WO2019018999A1 - 二氟磷酸锂的制备方法 - Google Patents

二氟磷酸锂的制备方法 Download PDF

Info

Publication number
WO2019018999A1
WO2019018999A1 PCT/CN2017/094237 CN2017094237W WO2019018999A1 WO 2019018999 A1 WO2019018999 A1 WO 2019018999A1 CN 2017094237 W CN2017094237 W CN 2017094237W WO 2019018999 A1 WO2019018999 A1 WO 2019018999A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
difluorophosphate
solvent
dichlorophosphate
potassium
Prior art date
Application number
PCT/CN2017/094237
Other languages
English (en)
French (fr)
Inventor
杨志勇
Original Assignee
江苏长园华盛新能源材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏长园华盛新能源材料有限公司 filed Critical 江苏长园华盛新能源材料有限公司
Priority to PCT/CN2017/094237 priority Critical patent/WO2019018999A1/zh
Publication of WO2019018999A1 publication Critical patent/WO2019018999A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen

Definitions

  • the invention relates to a preparation method of lithium difluorophosphate, in particular to a preparation method of lithium difluorophosphate for a lithium ion battery.
  • Lithium-ion batteries have the advantages of high energy density, high output voltage, long cycle life, no memory effect, and low environmental pollution. They are the most attractive and promising secondary batteries, as well as hybrid and pure electric vehicles. Preferred.
  • Lithium difluorophosphate as a conductive salt has attracted extensive attention as a substitute for lithium hexafluorophosphate in a lithium ion secondary battery.
  • the lithium difluorophosphate is more stable than lithium hexafluorophosphate.
  • Current research indicates that the addition of lithium difluorophosphate to a lithium ion battery can improve battery performance such as low temperature characteristics, cycle characteristics, and storage characteristics of the battery.
  • Japanese Patent Laid-Open Publication No. 2005-219994 discloses the preparation of lithium difluorophosphate by reacting a lithium hexafluorophosphate electrolyte with silica at 50 °C. However, it takes an extremely long time until the end of the reaction, and when the reaction temperature exceeds 60 ° C, lithium hexafluorophosphate starts to decompose, resulting in deterioration of the electrolytic solution.
  • lithium difluorophosphate by reacting lithium hexafluorophosphate with water (for example, J, Fluorine Chem. 126 (2005), 27), it is impossible to produce hydrofluoric acid, difluorophosphoric acid, and monofluorophosphoric acid which are difficult to remove. Obtained pure lithium difluorophosphate for lithium ion batteries. Further, lithium difluorophosphate separated from the solution is unstable in difluorophosphate, and accelerates decomposition due to the coexistence of the above-mentioned acids, so that lithium difluorophosphate is never actually separated.
  • Patent WO2012004187A2 discloses a method for preparing lithium difluorophosphate, which comprises: subjecting LiHPO 4 and HF to a gas-solid reaction at 140 ° C to form a mixture of lithium difluorophosphate and lithium monofluorophosphate and lithium fluoride, wherein The mixture is difficult to separate.
  • Patent WO2012004188A1 discloses a method for preparing lithium difluorophosphate, the method comprising: reacting P 2 O 5 with LiF at 300 ° C to form a mixture of lithium difluorophosphate and lithium phosphate, wherein The mixture needs to be ground after a long time of extraction to separate a small amount of lithium difluorophosphate.
  • Patent WO2012016924A1 discloses a method for preparing lithium difluorophosphate, the method comprising: generating a gas-solid reaction of PF 5 or POF 3 and Li 3 PO 4 at 200 ° C and 100 ° C, respectively, to form lithium difluorophosphate and A mixture of lithium hexafluorophosphate and lithium fluoride, in which raw materials PF 5 and POF 3 are difficult to obtain, are difficult to implement, and the product is difficult to separate.
  • Cide CN 103259040B discloses a method for preparing lithium difluorophosphate, the method comprising: reacting lithium dichlorophosphate with an organotin fluoride RnSnF 4n to form lithium difluorophosphate, wherein lithium dichlorophosphate passes through trichloroox Phosphorus is prepared separately from LiOH, Li 3 PO 4 , P 2 O 5 and LiCl.
  • the problem is that lithium dichlorophosphate contains impurities which are difficult to separate and lithium by-product, such as lithium monochlorophosphate, which leads to lithium difluorophosphate obtained by the reaction. It contains harmful impurities such as residual chlorine and heavy metal tin, which has an irreversible negative impact on the electrochemical performance of the battery.
  • organotins have a greater toxic effect on the human body and the environment, and have been severely restricted by the European Union.
  • the technical object of the present invention is to provide a preparation method of lithium difluorophosphate which is simple in preparation process, high in product purity, low in manufacturing cost, and easy to be industrially produced.
  • embodiments of the present invention provide a method of preparing lithium difluorophosphate, the method comprising:
  • Si-O-Si-containing compound is represented by the following formula (1):
  • R 1 to R 6 are an alkyl group having 1 to 3 carbon atoms
  • X 1 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • X 2 is an alkyl group having 1 to 3 carbon atoms
  • An integer between n 0 and 10;
  • the reaction temperature of the step (1) is 10 to 50 ° C, and the reaction time is 3 to 24 hours;
  • Step (2) is carried out by dropwise adding the trialkylsilyl dichlorophosphate to the solvent and potassium fluoride system, and incubating the reaction at 30 to 80 ° C for 3 to 10 hours; and/or
  • the metathesis reaction in the step (3) is carried out by blocking at 10 to 50 ° C for 1 to 10 hours.
  • the step (1) further comprises: performing distillation to form a purified trialkylsilyl dichlorophosphate
  • the step (2) further comprises: solid-liquid separation and evaporation of the solvent and the fluorosilane from the filtrate to form potassium difluorophosphate; and/or
  • the step (3) further includes: solid-liquid separation and evaporation of the solvent to form lithium difluorophosphate.
  • the catalyst is selected from the group consisting of concentrated sulfuric acid, trifluoromethanesulfonic acid or a mixture thereof;
  • the molar ratio of the phosphorus oxychloride to the compound containing Si-O-Si is 1:1 to 5:1;
  • the amount of the catalyst added in the step (1) is from 0.5% by mass to 5% by mass based on the total mass of the reactant.
  • the molar ratio of the trialkylsilyl dichlorophosphate to potassium fluoride is 1:3 to 1:6;
  • the solvent is an organic aprotic polar solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile, diethyl ether, acetone, tetrahydrofuran, ethyl acetate, and dimethylene. Sulfone, dimethylformamide, nitromethane, and a mixture of two or more thereof.
  • the organic solvent is selected from the group consisting of carbonates, nitriles, ethers, alcohols, acetone, and tetrahydrofuran having a boiling point of less than 150 ° C at normal pressure. Or a variety.
  • the organic lithium salt in the metathesis reaction is selected from one of lithium perchlorate, lithium tetrafluoroborate, lithium bis(oxalate) borate, lithium difluorooxalate borate or A variety.
  • the method for preparing lithium difluorophosphate according to the invention has the advantages of simple process, high product purity, low manufacturing cost and easy industrialization. Other features and aspects will become apparent from the following detailed description and claims.
  • Figure 1 is an ion spectrum showing the difluorophosphate anion of the present invention.
  • the meaning of “having”, “having”, “including”, “including”, “including”, and the like is used in the open end thereof, and generally means “including, but not limited to”. It will be understood that “consisting essentially of”, “consisting of”, etc. are classified as “comprising” or the like.
  • the method of “comprising” steps (1) to (3) may be a method of "composed” of “composed” or “substantially” by steps (1) to (3). .
  • the step (1) comprises: reacting phosphorus oxychloride with a compound containing Si-O-Si in the presence of a catalyst to form a trialkylsilyl dichlorophosphate, wherein
  • the Si-O-Si-containing compound is represented by the following general formula (1):
  • reaction formula of the phosphorus oxychloride and the Si-O-Si containing compound of the present invention can be exemplified as follows:
  • the trialkylsilyl dichlorophosphate formed in the step (1) can be further processed. purification.
  • the purification method is not particularly limited, and an efficient purification method well known to those skilled in the art can be used.
  • the trialkylsilyl dichlorophosphate formed in step (1) may be further subjected to simple distillation to form a purified trialkylsilyl dichlorophosphate.
  • the catalyst in the step (1) is selected from the group consisting of concentrated sulfuric acid, trifluoromethanesulfonic acid or a mixture thereof.
  • the catalyst in step (1) is concentrated sulfuric acid.
  • the amount of the catalyst added in the step (1) is 0.1% by mass to 10% by mass, 0.2% by mass to 8% by mass, 0.5% by mass to 5% by mass or based on the total mass of the reactants. 1% by mass to 3% by mass.
  • the amount of the catalyst added in the step (1) is from 0.5% by mass to 5% by mass based on the total mass of the reactants.
  • the reaction temperature of the step (1) is 5 to 100 ° C, 10 to 80 ° C, 20 to 70 ° C or 30 to 60 ° C; preferably, the reaction temperature of the step (1) is 10 to 50 ° C.
  • the reaction time of the step (1) is not particularly limited, and in view of the reaction conversion rate and economy, the reaction time is usually from 1 to 48 hours, from 2 to 36 hours, from 4 to 24 hours, or from 8 to 16 hours. Preferably, the reaction time of step (1) is from 3 to 24 hours.
  • the molar ratio of the phosphorus oxychloride to the compound containing Si-O-Si in the step (1) is 1:1 to 5:1, 1:1 to 4:1, 1:1 to 3 :1 or 1:1 ⁇ 2:1.
  • the molar ratio of the phosphorus oxychloride to the compound containing Si-O-Si is 1:1 to 3:1.
  • the step (2) comprises reacting the trialkylsilyl dichlorophosphate with potassium fluoride in the presence of a solvent to form potassium difluorophosphate.
  • reaction formulas of the trialkylsilyl dichlorophosphate and potassium fluoride of the present invention can be exemplified as follows:
  • the filtrate may contain a portion of fluorosilane.
  • the fluorosilane does not participate in any reaction.
  • the fluorosilane having 1 to 6 carbon atoms formed in the present invention has a lower boiling point, such as the boiling point of trimethylfluorosilane. At 16 ° C, they can be distilled together with the solvent.
  • the step (2) is carried out by dropwise adding the trialkylsilyl dichlorophosphate to the solvent and potassium fluoride system, and keeping it warm.
  • the reaction temperature of the step (2) is 30 to 80 ° C, 40 to 80 ° C, 50 to 80 ° C, 40 to 70 ° C or 50 to 70 ° C; or, the reaction temperature of the step (2) is 30 to 80 ° C.
  • the reaction time of the step (2) is not particularly limited, and the reaction time is usually from 1 to 24 hours, from 2 to 20 hours, from 4 to 16 hours, or from 6 to 12 hours in consideration of the reaction conversion ratio and economy.
  • the reaction time of the step (2) is 3 to 10 hours.
  • the step (2) may further include: solid-liquid separation and evaporation of the solvent and the fluorosilane from the filtrate to form potassium difluorophosphate.
  • the solvent in the step (2) may be an organic aprotic polar solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile, diethyl ether, acetone, tetrahydrofuran, ethyl acetate. , dimethyl sulfoxide, dimethylformamide, nitromethane, and a mixture of two or more thereof.
  • the amount of the solvent to be added is not particularly limited as long as the reaction can be carried out efficiently.
  • the step (3) comprises: performing a metathesis reaction of the potassium difluorophosphate and the organic lithium salt under an organic solvent to form lithium difluorophosphate.
  • the organic lithium salt in the metathesis reaction may be selected from one or more of lithium perchlorate, lithium tetrafluoroborate, lithium bis(oxalate) borate, and lithium difluorooxalate borate.
  • reaction formulas of the potassium difluorophosphate and lithium tetrafluoroborate of the present invention can be exemplified as follows:
  • reaction formula of the potassium difluorophosphate and lithium bis(oxalate) borate of the present invention can be exemplified as follows:
  • reaction formula of the potassium difluorophosphate and lithium difluorooxalate borate of the present invention can be exemplified as follows:
  • the metathesis reaction in the step (3) is carried out by closed stirring.
  • the reaction temperature of the step (3) is 5 to 100 ° C, 10 to 80 ° C, 20 to 70 ° C or 30 to 60 ° C; preferably, the reaction temperature of the step (3) is 10 to 50 ° C.
  • the reaction time of the step (3) is not particularly limited, and the reaction time is usually 0.5 to 24 hours, 1 to 16 hours, 2 to 12 hours, 4 to 10 hours or in consideration of the reaction conversion rate and economy. 6-8 hours.
  • the reaction time of the step (3) is from 1 to 10 hours.
  • the step (3) further comprises: solid-liquid separation and evaporation of the solvent to form lithium difluorophosphate.
  • the organic solvent in the step (3) is one or more selected from the group consisting of carbonates, nitriles, ethers, alcohols, acetone, and tetrahydrofuran having a boiling point of less than 150 ° C at normal pressure.
  • the filtrate of 2 was added to 47 g (0.5 mol) of lithium tetrafluoroborate under a nitrogen atmosphere, and the mixture was stirred and reacted at 10 ° C for 1 hour, and filtered.
  • the filter cake is potassium tetrafluoroborate and the filtrate is a mixture of lithium difluorophosphate and a solvent.
  • the filtrate was evaporated to dryness and dried under reduced pressure to give a dry solid lithium di
  • the filter cake is potassium tetrafluoroborate and the filtrate is a mixture of lithium difluorophosphate and a solvent.
  • the filtrate was evaporated to dryness, and then dried under reduced pressure to yield 46 g of dry solid lithium difluorophosphate.
  • the filter cake is potassium bis(oxalate)borate, and the filtrate is a mixture of lithium difluorophosphate and a solvent. Steam the filtrate The solvent was dried under reduced pressure to give dry solid lithium difluorophosphate (23 g), yield: 85.2%.
  • the filter cake is potassium perchlorate and the filtrate is a mixture of lithium difluorophosphate and a solvent.
  • the filtrate was evaporated to dryness, and dried under reduced pressure to give a dry solid lithium difluorophosphate (45 g).
  • the filter cake is potassium difluorooxalate borate, and the filtrate is a mixture of lithium difluorophosphate and a solvent.
  • the filtrate was evaporated to dryness, and then dried under reduced pressure to give dry solid lithium difluorophosphate (yield: 43 g).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

提供一种制备二氟磷酸锂的方法。该方法包括:(1)使三氯氧磷与含有Si-O-Si的化合物在催化剂存在下反应,形成三烷基硅基二氯磷酸酯,其中,含有Si-O-Si的化合物由以下通式(1)表示:式中,R 1~R 6是含有1~3个碳原子的烷基;X 1为氢或含有1~3个碳原子的烷基;X 2为含有1~3个碳原子的烷基;n=0~10之间的整数;(2)使三烷基硅基二氯磷酸酯与氟化钾在溶剂存在下反应,形成二氟磷酸钾;和(3)在有机溶剂下,使二氟磷酸钾和有机锂盐进行复分解反应,形成二氟磷酸锂(1)。

Description

二氟磷酸锂的制备方法 技术领域
本发明涉及一种二氟磷酸锂的制备方法,具体涉及一种用于锂离子电池的二氟磷酸锂的制备方法。
技术背景
锂离子电池具有能量密度高、输出电压高、循环寿命长、无记忆效应、环境污染小等优点,是最具有吸引力和发展潜力的二次电池,同时也是混合动力汽车和纯电动汽车电源的首选。
二氟磷酸锂作为一种导电盐在锂离子二次电池中作为六氟磷酸锂的替代物已引起了广泛的关注。相比六氟磷酸锂,所述二氟磷酸锂更具有稳定性。目前的研究表明,在锂离子电池中添加二氟磷酸锂,可以提高电池的低温特性、循环特性和保存特性等电池性能。
日本专利特开2005-219994号公开了通过使六氟磷酸锂电解液与二氧化硅在50℃下反应来制备二氟磷酸锂。然而,直至反应结束需要极长时间,并且当反应温度超过60℃时,六氟磷酸锂开始分解,导致电解液劣化。
在通过使六氟磷酸锂与水反应制备二氟磷酸锂的方法中(如,J,Fluorine Chem.126(2005),27),由于产生了难以除去的氢氟酸、二氟磷酸和单氟磷酸,无法获得纯净的二氟磷酸锂,用于锂离子电池。此外,从该溶液中分离出的二氟磷酸锂在二氟磷酸盐中不稳定,并由于上述酸的共存而加速分解,以致于从未真正分离出二氟磷酸锂。
专利WO2012004187A2公开了一种制备二氟磷酸锂的方法,该方法包括:使LiHPO4与HF在140℃下发生气-固反应,生成二氟磷酸锂和单氟磷酸锂及氟化锂混合物,其中,该混合物难以分离。专利WO2012004188A1公开了一种制备二氟磷酸锂的方法,该方法包括:使P2O5与LiF在300℃下发生固-固反应,生成二氟磷酸锂和磷酸锂的混合物,其中,所述混合物需要磨碎后经过长时间的萃取,才能分离出少量的二氟磷酸锂。专利 WO2012016924A1公开了一种制备二氟磷酸锂的方法,所述方法包括:使PF5或POF3与Li3PO4分别在200℃和100℃下发生气-固反应,生成二氟磷酸锂和六氟磷酸锂以及氟化锂混合物,其中,由于原料PF5和POF3难以获得,不易实施,且产物难以分离。
中国专利CN 103259040B公开了一种制备二氟磷酸锂的方法,所述方法包括:采用二氯磷酸锂与有机锡氟化物RnSnF4n反应生成二氟磷酸锂,其中,二氯磷酸锂通过三氯氧磷分别与LiOH、Li3PO4、P2O5和LiCl制得,存在的问题是二氯磷酸锂中含有难以分离的杂质及副产物一氯磷酸锂等,导致反应得到的二氟磷酸锂中含有残留的氯和重金属锡等有害杂质,对电池电化性能产生不可逆的负面影响。同时,有机锡类对人体及环境具有较大的毒害作用,已被欧盟施以严格限制。
在目前锂离子电池应用领域中,现有技术人员发现现有技术仍急需一种新颖的用于锂离子电池的二氟磷酸锂的制备方法,该方法工艺简单、产品纯度高、制造成本低、且易于工业化。
发明内容
本发明的技术目的是提供了一种制备工艺简单、产品纯度高、制造成本低、易于工业化生成的二氟磷酸锂制备方法。
为此,本发明的实施方式提供一种制备二氟磷酸锂的方法,所述方法包括:
(1)使三氯氧磷与含有Si-O-Si的化合物在催化剂存在下反应,形成三烷基硅基二氯磷酸酯,
其中,所述含有Si-O-Si的化合物由以下通式(1)表示:
Figure PCTCN2017094237-appb-000001
式中,R1~R6是含有1~3个碳原子的烷基;X1为氢或含有1~3个碳原 子的烷基;X2为含有1~3个碳原子的烷基;n=0~10之间的整数;
(2)使所述三烷基硅基二氯磷酸酯与氟化钾在溶剂存在下反应,形成二氟磷酸钾;和
(3)在有机溶剂下,使所述二氟磷酸钾和有机锂盐进行复分解反应,形成二氟磷酸锂。
在本发明一个实施方式中,步骤(1)的反应温度为10~50℃,反应时间为3~24小时;
步骤(2)通过向所述溶剂和氟化钾的体系中滴加所述三烷基硅基二氯磷酸酯,并于30~80℃下保温反应3~10小时来进行;和/或
步骤(3)所述复分解反应在10~50℃下、通过密闭搅拌进行1~10小时。
在本发明一个实施方式中,步骤(1)还包括:进行蒸馏,形成纯化的三烷基硅基二氯磷酸酯;
步骤(2)还包括:固液分离以及滤液蒸去溶剂和氟硅烷,以形成二氟磷酸钾;和/或
步骤(3)还包括:固液分离以及蒸去溶剂,以形成二氟磷酸锂。
在本发明一个实施方式中,步骤(1)中,所述催化剂选自浓硫酸、三氟甲磺酸或它们的混合物;
步骤(1)中,所述三氯氧磷和含有Si-O-Si的化合物的摩尔比为1:1~5:1;和/或
以反应物的总质量为基准,步骤(1)中所述催化剂的加入量为0.5质量%~5质量%。
在本发明一个实施方式中,步骤(2)中,所述三烷基硅基二氯磷酸酯和氟化钾的摩尔比例1:3~1:6;和/或
步骤(2)中,所述溶剂是有机非质子极性溶剂,选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙腈、乙醚、丙酮、四氢呋喃、乙酸乙酯、二甲基亚砜、二甲基甲酰胺、硝基甲烷以及它们两种以上的混合物。
在本发明一个实施方式中,步骤(3)中,所述有机溶剂选自在常压下沸点低于150℃的碳酸酯类、腈类、醚类、醇类、丙酮、四氢呋喃中的一种或多种。
在本发明一个实施方式中,步骤(3)中,所述复分解反应中的有机锂盐选自高氯酸锂、四氟硼酸锂、双草酸硼酸锂、二氟草酸硼酸锂中的一种或多种。
本发明所述制备二氟磷酸锂的方法工艺简单、产品纯度高、制造成本低、易于工业化。通过下面的详细描述以及权利要求,其他特征和方面会变得清楚。
附图说明
通过结合附图对于本发明的示例性实施例进行描述,可以更好地理解本发明,在附图中:
图1是本发明显示二氟磷酸根阴离子的离子谱图。
图2是本发明一个示例实施方式中二氟磷酸锂的红外谱图。
具体实施方式
除非另作定义,权利要求书和说明书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。
术语“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的步骤或者物件涵盖出现在“包括”或者“包含”后面列举的步骤或者物件及其等同步骤,并不排除其他步骤或者物件。
如在本说明书和所附权利要求中所使用,术语“或”通常用在包括“和/或”的意义中,除非该内容以其它方式明确指出。术语“和/或”意思是一个或所有的所列元素,或者任何两种或更多个所列元素的组合。
如本文所使用,“有”、“具有”、“包括”、“正包括”、“包含”、“正包含”等用在其开口端的意义,并且通常意思是“包括,但不限于”。 将理解的是:“基本上由...组成”、“由......组成”等被归入在“包含”等中。例如,“包括”步骤(1)~(3)的方法可能是“由”步骤(1)~(3)“组成”或“基本上由”步骤(1)~(3)“组成”的方法。
词语“优选的”和“优选地”指的是在某些情况下可能提供某些优势的实施例。然而,在相同或其它情况下,其它实施例也可能是优选的。此外,一个或多个优选的实施例的叙述并不暗示其它实施例没有用,并且不旨在从包括权利要求的公开的范围中排除其它实施例。
在本发明制备二氟磷酸锂的方法中,步骤(1)包括:使三氯氧磷与含有Si-O-Si的化合物在催化剂存在下反应,形成三烷基硅基二氯磷酸酯,其中,所述含有Si-O-Si的化合物由以下通式(1)表示:
Figure PCTCN2017094237-appb-000002
式中,R1~R6是含有1~3个碳原子的烷基,优选1~2个碳原子的烷基;X1为氢或含有1~3个碳原子的烷基,优选含有1~2个碳原子的烷基;X2为含有1~3个碳原子的烷基,优选含有1~2个碳原子的烷基;n=0~10之间的整数,更优选0~5之间的整数。
为便于理解,本发明所述三氯氧磷和含有Si-O-Si化合物反应式可以示例如下:
Figure PCTCN2017094237-appb-000003
式中,R1~R6是含有1~3个碳原子的烷基,优选1~2个碳原子的烷基;X1为氢或含有1~3个碳原子的烷基,优选含有1~2个碳原子的烷基;X2为含有1~3个碳原子的烷基,优选含有1~2个碳原子的烷基;n=0~10之间的整数,更优选0~5之间的整数。
在本发明中,步骤(1)中形成的三烷基硅基二氯磷酸酯可以进一步进行 纯化。所述纯化方式没有什么特别的限制,可以使用本领域普通技术人员熟知的有效纯化方式。在一个示例实施方式中,步骤(1)中形成的三烷基硅基二氯磷酸酯可以进一步经过简单蒸馏,形成纯化的三烷基硅基二氯磷酸酯。
在本发明中,步骤(1)中所述催化剂选自浓硫酸、三氟甲磺酸或它们的混合物。优选地,步骤(1)中所述催化剂是浓硫酸。
在本发明中,以反应物的总质量为基准,步骤(1)中所述催化剂的加入量为0.1质量%~10质量%、0.2质量%~8质量%、0.5质量%~5质量%或1质量%~3质量%。优选地,以反应物的总质量为基准,步骤(1)中所述催化剂的加入量为0.5质量%~5质量%。
在本发明中,步骤(1)的反应温度为5~100℃、10-80℃、20-70℃或30-60℃;优选地,步骤(1)的反应温度为10~50℃。步骤(1)的反应时间没有特别的限制,在考虑反应转化率和经济性的情况下,所述反应时间通常为1-48小时、2-36小时、4-24小时或8-16小时。优选地,步骤(1)的反应时间3~24小时。
在本发明中,步骤(1)中所述三氯氧磷和含有Si-O-Si的化合物的摩尔比为1:1~5:1、1:1~4:1、1:1~3:1或1:1~2:1。优选地,所述三氯氧磷和含有Si-O-Si的化合物的摩尔比为1:1~3:1。
在本发明制备二氟磷酸锂的方法中,步骤(2)包括:使所述三烷基硅基二氯磷酸酯与氟化钾在溶剂存在下反应,形成二氟磷酸钾。
为便于理解,本发明所述三烷基硅基二氯磷酸酯和氟化钾反应式可以示例如下:
Figure PCTCN2017094237-appb-000004
在本发明制备二氟磷酸钾的过程中,所述滤液会含有部分的氟硅烷。在复分解反应体系中,所述氟硅烷不会参与任何反应。此外,在本发明中所形成的具有1-6个碳原子的氟硅烷的沸点较低,如三甲基氟硅烷沸点仅 为16℃,它们可以和溶剂一起蒸去。
在本发明中,步骤(2)通过向所述溶剂和氟化钾的体系中滴加所述三烷基硅基二氯磷酸酯,并保温来进行。
在本发明中,步骤(2)的反应温度为30~80℃、40-80℃、50-80℃、40-70℃或50-70℃;或者,步骤(2)的反应温度为30~80℃。步骤(2)的反应时间没有特别的限制,在考虑反应转化率和经济性的情况下,所述反应时间通常为1-24小时、2-20小时、4-16小时或6-12小时。优选地,步骤(2)的反应时间3~10小时。
在本发明中,步骤(2)还可以包括:固液分离以及滤液蒸去溶剂和氟硅烷,以形成二氟磷酸钾。
在本发明中,步骤(2)中所述三烷基硅基二氯磷酸酯和氟化钾的摩尔比例为1:1~1:10、1:2~1:8、1:3~1:6或1:4~1:5。优选地,步骤(2)中所述三烷基硅基二氯磷酸酯和氟化钾的摩尔比例为1:3~1:6。
在本发明中,步骤(2)中所述溶剂可以是有机非质子极性溶剂,选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙腈、乙醚、丙酮、四氢呋喃、乙酸乙酯、二甲基亚砜、二甲基甲酰胺、硝基甲烷以及它们两种以上的混合物。在本发明中,所述溶剂的加入量没有特别限定,只要使反应能够有效进行即可。
在本发明制备二氟磷酸锂的方法中,步骤(3)包括:在有机溶剂下,所述二氟磷酸钾和有机锂盐进行复分解反应,形成二氟磷酸锂。在本发明中,所述复分解反应中的有机锂盐可以选自高氯酸锂、四氟硼酸锂、双草酸硼酸锂、二氟草酸硼酸锂中的一种或多种。
为便于理解,本发明所述二氟磷酸钾和四氟硼酸锂的反应式可以示例如下:
Figure PCTCN2017094237-appb-000005
本发明所述二氟磷酸钾与双草酸硼酸锂的反应式可以示例如下:
Figure PCTCN2017094237-appb-000006
本发明所述二氟磷酸钾与高氯酸锂的反应式可以示例如下:
Figure PCTCN2017094237-appb-000007
本发明所述二氟磷酸钾与二氟草酸硼酸锂的反应式可以示例如下:
Figure PCTCN2017094237-appb-000008
在本发明中,步骤(3)所述复分解反应通过密闭搅拌进行。在本发明中,步骤(3)的反应温度为5~100℃、10-80℃、20-70℃或30-60℃;优选地,步骤(3)的反应温度为10~50℃。步骤(3)的反应时间没有特别的限制,在考虑反应转化率和经济性的情况下,所述反应时间通常为0.5-24小时、1-16小时、2-12小时、4-10小时或6-8小时。优选地,步骤(3)的反应时间1~10小时。
在本发明中,步骤(3)还包括:固液分离以及蒸去溶剂,以形成二氟磷酸锂。
在本发明中,步骤(3)中所述有机溶剂选自在常压下沸点低于150℃的碳酸酯类、腈类、醚类、醇类、丙酮、四氢呋喃中的一种或多种。
实施例
以下结合具体实施例对本发明作进一步说明,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对本发明要求保护的范围不起任何限定作用。
实施例1
按照以下步骤制备二氟磷酸锂
1.制备三甲基硅基二氯磷酸酯:
在干燥的1000ml三口烧瓶内加入三氯氧磷155g(1mol)和六甲基二硅氧烷162g(1mol),接着加入1.64g浓硫酸,密闭条件下于10℃反应3小时。接着,减压蒸馏,收集115℃/10mmHg馏份203g。
2.制备二氟磷酸钾:
在干燥的1000ml三口烧瓶内加入87g(1.5mol)氟化钾和500ml碳酸二甲酯,于50℃下滴加上述制备的三甲基硅基二氯磷酸酯103g(0.5mol)。滴加完毕后,于该温度继续保温反应3小时。降温冷却,过滤,滤液为二氟磷酸钾和溶剂混合物。如图1中离子谱图所示,RT6.66标识二氟磷酸根阴离子。
3.复分解反应:
将2中的滤液于氮气保护下加入47g(0.5mol)四氟硼酸锂,于10℃下密闭搅拌反应1小时,过滤。
滤饼为四氟硼酸钾,滤液为二氟磷酸锂和溶剂混合物。将滤液蒸去溶剂后减压烘干,得到干燥的二氟磷酸锂固体48g,收率为88.9%。
实施例2
按照以下步骤制备二氟磷酸锂
1.制备三丙基硅基二氯磷酸酯:
在干燥的1000ml三口烧瓶内加入三氯氧磷465g(3mol)和六丙基二硅氧烷330g(1mol),接着加入16g三氟甲磺酸,密闭条件下于30℃反应12小时。接着,减压蒸馏,收集155℃~160℃/10mmHg馏份268g。
2.制备二氟磷酸钾:
在干燥的1000ml三口烧瓶内加入116g(2mol)氟化钾和600ml乙腈,于65℃下滴加上述制备的三丙基硅基二氯磷酸酯150g(0.515mol)。滴加 完毕后,于该温度继续保温反应5小时。降温冷却,过滤,滤液为二氟磷酸钾和溶剂混合物。如图1中离子谱图所示,RT6.66标识二氟磷酸根阴离子。
3.复分解反应:
将2中的滤液于氮气保护下加入48.9g(0.52mol)四氟硼酸锂,于50℃下密闭搅拌反应3小时,过滤。
滤饼为四氟硼酸钾,滤液为二氟磷酸锂和溶剂混合物。将滤液蒸去溶剂后减压烘干,得到干燥的二氟磷酸锂固体46g,收率为81.9%。
实施例3
按照以下步骤制备二氟磷酸锂
1.制备三乙基硅基二氯磷酸酯:
在干燥的2000ml三口烧瓶内加入三氯氧磷775g(5mol)和六乙基二硅氧烷246g(1mol),接着加入50g浓硫酸,密闭条件下于50℃反应24小时。接着,减压蒸馏,收集132℃~135℃/10mmHg馏份212g。
2.制备二氟磷酸钾:
在干燥的1000ml三口烧瓶内加入87g(1.5mol)氟化钾和100ml乙醚和100ml四氢呋喃,于40℃下滴加上述制备的三乙基硅基二氯磷酸酯62.3g(0.25mol)。滴加完毕后,于该温度继续保温反应10小时。降温冷却,过滤,滤液为二氟磷酸钾和溶剂混合物。如图1中离子谱图所示,RT6.66标识二氟磷酸根阴离子。
3.复分解反应:
将2中的滤液于氮气保护下加入48.5g(0.25mol)双草酸硼酸锂,于30℃~35℃下密闭搅拌反应10小时,过滤。
滤饼为双草酸硼酸钾,滤液为二氟磷酸锂和溶剂混合物。将滤液蒸去 溶剂后减压烘干,得到干燥的二氟磷酸锂固体23g,收率为85.2%。
实施例4
按照以下步骤制备二氟磷酸锂
1.制备三甲基硅基二氯磷酸酯:
在干燥的1000ml三口烧瓶内加入三氯氧磷200g(1.3mol)和六甲基二硅氧烷162g(1mol),接着加入4g浓硫酸,密闭条件下于25℃反应15小时。接着,减压蒸馏,收集115℃/10mmHg馏份198g。
2.制备二氟磷酸钾:
在干燥的1000ml三口烧瓶内加入87g(1.5mol)氟化钾和300ml丙酮,于50℃下滴加上述制备的三甲基硅基二氯磷酸酯103g(0.5mol)。滴加完毕后,于该温度继续保温反应5小时。降温冷却,过滤,滤液为二氟磷酸钾和溶剂混合物。如图1中离子谱图所示,RT6.66标识二氟磷酸根阴离子。
3.复分解反应:
将2中的滤液于氮气保护下加入53g(0.5mol)高氯酸锂,于15℃下密闭搅拌反应2小时,过滤。
滤饼为高氯酸钾,滤液为二氟磷酸锂和溶剂混合物。将滤液蒸去溶剂后减压烘干,得到干燥的二氟磷酸锂固体45g,收率为83.3%。
实施例5
按照以下步骤制备二氟磷酸锂
1.制备三甲基硅基二氯磷酸酯:
在干燥的1000ml三口烧瓶内加入三氯氧磷255g(1.65mol)和六甲基二硅氧烷162g(1mol),接着加入12g三氟甲磺酸,密闭条件下于40℃反应8小时。接着,减压蒸馏,收集115℃~117℃/10mmHg馏份187g。
2.制备二氟磷酸钾:
在干燥的1000ml三口烧瓶内加入116g(2mol)氟化钾和300ml碳酸二乙酯,于38℃下滴加上述制备的三甲基硅基二氯磷酸酯109g(0.5mol)。滴加完毕后,于该温度继续保温反应3小时。降温冷却,过滤,滤液为二氟磷酸钾和溶剂混合物。如图1中离子谱图所示,RT6.66标识二氟磷酸根阴离子。
3.复分解反应:
将2中的滤液于氮气保护下加入72g(0.5mol)二氟草酸硼酸锂,于30℃下密闭搅拌反应4小时,过滤。
滤饼为二氟草酸硼酸钾,滤液为二氟磷酸锂和溶剂混合物。将滤液蒸去溶剂后减压烘干,得到干燥的二氟磷酸锂固体43g,收率为79.6%。
以上所述仅为本发明示例的实施例,凡依本发明权利要求范围所做的均等变化与修改,皆应属本发明权利要求的涵盖范围。

Claims (7)

  1. 一种制备二氟磷酸锂的方法,所述方法包括:
    (1)使三氯氧磷与含有Si-O-Si的化合物在催化剂存在下反应,形成三烷基硅基二氯磷酸酯,
    其中,所述含有Si-O-Si的化合物由以下通式(1)表示:
    Figure PCTCN2017094237-appb-100001
    式中,R1~R6是含有1~3个碳原子的烷基;X1为氢或含有1~3个碳原子的烷基;X2为含有1~3个碳原子的烷基;n=0~10之间的整数;
    (2)使所述三烷基硅基二氯磷酸酯与氟化钾在溶剂存在下反应,形成二氟磷酸钾;和
    (3)在有机溶剂下,使所述二氟磷酸钾和有机锂盐进行复分解反应,形成二氟磷酸锂。
  2. 如权利要求1所述的方法,其特征在于,步骤(1)的反应温度为10~50℃,反应时间为3~24小时;
    步骤(2)通过向所述溶剂和氟化钾的体系中滴加所述三烷基硅基二氯磷酸酯,并于30~80℃下保温反应3~10小时来进行;和/或
    步骤(3)所述复分解反应在10~50℃下、通过密闭搅拌进行1~10小时。
  3. 如权利要求1所述的方法,其特征在于,
    步骤(1)还包括:进行蒸馏,形成纯化的三烷基硅基二氯磷酸酯;
    步骤(2)还包括:固液分离以及滤液蒸去溶剂和氟硅烷,以形成二氟磷酸钾;和/或
    步骤(3)还包括:固液分离以及蒸去溶剂,以形成二氟磷酸锂。
  4. 如权利要求1所述的方法,其特征在于,步骤(1)中,所述催化剂选自浓硫酸、三氟甲磺酸或它们的混合物;
    步骤(1)中,所述三氯氧磷和含有Si-O-Si的化合物的摩尔比为1:1~5:1;和/或
    以反应物的总质量为基准,步骤(1)中所述催化剂的加入量为0.5质量%~5质量%。
  5. 如权利要求1所述的方法,其特征在于,步骤(2)中,所述三烷基硅基二氯磷酸酯和氟化钾的摩尔比例1:3~1:6;和/或
    步骤(2)中,所述溶剂是有机非质子极性溶剂,选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙腈、乙醚、丙酮、四氢呋喃、乙酸乙酯、二甲基亚砜、二甲基甲酰胺、硝基甲烷以及它们两种以上的混合物。
  6. 如权利要求1所述的方法,其特征在于,步骤(3)中,所述有机溶剂选自在常压下沸点低于150℃的碳酸酯类、腈类、醚类、醇类、丙酮、四氢呋喃中的一种或多种。
  7. 如权利要求1所述的方法,其特征在于,步骤(3)中,所述复分解反应中的有机锂盐选自高氯酸锂、四氟硼酸锂、双草酸硼酸锂、二氟草酸硼酸锂中的一种或多种。
PCT/CN2017/094237 2017-07-25 2017-07-25 二氟磷酸锂的制备方法 WO2019018999A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094237 WO2019018999A1 (zh) 2017-07-25 2017-07-25 二氟磷酸锂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094237 WO2019018999A1 (zh) 2017-07-25 2017-07-25 二氟磷酸锂的制备方法

Publications (1)

Publication Number Publication Date
WO2019018999A1 true WO2019018999A1 (zh) 2019-01-31

Family

ID=65039347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094237 WO2019018999A1 (zh) 2017-07-25 2017-07-25 二氟磷酸锂的制备方法

Country Status (1)

Country Link
WO (1) WO2019018999A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112537763A (zh) * 2020-12-23 2021-03-23 九江天赐高新材料有限公司 一种气固液三相合成二氟磷酸锂的方法
CN113148971A (zh) * 2021-04-23 2021-07-23 荣成青木高新材料股份有限公司 一种二氟磷酸锂的制备方法
US11225417B2 (en) * 2018-06-22 2022-01-18 Chun Bo., Ltd Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal
CN114604844A (zh) * 2022-03-19 2022-06-10 珠海市赛纬电子材料股份有限公司 一种二氟磷酸锂的制备方法
CN114852987A (zh) * 2022-05-31 2022-08-05 山东海科创新研究院有限公司 一种二氟磷酸锂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507041A (zh) * 2006-08-22 2009-08-12 三菱化学株式会社 二氟磷酸锂、含有二氟磷酸锂的电解液、二氟磷酸锂的制备方法、非水电解液的制备方法、非水电解液以及使用该非水电解液的非水电解质二次电池
CN103052592A (zh) * 2010-08-04 2013-04-17 索尔维公司 从POF3或PF5制造LiPO2F2
CN104487381A (zh) * 2013-06-07 2015-04-01 斯泰拉化工公司 二氟磷酸盐的制造方法
CN105236380A (zh) * 2015-09-28 2016-01-13 广州天赐高新材料股份有限公司 高纯度二氟磷酸盐的制备方法
CN105731412A (zh) * 2015-12-29 2016-07-06 中国科学院宁波材料技术与工程研究所 一种二氟磷酸盐的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507041A (zh) * 2006-08-22 2009-08-12 三菱化学株式会社 二氟磷酸锂、含有二氟磷酸锂的电解液、二氟磷酸锂的制备方法、非水电解液的制备方法、非水电解液以及使用该非水电解液的非水电解质二次电池
CN103052592A (zh) * 2010-08-04 2013-04-17 索尔维公司 从POF3或PF5制造LiPO2F2
CN104487381A (zh) * 2013-06-07 2015-04-01 斯泰拉化工公司 二氟磷酸盐的制造方法
CN105236380A (zh) * 2015-09-28 2016-01-13 广州天赐高新材料股份有限公司 高纯度二氟磷酸盐的制备方法
CN105731412A (zh) * 2015-12-29 2016-07-06 中国科学院宁波材料技术与工程研究所 一种二氟磷酸盐的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225417B2 (en) * 2018-06-22 2022-01-18 Chun Bo., Ltd Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal
CN112537763A (zh) * 2020-12-23 2021-03-23 九江天赐高新材料有限公司 一种气固液三相合成二氟磷酸锂的方法
CN112537763B (zh) * 2020-12-23 2023-08-22 九江天赐高新材料有限公司 一种气固液三相合成二氟磷酸锂的方法
CN113148971A (zh) * 2021-04-23 2021-07-23 荣成青木高新材料股份有限公司 一种二氟磷酸锂的制备方法
CN114604844A (zh) * 2022-03-19 2022-06-10 珠海市赛纬电子材料股份有限公司 一种二氟磷酸锂的制备方法
CN114852987A (zh) * 2022-05-31 2022-08-05 山东海科创新研究院有限公司 一种二氟磷酸锂的制备方法

Similar Documents

Publication Publication Date Title
WO2019018999A1 (zh) 二氟磷酸锂的制备方法
CN101643481B (zh) 一种得到二氟草酸硼酸锂与双草酸硼酸锂的合成工艺
EP3381923B1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
TWI295117B (en) High purity lithium polyhalogenated boron cluster salts useful in lithium batteries
KR102083080B1 (ko) 디플루오로인산 에스테르를 채용한 디플루오로인산 리튬의 제조방법
CN109422252B (zh) 一种氟磺酰二氟磷酰亚胺锂的制备方法及其产品和应用
JP5679719B2 (ja) 非水電解液用の高純度含フッ素リン酸エステル
CN105800582A (zh) 一种二氟磷酸锂的制备方法及锂离子电池非水系电解液
JP2006302590A (ja) リチウムイオン電池用電解液の製造方法及びそれを用いた電池
KR20190098240A (ko) 다이플루오로인산리튬의 제조 방법
KR101887488B1 (ko) 디플루오로인산리튬염 결정체를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
JP6921128B2 (ja) ジフルオロリン酸リチウムの製造方法
EP1976048B1 (en) Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
CN102702243A (zh) 一种二氟草酸硼酸锂的制备及纯化方法
JP2987397B2 (ja) ヘキサフルオロリン酸リチウムの製造方法
KR101982601B1 (ko) 알콕시트리알킬실란을 이용한 불소음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
JP5862094B2 (ja) ヘキサフルオロリン酸リチウム濃縮液の製造方法
CN104447828B (zh) 一种双草酸硼酸锂的合成及提纯方法
CN113929711A (zh) 一种二氟草酸硼酸锂的制备方法
CN112537763A (zh) 一种气固液三相合成二氟磷酸锂的方法
KR101435486B1 (ko) 리튬 이온 전지용 전해액의 제조 방법
US20040091785A1 (en) Method of preparing lithium complex salts for use in electrochemical cells
CN114275757B (zh) 一种二氟磷酸锂的制备方法
JP5151121B2 (ja) リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
CN112811407B (zh) 一种二氟磷酸锂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918850

Country of ref document: EP

Kind code of ref document: A1