WO2018052172A2 - 기지국장치 및 단말장치와, qos 제어방법 - Google Patents

기지국장치 및 단말장치와, qos 제어방법 Download PDF

Info

Publication number
WO2018052172A2
WO2018052172A2 PCT/KR2017/002367 KR2017002367W WO2018052172A2 WO 2018052172 A2 WO2018052172 A2 WO 2018052172A2 KR 2017002367 W KR2017002367 W KR 2017002367W WO 2018052172 A2 WO2018052172 A2 WO 2018052172A2
Authority
WO
WIPO (PCT)
Prior art keywords
qos
service flow
specific
terminal
base station
Prior art date
Application number
PCT/KR2017/002367
Other languages
English (en)
French (fr)
Other versions
WO2018052172A3 (ko
Inventor
정상수
박종한
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to ES17851050T priority Critical patent/ES2936412T3/es
Priority to CN202210596339.7A priority patent/CN114945199A/zh
Priority to JP2018561530A priority patent/JP6674051B2/ja
Priority to CN201780030831.5A priority patent/CN109219974B/zh
Priority to EP22204310.1A priority patent/EP4149156A1/en
Priority to EP17851050.9A priority patent/EP3445082B1/en
Priority to US16/303,748 priority patent/US10945159B2/en
Publication of WO2018052172A2 publication Critical patent/WO2018052172A2/ko
Publication of WO2018052172A3 publication Critical patent/WO2018052172A3/ko
Priority to US17/164,247 priority patent/US11627494B2/en
Priority to US18/107,755 priority patent/US11917453B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a QoS control technique for transmitting different QoS levels in packet transmission of a communication service.
  • the present invention relates to a technology that enables QoS control on a service flow basis without increasing complexity compared to the existing bearer-based QoS control scheme.
  • the QoS (Quality of Service) level is changed according to the media type of the communication service used by the terminal (user), and the QoS control for guaranteeing and transmitting the QoS level corresponding to the media type is transmitted during packet transmission of the communication service. Doing.
  • the QoS control method provided by the LTE network is a QoS control method in EPS Bearer (hereinafter, referred to as a bearer) unit.
  • a terminal In an LTE network, a terminal (user) generates an EPS bearer, that is, a bearer, for data transmission in order to use a communication service.
  • an EPS bearer that is, a bearer
  • Such a bearer may be referred to as a tunnel (wireless section + wired section) generated between the terminal and the P-GW through a wireless section connecting the terminal and the base station and a wired section connecting the base station and the S-GW and the P-GW.
  • a tunnel wireless section + wired section
  • Data of the user (terminal) is transmitted in the form of IP-based packet through this tunnel, that is, a bearer, and the traffic flow according to packet transmission is called a service flow.
  • bearer-level QoS control scheme is used in which several types of communication services are bundled to apply QoS in a logical unit called "bearer.”
  • the QoS level (QoS parameter) is defined for each bearer to guarantee (apply) QoS for each bearer. Therefore, all service flows transmitted through one bearer are the same QoS (bearer). Qos level) is applied and transmitted.
  • the existing bearer-based QoS control scheme has an advantage of reducing the complexity of QoS control, but there is a limitation that differential QoS cannot be applied to service flows belonging to one bearer.
  • QoS control in a service flow unit that can be applied with more differential QoS can be realized without increasing the complexity of the existing bearer unit QoS control scheme.
  • An object of the present invention is to realize QoS control of a service flow unit that can be applied more differentially without increasing the complexity of the existing bearer unit QoS control scheme.
  • a base station apparatus includes: a division unit for dividing a service flow with respect to a downlink packet for transmission to a terminal; A confirmation unit for identifying a specific QoS parameter defined in the divided service flows among quality of service (QoS) parameters predefined for each service flow; And a transmitter configured to apply the specific QoS parameter when transmitting the downlink packet, and transmit the downlink packet to the terminal through a specific QoS classified according to service flows.
  • QoS quality of service
  • the terminal transmits the uplink packet of the service flow based on the QoS control information.
  • the apparatus may further include a control information transfer unit for transmitting the specific QoS.
  • the specific downlink packet may include at least one of a downlink packet when the service flow is started, and a downlink packet when a QoS parameter of the service flow is changed while the service flow is maintained. Can be.
  • the terminal when the terminal is handed over to another network supporting a different QoS control policy than the base station apparatus, the terminal converts QoS conversion information for converting the specific QoS parameter into a QoS parameter according to the other QoS control policy. It may further include an interlocking control unit to provide.
  • the other QoS control policy may be a QoS control policy of a bearer unit, which guarantees a different QoS level for each bearer.
  • the priority of the matching rule for each service flow may be determined based on the QoS level of each service flow.
  • the interworking control unit may provide the QoS conversion information only when continuity of the service flow is required.
  • a terminal apparatus includes: an obtaining unit for obtaining QoS control information from a header of a specific downlink packet among downlink packets received from a base station; A QoS control unit for mapping a specific QoS parameter identified from the QoS control information to a service flow of the specific downlink packet; And a transmitter for transmitting the uplink packet to a specific QoS defined in a service flow by applying the specific QoS parameter when transmitting an uplink packet of the service flow.
  • the QoS control unit when handing over to a different network that supports a different QoS control policy from the base station, the QoS control unit sets the specific QoS parameter according to the different QoS control policy based on the QoS conversion information provided from the base station. Can be converted into QoS parameters.
  • the QoS conversion information may include a matching rule for each service flow matching each service flow to a bearer, a priority of the matching rule for each service flow, and QoS parameters predefined for each bearer.
  • the QoS control unit searches for a matching rule matching the service flow in order from the highest priority among the matching rules for each service flow to be lowered in priority,
  • the service flow may be matched to a bearer of the searched matching rule to convert the specific QoS parameter into a QoS parameter defined in the matched bearer.
  • the base station apparatus the step of dividing the service flow for the downlink packet for transmission to the terminal; Confirming, by the base station apparatus, a specific QoS parameter mapped to the divided service flow among QoS parameters predefined for each service flow; And transmitting, by the base station apparatus, the downlink packet by applying the specific QoS parameter to transmit the downlink packet to the terminal with a specific QoS classified according to service flows.
  • the base station apparatus includes QoS control information for identifying the specific QoS parameter in a header of a specific downlink packet according to the service flow, so that the terminal is based on the QoS control information.
  • the method may further include enabling the transmission to the specific QoS upon transmission of an uplink packet.
  • the base station apparatus confirms that the terminal is handing over to another network supporting a different QoS control policy than the base station apparatus
  • the specific QoS parameter is converted into a QoS parameter according to the other QoS control policy.
  • the method may further include a QoS conversion information step of providing QoS conversion information to the terminal.
  • a QoS control method comprising: an obtaining step of a terminal apparatus obtaining QoS control information from a header of a specific downlink packet among downlink packets received from a base station; A QoS mapping step of mapping, by the terminal apparatus, a specific QoS parameter identified based on the QoS control information to a service flow of the specific downlink packet; And transmitting, by the terminal apparatus, the uplink packet to the specific QoS defined in the service flow by applying the specific QoS parameter when transmitting the uplink packet of the service flow.
  • QoS control by service flow can be performed without increasing the complexity compared to the conventional bearer-based QoS control scheme, thereby making the QoS more differential for each communication service.
  • the effect of applying service quality is derived.
  • 1 is an exemplary diagram illustrating a conventional bearer unit QoS control scheme.
  • FIG. 2 is an exemplary view illustrating a QoS control method of a service flow unit according to an embodiment of the present invention.
  • FIG. 3 is a control flowchart illustrating a QoS control method (QoS control on a service flow basis) according to an embodiment of the present invention from a base station perspective.
  • QoS control in units of service flows QoS control in units of service flows
  • FIG. 5 is a control flowchart illustrating a QoS control method (interworking between QoS control systems before and after handover) according to an embodiment of the present invention from a base station perspective.
  • FIG. 6 is a control flowchart illustrating a QoS control method (interworking of QoS control methods between before and after handover) according to an embodiment of the present invention from a terminal perspective.
  • FIG. 7 is a block diagram showing the configuration of a base station apparatus according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of a terminal apparatus according to an embodiment of the present invention.
  • the effect achieved by the present invention is to inform the terminal of the information (Qos control information) necessary for QoS control per service flow without signaling, and to improve the packet inspection efficiency by delivering QoS control information in the form of piggyback, before handover. It enables the interworking of the QoS control method between / after systems to minimize the interruption of communication service of the terminal during handover and to selectively reflect the interworking of the QoS control method between the systems before and after the handover according to the sensitivity of the communication service. There is a dot.
  • the existing bearer-based QoS control method is a method of applying (correcting) QoS to a logical unit called an EPS bearer, that is, a bearer by binding several types of communication services.
  • a terminal in order to use a bearer-based QoS control scheme, a terminal (user) generates a bearer, for example, Bearer1,2, which guarantees QoS required for a communication service to be used.
  • a bearer for example, Bearer1,2, which guarantees QoS required for a communication service to be used.
  • each of Bearer 1,2 may be a Default Bearer or a Dedicated Bearer.
  • the service flow 1 of the communication service 1 used by the terminal, the service flow 2 of the communication service 2 belong to one bearer 1
  • the service flow 3 of the communication service 3 used by the terminal Assume that the service flow 4 of the communication service 4 belongs to one bearer Bearer 2.
  • the same QoS that is, Qos level (Qos parameter A) of Bearer1
  • Qos level Qos parameter A
  • Qos level of Bearer2 is applied to service flows 3 and 4 transmitted through Bearer2.
  • Qos parameter B is applied.
  • the conventional bearer-based QoS control scheme has the advantage of reducing the complexity of QoS control because QoS is applied in a logical unit called a bearer, but it is possible to apply differential QoS to service flows belonging to one bearer. There is no limit.
  • QoS control in units of service flows is realized, and more differential QoS, that is, quality of service, is applied to each communication service.
  • the present invention proposes a QoS control scheme for each service flow that enables differential QoS application for each communication service without increasing the complexity of the existing bearer-based QoS control scheme.
  • the QoS control method (QoS control in units of service flows) of the present invention will be described from a base station perspective.
  • the QoS control method of the present invention will be described by referring to the operation method of the base station apparatus 100.
  • service flows are distinguished with respect to downlink packets for transmission to the terminal 200.
  • the operation method of the base station apparatus 100 checks a specific QoS parameter defined in service flow 1 of this downlink packet among QoS (Quality of Service) parameters predefined for each service flow (S120).
  • QoS Quality of Service
  • QoS parameters 1 QoS parameters 1
  • the operation method of the base station apparatus 100 checks whether the current downlink packet is a specific downlink packet which should include QoS control information (S130).
  • the downlink packet this time the downlink packet at the time when the service flow 1 for the terminal 200 starts to use the communication service 1 in the terminal 200 starts.
  • the QoS parameter 1 of the service flow 1 is changed while the service flow 1 for the terminal 200 is maintained, if the downlink packet at the time of change, it can be confirmed that the specific downlink packet to include the QoS control information. .
  • step S130 if it is determined in step S130 that the downlink packet is not a specific downlink packet, by applying QoS parameter 1 when transmitting the downlink packet, the downlink packet to the terminal 200 is service flowed. Transmit with the specific QoS defined in 1.
  • the downlink packet is identified as a specific downlink packet in step S130, more specifically include the Qos control information in the L2 header than the header of the downlink packet (S135).
  • the QoS parameter 1 is applied to transmit the downlink packet to the terminal 200 to the specific QoS defined in the service flow 1.
  • the operation method of the base station apparatus 100 is to transmit and guarantee the QoS level in units of service flows by applying the QoS parameter (QoS level) defined in the service flow of the packet during downlink packet transmission. .
  • the base station apparatus 100 of the present invention applies the QoS parameter 1 (QoS level 1) defined in the service flow 1 of the packet when transmitting the packet of the communication service 1, and transmits the packet.
  • QoS parameter 1 QoS level 1
  • QoS level 2 QoS level 2
  • QoS level 3 QoS level 3
  • the QoS parameter 4 QoS level 4
  • the base station apparatus 100 of the present invention performs the service flow unit QoS control for the downlink traffic, without using a separate control message (separate signaling), the information necessary for the service flow unit QoS control (QoS control information ) Can be informed to the terminal.
  • the QoS control method QoS control of a service flow unit of this invention is demonstrated from a terminal viewpoint.
  • the QoS control method of the present invention will be described by referring to the operation method of the terminal device 200.
  • the QoS control method of the present invention that is, the operation method of the terminal device 200, when receiving a downlink packet from the base station 100 (S200), a field in which identification information is recorded in the L2 header more specifically, than the header of the downlink packet.
  • a field in which identification information is recorded in the L2 header more specifically, than the header of the downlink packet By checking the identification information, if there is identification information, it identifies the specific downlink packet including the QoS parameter (S210).
  • the QoS control information is included in the header (L2 header) of the corresponding downlink packet. It can be obtained (S220).
  • the operation method of the terminal device 200 maps the specific QoS parameter identified from the previously obtained QoS control information to the service flow of the specific downlink packet received this time (S230).
  • the operation method of the terminal device 200 is based on a 5-tuple that is identified in the header of a specific downlink packet received this time, that is, a source IP, a destination IP, a source port, a destination port, and a protocol ID.
  • the service flow of a specific downlink packet can be checked.
  • the base station 100 classifies the service flow 1 and transmits QoS control information for identifying the QoS parameter 1 defined in the service flow 1 in the header of the specific downlink packet. .
  • the operation method of the terminal device 200 will check the service flow 1 based on the 5-tuple identified in the header of the specific downlink packet.
  • the operation method of the terminal device 200 maps the QoS parameter 1 identified from the previously obtained QoS control information to the service flow 1 of the specific downlink packet.
  • the operation method of the terminal device 200 by mapping the QoS parameter 1 to 5-tuple (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) that is the basis for distinguishing the service flow 1, service flow
  • the service flow and QoS parameter mapping information in which QoS parameter 1 is mapped to 1 may be stored.
  • the operation method of the terminal device 200 will process the downlink packet received this time (S240).
  • step S210 the method of operating the terminal device 200 will process the downlink packet received without step S220 and step S230 (S240).
  • the uplink packet when the uplink packet is transmitted in the service flow 1, the uplink packet is transmitted to the specific QoS defined in the service flow 1 by applying the QoS parameter 1 mapped to the service flow 1. (S250).
  • the operation method of the terminal device 200 confirms the service flow on the basis of 5-tuple identified from the header of the uplink packet to be transmitted when the uplink packet is transmitted.
  • the uplink packet of the service flow 1 is transmitted by applying the QoS parameter 1 mapped to the service flow 1 before the uplink packet transmission. May be transmitted with a specific QoS defined in the service flow1.
  • the terminal device 200 of the present invention applies the QoS parameter 1 (QoS level 1) defined in the service flow 1 of the packet when transmitting the packet of the communication service 1, and transmits the packet.
  • QoS parameter 1 QoS level 1
  • QoS level 2 QoS level 2
  • QoS level 3 QoS level 3
  • the QoS parameter 4 QoS level 4
  • the operation method of the terminal device 200 may be obtained by obtaining information (QoS control information) necessary for the service flow unit QoS control from the header of the downlink packet without additional signaling, and based on this, the service flow unit during packet transmission As a result, QoS can be guaranteed and transmitted.
  • QoS control information information necessary for the service flow unit QoS control from the header of the downlink packet without additional signaling
  • the QoS control of the downlink traffic is performed on the downlink traffic, and the QoS control information is specified.
  • the terminal performs the same service flow unit QoS control on the uplink traffic as on the downlink traffic.
  • the QoS control method (interworking of the QoS control method between before and after handover) of the present invention will be described in terms of a base station.
  • the QoS control method of the present invention will be described by referring to the operation method of the base station apparatus 100.
  • the operation method of the base station apparatus 100 may be performed when the terminal 200 performs a handover to an LTE network that supports a different QoS control policy, that is, a per-bearer QoS control policy (control scheme), from the base station apparatus 100 (S150).
  • a per-bearer QoS control policy control scheme
  • the operation method of the base station apparatus 100 determines that the continuity of the service flow is required if the service type of the communication service used by the terminal 200 is an important type of guaranteeing session continuity such as VoIP and video call (S160 Yes). .
  • the base station apparatus 100 selects a target cell to be handed over by the terminal 200 through interworking with a network (not shown), and transmits a policy and command (hereinafter, handover information) necessary for handover to the terminal (not shown).
  • handover information a policy and command necessary for handover to the terminal (not shown).
  • the terminal 200 performs a handover from the current cell (base station apparatus 100) to the target cell based on the handover information.
  • the operation method of the base station apparatus 100 is to provide QoS conversion information together, and then release the session with the terminal 200 as before (S180). .
  • the operation method of the base station apparatus 100 does not provide QoS conversion information to the terminal 200 when the continuity of the service flow for the terminal 200 is not required (S160 No).
  • the operation method of the base station apparatus 100 the handover information is provided to the terminal 200 as before, and then the session with the terminal 200 is released (S170).
  • the operation method of the base station apparatus 100 when the terminal 200 is handed over to the LTE network that supports the per-bearer QoS control scheme, whether the continuity of the service flow for the terminal 200, that is, the communication service
  • the continuity of the service flow for the terminal 200 that is, the communication service
  • the operation method of the base station apparatus 100 enables the interworking of the QoS control system between the systems before and after the handover to minimize the interruption of the communication service of the terminal during the handover, but the QoS control system between the systems before and after the handover. May be selectively reflected according to communication service sensitivity (whether continuity of service flow is required).
  • the QoS control method (interworking of the QoS control method between before and after handover) of the present invention will be described from a terminal perspective.
  • the QoS control method of the present invention will be described by referring to the operation method of the terminal device 200.
  • the terminal apparatus 200 When the terminal apparatus 200 is handed over to satisfy the handover requirement (S260), it will receive handover information from the base station 100 (S270).
  • the operation method of the terminal device 200 receives the QoS conversion information together with the handover information, it is determined that the QoS parameter conversion is necessary (S280 Yes).
  • the QoS conversion information includes a matching rule for each service flow for matching each service flow to a bearer, a priority of the matching rule for each service flow, and QoS parameters defined for each bearer.
  • the priority of matching rules for each service flow is determined based on the QoS level of each service flow.
  • the matching rule of a specific service flow in the matching rule for each service flow may be determined to be the same or higher priority than the matching rule of a service flow having a lower QoS level than the specific service flow.
  • the matching rule of the service flow 1 that matches the service flow 1 to the bearer among the matching service rules for each service flow is determined to be the same or higher priority than the matching rule of the service flow having a lower QoS level than the service flow 1.
  • the priority of the matching rule for each service flow means that the priority is lowered according to the order of service flows in which the QoS level is lowered from the service flow of the highest QoS level.
  • each matching rule for each service flow includes a search factor so that a matching rule matching the corresponding service flow may be searched.
  • Source Port, Destination Port, Protocol ID Source Port, Destination Port, Protocol ID
  • the operation method of the terminal device 200 based on the QoS conversion information, the service flow of the service flow and the QoS parameter mapping information stored previously, from the matching rule having the highest priority among the matching rules for each service flow
  • the matching rules in which the service flows (search factors) match are searched for according to the order of decreasing priority (S290).
  • the operation method of the terminal apparatus 200 includes a service flow 1 (source IP, destination IP, source port, destination port, protocol ID) and a matching rule for each service flow.
  • the search factors Source IP, Destination IP, Source Port, Destination Port, and Protocol ID
  • the search factors (Source IP, Destination IP, Source Port, Destination Port, and Protocol ID) of the matching rule 2 (see Table 2) having the highest priority are compared to confirm the match. If there is a match, the operation method of the terminal apparatus 200 searches for a matching rule 2 that matches the service flow 1.
  • the operation method of the terminal device 200, the service flow 1 (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) and the priority is next to the matching rule 2 in the matching rules for each service flow
  • the matching factors (Source IP, Destination IP, Source Port, Destination Port, and Protocol ID) of the high matching rule 3 are compared to confirm the match.
  • the operation method of the terminal apparatus 200 includes a service flow (search factor) in the order of decreasing priority from the matching rule having the highest priority among the matching rules for each service flow with respect to the service flow of the communication service being used. ) Matches the matching rule.
  • the operating method of the terminal device 200 can check and match the matching rules for service flows having the highest priority, that is, the highest QoS level, when QoS parameters are converted, the QoS is determined. Speed up parameter conversion and performance.
  • the matching rule 2 is searched with a matching rule matching the service flow 1.
  • the operation method of the terminal apparatus 200 includes matching a service flow 1 to a bearer (for example, bearer 1) according to the found matching rule 2 (S300), and matching the QoS parameter 1 of the service flow 1 to the bearer.
  • bearer 1 is converted into QoS parameters (e.g., QoS parameter A) defined (S310).
  • the service flow 1 (communication service 1) may be matched to the default bearer.
  • the operation method of the terminal apparatus 200 may include QoS parameters (eg, QoS) of the QoS control unit for each service flow that is owned (mapped / stored) using QoS conversion information during the handover process.
  • Parameter 1 may be converted into a QoS parameter (eg, QoS parameter A) of a bearer-based QoS control scheme.
  • the operation method of the terminal device 200 apart from the QoS parameter conversion, will perform the overall handover, such as release of the session with the base station 100, performing the handover to the target cell (S320).
  • the operation method of the terminal device 200 is, after the handover to the target cell, according to the existing bearer-by-bearer QoS control scheme, QoS in the bearer unit to which the service flow (communication service) is mapped during transmission of the uplink packet.
  • the level can be guaranteed and transmitted (S320).
  • the overall handover is performed, such as the session release with the base station 100 and the handover to the target cell (S285).
  • the present invention while performing the QoS control per service flow, the effect of notifying the terminal (Qos control information) necessary for the QoS control per service flow without additional signaling, and delivers the Qos control information in the form of piggyback It improves the packet inspection efficiency, enables the interworking of the QoS control method between the systems before and after the handover, thereby minimizing the interruption of the communication service of the terminal during the handover, and the interworking of the QoS control system between the systems before and after the handover. It has the effect of selectively reflecting the sensitivity of communication service.
  • the base station apparatus 100 includes a division unit 110 for dividing a service flow and a QoS parameter predefined for each service flow with respect to a downlink packet to be transmitted to a terminal.
  • Confirmation unit 120 for confirming the specific QoS parameters defined in the divided service flow, and applying the specific QoS parameters during the transmission of the downlink packet, the downlink packet to the terminal specific QoS defined in the service flow It includes a transmission unit 150 for transmitting to.
  • the terminal will be described by referring to the terminal device 200 of FIG. 2.
  • the division unit 110 classifies a service flow with respect to a downlink packet for transmission to the terminal 200.
  • the division unit 110 classifies the service flow of the downlink packet based on the information identified in the header of the downlink packet. do.
  • the downlink packet will have a form of an IP-based packet to which a 5-tuple rule is applied for QoS control.
  • the division unit 110 may classify the service flow based on 5-tuple identified from the header of the downlink packet, that is, the source IP, the destination IP, the source port, the destination port, and the protocol ID.
  • the identification unit 120 confirms specific QoS parameters defined in this service flow, which are divided among the QoS parameters predefined for each service flow.
  • the confirmation unit 120 confirms a specific QoS parameter defined in the service flow 1 among the QoS parameters predefined for each service flow.
  • the confirmation unit 120 may have a QoS parameter predefined for each service flow, and may search for and verify a specific QoS parameter defined in the service flow 1 from the retained QoS parameter for each service flow.
  • the confirmation unit 120 does not hold QoS parameters for each service flow, and separate network equipment (eg, P) in the process of connecting the session for the terminal 200 to use the communication service 1 (service flow 1). -GW, etc.) may be obtained by confirming specific QoS parameters defined in the service flow1.
  • the QoS parameter may be defined by one or more of the information shown in Table 1 below.
  • QoS Type Indicates whether the service type is GBR (Guaranteed Bit Rate) or Non-GBR Bitrate If the QoS Type is GBR, the Guaranteed Bit Rate to be guaranteed for the service flow, and if the QoS Type is Non-GBR, it can be omitted, and if it is set, it is applied at the Maximum Maximum Bit Rate. Priority Relative priority between service flows (higher priority gives priority to scheduling and resource allocation) Timer QoS parameter is invalid when Timer is Expire
  • QoS parameters 1 QoS parameters 1 for convenience of description.
  • the transmitter 150 applies a specific QoS parameter (for example, QoS parameter 1) identified by the identifier 120 when transmitting the downlink packet, and transmits the downlink packet to the terminal 200 to the specific QoS defined in the service flow 1. To send.
  • a specific QoS parameter for example, QoS parameter 1
  • the transmitter 150 transmits the downlink packet by guaranteeing the QoS level in units of service flows by applying the QoS parameter (QoS level) defined in the service flow of the packet.
  • QoS level QoS parameter
  • the present invention proposes a method of informing the terminal of information (Qos control information) necessary for QoS control per service flow without using a separate control message (separate signaling).
  • the base station apparatus 100 of the present invention further includes a control information transfer unit 130.
  • the control information transfer unit 130 includes Qos control information for identifying a specific QoS parameter in a header of a specific downlink packet according to the service flow, so that the terminal 200 upgrades the service flow based on the QoS control information. It enables to transmit with specific QoS in link packet transmission.
  • control information transmitter 130 informs the terminal 200 of the QoS control information by including the QoS control information in the header of a specific downlink packet of the downlink packet according to the service flow, for example, the service flow 1. .
  • the QoS control information includes identification information identifying whether the packet includes a QoS parameter, and a specific QoS parameter (eg, QoS parameter 1) defined in a service flow (eg, service flow 1).
  • the specific downlink packet described above means at least one of a downlink packet when the service flow is started and a downlink packet when the QoS parameter of the service flow is changed while the service flow is maintained.
  • control information transfer unit 130 controls the QoS in a header of a specific downlink packet at the time when the terminal 200 starts using the communication service 1 and the service flow 1 for the terminal 200 is started. You can include information.
  • control information transmitting unit 130 changes the QoS parameter 1 of the service flow 1 while the service flow 1 for the terminal 200 is maintained while continuing to use the communication service 1 in the terminal 200.
  • QoS control information can be included in the header of a specific downlink packet at the time.
  • the header including the QoS control information is preferably a header that is processed first upon reception of the packet structure, and may be, for example, an L (Layer) 2 header.
  • the terminal 200 receiving the specific downlink packet can know the information (QoS control information) necessary for the QoS control per service flow, from the header of the specific downlink packet, the uplink packet is transmitted based on this. QoS level can be guaranteed and transmitted in each service flow unit.
  • information (QoS control information) necessary for QoS control per service flow can be informed to the terminal without using a separate control message (separate signaling).
  • the base station apparatus 100 for implementing the service flow unit QoS control method of the present invention may be located in an area overlapping with the LTE network that supports other QoS control policies, for example, the existing bearer unit QoS control method, in this case
  • the terminal 200 may be handed over to the LTE network.
  • the base station apparatus 100 of the present invention further includes an interlocking controller 140.
  • the interlocking control unit 140 converts the specific QoS parameter into a QoS parameter according to the other QoS control policy when the terminal 200 hands over to another network that supports a different QoS control policy from the base station apparatus 100. QoS conversion information for the terminal 200 is provided.
  • the terminal 200 hands over to an LTE network that supports a different QoS control policy, that is, a bearer-specific QoS control policy (method), from the base station apparatus 100, the QoS parameter of the service flow 1 is performed. It provides the UE 200 with QoS conversion information for converting 1 into QoS parameters according to a bearer-based QoS control scheme.
  • a bearer-specific QoS control policy that is, a bearer-specific QoS control policy (method)
  • the base station apparatus 100 may not be interworked with a network (not shown).
  • the terminal 200 selects a target cell to be handed over, and provides the terminal 200 with a policy and a command (hereinafter, handover information) necessary for handover to the terminal 200 based on the handover information.
  • handover information a policy and a command necessary for handover to the terminal 200 based on the handover information.
  • a handover from the cell (base station apparatus 100) to the target cell is performed.
  • the interworking controller 140 provides QoS conversion information when the handover information is provided to the terminal 200. .
  • the QoS conversion information includes a matching rule for each service flow for matching each service flow to a bearer, a priority of the matching rule for each service flow, and QoS parameters defined for each bearer.
  • the priority of matching rules for each service flow is determined based on the QoS level of each service flow.
  • the terminal 200 receives the handover information and based on the handover information from the current cell (base station apparatus 100) to perform the handover from the target cell to the owned by using the QoS conversion information ( QoS parameters of the service flow level QoS control method which are mapped / stored) can be converted into QoS parameters of the bearer level QoS control method.
  • the QoS conversion information QoS parameters of the service flow level QoS control method which are mapped / stored
  • the terminal when the terminal is handed over from the system of the service flow control QoS control system to the system of the bearer control QoS system, information that can convert (matching) the service flow-specific QoS parameters to the bearer-specific QoS parameters is provided. Transfer to the terminal, it is possible to minimize the communication service disconnection of the terminal during handover.
  • the terminal 200 is using only a communication service, such as the Internet search or e-mail reading, etc. that is not important to guarantee the session continuity, if the terminal 200 is handed over to the LTE network that supports the QoS control method per bearer communication service Even if the cut off will not have a big impact on the user's experience.
  • a communication service such as the Internet search or e-mail reading, etc. that is not important to guarantee the session continuity
  • the interworking control unit 140 provides QoS conversion information only when the continuity of service flow for the terminal 200 is required when the terminal 200 performs a handover to an LTE network supporting a bearer-based QoS control scheme. You may.
  • the service flow requiring continuity may vary according to a predefined definition, and may be defined as, for example, a service flow of a communication service in which Session Continuity guarantee is important, such as VoIP and video call.
  • the interworking control unit 140 when the terminal 200 is handed over to the LTE network supporting the per-bearer QoS control scheme, it is optional depending on whether or not the continuity of the service flow for the terminal 200, that is, the communication service sensitivity By providing QoS conversion information, it is possible to prevent load increase due to unnecessary additional processing process.
  • the base station apparatus 100 has a function of notifying the terminal of information (QoS control information) necessary for QoS control per service flow without any signaling, and a QoS control method between systems before and after handover.
  • QoS control information information necessary for QoS control per service flow without any signaling
  • QoS control method between systems before and after handover.
  • the terminal apparatus 200 of the present invention includes an acquisition unit 210 for obtaining QoS control information from a header of a specific downlink packet among downlink packets received from a base station, and the specific downlink.
  • QoS control unit 220 which maps a specific QoS parameter identified from the QoS control information to a service flow of a link packet, and applies the specific QoS parameter when transmitting an uplink packet of the service flow, thereby applying the uplink packet to a service flow. It includes a transmitter 230 for transmitting to a specific QoS defined in.
  • the base station is referred to as the base station apparatus 100 of FIG. 2 and will be described based on the service flow 1 according to the use of the communication service 1.
  • the obtaining unit 210 obtains Qos control information from the header of a specific downlink packet among the downlink packets received from the base station 100.
  • the QoS control information includes identification information for identifying whether a packet includes QoS parameters and specific QoS parameters (eg, QoS parameters 1) defined in a service flow (eg, service flow 1). Include.
  • the acquiring unit 210 checks a field in which the identification information is recorded in the L2 header more specifically than the header of the downlink packet. Report Identifies whether the downlink packet received this time is a particular downlink packet including a QoS parameter.
  • the acquirer 210 may acquire QoS control information from the L2 header more specifically than the header of the downlink packet.
  • QoS control unit 220 the service flow of the specific downlink packet, the QoS obtained earlier
  • the QoS controller 220 may determine the specific downlink packet based on the 5-tuple identified from the header of the packet of the specific downlink packet. You can check the service flow.
  • the base station 100 includes Qos control information for identifying the QoS parameter 1 defined in the service flow 1 and identifying the service flow 1 in the header of a specific downlink packet.
  • the QoS control unit 220 will confirm the service flow 1 based on the 5-tuple identified from the header of the specific downlink packet.
  • the QoS control unit 220 maps the QoS parameter 1 identified from the previously obtained QoS control information to the service flow 1 of the specific downlink packet.
  • the QoS control unit 220 maps the QoS parameter 1 to 5-tuple (Source IP, Destination IP, Source Port, Destination Port, Protocol ID), which are the basis for distinguishing the service flow 1, thereby providing the QoS to the service flow 1.
  • the service flow mapping the parameter 1 and the QoS parameter mapping information may be stored.
  • the QoS control information is obtained from the header of the specific downlink packet at the time when the service flow 1 for the terminal device 200 is started, and the QoS parameter 1 is mapped to the service flow 1, the new service flow and QoS parameters It may be the case of newly storing the mapping information.
  • the QoS control information is obtained from the header of the specific downlink packet at the time when the QoS parameter 1 of the service flow 1 is changed, and the QoS parameter 1 is assigned to the service flow 1.
  • the service flow and QoS parameter mapping information previously stored may be updated.
  • the transmitter 230 When transmitting the uplink packet of the service flow 1, the transmitter 230 applies the specific QoS parameter mapped to the service flow 1 to transmit the uplink packet to the specific QoS defined in the service flow 1.
  • the transmission unit 230 determines that the service flow 1 is based on the 5-tuple identified from the header of the uplink packet to be transmitted, the transmission unit 230 applies the QoS parameter 1 previously mapped to the service flow 1 when the uplink packet is transmitted. By transmitting the uplink packet of the service flow 1 to the QoS defined in the service flow 1.
  • the terminal device 200 can obtain and know information (QoS control information) necessary for QoS control per service flow from the header of the downlink packet without additional signaling. QoS level can be guaranteed by the unit.
  • the terminal device 200 when the terminal device 200 is handed over from the base station 100 to a network supporting the existing bearer-based QoS control method, the terminal device 200 is associated with the interworking of the QoS control method between the systems before and after the handover.
  • the terminal device 200 when handing over to a different network supporting a different QoS control policy from the base station 100, based on the QoS conversion information provided from the base station 100, the specific QoS. Convert parameters into QoS parameters according to the other QoS control policies.
  • the base station 100 may not interwork with a network (not shown).
  • the terminal device 200 selects a target cell to be handed over, and provides the terminal 200 with a policy and command (hereinafter, handover information) necessary for handover to the terminal device 200 based on the handover information.
  • handover information a policy and command necessary for handover to the terminal device 200 based on the handover information.
  • the base station 100 if the terminal device 200 is handed over to the LTE network supporting the per-bearer QoS control scheme, when the handover information is provided to the terminal device 200 provides the QoS conversion information together. .
  • the QoS control unit 220 of the terminal device 200 when the handover to the LTE network that supports a different QoS control policy, that is, a per-bearer QoS control policy (control method) different from the base station 100, the base station 100 Receives and receives QoS conversion information from.
  • the QoS controller 220 converts a specific QoS parameter (for example, QoS parameter 1 of the service flow 1) into a QoS parameter based on a bearer-based QoS control method based on the QoS conversion information.
  • a specific QoS parameter for example, QoS parameter 1 of the service flow 1
  • the QoS conversion information includes a matching rule for each service flow for matching each service flow to a bearer, a priority of the matching rule for each service flow, and QoS parameters defined for each bearer.
  • the priority of matching rules for each service flow is determined based on the QoS level of each service flow.
  • the matching rule of a specific service flow in the matching rule for each service flow may be determined to be the same or higher priority than the matching rule of a service flow having a lower QoS level than the specific service flow.
  • the matching rule of the service flow 1 that matches the service flow 1 to the bearer among the matching service rules for each service flow is determined to be the same or higher priority than the matching rule of the service flow having a lower QoS level than the service flow 1.
  • the priority of the matching rule for each service flow means that the priority is lowered according to the order of service flows in which the QoS level is lowered from the service flow of the highest QoS level.
  • each matching rule for each service flow includes a search factor so that a matching rule matching the corresponding service flow may be searched.
  • the search factor may be a 5-tuple based on service flow classification, that is, a source IP, a destination IP, Can be defined as Source Port, Destination Port, Protocol ID.
  • Such QoS conversion information may be defined as shown in Tables 2 and 3 below.
  • Bearer ID Bearer Context Bearer type One QCI, ARP, ... Default or Dedicated 2 QCI, ARP, ... Default or Dedicated ... ... ...
  • Table 1 shows the matching rules for each service flow and the priority of each matching rule
  • Table 2 shows the QoS parameters (bearer context, type) defined for each bearer.
  • the QoS control unit 220 has a lower priority from a matching rule having the highest priority among matching rules for each service flow, based on QoS conversion information.
  • the service flow search factor
  • the QoS control unit 220 has a priority in service flow 1 (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) and matching rules for each service flow.
  • the search factor (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) of the highest matching rule 2 is compared to check for a match. If there is a match, the operation method of the terminal apparatus 200 searches for a matching rule 2 that matches the service flow 1.
  • the QoS controller 220 matches the service flow 1 (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) and the matching rule with the highest priority after the matching rule 2 in the matching rule for each service flow. Compare 3 search factors (Source IP, Destination IP, Source Port, Destination Port, Protocol ID) and check their match.
  • the QoS control unit 220 matches the service flow of the communication service in use in order of decreasing priority from the matching rule having the highest priority among the matching rules for each service flow. Search for matching rules.
  • the terminal apparatus 200 may check and search for matching from the matching rule for the service flow of the highest priority, that is, the highest QoS level, when the QoS parameter is converted, the QoS parameter conversion rate And performance can be improved.
  • the matching rule 2 is searched with a matching rule matching the service flow 1.
  • the QoS controller 220 matches a service flow 1 to a bearer (eg, bearer 1) according to the searched matching rule 2, and matches the QoS parameter 1 of the service flow 1 with the matched bearer (eg, bearer 1). Convert to a QoS parameter defined in (eg QoS parameter A).
  • the QoS controller 220 may match the service flow 1 (communication service 1) to the default bearer.
  • the terminal device 200 uses a QoS parameter (eg, QoS) of a service flow unit QoS control method that is held (mapped / stored) by using QoS conversion information during a handover process.
  • Parameter 1 may be converted into a QoS parameter (eg, QoS parameter A) of a bearer-based QoS control scheme.
  • the terminal device 200 guarantees the QoS level in the bearer unit to which the service flow (communication service) is mapped during the uplink packet transmission according to the existing bearer unit QoS control scheme. Can be sent.
  • the terminal device 200 has a function of acquiring (recognizing) information (Qos control information) necessary for QoS control per service flow without separate signaling, and QoS control between systems before and after handover.
  • Qos control information recognizing information necessary for QoS control per service flow without separate signaling, and QoS control between systems before and after handover.
  • Implementations of the subject matter described in this specification may be implemented in digital electronic circuitry, computer software, firmware or hardware including the structures and structural equivalents disclosed herein, or one or more of them. It can be implemented in combination. Implementations of the subject matter described herein are one or more computer program products, ie one or more modules pertaining to computer program instructions encoded on a program storage medium of tangible type for controlling or by the operation of a processing system. Can be implemented.
  • the computer readable medium may be a machine readable storage device, a machine readable storage substrate, a memory device, a composition of materials affecting a machine readable propagated signal, or a combination of one or more thereof.
  • system encompasses all the instruments, devices, and machines for processing data, including, for example, programmable processors, computers, or multiple processors or computers.
  • the processing system may include, in addition to hardware, code that forms an execution environment for a computer program on demand, such as code constituting processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more thereof. .
  • Computer programs may be written in any form of programming language, including compiled or interpreted languages, or a priori or procedural languages. It can be deployed in any form, including components, subroutines, or other units suitable for use in a computer environment. Computer programs do not necessarily correspond to files in the file system.
  • a program may be in a single file provided to the requested program, in multiple interactive files (eg, a file that stores one or more modules, subprograms, or parts of code), or part of a file that holds other programs or data. (Eg, one or more scripts stored in a markup language document).
  • the computer program may be deployed to run on a single computer or on multiple computers located at one site or distributed across multiple sites and interconnected by a communication network.
  • Computer-readable media suitable for storing computer program instructions and data include, for example, semiconductor memory devices such as EPROM, EEPROM, and flash memory devices, such as magnetic disks such as internal hard disks or external disks, magneto-optical disks, and CDs. It may include all types of nonvolatile memory, media and memory devices, including -ROM and DVD-ROM disks.
  • semiconductor memory devices such as EPROM, EEPROM, and flash memory devices, such as magnetic disks such as internal hard disks or external disks, magneto-optical disks, and CDs. It may include all types of nonvolatile memory, media and memory devices, including -ROM and DVD-ROM disks.
  • the processor and memory can be supplemented by or integrated with special purpose logic circuitry.
  • Implementations of the subject matter described herein may include, for example, a backend component such as a data server, or include a middleware component such as, for example, an application server, or a web browser or graphical user, for example, where a user may interact with the implementation of the subject matter described herein. It may be implemented in a computing system that includes a front end component, such as a client computer with an interface, or any combination of one or more of such back end, middleware or front end components. The components of the system may be interconnected by any form or medium of digital data communication such as, for example, a communication network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

본 발명은, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 서비스 플로우 단위의 QoS 제어를 실현하는 기지국장치 및 단말장치와, QoS 제어방법을 제안한다.

Description

기지국장치 및 단말장치와, QOS 제어방법
본 발명은, 통신서비스의 패킷 전송 시 QoS 레벨을 달리하여 전송하는 QoS 제어 기술에 관한 것이다.
더욱 상세하게, 본 발명은, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 서비스 플로우 단위의 QoS 제어를 가능하게 하는 기술에 관한 것이다.
이동통신 시스템에서는, 단말(사용자)이 이용하는 통신서비스의 미디어 유형에 따라 QoS(Quality of Service) 레벨을 달리하고, 통신서비스의 패킷 전송 시 미디어 유형에 맞는 QoS 레벨을 보장하여 전송하는 QoS 제어를 제공하고 있다.
이와 관련하여, LTE 네트워크에서 제공하는 QoS 제어방식은, EPS Bearer(이하, 베어러) 단위의 QoS 제어방식이다.
LTE 네트워크에서는, 단말(사용자)이 통신서비스를 이용하고자 데이터 전송을 위한 EPS Bearer 즉 베어러를 생성하게 된다.
이러한 베어러는, 단말 및 기지국 사이를 연결하는 무선구간과, 기지국 및 S-GW 및 P-GW 사이를 연결하는 유선구간을 거쳐 단말 및 P-GW 간에 생성되는 터널(무선구간+유선구간)이라고 할 수 있다.
사용자(단말)의 데이터는 이 터널 즉 베어러를 통해 IP기반 패킷 형태로 전송되며, 패킷 전송에 따른 트래픽 흐름을 서비스 플로우(Service Flow)라고 한다.
기존에는 단말(사용자)에게 제공하던 통신서비스의 종류가 비교적 한정적이었으므로, 몇 개 종류의 통신서비스를 묶어 "베어러" 라는 논리적 단위로 QoS를 적용하는 베어러 단위 QoS 제어방식을 사용하였다.
따라서, 기존의 베어러 단위 QoS 제어방식은, 베어러 별로 QoS 레벨(QoS 파마리터)을 정의하여 베어러 단위로 QoS를 보장(적용)하기 때문에, 하나의 베어러를 통해 전송되는 서비스 플로우라면 모두 동일한 QoS(베어러의 Qos 레벨)가 적용 및 전송된다.
결국, 기존의 베어러 단위 QoS 제어방식은, QoS 제어의 복잡도를 낮출 수 있는 장점이 있지만, 하나의 베어러에 속한 서비스 플로우들에 대해서 차등적인 QoS를 적용할 수 없는 한계가 있다.
이러한 한계는, 통신서비스의 종류가 비교적 한정적이던 기존 상황에서는 큰 문제가 되지 않았지만, 다양한 종류의 통신서비스들이 빠르게 개발/등장하고 있는 현재 또는 앞으로의 상황(예: 5G)에서는 반드시 개선해야 하는 문제일 것이다.
이에, 본 발명에서는, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 보다 차등적인 QoS 적용이 가능한 서비스 플로우 단위의 QoS 제어를 실현하고자 한다.
본 발명에서 도달하고자 하는 목적은, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 보다 차등적인 QoS 적용이 가능한 서비스 플로우 단위의 QoS 제어를 실현하는데 있다.
본 발명의 일 실시예에 따르면, 기지국장치는, 단말로 전송하기 위한 다운링크 패킷에 대하여, 서비스 플로우를 구분하는 구분부; 서비스 플로우 별로 기 정의되는 QoS(Quality of Service) 파라미터 중에서, 상기 구분한 서비스 플로우에 정의되어 있는 특정 QoS 파라미터를 확인하는 확인부; 및 상기 다운링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 단말로의 다운링크 패킷을 서비스 플로우 별로 구분되는 특정 QoS로 전송하는 전송부를 포함한다.
구체적으로, 상기 서비스 플로우에 따른 특정 다운링크 패킷의 헤더에 상기 특정 QoS 파라미터를 식별 가능하게 하는 QoS제어정보를 포함시켜, 상기 단말이 상기 QoS제어정보를 기반으로, 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS로 전송할 수 있게 하는 제어정보전달부를 더 포함할 수 있다.
구체적으로, 상기 특정 다운링크 패킷은, 상기 서비스 플로우가 개시되는 경우의 다운링크 패킷, 및 상기 서비스 플로우가 유지되는 동안 상기 서비스 플로우의 QoS 파라미터가 변경되는 경우의 다운링크 패킷 중 적어도 하나를 포함할 수 있다.
구체적으로, 상기 단말이 상기 기지국장치와는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 경우, 상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환하기 위한 QoS 변환정보를 상기 단말로 제공하는 연동제어부를 더 포함할 수 있다.
구체적으로, 상기 다른 QoS 제어정책은, 베어러(Bearer) 별로 상이한 QoS 레벨을 보장하는, 베어러 단위의 QoS 제어정책일 수 있다.
구체적으로, 상기 서비스 플로우별 매칭룰의 우선순위는, 상기 각 서비스 플로우가 갖는 QoS 레벨을 기준으로 정해질 수 있다.
구체적으로, 상기 연동제어부는, 상기 서비스 플로우의 연속성이 요구되는 경우에만, 상기 QoS 변환정보를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 단말장치는, 기지국으로부터 수신되는 다운링크 패킷 중, 특정 다운링크 패킷의 헤더로부터 QoS제어정보를 획득하는 획득부; 상기 특정 다운링크 패킷의 서비스 플로우에 상기 QoS제어정보로부터 확인되는 특정 QoS 파라미터를 맵핑시키는 QoS제어부; 및 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 업링크 패킷을 서비스 플로우에 정의된 특정 QoS로 전송하는 전송부를 포함한다.
구체적으로, 상기 QoS제어부는, 상기 기지국과는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 경우, 상기 기지국으로부터 제공되는 QoS 변환정보를 기반으로 상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환할 수 있다.
구체적으로, 상기 QoS 변환정보는, 각 서비스 플로우를 베어러에 매칭시키는 서비스 플로우별 매칭룰, 상기 서비스 플로우별 매칭룰의 우선순위, 베러어 별로 기 정의되는 QoS 파라미터를 포함할 수 있다.
구체적으로, 상기 QoS제어부는, 상기 QoS 변환정보를 기반으로, 서비스 플로우별 매칭룰 중 우선순위가 가장 높은 매칭룰부터 우선순위가 낮아지는 순서에 따라 상기 서비스 플로우와 일치하는 매칭룰을 검색하고, 상기 서비스 플로우를 상기 검색된 매칭룰의 베어러에 매칭시켜, 상기 특정 QoS 파라미터를 상기 매칭시킨 베어러에 정의되어 있는 QoS 파라미터로 변환할 수 있다.
본 발명의 일 실시예에 따른 QoS 제어방법은, 기지국장치가, 단말로 전송하기 위한 다운링크 패킷에 대하여 서비스 플로우를 구분하는 구분단계; 상기 기지국장치가, 서비스 플로우 별로 기 정의되는 QoS 파라미터 중 상기 구분한 서비스 플로우에 맵핑된 특정 QoS 파라미터를 확인하는 확인단계; 및 상기 기지국장치가, 상기 다운링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 단말로의 다운링크 패킷을 서비스 플로우 별로 구분되는 특정 QoS로 전송하는 전송단계를 포함한다.
구체적으로, 상기 기지국장치가, 상기 서비스 플로우에 따른 특정 다운링크 패킷의 헤더에 상기 특정 QoS 파라미터를 식별 가능하게 하는 QoS제어정보를 포함시켜, 상기 단말이 상기 QoS제어정보를 기반으로, 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS로 전송할 수 있게 하는 단계를 더 포함할 수 있다.
구체적으로, 상기 기지국장치가, 상기 단말이 상기 기지국장치와는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 것을 확인하는 경우, 상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환하기 위한 QoS 변환정보를 상기 단말로 제공하는 QoS 변환정보단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 QoS 제어방법은, 단말장치가, 기지국으로부터 수신되는 다운링크 패킷 중, 특정 다운링크 패킷의 헤더로부터 QoS제어정보를 획득하는 획득단계; 상기 단말장치가, 상기 특정 다운링크 패킷의 서비스 플로우에 상기 QoS제어정보를 기반으로 확인되는 특정 QoS 파라미터를 맵핑시키는 QoS맵핑단계; 및 상기 단말장치가, 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 업링크 패킷을 서비스 플로우에 정의된 특정 QoS로 전송하는 전송단계를 포함한다.
이에, 본 발명의 기지국장치 및 단말장치와, QoS 제어방법에 의하면, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 서비스 플로우 단위의 QoS 제어를 가능하게 함으로써, 통신서비스 별로 보다 차등적인 QoS 즉 서비스 품질을 적용하는 효과를 도출한다.
도 1은 기존의 베어러 단위 QoS 제어방식을 보여주는 예시도이다.
도 2는 본 발명의 일 실시예에 따른 서비스 플로우 단위의 QoS 제어방식을 보여주는 예시도이다.
도 3은 본 발명의 일 실시예에 따른 QoS 제어방법(서비스 플로우 단위의 QoS 제어)을 기지국 관점에서 설명하는 제어 흐름도이다.
도 4는 본 발명의 일 실시예에 따른 QoS 제어방법(서비스 플로우 단위의 QoS 제어)을 단말 관점에서 설명하는 제어 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 QoS 제어방법(핸드오버 전/후 시스템 간 QoS 제어방식의 연동)을 기지국 관점에서 설명하는 제어 흐름도이다.
도 6은 본 발명의 일 실시예에 따른 QoS 제어방법(핸드오버 전/후 시스템 간 QoS 제어방식의 연동)을 단말 관점에서 설명하는 제어 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 기지국장치의 구성을 나타내는 블록도이다.
도 8은 본 발명의 일 실시예에 따른 단말장치의 구성을 나타내는 블록도이다.
이하, 첨부된 도면을 참조하여 본 발명에 대하여 설명한다.
먼저, 본 발명에 대한 구체적인 설명에 앞서, 본 발명에서 제안하는 서비스 플로우 단위의 QoS 제어방식에 의해 달성되는 기능(효과)을 설명하면, 다음과 같다.
본 발명에 의해 달성되는 효과는, 별도 시그널링 없이 서비스 플로우 단위 QoS 제어에 필요한 정보(Qos 제어정보)를 단말로 알리는 점, Piggyback 형태로 QoS제어정보를 전달하여 패킷 검사 효율을 높이는 점, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 가능하게 하여 핸드오버 시 단말의 통신서비스 끊김을 최소화하는 점, 아울러 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 통신서비스의 민감도에 따라 선택적으로 반영하는 점 등이 있다.
이하에서는, 본 발명에서 제안하는 서비스 플로우 단위의 QoS 제어방식을 실현하는 장치 및/또는 구성에 대해 설명하며, 그 과정에서 달성되는 전술의 효과들을 보다 구체적으로 설명하겠다.
한편, 도 1을 참조하여 기존의 베어러 단위 QoS 제어방식을 설명하겠다.
기존의 베어러 단위 QoS 제어방식은, 몇 개 종류의 통신서비스를 묶어 EPS Bearer 즉 베어러라는 논리적 단위로 QoS를 적용(보정)하는 방식이다.
이에, 기존에는 도 1에 도시된 바와 같이, 베어러 단위 QoS 제어방식을 사용하기 위해, 단말(사용자)에는 이용하고자 하는 통신서비스에서 요구되는 QoS를 보장하는 베어러, 예컨대 Bearer1,2가 생성된다.
이때, Bearer1,2 각각은, Default Bearer일 수도 있고, Dedicated Bearer일 수도 있다.
그리고, 도 1에 도시된 바와 같이, 단말이 이용하는 통신서비스1의 서비스 플로우1, 통신서비스2의 서비스 플로우2가 하나의 베어러(Bearer1)에 속하고, 단말이 이용하는 통신서비스3의 서비스 플로우3, 통신서비스4의 서비스 플로우4가 하나의 베어러(Bearer2)에 속한다고 가정한다.
이 경우, Bearer1을 통해 전송되는 서비스 플로우1,2에는 모두 동일한 QoS 즉 Bearer1의 Qos 레벨(Qos 파라미터A)이 적용되고, Bearer2을 통해 전송되는 서비스 플로우3,4에는 모두 동일한 QoS 즉 Bearer2의 Qos 레벨(Qos 파라미터B)이 적용된다.
결국, 기존의 베어러 단위 QoS 제어방식은, 베어러라는 논리적 단위로 QoS를 적용하기 때문에, QoS 제어의 복잡도를 낮출 수 있는 장점이 있지만, 하나의 베어러에 속한 서비스 플로우들에 대해서 차등적인 QoS를 적용할 수 없는 한계가 있다.
이에, 본 발명에서는, 도 2에 도시된 바와 같이, 서비스 플로우 단위의 QoS 제어를 실현하여, 통신서비스 별로 보다 차등적인 QoS 즉 서비스 품질을 적용하자 한다.
헌데, 서비스 플로우 단위의 QoS 제어를 실현하게 되면, 기존의 베어러 단위 QoS 제어방식 대비 QoS 제어의 복잡도가 높아진다.
이에, 본 발명에서는, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 통신서비스 별로 차등적인 QoS 적용을 가능하게 하는 서비스 플로우 단위의 QoS 제어방식을 제안한다.
도 3을 참조하여, 본 발명의 QoS 제어방법(서비스 플로우 단위의 QoS 제어)을 기지국 관점에서 설명하겠다.
따라서 설명의 편의를 위해, 본 발명의 QoS 제어방법을 기지국장치(100)의 동작 방법으로 대체 언급하여 설명하겠다.
본 발명의 QoS 제어방법 즉 기지국장치(100)의 동작 방법은, 단말(200)로 전송하기 위한 다운링크 패킷에 대하여, 서비스 플로우를 구분한다.
즉, 기지국장치(100)의 동작 방법은, 네트워크(미도시)로부터 단말(200)로 전송하기 위한 다운링크 패킷이 수신되면(S100), 다운링크 패킷의 헤더에서 확인되는 5-tuple 즉 Source IP, Destination IP, Source Port, Destination Port, Protocol ID에 근거하여 서비스 플로우를 구분한다(S110).
이하에서는, 설명의 편의를 위해, 금번 다운링크 패킷의 서비스 플로우를, 서비스 플로우1로 구분한 경우라고 가정하여 설명하겠다.
기지국장치(100)의 동작 방법은, 서비스 플로우 별로 기 정의되는 QoS(Quality of Service) 파라미터 중, 금번 다운링크 패킷의 서비스 플로우1에 정의되어 있는 특정 QoS 파라미터를 확인한다(S120).
이하에서는, 설명의 편의 상 서비스 플로우1에 정의되어 있는 특정 QoS 파라미터를, QoS 파라미터1로 지칭하여 설명하겠다.
이때, 기지국장치(100)의 동작 방법은, 금번 다운링크 패킷이 QoS제어정보를 포함시켜야 하는 특정 다운링크 패킷인지 확인한다(S130).
예를 들면, 기지국장치(100)의 동작 방법은, 금번 다운링크 패킷이, 단말(200)에서 통신서비스1을 이용하기 시작하여 단말(200)에 대한 서비스 플로우1이 개시되는 시점의 다운링크 패킷이거나, 단말(200)에 대한 서비스 플로우1이 유지되는 동안 서비스 플로우1의 QoS 파라미터1가 변경되는 경우 변경 시점의 다운링크 패킷이라면, QoS제어정보를 포함시켜야 하는 특정 다운링크 패킷인 것으로 확인할 수 있다.
기지국장치(100)의 동작 방법은, S130단계에서 금번 다운링크 패킷이 특정 다운링크 패킷이 아니라고 확인되면, 다운링크 패킷 전송 시 QoS 파라미터1을 적용하여, 단말(200)로의 다운링크 패킷을 서비스 플로우1에 정의된 특정 QoS로 전송한다.
한편, 기지국장치(100)의 동작 방법은, S130단계에서 금번 다운링크 패킷이 특정 다운링크 패킷으로 확인되면, 금번 다운링크 패킷의 헤더 보다 구체적으로는 L2 헤더에 Qos 제어정보를 포함시키고(S135), 다운링크 패킷 전송 시 QoS 파라미터1을 적용하여, 단말(200)로의 다운링크 패킷을 서비스 플로우1에 정의된 특정 QoS로 전송한다.
즉, 기지국장치(100)의 동작 방법은, 다운링크 패킷 전송 시 해당 패킷의 서비스 플로우에 정의되어 있는 QoS 파라미터(QoS 레벨)을 적용하여 전송함으로써, 서비스 플로우 단위로 QoS 레벨을 보장하여 전송하는 것이다.
도 2에 도시된 바와 같이, 단말(200)이 통신서비스1,2,3,4를 이용함에 따라 단말(200)에 대한 서비스 플로우1,2,3,4가 발생한다고 가정한다.
이 경우, 본 발명의 기지국장치(100)는, 통신서비스1의 패킷 전송 시 해당 패킷의 서비스 플로우1에 정의된 QoS 파라미터1(QoS 레벨1)을 적용하여 전송하고, 통신서비스2의 패킷 전송 시 해당 패킷의 서비스 플로우2에 정의된 QoS 파라미터2(QoS 레벨2)을 적용하여 전송하고, 통신서비스3의 패킷 전송 시 해당 패킷의 서비스 플로우3에 정의된 QoS 파라미터3(QoS 레벨3)을 적용하여 전송하고, 통신서비스4의 패킷 전송 시 해당 패킷의 서비스 플로우4에 정의된 QoS 파라미터4(QoS 레벨4)을 적용하여 전송함으로써, 서비스 플로우 단위로 QoS 레벨을 보장하여 전송할 수 있다.
이때, 본 발명의 기지국장치(100)는, 다운링크 트래픽에 서비스 플로우 단위 QoS 제어를 수행하되, 별도의 제어메시지(별도 시그널링)를 사용하지 않고, 서비스 플로우 단위 QoS 제어에 필요한 정보(QoS제어정보)를 단말로 알려줄 수 있다.
이하에서는, 도 4를 참조하여, 본 발명의 QoS 제어방법(서비스 플로우 단위의 QoS 제어)을 단말 관점에서 설명하겠다.
설명의 편의를 위해, 본 발명의 QoS 제어방법을 단말장치(200)의 동작 방법으로 대체 언급하여 설명하겠다.
본 발명의 QoS 제어방법 즉 단말장치(200)의 동작 방법은, 기지국(100)으로부터 다운링크 패킷을 수신하면(S200), 다운링크 패킷의 헤더 보다 구체적으로는 L2 헤더에서 식별정보가 기록되는 필드를 확인하여, 식별정보가 있으면 식별정보를 보고 QoS 파라미터를 포함하고 있는 특정 다운링크 패킷인지 식별한다(S210).
단말장치(200)의 동작 방법은, 금번 수신된 다운링크 패킷이 QoS 파라미터를 포함하고 있는 특정 다운링크 패킷인 것으로 식별되면(S210 Yes), 해당 다운링크 패킷의 헤더(L2 헤더)에서 QoS제어정보를 획득할 수 있다(S220).
이에, 단말장치(200)의 동작 방법은, 금번 수신된 특정 다운링크 패킷의 서비스 플로우에, 앞서 획득한 QoS제어정보로부터 확인되는 특정 QoS 파라미터를 맵핑시킨다(S230).
보다 구체적으로 설명하면, 단말장치(200)의 동작 방법은, 금번 수신된 특정 다운링크 패킷의 헤더에서 확인되는 5-tuple 즉 Source IP, Destination IP, Source Port, Destination Port, Protocol ID에 근거하여, 특정 다운링크 패킷의 서비스 플로우를 확인할 수 있다.
전술한 예시와 같이, 기지국(100)이 서비스 플로우1로 구분하고 서비스 플로우1에 정의된 QoS 파라미터1을 식별 가능하게 하는 QoS제어정보를 특정 다운링크 패킷의 헤더에 포함시켜 전송한 경우라고 가정한다.
이 경우라면, 단말장치(200)의 동작 방법은, 특정 다운링크 패킷의 헤더에서 확인되는 5-tuple에 근거하여, 서비스 플로우1을 확인할 것이다.
이에, 단말장치(200)의 동작 방법은, 특정 다운링크 패킷의 서비스 플로우1에, 앞서 획득한 QoS제어정보로부터 확인되는 QoS 파라미터1을 맵핑시킨다.
이때, 단말장치(200)의 동작 방법은, 서비스 플로우1를 구분하는 근거가 되는 5-tuple(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)에 QoS 파라미터1을 맵핑시킴으로써, 서비스 플로우1에 QoS 파라미터1을 맵핑시킨 서비스 플로우 및 QoS 파라미터 맵핑정보를 저장할 수 있다.
그리고, 단말장치(200)의 동작 방법은, 금번 수신한 다운링크 패킷을 처리 수행할 것이다(S240).
물론, 단말장치(200)의 동작 방법은, S210단계에서 금번 수신된 다운링크 패킷이 특정 패킷이 아닌 것으로 식별되면, S220, S230단계 없이 금번 수신한 다운링크 패킷을 처리 수행할 것이다(S240).
이러한 단말장치(200)의 동작 방법은, 이후 서비스 플로우1의 업링크 패킷 전송 시, 앞서 서비스 플로우1에 맵핑시킨 QoS 파라미터1을 적용하여, 업링크 패킷을 서비스 플로우1에 정의된 특정 QoS로 전송한다(S250).
즉, 단말장치(200)의 동작 방법은, 업링크 패킷 전송 시, 전송 대상인 업링크 패킷의 헤더로부터 확인되는 5-tuple에 근거하여 서비스 플로우를 확인한다.
예를 들어, 단말장치(200)의 동작 방법은, 서비스 플로우1로 확인되면, 금번 업링크 패킷 전송 시 앞서 서비스 플로우1에 맵핑시킨 QoS 파라미터1을 적용하여 전송함으로써, 서비스 플로우1의 업링크 패킷을 서비스 플로우1에 정의된 특정 QoS로 전송할 수 있다.
이에, 도 2에 도시된 바와 같이, 단말장치(200)가 통신서비스1,2,3,4를 이용함에 따라 단말장치(200)에 대한 서비스 플로우1,2,3,4가 발생한다고 가정한다.
이 경우, 본 발명의 단말장치(200)는, 통신서비스1의 패킷 전송 시 해당 패킷의 서비스 플로우1에 정의된 QoS 파라미터1(QoS 레벨1)을 적용하여 전송하고, 통신서비스2의 패킷 전송 시 해당 패킷의 서비스 플로우2에 정의된 QoS 파라미터2(QoS 레벨2)을 적용하여 전송하고, 통신서비스3의 패킷 전송 시 해당 패킷의 서비스 플로우3에 정의된 QoS 파라미터3(QoS 레벨3)을 적용하여 전송하고, 통신서비스4의 패킷 전송 시 해당 패킷의 서비스 플로우4에 정의된 QoS 파라미터4(QoS 레벨4)을 적용하여 전송함으로써, 서비스 플로우 단위로 QoS 레벨을 보장하여 전송할 수 있다.
이때, 단말장치(200)의 동작 방법은, 별도 시그널링 없이 다운링크 패킷의 헤더로부터 서비스 플로우 단위 QoS 제어에 필요한 정보(QoS제어정보)를 획득하여 알 수 있고, 이를 기반으로 패킷 전송 시 서비스 플로우 단위로 QoS 레벨을 보장하여 전송할 수 있다.
이상, 도 3 및 도 4를 참조한 설명에서 알 수 있듯이, 본 발명의 서비스 플로우 단위의 QoS 제어방식에 따르면, 다운링크 트래픽에 서비스 플로우 단위 QoS 제어를 수행하고, QoS제어정보를 다운링크 트래픽의 특정 패킷 헤더에 넣는 Piggyback 형태로 단말에 전달하면 단말이 이를 토대로 업링크 트래픽에 다운링크 트래픽과 동일한 서비스 플로우 단위 QoS 제어를 수행하고 있다.
이하에서는, 도 5를 참조하여, 본 발명의 QoS 제어방법(핸드오버 전/후 시스템 간 QoS 제어방식의 연동)을 기지국 관점에서 설명하겠다.
따라서 설명의 편의를 위해, 본 발명의 QoS 제어방법을 기지국장치(100)의 동작 방법으로 대체 언급하여 설명하겠다.
기지국장치(100)의 동작 방법은, 단말(200)이 기지국장치(100)와는 다른 QoS 제어정책 즉 베어러 단위 QoS 제어정책(제어방식)을 지원하는 LTE 네트워크로 핸드오버 하는 경우(S150), 단말(200)에서 이용하는 통신서비스의 서비스 타입을 확인한다.
기지국장치(100)의 동작 방법은, 단말(200)에서 이용하는 통신서비스의 서비스 타입이 VoIP, 영상통화 등과 같이 Session Continuity 보장이 중요한 타입이면, 서비스 플로우의 연속성이 요구되는 것으로 판단한다(S160 Yes).
기지국장치(100)의 동작 방법은, 단말(200)에 대한 서비스 플로우의 연속성이 요구되는 경우(S160 Yes), 서비스 플로우의 QoS 파라미터를 베어러 단위 QoS 제어방식에 따른 QoS 파라미터로 변환하기 위한 QoS 변환정보를 단말(200)에 제공한다.
예를 들면, 기지국장치(100)는, 네트워크(미도시)와의 연동을 통해 단말(200)이 핸드오버할 타겟셀을 선택하고 핸드오버에 필요한 정책 및 명령(이하, 핸드오버정보)을 단말(200)로 제공함으로써, 단말(200)로 하여금 핸드오버정보를 기반으로 현재 셀(기지국장치(100))에서 타겟셀로의 핸드오버를 수행하도록 한다.
이때, 기지국장치(100)의 동작 방법은, 단말(200)로 핸드오버정보가 제공될 때 QoS 변환정보를 함께 제공하고, 이후 기존과 같이 단말(200)과의 세션을 해제하는 것이다(S180).
한편, 기지국장치(100)의 동작 방법은, 단말(200)에 대한 서비스 플로우의 연속성이 요구되지 않는 경우(S160 No), QoS 변환정보를 단말(200)에 제공하지 않는다.
예를 들면, 기지국장치(100)의 동작 방법, 기존과 같이 단말(200)로 핸드오버정보를 제공하고, 이후 단말(200)과의 세션을 해제하는 것이다(S170).
이렇게 되면, 기지국장치(100)의 동작 방법은, 단말(200)이 베어러 단위 QoS 제어방식을 지원하는 LTE 네트워크로 핸드오버하는 경우, 단말(200)에 대한 서비스 플로우의 연속성 요구 여부 즉 통신서비스의 민감도에 따라 선택적으로 QoS 변환정보를 제공함으로써, 불필요한 추가 처리 프로세스로 인한 부하 증가를 예방할 수 있다.
즉, 기지국장치(100)의 동작 방법은, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 가능하게 하여 핸드오버 시 단말의 통신서비스 끊김을 최소화하되, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 통신서비스 민감도(서비스 플로우의 연속성 요구 여부)에 따라 선택적으로 반영할 수 있다.
이하에서는, 도 6을 참조하여, 본 발명의 QoS 제어방법(핸드오버 전/후 시스템 간 QoS 제어방식의 연동)을 단말 관점에서 설명하겠다.
따라서 설명의 편의를 위해, 본 발명의 QoS 제어방법을 단말장치(200)의 동작 방법으로 대체 언급하여 설명하겠다.
단말장치(200)의 동작 방법은, 핸드오버 필요 조건을 만족하여 핸드오버되는 경우(S260), 기지국(100)으로부터 핸드오버정보를 수신할 것이다(S270).
이때, 단말장치(200)의 동작 방법은, 핸드오버정보와 함께 QoS 변환정보를 수신한 경우라면, QoS 파라미터 변환이 필요하다고 판단한다(S280 Yes).
앞서 설명하였듯이 QoS 변환정보는, 각 서비스 플로우를 베어러에 매칭시키는 서비스 플로우별 매칭룰, 상기 서비스 플로우별 매칭룰의 우선순위, 베러어 별로 정의되는 QoS 파라미터를 포함한다.
서비스 플로우별 매칭룰의 우선순위는, 각 서비스 플로우가 갖는 QoS 레벨을 기준으로 정해진다.
구체적으로, 서비스 플로우별 매칭룰에서 특정 서비스 플로우의 매칭룰은, 상기 특정 서비스 플로우 보다 낮은 QoS 레벨을 갖는 서비스 플로우의 매칭룰 대비, 동일하거나 높은 우선순위로 정해지게 될 것이다.
예를 들어서, 서비스 플로우별 매칭룰 중에서 서비스 플로우1을 베어러에 매칭시키는 서비스 플로우1의 매칭룰은, 서비스 플로우1 보다 낮은 QoS 레벨을 갖는 서비스 플로우의 매칭룰 대비, 동일하거나 높은 우선순위로 정해지는 것이다.
이는 달리 말하면, 서비스 플로우별 매칭룰의 우선순위는, 가장 높은 QoS 레벨의 서비스 플로우부터 QoS 레벨이 낮아지는 서비스 플로우 순서에 따라, 우선순위가 낮아지는 것을 의미한다.
아울러, 서비스 플로우별 매칭룰 각각은, 해당 서비스 플로우와 일치하는 매칭룰이 검색될 수 있도록 검색인자를 포함하되, 이 검색인자는 서비스 플로우 구분에 근거가 되는 5-tuple(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)로 정의될 수 있다.
이에, QoS 파라미터 변환 과정을 보다 구체적으로 설명하면 다음과 같다.
먼저, 단말장치(200)의 동작 방법은, QoS 변환정보를 기반으로, 앞서 저장하고 있는 서비스 플로우 및 QoS 파라미터 맵핑정보의 서비스 플로우에 대하여, 서비스 플로우별 매칭룰 중 우선순위가 가장 높은 매칭룰부터 우선순위가 낮아지는 순서에 따라 서비스 플로우(검색인자)가 일치하는 매칭룰을 검색한다(S290).
서비스 플로우1 및 QoS 파라미터1 맵핑정보를 예로 들면, 단말장치(200)의 동작 방법은, 서비스 플로우1(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)과, 서비스 플로우별 매칭룰에서 우선순위가 가장 높은 매칭룰2(표2 참조)의 검색인자(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)를 비교하여 일치 여부를 확인한다. 만약 일치한다면, 단말장치(200)의 동작 방법은, 매칭룰2를 서비스 플로우1과 일치하는 매칭룰로 검색한다.
만약 일치하지 않는다면, 단말장치(200)의 동작 방법은, 서비스 플로우1(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)과, 서비스 플로우별 매칭룰에서 매칭룰2 다음으로 우선순위가 높은 매칭룰3(표2 참조)의 검색인자(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)를 비교하여 일치 여부를 확인한다.
이와 같이, 단말장치(200)의 동작 방법은, 이용 중인 통신서비스의 서비스 플로우에 대하여, 서비스 플로우별 매칭룰 중 우선순위가 가장 높은 매칭룰부터 우선순위가 낮아지는 순서에 따라 서비스 플로우(검색인자)가 일치하는 매칭룰을 검색한다.
이렇게 되면, 단말장치(200)의 동작 방법은, QoS 파라미터 변환 시, 우선순위가 가장 높은, 달리 말하면 가장 높은 QoS 레벨의 서비스 플로우에 대한 매칭룰부터 일치 여부를 확인하여 검색할 수 있기 때문에, QoS 파라미터 변환 속도 및 성능을 높일 수 있다.
이하에서는, 설명의 편의를 위해, 매칭룰2를 서비스 플로우1과 일치하는 매칭룰로 검색한 경우로 가정하겠다.
이 경우, 단말장치(200)의 동작 방법은, 서비스 플로우1을 상기 검색된 매칭룰2에 따른 베어러(예: 베어러1)에 매칭시키고(S300), 서비스 플로우1의 QoS 파라미터1을 상기 매칭시킨 베어러(예: 베어러1)에 정의되어 있는 QoS 파라미터(예: QoS 파라미터A)로 변환한다(S310).
만약, 단말장치(200)의 동작 방법은, 서비스 플로우별 매칭룰에서 서비스 플로우1와 일치하는 매칭룰을 검색하지 못한 경우라면, 서비스 플로우1(통신서비스1)을 Default Bearer에 매칭시킬 수 있다.
이와 같이, 단말장치(200)의 동작 방법은, 핸드오버를 수행하는 과정 중, QoS 변환정보를 이용하여 자신이 보유(맵핑/저장)하고 있는 서비스 플로우 단위 QoS 제어방식의 QoS 파라미터(예: QoS 파라미터1)를 베어러 단위 QoS 제어방식의 QoS 파라미터(예: QoS 파라미터A)로 변환할 수 있다.
물론, 단말장치(200)의 동작 방법은, QoS 파라미터 변환과는 별개로, 기지국(100)과의 세션 해제, 타켓셀로의 핸드오버 수행 등 전반적인 핸드오버 수행을 진행할 것이다(S320).
이렇게 되면, 단말장치(200)의 동작 방법은, 타겟셀로의 핸드오버 이후에는, 기존의 베어러 단위 QoS 제어방식에 따라, 업링크 패킷 전송 시 서비스 플로우(통신서비스)가 맵핑된 베어러 단위로 QoS 레벨을 보장하여 전송할 수 있다(S320).
한편, 단말장치(200)의 동작 방법은, QoS 파라미터 변환이 필요하지 않다고 판단하면(S280 No). 기지국(100)과의 세션 해제, 타켓셀로의 핸드오버 수행 등 전반적인 핸드오버 수행을 진행한다(S285).
이상에 설명한 바와 같이, 본 발명은, 서비스 플로우 단위 QoS 제어를 수행하되, 별도 시그널링 없이 서비스 플로우 단위 QoS 제어에 필요한 정보(Qos 제어정보)를 단말로 알리는 효과, Piggyback 형태로 Qos 제어정보를 전달하여 패킷 검사 효율을 높이는 효과, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 가능하게 하여 핸드오버 시 단말의 통신서비스 끊김을 최소화하는 효과, 아울러 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 통신서비스의 민감도에 따라 선택적으로 반영하는 효과를 갖는다.
이하에서는, 본 발명에서 제안하는 서비스 플로우 단위 QoS 제어방식을 실현하는 장치 즉 기지국장치와 단말장치에 대해 구체적으로 설명하겠다.
먼저, 도 7을 참조하여, 본 발명의 바람직한 실시예에 따른 기지국장치의 구성을 설명하겠다.
도 7에 도시된 바와 같이, 본 발명의 기지국장치(100)는, 단말로 전송하기 위한 다운링크 패킷에 대하여, 서비스 플로우를 구분하는 구분부(110)와, 서비스 플로우 별로 기 정의되는 QoS 파라미터 중 상기 구분한 서비스 플로우에 정의된 특정 QoS 파라미터를 확인하는 확인부(120)와, 상기 다운링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 단말로의 다운링크 패킷을 서비스 플로우에 정의된 특정 QoS로 전송하는 전송부(150)를 포함한다.
이하에서는 설명의 편의를 위해, 단말을 도 2의 단말장치(200)로 지칭하여 설명하겠다.
구분부(110)는, 단말(200)로 전송하기 위한 다운링크 패킷에 대하여, 서비스 플로우를 구분한다.
즉, 구분부(110)는, 네트워크(미도시)로부터 단말(200)로 전송하기 위한 다운링크 패킷이 전달되면, 다운링크 패킷의 헤더에서 확인되는 정보를 근거로 다운링크 패킷의 서비스 플로우를 구분한다.
이때, 다운링크 패킷은 QoS 제어를 위해 5-tuple Rule이 적용된 IP기반 패킷 형태를 가질 것이다.
따라서 구분부(110)는, 다운링크 패킷의 헤더로부터 확인되는 5-tuple 즉 Source IP, Destination IP, Source Port, Destination Port, Protocol ID에 근거하여, 서비스 플로우를 구분할 수 있다.
이하에서는, 설명의 편의를 위해, 금번 다운링크 패킷의 서비스 플로우를, 서비스 플로우1로 구분한 경우라고 가정하여 설명하겠다.
확인부(120)는, 서비스 플로우 별로 기 정의되는 QoS 파라미터 중 금번 구분된 서비스 플로우에 정의된 특정 QoS 파라미터를 확인한다.
예를 들면, 확인부(120)는, 서비스 플로우 별로 기 정의되는 QoS 파라미터 중, 서비스 플로우1에 정의된 특정 QoS 파라미터를 확인하는 것이다.
이때, 확인부(120)는, 서비스 플로우 별로 기 정의되는 QoS 파라미터를 보유하고, 보유한 서비스 플로우별 QoS 파라미터에서 서비스 플로우1에 정의된 특정 QoS 파라미터를 검색하여 확인할 수도 있다.
또는, 확인부(120)는, 서비스 플로우별 QoS 파라미터를 보유하지는 않고, 단말(200)이 통신서비스1(서비스 플로우1)을 이용하기 위한 세션을 연결하는 과정에서 별도의 네트워크 장비(예: P-GW 등)로부터 서비스 플로우1에 정의된 특정 QoS 파라미터를 획득하여 확인할 수도 있다.
QoS 파라미터는, 다음의 표1과 같은 정보 중 하나 이상으로 정의될 수 있다.
Parameter 의미
QoS Type 서비스 형태가 GBR(Guaranteed Bit Rate) 인지 Non-GBR인지를 나타냄
Bitrate QoS Type이 GBR인 경우 서비스 플로우에 보장해 줄 전송률(Guaranteed Bit Rate), QoS Type이 Non-GBR인 경우 생략 가능하며, 설정된 경우엔 최대 전송률(Allowed Maximum Bit Rate)로 적용
Priority 서비스 플로우 간의 상대적인 우선순위 (우선순위가 높을수록 스케쥴링, 자원할당을 우선적으로 고려)
Timer Timer가 Expire될 경우 QoS Parameter는 무효화
이하에서는, 설명의 편의 상 서비스 플로우1에 정의된 특정 QoS 파라미터를, QoS 파라미터1로 지칭하여 설명하겠다.
전송부(150)는, 다운링크 패킷 전송 시 확인부(120)에서 확인한 특정 QoS 파라미터(예: QoS 파라미터1)을 적용하여, 단말(200)로의 다운링크 패킷을 서비스 플로우1에 정의된 특정 QoS로 전송한다.
즉, 전송부(150)는, 다운링크 패킷 전송 시 해당 패킷의 서비스 플로우에 정의된 QoS 파라미터(QoS 레벨)을 적용하여 전송함으로써, 서비스 플로우 단위로 QoS 레벨을 보장하여 전송하는 것이다.
이상에서는, 본 발명의 서비스 플로우 단위 QoS 제어방식을, 다운링크 트래픽을 기준으로 설명하였다.
업링크 트래픽에 대해서 본 발명의 서비스 플로우 단위 QoS 제어방식을 적용하기 위해서는, 서비스 플로우 단위 QoS 제어에 필요한 정보(Qos 제어정보)를 단말로 알려주는 과정이 필요하다.
헌데, 이 과정에서 별도의 제어메시지를 사용한다면, 새로운 서비스 플로우가 발생할 때마다 제어메시지 송수신을 해야 하기 때문에 기존의 베어러 단위 QoS 제어방식 대비 QoS 제어의 복잡도가 높아진다.
이에, 본 발명에서는, 별도의 제어메시지(별도 시그널링)를 사용하지 않고도, 서비스 플로우 단위 QoS 제어에 필요한 정보(Qos 제어정보)를 단말로 알려주는 방안을 제안한다.
구체적으로, 도 7에 도시된 바와 같이, 본 발명의 기지국장치(100)는, 제어정보전달부(130)를 더 포함한다.
제어정보전달부(130)는, 서비스 플로우에 따른 특정 다운링크 패킷의 헤더에 특정 QoS 파라미터를 식별 가능하게 하는 Qos제어정보를 포함시켜, 단말(200)이 QoS제어정보를 기반으로 서비스 플로우의 업링크 패킷 전송 시 특정 QoS로 전송할 수 있게 한다.
즉, 제어정보전달부(130)는, 서비스 플로우 예컨대 서비스 플로우1에 따른 다운링크 패킷 중 특정 다운링크 패킷의 헤더에, QoS제어정보를 포함시킴으로써, QoS제어정보를 단말(200)로 알려주는 것이다.
이때, QoS제어정보는, QoS 파라미터를 포함하고 있는 패킷인지 여부를 식별하는 식별정보와, 서비스 플로우(예: 서비스 플로우1)에 정의되어 있는 특정 QoS 파라미터(예: QoS 파라미터1)를 포함한다.
그리고, 전술의 특정 다운링크 패킷은, 서비스 플로우가 개시되는 경우의 다운링크 패킷, 및 서비스 플로우가 유지되는 동안 서비스 플로우의 QoS 파라미터가 변경되는 경우의 다운링크 패킷 중 적어도 하나를 의미한다.
예를 들면, 제어정보전달부(130)는, 단말(200)에서 통신서비스1을 이용하기 시작하여 단말(200)에 대한 서비스 플로우1이 개시되는 시점의 특정 다운링크 패킷의 헤더에, QoS제어정보를 포함시킬 수 있다.
또는, 제어정보전달부(130)는, 단말(200)에서 통신서비스1을 이용을 지속하여 단말(200)에 대한 서비스 플로우1이 유지되는 동안, 서비스 플로우1의 QoS 파라미터1가 변경되는 경우 변경 시점의 특정 다운링크 패킷의 헤더에, QoS제어정보를 포함시킬 수 있다.
여기서, QoS제어정보를 포함시키는 헤더는, 패킷의 구조 상 수신 시 가장 먼저 처리되는 헤더인 것이 바람직하며, 예를 들면 L(Layer)2 헤더일 수 있다.
이렇게 되면, 특정 다운링크 패킷을 수신하는 단말(200)에서는, 특정 다운링크 패킷의 헤더로부터, 서비스 플로우 단위 QoS 제어에 필요한 정보(QoS제어정보)를 알 수 있기 때문에, 이를 기반으로 업링크 패킷 전송 시 서비스 플로우 단위로 QoS 레벨을 보장하여 전송할 수 있다.
이와 같이, 본 발명에서는, 별도의 제어메시지(별도 시그널링)를 사용하지 않고, 서비스 플로우 단위 QoS 제어에 필요한 정보(QoS제어정보)를 단말로 알려줄 수 있다.
한편, 본 발명의 서비스 플로우 단위 QoS 제어방식을 실현하는 기지국장치(100)는, 다른 QoS 제어정책 예컨대 기존의 베어러 단위 QoS 제어방식을 지원하는 LTE 네트워크와 중첩된 영역에 위치할 수 있고, 이 경우 단말(200)이 LTE 네트워크로 핸드오버될 수도 있다.
이 경우, 핸드오버 전/후 시스템 간 QoS 제어방식이 서로 다르기 때문에, 핸드오버 후의 시스템에서 단말(200)에 대하여 통신서비스를 끊김 없이 제공하면서 QoS 제어를 제공하는 것이 불가능해질 수 있다.
이에, 본 발명에서는, 단말이 기존의 베어러 단위 QoS 제어방식을 지원하는 네트워크로 핸드오버되는 경우를 고려하여, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 가능하게 하는 방안을 제안한다.
구체적으로, 도 7에 도시된 바와 같이, 본 발명의 기지국장치(100)는, 연동제어부(140)를 더 포함한다.
연동제어부(140)는, 단말(200)이 기지국장치(100)와는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 경우, 상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환하기 위한 QoS 변환정보를 단말(200)로 제공한다.
즉, 연동제어부(140)는, 단말(200)이 기지국장치(100)와는 다른 QoS 제어정책 즉 베어러 단위 QoS 제어정책(방식)을 지원하는 LTE 네트워크로 핸드오버 하는 경우, 서비스 플로우1의 QoS 파라미터1을 베어러 단위 QoS 제어방식에 따른 QoS 파라미터로 변환하기 위한 QoS 변환정보를 단말(200)로 제공해 주는 것이다.
보다 구체적으로 설명하면, 단말(200)이 핸드오버 필요 조건을 만족하고 기지국장치(100)가 단말(200)의 핸드오버 필요를 결정하면, 기지국장치(100)는 네트워크(미도시)와의 연동을 통해 단말(200)이 핸드오버할 타겟셀을 선택하고 핸드오버에 필요한 정책 및 명령(이하, 핸드오버정보)을 단말(200)로 제공함으로써, 단말(200)로 하여금 핸드오버정보를 기반으로 현재 셀(기지국장치(100))에서 타겟셀로의 핸드오버를 수행하도록 한다.
이때, 연동제어부(140)는, 단말(200)이 베어러 단위 QoS 제어방식을 지원하는 LTE 네트워크로 핸드오버하는 경우라면, 단말(200)로 핸드오버정보가 제공될 때 QoS 변환정보를 함께 제공한다.
여기서, QoS 변환정보는, 각 서비스 플로우를 베어러에 매칭시키는 서비스 플로우별 매칭룰, 상기 서비스 플로우별 매칭룰의 우선순위, 베러어 별로 정의되는 QoS 파라미터를 포함한다.
그리고, 서비스 플로우별 매칭룰의 우선순위는, 각 서비스 플로우가 갖는 QoS 레벨을 기준으로 정해진다.
이와 같이, QoS 레벨을 기준으로 서비스 플로우별 매칭룰의 우선순위를 정하는 이유는, 후술할 본 발명의 단말장치에 대한 설명에서 구체적으로 언급하겠다.
이렇게 되면, 단말(200)에서는, 핸드오버정보를 수신하고 이를 기반으로 현재 셀(기지국장치(100))에서 타겟셀로의 핸드오버를 수행하는 과정 중, QoS 변환정보를 이용하여 자신이 보유(맵핑/저장)하고 있는 서비스 플로우 단위 QoS 제어방식의 QoS 파라미터를 베어러 단위 QoS 제어방식의 QoS 파라미터로 변환할 수 있다.
이에, 본 발명에서는, 단말이 서비스 플로우 단위 QoS 제어방식의 시스템에서 베어러 단위 QoS 제어방식의 시스템으로 핸드오버되는 경우, 서비스 플로우 단위 QoS 파라미터를 베어러 단위 QoS 파라미터로 변환(매칭)할 수 있는 정보를 단말로 전달해, 핸드오버 시 단말의 통신서비스 끊김을 최소화할 수 있다.
여기서, 단말(200)에서 핸드오버를 수행하는 과정 중 QoS 파라미터를 변환하는 경우, QoS 파라미터를 변환하지 않는 경우와 비교할 때 처리 프로세스가 추가되는 것이며, 이러한 추가 처리 프로세스는 단말(200) 입장에선 핸드오버 시 비록 작은 양이지만 부하 증가로 작용한다.
한편, 단말(200)에서 인터넷 검색이나 이메일 열람 등과 같이 Session Continuity 보장이 중요하지 않은 통신서비스만 이용하고 있다면, 단말(200)이 베어러 단위 QoS 제어방식을 지원하는 LTE 네트워크로 핸드오버하는 경우 통신서비스가 다소 끊기더라도 사용자의 체감에는 큰 영향이 없을 것이다.
따라서, 이러한 상황에서 단말(200)이 핸드오버를 수행하는 과정 중 QoS 파라미터를 변환하는 것은, 오히려 불필요할 수도 있다.
이에, 연동제어부(140)는, 단말(200)이 베어러 단위 QoS 제어방식을 지원하는 LTE 네트워크로 핸드오버하는 경우, 단말(200)에 대한 서비스 플로우의 연속성이 요구되는 경우에만 QoS 변환정보를 제공할 수도 있다.
이때, 연속성이 요구되는 서비스 플로우는, 사전에 정의하기에 따라 달라질 수 있으며, 예를 들면 VoIP, 영상통화 등과 같이 Session Continuity 보장이 중요한 통신서비스의 서비스 플로우로 정의할 수 있다.
이렇게 되면, 연동제어부(140)는, 단말(200)이 베어러 단위 QoS 제어방식을 지원하는 LTE 네트워크로 핸드오버하는 경우, 단말(200)에 대한 서비스 플로우의 연속성 요구 여부 즉 통신서비스 민감도에 따라 선택적으로 QoS 변환정보를 제공함으로써, 불필요한 추가 처리 프로세스로 인한 부하 증가를 예방할 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 기지국장치(100)는, 별도 시그널링 없이 서비스 플로우 단위 QoS 제어에 필요한 정보(QoS제어정보)를 단말로 알려주는 기능, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 가능하게 하되 이를 통신서비스의 민감도에 따라 선택적으로 반영하는 기능을 갖는 서비스 플로우 단위 QoS 제어방식을 실현함으로써, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 통신서비스 별로 보다 차등적인 QoS 즉 서비스 품질을 적용할 수 있다.
이하에서는, 도 8을 참조하여 본 발명의 바람직한 실시예에 따른 단말장치의 구성을 설명하겠다.
도 4에 도시된 바와 같이, 본 발명의 단말장치(200)는, 기지국으로부터 수신되는 다운링크 패킷 중, 특정 다운링크 패킷의 헤더로부터 QoS제어정보를 획득하는 획득부(210)와, 상기 특정 다운링크 패킷의 서비스 플로우에 상기 QoS제어정보로부터 확인되는 특정 QoS 파라미터를 맵핑시키는 QoS제어부(220)와, 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 업링크 패킷을 서비스 플로우에 정의된 특정 QoS로 전송하는 전송부(230)를 포함한다.
이하에서는 설명의 편의를 위해, 기지국을 도 2의 기지국장치(100)로 지칭하고, 통신서비스1 이용에 따른 서비스 플로우1을 기준으로 설명하겠다.
획득부(210)는, 기지국(100)으로부터 수신되는 다운링크 패킷 중, 특정 다운링크 패킷의 헤더로부터 Qos 제어정보를 획득한다.
전술한 바와 같이, QoS제어정보는, QoS 파라미터를 포함하고 있는 패킷인지 여부를 식별하는 식별정보와, 서비스 플로우(예: 서비스 플로우1)에 정의되어 있는 특정 QoS 파라미터(예: QoS 파라미터1)를 포함한다.
이에, 획득부(210)는, 기지국(100)으로부터 다운링크 패킷을 수신하면, 다운링크 패킷의 헤더 보다 구체적으로는 L2 헤더에서 식별정보가 기록되는 필드를 확인하여, 식별정보가 있으면 식별정보를 보고 금번 수신된 다운링크 패킷이 QoS 파라미터를 포함하고 있는 특정 다운링크 패킷인지 식별한다.
획득부(210)는, 금번 수신된 다운링크 패킷이 특정 다운링크 패킷인 것으로 식별되면, 해당 다운링크 패킷의 헤더 보다 구체적으로는 L2 헤더에서 QoS제어정보를 획득할 수 있다.
QoS제어부(220)는, 특정 다운링크 패킷의 서비스 플로우에, 앞서 획득한 QoS
보다 구체적으로 설명하면, 앞서 획득부(210)가 QoS제어정보를 획득한 경우, QoS제어부(220)는, 특정 다운링크 패킷의 패킷의 헤더로부터 확인되는 5-tuple에 근거하여 특정 다운링크 패킷의 서비스 플로우를 확인할 수 있다.
전술한 예시와 같이, 기지국(100)이 서비스 플로우1로 구분하고 서비스 플로우1에 정의된 QoS 파라미터1을 식별 가능하게 하는 Qos제어정보를 특정 다운링크 패킷의 헤더에 포함시켜 전송한 것으로 가정한다.
이 경우, QoS제어부(220)는, 특정 다운링크 패킷의 헤더로부터 확인되는 5-tuple에 근거하여 서비스 플로우1을 확인할 것이다.
이에, QoS제어부(220)는, 특정 다운링크 패킷의 서비스 플로우1에, 앞서 획득한 QoS제어정보로부터 확인되는 QoS 파라미터1을 맵핑시킨다.
이때, QoS제어부(220)는, 서비스 플로우1를 구분하는 근거가 되는 5-tuple(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)에 QoS 파라미터1을 맵핑시킴으로써, 서비스 플로우1에 QoS 파라미터1을 맵핑시킨 서비스 플로우 및 QoS 파라미터 맵핑정보를 저장할 수 있다.
여기서, 단말장치(200)에 대한 서비스 플로우1이 개시되는 시점의 특정 다운링크 패킷의 헤더에서 QoS제어정보를 획득하여, 서비스 플로우1에 QoS 파라미터1을 맵핑시키는 경우라면, 새로운 서비스 플로우 및 QoS 파라미터 맵핑정보를 신규 저장하는 경우일 것이다.
반면, 단말장치(200)에 대한 서비스 플로우1이 유지되는 동안, 서비스 플로우1의 QoS 파라미터1가 변경되는 시점의 특정 다운링크 패킷의 헤더에서 QoS제어정보를 획득하여, 서비스 플로우1에 QoS 파라미터1을 맵핑시키는 경우라면, 기존에 저장된 서비스 플로우 및 QoS 파라미터 맵핑정보를 갱신 저장하는 경우일 것이다.
전송부(230)는, 서비스 플로우1의 업링크 패킷 전송 시, 앞서 서비스 플로우1에 맵핑시킨 특정 QoS 파라미터를 적용하여, 업링크 패킷을 서비스 플로우1에 정의된 특정 QoS로 전송한다.
즉, 전송부(230)는, 전송 대상인 업링크 패킷의 헤더로부터 확인되는 5-tuple에 근거하여 서비스 플로우1로 확인되면, 해당 업링크 패킷 전송 시 앞서 서비스 플로우1에 맵핑시킨 QoS 파라미터1을 적용하여 전송함으로써, 서비스 플로우1의 업링크 패킷을 서비스 플로우1에 정의된 QoS로 전송할 수 있다.
이와 같이, 본 발명의 단말장치(200)는, 별도 시그널링 없이 다운링크 패킷의 헤더로부터 서비스 플로우 단위 QoS 제어에 필요한 정보(QoS제어정보)를 획득하여 알 수 있고, 이를 기반으로 패킷 전송 시 서비스 플로우 단위로 QoS 레벨을 보장하여 전송할 수 있다.
더 나아가, 단말장치(200)가 기지국(100)에서 기존의 베어러 단위 QoS 제어방식을 지원하는 네트워크로 핸드오버되는 경우, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동과 관련하여 단말장치(200)가 동작하는 구성을 설명하면 다음과 같다.
단말장치(200) 특히 QoS제어부(220)는, 기지국(100)과는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 경우, 기지국(100)으로부터 제공되는 QoS 변환정보를 기반으로 상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환한다.
보다 구체적으로 설명하면, 단말장치(200)가 핸드오버 필요 조건을 만족하고 기지국(100)이 단말장치(200)의 핸드오버 필요를 결정하면, 기지국(100)은 네트워크(미도시)와의 연동을 통해 단말장치(200)가 핸드오버할 타겟셀을 선택하고 핸드오버에 필요한 정책 및 명령(이하, 핸드오버정보)을 단말(200)로 제공함으로써, 단말장치(200)로 하여금 핸드오버정보를 기반으로 현재 셀(기지국(100))에서 타겟셀로의 핸드오버를 수행하도록 한다.
이때, 기지국(100)은 단말장치(200)이 베어러 단위 QoS 제어방식을 지원하는 LTE 네트워크로 핸드오버하는 경우라면, 단말장치(200)로 핸드오버정보가 제공될 때 QoS 변환정보를 함께 제공한다.
이에, 단말장치(200)의 QoS제어부(220)는, 기지국(100)과는 다른 QoS 제어정책 즉 베어러 단위 QoS 제어정책(제어방식)을 지원하는 LTE 네트워크로 핸드오버 하는 경우, 기지국(100)으로부터 QoS 변환정보를 제공받아 수신한다.
이후, QoS제어부(220)는, QoS 변환정보를 기반으로, 특정 QoS 파라미터(예: 서비스 플로우1의 QoS 파라미터1)을 베어러 단위 QoS 제어방식에 따른 QoS 파라미터로 변환한다.
앞서 설명하였듯이 QoS 변환정보는, 각 서비스 플로우를 베어러에 매칭시키는 서비스 플로우별 매칭룰, 상기 서비스 플로우별 매칭룰의 우선순위, 베러어 별로 정의되는 QoS 파라미터를 포함한다.
서비스 플로우별 매칭룰의 우선순위는, 각 서비스 플로우가 갖는 QoS 레벨을 기준으로 정해진다.
구체적으로, 서비스 플로우별 매칭룰에서 특정 서비스 플로우의 매칭룰은, 상기 특정 서비스 플로우 보다 낮은 QoS 레벨을 갖는 서비스 플로우의 매칭룰 대비, 동일하거나 높은 우선순위로 정해지게 될 것이다.
예를 들어서, 서비스 플로우별 매칭룰 중에서 서비스 플로우1을 베어러에 매칭시키는 서비스 플로우1의 매칭룰은, 서비스 플로우1 보다 낮은 QoS 레벨을 갖는 서비스 플로우의 매칭룰 대비, 동일하거나 높은 우선순위로 정해지는 것이다.
이는 달리 말하면, 서비스 플로우별 매칭룰의 우선순위는, 가장 높은 QoS 레벨의 서비스 플로우부터 QoS 레벨이 낮아지는 서비스 플로우 순서에 따라, 우선순위가 낮아지는 것을 의미한다.
아울러, 서비스 플로우별 매칭룰 각각은, 해당 서비스 플로우와 일치하는 매칭룰이 검색될 수 있도록 검색인자를 포함하되, 이 검색인자는 서비스 플로우 구분에 근거가 되는 5-tuple 즉 Source IP, Destination IP, Source Port, Destination Port, Protocol ID로 정의될 수 있다.
이러한 QoS 변환정보는, 다음의 표2 및 표3과 같이 정의될 수 있다.
매칭룰 우선순위 검색인자(Mapping Criteria) 베어러 ID
1 3 Source IP, Destination IP, Source Port, Destination Port, Protocol ID 1
2 1 Source IP, Destination IP, Source Port, Destination Port, Protocol ID 1
3 2 Source IP, Destination IP, Source Port, Destination Port, Protocol ID 3
... ... ... ...
베어러 ID 베어러 Context 베어러 타입
1 QCI, ARP,... Default or Dedicated
2 QCI, ARP,... Default or Dedicated
... ... ...
표1은 서비스 플로우별 매칭룰과 각 매칭룰의 우선순위를 나타내고 있으며, 표2는 베러어 별로 정의되는 QoS 파라미터(베어러 Context, 타입)를 나타내고 있다.
이에, QoS 파라미터 변환 과정을 보다 구체적으로 설명하면 다음과 같다.
먼저, QoS제어부(220)는 QoS 변환정보를 기반으로, 앞서 저장하고 있는 서비스 플로우 및 QoS 파라미터 맵핑정보의 서비스 플로우에 대하여, 서비스 플로우별 매칭룰 중 우선순위가 가장 높은 매칭룰부터 우선순위가 낮아지는 순서에 따라 서비스 플로우(검색인자)가 일치하는 매칭룰을 검색한다.
서비스 플로우1 및 QoS 파라미터1 맵핑정보를 예로 들면, QoS제어부(220)는, 서비스 플로우1(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)과, 서비스 플로우별 매칭룰에서 우선순위가 가장 높은 매칭룰2의 검색인자(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)를 비교하여 일치 여부를 확인한다. 만약 일치한다면, 단말장치(200)의 동작 방법은, 매칭룰2를 서비스 플로우1과 일치하는 매칭룰로 검색한다.
만약 일치하지 않는다면, QoS제어부(220)는, 서비스 플로우1(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)과, 서비스 플로우별 매칭룰에서 매칭룰2 다음으로 우선순위가 높은 매칭룰3의 검색인자(Source IP, Destination IP, Source Port, Destination Port, Protocol ID)를 비교하여 일치 여부를 확인한다.
이와 같이, QoS제어부(220)는, 이용 중인 통신서비스의 서비스 플로우에 대하여, 서비스 플로우별 매칭룰 중 우선순위가 가장 높은 매칭룰부터 우선순위가 낮아지는 순서에 따라 서비스 플로우(검색인자)가 일치하는 매칭룰을 검색한다.
이렇게 되면, 단말장치(200)는, QoS 파라미터 변환 시, 우선순위가 가장 높은, 달리 말하면 가장 높은 QoS 레벨의 서비스 플로우에 대한 매칭룰부터 일치 여부를 확인하여 검색할 수 있기 때문에, QoS 파라미터 변환 속도 및 성능을 높일 수 있다.
이하에서는, 설명의 편의를 위해, 매칭룰2를 서비스 플로우1와 일치하는 매칭룰로 검색한 경우로 가정하겠다.
이 경우, QoS제어부(220)는, 서비스 플로우1을 상기 검색된 매칭룰2에 따른 베어러(예: 베어러1)에 매칭시키고, 서비스 플로우1의 QoS 파라미터1을 상기 매칭시킨 베어러(예: 베어러1)에 정의되어 있는 QoS 파라미터(예: QoS 파라미터A)로 변환한다.
만약, QoS제어부(220)는, 서비스 플로우별 매칭룰에서 서비스 플로우1와 일치하는 매칭룰을 검색하지 못한 경우라면, 서비스 플로우1(통신서비스1)을 Default Bearer에 매칭시킬 수 있다.
이와 같이, 본 발명의 단말장치(200)는, 핸드오버를 수행하는 과정 중, QoS 변환정보를 이용하여 자신이 보유(맵핑/저장)하고 있는 서비스 플로우 단위 QoS 제어방식의 QoS 파라미터(예: QoS 파라미터1)를 베어러 단위 QoS 제어방식의 QoS 파라미터(예: QoS 파라미터A)로 변환할 수 있다.
이렇게 되면, 단말장치(200)는, 타겟셀로의 핸드오버 이후에는, 기존의 베어러 단위 QoS 제어방식에 따라, 업링크 패킷 전송 시 서비스 플로우(통신서비스)가 맵핑된 베어러 단위로 QoS 레벨을 보장하여 전송할 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 단말장치(200)는, 별도 시그널링 없이 서비스 플로우 단위 QoS 제어에 필요한 정보(Qos 제어정보)를 획득(인지)하는 기능, 핸드오버 전/후 시스템 간 QoS 제어방식의 연동을 가능하게 하되 이를 통신서비스의 민감도에 따라 선택적으로 반영하는 기능을 갖는 서비스 플로우 단위 QoS 제어방식을 실현함으로써, 기존의 베어러 단위 QoS 제어방식 대비 복잡도가 높아지는 일 없이, 통신서비스 별로 보다 차등적인 QoS 즉 서비스 품질을 적용할 수 있다.
한편, 본 명세서에서 설명하는 기능적인 동작과 주제의 구현물들은 디지털 전자 회로로 구현되거나, 본 명세서에서 개시하는 구조 및 그 구조적인 등가물들을 포함하는 컴퓨터 소프트웨어, 펌웨어 혹은 하드웨어로 구현되거나, 이들 중 하나 이상의 결합으로 구현 가능하다.  본 명세서에서 설명하는 주제의 구현물들은 하나 이상의 컴퓨터 프로그램 제품, 다시 말해 처리 시스템의 동작을 제어하기 위하여 혹은 이것에 의한 실행을 위하여 유형의 프로그램 저장매체 상에 인코딩된 컴퓨터 프로그램 명령에 관한 하나 이상의 모듈로서 구현될 수 있다.
컴퓨터로 판독 가능한 매체는 기계로 판독 가능한 저장 장치, 기계로 판독 가능한 저장 기판, 메모리 장치, 기계로 판독 가능한 전파형 신호에 영향을 미치는 물질의 조성물 혹은 이들 중 하나 이상의 조합일 수 있다.
본 명세서에서 "시스템"이나 "장치"라 함은 예컨대 프로그래머블 프로세서, 컴퓨터 혹은 다중 프로세서나 컴퓨터를 포함하여 데이터를 처리하기 위한 모든 기구, 장치 및 기계를 포괄한다. 처리 시스템은, 하드웨어에 부가하여, 예컨대 프로세서 펌웨어를 구성하는 코드, 프로토콜 스택, 데이터베이스 관리 시스템, 운영 체제 혹은 이들 중 하나 이상의 조합 등 요청 시 컴퓨터 프로그램에 대한 실행 환경을 형성하는 코드를 포함할 수 있다.
컴퓨터 프로그램(프로그램, 소프트웨어, 소프트웨어 어플리케이션, 스크립트 혹은 코드로도 알려져 있음)은 컴파일되거나 해석된 언어나 선험적 혹은 절차적 언어를 포함하는 프로그래밍 언어의 어떠한 형태로도 작성될 수 있으며, 독립형 프로그램이나 모듈, 컴포넌트, 서브루틴 혹은 컴퓨터 환경에서 사용하기에 적합한 다른 유닛을 포함하여 어떠한 형태로도 전개될 수 있다. 컴퓨터 프로그램은 파일 시스템의 파일에 반드시 대응하는 것은 아니다. 프로그램은 요청된 프로그램에 제공되는 단일 파일 내에, 혹은 다중의 상호 작용하는 파일(예컨대, 하나 이상의 모듈, 하위 프로그램 혹은 코드의 일부를 저장하는 파일) 내에, 혹은 다른 프로그램이나 데이터를 보유하는 파일의 일부(예컨대, 마크업 언어 문서 내에 저장되는 하나 이상의 스크립트) 내에 저장될 수 있다. 컴퓨터 프로그램은 하나의 사이트에 위치하거나 복수의 사이트에 걸쳐서 분산되어 통신 네트워크에 의해 상호 접속된 다중 컴퓨터나 하나의 컴퓨터 상에서 실행되도록 전개될 수 있다.
한편, 컴퓨터 프로그램 명령어와 데이터를 저장하기에 적합한 컴퓨터로 판독 가능한 매체는, 예컨대 EPROM, EEPROM 및 플래시메모리 장치와 같은 반도체 메모리 장치, 예컨대 내부 하드디스크나 외장형 디스크와 같은 자기 디스크, 자기광학 디스크 및 CD-ROM과 DVD-ROM 디스크를 포함하여 모든 형태의 비휘발성 메모리, 매체 및 메모리 장치를 포함할 수 있다. 프로세서와 메모리는 특수 목적의 논리 회로에 의해 보충되거나, 그것에 통합될 수 있다.
본 명세서에서 설명한 주제의 구현물은 예컨대 데이터 서버와 같은 백엔드 컴포넌트를 포함하거나, 예컨대 어플리케이션 서버와 같은 미들웨어 컴포넌트를 포함하거나, 예컨대 사용자가 본 명세서에서 설명한 주제의 구현물과 상호 작용할 수 있는 웹 브라우저나 그래픽 유저 인터페이스를 갖는 클라이언트 컴퓨터와 같은 프론트엔드 컴포넌트 혹은 그러한 백엔드, 미들웨어 혹은 프론트엔드 컴포넌트의 하나 이상의 모든 조합을 포함하는 연산 시스템에서 구현될 수도 있다. 시스템의 컴포넌트는 예컨대 통신 네트워크와 같은 디지털 데이터 통신의 어떠한 형태나 매체에 의해서도 상호 접속 가능하다.
본 명세서는 다수의 특정한 구현물의 세부사항들을 포함하지만, 이들은 어떠한 발명이나 청구 가능한 것의 범위에 대해서도 제한적인 것으로서 이해되어서는 안되며, 오히려 특정한 발명의 특정한 실시형태에 특유할 수 있는 특징들에 대한 설명으로서 이해되어야 한다. 마찬가지로, 개별적인 실시형태의 문맥에서 본 명세서에 기술된 특정한 특징들은 단일 실시형태에서 조합하여 구현될 수도 있다. 반대로, 단일 실시형태의 문맥에서 기술한 다양한 특징들 역시 개별적으로 혹은 어떠한 적절한 하위 조합으로도 복수의 실시형태에서 구현 가능하다. 나아가, 특징들이 특정한 조합으로 동작하고 초기에 그와 같이 청구된 바와 같이 묘사될 수 있지만, 청구된 조합으로부터의 하나 이상의 특징들은 일부 경우에 그 조합으로부터 배제될 수 있으며, 그 청구된 조합은 하위 조합이나 하위 조합의 변형물로 변경될 수 있다.
또한, 본 명세서에서는 특정한 순서로 도면에서 동작들을 묘사하고 있지만, 이는 바람직한 결과를 얻기 위하여 도시된 그 특정한 순서나 순차적인 순서대로 그러한 동작들을 수행하여야 한다거나 모든 도시된 동작들이 수행되어야 하는 것으로 이해되어서는 안 된다. 특정한 경우, 멀티태스킹과 병렬 프로세싱이 유리할 수 있다. 또한, 상술한 실시형태의 다양한 시스템 컴포넌트의 분리는 그러한 분리를 모든 실시형태에서 요구하는 것으로 이해되어서는 안되며, 설명한 프로그램 컴포넌트와 시스템들은 일반적으로 단일의 소프트웨어 제품으로 함께 통합되거나 다중 소프트웨어 제품에 패키징될 수 있다는 점을 이해하여야 한다
이와 같이, 본 명세서는 그 제시된 구체적인 용어에 본 발명을 제한하려는 의도가 아니다. 따라서, 상술한 예를 참조하여 본 발명을 상세하게 설명하였지만, 당업자라면 본 발명의 범위를 벗어나지 않으면서도 본 예들에 대한 개조, 변경 및 변형을 가할 수 있다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 단말로 전송하기 위한 다운링크 패킷에 대하여, 서비스 플로우를 구분하는 구분부;
    서비스 플로우 별로 기 정의되는 QoS(Quality of Service) 파라미터 중에서, 상기 구분한 서비스 플로우에 정의되어 있는 특정 QoS 파라미터를 확인하는 확인부; 및
    상기 다운링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 단말로의 다운링크 패킷을 서비스 플로우 별로 구분되는 특정 QoS로 전송하는 전송부를 포함하는 것을 특징으로 하는 기지국장치.
  2. 제 1 항에 있어서,
    상기 서비스 플로우에 따른 특정 다운링크 패킷의 헤더에 상기 특정 QoS 파라미터를 식별 가능하게 하는 QoS제어정보를 포함시켜,
    상기 단말이 상기 QoS제어정보를 기반으로, 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS로 전송할 수 있게 하는 제어정보전달부를 더 포함하는 것을 특징으로 하는 기지국장치.
  3. 제 2 항에 있어서,
    상기 특정 다운링크 패킷은,
    상기 서비스 플로우가 개시되는 경우의 다운링크 패킷, 및 상기 서비스 플로우가 유지되는 동안 상기 서비스 플로우의 QoS 파라미터가 변경되는 경우의 다운링크 패킷 중 적어도 하나를 포함하는 것을 특징으로 하는 기지국장치.
  4. 제 1 항에 있어서,
    상기 단말이 상기 기지국장치와는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 경우,
    상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환하기 위한 QoS 변환정보를 상기 단말로 제공하는 연동제어부를 더 포함하는 것을 특징으로 하는 기지국장치.
  5. 제 4 항에 있어서,
    상기 다른 QoS 제어정책은,
    베어러(Bearer) 별로 상이한 QoS 레벨을 보장하는, 베어러 단위의 QoS 제어정책인 것을 특징으로 하는 기지국장치.
  6. 제 4 항에 있어서,
    상기 QoS 변환정보는,
    각 서비스 플로우를 베어러에 매칭시키는 서비스 플로우별 매칭룰, 상기 서비스 플로우별 매칭룰의 우선순위, 베러어 별로 기 정의되는 QoS 파라미터를 포함하는 것을 특징으로 하는 기지국장치.
  7. 제 6 항에 있어서,
    상기 서비스 플로우별 매칭룰의 우선순위는,
    상기 각 서비스 플로우가 갖는 QoS 레벨을 기준으로 정해지는 것을 특징으로 하는 기지국장치.
  8. 제 4 항에 있어서,
    상기 연동제어부는,
    상기 서비스 플로우의 연속성이 요구되는 경우에만, 상기 QoS 변환정보를 제공하는 것을 특징으로 하는 기지국장치.
  9. 기지국으로부터 수신되는 다운링크 패킷 중, 특정 다운링크 패킷의 헤더로부터 QoS제어정보를 획득하는 획득부;
    상기 특정 다운링크 패킷의 서비스 플로우에 상기 QoS제어정보로부터 확인되는 특정 QoS 파라미터를 맵핑시키는 QoS제어부; 및
    상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 업링크 패킷을 서비스 플로우에 정의된 특정 QoS로 전송하는 전송부를 포함하는 것을 특징으로 하는 단말장치.
  10. 제 9 항에 있어서,
    상기 QoS제어부는,
    상기 기지국과는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 경우, 상기 기지국으로부터 제공되는 QoS 변환정보를 기반으로 상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환하는 것을 특징으로 하는 단말장치.
  11. 제 10 항에 있어서,
    상기 QoS 변환정보는,
    각 서비스 플로우를 베어러에 매칭시키는 서비스 플로우별 매칭룰, 상기 서비스 플로우별 매칭룰의 우선순위, 베러어 별로 기 정의되는 QoS 파라미터를 포함하며,
    상기 QoS제어부는,
    상기 QoS 변환정보를 기반으로, 서비스 플로우별 매칭룰 중 우선순위가 가장 높은 매칭룰부터 우선순위가 낮아지는 순서에 따라 상기 서비스 플로우와 일치하는 매칭룰을 검색하고,
    상기 서비스 플로우를 상기 검색된 매칭룰의 베어러에 매칭시켜, 상기 특정 QoS 파라미터를 상기 매칭시킨 베어러에 정의되어 있는 QoS 파라미터로 변환하는 것을 특징으로 하는 단말장치.
  12. QoS 제어방법에 있어서,
    기지국장치가, 단말로 전송하기 위한 다운링크 패킷에 대하여 서비스 플로우를 구분하는 구분단계;
    상기 기지국장치가, 서비스 플로우 별로 기 정의되는 QoS 파라미터 중 상기 구분한 서비스 플로우에 맵핑된 특정 QoS 파라미터를 확인하는 확인단계; 및
    상기 기지국장치가, 상기 다운링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 단말로의 다운링크 패킷을 서비스 플로우 별로 구분되는 특정 QoS로 전송하는 전송단계를 포함하는 것을 특징으로 하는 QoS 제어방법.
  13. 제 12 항에 있어서,
    상기 기지국장치가, 상기 서비스 플로우에 따른 특정 다운링크 패킷의 헤더에 상기 특정 QoS 파라미터를 식별 가능하게 하는 QoS제어정보를 포함시켜,
    상기 단말이 상기 QoS제어정보를 기반으로, 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS로 전송할 수 있게 하는 단계를 더 포함하는 것을 특징으로 하는 QoS 제어방법.
  14. 제 12 항에 있어서,
    상기 기지국장치가, 상기 단말이 상기 기지국장치와는 다른 QoS 제어정책을 지원하는 다른 네트워크로 핸드오버 하는 것을 확인하는 경우,
    상기 특정 QoS 파라미터를 상기 다른 QoS 제어정책에 따른 QoS 파라미터로 변환하기 위한 QoS 변환정보를 상기 단말로 제공하는 QoS 변환정보단계를 더 포함하는 것을 특징으로 하는 QoS 제어방법.
  15. QoS 제어방법에 있어서,
    단말장치가, 기지국으로부터 수신되는 다운링크 패킷 중, 특정 다운링크 패킷의 헤더로부터 QoS제어정보를 획득하는 획득단계;
    상기 단말장치가, 상기 특정 다운링크 패킷의 서비스 플로우에 상기 QoS제어정보를 기반으로 확인되는 특정 QoS 파라미터를 맵핑시키는 QoS맵핑단계; 및
    상기 단말장치가, 상기 서비스 플로우의 업링크 패킷 전송 시 상기 특정 QoS 파라미터를 적용하여, 상기 업링크 패킷을 서비스 플로우에 정의된 특정 QoS로 전송하는 전송단계를 포함하는 것을 특징으로 하는 QoS 제어방법.
PCT/KR2017/002367 2016-09-19 2017-03-06 기지국장치 및 단말장치와, qos 제어방법 WO2018052172A2 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES17851050T ES2936412T3 (es) 2016-09-19 2017-03-06 Aparato de estación base, aparato terminal y procedimiento de control de la CdS
CN202210596339.7A CN114945199A (zh) 2016-09-19 2017-03-06 基站设备、终端设备以及QoS控制方法
JP2018561530A JP6674051B2 (ja) 2016-09-19 2017-03-06 基地局装置及び端末装置とQoS制御方法
CN201780030831.5A CN109219974B (zh) 2016-09-19 2017-03-06 基站设备、终端设备以及QoS控制方法
EP22204310.1A EP4149156A1 (en) 2016-09-19 2017-03-06 Base station apparatus, terminal apparatus, and qos control method
EP17851050.9A EP3445082B1 (en) 2016-09-19 2017-03-06 Base station apparatus, terminal apparatus, and qos control method
US16/303,748 US10945159B2 (en) 2016-09-19 2017-03-06 Base station apparatus, terminal apparatus, and QoS control method
US17/164,247 US11627494B2 (en) 2016-09-19 2021-02-01 Base station apparatus, terminal apparatus, and QOS control method
US18/107,755 US11917453B2 (en) 2016-09-19 2023-02-09 Base station apparatus, terminal apparatus, and QoS control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0119450 2016-09-19
KR1020160119450A KR102115218B1 (ko) 2016-09-19 2016-09-19 기지국장치 및 단말장치와, QoS 제어방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/303,748 A-371-Of-International US10945159B2 (en) 2016-09-19 2017-03-06 Base station apparatus, terminal apparatus, and QoS control method
US17/164,247 Continuation US11627494B2 (en) 2016-09-19 2021-02-01 Base station apparatus, terminal apparatus, and QOS control method

Publications (2)

Publication Number Publication Date
WO2018052172A2 true WO2018052172A2 (ko) 2018-03-22
WO2018052172A3 WO2018052172A3 (ko) 2018-08-09

Family

ID=61619614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002367 WO2018052172A2 (ko) 2016-09-19 2017-03-06 기지국장치 및 단말장치와, qos 제어방법

Country Status (7)

Country Link
US (3) US10945159B2 (ko)
EP (2) EP4149156A1 (ko)
JP (2) JP6674051B2 (ko)
KR (1) KR102115218B1 (ko)
CN (2) CN114945199A (ko)
ES (1) ES2936412T3 (ko)
WO (1) WO2018052172A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019201747A1 (en) * 2018-04-17 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic bearer validity

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115218B1 (ko) 2016-09-19 2020-05-26 에스케이텔레콤 주식회사 기지국장치 및 단말장치와, QoS 제어방법
WO2018203569A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ装置、無線通信システム及び無線通信方法
CN109982382B (zh) * 2017-12-28 2020-12-04 中国移动通信有限公司研究院 一种服务质量流的处理方法及通信设备
CN117320069A (zh) * 2018-09-30 2023-12-29 华为技术有限公司 通信方法和相关设备
CN110011855B (zh) * 2019-04-12 2023-01-10 苏州浪潮智能科技有限公司 分布式集群卷QoS调节方法、装置、设备及存储介质

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI107686B (fi) * 1998-06-16 2001-09-14 Nokia Mobile Phones Ltd Menetelmä ja tietoliikennelaite kantajien hallintaa varten kolmannen sukupolven matkaviestinjärjestelmässä
US7609673B2 (en) * 2002-02-08 2009-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Packet-based conversational service for a multimedia session in a mobile communications system
US7558283B2 (en) 2004-03-12 2009-07-07 Nokia Corporation Method, apparatus and computer program product providing quality of service support in a wireless communications system
US7339913B2 (en) * 2004-08-17 2008-03-04 Intel Corporation Method and system of network management and service provisioning for broadband wireless networks
EP1761091B1 (en) * 2005-08-30 2012-11-07 LG Electronics, Inc. Method for performing admission control in a cellular network
PL1982475T3 (pl) * 2006-02-05 2010-05-31 Ericsson Telefon Ab L M Sposób i urządzenia do instalowania filtrów pakietów w transmisji danych
DE102006006953A1 (de) * 2006-02-14 2007-08-23 T-Mobile International Ag & Co. Kg Verfahren zur Gewährleistung von Dienstgüte in paketvermittelnden Mobilfunknetzen
ATE449487T1 (de) * 2006-06-02 2009-12-15 Ericsson Telefon Ab L M Einrichtungen und verfahren zum garantieren einer dienstgüte pro dienstdatenfluss durch die trägerschicht
WO2008021182A2 (en) 2006-08-09 2008-02-21 Interdigital Technology Corporation Method and apparatus for providing differentiated quality of service for packets in a particular flow
US8385275B2 (en) * 2009-01-31 2013-02-26 Qualcomm Incorporated Systems and methods for service flow retention in a wireless communication system
KR101653310B1 (ko) * 2009-09-02 2016-09-01 엘지전자 주식회사 Mac 헤더 타입 정보를 이용한 mac pdu 송수신 방법 및 장치
US8305979B2 (en) * 2009-09-04 2012-11-06 Clearwire Ip Holdings Llc Managing multiple application flows over an access bearer in a quality of service policy environment
US8787172B2 (en) * 2010-06-21 2014-07-22 Qualcomm Incorporated Method and apparatus for QoS context transfer during inter radio access technology handover in a wireless communication system
US8675577B2 (en) * 2010-12-20 2014-03-18 Intel Corporation Signaling techniques for a multimedia-aware radio and network adaptation
SG11201404248TA (en) * 2012-01-20 2014-10-30 Huawei Tech Co Ltd Method, device and system for controlling quality of service
US20150264359A1 (en) * 2012-02-24 2015-09-17 Vid Scale, Inc. Video coding using packet loss detection
KR20140036901A (ko) 2012-09-18 2014-03-26 한국전자통신연구원 와이맥스와 롱텀에볼루션 망에서의 서비스 품질 통합제어 방법 및 시스템
US9215549B2 (en) * 2013-02-13 2015-12-15 Aeris Communications, Inc. Method for delivering machine to machine (M2M) application control data over control plane in LTE/EPS utilizing standard bearer management procedures
US10142889B2 (en) * 2016-05-13 2018-11-27 Huawei Technologies Co., Ltd. Method and system for providing guaranteed quality of service and quality of experience channel
KR102115218B1 (ko) * 2016-09-19 2020-05-26 에스케이텔레콤 주식회사 기지국장치 및 단말장치와, QoS 제어방법
EP3496451B1 (en) * 2016-10-17 2023-10-11 Sk Telecom Co., Ltd. Base station device and qos control method in wireless section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019201747A1 (en) * 2018-04-17 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic bearer validity
US11252613B2 (en) 2018-04-17 2022-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic bearer validity

Also Published As

Publication number Publication date
US11917453B2 (en) 2024-02-27
EP4149156A1 (en) 2023-03-15
US20210160737A1 (en) 2021-05-27
EP3445082B1 (en) 2022-12-28
EP3445082A4 (en) 2020-11-18
US20230189074A1 (en) 2023-06-15
KR20180031250A (ko) 2018-03-28
JP6952816B2 (ja) 2021-10-27
US11627494B2 (en) 2023-04-11
JP2019517223A (ja) 2019-06-20
US20200322845A1 (en) 2020-10-08
WO2018052172A3 (ko) 2018-08-09
EP3445082A2 (en) 2019-02-20
CN109219974A (zh) 2019-01-15
CN114945199A (zh) 2022-08-26
US10945159B2 (en) 2021-03-09
KR102115218B1 (ko) 2020-05-26
JP6674051B2 (ja) 2020-04-01
JP2020099099A (ja) 2020-06-25
ES2936412T3 (es) 2023-03-16
CN109219974B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2018052172A2 (ko) 기지국장치 및 단말장치와, qos 제어방법
WO2018074703A1 (ko) 기지국장치 및 무선구간의 qos 제어방법
WO2015194890A1 (en) Method and apparatus for establishing user plane bearer
WO2019194486A1 (en) Method and apparatus for discarding buffered data while keeping connection in cp-up separation
WO2016006969A1 (en) Inter-menb handover method and device in a small cell system
WO2021149958A1 (en) Session setup and handover method and device thereof
WO2016117979A1 (en) Method and apparatus supporting local breakout in a dual-connectivity architecture
WO2017030399A1 (en) Ue access method and apparatus
WO2015023067A1 (ko) 다중 기지국 연결 기반의 무선 통신 시스템에서의 무선 링크 실패 처리 방법 및 그 장치
WO2011021876A2 (en) Server for control plane at mobile communication network and method for controlling sipto based session
WO2016186416A1 (en) Method and device for supporting paging optimization
WO2015020449A1 (ko) 듀얼 커넥티비티 지원을 위한 pdcp 분산 구조의 보안 키 생성 및 관리 방안
WO2014148836A2 (en) Apparatus and method for acquiring synchronization in cooperative communication system
WO2011142567A2 (en) Handover method supporting terminal mobility
WO2011136617A2 (ko) 이동통신 네트워크 내에서 제어 평면(control plane)을 담당하는 서버 및 그 서버에서 서비스를 제어하는 방법
WO2012138099A2 (ko) 이동통신 네트워크 내에서 제어 평면을 담당하는 서버 및그 서버에서 트래픽 우회 서비스 이동성 지원 방법
WO2017026786A1 (en) Method and apparatus for controlling wlan bearer
WO2014019139A1 (zh) 一种实现无线资源控制连接释放的方法、装置及系统
WO2017196095A2 (ko) 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
WO2016137306A1 (ko) 이동 통신 시스템에서 scell의 동적 제어 방법 및 장치
WO2018038412A1 (ko) 차세대 네트워크에서 복수의 액세스를 통해 접속을 수행하는 방법 및 사용자 장치
WO2018048077A1 (ko) 사물인터넷 네트워크장치 및 사물인터넷 네트워크장치의 동작 방법
WO2009134064A2 (en) Method and device to support interworking between 3g system and sae system
WO2018212537A1 (en) Qos information control method and apparatus
WO2014021581A1 (en) Method enabling an rn to support multiple wireless access systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017851050

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018561530

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017851050

Country of ref document: EP

Effective date: 20181116

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17851050

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE