WO2019019569A1 - 用于镀膜的喷头、设备和相应方法 - Google Patents

用于镀膜的喷头、设备和相应方法 Download PDF

Info

Publication number
WO2019019569A1
WO2019019569A1 PCT/CN2018/072962 CN2018072962W WO2019019569A1 WO 2019019569 A1 WO2019019569 A1 WO 2019019569A1 CN 2018072962 W CN2018072962 W CN 2018072962W WO 2019019569 A1 WO2019019569 A1 WO 2019019569A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactant
reaction
spout
air curtain
coating
Prior art date
Application number
PCT/CN2018/072962
Other languages
English (en)
French (fr)
Inventor
张嵩
孙韬
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/306,308 priority Critical patent/US11401606B2/en
Publication of WO2019019569A1 publication Critical patent/WO2019019569A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/10Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in the form of a fine jet, e.g. for use in wind-screen washers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present disclosure relates to the field of thin film packaging, and more particularly to a showerhead, apparatus and corresponding method for coating.
  • TFE thin film encapsulation
  • a showerhead for coating includes: a first reactant spout for injecting a first reactant; a second reactant spout for injecting a second reactant; and a first air curtain spout for injecting a shielding gas to cause the injected shielding gas An air curtain is formed that isolates the first reactant from the second reactant.
  • the showerhead further includes a second air curtain spout for injecting a shielding gas, together with the shielding gas injected by the first air curtain spout, forming an air curtain for defining a reaction zone of the first reactant.
  • the showerhead further includes: a first exhaust port for draining excess first reactants and/or reaction by-products; and a second exhaust port for draining excess second reactants and/or Reaction by-product.
  • the showerhead further includes a reaction medium spout for injecting a reaction medium that catalyzes the reaction of the first reactant and the second reactant.
  • the reaction medium is a plasma.
  • the spray head has a plurality of sets of spouts in series, each set of spouts including at least a first reactant spout, a second reactant spout, a first air curtain spout, and a second air curtain spout.
  • the first air curtain spout is disposed between the first reactant spout and the second reactant spout; and the second air curtain spout is disposed at the first reactant spout Between a group of spouts.
  • each set of spouts further includes a first exhaust port and a second exhaust port as previously described, in which case the first air curtain spout is disposed at "the first reactant Between the spout and the first exhaust port" and “the second reactant spout and the second exhaust port”; and the second air curtain spout is disposed at "the first reactant spout and Between the first exhaust port and the previous set of nozzles.
  • the injection pressure of the first air curtain nozzle and/or the second air curtain nozzle is greater than the injection pressure of the first reactant nozzle and/or the second reactant nozzle.
  • an apparatus for coating includes: one or more spray heads according to the present disclosure; and a transport mechanism for transporting a coated object to be coated such that the coated object sequentially passes through a first reaction zone of the first reactant of each showerhead and A second reaction zone of the second reactant.
  • the transport mechanism transports the coated object in a linear reciprocating manner.
  • a method for coating includes: spraying a shielding gas and forming an air curtain to define a first reaction region; and ejecting a first reactant to the coating object passing through the first reaction region in the first reaction region to be coated Forming a first reactant layer on a designated area of the object; and ejecting a second reactant to the coated object on which the first reactant layer is formed outside the first reaction area, such that the first reactant layer Reacting with the second reactant and forming a desired film layer on the coated object.
  • the coated object passes through the first reaction zone in a linear reciprocating motion.
  • the method further comprises: discharging the excess first reactant in the first reaction zone after forming the first reactant layer; and discharging the first reaction zone after forming the desired film layer Excess second reactants and/or reaction by-products.
  • the method further comprises spraying a reaction medium for reacting the first reactant and the second reactant prior to injecting the second reactant.
  • the reaction medium is a plasma.
  • FIG. 1 is a cross-sectional view showing an example apparatus for coating, in which a first reactant is being ejected, in accordance with an embodiment of the present disclosure.
  • FIG. 2 is another cross-sectional view showing an example apparatus for coating a film in which excess first reactant is being discharged, in accordance with an embodiment of the present disclosure.
  • FIG 3 is yet another cross-sectional view showing an example apparatus for coating, in which a second reactant and a reaction medium are being sprayed and a final film layer is formed, in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a plan view showing an example apparatus for coating a film according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view showing an example device of a coated film in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a plan view showing an example device of a coated film according to an embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view showing an example apparatus for coating a film in which a first reactant is being ejected, according to another embodiment of the present disclosure.
  • FIG. 8 is another cross-sectional view showing an example apparatus for coating, in which a second reactant is injected while spraying a first reactant, in accordance with another embodiment of the present disclosure.
  • FIG. 9 is a further cross-sectional view showing an example apparatus for coating a film, in which it is shown that an excess first reactant is being discharged, and an injection reaction is performed while injecting a second reactant, according to another embodiment of the present disclosure. medium.
  • FIG. 10 is still another cross-sectional view showing an example apparatus for coating, in which excess second reactants and/or reaction by-products are being discharged and a final film layer is formed, according to another embodiment of the present disclosure, At the same time, the first round of the first reactant injection is started.
  • FIG. 11 is a plan view showing an example apparatus for coating a film according to another embodiment of the present disclosure.
  • FIG. 12 is a plan view showing an example apparatus for coating a film according to still another embodiment of the present disclosure.
  • FIG. 13 is a plan view showing an example device of a coated film according to another embodiment of the present disclosure.
  • FIG. 14 is a flow chart showing an example method for coating a film in accordance with an embodiment of the present disclosure.
  • the terms “include” and “including” and their derivatives are meant to be inclusive and not limiting; the term “or” is inclusive, meaning and/or.
  • the orientation terms used such as “upper”, “lower”, “left”, “right”, etc., are used to indicate relative positional relationships to assist those skilled in the art in understanding the present disclosure. Embodiments, and thus those skilled in the art should understand that “upper” / “lower” in one direction may become “lower” / “upper” in the opposite direction, and may become other in the other direction. Positional relationships, such as “left” / "right”, etc.
  • the thin film package to which the present disclosure is applied to an OLED device will be described in detail as an example.
  • the field of application of the present disclosure is not limited thereto.
  • the showerhead, apparatus, and/or method in accordance with embodiments of the present disclosure may be applied to other fields where coating is desired.
  • ALD Atomic Layer Deposition
  • ALD is a thin film deposition method in which a surface of a substrate can be grown on a substrate by alternately exposing the surfaces of the substrate to two gas phase chemicals (for example, hereinafter referred to as a first reactant and a second reactant, respectively).
  • a first reactant and a second reactant respectively.
  • a very thin uniform film Compared to chemical vapor deposition (CVD), the two reactants do not appear in the reaction chamber at the same time, but alternately appear in the reaction chamber sequentially.
  • the reactant molecules react with the surface of the substrate in a self-limiting manner such that the reaction will not proceed once all of the sites available on the surface of the substrate have been reacted.
  • a uniform thickness of the precursor film or the final product film should be formed on the surface of the substrate.
  • excess reactants can be removed (e.g., withdrawn) through a vent (suction port). Then pass another reactant and proceed to the next stage.
  • a uniform multilayer film of a specified thickness can be formed on the surface of the substrate.
  • reaction formula (2) is as follows:
  • each layer having a very uniform thickness of about 1 angstrom (Angstrom).
  • the coating apparatus 1 may include one or more nozzles, and each nozzle may include: a first reactant (or precursor) nozzle 10, a second reactant (or reaction gas) nozzle 20, One or more exhaust ports 30, and a reaction medium spout 40.
  • reaction medium spout 40 is optional.
  • the reaction medium orifice 40 may be absent.
  • the first reactant or precursor may be, for example, TMA
  • the second reactant or reaction gas may be, for example, water or water vapor.
  • the reaction medium can be a plasma.
  • the present disclosure is not limited thereto, and indeed the embodiments of the present disclosure are also applicable to a scheme of preparing other thin films, such as Si x O y , Ti x O y , and the like.
  • the substrate 50 to be coated is sequentially passed from below the respective heads/outlets.
  • it can be conveyed by a linear reciprocating transfer of the transport mechanism, sequentially through the first reaction zone of the first reactant of each showerhead (as shown in the dotted region of FIG. 1) and the second reaction zone of the second reactant ( As shown in the dotted area of Figure 3).
  • the direction of conveyance is that the substrate 50 moves from left to right, however, the present disclosure is not limited thereto.
  • a plated region 60 and a non-coated region 65 are provided on the substrate 50.
  • the coated region 60 can be, for example, the area to be sealed of the OLED device described above, and the non-coated region 65 can be, for example, a bonding region of the substrate. Therefore, in order to avoid formation of, for example, an Al 2 O 3 film layer on the non-coated region 65, the non-coated region 65 may be covered with a mask 70.
  • the first reactant spout 10 ejects a first reactant, such as the aforementioned TMA, and forms a first reactant layer or precursor layer 75 on the coating region 60 and the mask 70.
  • a first reactant such as the aforementioned TMA
  • the first reactant layer 75 herein is not necessarily composed of the first reactant, but refers to the film layer formed by the physical/chemical reaction of the first reactant with the surface of the substrate 50, only For convenience, this is referred to as a first reactant layer 75.
  • the first reactant is not limited to TMA, but may include, but is not limited to, DIPAS (bisdiethylaminosilane), BEMAS (aminosilane), TMSA (trimethylsilylacetylene), TDMAS (Third A Aminosilane) and the like.
  • the first reactant e.g., aluminum hydroxide (Al(OH) 3 )
  • the carrier gas may be a shielding gas such as nitrogen, helium or argon or an inert gas.
  • FIG. 2 is another exemplary cross-sectional view showing an example apparatus 1 for coating a film according to an embodiment of the present disclosure, showing that excess first reactant is being discharged.
  • excess first reactants and/or possible by-products need to be discharged from the reaction chamber through the first exhaust port 30. To avoid affecting the next steps.
  • excess first reactants and/or reaction byproducts may be blown off by purging with a shielding gas (eg, an inert gas such as nitrogen, argon, etc.).
  • a shielding gas eg, an inert gas such as nitrogen, argon, etc.
  • excess first reactants and/or reaction by-products may also be withdrawn by vacuum extraction.
  • excess first reactants and/or possible by-products are discharged through the leftmost first exhaust port 30.
  • a plurality of exhaust ports 30 may be employed for exhausting.
  • two or more exhaust ports 30 on the left side may be used for exhaust.
  • FIG. 3 is a further exemplary cross-sectional view showing an example apparatus 1 for coating, in which a second reactant and a reaction medium are being sprayed and a final film layer 77 is formed, in accordance with an embodiment of the present disclosure.
  • the second reactant (or reaction gas) nozzle 20 and the reaction medium nozzle 40 may be separately sprayed.
  • the order in which the two are ejected in the present disclosure is not limited, and for example, it may be simultaneously ejected or sequentially ejected or the like.
  • the final desired film layer 77 is formed on the coated region 60, and no film layer is formed on the uncoated region 65 due to the masking of the mask 70. , for example, as shown in FIG. 6. Further, as shown in FIGS. 1-3, since the apparatus 1 can have a plurality of heads, the above process can be repeated for the plated region 60 on the substrate 50 to form a desired plurality of layers.
  • the excess second reactant and/or possible reaction by-product may be discharged through another vent (eg, the second left vent 30) in a manner similar to that described above for discharging the first reactant.
  • another vent eg, the second left vent 30
  • a very thin package film of uniform thickness can be formed on a coated object (for example, the plated region 60 of the substrate 50), thereby enabling, for example, an OLED device to be made thinner and softer while avoiding moisture and Air enters the interior of the OLED device.
  • an encapsulation film layer is also formed on the device inner wall 80 of the device 1 (for example, the first reactant layer 75 is formed in the early stage, The final film layer 77) is formed later.
  • the film layer thus formed cannot be self-cleaned, resulting in the need for periodic manual cleaning of the device 1, which seriously affects the equipment utilization rate.
  • a coating apparatus 2 according to another embodiment of the present disclosure has been proposed.
  • a coating apparatus 2 according to another embodiment of the present disclosure will be described in detail with reference to FIGS. 7 to 11.
  • FIG. 7 is a cross-sectional view showing an example apparatus 2 for coating, in which a first reactant is being ejected, according to another embodiment of the present disclosure.
  • the coating apparatus 2 may include one or more nozzles, each of which may include: a first reactant (or precursor) nozzle 10, a second reactant (or reaction gas) nozzle 20, one or more An exhaust port 30, a reaction medium spout 40, and one or more air curtain spouts 15.
  • the difference from the embodiment previously described in connection with Figures 1-4 is mainly due to the addition of one or more air curtain spouts 15 outside the first reactant spout 10 and the first exhaust port 30.
  • the air curtain spout 15 can be used to spray a shielding gas (for example, nitrogen, helium, argon, etc.) and form an air curtain to define the first reactant ejected from the first reactant spout 10 in the first reaction zone, such as Figure 7 shows. Thereby, the first reactant layer formed on the inner wall 80 of the device 2 can be avoided or at least reduced.
  • a shielding gas for example, nitrogen, helium, argon, etc.
  • the air curtain spout 15 is not necessarily the two spouts as shown in FIG. 7 or the spouts placed on both sides of the first reactant spout 10 as shown in FIG.
  • the number and/or the appropriate arrangement is arranged. As will be described in more detail later, the number of air curtain spouts 15 may also be one, three or more, and may have other configurations so that the first reactant may likewise be confined within the first reaction zone.
  • the substrate 50 as a coating object can be sequentially passed under the respective heads/outlets. For example, it may be passed through a linear reciprocating transport of the transport mechanism, sequentially and/or repeatedly through the first reaction zone of the first reactant of each showerhead and the second reaction zone of the second reactant. Similar to the embodiment shown in FIG. 1, the substrate 50 is also provided with a plated region 60 and a non-coated region 65. However, since the design of the air curtain nozzle 15 is employed, it is not necessary to provide the mask 70 on the non-coated region 65 of the substrate 50.
  • the transfer mechanism can be controlled such that when the non-coated region 65 is to pass through the first reaction zone, the substrate 50 can stop moving and wait for the first exhaust port 30 to discharge excess first reactants and/or reaction byproducts. After the light, the non-coated region 65 is passed through the first reaction zone. Thereby, the formation of the film layers 75 and/or 77 on the non-coated region 65 is avoided.
  • the first reactant spout 10 ejects a first reactant, such as the aforementioned TMA, and forms a first reactant layer or precursor layer 75 only on the coated region 60. Similarly, it is possible to pass the first reactant into the reaction chamber using an optional carrier gas.
  • a first reactant such as the aforementioned TMA
  • FIG. 8 is another cross-sectional view showing an example apparatus 2 for coating, in which a second reactant is injected while spraying a first reactant, in accordance with another embodiment of the present disclosure.
  • the second reactant e.g., water or water
  • the second reactant head 20 can be ejected by the second reactant head 20 while the first reactant head 10 is ejecting the first reactant due to the presence of the curtain. Vapor is on the substrate 50 on which the first reactant layer 75 is formed. In this way, the working cycle of the equipment can be saved, the waiting time is avoided, and the production efficiency is improved.
  • the second reactant is not limited to water or water vapor, but may include, but is not limited to, oxygen, N 2 O (nitrous oxide), and the like.
  • the second reactant ejected by the second reactant head 20 forms a temporary second reactant layer 76 on the first reactant layer 75.
  • the first reactant layer 75 can react directly with the second reactant without waiting for a subsequent or simultaneous injection of the reaction medium.
  • the second reactant layer 76 is not necessarily formed.
  • FIG. 9 is a further cross-sectional view showing an example apparatus 2 for coating a film according to another embodiment of the present disclosure, showing that excess first reactant is being discharged, and jetting while spraying the second reactant Reaction medium. Similar to the embodiment shown in FIG. 2, after the first reactant layer 75 is formed on all of the coated regions 60, excess first reactants and/or possible by-products need to be removed from the reaction chamber through the first exhaust port 30. (More specifically, the first reaction zone) is discharged to avoid formation of an undesired film layer on the non-coated region 65.
  • excess first reactants, reaction byproducts, and/or air curtain shielding gas, etc. may be purged by a purge of a shielding gas (eg, an inert gas such as nitrogen, argon, etc.). Further, excess first reactants, reaction by-products, and/or air curtain protective gas in the first reaction zone may be discharged by vacuum evacuation or the like. Similar to the embodiment shown in Fig. 2, a plurality of exhaust ports 30 may be employed for exhausting. For example, a plurality of exhaust ports may be provided between the two air curtain nozzles 15 or different exhaust port configurations may be provided.
  • a shielding gas eg, an inert gas such as nitrogen, argon, etc.
  • the reaction medium orifice 40 can eject a reaction medium to catalyze the reaction of the first reactant and the second reactant and form a final desired membrane layer 77 on the partially coated region 60. It is noted that due to the use of the air curtain design, there may be a portion of the coating area 60 that has not yet formed the film layer 77. At this point, the transfer structure continues to operate, and the coated region 60 is ultimately fed with the second reactant and/or reaction medium while maintaining the uncoated region 65 from entering the first reaction region where the first reactant has not been vented. In the second reaction zone, and finally the desired film layer 77 is formed on all of the coated regions 60 in the second reaction zone.
  • FIG. 10 is a further cross-sectional view showing an example apparatus 2 for coating, in which excess second reactants and/or reaction by-products are being discharged and a final film layer is formed, in accordance with another embodiment of the present disclosure. And at the same time start the first round of the first reactant injection.
  • the transfer mechanism can feed the substrate 50 into the spray range of the next nozzle to deposit the next desired film layer.
  • all the desired film layers can be formed.
  • the final coating effect formed on the glass substrate can be as shown in FIG.
  • the air curtain spout 15 is not specifically provided at the periphery of the second reactant spout 20 and the reaction medium spout 40.
  • the second reactant does not react with other substances than the first reactant. For example, even if the second reactant diffuses onto the inner wall 80 of the apparatus 2, since the second reactant reacts only with the first reactant, no undesired film layer is formed on the inner wall 80.
  • the present disclosure is not limited thereto.
  • the second reactant also reacts with the inner wall or at a location other than the coating zone 60, it may also be in the second reactant spout 20, the reaction medium spout 40, and/or the second row.
  • An air curtain 15 is provided at the periphery of the air port 30.
  • an air curtain spout 15 may be further disposed on the right side of the second exhaust port 30 such that the three air curtain spouts 15 form two defined reaction zones: a first reaction zone and a second reaction zone, respectively for the first The reactant reacts with the second reactant.
  • a limited area for example, a second reaction area
  • FIG. 11 is a plan view showing an example apparatus 2 for coating a film according to another embodiment of the present disclosure.
  • two air curtain spouts 15 sandwich the first reactant spout 10 and the first exhaust port 30 such that the first reactant injected by the first reactant spout 10 is mostly exhausted by the first exhaust.
  • the mouth 30 is discharged. It should be noted, however, that since the air curtain sprayed by the air curtain spout 15 does not completely enclose the first reaction zone of the first reactant, a small amount of the first reactant will still escape to the inner wall 80 of the apparatus 2, and eventually The second reactants together form a film layer 77.
  • FIG. 12 is a plan view showing an example apparatus 3 for coating a film according to still another embodiment of the present disclosure.
  • the air curtain spout 15 is formed as a single air curtain spout 15 and has a closed configuration surrounding the first reactant spout 10 and the first exhaust port 30. Since it completely confines the first reactant in the first reaction zone, no first reactant can escape to the inner wall 80 of the device 3, and thus the need for manual cleaning of the inner wall 80 of the device is completely avoided.
  • the spouts can have different shapes and/or configurations.
  • the nozzles on the spray head may be concentrically shaped, for example, from the inside to the outside, the first reactant nozzle, the first exhaust port, the first air curtain nozzle, the second reactant nozzle, the reaction medium nozzle, and the second row. a port, and/or a possible second air curtain spout.
  • the spout can be any regular or irregular shape such as a circle, a rectangle, a square, a trapezoid, a diamond, a triangle, and the like.
  • the air curtain spout may be parallel or substantially parallel to the other spouts and may be equal or substantially equal in length.
  • the pressure at which the air curtain spout 15 is injected is higher than the injection pressure of the first reactant or precursor spout 10, and the injection pressure of the first reactant or precursor spout 10 is higher than the device.
  • the pressure inside the chamber is not limited thereto.
  • FIG. 14 is a flow chart showing an example method 1400 for coating a film in accordance with an embodiment of the present disclosure. The method in Figure 14 begins in step S1410.
  • a shielding gas may be sprayed and an air curtain may be formed to define a first reaction zone.
  • the first reactant may be sprayed to the coated object passing through the first reaction zone in the first reaction zone to form a first reactant layer on a designated area of the coated object.
  • a second reactant may be sprayed outside the first reaction zone to the coated object on which the first reactant layer is formed, such that the first reactant layer reacts with the second reactant and forms on the coated object.
  • Membrane layer may be sprayed outside the first reaction zone to the coated object on which the first reactant layer is formed, such that the first reactant layer reacts with the second reactant and forms on the coated object.
  • the coated object can pass through the first reaction zone in a linear reciprocating motion.
  • the method 1400 can further include: discharging the excess first reactant in the first reaction zone after forming the first reactant layer; and exiting the first reaction zone after forming the desired film layer Excess second reactants and / or reaction by-products.
  • the method 1400 can also include spraying a reaction medium for the first reactant and the second reactant to react prior to injecting the second reactant.
  • the reaction medium can be a plasma.
  • the coating nozzle By using the coating nozzle, the apparatus and the corresponding method according to the embodiments of the present disclosure, it is possible to prevent the formation of a coating on unnecessary positions in the apparatus (for example, the inner wall of the apparatus or the non-coated area of the substrate) while plating the coated object. Reduced the time for cleaning equipment and increased equipment utilization rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemically Coating (AREA)
  • Nozzles (AREA)

Abstract

用于镀膜的喷头、设备(1)和相应方法(1400),该喷头包括:第一反应物喷口(10),用于喷射第一反应物;第二反应物喷口(20),用于喷射第二反应物;以及第一气帘喷口(15),用于喷射保护气,使得所喷射的保护气形成将所述第一反应物和所述第二反应物隔离的气帘。该设备(1)包括:一个或多个前述喷头;以及传送机构,用于传送待镀膜的镀膜对象,使得所述镀膜对象顺序通过每个喷头的第一反应物的第一反应区域和第二反应物的第二反应区域;通过使用本申请的镀膜喷头、设备和相应方法,可以在对镀膜对象进行镀膜的同时,避免在设备内不必要的位置上形成镀膜,减少了清洗设备的时间,提升了设备稼动率。

Description

用于镀膜的喷头、设备和相应方法
相关申请的交叉引用
本申请要求于2017年7月28日提交的、申请号为201710637283.4的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本公开涉及薄膜封装领域,更具体地涉及用于镀膜的喷头、设备和相应方法。
背景技术
有机电致发光器件(Organic Light Emitting Diode或简称为OLED)因其对水汽和氧气的敏感性,易受水氧侵蚀而使寿命下降。封装是提升其寿命的关键技术。近几年在柔性OLED器件的制备工艺中,多采用薄膜封装(Thin Film Encapsulation或简称为TFE)的方法。TFE是由多层薄膜堆叠成的组合,其功能主要包含两种,阻水层和平坦层。
随着柔性OLED器件的可弯曲形态目前从弯曲、卷曲到折叠发展,其曲率半径越来越小。因此,需要开发满足更小曲率半径的技术。
发明内容
根据本公开的第一方面,提供了一种用于镀膜的喷头。该喷头包括:第一反应物喷口,用于喷射第一反应物;第二反应物喷口,用于喷射第二反应物;以及第一气帘喷口,用于喷射保护气,使得所喷射的保护气形成将所述第一反应物和所述第二反应物隔离的气帘。
在一些实施例中,喷头还包括:第二气帘喷口,用于喷射保护气,与所述第一气帘喷口所喷射的保护气一起形成用于限定所述第一反应物的反应区域的气帘。在一些实施例中,喷头还包括:第一排气口,用于排出多余的第一反应物和/或反应副产品;以及第二排气口,用于排出多余的第二反应物和/或反应副产品。在一些实施例中,喷头还包括:反应介质喷口,用于喷射催化所述第一反应物和所述第二反应物发生反应的反应介质。在一些实施例中,所述反应介质为等离子。 在一些实施例中,所述喷头具有串联的多组喷口,每组喷口至少包括第一反应物喷口、第二反应物喷口、第一气帘喷口和第二气帘喷口。在一些实施例中,所述第一气帘喷口设置在所述第一反应物喷口与所述第二反应物喷口之间;以及所述第二气帘喷口设置在所述第一反应物喷口与前一组喷口之间。在一些实施例中,每组喷口中还包括如前所述的第一排气口和第二排气口,在这一情况下,所述第一气帘喷口设置在“所述第一反应物喷口和所述第一排气口”与“所述第二反应物喷口和所述第二排气口”之间;以及所述第二气帘喷口设置在“所述第一反应物喷口和所述第一排气口”与前一组喷口之间。在一些实施例中,所述第一气帘喷口和/或所述第二气帘喷头的喷射压力大于所述第一反应物喷口和/或所述第二反应物喷口的喷射压力。
根据本公开的另一方面,提供了一种用于镀膜的设备。该设备包括:一个或多个根据本公开所述的喷头;以及传送机构,用于传送待镀膜的镀膜对象,使得所述镀膜对象顺序通过每个喷头的第一反应物的第一反应区域和第二反应物的第二反应区域。
在一些实施例中,所述传送机构以直线往复运动方式来传送所述镀膜对象。
根据本公开的另一方面,提供了一种用于镀膜的方法。该方法包括:喷射保护气并形成气帘,以限定第一反应区域;在所述第一反应区域中向通过所述第一反应区域的所述镀膜对象喷射第一反应物,以在所述镀膜对象的指定区域上形成第一反应物层;以及在所述第一反应区域之外向形成有所述第一反应物层的所述镀膜对象喷射第二反应物,使得所述第一反应物层与所述第二反应物发生反应并在所述镀膜对象上形成所需膜层。
在一些实施例中,所述镀膜对象以直线往复运动方式通过所述第一反应区域。在一些实施例中,方法还包括:在形成第一反应物层之后,排出所述第一反应区域中多余的第一反应物;以及在形成所需膜层之后,排出所述第一反应区域之外的多余的第二反应物和/或反应副产品。在一些实施例中,方法还包括:在喷射第二反应物之前,喷射供所述第一反应物和所述第二反应物发生反应的反应介质。在一些实施例中,所述反应介质为等离子。
附图说明
通过下面结合附图说明本公开的优选实施例,将使本公开的上述及其它目 的、特征和优点更加清楚,其中:
图1是示出了根据本公开实施例的用于镀膜的示例设备的剖面图,其中示出了正在喷射第一反应物。
图2是示出了根据本公开实施例的用于镀膜的示例设备的另一剖面图,其中示出了正在排出多余的第一反应物。
图3是示出了根据本公开实施例的用于镀膜的示例设备的又一剖面图,其中示出了正在喷射第二反应物和反应介质并形成了最终膜层。
图4是示出了根据本公开实施例的用于镀膜的示例设备的平面图。
图5是示出了根据本公开实施例的经镀膜的示例器件的剖面图。
图6是示出了根据本公开实施例的经镀膜的示例器件的平面图。
图7是示出了根据本公开另一实施例的用于镀膜的示例设备的剖面图,其中示出了正在喷射第一反应物。
图8是示出了根据本公开另一实施例的用于镀膜的示例设备的另一剖面图,其中示出了在喷射第一反应物的同时喷射第二反应物。
图9是示出了根据本公开另一实施例的用于镀膜的示例设备的又一剖面图,其中示出了正在排出多余的第一反应物,且在喷射第二反应物的同时喷射反应介质。
图10是示出了根据本公开另一实施例的用于镀膜的示例设备的再一剖面图,其中示出了正在排出多余的第二反应物和/或反应副产品并形成了最终膜层,且同时开始下一轮的第一反应物喷射。
图11是示出了根据本公开另一实施例的用于镀膜的示例设备的平面图。
图12是示出了根据本公开又一实施例的用于镀膜的示例设备的平面图。
图13是示出了根据本公开另一实施例的经镀膜的示例器件的平面图。
图14是示出了根据本公开实施例的用于镀膜的示例方法的流程图。
具体实施方式
下面参照附图对本公开的部分实施例进行详细说明,在描述过程中省略了对于本公开来说是不必要的细节和功能,以防止对本公开的理解造成混淆。在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等 同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不脱离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同的附图标记用于相同或相似的功能、器件和/或操作。此外,在附图中,各部分并不一定按比例来绘制。换言之,附图中的各部分的相对大小、长度等并不一定与实际比例相对应。
在本公开中,术语“包括”和“含有”及其派生词意为包括而非限制;术语“或”是包含性的,意为和/或。此外,在本公开的以下描述中,所使用的方位术语,例如“上”、“下”、“左”、“右”等均用于指示相对位置关系,以辅助本领域技术人员理解本公开实施例,且因此本领域技术人员应当理解:在一个方向上的“上”/“下”,在相反方向上可变为“下”/“上”,且在另一方向上,可能变为其他位置关系,例如“左”/“右”等。
以下,以本公开应用于OLED器件的薄膜封装为例来详细说明。然而本领域技术人员应当理解本公开的应用领域不限于此。事实上,根据本公开实施例的喷头、设备和/或方法可以应用于其它需要镀膜的领域。
如前所述,在生产柔性OLED器件时,由于OLED器件中的有机发光层在遇到水或氧时会受损,因此需要对其进行薄膜封装。作为新兴的薄膜封装技术,原子层沉积(Atomic Layer Deposition,或简称为ALD)技术可精准地控制封装膜层的厚度,并具有良好的阶梯覆盖(Step Coverage)特性和膜厚均匀性,膜厚只有几十纳米,被认为是很有潜力的封装技术。
首先,将大致介绍下ALD技术的原理。ALD是一种薄膜沉积方法,其中,通过将衬底的表面交替暴露于两种气相化学物质(例如,下文中分别称为第一反应物和第二反应物),可以在衬底上生长出一层极薄的均匀薄膜。与化学气相沉积(CVD)相比,这两种反应物不会同时出现在反应室内,而是会交替地顺序出现在反应室内。在每种反应物的反应阶段中,该反应物分子会以自限方式与衬底表面发生反应,使得一旦衬底表面上所有可供反应的位置都发生过反应之后,反应将不再进行。换言之,在反应结束后,在衬底表面上应该形成的是一层均匀厚度的前驱体薄膜或最终产物薄膜。在每个反应物的反应阶段末期,可以通过排气口(抽气口)将多余的反应物排除(例如,抽出)。然后通入另一种反应物,从 而进入下一阶段。通过重复该过程,可以在衬底表面上形成指定厚度的均匀的多层薄膜。
接下来以用ALD技术来形成氧化铝(AL 2O 3)薄膜为例,来详细说明ALD技术的流程。由于在空气中存在水蒸气,因此衬底上会形成有羟基(hydroxyl group),该羟基与衬底中的硅原子键合形成Si-O-H (s)。然后将衬底放入反应室内,并通入第一反应物或前驱体TMA(Trimethyl Aluminum,即三甲基铝)气体。此时,TMA与衬底上所形成的羟基反应,并生成甲烷(CH 4)作为反应副产品,反应式(1)如下:
Al(CH 3) 3(g)+:Si-O-H (s)→:Si-O-Al(CH 3) 2(s)+CH 4       (1)
此时,由于TMA并不与自身反应,使得在衬底表面上形成了一层极度均匀的:Si-O-Al(CH 3) 2(s)薄膜之后,反应就停止了。接下来,将多余的TMA与反应副产品甲烷排出。然后,在反应室中没有TMA和甲烷的情况下,可以向反应室通入第二反应物(或反应气)水或水蒸气(H 2O)。此外,还可以可选地通入反应介质(例如,等离子)来催化反应进行。备选地,也可以不通过等离子来催化,而是通过加热来催化反应进行。此时,反应式(2)如下:
2H 2O (g)+:Si-O-Al(CH 3) 2(s)→:Si-O-Al(OH) 2(s)+2CH 4  (2)
此时,与前一阶段一样,排出反应副产品甲烷和多余的水蒸气。然后可以顺序重复前述TMA阶段和H 2O阶段,反应式如下:
Al(CH 3) 3(g)+:Al-O-H (s)→:Al-O-Al(CH 3) 2(s)+CH 4      (3)
2H 2O (g)+:Al-O-Al(CH 3) 2(s)→:Al-O-Al(OH) 2(s)+2CH 4    (4)
最终,可得到多层Al 2O 3薄膜,每层的厚度非常均匀,约为1埃(Angstrom)。
接下来,将结合图1~4来更详细地说明根据本公开一些实施例的ALD镀膜方案。
图1是示出了根据本公开实施例的用于镀膜的示例设备1的剖面图,其中示出了正在喷射第一反应物。如图1以及图4所示,镀膜设备1可以包括一个或多个喷头,每个喷头可以包括:第一反应物(或前驱体)喷口10、第二反应物(或反应气)喷口20、一个或多个排气口30、以及反应介质喷口40。
请注意:反应介质喷口40是可选的。例如在使用加热而不是等离子来促进反应进行的情况下,可以没有反应介质喷口40。
在上述形成三氧化二铝薄膜的示例中,第一反应物或前驱体可以是例如 TMA,而第二反应物或反应气可以是例如水或水蒸气。此外,反应介质可以是等离子。然而,本公开不限于此,事实上本公开实施例同样也适用于制备其它薄膜的方案,例如Si xO y、Ti xO y等。
此外,如图1所示,作为镀膜对象的基板50从各个喷头/喷口下方依次通过。例如,其可以通过传送机构的直线往复式传送,顺序通过每个喷头的第一反应物的第一反应区域(如图1的点状区域所示)和第二反应物的第二反应区域(如图3的点状区域所示)。在图1所示实施例中,传送的方向为衬底50从左向右运动,然而本公开不限于此。
此外,如图1和图5所示,基板50上设置有镀膜区域60和非镀膜区域65。在一些实施例中,镀膜区域60可以是例如上述OLED器件的待密封区域,而非镀膜区域65可以是例如基板的邦定(bonding)区。因此,为了避免在非镀膜区域65上形成例如Al 2O 3膜层,可以使用掩模70盖住非镀膜区域65。
在图1所示实施例中,正处于第一反应物或前驱体喷射阶段。在该阶段中,第一反应物喷口10向外喷射出第一反应物,例如前述TMA,并在镀膜区域60和掩模70上形成第一反应物层或前驱体层75。请注意:这里的第一反应物层75并不一定是由第一反应物构成的,而指的是由第一反应物与衬底50表面进行物理/化学反应之后所形成的膜层,仅出于方便起见,将其称为第一反应物层75。此外,第一反应物也不限于TMA,而是可以包括(但不限于):DIPAS(双二乙基氨基硅烷)、BEMAS(氨基硅烷)、TMSA(三甲基硅基乙炔)、TDMAS(三甲胺基硅烷)等。
此外,在喷射第一反应物(例如,氢氧化铝(Al(OH) 3))时,其可以利用可选的载气来通入反应室。在本实施例中,载气可以是例如氮气、氦气、氩气等保护气或惰性气体。
图2是示出了根据本公开实施例的用于镀膜的示例设备1的另一示例剖面图,其中示出了正在排出多余的第一反应物。如前所述,在图1中喷射第一反应物并形成第一反应物层75之后,需要通过第一排气口30将多余的第一反应物和/或可能的副产品从反应室中排出,以避免影响后续步骤。
例如,在一些实施例中,可以通过保护气(例如,氮气、氩气等惰性气体)吹扫,将多余的第一反应物和/或反应副产品吹出。在另一些实施例中,也可以通过真空抽取,将多余的第一反应物和/或反应副产品抽出。此外,在图2所示 实施例中,通过最左侧的第一排气口30排出了多余的第一反应物和/或可能的副产品。然而本公开不限于此,事实上也可以采用多个排气口30来进行排气。例如,可以将左侧两个或者两个以上排气口30都用于排气。
图3是示出了根据本公开实施例的用于镀膜的示例设备1的又一示例剖面图,其中示出了正在喷射第二反应物和反应介质并形成了最终膜层77。如图3所示,当如前所述将反应室中的第一反应物和/或其他副产品排光之后,可以通过第二反应物(或反应气)喷口20和反应介质喷口40分别喷射第二反应物(或反应气)和反应介质(例如,等离子)。在本公开中这二者喷射的顺序并不作限制,例如可以同时喷射或者先后喷射等。
如上面结合三氧化二铝薄膜示例所描述的,此时在镀膜区域60上形成了最终所需的膜层77,而由于掩模70的遮挡,在非镀膜区域65上并没有形成任何膜层,例如如图6所示。此外,如图1~3所示,由于设备1可具有多个喷头,且因此可以对基板50上的镀膜区域60重复上述过程,以形成所需的多个膜层。
最后,可以通过另一排气口(例如,左数第二个排气口30)以与上述排出第一反应物相类似的方式排出多余的第二反应物和/或可能的反应副产品,以为下一轮镀膜或者最终产品做好准备。
通过这种工艺流程,可以在镀膜对象(例如,衬底50的镀膜区域60)上形成厚度均匀的非常薄的封装薄膜,从而使得例如OLED器件能够做得更薄、更柔软,同时避免水汽和空气进入OLED器件内部。
然而,需要注意的是,如图1~3所示,特别地如图4所示,在设备1的设备内壁80上同样形成了封装膜层(例如,前期形成了第一反应物层75,后期形成了最终膜层77)。这样形成的膜层无法进行自清洗,从而导致需要对设备1进行周期性手动清洗,严重影响了设备稼动率。
为此,提出了根据本公开另一实施例的镀膜设备2。以下,将结合图7~图11来详细描述根据本公开另一实施例的镀膜设备2。
图7是示出了根据本公开另一实施例的用于镀膜的示例设备2的剖面图,其中示出了正在喷射第一反应物。如图7所示,镀膜设备2可以包括一个或多个喷头,每个喷头可以包括:第一反应物(或前驱体)喷口10、第二反应物(或反应气)喷口20、一个或多个排气口30、反应介质喷口40、以及一个或多个气帘喷口15。与前面结合图1~4描述的实施例的不同之处主要在于:在第一反应物 喷口10和第一排气口30外侧增加了一个或多个气帘喷口15。
气帘喷口15可以用于喷射保护气(例如,氮气、氦气、氩气等),并形成气帘,将第一反应物喷口10所喷出的第一反应物限定在第一反应区域内,如图7所示。从而,可以避免或至少减少在设备2的内壁80上形成的第一反应物层。然而,需要注意的是,气帘喷口15并不一定是如图7所示的两个喷口或者如图7所示的置于第一反应物喷口10的两侧的喷口,而是可以用任何恰当的数量和/或恰当的布置方式来布置。如后面将要详细描述的,气帘喷口15的数量也可以是一个、三个或以上,且可能具有其他构造,从而同样可以将第一反应物限定在第一反应区域内。
与图1所示实施例类似,作为镀膜对象的基板50可以从各个喷头/喷口下方依次通过。例如,其可以通过传送机构的直线往复式传送,顺序和/或反复通过每个喷头的第一反应物的第一反应区域和第二反应物的第二反应区域。与图1所示实施例类似,基板50上同样设置有镀膜区域60和非镀膜区域65。然而,由于采用了气帘喷口15的设计,因此无需在衬底50的非镀膜区域65上设置掩模70。例如,可以通过控制传送机构,使得当非镀膜区域65要通过第一反应区域时,衬底50可以停止运动,并等待第一排气口30将多余的第一反应物和/或反应副产品排光之后,再让非镀膜区域65通过第一反应区域。从而,避免了非镀膜区域65上形成膜层75和/或77。
在图7所示实施例中,与图1相类似,同样正处于第一反应物或前驱体喷射阶段。在该阶段中,第一反应物喷口10向外喷射出第一反应物,例如前述TMA,并仅在镀膜区域60上形成第一反应物层或前驱体层75。类似地,其可以利用可选的载气将第一反应物通入反应室。
图8是示出了根据本公开另一实施例的用于镀膜的示例设备2的另一剖面图,其中示出了在喷射第一反应物的同时喷射第二反应物。与图1所示实施例不同的是,由于气帘的存在,可以在第一反应物喷头10喷射第一反应物的同时,由第二反应物喷头20喷射第二反应物(例如,水或水蒸气)在形成有第一反应物层75的衬底50上。这样,可以节约设备的工作周期,避免等待排气时间,提高了生产效率。此外,第二反应物也不限于水或水蒸气,而是可以包括(但不限于):氧气、N 2O(一氧化二氮)等。
在图8所示实施例中,第二反应物喷头20喷射出的第二反应物在第一反应 物层75上形成了临时的第二反应物层76。然而,这不是必须的。事实上,第一反应物层75可以与第二反应物直接反应,而无需等待后续或同时喷射的反应介质。换言之,在另一些实施例中,不一定形成有第二反应物层76。
图9是示出了根据本公开另一实施例的用于镀膜的示例设备2的又一剖面图,其中示出了正在排出多余的第一反应物,且在喷射第二反应物的同时喷射反应介质。与图2所示实施例类似地,在全部镀膜区域60上形成了第一反应物层75之后,需要通过第一排气口30将多余的第一反应物和/或可能的副产品从反应室(或更具体地,第一反应区域)中排出,以避免在非镀膜区域65上形成不需要的膜层。例如,在一些实施例中,可以通过保护气(例如,氮气、氩气等惰性气体)吹扫,将多余的第一反应物、反应副产品、和/或气帘保护气等排出。此外,也可以通过真空抽气等将第一反应区域中的多余第一反应物、反应副产品、和/或气帘保护气等排出。与图2所示实施例类似地,也可以采用多个排气口30来进行排气。例如,可以在两个气帘喷口15之间设置多个排气口或设置不同的排气口构造。
与此同时或以其他恰当先后顺序,反应介质喷口40可以喷射反应介质,以催化第一反应物和第二反应物发生反应,并在部分镀膜区域60上形成最终所需的膜层77。注意到:由于采用了气帘设计,此时可能还有部分镀膜区域60尚未形成膜层77。此时,传送结构继续工作,在保持非镀膜区域65不进入尚未排光第一反应物的第一反应区域的情况下,将镀膜区域60最终都送入具有第二反应物和/或反应介质的第二反应区域中,并使得最终在第二反应区域中在全部镀膜区域60上形成所需膜层77。
图10是示出了根据本公开另一实施例的用于镀膜的示例设备2的再一剖面图,其中示出了正在排出多余的第二反应物和/或反应副产品并形成了最终膜层,且同时开始下一轮的第一反应物喷射。如图10所示,当在全部镀膜区域60上形成了所需膜层77之后,传送机构可以将衬底50送入下一个喷头的喷射范围中,以沉积下一个所需膜层。最终,可以形成全部所需的膜层。例如,在玻璃衬底上形成的最终镀膜效果可以如图13所示。
需要注意的是:在图7~10所示实施例中,在第二反应物喷口20和反应介质喷口40外围并未专门设置气帘喷口15。这样做的原因是由于在本实施例中,第二反应物不与除了第一反应物之外的其他物质发生反应。例如,即便第二反应 物扩散到设备2的内壁80上,然而由于第二反应物仅与第一反应物发生反应,因此并不会在内壁80上形成任何不想要的膜层。然而,本公开不限于此。在例如第二反应物同样也与内壁或除镀膜区域60之外的其他位置处的物质发生反应的情况下,也可以在第二反应物喷口20、反应介质喷口40、和/或第二排气口30的外围设置气帘15。例如,可以在第二排气口30的右侧再设置一个气帘喷口15,从而使得三个气帘喷口15形成两个限定的反应区域:第一反应区域和第二反应区域,分别用于第一反应物和第二反应物反应。
此外,在例如多个喷头为一体化设置的情况下,由于下一个喷头的左侧气帘和前一个喷头的右侧气帘之间同样形成了限定区域(例如,第二反应区域),因此也可以实现同样的效果。
图11是示出了根据本公开另一实施例的用于镀膜的示例设备2的平面图。如图11所示,两个气帘喷口15将第一反应物喷口10和第一排气口30夹在中间,使得第一反应物喷口10所喷射的第一反应物大部分被第一排气口30所排出。然而需要注意的是,由于气帘喷口15所喷射的气帘并未完全封闭第一反应物的第一反应区域,因此依然会有少量第一反应物逸散至设备2的内壁80上,并最终与第二反应物一起形成膜层77。
为此,提出了根据本公开又一实施例的镀膜设备3。以下,将结合图12来详细描述根据本公开另一实施例的镀膜设备3。
图12是示出了根据本公开又一实施例的用于镀膜的示例设备3的平面图。如图12所示,气帘喷口15被形成为单一一个气帘喷口15,并具有环绕第一反应物喷口10和第一排气口30的封闭构造。由于其将第一反应物完全限定在第一反应区域中,没有第一反应物可以逸散到设备3的内壁80上,且因此完全避免了对设备内壁80手动清洗的需要。
然而需要注意的是:尽管在上文中结合各附图所说明的喷口均为矩形喷口,然而这仅仅是为了描绘和说明的方便。事实上,喷口完全可以具有不同的形状和/或构造。例如,喷头上的各个喷口可以是同心圆形的,例如从内到外为第一反应物喷口、第一排气口、第一气帘喷口、第二反应物喷口、反应介质喷口、第二排气口、和/或可能的第二气帘喷口。又例如,喷口可以是圆形、矩形、正方形、梯形、菱形、三角形等任何规则或不规则的形状。此外,在一些实施例中,气帘喷口可以与其他各喷口平行或大体平行,且长度相等或大体相等。
此外,在本公开的一些实施例中,气帘喷口15所喷射的压力要高于第一反应物或前驱体喷口10的喷射压力,而第一反应物或前驱体喷口10的喷射压力高于设备腔体内的压力。然而,本公开不限于此。
图14是示出了根据本公开实施例的用于镀膜的示例方法1400的流程图。图14中的方法开始于步骤S1410。
在步骤S1410中,可以喷射保护气并形成气帘,以限定第一反应区域。
在步骤S1420中,可以在第一反应区域中向通过第一反应区域的镀膜对象喷射第一反应物,以在镀膜对象的指定区域上形成第一反应物层。
在步骤S1430中,可以在第一反应区域之外向形成有第一反应物层的镀膜对象喷射第二反应物,使得第一反应物层与第二反应物发生反应并在镀膜对象上形成所需膜层。
在一些实施例中,镀膜对象可以以直线往复运动方式通过第一反应区域。在一些实施例中,方法1400还可以包括:在形成第一反应物层之后,排出第一反应区域中多余的第一反应物;以及在形成所需膜层之后,排出第一反应区域之外的多余的第二反应物和/或反应副产品。在一些实施例中,方法1400还可以包括:在喷射第二反应物之前,喷射供第一反应物和第二反应物发生反应的反应介质。在一些实施例中,反应介质可以为等离子。
通过使用根据本公开实施例的镀膜喷头、设备和相应方法,可以在对镀膜对象进行镀膜的同时,避免在设备内不必要的位置(例如,设备内壁或基板的非镀膜区)上形成镀膜,减少了清洗设备的时间,提升了设备稼动率。
至此已经结合优选实施例对本公开进行了描述。应该理解,本领域技术人员在不脱离本公开的精神和范围的情况下,可以进行各种其它的改变、替换和添加。因此,本公开的范围不局限于上述特定实施例,而应由所附权利要求所限定。

Claims (15)

  1. 一种用于镀膜的喷头,包括:
    第一反应物喷口,用于喷射第一反应物;
    第二反应物喷口,用于喷射第二反应物;以及
    第一气帘喷口,用于喷射保护气,使得所喷射的保护气形成将所述第一反应物和所述第二反应物隔离的气帘。
  2. 根据权利要求1所述的喷头,还包括:
    第二气帘喷口,用于喷射保护气,与所述第一气帘喷口所喷射的保护气一起形成用于限定所述第一反应物的反应区域的气帘。
  3. 根据权利要求1或2所述的喷头,还包括:
    第一排气口,用于排出多余的第一反应物和反应副产品中的至少一个;以及
    第二排气口,用于排出多余的第二反应物和反应副产品中的至少一个。
  4. 根据权利要求1或2所述的喷头,还包括:
    反应介质喷口,用于喷射催化所述第一反应物和所述第二反应物发生反应的反应介质。
  5. 根据权利要求4所述的喷头,其中,所述反应介质为等离子。
  6. 根据权利要求2所述的喷头,其中,所述喷头具有串联的多组喷口,每组喷口至少包括第一反应物喷口、第二反应物喷口、第一气帘喷口和第二气帘喷口。
  7. 根据权利要求6所述的喷头,其中,
    所述第一气帘喷口设置在所述第一反应物喷口与所述第二反应物喷口之间;以及
    所述第二气帘喷口设置在所述第一反应物喷口与前一组喷口之间。
  8. 根据权利要求2所述的喷头,其中,所述第一气帘喷口和所述第二气帘喷头中的至少一个的喷射压力大于所述第一反应物喷口和所述第二反应物喷口中的至少一个的喷射压力。
  9. 一种用于镀膜的设备,包括:
    一个或多个根据权利要求1~8中任一项所述的喷头;以及
    传送机构,用于传送待镀膜的镀膜对象,使得所述镀膜对象顺序通过每个喷头的第一反应物的第一反应区域和第二反应物的第二反应区域。
  10. 根据权利要求9所述的设备,其中,所述传送机构以直线往复运动方式来传送所述镀膜对象。
  11. 一种用于镀膜的方法,包括:
    喷射保护气并形成气帘,以限定第一反应区域;
    在所述第一反应区域中向通过所述第一反应区域的镀膜对象喷射第一反应物,以在所述镀膜对象的指定区域上形成第一反应物层;以及
    在所述第一反应区域之外向形成有所述第一反应物层的所述镀膜对象喷射第二反应物,使得所述第一反应物层与所述第二反应物发生反应并在所述镀膜对象上形成所需膜层。
  12. 根据权利要求11所述的方法,其中,所述镀膜对象以直线往复运动方式通过所述第一反应区域。
  13. 根据权利要求11所述的方法,还包括:
    在形成第一反应物层之后,排出所述第一反应区域中多余的第一反应物和反应副产品中的至少一个;以及
    在形成所需膜层之后,排出所述第一反应区域之外的多余的第二反应物和反应副产品中的至少一个。
  14. 根据权利要求11所述的方法,还包括:
    在喷射第二反应物之前,喷射供所述第一反应物和所述第二反应物发生反应的反应介质。
  15. 根据权利要求14所述的方法,其中,所述反应介质为等离子。
PCT/CN2018/072962 2017-07-28 2018-01-17 用于镀膜的喷头、设备和相应方法 WO2019019569A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/306,308 US11401606B2 (en) 2017-07-28 2018-01-17 Coating nozzle, coating device and corresponding coating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710637283.4A CN107419239A (zh) 2017-07-28 2017-07-28 用于镀膜的喷头、设备和相应方法
CN201710637283.4 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019019569A1 true WO2019019569A1 (zh) 2019-01-31

Family

ID=60431648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072962 WO2019019569A1 (zh) 2017-07-28 2018-01-17 用于镀膜的喷头、设备和相应方法

Country Status (3)

Country Link
US (1) US11401606B2 (zh)
CN (1) CN107419239A (zh)
WO (1) WO2019019569A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107419239A (zh) * 2017-07-28 2017-12-01 京东方科技集团股份有限公司 用于镀膜的喷头、设备和相应方法
CN110042364B (zh) * 2019-03-15 2021-04-06 纳晶科技股份有限公司 一种沉积装置以及沉积方法
CN115190820A (zh) * 2019-12-18 2022-10-14 K·P·穆塞尔曼 用于薄膜沉积的设备和方法
CN115527903B (zh) * 2022-11-24 2023-11-03 西安奕斯伟材料科技股份有限公司 一种用于背封硅片的设备和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167569A1 (en) * 2000-06-24 2002-01-02 IPS Limited Apparatus and method for depositing thin film on wafer using atomic layer deposition
CN103614705A (zh) * 2013-11-19 2014-03-05 华中科技大学 一种用于大型非平整表面沉积的装置及方法
CN103988286A (zh) * 2011-12-23 2014-08-13 应用材料公司 自给自足式加热元件
CN106032573A (zh) * 2015-03-08 2016-10-19 理想晶延半导体设备(上海)有限公司 半导体处理设备
CN106048561A (zh) * 2016-08-17 2016-10-26 武汉华星光电技术有限公司 一种原子层沉积装置及方法
CN107419239A (zh) * 2017-07-28 2017-12-01 京东方科技集团股份有限公司 用于镀膜的喷头、设备和相应方法
US20170365447A1 (en) * 2016-06-20 2017-12-21 Jehara Corporation Plasma generator apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932871B2 (en) * 2002-04-16 2005-08-23 Applied Materials, Inc. Multi-station deposition apparatus and method
CN1827230A (zh) * 2006-04-13 2006-09-06 沈阳慧宇真空技术有限公司 制备聚光太阳电池叠层结构金属有机源喷雾器
US11136667B2 (en) * 2007-01-08 2021-10-05 Eastman Kodak Company Deposition system and method using a delivery head separated from a substrate by gas pressure
US8017183B2 (en) * 2007-09-26 2011-09-13 Eastman Kodak Company Organosiloxane materials for selective area deposition of inorganic materials
WO2010127328A2 (en) 2009-05-01 2010-11-04 Kateeva, Inc. Method and apparatus for organic vapor printing
EP2441860A1 (en) 2010-10-13 2012-04-18 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition on a surface
US9109754B2 (en) * 2011-10-19 2015-08-18 Applied Materials, Inc. Apparatus and method for providing uniform flow of gas
KR101435100B1 (ko) 2012-06-20 2014-08-29 주식회사 엠티에스나노테크 원자층 증착 장치
TWI624560B (zh) 2013-02-18 2018-05-21 應用材料股份有限公司 用於原子層沉積的氣體分配板及原子層沉積系統
CN104264128B (zh) * 2014-09-11 2017-06-16 中国电子科技集团公司第四十八研究所 一种用于mocvd反应器的格栅式气体分布装置
KR20160144307A (ko) * 2015-06-08 2016-12-16 울트라테크 인크. 국소 처리가스 분위기를 이용한 마이크로챔버 레이저 처리 시스템 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167569A1 (en) * 2000-06-24 2002-01-02 IPS Limited Apparatus and method for depositing thin film on wafer using atomic layer deposition
CN103988286A (zh) * 2011-12-23 2014-08-13 应用材料公司 自给自足式加热元件
CN103614705A (zh) * 2013-11-19 2014-03-05 华中科技大学 一种用于大型非平整表面沉积的装置及方法
CN106032573A (zh) * 2015-03-08 2016-10-19 理想晶延半导体设备(上海)有限公司 半导体处理设备
US20170365447A1 (en) * 2016-06-20 2017-12-21 Jehara Corporation Plasma generator apparatus
CN106048561A (zh) * 2016-08-17 2016-10-26 武汉华星光电技术有限公司 一种原子层沉积装置及方法
CN107419239A (zh) * 2017-07-28 2017-12-01 京东方科技集团股份有限公司 用于镀膜的喷头、设备和相应方法

Also Published As

Publication number Publication date
US20200181773A1 (en) 2020-06-11
CN107419239A (zh) 2017-12-01
US11401606B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2019019569A1 (zh) 用于镀膜的喷头、设备和相应方法
JP5674794B2 (ja) 曲面上に薄膜を形成するための蒸着反応器
CN1712560B (zh) 使用垂直cvd装置的cvd方法
KR101324367B1 (ko) 성막 장치, 성막 방법 및 컴퓨터 판독 가능 기억 매체
US20130337171A1 (en) N2 purged o-ring for chamber in chamber ald system
KR101669127B1 (ko) 성막 장치 및 인젝터
KR102595355B1 (ko) 증착 장치 및 그것을 이용한 증착 방법
TW201301350A (zh) 噴嘴套組、包含該噴嘴套組之原子層沉積裝置以及使用其之有機發光裝置之密封方法
KR100819639B1 (ko) 기판 처리 장치 및 반도체 디바이스의 제조 방법
JP2013515865A5 (zh)
JP2004165668A (ja) ハフニウム化合物を利用した薄膜蒸着方法
US11158838B2 (en) Flexible organic-inorganic passivation layer and method of fabricating the same
KR20070098104A (ko) 가스커튼을 구비한 박막증착장치
US10513776B2 (en) Method for coating a substrate
KR101862309B1 (ko) 박막 증착장치 및 복합막 증착방법
KR102164707B1 (ko) 원자층 증착 방법 및 원자층 증착 장치
TW202413700A (zh) 成膜裝置及成膜方法
KR101777689B1 (ko) 복합막 증착장치 및 증착방법
KR102334075B1 (ko) 이중 대기압 저온 플라즈마 장치 및 이를 이용한 oled 소자 개질 봉지막 제조방법
KR101390963B1 (ko) 화학기상 증착용 공정 시스템
US11961716B2 (en) Atomic layer deposition method
KR20190086236A (ko) 원자층 증착장치
KR101530445B1 (ko) 금속 산화막 형성 장치
KR101575434B1 (ko) 금속 산화막 형성 장치
KR20160061129A (ko) 적층막 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18838062

Country of ref document: EP

Kind code of ref document: A1