WO2019021579A1 - 光学デバイス - Google Patents
光学デバイス Download PDFInfo
- Publication number
- WO2019021579A1 WO2019021579A1 PCT/JP2018/018565 JP2018018565W WO2019021579A1 WO 2019021579 A1 WO2019021579 A1 WO 2019021579A1 JP 2018018565 W JP2018018565 W JP 2018018565W WO 2019021579 A1 WO2019021579 A1 WO 2019021579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- electrode
- substrate
- optical device
- nanoparticles
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/166—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
- G02F1/167—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
Definitions
- the present invention relates to an optical device, and more particularly to an optical device capable of distributing incident light.
- a light distribution device capable of distributing incident light has been proposed as an optical device.
- Such an optical device is used for windows of buildings or cars.
- an optical device by installing an optical device in a window of a building, it is possible to change the traveling direction of outside light such as sunlight incident from the outside and introduce the outside light toward the ceiling of the room (for example, patent documents 1, 2).
- Patent Document 3 discloses a liquid crystal optical element including a pair of transparent substrates, a pair of transparent electrodes disposed inside the pair of transparent substrates, and a liquid crystal layer disposed between the pair of transparent electrodes. It is done.
- the traveling direction of light incident on the light distribution device is changed by changing the alignment state of the liquid crystal molecules of the liquid crystal layer according to the voltage applied to the pair of transparent electrodes.
- JP 2012-259951 A WO 2015/056736 JP 2012-173534 A
- the present invention has been made to solve such problems, and an object thereof is to provide an optical device having excellent light distribution performance.
- one aspect of the first optical device is a first substrate having light transmittance, and a second light transmittance disposed opposite to the first substrate.
- the variable refractive index layer includes an insulating liquid, and charged nanoparticles dispersed in the insulating liquid, and the refractive index of the nanoparticle is the refractive index of the insulating liquid. Higher than the rate.
- one aspect of the second optical device is an optical device for controlling incident light, which is a first substrate having optical transparency, and light disposed facing the first substrate.
- one aspect of the third optical device is a first substrate having light transparency, a second substrate having light transparency disposed opposite to the first substrate, and the first substrate.
- a first electrode disposed on the second substrate side of the substrate, a concavo-convex structure disposed on the second substrate side of the first electrode, and a second disposed on the first substrate side of the second substrate
- An electrode, and a nanoparticle dispersion layer disposed between the uneven structure and the second electrode and having an insulating liquid and charged nanoparticles dispersed in the insulating liquid, the first electrode and the electrode
- the particle distribution of the nanoparticles in the nanoparticle dispersion layer changes according to the voltage applied between the second electrode and the second electrode.
- an optical device having excellent light distribution performance can be realized.
- FIG. 1 is a cross-sectional view of the optical device according to the first embodiment.
- FIG. 2 is an enlarged cross-sectional view of the optical device according to the first embodiment.
- FIG. 3A is a diagram for explaining a first optical action of the optical device according to the first embodiment.
- FIG. 3B is a view for explaining a second optical function of the optical device according to the first embodiment.
- FIG. 4 is a cross-sectional view of the optical device according to the second embodiment.
- FIG. 5 is an enlarged cross-sectional view of the optical device according to the second embodiment.
- FIG. 6A is a diagram for explaining a first optical action of the optical device according to the second embodiment.
- FIG. 6B is a diagram for describing a second optical function of the optical device according to Embodiment 2.
- the X-axis, the Y-axis, and the Z-axis represent three axes of a three-dimensional orthogonal coordinate system, and in the present embodiment, the Z-axis direction is the vertical direction and is perpendicular to the Z-axis.
- Direction (direction parallel to the XY plane) is the horizontal direction.
- the X axis and the Y axis are axes orthogonal to each other and both orthogonal to the Z axis. Note that the positive direction of the Z-axis direction is vertically downward.
- the “thickness direction” means the thickness direction of the optical device, and the direction perpendicular to the main surfaces of the first substrate 10 and the second substrate 20 (in the present embodiment, the Y-axis direction) It is
- FIG. 1 is a cross-sectional view of the optical device 1 according to the first embodiment.
- FIG. 2 is an enlarged cross-sectional view of the same optical device 1 and shows an enlarged view of a region II surrounded by a broken line in FIG.
- the optical device 1 is a light control device that controls light incident on the optical device 1. Specifically, the optical device 1 controls the traveling direction of light incident on the optical device 1.
- the optical device 1 is a light distribution device capable of changing the traveling direction of incident light (for example, distributing light) and emitting the light.
- the optical device 1 includes a first substrate 10, a second substrate 20, a first electrode 30, a second electrode 40, a concavo-convex structure 50, and a refractive index variable layer 60. Equipped with
- the first electrode 30, the concavo-convex structure 50, the refractive index variable layer 60, and the second electrode 40 are disposed in this order along the thickness direction between the pair of first substrate 10 and second substrate 20.
- the structure is
- the first substrate 10, the first electrode 30 and the concavo-convex structure 50 constitute a first laminated substrate 100, and the second substrate 20 and the second electrode 40
- the two-layered substrate 200 is configured.
- the first laminated substrate 100 and the second laminated substrate 200 are disposed to face each other via a gap, and the entire periphery of the outer peripheral end is sealed. Thereby, the variable-refractive-index layer 60 filled between the first laminated substrate 100 and the second laminated substrate 200 can be confined.
- a seal member such as an adhesive is formed on the inner surface along the outer peripheral edge of the first laminated substrate 100 and the second laminated substrate 200 in a frame shape, or the first substrate 10 and the second substrate 20 are welded by laser. By doing so, the outer peripheral end portions of the first laminated substrate 100 and the second laminated substrate 200 can be sealed.
- the first substrate 10 is a base of the first laminated substrate 100
- the second substrate 20 is a base of the second laminated substrate 200.
- the first substrate 10 and the second substrate 20 are light transmitting substrates (light transmitting substrates).
- the first substrate 10 and the second substrate 20 may be transparent and transparent substrates.
- a resin substrate made of a resin material or a glass substrate made of a glass material can be used as the first substrate 10 and the second substrate 20.
- the material of the resin substrate include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic or epoxy.
- the material of the glass substrate include soda glass, alkali-free glass, high refractive index glass and the like.
- the resin substrate has an advantage that scattering at the time of breakage is small.
- the glass substrate has the advantages of high light transmittance and low moisture permeability.
- the first substrate 10 and the second substrate 20 may be made of the same material or may be made of different materials, but it is better to be made of the same material.
- the first substrate 10 and the second substrate 20 are not limited to rigid substrates, and may be flexible substrates or film substrates.
- a transparent resin substrate (PET substrate) made of PET is used as each of the first substrate 10 and the second substrate 20.
- the thickness of the first substrate 10 and the second substrate 20 is, for example, 5 ⁇ m to 3 mm, but is not limited thereto. In the present embodiment, the thickness of each of the first substrate 10 and the second substrate 20 is 50 ⁇ m.
- the shape of the first substrate 10 and the second substrate 20 in plan view is, for example, a square shape or a rectangular shape, but the shape is not limited thereto, and may be a polygon other than a circle or a square.
- the shape of can be adopted.
- first electrode 30 and the second electrode 40 are electrically paired and configured to be able to apply an electric field to the refractive index variable layer 60.
- first electrode 30 and the second electrode 40 are also arranged in pairs, and are arranged to face each other.
- the first electrode 30 is disposed on the second substrate 20 side of the first substrate 10.
- the second electrode 40 is disposed on the first substrate 10 side of the second substrate 20.
- the first electrode 30 is formed on the main surface of the first substrate 10 on the second substrate 20 side
- the second electrode 40 is on the main surface of the second substrate 20 on the first substrate 10 side It is formed.
- the first electrode 30 and the second electrode 40 forming a pair are disposed between the first substrate 10 and the second substrate 20 so as to sandwich at least the uneven structure 50 and the refractive index variable layer 60. It is arranged. Specifically, the first electrode 30 is disposed between the first substrate 10 and the concavo-convex structure 50, and the second electrode 40 is disposed between the second substrate 20 and the refractive index variable layer 60. ing.
- each of the first electrode 30 and the second electrode 40 is, for example, 5 nm to 2 ⁇ m, but is not limited thereto. In the present embodiment, each thickness of the first electrode 30 and the second electrode 40 is 100 nm.
- first electrode 30 and the second electrode 40 in plan view is, for example, square or rectangular as in the case of the first substrate 10 and the second substrate 20, but the shape is not limited thereto.
- first electrode 30 and the second electrode 40 are solid electrodes formed in a substantially rectangular shape in a plan view and formed on almost the entire surface of each of the first substrate 10 and the second substrate 20.
- the first electrode 30 and the second electrode 40 are light transmitting electrodes, and transmit incident light.
- the first electrode 30 and the second electrode 40 are, for example, transparent electrodes made of a transparent conductive layer.
- Conductor-containing resin composed of a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) as a material of the transparent conductive layer, and a resin containing a conductor such as silver nanowire or conductive particles Or, a metal thin film such as a silver thin film can be used.
- the first electrode 30 and the second electrode 40 may have a single-layer structure of these, or may have a laminated structure of these (for example, a laminated structure of a transparent metal oxide and a metal thin film).
- the first electrode 30 and the second electrode 40 are configured to enable electrical connection with an external power supply.
- each of the first electrode 30 and the second electrode 40 is drawn out to the outside of the seal resin sealing the refractive index variable layer 60, and this drawn portion is used as an electrode terminal for connecting to an external power supply. It is also good.
- the concavo-convex structure 50 is a concavo-convex layer having a concavo-convex surface, and has a configuration in which a plurality of convex portions 51 of micro order size or nano order size are arranged.
- the uneven structure 50 is disposed on the second substrate 20 side of the first substrate 10.
- the concavo-convex structure 50 is disposed on the second substrate 20 side of the first electrode 30.
- the uneven structure 50 is provided on the main surface of the first electrode 30 on the second substrate 20 side.
- the concavo-convex structure 50 is provided on the first electrode 30 such that the plurality of convex portions 51 project toward the refractive index variable layer 60.
- an adhesion layer may be formed between the first electrode 30 and the concavo-convex structure 50.
- the surface on the first electrode 30 side of the concavo-convex structure 50 (the surface on the first electrode 30 side of the convex portion 51) is a flat surface.
- each of the plurality of convex portions 51 is a long, substantially triangular prism shape having a triangular sectional shape and extending in the X-axis direction, and is arranged at equal intervals along the Z-axis direction. Moreover, although all the convex parts 51 become the same shape, it does not restrict to this.
- Each convex portion 51 has, for example, a height of 100 nm to 100 ⁇ m and an aspect ratio (height / lower base) of about 0.5 to 10, but is not limited thereto. As an example, each convex portion 51 has a height of about 10 ⁇ m and a base of about 5 ⁇ m.
- interval of the two convex parts 51 adjacent to Z-axis direction is 0 or more and 100 mm or less, for example. That is, the two convex portions 51 adjacent to each other in the Z-axis direction may be disposed at predetermined intervals without contact with the bottoms, or even if the bottoms are disposed in contact (arrangement at zero). Although it is preferable, the distance between the two convex portions 51 adjacent to each other in the Z-axis direction may be equal to or less than the base of the convex portion 51. As an example, in the case of the convex portion 51 (height 10 ⁇ m, base 5 ⁇ m) of the above-mentioned size, the interval between two adjacent convex portions 51 is about 2 ⁇ m.
- each of the plurality of projections 51 has a pair of side surfaces.
- the cross-sectional shape of each convex portion 51 is a tapered shape which is tapered along the direction from the second substrate 20 toward the first substrate 10 (the negative direction of the Y axis). Therefore, each of the pair of side surfaces of each convex portion 51 is an inclined surface inclined at a predetermined inclination angle with respect to the thickness direction, and the distance between the pair of side surfaces in each convex portion 51 (width of convex portion 51) Is gradually reduced from the second substrate 20 toward the first substrate 10.
- the inclination angles of the two side surfaces of each protrusion 51 may be the same or different.
- the cross-sectional shape of each protrusion 51 is an isosceles triangle, and the inclination angles (base angles) of the two side surfaces of each protrusion 51 are the same.
- a pair of side surfaces of each convex portion 51 is a surface in contact with the refractive index variable layer 60, and light incident from the first substrate 10 receives an optical action on the pair of side surfaces of the convex portion 51.
- the light incident from the first substrate 10 is the convex portion 51 and the refractive index variable layer 60
- the light is refracted, transmitted, or transmitted as it is without refraction.
- the light incident from the first substrate 10 has the refractive index of the convex portion 51 and the refractive index variable layer 60 Depending on the difference, the light may be refracted and transmitted, or may be transmitted as it is without refraction, or may be totally reflected. That is, the upper side surface of the convex portion 51 can be a total reflection surface according to the difference in refractive index between the convex portion 51 and the refractive index variable layer 60 and the incident angle of light.
- the uneven structure 50 for example, a translucent resin material such as an acrylic resin, an epoxy resin or a silicone resin can be used.
- the uneven structure 50 can be formed by, for example, laser processing or imprint.
- the concavo-convex structure 50 is formed using an acrylic resin having a refractive index of about 1.5.
- the refractive index of the concavo-convex structure 50 is not limited to 1.5 because the higher the refractive index of the refractive index variable layer 60 described later is, the better. If the refractive index of the refractive index variable layer 60 can be made higher than 1.5, the refractive index of the concavo-convex structure 50 should also be made higher than 1.5. For example, when the refractive index of the refractive index variable layer 60 is 1.6 or more, the refractive index of the concavo-convex structure 50 may also be 1.6 or more.
- the concavo-convex structure 50 may be made of only an insulating resin material as long as an electric field can be applied to the refractive index variable layer 60 by the first electrode 30 and the second electrode 40. May be included.
- a conductive polymer such as PEDOT, a resin including a conductor (conductor-containing resin), or the like can be used as the material of the concavo-convex structure 50.
- variable-refractive-index layer 60 includes an insulating liquid 61 and nanoparticles 62 contained in the insulating liquid 61.
- the refractive index variable layer 60 is a nanoparticle dispersion layer in which innumerable nanoparticles 62 are dispersed in the insulating liquid 61.
- the insulating liquid 61 is a transparent liquid having an insulating property, and is a solvent serving as a dispersion medium in which the nanoparticles 62 are dispersed as a dispersoid.
- the insulating liquid 61 for example, one having a refractive index (solvent refractive index) of about 1.3 to about 1.5 can be used. In the present embodiment, the insulating liquid 61 having a refractive index of about 1.4 is used.
- the kinematic viscosity of the insulating liquid 61 is preferably 100 mm 2 / s or less.
- the insulating liquid 61 may have a low dielectric constant (equal to or less than the dielectric constant of the concavo-convex structure 50). That is, the dielectric constant of the concavo-convex structure 50 is preferably higher than the dielectric constant of the insulating liquid 61.
- the insulating liquid 61 may have non-flammability (high flash point with a flash point of 250 ° C. or higher) and low volatility.
- the insulating liquid 61 is a hydrocarbon (aliphatic hydrocarbon, naphtha, and other petroleum solvents, etc.), a low molecular weight halogen-containing polymer, or a mixture of these.
- the insulating liquid 61 is a halogenated hydrocarbon such as fluorocarbon hydrogen.
- silicone oil or the like can also be used.
- a plurality of nanoparticles 62 are dispersed in the insulating liquid 61.
- the nanoparticles 62 are fine particles of nano order size.
- the particle diameter of the nanoparticles 62 is preferably ⁇ / 4 or less.
- the particle diameter of the nanoparticles 62 is preferably as small as possible, preferably 100 nm or less, more preferably several nm to several tens nm.
- the nanoparticles 62 may be made of a high refractive index material. Specifically, the refractive index of the nanoparticles 62 is higher than the refractive index of the insulating liquid 61. In the present embodiment, the refractive index of the nanoparticles 62 is higher than the refractive index of the concavo-convex structure 50.
- the nanoparticles 62 metal oxide fine particles can be used.
- the nanoparticles 62 may be made of a material having high transmittance.
- transparent zirconia particles having a refractive index of 2.1 and made of zirconium oxide (ZrO 2 ) are used as the nanoparticles 62.
- the nanoparticles 62 are not limited to zirconium oxide, and may be made of titanium oxide or the like.
- the nanoparticles 62 are charged charged particles.
- nano The particles 62 can be charged positively (plus) or negatively (minus). In the present embodiment, the nanoparticles 62 are positively (plus) charged.
- the charged nanoparticles 62 are dispersed throughout the insulating liquid 61.
- zirconia particles having a refractive index of 2.1 are used as the nanoparticles 62, and the nanoparticles 62 dispersed in the insulating liquid 61 having a solvent refractive index of about 1.4 are variable in refractive index. It is considered as the layer 60.
- the refractive index (average refractive index) of the entire refractive index variable layer 60 is the refractive index of the concavo-convex structure 50 in a state where the nanoparticles 62 are uniformly dispersed in the refractive index variable layer 60 (insulating liquid 61). It is set to be substantially the same, and is about 1.5 in the present embodiment.
- the refractive index of the entire refractive index variable layer 60 can be changed by adjusting the concentration (amount) of the nanoparticles 62 dispersed in the insulating liquid 61. The amount of the nanoparticles 62 should be the same as the refractive index of the concavo-convex structure 50.
- the concentration of the nanoparticles 62 relative to the insulating liquid 61 having a refractive index of about 1.4 is It is about 30% by volume (about 70 wt% in the case of nanoparticles 62 having a specific gravity of about 5).
- the concentration of the nanoparticles 62 is about 15% by volume to about 40% by volume (about 45% by weight to about 80% by weight) It should be in the range of
- the amount of the nanoparticles 62 is preferably as large as possible, but at least the nanoparticles 62 should not be aggregated in the insulating liquid 61 when no voltage is applied. It does not.
- the refractive index of the entire refractive index variable layer 60 is adjusted to about 1.6 when no voltage is applied, but if aggregation of the nanoparticles 62 does not occur, the refractive index of the refractive index variable layer 60 The rate should be about 1.7 or more.
- the concentration of the nanoparticles 62 having a refractive index of 2.1 may be about 30% by volume to about 50% by volume.
- the refractive index variable layer 60 is disposed between the uneven structure 50 and the second electrode 40. Specifically, the refractive index variable layer 60 is in contact with the uneven structure 50. That is, the contact surface of the refractive index variable layer 60 with the uneven surface of the uneven structure 50 is an interface between the refractive index variable layer 60 and the uneven surface of the uneven structure 50. Although the variable-refractive-index layer 60 is also in contact with the second electrode 40, another layer (film) may be interposed between the variable-refractive-index layer 60 and the second electrode 40.
- the refractive index of the variable-refractive-index layer 60 changes in accordance with the voltage applied between the first electrode 30 and the second electrode 40.
- the refractive index variable layer 60 is disposed between the first electrode 30 and the second electrode 40, and a voltage is applied between the first electrode 30 and the second electrode 40.
- An electric field is applied to the refractive index variable layer 60.
- a DC voltage is applied between the first electrode 30 and the second electrode 40.
- the variable-refractive-index layer 60 mainly functions as a refractive index adjusting layer capable of adjusting the refractive index to light in the visible light region.
- variable-refractive-index layer 60 configured as described above is disposed between the first multilayer substrate 100 and the second multilayer substrate 200. Specifically, the insulating liquid 61 in which the nanoparticles 62 are dispersed is sealed between the first laminated substrate 100 and the second laminated substrate 200.
- the thickness of the refractive index variable layer 60 (that is, the gap between the first multilayer substrate 100 and the second multilayer substrate 200) is, for example, 1 ⁇ m to 1 mm, but is not limited to this. As an example, when the height of the convex portion 51 of the concavo-convex structure 50 is 10 ⁇ m, the thickness of the refractive index variable layer 60 is, for example, 40 ⁇ m.
- an ITO film is formed as the first electrode 30 on the PET substrate, and a plurality of acrylic resins (refractive index 1.5) are formed on the ITO film.
- the first laminated substrate 100 is manufactured by forming the concavo-convex structure 50 including the convex portions 51 by the imprint method.
- a PET substrate is used as the second substrate 20, and the second electrode 40 made of an ITO film is formed on the PET substrate, whereby the second multilayer substrate 200 is manufactured.
- the refractive index variable layer 60 the insulating liquid 61 in which the nanoparticles 62 are dispersed is filled between the first laminated substrate 100 and the second laminated substrate 200, and the first laminated substrate 100 and the second laminated substrate 100 are formed. By bonding the outer peripheral portion with the laminated substrate 200, the refractive index variable layer 60 is sealed between the first laminated substrate 100 and the second laminated substrate 200.
- optical device 1 having the structure shown in FIG. 1 can be manufactured.
- FIG. 3A is a view for explaining a first optical action of the optical device 1 according to the first embodiment
- FIG. 3B is a view for explaining a second optical action of the optical device 1.
- the optical device 1 can be realized as a window with a light distribution control function, for example, by being installed in a window of a building.
- the optical device 1 is attached to, for example, a window of a building via an adhesive layer.
- the optical device 1 is installed in the window such that the longitudinal direction of the convex portion 51 of the uneven structure 50 is horizontal.
- sunlight is incident on the optical device 1 installed in the window.
- the optical device 1 since the optical device 1 is installed such that the first substrate 10 provided with the concavo-convex structure 50 is located on the light incident side (outside of the building), the optical device 1 is the first substrate 10.
- the light (sunlight) incident from the light source can be transmitted from the second substrate 20 to the inside (for example, the room) of the building of the optical device 1.
- the light incident on the optical device 1 receives an optical action from the optical device 1 when it is transmitted through the optical device 1.
- the optical action changes due to the change of the refractive index of the refractive index variable layer 60. Therefore, the light incident on the optical device 1 is subject to different optical actions according to the refractive index of the refractive index variable layer 60, and the traveling direction is controlled according to the refractive index of the refractive index variable layer 60.
- the optical device 1 can control the traveling direction of light incident on the optical device 1 in accordance with the voltage applied between the first electrode 30 and the second electrode 40. Specifically, in accordance with the voltage applied between the first electrode 30 and the second electrode 40, the particle distribution of the nanoparticles 62 in the refractive index variable layer 60 (nanoparticle dispersion layer) changes, thereby The refractive index of the variable-refractive-index layer 60 partially changes. As a result, the optical action of the optical device 1 changes.
- the optical device 1 in the present embodiment has two optical actions. Hereinafter, two optical actions of the optical device 1 will be described in detail.
- optical The device 1 When no potential is applied to the first electrode 30 and the second electrode 40, that is, no voltage is applied between the first electrode 30 and the second electrode 40 (when no voltage is applied), optical The device 1 is in the first optical mode and provides the first optical action to the incident light.
- variable-refractive-index layer 60 In the first optical mode, no electric field is applied to the variable-refractive-index layer 60, and as shown in FIG. 3A, in the variable-refractive-index layer 60, the nanoparticles 62 are dispersed throughout the insulating liquid 61. .
- the refractive index of the variable-refractive-index layer 60 in the state in which the nanoparticles 62 are dispersed throughout the insulating liquid 61 is the variable-refractive-index layer as shown in FIG. 3A. 60 overall uniform (constant), about 1.5. Moreover, the refractive index of the uneven structure 50 is about 1.5.
- the refractive index of the entire refractive index variable layer 60 is substantially the same as the refractive index of the concavo-convex structure 50 It becomes.
- the difference in refractive index between the uneven structure 50 (convex portion 51) and the variable-refractive-index layer 60 is almost eliminated (refractive index difference ⁇ n ⁇ 0).
- the optical device 1 when a voltage is not applied between the first electrode 30 and the second electrode 40, the optical device 1 causes the light incident on the first substrate 10 to go straight and transmit the second substrate 20. . That is, the first optical mode is a transparent mode, and in the first optical mode, the optical device 1 is in a transparent state. In this case, the light incident on the first substrate 10 travels straight through and is emitted from the second substrate 20 without being distributed by the optical device 1.
- the light is incident from the first substrate 10 and In the first optical mode (transparent mode), the light emitted from the second substrate 20 has the same incident angle when entering the first substrate 10 and the outgoing angle when emitted from the second substrate 20. That is, the angles in the direction of travel are the same and do not change.
- the refractive index of the entire refractive index variable layer 60 and the refractive index of the concavo-convex structure 50 are substantially the same as each other when the refractive index difference between the refractive index variable layer 60 and the concavo-convex structure 50 is 0.01 or less More preferably, it is 0.005 or less ( ⁇ n ⁇ 0.005). If the refractive index difference between the refractive index variable layer 60 and the concavo-convex structure 50 exceeds 0.005, light may be scattered at the interface between the refractive index variable layer 60 and the concavo-convex structure 50, and haze may occur.
- the second optical action of the optical device 1 will be described using FIG. 3B.
- a potential is applied to the first electrode 30 and the second electrode 40, that is, when a voltage is applied between the first electrode 30 and the second electrode 40 (when voltage is applied)
- the optical device 1 And a second optical mode is provided to the incident light.
- a DC voltage is applied between the first electrode 30 and the second electrode 40.
- the voltage (potential difference) applied between the first electrode 30 and the second electrode 40 is, for example, about several volts to several tens of volts.
- an electric field is applied to the variable-refractive-index layer 60 by applying a DC voltage between the first electrode 30 and the second electrode 40.
- 62 migrates in the insulating liquid 61 according to the electric field distribution. That is, the nanoparticles 62 electrophorese in the insulating liquid 61.
- a negative potential is applied to the first electrode 30 and a positive potential is applied to the second electrode 40, so that the positively charged nanoparticles 62 move toward the first electrode 30. It migrates and is aggregated and localized on the side of the concavo-convex structure 50 in the refractive index variable layer 60. At this time, the nanoparticles 62 migrating toward the first electrode 30 enter the concave portions of the concavo-convex structure 50, that is, the regions between the two adjacent convex portions 51 and accumulate, and the nano-particles of the concave portions of the concavo-convex structure 50 The concentration of particles 62 increases.
- the particle distribution of the nanoparticles 62 is changed, and the refractive index distribution in the refractive index variable layer 60 is not uniform. .
- the first region 60a high concentration region
- the second region 60b low concentration region
- the concentration of the nanoparticles 62 is reduced by the migration of the entire nanoparticles 62 and the concentration of the nanoparticles 62 is reduced, and the first region
- the refractive index distribution as shown in FIG. 3B is generated between 60a and the second region 60b.
- the refractive index of the nanoparticles 62 is higher than the refractive index of the insulating liquid 61
- the refractive index of the first region 60a on the uneven structure 50 side of the refractive index variable layer 60 is the second refractive index of the refractive index variable layer 60.
- the refractive index of the second region 60 b on the electrode 40 side is higher.
- the refractive index variable layer 60 is formed by dispersing the nanoparticles 62 made of zirconia particles having a refractive index of 2.1 in the insulating liquid 61 having a solvent refractive index of about 1.4.
- the refractive index of the entire variable-refractive-index layer 60 is about 1.5 when no voltage is applied. Therefore, at the time of voltage application, the refractive index of the first region 60 a on the side of the uneven structure 50 of the refractive index variable layer 60 is higher than the initial refractive index (1.5) of the entire refractive index variable layer 60 at the time of no voltage application. It becomes higher and distributes in the thickness direction from about 1.95 to about 1.5.
- the maximum value of the refractive index in the refractive index variable layer 60 is the case where the spherical nanoparticles 62 having a refractive index of 2.1 are closely packed in the insulating liquid 61 (solvent) having a refractive index of 1.4. Is the value obtained for Further, when a voltage is applied, the refractive index of the second region 60b on the second electrode 40 side of the refractive index variable layer 60 is higher than the initial refractive index (1.5) of the entire refractive index variable layer 60 when no voltage is applied. Also, it is distributed at about 1.5 to about 1.4 in the thickness direction.
- the refractive index of the concavo-convex structure 50 is about 1.5, in the case of the second optical mode (when a voltage is applied between the first electrode 30 and the second electrode 40) ), Refraction between the refractive index (about 1.5) of the concavo-convex structure 50 and the refractive index (about 1.6 to about 1.95) of the first region 60a on the concavo-convex structure 50 side of the refractive index variable layer 60 There is a difference in rates.
- the interface between the concavo-convex structure 50 (convex portion 51) and the refractive index variable layer 60 has a refractive index difference.
- the light L1 incident on the optical device 1 is refracted at the interface between the lower side surface of the convex portion 51 and the refractive index variable layer 60, and then the interface between the refractive index variable layer 60 and the upper side surface of the convex portion 51 , And the traveling direction is bent in the bouncing direction and is emitted to the outside of the optical device 1. That is, the light L ⁇ b> 1 incident on the optical device 1 is distributed by the optical device 1.
- the optical device 1 when a voltage is applied between the first electrode 30 and the second electrode 40, the optical device 1 distributes light incident on the first substrate 10 and transmits the light through the second substrate 20. . That is, the second optical mode is a light distribution mode, and in the second optical mode, the optical device 1 is in a light distribution state. In this case, the light incident on the first substrate 10 is reflected by the uneven structure 50 of the optical device 1 as described above, and the traveling direction is changed, and the light is emitted from the second substrate 20.
- the interface on the light incident side of the first substrate 10 the interface between the first substrate 10 and the first electrode 30, the first electrode 30 and the uneven structure 50
- the interface between the respective members such as the interface between them, the interface between the refractive index variable layer 60 and the second electrode 40, the interface between the second electrode 40 and the second substrate 20, or the interface on the light emission side of the second substrate 20
- light incident from the first substrate 10 is refracted at the interface, as described above.
- the nanoparticles 62 migrate in the insulating liquid 61, as shown in FIG. 3A. Are uniformly dispersed throughout the insulating liquid 61.
- the optical device 1 configured as described above is a current driven device. Therefore, while the voltage is applied to the first electrode 30 and the second electrode 40, the current also flows in the dispersion liquid (insulating liquid 61).
- the optical device 1 is an active optical control device capable of changing the optical action by controlling the refractive index matching between the uneven structure 50 and the refractive index variable layer 60 by an electric field. That is, by controlling the voltage applied between the first electrode 30 and the second electrode 40, the optical device 1 can be switched to a plurality of optical modes. In the present embodiment, the optical device 1 can be switched to two modes of a first optical mode (transparent mode) and a second optical mode (light distribution mode).
- the dielectric constant of the concavo-convex structure 50 (the convex portion 51) be larger than the dielectric constant of the insulating liquid 61 of the refractive index variable layer 60. That is, it is preferable that the dielectric constant of the insulating liquid 61 be lower than that of the concavo-convex structure 50 (convex portion 51). Thereby, it can suppress that an electric field is broken to the direction of concavo-convex structure 50.
- the concavo-convex structure 50 and the refractive index variable layer 60 are disposed between the first electrode 30 and the second electrode 40, and as the refractive index variable layer 60,
- the insulating liquid 61 nanoparticle dispersion layer in which the charged nanoparticles 62 are dispersed is used.
- the nanoparticles 62 migrate in the insulating liquid 61 by applying a voltage between the first electrode 30 and the second electrode 40, so that the refractive index of the refractive index variable layer 60 can be changed. it can. Specifically, the particle distribution of the nanoparticles 62 in the refractive index variable layer 60 changes, and the refractive index distribution of the refractive index variable layer 60 changes. As a result, the difference in refractive index between the uneven structure 50 and the variable-refractive-index layer 60 changes, so that the traveling direction of light incident on the optical device 1 can be controlled.
- a high refractive index material is used as the nanoparticles 62.
- the refractive index of the nanoparticles 62 is made higher than the refractive index of the insulating liquid 61. More specifically, the refractive index of the nanoparticles 62 is made higher than the refractive index of the concavo-convex structure 50.
- the refractive index of the refractive index variable layer 60 is the refractive index of the concavo-convex structure 50. It is almost the same as the rate. Therefore, at the time of no voltage application, there is no difference in refractive index between the concavo-convex structure 50 and the refractive index variable layer 60, and the optical device 1 becomes a transparent mode and makes light incident on the first substrate 10 go straight. Thus, the second substrate 20 is transmitted.
- the nanoparticles 62 having a high refractive index migrate toward the concavo-convex structure 50 to the concavo-convex structure 50 side. It is unevenly distributed. Thereby, the refractive index of the first region 60 a on the uneven structure 50 side of the refractive index variable layer 60 is higher than the refractive index of the second region 60 b on the second electrode side of the refractive index variable layer 60. Therefore, at the time of voltage application, a refractive index difference occurs between the concavo-convex structure 50 and the refractive index variable layer 60, and the optical device 1 becomes a light distribution mode and distributes light incident on the first substrate 10. Thus, the second substrate 20 is transmitted.
- the optical device 1 according to the present embodiment configured as above has a large difference in refractive index ( ⁇ n) between the concavo-convex structure 50 and the variable refractive index layer 60 as compared to an optical device in which the refractive index variable layer is a liquid crystal layer. Since it can be done, the light distribution control range can be enlarged.
- the refractive index variable layer when the refractive index variable layer is a liquid crystal layer, the refractive index variable layer (liquid crystal layer) changes the refractive index only within the range of 1.5 to 1.7, so the refractive index variable layer and the concavo-convex structure
- the refractive index of the concavo-convex structure can be set only in the range of 1.5 to 1.7, and the maximum refractive index of the concavo-convex structure and the refractive index variable layer can be set. The difference remains at 0.2.
- the variable-refractive-index layer 60 is composed of the nanoparticles 62 having a refractive index of 2.1 and the insulating liquid 61 having a solvent refractive index of about 1.4.
- the refractive index variable layer 60 can partially change the refractive index in the range of 1.4 to 1.95.
- the refractive index of the concavo-convex structure 50 can also be set in the range of 1.4 to 1.95, and the maximum of the concavo-convex structure 50 having a refractive index of 1.4 to 1.95 and the variable refractive index layer 60
- the refractive index difference can be extended to 0.55.
- the difference in refractive index between the concavo-convex structure 50 and the variable-refractive-index layer 60 is increased to increase or decrease the angle when light incident on the optical device 1 is reflected by the concavo-convex structure 50. It is possible to expand the range (the light distribution control range) that can be done. That is, the dynamic range of the light distribution angle can be expanded.
- the optical device 1 according to the present embodiment can improve the light distribution ratio as compared with the optical device in which the refractive index variable layer is a liquid crystal layer. That is, since the liquid crystal layer is composed of liquid crystal molecules having birefringence, in the optical device using the liquid crystal layer, only one of the S wave and the P wave can be distributed. On the other hand, since the insulating liquid 61 and the nanoparticles 62 are independent of the S wave and the P wave, the optical device 1 in the present embodiment is applicable to both the S wave and the P wave. It can be distributed. Therefore, in the optical device 1 in the present embodiment, the light distribution ratio is doubled with respect to the optical device using the liquid crystal layer.
- the light distribution control range can be enlarged and the light distribution rate can be improved as compared with the optical device in which the refractive index variable layer is a liquid crystal layer. be able to. Therefore, an optical device having excellent light distribution performance can be realized.
- the nanoparticles 62 localized on the side of the first electrode 30 in order to make the entire upper surface of the convex portion 51 of the concavo-convex structure 50 a reflective surface when the optical device 1 is in the light distribution mode It is preferable to fill in all of the concave portions (the region between two adjacent convex portions 51). That is, it is preferable that the nanoparticles 62 be present at the apex of the convex portion 51. In this case, the amount of nanoparticles 62 necessary to fill all the recesses of the concavo-convex structure 50 depends on the height of the concavo-convex structure 50 and the thickness of the refractive index variable layer 60. It is sufficient to adjust the concentration of
- FIG. 4 is a cross-sectional view of the optical device 2 according to the second embodiment.
- FIG. 5 is an enlarged cross-sectional view of the same optical device 2, and shows an enlarged view of a region V surrounded by a broken line in FIG.
- the optical device 2 according to the present embodiment is similar to the optical device 1 according to the first embodiment in that the first substrate 10, the second substrate 20, and the first electrode 30. And a second electrode 40, a concavo-convex structure 50, and a refractive index variable layer 60.
- the difference between the optical device 2 according to the present embodiment and the optical device 1 according to the first embodiment is that the incident direction of light to the optical device is different.
- the first substrate 10 with the concavo-convex structure 50 is on the light incident side (for example, the outside of a building)
- the second substrate 20 without the concavo-convex structure 50 is on the light emission side (for example, the inside of a building)
- the second substrate 20 without the uneven structure 50 is the first substrate 10 with the uneven structure 50 on the light incident side (for example, outside the building).
- the optical device 2 is disposed such that the light emitting side (for example, the inside of a building) is the light emitting side.
- the change of the refractive index of the variable-refractive-index layer 60 with respect to the concavo-convex structure 50 is positive ( ⁇ n> 0), while in the present embodiment, the refraction with respect to the concavo-convex structure 50
- the change of the refractive index of the rate variable layer 60 is negative ( ⁇ n ⁇ 0).
- the pair of side surfaces of the convex portion 51 can be a total reflection surface according to the refractive index difference between the convex portion 51 and the refractive index variable layer 60 and the incident angle of light.
- the concavo-convex structure 50 in the present embodiment is formed using an acrylic high refractive index resin as in the first embodiment, but the concavo-convex structure 50 (convex portion 51) in the present embodiment is formed. Unlike the refractive index of the concavo-convex structure 50 in the first embodiment, the refractive index is about 1.6.
- the variable-refractive-index layer 60 in the present embodiment is a nanoparticle composed of the insulating liquid 61 having a solvent refractive index of about 1.4 and zirconia particles having a refractive index of 2.1.
- the refractive index (average refractive index) of the entire refractive index variable layer 60 is different from that of the nanoparticles 62 in the refractive index variable layer 60 (insulation property). In the uniformly dispersed state in the liquid 61), it is set to about 1.6.
- the refractive index of the concavo-convex structure 50 is not limited to 1.6. If the refractive index of the refractive index variable layer 60 can be made higher than 1.6, the refractive index of the concavo-convex structure 50 should also be made higher than 1.6. For example, when the refractive index of the refractive index variable layer 60 is 1.7 or more, the refractive index of the concavo-convex structure 50 may also be 1.7 or more.
- FIG. 6A is a view for explaining the first optical action of the optical device 2 according to the second embodiment
- FIG. 6B is a view for explaining the second optical action of the optical device 2.
- the optical device 2 can be realized as a window with a light distribution control function, for example, by being installed in a window of a building, as in the first embodiment.
- the optical device 2 is installed in the window such that the longitudinal direction of the convex portion 51 of the concavo-convex structure 50 is horizontal.
- the optical device 2 is installed such that the second substrate 20 without the concavo-convex structure 50 is positioned on the light incident side (outside of the building).
- the light (sunlight) incident from the two substrates 20 can be transmitted and emitted from the first substrate 10 to the inside (for example, the room) of the building of the optical device 2.
- the light incident on the optical device 2 receives an optical action from the optical device 2 when it is transmitted through the optical device 2.
- the optical device 2 changes its optical action by the change of the refractive index of the refractive index variable layer 60. Therefore, light incident on the optical device 2 is subjected to different optical actions according to the refractive index of the refractive index variable layer 60, and the traveling direction is controlled according to the refractive index of the refractive index variable layer 60.
- the optical device 2 can control the traveling direction of light incident on the optical device 2 in accordance with the voltage applied between the first electrode 30 and the second electrode 40. Specifically, in accordance with the voltage applied between the first electrode 30 and the second electrode 40, the particle distribution of the nanoparticles 62 in the refractive index variable layer 60 (nanoparticle dispersion layer) changes, thereby The refractive index of the variable-refractive-index layer 60 partially changes. As a result, the optical action of the optical device 2 changes.
- the optical device 2 in the present embodiment also has two optical actions as in the first embodiment. Hereinafter, the two optical actions of the optical device 2 will be described in detail.
- optical The device 2 When no potential is applied to the first electrode 30 and the second electrode 40, that is, no voltage is applied between the first electrode 30 and the second electrode 40 (when no voltage is applied), optical The device 2 is in the first optical mode and exerts the first optical action on the incident light.
- the refractive index of the variable-refractive-index layer 60 in the state in which the nanoparticles 62 are dispersed in the entire insulating liquid 61 is uniform (constant) in the entire variable-refractive-index layer 60 as shown in FIG. It is 1.6.
- the refractive index of the uneven structure 50 is also about 1.6.
- the refractive index of the entire refractive index variable layer 60 is substantially the same as the refractive index of the concavo-convex structure 50 It becomes.
- the difference in refractive index between the uneven structure 50 (convex portion 51) and the variable-refractive-index layer 60 is almost eliminated (refractive index difference ⁇ n ⁇ 0).
- the optical device 2 when a voltage is not applied between the first electrode 30 and the second electrode 40, the optical device 2 causes the light incident on the second substrate 20 to go straight and transmit the first substrate 10 . That is, also in the present embodiment, the first optical mode is the transparent mode, and in the first optical mode, the optical device 2 is in the transparent state. In this case, the light incident on the second substrate 20 travels straight through without being distributed by the optical device 2 and exits from the first substrate 10.
- the light incident from the second substrate 20 is refracted at the interface.
- the light is incident from the second substrate 20 and In the first optical mode (transparent mode), the light emitted from the one substrate 10 has the same incident angle when entering the second substrate 20 and the outgoing angle when emitted from the first substrate 10. That is, the angles in the direction of travel are the same and do not change.
- the refractive index of the entire refractive index variable layer 60 and the refractive index of the concavo-convex structure 50 are substantially the same as each other when the refractive index difference between the refractive index variable layer 60 and the concavo-convex structure 50 is 0.01 or less More preferably, it is 0.005 or less ( ⁇ n ⁇ 0.005). If the refractive index difference between the refractive index variable layer 60 and the concavo-convex structure 50 exceeds 0.005, light may be scattered at the interface between the refractive index variable layer 60 and the concavo-convex structure 50, and haze may occur.
- the second optical action of the optical device 2 will be described using FIG. 6B.
- a potential is applied to the first electrode 30 and the second electrode 40, that is, when a voltage is applied between the first electrode 30 and the second electrode 40 (when voltage is applied)
- the optical device 2 And a second optical mode is provided to the incident light.
- a DC voltage is applied between the first electrode 30 and the second electrode 40.
- the voltage (potential difference) applied between the first electrode 30 and the second electrode 40 is, for example, about several volts to several tens of volts.
- an electric field is applied to the variable-refractive-index layer 60 by applying a DC voltage between the first electrode 30 and the second electrode 40.
- 62 migrates in the insulating liquid 61 according to the electric field distribution. That is, the nanoparticles 62 electrophorese in the insulating liquid 61.
- a positive potential is applied to the first electrode 30 and a negative potential is applied to the second electrode 40, so that the positively charged nanoparticles 62 move toward the second electrode 40. It migrates and is aggregated and localized on the side of the second electrode 40 in the refractive index variable layer 60.
- the nanoparticles 62 that have entered the concave portion of the concavo-convex structure 50 that is, the region between two adjacent convex portions 51 move to the second electrode 40 side, and the concentration of the nanoparticles 62 in the concave portion of the concavo-convex structure 50 Decreases.
- the particle distribution of the nanoparticles 62 changes, and the refractive index distribution in the refractive index variable layer 60 is uniform. It disappears.
- the nanoparticles 62 are gathered by migration of the entire nanoparticles 62, and the concentration of the nanoparticles 62 is increased. Region, and a second region 60b (low concentration region) on the side of the uneven structure 50 where the concentration of the nanoparticles 62 is reduced by the migration of the entire nanoparticles 62 and the concentration of the nanoparticles 62 is reduced,
- the refractive index distribution as shown in FIG. 6B is generated between 60a and the second region 60b.
- the refractive index of the nanoparticles 62 is higher than the refractive index of the insulating liquid 61
- the refractive index of the first region 60a on the second electrode 40 side of the refractive index variable layer 60 is the unevenness of the refractive index variable layer 60. It becomes higher than the refractive index of the second region 60b on the structure 50 side.
- the refractive index variable layer 60 is formed by dispersing the nanoparticles 62 made of zirconia particles having a refractive index of 2.1 in the insulating liquid 61 having a solvent refractive index of about 1.4.
- the refractive index of the entire variable-refractive-index layer 60 is about 1.6 when no voltage is applied. Therefore, at the time of voltage application, the refractive index of the first region 60 a on the second electrode 40 side of the refractive index variable layer 60 is higher than the initial refractive index (1.6) of the entire refractive index variable layer 60 at the time of no voltage application. It also becomes high and distributes in the thickness direction from about 1.95 to about 1.6.
- the maximum value of the refractive index in the refractive index variable layer 60 is the case where the spherical nanoparticles 62 having a refractive index of 2.1 are closely packed in the insulating liquid 61 (solvent) having a refractive index of 1.4. Is the value obtained for In addition, when a voltage is applied, the refractive index of the second region 60b on the side of the uneven structure 50 of the refractive index variable layer 60 is higher than the initial refractive index (1.6) of the entire refractive index variable layer 60 when no voltage is applied. It is lowered and distributed at about 1.6 to about 1.4 in the thickness direction.
- the refractive index of the concavo-convex structure 50 is about 1.6
- the refractive index of the concavo-convex structure 50 is about 1.6
- Refraction between the refractive index (about 1.6) of the concavo-convex structure 50 and the refractive index (about 1.6 to about 1.4) of the second region 60 b on the concavo-convex structure 50 side of the variable-refractive-index layer 60 There is a difference in rates.
- the refractive index distribution in the refractive index variable layer 60 is a sigmoidal functional distribution as shown in FIG. 6B, but generally, the second region 60 b (a low refractive index where the refractive index is lower than the initial refractive index
- the thickness (width) of the region) is larger than the thickness (width) of the first region 60a (a high refractive index region where the refractive index is higher than the initial refractive index). That is, in the second region 60b where the refractive index is low, the change in refractive index is small along the height direction of the concavo-convex structure 50, and a stable refractive index distribution is obtained.
- the structure in which the concavo-convex structure 50 is formed on the second region 60b side is the same as in this embodiment.
- the directivity (ratio that can be emitted at the same angle, half width) of light distribution can be improved. That is, in the present embodiment, the directivity of light distribution can be improved more than in the first embodiment.
- the width of the region without the convex portion 51 is made wider than the width of the region with the convex portion 51, so that the height direction of the concavo-convex structure 50 (height direction of the convex portion 51). Since the change of the refractive index can be further reduced, the refractive index distribution can be made more stable.
- the height of the convex portion 51 of the concavo-convex structure 50 is less than half the width of the refractive index variable layer 60, or the width of the refractive index variable layer 60 is 2 of the height of the convex portion 51 of the concavo-convex structure 50
- the optical device 2 is When light L1 is incident from an oblique direction, there is a difference in refractive index at the interface between the concavo-convex structure 50 (convex portion 51) and the refractive index variable layer 60, so the light L1 incident on the optical device 2 is a refractive index variable layer After refracting at the interface between 60 and the upper side surface of the convex portion 51, the light is totally reflected at the interface between the refractive index variable layer 60 and the lower side surface of the convex portion 51, and the traveling direction is bent in the rebounding direction. Emit outside of device 2. That is, the light L ⁇ b> 1 incident on the optical device 2 is distributed by the optical device 2.
- the refractive index gradually changes in the first region 60a on the second electrode 40 side where the concentration of the nanoparticles 62 is increased, and no structure having a different refractive index exists in the first region 60a.
- the incident light L1 is only refracted and does not reflect or scatter.
- the optical device 2 distributes light incident on the second substrate 20 to transmit the first substrate 10.
- the second optical mode is a light distribution mode
- the optical device 2 in the second optical mode, the optical device 2 is in a light distribution state.
- the light incident on the second substrate 20 is reflected by the uneven structure 50 of the optical device 2 as described above, and the traveling direction is changed, and the light is emitted from the first substrate 10.
- the light incident from the second substrate 20 is refracted at the interface.
- the nanoparticles 62 migrate in the insulating liquid 61, as shown in FIG. 3A. Are uniformly dispersed throughout the insulating liquid 61.
- the optical device 2 configured as described above is a current driven device.
- the optical device 2 is an active optical control device capable of changing the optical action by controlling the refractive index matching between the uneven structure 50 and the refractive index variable layer 60 with an electric field. That is, by controlling the voltage applied between the first electrode 30 and the second electrode 40, the optical device 2 can be switched to a plurality of optical modes. In the present embodiment, the optical device 2 can be switched to two modes of a first optical mode (transparent mode) and a second optical mode (light distribution mode).
- the dielectric constant of the concavo-convex structure 50 (the convex portion 51) be larger than the dielectric constant of the insulating liquid 61 of the refractive index variable layer 60. That is, it is preferable that the dielectric constant of the insulating liquid 61 be lower than that of the concavo-convex structure 50 (convex portion 51). Thereby, it can suppress that an electric field is broken to the direction of concavo-convex structure 50.
- the uneven structure 50 and the refractive index variable layer 60 are provided between the first electrode 30 and the second electrode 40 as in the optical device 1 according to the first embodiment.
- the insulating liquid 61 nanoparticle dispersion layer in which the charged nanoparticles 62 are dispersed.
- the nanoparticles 62 migrate in the insulating liquid 61 by applying a voltage between the first electrode 30 and the second electrode 40, so that the refractive index of the refractive index variable layer 60 can be changed. it can. Specifically, the particle distribution of the nanoparticles 62 in the refractive index variable layer 60 changes, and the refractive index distribution of the refractive index variable layer 60 changes. As a result, the difference in refractive index between the uneven structure 50 and the variable-refractive-index layer 60 changes, so that the traveling direction of light incident on the optical device 2 can be controlled.
- a high refractive index material is used as the nanoparticles 62.
- the refractive index of the nanoparticles 62 is made higher than the refractive index of the insulating liquid 61. More specifically, the refractive index of the nanoparticles 62 is made higher than the refractive index of the concavo-convex structure 50.
- the refractive index of the refractive index variable layer 60 is the refractive index of the uneven structure 50. It is almost the same as the rate. Therefore, at the time of no voltage application, there is no difference in refractive index between the concavo-convex structure 50 and the refractive index variable layer 60, and the optical device 2 becomes a transparent mode and makes light incident on the second substrate 20 go straight. Thus, the first substrate 10 is transmitted.
- the nanoparticles 62 having a high refractive index migrate toward the second electrode 40 side and the second electrode 40 It is unevenly distributed to the side.
- the refractive index of the second region 60 b on the uneven structure 50 side of the refractive index variable layer 60 is lower than the refractive index of the first region 60 a on the second electrode side of the refractive index variable layer 60. Therefore, at the time of voltage application, a refractive index difference occurs between the concavo-convex structure 50 and the refractive index variable layer 60, and the optical device 2 becomes a light distribution mode and distributes light incident on the second substrate 20. Thus, the first substrate 10 is transmitted.
- the refractive index difference between the uneven structure 50 and the refractive index variable layer 60 compared to the optical device in which the refractive index variable layer is a liquid crystal layer ( Since ⁇ n) can be increased, the light distribution control range can be increased. That is, the dynamic range of the light distribution angle can be expanded.
- the light distribution rate can be improved as compared with the optical device in which the refractive index variable layer is a liquid crystal layer. That is, since the insulating liquid 61 and the nanoparticles 62 are independent of the S wave and the P wave, the optical device 2 in the present embodiment distributes light to both the S wave and the P wave. be able to. Therefore, also in the optical device 2 in the present embodiment, the light distribution ratio is doubled with respect to the optical device using the liquid crystal layer.
- the light distribution control range can be expanded compared to the optical device in which the refractive index variable layer is a liquid crystal layer. While being able to do, it is possible to improve the light distribution rate. Therefore, an optical device having excellent light distribution performance can be realized.
- the nanoparticles 62 are positively charged, but the present invention is not limited to this. That is, the nanoparticles 62 may be negatively charged.
- the first electrode 30 and the second electrode are applied by applying a positive potential to the first electrode 30 and applying a negative potential to the second electrode 40. It is preferable to apply a DC voltage between 40 and 40.
- a positive potential is applied to the second electrode 40 and a negative potential is applied to the first electrode 30 to make the first electrode 30 and the A direct current voltage may be applied between the two electrodes 40.
- the present invention is not limited thereto.
- a predetermined voltage potential difference
- a positive potential is applied to both the first electrode 30 and the second electrode 40 in the second optical mode.
- a negative potential may be applied.
- the negative potential is applied to the second electrode 40 and the positive potential is applied to the first electrode 30, but the present invention is not limited thereto.
- a predetermined voltage potential difference
- a positive potential is applied to both the first electrode 30 and the second electrode 40 in the second optical mode.
- a negative potential may be applied.
- the convex portion 51 constituting the concavo-convex structure 50 is a long triangular prism in cross section, but the present invention is not limited to this.
- the convex portion 51 may be a substantially square prism having a substantially trapezoidal cross section.
- the cross-sectional shape of the side surface of the convex portion 51 is not limited to a straight line, and may be a curve or a saw.
- each of the plurality of convex portions 51 is not limited to the case of extending linearly in the X-axis direction, and may be curvilinear, wavy or saw-like, and one extending in the X-axis direction Not limited to the elongated member, it may be partially divided in the X-axis direction.
- the plurality of convex portions 51 may be formed in a dot shape along the X-axis direction.
- the plurality of convex portions 51 of the uneven structure 50 are formed separately from each other, but the present invention is not limited to this.
- the plurality of convex portions 51 may be connected to each other at the root.
- the connection layer connecting the plurality of convex portions 51 may be formed to be left intentionally or may be formed by a residual film.
- the height of the several convex part 51 was made constant, it does not restrict to this.
- the heights of the plurality of convex portions 51 may be randomly different.
- the intervals of the convex portions 51 may be randomly different, or both of the height and the interval may be random.
- the light incident on the optical devices 1 and 2 may be light emitted by a light emitting device such as a lighting fixture.
- the optical devices 1 and 2 were arrange
- the optical devices 1 and 2 may be disposed in the window such that the longitudinal direction of the protrusion 51 is the Z-axis direction.
- the optical devices 1 and 2 were affixed on the window, you may use the optical devices 1 and 2 as windows of a building itself. Further, the optical devices 1 and 2 are not limited to the case of being installed in a window of a building, and may be installed, for example, in a window of a car.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
光学デバイス(1)は、光透過性を有する第一基板(10)と、第一基板(10)に対向して配置された光透過性を有する第二基板(20)と、第一基板(10)の第二基板(20)側に配置された第一電極(30)と、第一電極(30)の第二基板(20)側に配置された凹凸構造(50)と、第二基板(20)の第一基板(10)側に配置された第二電極(40)と、凹凸構造(50)と第二電極(40)との間に配置され、第一電極(30)と第二電極(40)との間に印加される電圧に応じて屈折率が変化する屈折率可変層(60)とを備え、屈折率可変層(60)は、絶縁性液体(61)と、絶縁性液体(61)に含まれ、帯電したナノ粒子(62)とを有し、ナノ粒子(62)の屈折率は、絶縁性液体(61)の屈折率よりも高い。
Description
本発明は、光学デバイスに関し、特に、入射する光を配光することができる光学デバイスに関する。
従来、光学デバイスとして、入射する光を配光することができる配光デバイスが提案されている。このような光学デバイスは、建物又は車等の窓等に用いられる。例えば、光学デバイスを建物の窓に設置することで、室外から入射する太陽光等の外光の進行方向を変更して当該外光を室内の天井に向けて導入することができる(例えば特許文献1、2)。
この種の配光デバイスとして、液晶を用いたものが知られている。例えば、特許文献3には、一対の透明基板と、一対の透明基板の内側に配置された一対の透明電極と、一対の透明電極の間に配置された液晶層とを備える液晶光学素子が開示されている。液晶を用いた配光デバイスでは、一対の透明電極に印加する電圧に応じて液晶層の液晶分子の配向状態を変化させることで、配光デバイスに入射する光の進行方向を変化させている。
しかしながら、液晶を用いた配光デバイスでは、十分な配光性能を得ることができない。
本発明は、このような課題を解決するためになされたものであり、優れた配光性能を有する光学デバイスを提供することを目的とする。
上記目的を達成するために、本発明に係る第1の光学デバイスの一態様は、光透過性を有する第一基板と、前記第一基板に対向して配置された光透過性を有する第二基板と、前記第一基板の前記第二基板側に配置された第一電極と、前記第一電極の前記第二基板側に配置された凹凸構造と、前記第二基板の前記第一基板側に配置された第二電極と、前記凹凸構造と前記第二電極との間に配置され、前記第一電極と前記第二電極との間に印加される電圧に応じて屈折率が変化する屈折率可変層とを備え、前記屈折率可変層は、絶縁性液体と、前記絶縁性液体に分散された帯電するナノ粒子とを有し、前記ナノ粒子の屈折率は、前記絶縁性液体の屈折率よりも高い。
また、本発明に係る第2の光学デバイスの一態様は、入射する光を制御する光学デバイスであって、光透過性を有する第一基板と、前記第一基板に対向して配置された光透過性を有する第二基板と、前記第一基板の前記第二基板側に配置された第一電極と、前記第一電極の前記第二基板側に配置された凹凸構造と、前記第二基板の前記第一基板側に配置された第二電極と、前記凹凸構造と前記第二電極との間に配置され、絶縁性液体及び前記絶縁性液体に分散された帯電するナノ粒子を有するナノ粒子分散層とを備え、前記光学デバイスは、前記第一電極と前記第二電極との間に印加される電圧に応じて、前記光学デバイスに入射する光の進行方向を制御する。
また、本発明に係る第3の光学デバイスの一態様は、光透過性を有する第一基板と、前記第一基板に対向して配置された光透過性を有する第二基板と、前記第一基板の前記第二基板側に配置された第一電極と、前記第一電極の前記第二基板側に配置された凹凸構造と、前記第二基板の前記第一基板側に配置された第二電極と、前記凹凸構造と前記第二電極との間に配置され、絶縁性液体及び前記絶縁性液体に分散された帯電するナノ粒子を有するナノ粒子分散層とを備え、前記第一電極と前記第二電極との間に印加される電圧に応じて、前記ナノ粒子分散層における前記ナノ粒子の粒子分布が変化する。
本発明によれば、優れた配光性能を有する光学デバイスを実現できる。
以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を表しており、本実施の形態では、Z軸方向を鉛直方向とし、Z軸に垂直な方向(XY平面に平行な方向)を水平方向としている。X軸及びY軸は、互いに直交し、かつ、いずれもZ軸に直交する軸である。なお、Z軸方向のプラス方向を鉛直下方としている。また、本明細書において、「厚み方向」とは、光学デバイスの厚み方向を意味し、第一基板10及び第二基板20の主面に垂直な方向(本実施の形態では、Y軸方向)のことである。
(実施の形態1)
まず、実施の形態1に係る光学デバイス1の構成について、図1及び図2を用いて説明する。図1は、実施の形態1に係る光学デバイス1の断面図である。図2は、同光学デバイス1の拡大断面図であり、図1の破線で囲まれる領域IIの拡大図を示している。
まず、実施の形態1に係る光学デバイス1の構成について、図1及び図2を用いて説明する。図1は、実施の形態1に係る光学デバイス1の断面図である。図2は、同光学デバイス1の拡大断面図であり、図1の破線で囲まれる領域IIの拡大図を示している。
光学デバイス1は、光学デバイス1に入射する光を制御する光制御デバイスである。具体的には、光学デバイス1は、光学デバイス1に入射する光の進行方向を制御する。本実施の形態において、光学デバイス1は、入射する光の進行方向を変更して(例えば配光して)出射させることができる配光デバイスである。
図1及び図2に示すように、光学デバイス1は、第一基板10と、第二基板20と、第一電極30と、第二電極40と、凹凸構造50と、屈折率可変層60とを備える。
光学デバイス1は、一対の第一基板10及び第二基板20の間に、第一電極30、凹凸構造50、屈折率可変層60及び第二電極40がこの順で厚み方向に沿って配置された構成となっている。
また、図1に示すように、光学デバイス1において、第一基板10、第一電極30及び凹凸構造50は、第一積層基板100を構成し、第二基板20及び第二電極40は、第二積層基板200を構成している。
第一積層基板100及び第二積層基板200は、ギャップを介して互いに対向するように配置されており、外周端部の全周が封止されている。これにより、第一積層基板100と第二積層基板200との間に充填された屈折率可変層60を閉じ込めることができる。例えば、第一積層基板100及び第二積層基板200の外周端部に沿って内面に額縁状に接着剤等のシール部材を形成したり、レーザによって第一基板10と第二基板20とを溶着したりすることで、第一積層基板100及び第二積層基板200の外周端部を封止することができる。
以下、光学デバイス1の各構成部材について、図1及び図2を参照して詳細に説明する。
[第一基板、第二基板]
図1及び図2に示すように、第一基板10は、第一積層基板100の基材であり、第二基板20は、第二積層基板200の基材である。
図1及び図2に示すように、第一基板10は、第一積層基板100の基材であり、第二基板20は、第二積層基板200の基材である。
第一基板10及び第二基板20は、光透過性を有する基板(透光性基板)である。第一基板10及び第二基板20は、透明な透明基板であるとよい。
第一基板10及び第二基板20としては、例えば、樹脂材料からなる樹脂基板又はガラス材料からなるガラス基板を用いることができる。樹脂基板の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル又はエポキシ等が挙げられる。ガラス基板の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラス等が挙げられる。樹脂基板は、破壊時の飛散が少ないという利点がある。一方、ガラス基板は、光透過率が高く、かつ、水分の透過性が低いという利点がある。
第一基板10と第二基板20とは、同じ材料で構成されていてもよいし、異なる材料で構成されていてもよいが、同じ材料で構成されている方がよい。また、第一基板10及び第二基板20は、リジッド基板に限るものではなく、フレキシブル基板又はフィルム基板であってもよい。本実施の形態では、第一基板10及び第二基板20として、いずれもPETからなる透明樹脂基板(PET基板)を用いている。
第一基板10及び第二基板20の厚さは、例えば5μm~3mmであるが、これに限るものではない。本実施の形態において、第一基板10及び第二基板20の厚さは、いずれも50μmである。
また、第一基板10及び第二基板20の平面視の形状は、例えば正方形や長方形の矩形状であるが、これに限るものではなく、円形又は四角形以外の多角形であってもよく、任意の形状が採用され得る。
[第一電極、第二電極]
図1及び図2に示すように、第一電極30及び第二電極40は、電気的に対になっており、屈折率可変層60に電界を与えることができるように構成されている。また、第一電極30と第二電極40とは、配置的にも対になっており、互いに対向するように配置されている。
図1及び図2に示すように、第一電極30及び第二電極40は、電気的に対になっており、屈折率可変層60に電界を与えることができるように構成されている。また、第一電極30と第二電極40とは、配置的にも対になっており、互いに対向するように配置されている。
第一電極30は、第一基板10の第二基板20側に配置されている。また、第二電極40は、第二基板20の第一基板10側に配置されている。具体的には、第一電極30は、第一基板10の第二基板20側の主面に形成されており、第二電極40は、第二基板20の第一基板10側の主面に形成されている。
また、本実施の形態において、一対をなす第一電極30及び第二電極40は、少なくとも凹凸構造50及び屈折率可変層60を挟むように、第一基板10と第二基板20との間に配置されている。具体的には、第一電極30は、第一基板10と凹凸構造50との間に配置されており、第二電極40は、第二基板20と屈折率可変層60との間に配置されている。
第一電極30及び第二電極40の各々の厚さは、例えば5nm~2μmであるが、これに限るものではない。本実施の形態において、第一電極30及び第二電極40の各々の厚さは、いずれも100nmである。
また、第一電極30及び第二電極40の平面視の形状は、第一基板10及び第二基板20と同様に、例えば正方形や長方形の矩形状であるが、これに限るものではない。本実施の形態において、第一電極30及び第二電極40は、第一基板10及び第二基板20の各々の表面のほぼ全面に形成された平面視形状が矩形状のべた電極である。
第一電極30及び第二電極40は、透光性を有する電極であり、入射した光を透過する。第一電極30及び第二電極40は、例えば透明導電層からなる透明電極である。透明導電層の材料としては、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の透明金属酸化物、銀ナノワイヤや導電性粒子等の導電体を含有する樹脂によって構成された導電体含有樹脂、又は、銀薄膜等の金属薄膜等を用いることができる。なお、第一電極30及び第二電極40は、これらの単層構造であってもよいし、これらの積層構造(例えば透明金属酸化物と金属薄膜との積層構造)であってもよい。
第一電極30及び第二電極40は、外部電源との電気接続が可能となるように構成されている。例えば、屈折率可変層60を封止するシール樹脂の外部にまで第一電極30及び第二電極40の各々が引き出されて、この引き出された部分を外部電源に接続するための電極端子にしてもよい。
[凹凸構造]
図1及び図2に示すように、凹凸構造50は、凹凸面を有する凹凸層であり、マイクロオーダサイズ又はナノオーダサイズの複数の凸部51が配列された構成である。
図1及び図2に示すように、凹凸構造50は、凹凸面を有する凹凸層であり、マイクロオーダサイズ又はナノオーダサイズの複数の凸部51が配列された構成である。
凹凸構造50は、第一基板10の第二基板20側に配置されている。本実施の形態において、凹凸構造50は、第一電極30の第二基板20側に配置されている。具体的には、凹凸構造50は、第一電極30の第二基板20側の主面に設けられている。
本実施の形態において、凹凸構造50は、複数の凸部51が屈折率可変層60側に突出するように第一電極30の上に設けられている。この場合、第一電極30と凹凸構造50との間に密着層が形成されていてもよい。なお、凹凸構造50の第一電極30側の面(凸部51の第一電極30側の面)は平坦な面となっている。
また、複数の凸部51は、ストライプ状に形成されている。具体的には、複数の凸部51の各々は、断面形状が三角形でX軸方向に延在する長尺状の略三角柱形状であり、Z軸方向に沿って等間隔に配列されている。また、全ての凸部51が同じ形状となっているが、これに限るものではない。
各凸部51は、例えば、高さが100nm以上100μm以下で、アスペクト比(高さ/下底)が0.5~10程度であるが、これに限るものではない。一例として、各凸部51は、高さが10μm程度で、底辺が5μm程度である。
また、Z軸方向に隣り合う2つの凸部51の間隔は、例えば0以上100mm以下である。つまり、Z軸方向に隣り合う2つの凸部51は、底部が接触することなく所定の間隔をあけて配置されていてもよいし、底部が接触して配置(間隔ゼロで)されていてもよいが、Z軸方向に隣り合う2つの凸部51の間隔は、凸部51の底辺以下であるとよい。一例として、上記サイズの凸部51(高さ10μm、底辺5μm)の場合、隣り合う2つの凸部51の間隔は、2μm程度である。
複数の凸部51の各々は、一対の側面を有する。本実施の形態において、各凸部51の断面形状は、第二基板20から第一基板10に向かう方向(Y軸マイナス方向)に沿って先細りのテーパ形状である。したがって、各凸部51の一対の側面の各々は、厚み方向に対して所定の傾斜角で傾斜する傾斜面となっており、各凸部51において一対の側面の間隔(凸部51の幅)は、第二基板20から第一基板10に向かって漸次小さくなっている。各凸部51の2つの側面の傾斜角は、同じであってもよいし、異なっていてもよい。本実施の形態において、各凸部51の断面形状は二等辺三角形であり、各凸部51の2つの側面の傾斜角(底角)は同じである。
各凸部51の一対の側面は、屈折率可変層60と接する面であり、第一基板10から入射した光は、凸部51の一対の側面で光学作用を受ける。
具体的には、凸部51の一対の側面のうちの一方の側面(本実施の形態では下側の側面)では、第一基板10から入射した光は、凸部51と屈折率可変層60との屈折率差に応じて、屈折して透過したり屈折せずにそのまま透過したりする。
また、凸部51の一対の側面のうちの他方の側面(本実施の形態では上側の側面)では、第一基板10から入射した光は、凸部51と屈折率可変層60との屈折率差に応じて、屈折して透過したり屈折せずにそのまま透過したり、あるいは、全反射したりする。つまり、凸部51の上側の側面は、凸部51と屈折率可変層60との屈折率差及び光の入射角に応じて全反射面となりうる。
凹凸構造50(凸部51)の材料としては、例えば、アクリル樹脂、エポキシ樹脂又はシリコーン樹脂等の透光性を有する樹脂材料を用いることができる。凹凸構造50は、例えばレーザ加工又はインプリント等によって形成することができる。本実施の形態において、凹凸構造50は、屈折率が約1.5のアクリル樹脂を用いて形成した。
なお、後述の屈折率可変層60の屈折率は高ければ高い方が良いため、凹凸構造50の屈折率は、1.5に限らない。屈折率可変層60の屈折率を1.5よりも高くできる場合には、凹凸構造50の屈折率も1.5よりも高くするとよい。例えば、屈折率可変層60の屈折率が1.6以上の場合は、凹凸構造50の屈折率も1.6以上にするとよい。
また、凹凸構造50は、第一電極30及び第二電極40によって屈折率可変層60に電界を与えることができさえすれば、絶縁性の樹脂材料のみによって構成されていてもよいが、導電性を有していてもよい。この場合、凹凸構造50の材料は、PEDOT等の導電性高分子、又は、導電体を含む樹脂(導電体含有樹脂)等を用いることができる。
[屈折率可変層]
図1及び図2に示すように、屈折率可変層60は、絶縁性液体61と、絶縁性液体61に含まれるナノ粒子62とを有する。屈折率可変層60は、無数のナノ粒子62が絶縁性液体61に分散されたナノ粒子分散層である。
図1及び図2に示すように、屈折率可変層60は、絶縁性液体61と、絶縁性液体61に含まれるナノ粒子62とを有する。屈折率可変層60は、無数のナノ粒子62が絶縁性液体61に分散されたナノ粒子分散層である。
絶縁性液体61は、絶縁性を有する透明な液体であり、分散質としてナノ粒子62が分散される分散媒となる溶媒である。絶縁性液体61としては、例えば、屈折率(溶媒屈折率)が約1.3~約1.5のものを用いることができる。本実施の形態では、屈折率が約1.4の絶縁性液体61を用いている。
なお、絶縁性液体61の動粘度は、100mm2/s以下であるとよい。また、絶縁性液体61は、低誘電率(凹凸構造50の誘電率以下)であるとよい。つまり、凹凸構造50の誘電率は、絶縁性液体61の誘電率よりも高い方がよい。また、絶縁性液体61は、非引火性(引火点が250℃以上の高引火点)及び低揮発性を有するとよい。具体的には、絶縁性液体61は、炭化水素(脂肪族炭化水素、ナフサ、及びその他の石油系溶剤など)、低分子量ハロゲン含有ポリマー、又は、これらの混合物等である。一例として、絶縁性液体61は、フッ化炭素水素等のハロゲン化炭素水素である。なお、絶縁性液体61としては、シリコーンオイル等を用いることもできる。
ナノ粒子62は、絶縁性液体61に複数分散されている。ナノ粒子62は、粒径がナノオーダサイズの微粒子である。具体的には、入射光の波長をλとすると、ナノ粒子62の粒径は、λ/4以下であるとよい。ナノ粒子62の粒径をλ/4以下にすることで、ナノ粒子62での光散乱を少なくして、ナノ粒子62と絶縁性液体61との平均的な屈折率を得ることができる。ナノ粒子62の粒径は、小さいほどよく、好ましくは100nm以下、より好ましくは、数nm~数十nmである。
ナノ粒子62は、高屈折率材料によって構成されているとよい。具体的には、ナノ粒子62の屈折率は、絶縁性液体61の屈折率よりも高い。本実施の形態において、ナノ粒子62の屈折率は、凹凸構造50の屈折率よりも高い。
ナノ粒子62としては、金属酸化物微粒子を用いることができる。また、ナノ粒子62は、透過率が高い材料で構成されているとよい。本実施の形態では、ナノ粒子62として、酸化ジルコニウム(ZrO2)によって構成された屈折率が2.1の透明なジルコニア粒子を用いている。なお、ナノ粒子62は、酸化ジルコニウムに限らず、酸化チタン等によって構成されていてもよい。
また、ナノ粒子62は、帯電している荷電粒子である。例えば、ナノ粒子62の表面を修飾したり、絶縁性液体61にナノ粒子62を分散させた後の絶縁性液体61を含めた屈折率可変層60全体のPHを調整したりすることで、ナノ粒子62を正(プラス)又は負(マイナス)に帯電させることができる。本実施の形態において、ナノ粒子62は、正(プラス)に帯電している。
このように構成された屈折率可変層60では、帯電したナノ粒子62が絶縁性液体61全体に分散されている。本実施の形態では、ナノ粒子62として屈折率が2.1のジルコニア粒子を用いて、このナノ粒子62を溶媒屈折率が約1.4の絶縁性液体61に分散させたものを屈折率可変層60としている。
また、屈折率可変層60全体の屈折率(平均屈折率)は、ナノ粒子62が屈折率可変層60(絶縁性液体61)内に均一に分散された状態において、凹凸構造50の屈折率と略同一に設定されており、本実施の形態では、約1.5である。なお、屈折率可変層60全体の屈折率は、絶縁性液体61に分散するナノ粒子62の濃度(量)を調整することによって変えることができる。ナノ粒子62の量は、凹凸構造50の屈折率と同じ屈折率になるようにするとよく、本実施の形態では、屈折率が約1.4の絶縁性液体61に対するナノ粒子62の濃度は、約30体積%(比重が約5程度のナノ粒子62の場合は、約70wt%)である。
また、屈折率が約1.3~約1.5の絶縁性液体61を用いた場合、ナノ粒子62の濃度は、約15体積%~約40体積%(同約45wt%~約80wt%)の範囲であるとよい。
なお、屈折率変化のダイナミックレンジを大きくするためには、ナノ粒子62の量は多ければ多いほど良いが、少なくとも電圧無印加時にナノ粒子62が絶縁性液体61の中で凝集しないようにしなければならない。本実施の形態では、電圧無印加時の屈折率可変層60全体の屈折率が約1.6になるように調整したが、ナノ粒子62の凝集が起こらなければ、屈折率可変層60の屈折率は約1.7以上にするとよい。この場合、絶縁性液体61の屈折率を約1.3~約1.5にすると、屈折率が2.1のナノ粒子62の濃度は、約30体積%~約50体積%にするとよい。
屈折率可変層60は、凹凸構造50と第二電極40との間に配置されている。具体的には、屈折率可変層60は凹凸構造50に接している。つまり、屈折率可変層60における凹凸構造50の凹凸表面との接触面は、屈折率可変層60と凹凸構造50の凹凸表面との界面である。なお、屈折率可変層60は、第二電極40にも接しているが、屈折率可変層60と第二電極40との間に他の層(膜)が介在していてもよい。
また、屈折率可変層60は、第一電極30と第二電極40との間に印加される電圧に応じて屈折率が変化する。具体的には、屈折率可変層60は、第一電極30と第二電極40との間に配置されており、第一電極30と第二電極40との間に電圧が印加されることによって屈折率可変層60に電界が与えられる。例えば、第一電極30と第二電極40との間には直流電圧が印加される。
絶縁性液体61中に分散するナノ粒子62は帯電しているので、屈折率可変層60に電界が与えられると、ナノ粒子62は、電界分布にしたがって絶縁性液体61中を泳動し、絶縁性液体61内で偏在する。これにより、屈折率可変層60内のナノ粒子62の粒子分布が変化して屈折率可変層60内にナノ粒子62の濃度分布を持たせることができるので、屈折率可変層60内の屈折率分布が変化する。つまり、屈折率可変層60の屈折率が部分的に変化する。このように、屈折率可変層60は、主に可視光領域の光に対する屈折率を調整することができる屈折率調整層として機能する。
このように構成される屈折率可変層60は、第一積層基板100と第二積層基板200との間に配置されている。具体的には、ナノ粒子62が分散された絶縁性液体61が第一積層基板100と第二積層基板200との間に封止されている。
屈折率可変層60の厚さ(つまり、第一積層基板100と第二積層基板200とのギャップ)は、例えば1μm~1mmであるが、これに限るものではない。一例として、凹凸構造50の凸部51の高さが10μmである場合、屈折率可変層60の厚さは、例えば40μmである。
[光学デバイスの製造方法]
次に、光学デバイス1の製造方法について、図1及び図2を参照しながら説明する。
次に、光学デバイス1の製造方法について、図1及び図2を参照しながら説明する。
まず、第一基板10として例えばPET基板を用いて、PET基板の上に第一電極30としてITO膜を形成し、ITO膜の上にアクリル樹脂(屈折率1.5)によって構成された複数の凸部51からなる凹凸構造50をインプリント法により形成することで第一積層基板100を作製する。
次に、第二基板20として例えばPET基板を用いて、PET基板の上にITO膜からなる第二電極40を形成することで、第二積層基板200を作製する。
次に、第一積層基板100と第二積層基板200との間に、屈折率可変層60として、ナノ粒子62が分散された絶縁性液体61を充填するとともに、第一積層基板100と第二積層基板200との外周部分を接合することで第一積層基板100と第二積層基板200との間に屈折率可変層60を封止する。
このようにして、図1に示される構造の光学デバイス1を製造することができる。
[光学デバイスの光学作用]
次に、実施の形態1に係る光学デバイス1の光学作用について、図3A及び図3Bを用いて説明する。図3Aは、実施の形態1に係る光学デバイス1の第一光学作用を説明するための図であり、図3Bは、同光学デバイス1の第二光学作用を説明するための図である。
次に、実施の形態1に係る光学デバイス1の光学作用について、図3A及び図3Bを用いて説明する。図3Aは、実施の形態1に係る光学デバイス1の第一光学作用を説明するための図であり、図3Bは、同光学デバイス1の第二光学作用を説明するための図である。
光学デバイス1は、例えば建物の窓に設置することによって配光制御機能付き窓として実現することができる。光学デバイス1は、例えば、粘着層を介して建物の窓に貼り合わされる。この場合、凹凸構造50の凸部51の長手方向が水平方向となるように光学デバイス1を窓に設置する。窓に設置された光学デバイス1には、例えば太陽光が入射する。本実施の形態では、凹凸構造50が設けられた第一基板10が光入射側(建物の外側)に位置するように光学デバイス1を設置しているので、光学デバイス1は、第一基板10から入射した光(太陽光)を透過して、第二基板20から光学デバイス1の建物の内側(例えば室内)に出射させることができる。
このとき、光学デバイス1に入射した光は、光学デバイス1を透過する際に光学デバイス1から光学作用を受ける。具体的には、光学デバイス1は、屈折率可変層60の屈折率の変化によって光学作用が変化する。このため、光学デバイス1に入射した光は、屈折率可変層60の屈折率に応じて異なる光学作用を受けることになり、屈折率可変層60の屈折率に応じて進行方向が制御される。
本実施の形態において、光学デバイス1は、第一電極30と第二電極40との間に印加される電圧に応じて、光学デバイス1に入射する光の進行方向を制御することができる。具体的には、第一電極30と第二電極40との間に印加される電圧に応じて、屈折率可変層60(ナノ粒子分散層)におけるナノ粒子62の粒子分布が変化し、これにより、屈折率可変層60の屈折率が部分的に変化する。この結果、光学デバイス1の光学作用が変化する。本実施の形態における光学デバイス1は、2つの光学作用を有する。以下、光学デバイス1の2つの光学作用について詳細に説明する。
まず、図3Aを用いて、光学デバイス1の第一光学作用を説明する。第一電極30及び第二電極40に電位が与えられていない場合、つまり、第一電極30と第二電極40との間に電圧が印加されていない場合(電圧無印加時の場合)、光学デバイス1は、第一光学モードとなり、入射した光に対して第一光学作用を与える。
第一光学モードでは、屈折率可変層60に電界が与えられないので、図3Aに示すように、屈折率可変層60において、ナノ粒子62は、絶縁性液体61全体にわたって分散された状態となる。このとき、本実施の形態では、上記のように、ナノ粒子62が絶縁性液体61全体に分散された状態での屈折率可変層60の屈折率は、図3Aに示すように屈折率可変層60全体で一様(一定)で、約1.5である。また、凹凸構造50の屈折率が約1.5である。したがって、第一電極30と第二電極40との間に電圧が印加されていない場合(第一光学モードの場合)、屈折率可変層60全体の屈折率が凹凸構造50の屈折率と略同一となる。この結果、凹凸構造50(凸部51)と屈折率可変層60との間の屈折率差がほぼなくなる(屈折率差Δn≒0)。
この場合、図3Aに示すように、光学デバイス1に対して斜め方向から光L1が入射すると、凹凸構造50(凸部51)と屈折率可変層60との界面には屈折率差がないので、光学デバイス1に入射した光L1は、屈折率可変層60と凸部51の側面との界面では屈折されずに進行方向が変わらない。このため、第一光学モードでは、光学デバイス1に入射した光L1は、光学デバイス1で進行方向が曲げられることなく、光学デバイス1内をそのまま直進して光学デバイス1の外部に出射する。
このように、第一電極30と第二電極40との間に電圧が印加されていない場合、光学デバイス1は、第一基板10に入射された光を直進させて第二基板20を透過させる。つまり、第一光学モードは透明モードであり、第一光学モードにおいて、光学デバイス1は透明状態になっている。この場合、第一基板10に入射した光は、光学デバイス1によって配光されることなく直進透過して第二基板20から出射する。
なお、詳細は図示していないが、第一基板10の光入射側の界面、第一基板10と第一電極30との界面、第一電極30と凹凸構造50との界面、屈折率可変層60と第二電極40との界面、第二電極40と第二基板20との界面、又は、第二基板20の光出射側の界面等、各部材間の界面で屈折率差が存在する箇所においては、第一基板10から入射した光は、その界面で屈折することになる。ただし、各部材の表面が全て平行な面であり、光学デバイス1の入射側と出射側の媒体(本実施の形態では空気)が同じである場合には、第一基板10から入射して第二基板20から出射する光は、第一光学モード(透明モード)においては、第一基板10に入射するときの入射角と第二基板20から出射するときの出射角とは同じになる。つまり、進行方向の角度は同じであり変化しない。
また、第一光学モードにおいて、屈折率可変層60全体の屈折率と凹凸構造50の屈折率とが略同一とは、屈折率可変層60と凹凸構造50との屈折率差が0.01以下、より好ましくは0.005以下のことである(Δn≦0.005)。屈折率可変層60及び凹凸構造50の屈折率差が0.005を超えると、屈折率可変層60と凹凸構造50との界面で光が散乱し、ヘイズが発生するおそれがある。
次に、図3Bを用いて、光学デバイス1の第二光学作用を説明する。第一電極30及び第二電極40に電位が与えられた場合、つまり、第一電極30と第二電極40との間に電圧が印加された場合(電圧印加時の場合)、光学デバイス1は、第二光学モードとなり、入射した光に対して第二光学作用を与える。具体的には、第一電極30と第二電極40との間には直流電圧が印加される。第一電極30と第二電極40との間に印加する電圧(電位差)は、例えば数V~数十V程度である。
第二光学モードでは、第一電極30と第二電極40との間に直流電圧が印加されることで屈折率可変層60に電界が与えられるので、屈折率可変層60では、帯電したナノ粒子62がその電界分布にしたがって絶縁性液体61内を泳動する。つまり、ナノ粒子62は、絶縁性液体61内を電気泳動する。
具体的には、第二光学モードでは、第一電極30にマイナス電位が印加され、第二電極40にプラス電位が印加されるので、プラスに帯電したナノ粒子62は、第一電極30に向かって泳動し、屈折率可変層60内の凹凸構造50側に凝集されて偏在する。このとき、第一電極30に向かって泳動するナノ粒子62は、凹凸構造50の凹部、つまり隣り合う2つの凸部51の間の領域に入り込んで集積していき、凹凸構造50の凹部のナノ粒子62の濃度が増加する。
このように、ナノ粒子62が屈折率可変層60内の凹凸構造50側に偏在することで、ナノ粒子62の粒子分布が変化し、屈折率可変層60内の屈折率分布が一様ではなくなる。具体的には、屈折率可変層60内には、ナノ粒子62全体の泳動によりナノ粒子62が集まってきてナノ粒子62の濃度が高くなった凹凸構造50側の第一領域60a(高濃度領域)と、ナノ粒子62全体の泳動によりナノ粒子62が無くなっていってナノ粒子62の濃度が低くなった第二電極40側の第二領域60b(低濃度領域)とが発生し、第一領域60aと第二領域60bとで図3Bに示すような屈折率分布が生じる。
この場合、ナノ粒子62の屈折率が絶縁性液体61の屈折率よりも高いので、屈折率可変層60の凹凸構造50側の第一領域60aの屈折率は、屈折率可変層60の第二電極40側の第二領域60bの屈折率よりも高くなる。
本実施の形態では、上記のように、屈折率が2.1のジルコニア粒子からなるナノ粒子62を溶媒屈折率が約1.4の絶縁性液体61に分散させることで屈折率可変層60が構成されており、電圧無印加時の屈折率可変層60全体の屈折率が約1.5である。したがって、電圧印加時において、屈折率可変層60の凹凸構造50側の第一領域60aの屈折率は、電圧無印加時の屈折率可変層60全体の初期の屈折率(1.5)よりも高くなり、厚み方向に約1.95~約1.5で分布する。ここで、屈折率可変層60内の屈折率の最大値は、屈折率2.1の球状のナノ粒子62が屈折率1.4の絶縁性液体61(溶媒)の中で最密充填した場合に得られる値である。また、電圧印加時において、屈折率可変層60の第二電極40側の第二領域60bの屈折率は、電圧無印加時の屈折率可変層60全体の初期の屈折率(1.5)よりも低くなり、厚み方向に約1.5~約1.4で分布する。
これにより、上記のように、凹凸構造50の屈折率は約1.5であるので、第二光学モードの場合(第一電極30と第二電極40との間に電圧が印加されている場合)、凹凸構造50の屈折率(約1.5)と屈折率可変層60の凹凸構造50側の第一領域60aの屈折率(約1.6~約1.95)との間には屈折率差が生じる。
この場合、図3Bに示すように、光学デバイス1に対して斜め方向から光L1が入射すると、凹凸構造50(凸部51)と屈折率可変層60との界面には屈折率差があるので、光学デバイス1に入射した光L1は、凸部51の下側の側面と屈折率可変層60との界面で屈折してから、屈折率可変層60と凸部51の上側の側面との界面で全反射し、跳ね返る方向に進行方向が曲げられて光学デバイス1の外部に出射する。つまり、光学デバイス1に入射した光L1は、光学デバイス1によって配光される。
このように、第一電極30と第二電極40との間に電圧が印加されている場合、光学デバイス1は、第一基板10に入射する光を配光して第二基板20を透過させる。つまり、第二光学モードは配光モードであり、第二光学モードにおいて、光学デバイス1は配光状態になっている。この場合、第一基板10に入射した光は、上記のように、光学デバイス1の凹凸構造50で反射させられて進行方向が変化して第二基板20から出射する。
なお、詳細は図示していないが、第二光学モードの場合も、第一基板10の光入射側の界面、第一基板10と第一電極30との界面、第一電極30と凹凸構造50との界面、屈折率可変層60と第二電極40との界面、第二電極40と第二基板20との界面、又は、第二基板20の光出射側の界面等、各部材間の界面で屈折率差が存在する箇所においては、上記同様に、第一基板10から入射した光は、その界面で屈折することになる。
また、第一電極30と第二電極40とに印加する電位をゼロにして電圧無印加状態にすると、ナノ粒子62は絶縁性液体61内を泳動し、図3Aに示すように、ナノ粒子62が絶縁性液体61全体にわたって均一に分散された状態に戻る。
以上のように構成される光学デバイス1は、電流駆動型のデバイスである。したがって、第一電極30及び第二電極40に電圧を印加している間は、分散液(絶縁性液体61)にも電流が流れている。
また、光学デバイス1は、凹凸構造50と屈折率可変層60との屈折率マッチングを電界によって制御することで光学作用を変化させることができるアクティブ型の光学制御デバイスである。つまり、第一電極30と第二電極40との間に印加する電圧を制御することによって、光学デバイス1を複数の光学モードに切り替えることができる。本実施の形態では、光学デバイス1を第一光学モード(透明モード)及び第二光学モード(配光モード)の2つのモードに切り替えることができる。
なお、第一電極30と第二電極40との間に印加する電圧によって生成される電界は、誘電率が低い方に付与されやすい。このため、凹凸構造50(凸部51)の誘電率は、屈折率可変層60の絶縁性液体61の誘電率よりも大きい方がよい。つまり、凹凸構造50(凸部51)に対して絶縁性液体61の誘電率が低い方がよい。これにより、凹凸構造50の方に電界がくわれてしまうことを抑制できる。
[まとめ]
以上、本実施の形態に係る光学デバイス1によれば、第一電極30と第二電極40との間に凹凸構造50及び屈折率可変層60が配置されており、屈折率可変層60として、帯電したナノ粒子62が分散された絶縁性液体61(ナノ粒子分散層)を用いている。
以上、本実施の形態に係る光学デバイス1によれば、第一電極30と第二電極40との間に凹凸構造50及び屈折率可変層60が配置されており、屈折率可変層60として、帯電したナノ粒子62が分散された絶縁性液体61(ナノ粒子分散層)を用いている。
この構成により、第一電極30と第二電極40との間に電圧を印加することでナノ粒子62が絶縁性液体61内を泳動するので、屈折率可変層60の屈折率を変化させることができる。具体的には、屈折率可変層60におけるナノ粒子62の粒子分布が変化して、屈折率可変層60の屈折率分布が変化する。これにより、凹凸構造50と屈折率可変層60との屈折率差が変化するので、光学デバイス1に入射する光の進行方向を制御することができる。
本実施の形態では、ナノ粒子62として高屈折率材料を用いている。具体的には、ナノ粒子62の屈折率を絶縁性液体61の屈折率よりも高くしている。より具体的には、ナノ粒子62の屈折率を凹凸構造50の屈折率よりも高くしている。
そして、光学デバイス1では、第一電極30と第二電極40との間に電圧が印加されていない場合(電圧無印加時)において、屈折率可変層60の屈折率は、凹凸構造50の屈折率と略同一となっている。したがって、電圧無印加時では、凹凸構造50と屈折率可変層60との間に屈折率差がなくなり、光学デバイス1は、透明モードとなって、第一基板10に入射された光を直進させて第二基板20を透過させる。
また、第一電極30と第二電極40との間に電圧が印加されると、本実施の形態では、屈折率が高いナノ粒子62が凹凸構造50に向かって泳動して凹凸構造50側に偏在する。これにより、屈折率可変層60の凹凸構造50側の第一領域60aの屈折率が、屈折率可変層60の第二電極側の第二領域60bの屈折率より高くなる。したがって、電圧印加時では、凹凸構造50と屈折率可変層60との間に屈折率差が生じ、光学デバイス1は、配光モードとなって、第一基板10に入射する光を配光して第二基板20を透過させる。
このように構成される本実施の形態における光学デバイス1は、屈折率可変層が液晶層である光学デバイスと比べて、凹凸構造50と屈折率可変層60との屈折率差(Δn)を大きくすることができるので、配光制御範囲を大きくすることができる。
例えば、屈折率可変層が液晶層である場合は、屈折率可変層(液晶層)は、1.5~1.7の範囲内でしか屈折率が変化しないので、屈折率可変層と凹凸構造との屈折率が略同一である場合には、凹凸構造の屈折率を1.5~1.7の範囲でしか設定することができず、凹凸構造と屈折率可変層との最大の屈折率差は0.2にとどまる。
これに対して、本実施の形態における光学デバイス1では、屈折率可変層60が屈折率2.1のナノ粒子62と溶媒屈折率約1.4の絶縁性液体61とによって構成されているので、屈折率可変層60は、部分的に、1.4~1.95の範囲で屈折率を変化させることが可能となる。これにより、凹凸構造50の屈折率も1.4~1.95の範囲で設定することができ、屈折率が1.4~1.95の凹凸構造50と屈折率可変層60との最大の屈折率差を0.55にまで拡大することができる。
このように、凹凸構造50と屈折率可変層60との屈折率差が大きくなることで、光学デバイス1に入射した光が凹凸構造50で反射するときの角度を大きくしたり小さくしたりすることができる範囲(配光制御範囲)を拡大させることができる。つまり、配光角度のダイナミックレンジを拡大させることができる。
また、本実施の形態における光学デバイス1は、屈折率可変層が液晶層である光学デバイスと比べて、配光率を向上させることができる。つまり、液晶層は、複屈折性を有する液晶分子によって構成されているので、液晶層を用いた光学デバイスでは、S波及びP波のいずれかしか配光させることができない。これに対して、絶縁性液体61及びナノ粒子62は、S波及びP波に対して無依存であるので、本実施の形態における光学デバイス1は、S波及びP波のいずれに対しても配光させることができる。したがって、本実施の形態における光学デバイス1は、液晶層を用いた光学デバイスに対して、配光率が2倍になる。
以上のように、本実施の形態における光学デバイス1によれば、屈折率可変層が液晶層である光学デバイスと比べて、配光制御範囲を大きくすることができるとともに、配光率を向上させることができる。したがって、優れた配光性能を有する光学デバイスを実現できる。
なお、光学デバイス1が配光モードのときに凹凸構造50の凸部51の上側の側面の全面を反射面にするために、第一電極30側に偏在させるナノ粒子62は、凹凸構造50の凹部(隣り合う2つの凸部51の間の領域)の全てを埋めるように存在するとよい。つまり、ナノ粒子62が凸部51の頂点にまで存在するとよい。この場合、凹凸構造50の凹部の全てを埋めるために必要なナノ粒子62の量は、凹凸構造50の高さ及び屈折率可変層60の厚さに応じて、絶縁性液体61におけるナノ粒子62の濃度を調整して決定すればよい。
(実施の形態2)
次に、実施の形態2に係る光学デバイス2について、図4及び図5を用いて説明する。図4は、実施の形態2に係る光学デバイス2の断面図である。図5は、同光学デバイス2の拡大断面図であり、図4の破線で囲まれる領域Vの拡大図を示している。
次に、実施の形態2に係る光学デバイス2について、図4及び図5を用いて説明する。図4は、実施の形態2に係る光学デバイス2の断面図である。図5は、同光学デバイス2の拡大断面図であり、図4の破線で囲まれる領域Vの拡大図を示している。
本実施の形態における光学デバイス2は、図4及び図5に示すように、上記実施の形態1における光学デバイス1と同様に、第一基板10と、第二基板20と、第一電極30と、第二電極40と、凹凸構造50と、屈折率可変層60とを備える。
本実施の形態における光学デバイス2と上記実施の形態1における光学デバイス1とが異なる点は、光学デバイスに対する光の入射方向が異なる。具体的には、上記実施の形態1では、凹凸構造50のある第一基板10が光入射側(例えば建物の外側)で凹凸構造50のない第二基板20が光出射側(例えば建物の内側)となるように光学デバイス1が配置されていたが、本実施の形態では、凹凸構造50のない第二基板20が光入射側(例えば建物の外側)で凹凸構造50のある第一基板10が光出射側(例えば建物の内側)となるように光学デバイス2が配置されている。
この場合、上記実施の形態1では、凹凸構造50に対する屈折率可変層60の屈折率の変化が正(Δn>0)であったのに対して、本実施の形態では、凹凸構造50に対する屈折率可変層60の屈折率の変化が負(Δn<0)となっている。
本実施の形態において、第二基板20から入射した光は、凹凸構造50の凸部51の一対の側面で光学作用を受ける。具体的には、凸部51の一対の側面の各々において、第二基板20から入射した光は、凸部51と屈折率可変層60との屈折率差に応じて、屈折して透過したり屈折せずにそのまま透過したり、あるいは、全反射したりする。つまり、凸部51の一対の側面は、実施の形態1と同様に、凸部51と屈折率可変層60との屈折率差及び光の入射角に応じて全反射面となりうる。
また、本実施の形態における凹凸構造50は、実施の形態1と同様に、アクリル系の高屈折率樹脂を用いて形成されているが、本実施の形態における凹凸構造50(凸部51)の屈折率は、実施の形態1における凹凸構造50の屈折率と異なり、約1.6である。
したがって、本実施の形態における屈折率可変層60は、実施の形態1と同様に、溶媒屈折率が約1.4の絶縁性液体61と、屈折率が2.1のジルコニア粒子からなるナノ粒子62とによって構成されているが、本実施の形態では、実施の形態1と異なり、屈折率可変層60全体の屈折率(平均屈折率)は、ナノ粒子62が屈折率可変層60(絶縁性液体61)内に均一に分散された状態において、約1.6に設定されている。
なお、本実施の形態でも、屈折率可変層60の屈折率は高ければ高い方が良いため、凹凸構造50の屈折率は、1.6に限らない。屈折率可変層60の屈折率を1.6よりも高くできる場合には、凹凸構造50の屈折率も1.6よりも高くするとよい。例えば、屈折率可変層60の屈折率が1.7以上の場合は、凹凸構造50の屈折率も1.7以上にするとよい。
[光学デバイスの光学作用]
次に、実施の形態2に係る光学デバイス2の光学作用について、図6A及び図6Bを用いて説明する。図6Aは、実施の形態2に係る光学デバイス2の第一光学作用を説明するための図であり、図6Bは、同光学デバイス2の第二光学作用を説明するための図である。
次に、実施の形態2に係る光学デバイス2の光学作用について、図6A及び図6Bを用いて説明する。図6Aは、実施の形態2に係る光学デバイス2の第一光学作用を説明するための図であり、図6Bは、同光学デバイス2の第二光学作用を説明するための図である。
光学デバイス2は、実施の形態1と同様に、例えば建物の窓に設置することによって配光制御機能付き窓として実現することができる。この場合、凹凸構造50の凸部51の長手方向が水平方向となるように光学デバイス2を窓に設置する。本実施の形態では、上記のように、凹凸構造50のない第二基板20が光入射側(建物の外側)に位置するように光学デバイス2を設置しているので、光学デバイス2は、第二基板20から入射した光(太陽光)を透過して、第一基板10から光学デバイス2の建物の内側(例えば室内)に出射させることができる。
このとき、光学デバイス2に入射した光は、光学デバイス2を透過する際に光学デバイス2から光学作用を受ける。具体的には、光学デバイス2は、屈折率可変層60の屈折率の変化によって光学作用が変化する。このため、光学デバイス2に入射した光は、屈折率可変層60の屈折率に応じて異なる光学作用を受けることになり、屈折率可変層60の屈折率に応じて進行方向が制御される。
本実施の形態でも、光学デバイス2は、第一電極30と第二電極40との間に印加される電圧に応じて、光学デバイス2に入射する光の進行方向を制御することができる。具体的には、第一電極30と第二電極40との間に印加される電圧に応じて、屈折率可変層60(ナノ粒子分散層)におけるナノ粒子62の粒子分布が変化し、これにより、屈折率可変層60の屈折率が部分的に変化する。この結果、光学デバイス2の光学作用が変化する。本実施の形態における光学デバイス2も、実施の形態1と同様に、2つの光学作用を有する。以下、光学デバイス2の2つの光学作用について詳細に説明する。
まず、図6Aを用いて、光学デバイス2の第一光学作用を説明する。第一電極30及び第二電極40に電位が与えられていない場合、つまり、第一電極30と第二電極40との間に電圧が印加されていない場合(電圧無印加時の場合)、光学デバイス2は、第一光学モードとなり、入射した光に対して第一光学作用を与える。
第一光学モードでは、屈折率可変層60に電界が与えられないので、図6Aに示すように、屈折率可変層60において、ナノ粒子62は、絶縁性液体61全体にわたって分散された状態となる。このとき、ナノ粒子62が絶縁性液体61全体に分散された状態での屈折率可変層60の屈折率は、図6Aに示すように屈折率可変層60全体で一様(一定)で、約1.6である。また、凹凸構造50の屈折率も約1.6である。したがって、第一電極30と第二電極40との間に電圧が印加されていない場合(第一光学モードの場合)、屈折率可変層60全体の屈折率が凹凸構造50の屈折率と略同一となる。この結果、凹凸構造50(凸部51)と屈折率可変層60との間の屈折率差がほぼなくなる(屈折率差Δn≒0)。
この場合、図6Aに示すように、光学デバイス2に対して斜め方向から光L1が入射すると、凹凸構造50(凸部51)と屈折率可変層60との界面には屈折率差がないので、光学デバイス2に入射した光L1は、屈折率可変層60と凸部51の側面との界面では屈折されずに進行方向が変わらない。このため、第一光学モードでは、光学デバイス2に入射した光L1は、光学デバイス2で進行方向が曲げられることなく、光学デバイス2内をそのまま直進して光学デバイス2の外部に出射する。
このように、第一電極30と第二電極40との間に電圧が印加されていない場合、光学デバイス2は、第二基板20に入射された光を直進させて第一基板10を透過させる。つまり、本実施の形態でも第一光学モードは透明モードであり、第一光学モードにおいて、光学デバイス2は透明状態になっている。この場合、第二基板20に入射した光は、光学デバイス2によって配光されることなく直進透過して第一基板10から出射する。
なお、詳細は図示していないが、第二基板20の光入射側の界面、第二基板20と第二電極40との界面、屈折率可変層60と第二電極40との界面、凹凸構造50と第一電極30の界面、第一電極30と第一基板10との界面、又は、第一基板10の出射光側の界面等、各部材間の界面で屈折率差が存在する箇所においては、第二基板20から入射した光は、その界面で屈折することになる。ただし、各部材の表面が全て平行な面であり、光学デバイス2の入射側と出射側の媒体(本実施の形態では空気)が同じである場合には、第二基板20から入射して第一基板10から出射する光は、第一光学モード(透明モード)においては、第二基板20に入射するときの入射角と第一基板10から出射するときの出射角とは同じになる。つまり、進行方向の角度は同じであり変化しない。
また、第一光学モードにおいて、屈折率可変層60全体の屈折率と凹凸構造50の屈折率とが略同一とは、屈折率可変層60と凹凸構造50との屈折率差が0.01以下、より好ましくは0.005以下のことである(Δn≦0.005)。屈折率可変層60及び凹凸構造50の屈折率差が0.005を超えると、屈折率可変層60と凹凸構造50との界面で光が散乱し、ヘイズが発生するおそれがある。
次に、図6Bを用いて、光学デバイス2の第二光学作用を説明する。第一電極30及び第二電極40に電位が与えられた場合、つまり、第一電極30と第二電極40との間に電圧が印加された場合(電圧印加時の場合)、光学デバイス2は、第二光学モードとなり、入射した光に対して第二光学作用を与える。具体的には、第一電極30と第二電極40との間には直流電圧が印加される。第一電極30と第二電極40との間に印加する電圧(電位差)は、例えば数V~数十V程度である。
第二光学モードでは、第一電極30と第二電極40との間に直流電圧が印加されることで屈折率可変層60に電界が与えられるので、屈折率可変層60では、帯電したナノ粒子62がその電界分布にしたがって絶縁性液体61内を泳動する。つまり、ナノ粒子62は、絶縁性液体61内を電気泳動する。
具体的には、第二光学モードでは、第一電極30にプラス電位が印加され、第二電極40にマイナス電位が印加されるので、プラスに帯電したナノ粒子62は、第二電極40に向かって泳動し、屈折率可変層60内の第二電極40側に凝集されて偏在する。このとき、凹凸構造50の凹部、つまり隣り合う2つの凸部51の間の領域に入り込んでいたナノ粒子62は、第二電極40側に移動し、凹凸構造50の凹部のナノ粒子62の濃度が減少する。
このように、ナノ粒子62が屈折率可変層60内の第二電極40側に偏在することで、ナノ粒子62の粒子分布が変化し、屈折率可変層60内の屈折率分布が一様ではなくなる。具体的には、屈折率可変層60内には、ナノ粒子62全体の泳動によりナノ粒子62が集まってきてナノ粒子62の濃度が高くなった第二電極40側の第一領域60a(高濃度領域)と、ナノ粒子62全体の泳動によりナノ粒子62が無くなっていってナノ粒子62の濃度が低くなった凹凸構造50側の第二領域60b(低濃度領域)とが発生し、第一領域60aと第二領域60bとで図6Bに示すような屈折率分布が生じる。
この場合、ナノ粒子62の屈折率が絶縁性液体61の屈折率よりも高いので、屈折率可変層60の第二電極40側の第一領域60aの屈折率は、屈折率可変層60の凹凸構造50側の第二領域60bの屈折率よりも高くなる。
本実施の形態では、上記のように、屈折率が2.1のジルコニア粒子からなるナノ粒子62を溶媒屈折率が約1.4の絶縁性液体61に分散させることで屈折率可変層60が構成されており、電圧無印加時の屈折率可変層60全体の屈折率が約1.6である。したがって、電圧印加時において、屈折率可変層60の第二電極40側の第一領域60aの屈折率は、電圧無印加時の屈折率可変層60全体の初期の屈折率(1.6)よりも高くなり、厚み方向に約1.95~約1.6で分布する。ここで、屈折率可変層60内の屈折率の最大値は、屈折率2.1の球状のナノ粒子62が屈折率1.4の絶縁性液体61(溶媒)の中で最密充填した場合に得られる値である。また、電圧印加時において、屈折率可変層60の凹凸構造50側の第二領域60bの屈折率は、電圧無印加時の屈折率可変層60全体の初期の屈折率(1.6)よりも低くなり、厚み方向に約1.6~約1.4で分布する。
これにより、上記のように、凹凸構造50の屈折率は約1.6であるので、第二光学モードの場合(第一電極30と第二電極40との間に電圧が印加されている場合)、凹凸構造50の屈折率(約1.6)と屈折率可変層60の凹凸構造50側の第二領域60bの屈折率(約1.6~約1.4)との間には屈折率差が生じる。
ここで、屈折率可変層60内の屈折率分布は、図6Bに示すようなシグモイド関数的な分布となるが、通常、第二領域60b(初期の屈折率より屈折率が低くなる低屈折率領域)の厚み(幅)の方が、第一領域60a(初期の屈折率よりも屈折率が高くなる高屈折率領域)の厚み(幅)より大きくなる。すなわち、屈折率が低くなる第二領域60bでは、凹凸構造50の高さ方向に亘って屈折率の変化が少なく、安定した屈折率分布となる。これにより、屈折率が高くなる第一領域60a側に凹凸構造50が形成された構造よりも、本実施の形態のように、第二領域60b側に凹凸構造50が形成された構造の方が、配光の指向性(同一角度に出射できる割合、半値幅)を向上させることができる。つまり、本実施の形態では、実施の形態1よりも、配光の指向性を向上させることができる。
さらに、屈折率可変層60において、凸部51のある領域の幅よりも凸部51のない領域の幅を広くすることで、凹凸構造50の高さ方向(凸部51の高さ方向)に亘って屈折率の変化をさらに少なくできるので、屈折率分布をより安定させることができる。例えば、屈折率可変層60の幅に対し、凹凸構造50の凸部51の高さを1/2未満にしたり、屈折率可変層60の幅を凹凸構造50の凸部51の高さの2倍を超えるようにしたりすることで、凹凸構造50の高さ方向に亘って屈折率の変化を少なくして屈折率分布を安定させることができる。これにより、配光の指向性を一層向上させることができる。
このように、第一電極30と第二電極40とに電圧を印加して屈折率可変層60内のナノ粒子62を電気泳動させた場合に、図3Bに示すように、光学デバイス2に対して斜め方向から光L1が入射すると、凹凸構造50(凸部51)と屈折率可変層60との界面には屈折率差があるので、光学デバイス2に入射した光L1は、屈折率可変層60と凸部51の上側の側面との界面で屈折してから、屈折率可変層60と凸部51の下側の側面との界面で全反射し、跳ね返る方向に進行方向が曲げられて光学デバイス2の外部に出射する。つまり、光学デバイス2に入射した光L1は、光学デバイス2によって配光される。
なお、ナノ粒子62の濃度が高くなった第二電極40側の第一領域60aでは屈折率が徐々に変化しており、また、第一領域60aには屈折率が異なる構造物が存在しないので、第一領域60aの範囲において、入射光L1は、屈折のみし、反射したり散乱したりしない。
このように、第一電極30と第二電極40との間に電圧が印加されている場合、光学デバイス2は、第二基板20に入射する光を配光して第一基板10を透過させる。つまり、第二光学モードは配光モードであり、第二光学モードにおいて、光学デバイス2は配光状態になっている。この場合、第二基板20に入射した光は、上記のように、光学デバイス2の凹凸構造50で反射させられて進行方向が変化して第一基板10から出射する。
なお、詳細は図示していないが、第二光学モードの場合も、第二基板20の光入射側の界面、第二基板20と第二電極40との界面、屈折率可変層60と第二電極40との界面、凹凸構造50と第一電極30の界面、第一電極30と第一基板10との界面、又は、第一基板10の出射光側の界面等、各部材間の界面で屈折率差が存在する箇所においては、第二基板20から入射した光は、その界面で屈折することになる。
また、第一電極30と第二電極40とに印加する電位をゼロにして電圧無印加状態にすると、ナノ粒子62は絶縁性液体61内を泳動し、図3Aに示すように、ナノ粒子62が絶縁性液体61全体にわたって均一に分散された状態に戻る。
以上のように構成される光学デバイス2は、実施の形態1と同様に、電流駆動型のデバイスである。また、光学デバイス2は、凹凸構造50と屈折率可変層60との屈折率マッチングを電界によって制御することで光学作用を変化させることができるアクティブ型の光学制御デバイスである。つまり、第一電極30と第二電極40との間に印加する電圧を制御することによって、光学デバイス2を複数の光学モードに切り替えることができる。本実施の形態では、光学デバイス2を第一光学モード(透明モード)及び第二光学モード(配光モード)の2つのモードに切り替えることができる。
なお、第一電極30と第二電極40との間に印加する電圧によって生成される電界は、誘電率が低い方に付与されやすい。このため、凹凸構造50(凸部51)の誘電率は、屈折率可変層60の絶縁性液体61の誘電率よりも大きい方がよい。つまり、凹凸構造50(凸部51)に対して絶縁性液体61の誘電率が低い方がよい。これにより、凹凸構造50の方に電界がくわれてしまうことを抑制できる。
[まとめ]
以上、本実施の形態に係る光学デバイス2によれば、上記実施の形態1における光学デバイス1と同様に、第一電極30と第二電極40との間に凹凸構造50及び屈折率可変層60が配置されており、屈折率可変層60として、帯電したナノ粒子62が分散された絶縁性液体61(ナノ粒子分散層)を用いている。
以上、本実施の形態に係る光学デバイス2によれば、上記実施の形態1における光学デバイス1と同様に、第一電極30と第二電極40との間に凹凸構造50及び屈折率可変層60が配置されており、屈折率可変層60として、帯電したナノ粒子62が分散された絶縁性液体61(ナノ粒子分散層)を用いている。
この構成により、第一電極30と第二電極40との間に電圧を印加することでナノ粒子62が絶縁性液体61内を泳動するので、屈折率可変層60の屈折率を変化させることができる。具体的には、屈折率可変層60におけるナノ粒子62の粒子分布が変化して、屈折率可変層60の屈折率分布が変化する。これにより、凹凸構造50と屈折率可変層60との屈折率差が変化するので、光学デバイス2に入射する光の進行方向を制御することができる。
また、本実施の形態でも、ナノ粒子62として高屈折率材料を用いている。具体的には、ナノ粒子62の屈折率を絶縁性液体61の屈折率よりも高くしている。より具体的には、ナノ粒子62の屈折率を凹凸構造50の屈折率よりも高くしている。
そして、光学デバイス2でも、第一電極30と第二電極40との間に電圧が印加されていない場合(電圧無印加時)において、屈折率可変層60の屈折率は、凹凸構造50の屈折率と略同一となっている。したがって、電圧無印加時では、凹凸構造50と屈折率可変層60との間に屈折率差がなくなり、光学デバイス2は、透明モードとなって、第二基板20に入射された光を直進させて第一基板10を透過させる。
また、第一電極30と第二電極40との間に電圧が印加されると、本実施の形態では、屈折率が高いナノ粒子62が第二電極40側向かって泳動して第二電極40側に偏在する。これにより、屈折率可変層60の凹凸構造50側の第二領域60bの屈折率が、屈折率可変層60の第二電極側の第一領域60aの屈折率より低くなる。したがって、電圧印加時では、凹凸構造50と屈折率可変層60との間に屈折率差が生じ、光学デバイス2は、配光モードとなって、第二基板20に入射する光を配光して第一基板10を透過させる。
また、本実施の形態における光学デバイス2は、実施の形態1と同様に、屈折率可変層が液晶層である光学デバイスと比べて、凹凸構造50と屈折率可変層60との屈折率差(Δn)を大きくすることができるので、配光制御範囲を大きくすることができる。つまり、配光角度のダイナミックレンジを拡大させることができる。
また、本実施の形態における光学デバイス2でも、屈折率可変層が液晶層である光学デバイスと比べて、配光率を向上させることができる。つまり、絶縁性液体61及びナノ粒子62は、S波及びP波に対して無依存であるので、本実施の形態における光学デバイス2は、S波及びP波のいずれに対しても配光させることができる。したがって、本実施の形態における光学デバイス2でも、液晶層を用いた光学デバイスに対して、配光率が2倍になる。
以上のように、本実施の形態における光学デバイス2によれば、上記実施の形態1と同様に、屈折率可変層が液晶層である光学デバイスと比べて、配光制御範囲を大きくすることができるとともに、配光率を向上させることができる。したがって、優れた配光性能を有する光学デバイスを実現できる。
なお、光学デバイス2が配光モードのときに凹凸構造50の凸部51の下側の側面の全面を反射面にするために、第二電極40側に偏在させるナノ粒子62は、凹凸構造50の凹部(隣り合う2つの凸部51の間の領域)の全てから無くなるようにするとよい。つまり、ナノ粒子62が凸部51の頂点にまでには無くなるとよい。この場合、凹凸構造50の凹部の全てから無くなるためには、ナノ粒子62の濃度および凹凸構造50の高さに応じて屈折率可変層60の厚さを調整して決定すればよい。
(変形例)
以上、本発明に係る光学デバイスについて、実施の形態1、2に基づいて説明したが、本発明は、上記実施の形態1、2に限定されるものではない。
以上、本発明に係る光学デバイスについて、実施の形態1、2に基づいて説明したが、本発明は、上記実施の形態1、2に限定されるものではない。
例えば、上記実施の形態1、2において、ナノ粒子62はプラスを帯電させたが、これに限らない。つまり、ナノ粒子62をマイナスに帯電させてもよい。実施の形態1において、ナノ粒子62をマイナスに帯電させる場合、第一電極30にはプラス電位を印加し、第二電極40にはマイナス電位を印加することで、第一電極30と第二電極40との間に直流電圧を印加するとよい。また、実施の形態2において、ナノ粒子62をマイナスに帯電させる場合、第二電極40にはプラス電位を印加し、第一電極30にはマイナス電位を印加することで、第一電極30と第二電極40との間に直流電圧を印加するとよい。
また、上記実施の形態1において、第二光学モードでは、第一電極30にマイナス電位を印加し、第二電極40にプラス電位を印加したが、これに限らない。例えば、第一電極30と第二電極40との間に所定の電圧(電位差)が印加されれば、第二光学モードにおいて、第一電極30及び第二電極40の両方にプラス電位が印加されてもよいしマイナス電位が印加されてもよい。
また、上記実施の形態2において、第二光学モードでは、第二電極40にマイナス電位を印加し、第一電極30にプラス電位を印加したが、これに限らない。例えば、第一電極30と第二電極40との間に所定の電圧(電位差)が印加されれば、第二光学モードにおいて、第一電極30及び第二電極40の両方にプラス電位が印加されてもよいしマイナス電位が印加されてもよい。
また、上記実施の形態1、2において、凹凸構造50を構成する凸部51は、断面形状が三角形の長尺状の三角柱であったが、これに限らない。例えば、凸部51は、断面形状が略台形の長尺状の略四角柱であってもよい。また、凸部51の側面の断面形状は、直線に限らず、曲線又は鋸状であってもよい。さらに、複数の凸部51の各々は、X軸方向に直線状に延在する場合に限らず、曲線状、波状または鋸状であっても良く、また、X軸方向に延在する1本の長尺状部材に限らず、X軸方向に部分的に分断されていてもよい。この場合、複数の凸部51は、X軸方向に沿ってドット状に形成されていてもよい。
また、上記実施の形態1、2において、凹凸構造50の複数の凸部51は、互いに分離して形成されていたが、これに限らない。例えば、複数の凸部51は、根元で互いに連結されていてもよい。この場合、複数の凸部51を連結する連結層は、意図的に残すように形成されていてもよいし、残膜によって形成されていてもよい。
また、上記実施の形態1、2において、複数の凸部51の高さは、一定としたが、これに限るものではない。例えば、複数の凸部51の高さがランダムに異なっていてもよい。あるいは、凸部51の間隔がランダムに異なっていてもよいし、高さと間隔の両方がランダムであってもよい。
また、上記実施の形態1、2において、光学デバイス1及び2に入射する光として太陽光を例示したが、これに限るものではない。例えば、光学デバイス1及び2に入射する光は、照明器具等の発光装置が発する光であってもよい。
また、上記実施の形態1、2において、凸部51の長手方向がX軸方向となるように光学デバイス1及び2を窓に配置したが、これに限らない。例えば、凸部51の長手方向がZ軸方向となるように光学デバイス1及び2を窓に配置してもよい。
また、上記実施の形態1、2において、光学デバイス1及び2を窓に貼り付けたが、光学デバイス1及び2を建物の窓そのものとして用いてもよい。また、光学デバイス1及び2は、建物の窓に設置する場合に限るものではなく、例えば車の窓等に設置してもよい。
なお、その他、上記実施の形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で上記の各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
1、2 光学デバイス
10 第一基板
20 第二基板
30 第一電極
40 第二電極
50 凹凸構造
60 屈折率可変層(ナノ粒子分散層)
60a 第一領域
60b 第二領域
61 絶縁性液体
62 ナノ粒子
10 第一基板
20 第二基板
30 第一電極
40 第二電極
50 凹凸構造
60 屈折率可変層(ナノ粒子分散層)
60a 第一領域
60b 第二領域
61 絶縁性液体
62 ナノ粒子
Claims (14)
- 光透過性を有する第一基板と、
前記第一基板に対向して配置された光透過性を有する第二基板と、
前記第一基板の前記第二基板側に配置された第一電極と、
前記第一電極の前記第二基板側に配置された凹凸構造と、
前記第二基板の前記第一基板側に配置された第二電極と、
前記凹凸構造と前記第二電極との間に配置され、前記第一電極と前記第二電極との間に印加される電圧に応じて屈折率が変化する屈折率可変層とを備え、
前記屈折率可変層は、絶縁性液体と、前記絶縁性液体に分散された帯電するナノ粒子とを有し、
前記ナノ粒子の屈折率は、前記絶縁性液体の屈折率よりも高い、
光学デバイス。 - 前記第一電極と前記第二電極との間に電圧が印加されていない場合、前記屈折率可変層の屈折率は、前記凹凸構造の屈折率と略同一である、
請求項1に記載の光学デバイス。 - 前記第一電極と前記第二電極との間に電圧が印加されている場合、前記屈折率可変層の前記凹凸構造側の第一領域の屈折率は、前記屈折率可変層の前記第二電極側の第二領域の屈折率より高い、
請求項1又は2に記載の光学デバイス。 - 前記第一電極と前記第二電極との間に電圧が印加されている場合、前記屈折率可変層の前記凹凸構造側の第一領域の屈折率は、前記屈折率可変層の前記第二電極側の第二領域の屈折率より低い、
請求項1又は2に記載の光学デバイス。 - 前記ナノ粒子の屈折率は、前記凹凸構造の屈折率よりも高い、
請求項1~4のいずれか1項に記載の光学デバイス。 - 入射する光を制御する光学デバイスであって、
光透過性を有する第一基板と、
前記第一基板に対向して配置された光透過性を有する第二基板と、
前記第一基板の前記第二基板側に配置された第一電極と、
前記第一電極の前記第二基板側に配置された凹凸構造と、
前記第二基板の前記第一基板側に配置された第二電極と、
前記凹凸構造と前記第二電極との間に配置され、絶縁性液体及び前記絶縁性液体に分散された帯電するナノ粒子を有するナノ粒子分散層とを備え、
前記光学デバイスは、前記第一電極と前記第二電極との間に印加される電圧に応じて、前記光学デバイスに入射する光の進行方向を制御する、
光学デバイス。 - 前記第一電極と前記第二電極との間に電圧が印加されていない場合、前記光学デバイスは、前記光学デバイスに入射された光を直進させて透過させる、
請求項6に記載の光学デバイス。 - 前記第一電極と前記第二電極との間に電圧が印加されている場合、前記光学デバイスは、前記光学デバイスに入射する光を配光して透過させる、
請求項6又は7に記載の光学デバイス。 - 光透過性を有する第一基板と、
前記第一基板に対向して配置された光透過性を有する第二基板と、
前記第一基板の前記第二基板側に配置された第一電極と、
前記第一電極の前記第二基板側に配置された凹凸構造と、
前記第二基板の前記第一基板側に配置された第二電極と、
前記凹凸構造と前記第二電極との間に配置され、絶縁性液体及び前記絶縁性液体に分散された帯電するナノ粒子を有するナノ粒子分散層とを備え、
前記第一電極と前記第二電極との間に印加される電圧に応じて、前記ナノ粒子分散層における前記ナノ粒子の粒子分布が変化する、
光学デバイス。 - 前記第一電極と前記第二電極との間に電圧が印加されている場合、前記ナノ粒子は、
前記ナノ粒子分散層内の前記凹凸構造側に偏在している、
請求項9に記載の光学デバイス。 - 前記第一電極と前記第二電極との間に電圧が印加されている場合、前記ナノ粒子は、前記ナノ粒子分散層内の前記第二電極側に偏在している、
請求項9に記載の光学デバイス。 - 前記ナノ粒子の屈折率は、前記凹凸構造の屈折率よりも高い、
請求項6~11のいずれか1項に記載の光学デバイス。 - 前記凹凸構造の誘電率は、前記絶縁性液体の誘電率よりも高い、
請求項1~12のいずれか1項に記載の光学デバイス。 - 前記屈折率可変層の幅は、前記凹凸構造の凸部の高さの2倍を超えている、
請求項1~13のいずれか1項に記載の光学デバイス。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017145862A JP2020160095A (ja) | 2017-07-27 | 2017-07-27 | 光学デバイス |
JP2017-145862 | 2017-07-27 | ||
JP2018-061521 | 2018-03-28 | ||
JP2018061521A JP2020160099A (ja) | 2018-03-28 | 2018-03-28 | 光学デバイス |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019021579A1 true WO2019021579A1 (ja) | 2019-01-31 |
Family
ID=65041162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018565 WO2019021579A1 (ja) | 2017-07-27 | 2018-05-14 | 光学デバイス |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019021579A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030038755A1 (en) * | 2001-08-16 | 2003-02-27 | E Ink Corporation | Light modulation by frustration of total internal reflection |
JP2010510538A (ja) * | 2006-11-21 | 2010-04-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 電気泳動粒子システムに基づくスイッチング可能な格子 |
JP2013015613A (ja) * | 2011-07-01 | 2013-01-24 | Sony Corp | レンズモジュールおよび表示装置 |
WO2016185692A1 (ja) * | 2015-05-21 | 2016-11-24 | パナソニックIpマネジメント株式会社 | 光学デバイス |
WO2018100957A1 (ja) * | 2016-12-01 | 2018-06-07 | パナソニックIpマネジメント株式会社 | 採光システム |
-
2018
- 2018-05-14 WO PCT/JP2018/018565 patent/WO2019021579A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030038755A1 (en) * | 2001-08-16 | 2003-02-27 | E Ink Corporation | Light modulation by frustration of total internal reflection |
JP2010510538A (ja) * | 2006-11-21 | 2010-04-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 電気泳動粒子システムに基づくスイッチング可能な格子 |
JP2013015613A (ja) * | 2011-07-01 | 2013-01-24 | Sony Corp | レンズモジュールおよび表示装置 |
WO2016185692A1 (ja) * | 2015-05-21 | 2016-11-24 | パナソニックIpマネジメント株式会社 | 光学デバイス |
WO2018100957A1 (ja) * | 2016-12-01 | 2018-06-07 | パナソニックIpマネジメント株式会社 | 採光システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6473957B2 (ja) | 光制御デバイス | |
WO2019021578A1 (ja) | 光学デバイス | |
WO2018150673A1 (ja) | 光学デバイス | |
JP2020003643A (ja) | 光学デバイス | |
JP2020052178A (ja) | 光学デバイス | |
WO2019187753A1 (ja) | 光学デバイス | |
JP2019191220A (ja) | 光学デバイス | |
WO2019225245A1 (ja) | 採光制御システム、駆動装置、及び、駆動方法 | |
WO2019021579A1 (ja) | 光学デバイス | |
WO2019021580A1 (ja) | 光学デバイス | |
JP2019204064A (ja) | 光学デバイス | |
JP2019191407A (ja) | 配光制御デバイス | |
JP2020160098A (ja) | 光学デバイス | |
JP2020160097A (ja) | 光学デバイス | |
JP2020160099A (ja) | 光学デバイス | |
JP2020160095A (ja) | 光学デバイス | |
JP2020016860A (ja) | 配光制御デバイス及びその製造方法 | |
WO2019130913A1 (ja) | 配光制御デバイス | |
JP2019144432A (ja) | 光学デバイス | |
JP6402959B2 (ja) | 光学デバイス | |
WO2019163474A1 (ja) | 配光制御デバイス | |
WO2019188191A1 (ja) | 配光制御デバイス | |
JP2019144417A (ja) | 光学デバイス | |
JP6681588B2 (ja) | 光学デバイス及び光学デバイスの製造方法 | |
WO2018150675A1 (ja) | 光学デバイス及び光学システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18839220 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18839220 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |