 품질을 적용하는 효과를 도출한다.
도 1은 기존의 베어러 단위 QoS 제어 방식을 보여주는 예시도이다.
도 2는 본 발명의 실시예에 따른 무선구간의 QoS 제어 방식이 실현되는 흐름을 보여주는 예시도이다.
도 3은 본 발명의 실시예에 따른 기지국장치의 구성을 나타내는 블록도이다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 무선구간의 QoS 제어방법을 설명하는 제어 흐름도이다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 무선구간의 QoS 제어방법을 설명하는 제어 흐름도이다.
도 8 및 도 9는 본 발명의 일 실시예에 따른 무선구간의 QoS 제어방법을 설명하는 제어 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대하여 설명한다.
본 발명에 대한 구체적인 설명에 앞서, 도 1을 참조하여 기존의 베어러 단위 QoS 제어 방식을 설명하겠다.
기존의 베어러 단위 QoS 제어 방식은, 몇 개 종류의 통신서비스를 묶어서 "Bearer" 라는 논리적 단위로 QoS를 적용(보장)하는 방식이다.
도 1에 도시된 바와 같이, 단말(사용자)이 통신서비스를 이용하기 위해서는, 단말(사용자)이 이용하고자 하는 통신서비스에서 요구되는 QoS를 보장하는 EPS Bearer(이하, Bearer로 통칭), 예컨대 Bearer1,2가 생성된다.
이때, Bearer1,2 각각은, Default Bearer일 수도 있고, Dedicated Bearer일 수도 있다.
도 1에서는, 단말이 이용하는 통신서비스1의 서비스 플로우1, 통신서비스2의 서비스 플로우2가 하나의 베어러(Bearer1)에 속하고, 단말이 이용하는 통신서비스3의 서비스 플로우3, 통신서비스4의 서비스 플로우4가 하나의 베어러(Bearer2)에 속하는 경우를 가정하여 도시하고 있다.
이와 같이 가정하는 경우, 도 1에서 알 수 있듯이, Bearer1을 통해 전송되는 서비스 플로우1,2에는 모두 동일한 QoS 즉 Bearer1의 QoS 레벨(QoS 파라미터A)이 적용되고, Bearer2을 통해 전송되는 서비스 플로우3,4에는 모두 동일한 QoS 즉 Bearer2의 QoS 레벨(QoS 파라미터B)이 적용된다.
결국, 기존의 베어러 단위 QoS 제어 방식은, "Bearer" 라는 논리적 단위로 QoS를 적용함으로써, QoS 제어의 복잡도를 낮출 수 있는 장점이 있지만, 이로 인해 하나의 베어러에 속한 서비스 플로우들에 대해서 차등적인 QoS를 보장할 수 없는 한계가 있다.
이에, 본 발명에서는, 기존의 베어러 단위 QoS 제어 방식 보다 세부적인 단위로 차등적인 QoS 제어를 실현하는 방안을 제안하며, 특히 QoS 제어의 핵심이라 할 수 있는 무선구간에서 실현하고자 한다.
헌데, 세부적인 단위로 차등적인 QoS 제어를 실현하게 되면, 기존의 베어러 단위 QoS 제어 방식 대비 QoS 제어의 복잡도 및 부하가 증가될 우려가 있다.
이에, 본 발명에서는, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가를 최소화하면서 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현할 수 있는 방안(이하, 무선구간의 QoS 제어 방식)을 제안하고자 한다.
이하에서는, 본 발명에서 제안하는 무선구간의 QoS 제어 방식을 실현하는 장치 즉 기지국장치에 대해 구체적으로 설명하겠다.
먼저, 도 2를 참조하여, 본 발명의 일 실시예에 따른 무선구간의 QoS 제어 방식이 실현되는 흐름을 설명한다.
코어망(20)은, 코어망(20)이 서비스 플로우에 적용하는 QoS 파라미터를 무선구간 전용 QoS 파라미터로 변환하기 위한 맵핑룰을 기지국(100)에 전달한다(S1).
이때, 코어망(20)은, 기존의 베어러 단위 QoS 제어 방식을 그대로 지원할 수 있다.
이 경우라면, 코어망(20)이 서비스 플로우에 적용하는 QoS 파라미터는, 해당 서비스 플로우가 속한 베어러의 QoS 파라미터(QoS 레벨)와 같을 것이다.
따라서, 코어망(20)이 기존의 베어러 단위 QoS 제어 방식을 지원하는 경우 맵핑룰은, 서비스 플로우에 적용하는 QoS 파라미터(베어러 단위 QoS 파라미터) 별로, QoS 파라미터를 무선구간 전용 QoS 파라미터로 변환하기 위한 맵핑룰이라고 할 수 있다.
또한, 코어망(20)은, 기존 베어러 단위 QoS 제어 방식과 달리, 서비스 플로우 단위로 상이한 QoS를 보장(적용)하는 서비스 플로우 단위 QoS 제어 방식을 지원할 수도 있다.
이 경우라면, 코어망(20)이 서비스 플로우에 적용하는 QoS 파라미터는, 서비스 플로우 별로 정의되는 Qos 파라미터(QoS 레벨)일 것이다.
따라서, 코어망(20)이 서비스 플로우 단위 QoS 제어 방식을 지원하는 경우 맵핑룰은, 서비스 플로우에 적용하는 QoS 파라미터(서비스 플로우 단위 QoS 파라미터) 별로, QoS 파라미터를 무선구간 전용 QoS 파라미터로 변환하기 위한 맵핑룰이라고 할 수 있다.
다만, 본 발명에서 제안하는 무선구간의 QoS 제어 방식은, 코어망(20)이 베어러 단위 QoS 제어 방식을 지원하는지 또는 서비스 플로우 단위 QoS 제어 방식을 지원하는 여부와 무관하게, 후술의 동일한 구성으로 후술의 동일한 효과를 얻을 수 있다.
따라서, 설명의 편의를 위해, 이하에서는 코어망(20)이 베어러 단위 QoS 제어 방식을 지원하는지 또는 서비스 플로우 단위 QoS 제어 방식을 지원하는지에 대한 구분 없이 설명하겠다.
기지국(100)은, 코어망(20)으로부터 전달되는 맵핑룰을 셋팅할 수 있다(S2).
이때, 맵핑룰을 셋팅하여 기지국(100)에 저장되는 정보는, 코어망(20) 단에서 서비스 플로우에 적용하는 QoS 파라미터(베어러 단위 QoS 파라미터, 또는 서비스 플로우 단위 QoS 파라미터) 별로, 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블의 형태일 수 있다.
그리고, 기지국(100)은, 자신에 접속되는 단말(10)과의 RRC(Radio Resource Control) 설정 과정에서(S3), Qos제어정보를 RRC메시지에 포함시켜 단말(10)로 제공한다.
여기서, Qos제어정보는, 기지국(100)이 서비스 플로우 별로 적용하는 무선구간 전용의 QoS 파라미터를, 단말(10)이 식별할 수 있도록 하는 정보이다.
예를 들면, Qos제어정보는, 기지국(100)이 단말(10)로 제공하는 서비스 플로우에 적용하는 무선구간 전용의 QoS 파라미터를 포함할 수 있다.
이에, 단말(10)은, 기지국(100)으로부터 제공되는 QoS제어정보를 셋팅할 수 있다(S4).
기지국(100)은, 코어망(20)으로부터 단말(10)로 전송하기 위한 패킷이 수신되면(S5), 금번 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터(예: QoS 파라미터A)를 확인한다.
그리고, 기지국(100)은, 앞서 셋팅/저장한 맵핑테이블에서, 서비스 플로우에 적용되어 있는 QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 확인한다(S6).
즉, 기지국(100)은, 금번 패킷(서비스 플로우)에 대하여, 코어망(20)에서 적용하는 QoS 파라미터(예: QoS 파라미터A)를 무선구간 전용의 QoS 파라미터(예: QoS 파라미터1)로 맵핑시킴으로써(S6), 코어망(20) 단의 QoS 레벨을 무선구간 전용의 QoS 레벨로 변환하는 것이다.
이후, 기지국(100)은, 단말(10)로의 금번 패킷 송신 시 앞서 확인한 무선구간 전용의 QoS 파라미터(예: QoS 파라미터1)를 패킷에 적용하여 송신한다(S7).
즉, 기지국(100)은, 금번 패킷을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용의 QoS 레벨로 변환하여 송신하는 것이다.
단말(10)은, 업링크 패킷이 발생하면(S8), 기 셋팅한 QoS제어정보를 기반으로, 금번 서비스 플로우의 다운링크 시 기지국(100)이 적용한 무선구간 전용의 QoS 파라미터(예: QoS 파라미터1)를 동일하게 적용하여 업링크 패킷을 송신할 수 있다(S9).
이와 같이, 단말(10)은, 기 셋팅한 QoS제어정보를 기반으로, 업링크 패킷 송신 시에도, 다운링크 시와 동일한 무선구간 전용의 QoS 레벨로 송신할 수 있다.
기지국(100)은, 단말(10)로부터 업링크 패킷이 수신되면, 전술한 S6 단계의 QoS 맵핑을 역으로 수행하여, 금번 업링크 패킷을 무선구간 전용의 QoS 레벨에서 코어망(20)의 QoS 레벨로 변환하여 전송한다(S10).
즉, 기지국(100)은, 단말(10)로부터 업링크 패킷이 수신되면, 무선구간 전용의 QoS 파라미터(예: QoS 파라미터1)를 코어망(20)에서 적용하는 QoS 파라미터(예: QoS 파라미터A)로 맵핑시킨 후, 업링크 패킷 전송 시 QoS 파라미터(예: QoS 파라미터A)를 적용하여 전송한다(S10).
이하에서는, 도 3을 참조하여, 본 발명의 일 실시예에 따른 무선구간의 QoS 제어 방식을 실현하는 장치, 즉 기지국장치에 대해서 구체적으로 설명하겠다.
그리고, 설명의 편의를 위해, 도 2에서 언급한 기지국(100)의 참조번호를 사용하여 설명한다.
도 3에 도시된 바와 같이, 본 발명의 기지국장치(100)는, 확인부(110)와, 송신부(130)를 포함한다.
확인부(110)는, 단말로 전송하기 위한 패킷에 대하여, 서비스 플로우에 적용되어 있는 QoS 파라미터에 기초하여, 상기 QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 확인하는 기능을 수행한다.
송신부(130)는, 패킷 송신 시 확인부(110)에서 확인한 무선구간 전용의 QoS 파라미터를 적용하여 송신함으로써, 패킷을 코어망 단이 적용한 QoS 레벨에서 무선구간 전용의 QoS 레벨로 변환하여 송신하는 기능을 수행한다.
여기서, 단말은, 기지국장치(100)에 접속하여 통신서비스를 이용하는 단말이며, 기지국장치(100)를 통해 동시에 여러 통신서비스를 이용할 수 있다.
이하에서는, 도 2에 도시된 단말(10)을 언급하여 설명하겠다.
확인부(110)는, 코어망(20)으로부터 단말(10)로 전송하기 위한 패킷이 수신되면, 해당 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터를 확인한다.
예를 들어, 코어망(20)으로부터 수신되는 다운링크 패킷 헤더에는, 코어망(20)에서 해당 패킷의 서비스 플로우에 적용한 QoS 파라미터가 포함되어 있을 수 있다.
이 경우, 확인부(110)는, 단말(10)로 전송하기 위한 패킷 헤더에 포함되어 있는 QoS 파라미터를 추출/확인함으로써, 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터를 확인할 수 있다.
또는, 코어망(20)으로부터 수신되는 다운링크 패킷 헤더에는, 코어망(20)에서 해당 패킷의 서비스 플로우에 적용한 QoS 파라미터가 무엇인지를 식별하게 하는 별도의 QoS식별자가 포함되어 있을 수 있다.
이 경우, 확인부(110)는, 단말(10)로 전송하기 위한 패킷 헤더에 포함되어 있는 QoS식별자를 추출/확인함으로써, 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터를 확인할 수 있다.
또는, 기지국장치(100)에는, 코어망(20)에서 각 서비스 플로우에 어떤 QoS 파라미터(베어러 단위 QoS 파라미터, 또는 서비스 플로우 단위 QoS 파라미터)를 적용할 것인지에 대한 정책정보가 저장되어 있을 수 있다.
이 경우, 확인부(110)는, 단말(10)로 전송하기 위한 패킷 헤더 내 5-tuple 즉 Source IP, Destination IP, Source Port, Destination Port, Protocol ID에 근거하여 패킷의 서비스 플로우를 구분하고, 앞서 언급한 정책정보를 기초로 금번 구분한 서비스 플로우에 코어망(20)이 적용할 QoS 파라미터를 확인함으로써, 코어망(20)에 의해 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터를 확인할 수 있다.
그리고, 확인부(110)는, 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터를 확인하면, 이 QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 확인한다.
이를 위해, 기지국장치(100)는, 코어망(20) 단에서이 서비스 플로우에 적용하는 QoS 파라미터 별로 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블을 저장하는 저장부(120)를 더 포함할 수 있다.
보다 구체적으로 설명하면, 코어망(20) 내 지정된 특정 장비(미도시)는, 코어망(20)이 서비스 플로우에 적용하는 QoS 파라미터를 무선구간 전용 QoS 파라미터로 변환하기 위한 맵핑룰을 기지국장치(100)에 전달한다.
이때, 코어망(20)은, 기존의 베어러 단위 QoS 제어 방식을 그대로 지원할 수 있다.
이 경우라면, 코어망(20)이 서비스 플로우에 적용하는 QoS 파라미터는, 해당 서비스 플로우가 속한 베어러의 QoS 파라미터(QoS 레벨)와 같을 것이다.
따라서, 코어망(20)이 기존의 베어러 단위 QoS 제어 방식을 지원하는 경우 맵핑룰은, 서비스 플로우에 적용하는 QoS 파라미터(베어러 단위 QoS 파라미터) 별로, QoS 파라미터를 무선구간 전용 QoS 파라미터로 변환하기 위한 맵핑룰이라고 할 수 있다.
또한, 코어망(20)은, 기존 베어러 단위 QoS 제어 방식과 달리, 서비스 플로우 단위로 상이한 QoS를 보장(적용)하는 서비스 플로우 단위 QoS 제어 방식을 지원할 수도 있다.
이 경우라면, 코어망(20)이 서비스 플로우에 적용하는 QoS 파라미터는, 서비스 플로우 별로 정의되는 Qos 파라미터(QoS 레벨)일 것이다.
따라서, 코어망(20)이 서비스 플로우 단위 QoS 제어 방식을 지원하는 경우 맵핑룰은, 서비스 플로우에 적용하는 QoS 파라미터(서비스 플로우 단위 QoS 파라미터) 별로, QoS 파라미터를 무선구간 전용 QoS 파라미터로 변환하기 위한 맵핑룰이라고 할 수 있다.
다만, 본 발명에서 제안하는 무선구간의 QoS 제어 방식은, 코어망(20)이 베어러 단위 QoS 제어 방식을 지원하는지 또는 서비스 플로우 단위 QoS 제어 방식을 지원하는 여부와 무관하게, 후술의 동일한 구성으로 후술의 동일한 효과를 얻을 수 있다.
설명의 편의를 위해, 이하에서는 코어망(20)이 베어러 단위 QoS 제어 방식을 지원하는지 또는 서비스 플로우 단위 QoS 제어 방식을 지원하는지에 대한 구분 없이 설명하겠다.
기지국장치(100)는, 코어망(20)으로부터 전달되는 맵핑룰을 셋팅하며, 맵핑룰을 셋팅하는 과정에서 저장부(120)에는, 코어망(20) 단에서 서비스 플로우에 적용하는 QoS 파라미터(베어러 단위 QoS 파라미터, 또는 서비스 플로우 단위 QoS 파라미터) 별로, 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블이 저장된다.
확인부(110)는, 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터를 확인하면, 이 QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 저장부(120)에 저장된 맵핑테이블에서 확인한다.
즉, 확인부(110)은, 금번 패킷(서비스 플로우)에 대하여, 코어망(20)에서 적용하는 QoS 파라미터를 무선구간 전용의 QoS 파라미터로 맵핑시킴으로써, 코어망(20) 단의 QoS 레벨을 무선구간 전용의 QoS 레벨로 변환하는 것이다.
송신부(130)는, 단말(10)로의 금번 패킷 송신 시 확인부(110)에서 확인한 무선구간 전용의 QoS 파라미터를 적용함으로써, 금번 패킷을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용의 QoS 레벨로 변환하여 송신한다.
즉, 송신부(130)는, 다운링크 패킷을 무선구간으로 송신할 때, 코어망(20) 단에서 해당 패킷의 서비스 플로우에 적용한 QoS 파라미터(QoS 레벨) 대신 무선구간 전용의 QoS 파라미터(QoS 레벨)을 적용하여 송신하는 것이다.
이와 같이, 본 발명에서는, 단말에서 코어망까지의 전체구간(베어러)을 대상으로 QoS를 적용하는 기존의 QoS 제어 방식과 달리, 단말에서 코어망까지의 전체구간 중 액세스 및 코어망 사이의 QoS 제어 방식과는 별개로, 단말 및 액세스 단(기지국) 사이 무선구간(Radio Section)의 QoS 제어를 별도로 구현할 수 있다.
즉, 본 발명의 무선구간 QoS 제어 방식에서는, 단말에서 코어망까지의 전체구간 중 QoS 제어의 핵심이라 할 수 있는 가장 민감한 무선구간을 DRB(Data Radio Bearer)이라는 별도의 단위로 정의하여, 무선구간에서 독립적으로 보다 세부적인 DRB 단위로 차등적인 QoS 제어를 실현할 수 있다.
이상에서는, 본 발명의 무선구간 QoS 제어 방식을, 다운링크 트래픽을 기준으로 설명하였다.
업링크 트래픽에 대해서 본 발명의 무선구간 QoS 제어 방식을 적용하기 위해서는, 무선구간 QoS 제어에 필요한 정보(QoS제어정보)를 단말로 알려주는 과정이 필요한데, 이 과정은 QoS 제어가 세분화될수록 복잡도 및 부하가 증가할 우려가 있다.
이에, 본 발명에서는, 복잡도 및 부하 증가를 최소화하면서, 무선구간 QoS 제어에 필요한 정보(QoS제어정보)를 단말로 알려줄 수 있어야 한다.
구체적으로, 도 3에 도시된 바와 같이, 본 발명의 기지국장치(100)는, 제어정보전달부(140)를 더 포함한다.
제어정보전달부(140)는, 확인부(110)에서 확인한 무선구간 전용의 QoS 파라미터를 식별 가능하게 하는 Qos제어정보를 포함하는 RRC메시지를, 단말(10)로 전송한다.
보다 구체적으로 설명하면, 기지국장치(100)에 통신서비스를 이용하고자 단말(10)이 접속하는 경우, 기지국장치(100) 및 단말(10) 간에는 RRC(Radio Resource Control) 설정 과정이 수행된다.
이때, 제어정보전달부(140)는, RRC 설정 과정에서, Qos제어정보를 RRC메시지에 포함시켜 단말(10)로 제공한다.
여기서, Qos제어정보는, 기지국장치(100)가 서비스 플로우 별로 적용하는 무선구간 전용의 QoS 파라미터를, 단말(10)이 식별할 수 있도록 하는 정보이다.
예를 들면, Qos제어정보는, 기지국장치(100)가 단말(10)로 제공하는 서비스 플로우에 적용한 무선구간 전용의 QoS 파라미터를 포함할 수 있다.
보다 구체적으로, Qos제어정보는, 서비스 플로우 구분에 이용되는 5-tuple(Source IP, Destination IP, Source Port, Destination Port, Protocol ID) 및 무선구간 전용의 QoS 파라미터를 매핑시킨 형태를 가짐으로써, 기지국장치(100)가 서비스 플로우 별로 적용한 무선구간 전용의 QoS 파라미터를 식별 가능하게 하는 정보일 수 있다.
단말(10)은, 기지국장치(100)로부터 제공되는 Qos제어정보를 셋팅하여, 무선구간 QoS 제어에 필요한 정보(QoS제어정보)를 알 수 있다.
단말(10)은, QoS제어정보를 기반으로, 금번 서비스 플로우의 다운링크 시 기지국장치(100)가 적용한 무선구간 전용의 QoS 파라미터를 동일하게 적용하여 업링크 패킷을 송신할 수 있다.
즉, 단말(10)은, 기지국장치(100)로부터 제공 받아 셋팅한 QoS제어정보를 기반으로, 업링크 패킷 송신 시에도, 다운링크 시와 동일한 무선구간 전용의 QoS 레벨로 송신할 수 있다.
이와 같이, 본 발명에서는, RRC 설정 과정에서 QoS제어정보를 단말에 제공함으로써, 최소한의 메시지만 사용해서 복잡도 및 부하가 증가를 최소화하면서, 무선구간 QoS 제어에 필요한 정보(QoS제어정보)를 단말에 알릴 수 있다.
한편, 본 발명에서 제안하는 무선구간의 QoS 제어 방식은, 맵핑룰(맵핑테이블)을 어떻게 정의하느냐에 따라, 무선구간에서의 QoS 제어를 통해 지향하여 얻을 수 있는 성능이 달라질 수 있다.
이하에서는, 본 발명의 무선구간 QoS 제어 방식에서, QoS 제어를 위한 맵핑룰(맵핑테이블)을 어떻게 정의하느냐에 따른 다양한 실시예들을 설명하겠다.
먼저, 가장 세부적이고 차등적인 QoS 제어를 위한 이상적인 예시는, 서비스 플로우 단위로 상이한 무선구간 전용의 QoS 레벨(DRB)을 보장할 수 있는, 서비스 플로우:DRB의 1:1 맵핑테이블일 것이다.
이와 같은 서비스 플로우:DRB의 1:1 맵핑의 경우, 서비스 플로우 별로 각기 독립적인 최적의 무선구간 전용의 QoS 레벨(DRB)을 보장할 수 있기 때문에, 서비스 플로우 단위의 차등적인 QoS 제어 측면 면에서는 가장 우수할 것이다.
하지만, 서비스 플로우:DRB의 1:1 맵핑의 경우, 액세스 단(기지국)에서의 과도한 맵핑 처리로 인한 오버헤드, 많은 수의 DRB 관리로 인한 비용 등 때문에, 기존의 QoS 제어 방식 대비 복잡도 및 부하 증가가 우려된다.
이에, 본 발명에서는, QoS 제어를 위한 맵핑룰(맵핑테이블)을 정의하는데 있어, 다음의 3가지 실시예를 제안한다.
다만, 설명의 편의를 위해, 이하에서는, 코어망(20)이 서비스 플로우 단위 QoS 제어 방식을 지원하는 것으로 가정하여 설명하겠다.
이러한 가정에 따르면, 코어망(20)에서 수신되는 서비스 플로우에는, 서비스 플로우 별로 정의된 QoS 파라미터(QoS 레벨)가 적용되어 있을 것이다.
먼저, 전술의 3가지 실시예 중 일 실시예(이하, 제1실시예)에 따르면, 서비스 플로우:DRB의 M:N 맵핑을 제안한다(M>N).
제1실시예에서, 맵핑테이블은, 무선구간 전용 QoS 파라미터의 개수 보다 QoS 파라미터의 개수가 더 많은 것을 특징으로 한다.
즉, 코어망(20)에서 수신되는 서비스 플로우의 개수를 M개로 가정하면, M개의 서비스 플로우 각각에 적용되는 M개의 QoS 파라미터(QoS 레벨)를 N개(M>N)의 무선구간 전용 QoS 파라미터(QoS 레벨)로 맵핑하는, 서비스 플로우:DRB의 M:N 맵핑룰(맵핑테이블)을 정의하는 것이다.
이러한 서비스 플로우:DRB의 M:N 실시예의 경우, 차등적인 QoS 제어 측면 면에서는 1:1 맵핑의 경우 보다는 성능이 약간 떨어지만 기존 베어러 단위 QoS 제어와 비교할 때 성능이 우수하다.
그리고, 서비스 플로우:DRB의 M:N 실시예의 경우, 액세스 단(기지국)에서의 맵핑 처리로 인한 오버헤드, DRB 관리로 인한 비용 측면에서는, 1:1 맵핑의 경우 대비 우수하기 때문에, 복잡도 및 부하 증가를 줄일 수 있다.
이때, M개의 QoS 파라미터와 N개의 무선구간 전용 QoS 파라미터 간 맵핑 관계는, 맵핑룰(맵핑테이블) 정의 시 결정될 것이다.
한편, 전술의 3가지 실시예 중 일 실시예(이하, 제2실시예)에 따르면, 서비스 플로우:DRB의 M:1 맵핑을 제안한다.
제2실시예에서, 맵핑테이블은, 서로 다른 2 이상의 QoS 파라미터가 동일한 하나의 무선구간 전용 QoS 파라미터와 맵핑되는 것을 특징으로 한다.
즉, 코어망(20)에서 수신되는 M개의 서비스 플로우각각에 적용되는 M개의 QoS 파라미터(QoS 레벨)를 1개의 무선구간 전용 QoS 파라미터(QoS 레벨)로 맵핑하는, 서비스 플로우:DRB의 M:1 맵핑룰(맵핑테이블)을 정의하는 것이다.
이때, M개의 서비스 플로우 각각에 적용되는 M개의 QoS 파라미터(QoS 레벨)는, 코어망(20) 단에서 특정 크기 이하의 소량 데이터를 주기적으로 전송하는 통신서비스, 또는 사물인터넷 (Internet of Things) 서비스에 적용하는 QoS 파라미터(QoS 레벨)를 의미한다.
향후, 5G 환경에서 주목받고 있는 통신서비스 중 하나로는, 원격지의 다수 단말이 각각 수집한 특정 트기 이하의 소량 데이터를 주기적으로 중앙(서버)로 전송하는 통신서비스, 일명 사물인터넷(IoT) 서비스가 있다.
이러한 사물인터넷(IoT) 서비스 중에서도, 광역 커버리지를 대상으로 하여 저속 전송(<1kbps) 및 저 전력을 지원하는 특화된 IoT 기술(LoRa: Long Range)의 사물인터넷(IoT) 서비스도 등장하였다.
이와 같은 사물인터넷(IoT) 서비스의 경우, 광역 커버리지/저속 전송(<1kbps)/저 전력/소량 데이터에 특화되기 때문에, 무선구간에서 서비스 플로우 별로 차등적인 QoS 제어 보다는 무선자원을 효율적으로 운용하는 것에 더 의미가 있을 것이다.
이에, 서비스 플로우:DRB의 M:1 실시예의 경우, 사물인터넷(IoT) 서비스의 M개 서비스 플로우를 모두 동일한 1개의 무선구간 전용 QoS 파라미터(QoS 레벨)로 맵핑함으로써, 액세스 단(기지국)에서의 맵핑 처리로 인한 오버헤드, DRB 관리로 인한 비용 측면에서 매우 우수할 뿐 아니라 무선자원 운용 효율도 높기 때문에, 복잡도 및 부하 증가를 줄이면서도 무선자원 운용 효율을 높일 수 있다.
한편, 전술의 3가지 실시예 중 일 실시예(이하, 제3실시예)에 따르면, 서비스 플로우:DRB의 1:N 맵핑을 제안한다.
제3실시예에서, 맵핑테이블은, 특정 QoS 파라미터가 적용되는 하나의 서비스 플로우에 대하여, 서비스 플로우 내 포함된 각 컨텐츠의 QoS 별로 무선구간 전용 QoS 파라미터가 맵핑되는 것을 특징으로 한다.
즉, 코어망(20)에서 수신되는 하나의 서비스 플로우에 적용되는 1개의 특정 QoS 파라미터(특정 QoS 레벨)를 N개의 무선구간 전용 QoS 파라미터(QoS 레벨)로 맵핑하는, 서비스 플로우:DRB의 1:N 맵핑룰(맵핑테이블)을 정의하는 것이다.
이때, 특정 QoS 파라미터는, 대역폭을 미 보장하는 Non-GBR(Guaranteed Bit Rate)을 서비스타입으로 가지는 QoS 파라미터를 의미한다.
코어망(20)에서 적용하는 QoS 파라미터는, 서비스타입(Resource Type), QCI(QoS Class Identifier), ARP(Allocation and Retention Priority) 등을 포함한다.
서비스타입은, 전송 시 대역폭을 보장하는 GBR인지, 또는 대역폭을 보장하지 않는 Non-GBR인지 여부를 나타내는 파라미터이다.
QCI는, QoS 우선 순위를 정수값인 1~9로 표현한 파라미터이다.
ARP는, 서비스 플로우에 따른 베어러 생성이 요구될 때, 생성 또는 거절에 관여하는 파라미터이다.
물론, QoS 파라미터는, 전술의 파라미터들 외에 다른 파라미터도 포함할 수 있다.
대역폭을 보장하지 않는 Non-GBR의 QoS 파라미터가 적용된 하나의 서비스 플로우라도, 서비스 플로우 내에는 QoS Requirement가 다른 각 컨텐츠의 패킷들이 포함될 수 있다.
이에, 서비스 플로우:DRB의 1:N 실시예의 경우, Non-GBR의 특정 QoS 파라미터가 적용되는 하나의 서비스 플로우에 대하여, 서비스 플로우 내 포함되는 각 컨텐츠(QoS Requirement를 기준으로 구분되는 각 컨텐츠) 별로 서로 다른 무선구간 전용 QoS 파라미터를 맵핑하여, 무선구간 QoS 제어를 가장 세분화하여 차등적으로 적용할 수 있다.
특히, 1:N의 제3실시예의 경우는, 서비스 플로우 내 포함되는 각 컨텐츠(컨텐츠 QoS)를 구분해야 하는 구성이 더 요구된다.
이에, 제3실시예의 경우, 확인부(110)는, 코어망(20)으로부터 단말(10)로 전송하기 위한 패킷이 수신되면, 해당 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터를 확인하여 Non-GBR의 특정 QoS 파라미터인지 여부를 확인한다.
확인부(110)는, QoS 파라미터 확인 결과, Non-GBR의 특정 QoS 파라미터인 경우라면, 금번 패킷의 헤더(예: IP 패킷 헤더)에서 서비스품질 유형(DiffServ) 구분을 위한 DSCP(Differentiated services code point) 필드를 보고 컨텐츠의 QoS(QoS Requirement)를 구분할 수 있다.
그리고, 확인부(110)는, 구분한 각 컨텐츠의 QoS(QoS Requirement)에 맵핑된 무선구간 전용의 QoS 파라미터를, 제3실시예에 따른 맵핑테이블(1:N 맵핑)에서 확인한다.
이렇게 되면, 송신부(130)는, 단말(10)로의 금번 패킷 송신 시, 확인부(110)에서 확인한 무선구간 전용의 QoS 파라미터(하나의 서비스 플로우에서 컨텐츠의 QoS(QoS Requirement)를 기준으로 구분되는 각 컨텐츠 별 무선구간 전용의 QoS 파라미터)를 적용하여, 금번 패킷을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용으로 변환한 QoS 레벨(서비스 플로우 내 컨텐츠 별)로 송신한다.
이에, 제3실시예(1:N)의 경우, 하나의 서비스 플로우에 포함되는 컨텐츠 별로 다른 N개의 무선구간 전용 QoS 파라미터(QoS 레벨)를 맵핑함으로써, 차등적인 QoS 제어 측면 면에서는 기존의 QoS 제어 방식(베어러 단위, 또는 서비스 플로우 단위) 대비 가장 우수할 것이다.
이상에서 설명한 바와 같이, 본 발명의 실시예들에 따르면, 단말에서 코어망까지의 전체구간 중 액세스 및 코어망 사이의 QoS 제어 방식과는 별개로 단말 및 액세스 단(기지국) 사이 무선구간(Radio Section)의 QoS 제어를 별도로 구현함으로써, 무선구간에서 독립적으로 DRB 단위 QoS 제어를 실현할 수 있다.
더 나아가, 본 발명의 실시예들에 따르면, 맵핑룰(맵핑테이블)을 정의하는 다양한 실시예들을 통해서, 독립적인 무선구간의 QoS 제어로 인해 우려되는 복잡도 및 부하 증가를 최소화하면서 QoS 제어 성능을 얻을 수 있고, 무선자원 운용 효율까지도 높이는 효과를 기대할 수 있다.
따라서, 본 발명의 무선구간 QoS 제어 방식에 따르면, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가 없이 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현함으로써, 통신서비스 별로 보다 차등적인 QoS(서비스 품질)을 적용하는 효과를 도출한다.
이하에서는, 도 4 내지 도 9를 참조하여 본 발명의 다양한 실시예에 따른 무선구간의 QoS 제어방법을 설명하겠다.
다만, 본 발명에서 제안하는 무선구간의 QoS 제어방법은, 기지국(100)에서 구현되므로, 이하에서는 설명의 편의 상 기지국(100)의 무선구간 QoS 제어방법으로 지칭하여 설명하겠다.
먼저, 도 4 및 도 5를 참조하여, 본 발명의 제1실시예에 따른 무선구간의 QoS 제어방법을 설명한다.
도 4에 도시된 바와 같이, 본 발명에 따른 무선구간의 QoS 제어방법, 즉 기지국(100)의 무선구간 QoS 제어방법은, 제1실시예에 따른 맵핑테이블 즉 서비스 플로우:DRB의 M:N 맵핑테이블을 저장한다(S100).
기지국(100)의 무선구간 QoS 제어방법은, 단말(10)로의 패킷이 수신되면(S110), 해당 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터 즉 코어망(20)에 의해 적용된 QoS 파라미터를 확인한다(S120).
기지국(100)의 무선구간 QoS 제어방법은, S120단계에서 QoS 파라미터를 확인하면, QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 M:N 맵핑테이블에서 확인한다(S130).
기지국(100)의 무선구간 QoS 제어방법은, 단말(10)로의 금번 패킷 송신 시, S130단계에서 확인한 무선구간 전용의 QoS 파라미터를 적용하여 송신함으로써, 금번 패킷을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용으로 변환한 QoS 레벨로 송신할 수 있다(S140).
도 5를 참조하면, 서로 다른 QoS 파라미터A,B,C가 적용되는 각 서비스 플로우의 패킷1,2,3이 수신되는 경우를 가정할 수 있다.
이처럼 가정하면, 기지국(100)은, 각 패킷1,2,3의 서비스 플로우에 적용되어 있는 QoS 파라미터A,B,C를 확인한 후, QoS 파라미터A,B,C 각각에 맵핑된 무선구간 전용의 QoS 파라미터를 M:N 맵핑테이블에서 확인하는, 무선구간 전용 QoS 맵핑을 수행한다.
이때, M:N 맵핑테이블에서, QoS 파라미터A,B는 무선구간 전용의 QoS 파라미터1에 맵핑되고, QoS 파라미터C는 무선구간 전용의 QoS 파라미터2에 맵핑된다고 가정한다.
이 경우, 기지국(100)은, 단말(10)로의 패킷1,2 송신 시 무선구간 전용의 QoS 파라미터1을 적용하고, 단말(10)로의 패킷3 송신 시 무선구간 전용의 QoS 파라미터2를 적용함으로써, 금번 패킷1,2,3을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용의 QoS 레벨로 변환하는, M:N 무선구간 전용 QoS 레벨로 송신할 수 있다.
다음, 도 6 및 도 7를 참조하여, 본 발명의 제2실시예에 따른 무선구간의 QoS 제어방법을 설명한다.
도 6에 도시된 바와 같이, 본 발명에 따른 기지국(100)의 무선구간 QoS 제어방법은, 제2실시예에 따른 맵핑테이블 즉 서비스 플로우:DRB의 M:1 맵핑테이블을 저장한다(S200).
기지국(100)의 무선구간 QoS 제어방법은, 단말(10)로의 패킷이 수신되면(S210), 해당 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터 즉 코어망(20)에 의해 적용된 QoS 파라미터를 확인한다(S220).
기지국(100)의 무선구간 QoS 제어방법은, S220단계에서 QoS 파라미터를 확인하면, QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 M:N 맵핑테이블에서 확인한다(S230).
그리고, 기지국(100)의 무선구간 QoS 제어방법은, 단말(10)로의 금번 패킷 송신 시, S230단계에서 확인한 무선구간 전용의 QoS 파라미터를 적용하여 송신함으로써, 금번 패킷을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용으로 변환한 QoS 레벨로 송신할 수 있다(S240).
이에, 도 7을 참조하여 예를 들면, 서로 다른 QoS 파라미터D,E,F가 적용되는 각 서비스 플로우의 패킷1,2,3이 수신되는 경우를 가정할 수 있다.
이처럼 가정하면, 기지국(100)은, 각 패킷1,2,3의 서비스 플로우에 적용되어 있는 QoS 파라미터D,E,F를 확인한 후, QoS 파라미터D,E,F 각각에 맵핑된 무선구간 전용의 QoS 파라미터를 M:1 맵핑테이블에서 확인하는, 무선구간 전용 QoS 맵핑을 수행한다.
이때, 패킷1,2,3의 서비스 플로우는, 광역 커버리지/저속 전송(<1kbps)/저 전력/소량 데이터에 특화된 사물인터넷(IoT) 서비스라고 가정한다.
그리고, M:1 맵핑테이블에는, 사물인터넷(IoT) 서비스에 적용되는 QoS 파라미터D,E,F가 무선구간 전용의 QoS 파라미터3에 맵핑된다고 가정한다.
이 경우, 기지국(100)은, 단말(10)로의 패킷1,2,3 송신 시 무선구간 전용의 QoS 파라미터3을 적용함으로써, 금번 패킷1,2,3을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용의 QoS 레벨로 변환하는, M:1 무선구간 전용 QoS 레벨로 송신할 수 있다.
다음, 도 8 및 도 9를 참조하여, 본 발명의 제3실시예에 따른 무선구간의 QoS 제어방법을 설명한다.
도 8에 도시된 바와 같이, 본 발명에 따른 기지국(100)의 무선구간 QoS 제어방법은, 제3실시예에 따른 맵핑테이블 즉 서비스 플로우:DRB의 1:N 맵핑테이블을 저장한다(S300).
기지국(100)의 무선구간 QoS 제어방법은, 단말(10)로의 패킷이 수신되면(S310), 해당 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터 즉 코어망(20)에 의해 적용된 QoS 파라미터를 확인한다(S320).
이때, 기지국(100)의 무선구간 QoS 제어방법은, S320단계에서 QoS 파라미터를 확인한 결과 Non-GBR의 특정 QoS 파라미터인 경우라면, 금번 패킷의 헤더(예: IP 패킷 헤더)에서 서비스품질 유형(DiffServ) 구분을 위한 DSCP(Differentiated services code point) 필드를 보고 컨텐츠의 QoS(QoS Requirement)를 구분할 수 있다.
그리고, 기지국(100)의 무선구간 QoS 제어방법은, DSCP 필드를 보고 구분한 컨텐츠의 QoS(QoS Requirement)에 맵핑된 무선구간 전용의 QoS 파라미터를, 1:N 맵핑테이블에서 확인한다(S330).
그리고, 기지국(100)의 무선구간 QoS 제어방법은, 단말(10)로의 금번 패킷 송신 시, S330단계에서 확인한 무선구간 전용의 QoS 파라미터(하나의 서비스 플로우에서 컨텐츠의 QoS(QoS Requirement)를 기준으로 구분되는 각 컨텐츠 별 무선구간 전용의 QoS 파라미터)를 적용하여, 금번 패킷을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용으로 변환한 QoS 레벨(서비스 플로우 내 컨텐츠 별)로 송신한다(S340).
이에, 도 9를 참조하여 예를 들면, QoS 파라미터G(Non-GBR)가 적용되는 서비스 플로우의 패킷1,2,3이 수신되는 경우를 가정할 수 있다.
이처럼 가정하면, 기지국(100)은, 각 패킷1,2,3의 서비스 플로우에 적용되어 있는 QoS 파라미터G를 확인한 결과 Non-GBR의 특정 QoS 파라미터인 경우라면, 각 패킷1,2,3의 헤더에서 DSCP 필드를 보고 컨텐츠의 QoS(QoS Requirement)를 구분할 것이다.
이때, 패킷1,2는 동일 QoS의 컨텐츠로 구분되고, 패킷3은 다른 QoS의 컨텐츠로 구분되는 것으로 가정한다.
이 경우, 기지국(100)은, 패킷1,2의 컨텐츠(QoS)에 맵핑된 무선구간 전용의 QoS 파라미터를 1:M 맵핑테이블에서 확인하고 패킷3의 컨텐츠(QoS)에 맵핑된 무선구간 전용의 QoS 파라미터를 1:M 맵핑테이블에서 확인하는, 무선구간 전용 QoS 맵핑을 수행한다.
이때, 1:N 맵핑테이블에는, 하나의 서비스 플로우에 포함된 패킷1,2의 컨텐츠에 무선구간 전용의 QoS 파라미터4가 맵핑되고, 패킷3의 컨텐츠에 무선구간 전용의 QoS 파라미터5가 맵핑된다고 가정한다.
이 경우, 기지국(100)은, 단말(10)로의 패킷1,2 송신 시 무선구간 전용의 QoS 파라미터4를 적용하고, 단말(10)로의 패킷3 송신 시 무선구간 전용의 QoS 파라미터5를 적용함으로써, 금번 패킷1,2,3을 코어망(20) 단이 적용한 QoS 레벨에서 무선구간 전용의 QoS 레벨로 변환하는, 1:N 무선구간 전용 QoS 레벨로 송신할 수 있다.
이상에 설명한 바와 같이, 본 발명의 무선구간의 QoS 제어방법은, 기존의 베어러 단위 QoS 제어 방식 대비, 복잡도 및 부하 증가 없이 무선구간에서 보다 세부적인 단위로 차등적인 QoS 제어를 실현함으로써, 통신서비스 별로 보다 차등적인 QoS(서비스 품질)을 적용하는 효과를 도출한다.
이상에서 설명한 바와 같이 본 발명에 따른 무선구간의 QoS 제어방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
지금까지 본 발명을 바람직한 실시 예를 참조하여 상세히 설명하였지만, 본 발명이 상기한 실시 예에 한정되는 것은 아니며, 이하의 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 또는 수정이 가능한 범위까지 본 발명의 기술적 사상이 미친다 할 것이다.

Claims (7)

  1. 무선구간의 QoS 제어방법에 있어서,
    기지국장치가, 패킷의 서비스 플로우에 적용되어 있는 QoS 파라미터에 기초하여, 상기 QoS 파라미터에 맵핑된 무선구간 전용의 QoS 파라미터를 확인하는 확인단계; 및
    상기 기지국장치가, 상기 패킷을 무선구간으로 송신할 때 상기 확인한 무선구간 전용의 QoS 파라미터를 적용하여 송신하는 송신단계를 포함하는 것을 특징으로 하는 무선구간의 QoS 제어방법.
  2. 제 1 항에 있어서,
    상기 기지국장치가, 코어망 단에서 서비스 플로우에 적용하는 QoS 파라미터 별로 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블을 저장하는 단계를 더 포함하며;
    상기 맵핑테이블은,
    무선구간 전용 QoS 파라미터의 개수 보다 QoS 파라미터의 개수가 더 많은 것을 특징으로 하는 무선구간의 QoS 제어방법.
  3. 제 1 항에 있어서,
    상기 기지국장치가, 코어망 단에서 서비스 플로우에 적용하는 QoS 파라미터 별로 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블을 저장하는 단계를 더 포함하며;
    상기 맵핑테이블은,
    서로 다른 2 이상의 QoS 파라미터가 동일한 하나의 무선구간 전용 QoS 파라미터와 맵핑되는 것을 특징으로 하는 무선구간의 QoS 제어방법.
  4. 제 3 항에 있어서,
    상기 2 이상의 QoS 파라미터는,
    코어망 단이, 특정 크기 이하의 소량 데이터를 주기적으로 전송하는 통신서비스, 또는 사물인터넷 서비스에 적용하는 QoS 파라미터인 것을 특징으로 하는 무선구간의 QoS 제어방법.
  5. 제 1 항에 있어서,
    상기 기지국장치가, 코어망 단에서 서비스 플로우에 적용하는 QoS 파라미터 별로 무선구간 전용 QoS 파라미터를 맵핑시킨 맵핑테이블을 저장하는 단계를 더 포함하며;
    상기 맵핑테이블은,
    특정 QoS 파라미터가 적용되는 하나의 서비스 플로우에 대하여, 서비스 플로우 내 포함된 각 컨텐츠의 QoS 별로 무선구간 전용 QoS 파라미터가 맵핑되는 것을 특징으로 하는 무선구간의 QoS 제어방법.
  6. 제 5 항에 있어서,
    상기 특정 QoS 파라미터는,
    대역폭을 미 보장하는 Non-GBR을 서비스타입으로 가지는 QoS 파라미터인 것을 특징으로 하는 무선구간의 QoS 제어방법.
  7. 제 5 항에 있어서,
    상기 확인단계는,
    상기 서비스 플로우에 적용되어 있는 QoS 파라미터가 상기 특정 QoS 파라미터인 경우, 상기 패킷의 헤더에서 서비스품질 유형(DiffServ) 구분을 위한 DSCP 필드를 확인하여 컨텐츠의 QoS를 구분하고,
    상기 맵핑테이블에서 상기 구분한 컨텐츠의 QoS에 맵핑된 무선구간 전용의 QoS 파라미터를 확인하는 것을 특징으로 하는 무선구간의 QoS 제어방법.
PCT/KR2018/003974 2016-10-17 2018-04-04 기지국장치 및 무선구간의 qos 제어방법 WO2019022342A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/474,317 US11337102B2 (en) 2016-10-17 2018-04-04 Base station, and QoS control method of wireless section
CN201880005487.9A CN110115060B (zh) 2016-10-17 2018-04-04 基站以及无线区段的QoS控制方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160134457 2016-10-17
KR10-2017-0094896 2017-07-26
KR1020170094896A KR102039534B1 (ko) 2016-10-17 2017-07-26 기지국장치 및 무선구간의 QoS 제어방법

Publications (1)

Publication Number Publication Date
WO2019022342A1 true WO2019022342A1 (ko) 2019-01-31

Family

ID=62018761

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2017/006937 WO2018074703A1 (ko) 2016-10-17 2017-06-30 기지국장치 및 무선구간의 qos 제어방법
PCT/KR2018/003974 WO2019022342A1 (ko) 2016-10-17 2018-04-04 기지국장치 및 무선구간의 qos 제어방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006937 WO2018074703A1 (ko) 2016-10-17 2017-06-30 기지국장치 및 무선구간의 qos 제어방법

Country Status (7)

Country Link
US (5) US11337102B2 (ko)
EP (2) EP3496451B1 (ko)
JP (3) JP6872006B2 (ko)
KR (1) KR102039534B1 (ko)
CN (3) CN109565705B (ko)
ES (1) ES2967439T3 (ko)
WO (2) WO2018074703A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733678B (zh) * 2016-08-12 2022-12-13 华为技术有限公司 无线通信系统的服务质量管理方法和系统
KR102115218B1 (ko) 2016-09-19 2020-05-26 에스케이텔레콤 주식회사 기지국장치 및 단말장치와, QoS 제어방법
EP3496451B1 (en) * 2016-10-17 2023-10-11 Sk Telecom Co., Ltd. Base station device and qos control method in wireless section
CN109923892B (zh) * 2017-07-26 2022-07-22 Sk电信有限公司 基站和无线段的qos控制方法
JP6987869B2 (ja) * 2017-01-13 2022-01-05 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおいてサービス品質(QoS)フロー基盤のULパケットを送信する方法及びそのための装置
CN112771990A (zh) 2018-09-25 2021-05-07 瑞典爱立信有限公司 用于重建无线电连接的无线电网络节点、无线设备及其中的方法
WO2020067961A1 (en) * 2018-09-25 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) A radio network node, a wireless device and methods therein for resuming a radio connection
WO2020073197A1 (en) * 2018-10-09 2020-04-16 Lenovo (Beijing) Limited Device information in a context setup request
US11689957B2 (en) * 2020-03-13 2023-06-27 Qualcomm Incorporated Quality of service support for sidelink relay service
US11825330B2 (en) 2020-03-13 2023-11-21 Qualcomm Incorporated Techniques for quality of service support in sidelink communications
CN115769662A (zh) * 2020-08-05 2023-03-07 Oppo广东移动通信有限公司 无线通信方法和终端设备
CN112312566B (zh) * 2020-11-18 2024-02-02 中国联合网络通信集团有限公司 一种通信方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053346A (ko) * 2011-08-18 2014-05-07 브이아이디 스케일, 인크. 패킷 차등화를 위한 방법 및 시스템
KR20140093167A (ko) * 2013-01-17 2014-07-25 주식회사 케이티 무선망 인입 트래픽에 차등적인 QoS 적용이 가능한 서비스 품질 제어 시스템 및 그 시스템을 통한 트래픽 전송 방법
US20140341017A1 (en) * 2013-05-20 2014-11-20 Nokia Corporation Differentiation of traffic flows for uplink transmission
WO2015149271A1 (en) * 2014-04-01 2015-10-08 Nokia Solutions And Networks Oy Enhanced quality of service class identifier modification
WO2016163808A1 (en) * 2015-04-10 2016-10-13 Samsung Electronics Co., Ltd. Apparatus and method for routing data packet to user equipment in lte-wlan aggregation system
WO2018074703A1 (ko) * 2016-10-17 2018-04-26 에스케이텔레콤 주식회사 기지국장치 및 무선구간의 qos 제어방법

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7546376B2 (en) * 2000-11-06 2009-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Media binding to coordinate quality of service requirements for media flows in a multimedia session with IP bearer resources
US20020068545A1 (en) * 2000-11-06 2002-06-06 Johnson Oyama Method and apparatus for coordinating charging for services provided in a multimedia session
KR101084113B1 (ko) * 2004-03-05 2011-11-17 엘지전자 주식회사 이동통신의 핸드오버에 적용되는 서비스 정보 전달 방법
US8331375B2 (en) * 2004-08-06 2012-12-11 Qualcomm Incorporated Technology agnostic QoS support in a multi-mode environment
ATE391376T1 (de) * 2004-10-01 2008-04-15 Matsushita Electric Ind Co Ltd Dienstgüte-bewusste ablaufsteuerung für aufwärtsübertragungen über zugeordneten kanälen
US8175074B2 (en) * 2005-12-12 2012-05-08 Telefonaktiebolaget L M Ericsson (Publ) Method and devices for specifying the quality of service in a transmission of data packets
JP4935156B2 (ja) 2006-04-05 2012-05-23 日本電気株式会社 無線lan装置、無線lanシステム、通信システム、およびデータ通信方法
CN100596232C (zh) * 2006-08-22 2010-03-24 华为技术有限公司 一种服务质量承载建立和映射的实现方法和装置
CN101227714B (zh) * 2007-01-18 2011-04-06 华为技术有限公司 共享网络资源的方法、装置及系统
KR101447207B1 (ko) * 2007-05-04 2014-10-06 삼성전자주식회사 무선통신시스템에서 서비스 품질 설정 장치 및 방법
US8411619B2 (en) * 2007-09-21 2013-04-02 Lg Electronics Inc. Method of packet reordering and packet retransmission
KR100909105B1 (ko) * 2007-11-30 2009-07-30 한국전자통신연구원 무선통신 시스템에서의 세션 제어방법
US9055612B2 (en) * 2008-02-11 2015-06-09 Qualcomm Incorporated Quality of service continuity
US8194549B2 (en) * 2008-05-09 2012-06-05 At&T Mobility Ii Llc Femto cell access point passthrough model
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing
US20100208609A1 (en) * 2009-02-13 2010-08-19 Qualcomm Incorporated Dynamic mapping of quality of service traffic
CN101932102B (zh) * 2009-06-19 2013-01-23 华为技术有限公司 业务承载映射方法及通信设备
CN103118401B (zh) * 2009-06-19 2015-09-30 华为技术有限公司 业务承载映射方法及通信设备
US8305979B2 (en) * 2009-09-04 2012-11-06 Clearwire Ip Holdings Llc Managing multiple application flows over an access bearer in a quality of service policy environment
CN102026398B (zh) * 2009-09-15 2013-02-13 普天信息技术研究院有限公司 Lte中继系统中分组汇聚协议的实现方法和装置
US20110113146A1 (en) * 2009-11-10 2011-05-12 Li Gordon Yong Dynamic quality of service (qos) setup over wired and wireless networks
US9504079B2 (en) * 2010-02-22 2016-11-22 Huawei Technologies Co., Ltd. System and method for communications in communications systems with relay nodes
US8913509B2 (en) * 2010-10-25 2014-12-16 Verizon Patent And Licensing Inc. Quality of service management in a fixed wireless customer premises network
US8675577B2 (en) * 2010-12-20 2014-03-18 Intel Corporation Signaling techniques for a multimedia-aware radio and network adaptation
CN102625377B (zh) * 2011-01-31 2014-06-18 电信科学技术研究院 一种无线承载的建立方法、接入点设备、用户设备及系统
US9282565B2 (en) * 2011-03-14 2016-03-08 Telefonaktiebolaget L M Ericsson (Publ) Relay node, donor radio base station and methods therein
GB2489221A (en) 2011-03-18 2012-09-26 Ip Wireless Inc Establishing preconfigured shared logical communications bearers and preconfigured shared radio bearers to provide a predefined quality of service
CN102883457B (zh) * 2011-07-15 2016-06-22 华为技术有限公司 保证上行服务质量的方法、基站及用户设备
US20140075557A1 (en) * 2012-09-11 2014-03-13 Netflow Logic Corporation Streaming Method and System for Processing Network Metadata
US9276810B2 (en) * 2011-12-16 2016-03-01 Futurewei Technologies, Inc. System and method of radio bearer management for multiple point transmission
US20140155043A1 (en) * 2011-12-22 2014-06-05 Cygnus Broadband, Inc. Application quality management in a communication system
US20140153392A1 (en) * 2011-12-22 2014-06-05 Cygnus Broadband, Inc. Application quality management in a cooperative communication system
JP6339567B2 (ja) 2012-07-26 2018-06-06 エルジー エレクトロニクス インコーポレイティド 2以上の無線アクセス技術を用いた信号送受信を支援するための方法及びそのための装置
KR20140036901A (ko) * 2012-09-18 2014-03-26 한국전자통신연구원 와이맥스와 롱텀에볼루션 망에서의 서비스 품질 통합제어 방법 및 시스템
US9474087B2 (en) 2012-10-23 2016-10-18 Lg Electronics Inc. Method and apparatus for performing backoff for scheduling request in wireless communication system
US9357430B2 (en) * 2012-10-26 2016-05-31 Qualcomm Incorporated Systems and methods for samog bearer management
US9794957B2 (en) * 2012-10-31 2017-10-17 Nokia Solutions And Networks Oy Efficient management of scheduling parameter changes in resource limited processing nodes
US9271188B2 (en) * 2012-12-18 2016-02-23 At&T Intellectual Property I, L.P. Dynamic in-band service control mechanism in mobile network
US20140341031A1 (en) * 2013-05-20 2014-11-20 Nokia Corporation Differentiation of traffic flows mapped to the same bearer
US9819469B2 (en) * 2013-07-01 2017-11-14 Qualcomm Incorporated Techniques for enabling quality of service (QoS) on WLAN for traffic related to a bearer on cellular networks
US9578647B2 (en) * 2013-08-29 2017-02-21 Telefonaktiebolaget Lm Ericsson (Publ) 3GPP bearer-based QoS model support on WiFi
US20150063144A1 (en) * 2013-09-04 2015-03-05 Ulas C. Kozat Method and apparatus for software defined flow control in wireless systems
US9642032B2 (en) * 2013-10-23 2017-05-02 Verizon Patent And Licensing Inc. Third party interface for provisioning bearers according to a quality of service subscription
EP3132622B1 (en) * 2014-04-15 2019-09-25 Nokia Solutions and Networks Oy Interworking with bearer-based system
EP3145259B1 (en) * 2014-05-30 2022-08-24 Huawei Technologies Co., Ltd. Bearer setup apparatus and method
US9356857B1 (en) * 2014-06-30 2016-05-31 Juniper Networks, Inc. Double experimental (EXP) quality of service (QoS) markings for MPLS packets
CN104105225A (zh) * 2014-07-08 2014-10-15 华侨大学 一种WiFi和WiMAX融合模型的QoS映射方法
US9648591B2 (en) * 2014-08-12 2017-05-09 Amazon Technologies, Inc. Avoiding radio access network congestion
US9906985B2 (en) * 2015-01-30 2018-02-27 Huawei Technologies Co., Ltd. Method and device for selecting uplink data
KR102306823B1 (ko) 2015-03-11 2021-09-29 삼성전자 주식회사 무선 통신 시스템에서 면허 도움 접속 기술 활용 시 기지국의 데이터 스케쥴링을 위한 장치 및 방법
US10070461B2 (en) * 2015-05-15 2018-09-04 Mediatek Inc. QoS provisioning for LTE-WLAN aggregation
US9749895B2 (en) * 2015-06-05 2017-08-29 Nokia Technologies Oy Facilitating in-bearer QoS differentiation in multi-connectivity 5G networks
US10045335B2 (en) * 2015-08-14 2018-08-07 Acer Incorporated Method of delivering data for use by base station and base station using the same
WO2017030268A1 (ko) * 2015-08-17 2017-02-23 엘지전자(주) 무선 통신 시스템에서 패킷을 송수신하기 위한 방법 및 이를 위한 장치
CN107295575B (zh) * 2016-04-01 2020-02-28 中兴通讯股份有限公司 一种服务质量的控制方法和装置
US10250491B2 (en) * 2016-05-09 2019-04-02 Qualcomm Incorporated In-flow packet prioritization and data-dependent flexible QoS policy
CN110995773B (zh) * 2016-05-24 2021-01-05 华为技术有限公司 QoS控制方法及设备
US11381995B2 (en) * 2016-05-26 2022-07-05 Parallel Wireless, Inc. End-to-end prioritization for mobile base station
CN107645791A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 一种传输数据流的无线承载处理方法及装置
JP6777451B2 (ja) * 2016-08-10 2020-10-28 株式会社Nttドコモ 基地局
CN107733678B (zh) * 2016-08-12 2022-12-13 华为技术有限公司 无线通信系统的服务质量管理方法和系统
CN108307450A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 一种数据传输方法、装置和系统
GB201621072D0 (en) * 2016-12-12 2017-01-25 Samsung Electronics Co Ltd NR QOS handling
US10791562B2 (en) * 2017-01-05 2020-09-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system
US11044643B2 (en) * 2017-01-11 2021-06-22 Telefonaktiebolaget Lm Ericsson (Publ) 5G QoS flow to radio bearer remapping
CN110235514A (zh) * 2017-01-31 2019-09-13 华为技术有限公司 支持本地化无线通信业务的基站和通信设备
EP3823354B1 (en) * 2017-05-05 2023-09-06 Sony Group Corporation Communications device, infrastructure equipment, wireless communications network and methods
CN108811153A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 通信方法、集中式单元、分布式单元、基站及终端设备
JP7250700B2 (ja) * 2017-05-09 2023-04-03 華為技術有限公司 QoS制御方法およびデバイス
CN109302751B (zh) * 2017-07-24 2021-03-05 华硕电脑股份有限公司 无线通信系统中服务服务质量流的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053346A (ko) * 2011-08-18 2014-05-07 브이아이디 스케일, 인크. 패킷 차등화를 위한 방법 및 시스템
KR20140093167A (ko) * 2013-01-17 2014-07-25 주식회사 케이티 무선망 인입 트래픽에 차등적인 QoS 적용이 가능한 서비스 품질 제어 시스템 및 그 시스템을 통한 트래픽 전송 방법
US20140341017A1 (en) * 2013-05-20 2014-11-20 Nokia Corporation Differentiation of traffic flows for uplink transmission
WO2015149271A1 (en) * 2014-04-01 2015-10-08 Nokia Solutions And Networks Oy Enhanced quality of service class identifier modification
WO2016163808A1 (en) * 2015-04-10 2016-10-13 Samsung Electronics Co., Ltd. Apparatus and method for routing data packet to user equipment in lte-wlan aggregation system
WO2018074703A1 (ko) * 2016-10-17 2018-04-26 에스케이텔레콤 주식회사 기지국장치 및 무선구간의 qos 제어방법

Also Published As

Publication number Publication date
US11337102B2 (en) 2022-05-17
EP3496451A4 (en) 2020-02-26
EP4274373A3 (en) 2024-01-17
KR20180042112A (ko) 2018-04-25
JP6983885B2 (ja) 2021-12-17
JP2021048640A (ja) 2021-03-25
KR102039534B1 (ko) 2019-11-01
US20210321285A1 (en) 2021-10-14
WO2018074703A1 (ko) 2018-04-26
CN114928860A (zh) 2022-08-19
EP4274373A2 (en) 2023-11-08
CN110115060A (zh) 2019-08-09
US20190150022A1 (en) 2019-05-16
CN109565705B (zh) 2023-03-28
US11082879B2 (en) 2021-08-03
EP3496451A1 (en) 2019-06-12
EP3496451B1 (en) 2023-10-11
US20190342784A1 (en) 2019-11-07
JP2019531620A (ja) 2019-10-31
US11743756B2 (en) 2023-08-29
US20220182871A1 (en) 2022-06-09
US20190274063A1 (en) 2019-09-05
CN110115060B (zh) 2023-06-09
CN109565705A (zh) 2019-04-02
US11653248B2 (en) 2023-05-16
US11297524B2 (en) 2022-04-05
JP6872006B2 (ja) 2021-05-19
JP7051995B2 (ja) 2022-04-11
JP2020501416A (ja) 2020-01-16
ES2967439T3 (es) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2019022342A1 (ko) 기지국장치 및 무선구간의 qos 제어방법
WO2018026169A1 (en) Method and apparatus for managing data communication in wireless communication network
WO2018143593A1 (en) Method for performing reflective quality of service (qos) in wireless communication system and a device therefor
WO2012141480A2 (ko) 이동통신 시스템에서 데이터 송수신 방법 및 장치
WO2017030420A1 (en) Method and wireless communication system for handling offloading of drbs to wlan carrier
WO2018066967A1 (en) A method and system for managing wireless communication in vehicle-to-anything communication system
WO2018131947A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2016159728A1 (ko) D2d 통신 시스템에서 우선 순위를 처리하는 방법 및 장치
WO2018174383A1 (ko) 세션 관리 방법 및 smf 노드
WO2019194486A1 (en) Method and apparatus for discarding buffered data while keeping connection in cp-up separation
WO2015037947A1 (en) Method and device for setting up local breakout bearers
WO2017030399A1 (en) Ue access method and apparatus
EP2976909A1 (en) Method and apparatus for performing communication in wireless communication system
WO2016167550A1 (ko) D2d 통신을 지원하는 무선 통신 시스템에서 중계 트래픽 제어 방법 및 장치
WO2015170862A1 (ko) Csipto에 기인하여 복수의 pdn 커넥션을 수립하는 방법
WO2013183971A1 (en) Method and system for selective protection of data exchanged between user equipment and network
WO2015065062A1 (en) Handover method and system
WO2014148836A2 (en) Apparatus and method for acquiring synchronization in cooperative communication system
WO2014051392A1 (ko) 패킷 처리 방법 및 장치
WO2014046431A2 (en) Method for correctly establishing a local ip access service
WO2017030427A1 (en) Method and apparatus for access, handover, and encryption control of a ue
WO2013005992A2 (en) Method for avoiding handover failure
WO2014204276A1 (ko) 무선 랜에서 서비스 품질을 제어하는 방법 및 장치
WO2018052172A2 (ko) 기지국장치 및 단말장치와, qos 제어방법
WO2017171189A1 (ko) 핸드오버 수행후에 서비스 연속성을 지원하는 방법 및 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838311

Country of ref document: EP

Kind code of ref document: A1