WO2019017233A1 - 中性子光学素子及び中性子源 - Google Patents

中性子光学素子及び中性子源 Download PDF

Info

Publication number
WO2019017233A1
WO2019017233A1 PCT/JP2018/025943 JP2018025943W WO2019017233A1 WO 2019017233 A1 WO2019017233 A1 WO 2019017233A1 JP 2018025943 W JP2018025943 W JP 2018025943W WO 2019017233 A1 WO2019017233 A1 WO 2019017233A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron
collimator
optical element
openings
opening
Prior art date
Application number
PCT/JP2018/025943
Other languages
English (en)
French (fr)
Inventor
智 小泉
洋平 能田
Original Assignee
国立大学法人茨城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人茨城大学 filed Critical 国立大学法人茨城大学
Priority to JP2019530972A priority Critical patent/JP7166637B2/ja
Publication of WO2019017233A1 publication Critical patent/WO2019017233A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • G01N23/202Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering using neutrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means

Definitions

  • the present invention relates to a neutron optical element used to sort and adjust the direction of travel of neutron beams, and a neutron source using the same.
  • Neutron radiation is used to investigate the structure of this material by irradiating neutrons to the material, such as neutron diffraction, and examining its scattering, diffraction, and the like.
  • Neutrons unlike electrons, have no charge and are highly permeable to matter and scattered by nuclei. For this reason, in the case of using a neutron beam, information different from that in the case of using an electron beam or an X-ray, which is similarly used to investigate various structural characteristics of a substance by scattering / diffraction, can be obtained.
  • small angle neutron scattering which obtains various information by scattering of low energy thermal neutrons, is extremely effective in analysis of light elements.
  • the configuration and characteristics of a neutron source that emits neutrons are significantly different from those of electron beam sources and X-ray sources.
  • the electron beam source and the X-ray source those capable of emitting energy-adjusted (quasi-) monochromatic and high-intensity electron beams and X-rays can be used, while neutron sources having such properties are used.
  • the main neutron sources used in practice include, for example, radioactive isotopes and large facilities (reactor and large accelerator). In the former, only very low strength neutrons can be obtained. In the latter, although high strength neutrons can be obtained, a large-scale facility for performing fission and fission reactions is required. Such maintenance of the reactor is not easy, so it is not suitable as a neutron source used for the above analysis.
  • RANS Riv Accelerator-driven compact Neutron Source
  • a proton beam of about 7 MeV is generated by an accelerator and irradiated to a 9 Be thin film.
  • 9 B and neutrons are generated, but because the energy of this neutron is as high as about MeV, it is not suitable for, for example, the above-mentioned small-angle neutron scattering experiment.
  • the proton beam emitted from the accelerator is as thin as it can be regarded as a point source and has high directivity, but the fast neutrons generated thereafter spread as they are decelerated and scattered by the polyethylene block.
  • the generated thermal neutrons are emitted from various areas of the polyethylene block in various directions. That is, this neutron source is a surface light source that emits neutrons from a wide range of polyethylene blocks.
  • the total integrated intensity of the neutron beam emitted from the neutron source which becomes such a surface light source is high, in order to use the neutron beam for various scattering experiments etc., a certain point on the space (for example, It is particularly preferred to concentrate the neutron beam at a point on the detector and locally increase the intensity of the neutron beam at this point. While it is possible to obtain an optical element that condenses these beams with high efficiency by using a static magnetic field or electrostatic field for electron beams and using a reflecting mirror for X-rays. For neutrons, it was difficult to collect them with high efficiency as well.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an invention for solving the problems.
  • the neutron optical element according to the present invention is a neutron optical element which collects neutron beams emitted so as to diverge from the surface on one side of a plane normal to one direction, which is constituted by a neutron absorber,
  • a plurality of collimators formed in a plate shape intersecting a direction and having a plurality of openings arranged along the one direction, the collimator being provided on the other side opposite to the one side
  • the upstream opening, which is the opening, and the downstream openings, which are the openings in the collimator provided on the one side are respectively provided in a plurality of arrays of the same configuration, and in the collimator that is provided on the other side
  • a straight line connecting each of the upstream openings and each of the downstream openings in the arrangement corresponding to each of the upstream openings is more than the collimator provided on the one side.
  • the plurality of openings are provided in parallel so as to intersect the plurality of first beams provided in parallel and the first beams.
  • the collimators are provided at three or more intervals along the one direction, and a plurality of combinations of two adjacent collimators in three or more of the collimators are provided. , The common condensing point is set.
  • the opening width of the downstream opening and the interval between the downstream openings adjacent in the arrangement are respectively from the opening width of the upstream opening and the distance between the upstream openings adjacent in the arrangement It is also characterized by being small.
  • the collimator is made of a B 4 C sintered body.
  • the neutron optical element according to the present invention is characterized in that the collimator is made of any one of B 4 C, Gd and Cd.
  • the neutron optical element according to the present invention comprises a support portion for supporting a plurality of the collimators at fixed locations along the one direction at fixed intervals along the one direction, and a plurality of types of the support portion are provided.
  • the distance between the adjacent collimators along the one direction can be adjusted by the selection of the support in prepared or by adjusting the fixed position of the collimator relative to the support. .
  • the neutron optical element of the present invention is characterized in that the collimator is selected and used among a plurality of the collimators having the same form including the opening and made of different materials.
  • the neutron source of the present invention is characterized in that a neutron surface light source having a plate-like thermal neutron generation unit that emits a thermal neutron beam from the surface, and the neutron optical element are combined.
  • the neutron source according to the present invention is characterized in that the collimator provided closest to the other side is in contact with the thermal neutron generator.
  • the neutron source of the present invention is characterized in that the neutron optical element is disposed in a vacuum atmosphere.
  • the thermal neutron generating unit is constituted by a neutron moderator, and a fast neutron generating unit constituted by 9 Be is provided on the other side with respect to the thermal neutron generating unit.
  • the fast neutron generating unit may be configured to be irradiated with a proton beam emitted toward the one side.
  • the present invention is configured as described above, it is possible to obtain a neutron optical element that condenses neutron beams with high efficiency, and a high-intensity neutron source using the same.
  • the neutron optical element concerning the embodiment of the present invention is a figure showing the passage situation of the neutron source in, when a collimator is thick. It is the 1st example which shows the form at the time of using the neutron optical element concerning the embodiment of the present invention for analysis of a sample. It is a 2nd example which shows the form at the time of using the neutron optical element concerning the embodiment of the present invention for analysis of a sample. In the Example of this invention, it is the result of changing the aperture area of a collimator and measuring beam shape (neutron beam intensity distribution). In the Example of this invention, it is the result of changing the aperture area of a collimator and measuring the flight time of a neutron.
  • FIG. 1 is a cross-sectional view showing the structure of this neutron source 1.
  • the neutron source 1 is configured by combining a neutron surface light source 10 and a neutron optical element 20.
  • the neutron surface light source 10 is RANS described in Non-Patent Document 1, and here, a cross section along the traveling direction of a proton beam used in RANS is shown.
  • a planar Be foil 11 made of 9 Be (beryllium) and extending in the vertical direction and the paper vertical direction in FIG. 1 is used.
  • a proton beam (proton beam) P having an energy of 7 MeV generated by the accelerator is incident backward (right side in the figure: one side).
  • the proton beam P is generated by the accelerator so as to be emitted along the central axis X in the front-rear direction (right and left direction in the figure: one direction), and is irradiated from the front, and spatially around the central axis X of the proton beam P
  • the spread is sufficiently small, for example 10 mm or less.
  • the Be foil 11 emits fast neutrons having energy of about MeV by the nuclear reaction of 9 Be.
  • a neutron moderator (thermal neutron generating part) 12 in a plate shape thicker than the Be foil 11 is bonded via a bonding material 13.
  • the size (length in the vertical direction in FIG. 1) of the neutron moderator 12 is, for example, about 150 mm, and the thickness (thickness in the horizontal direction in the figure) is about 40 mm. It shall be installed perpendicular to the axis X.
  • the neutron moderator 12 is made of, for example, polyethylene as a material that decelerates and scatters fast neutrons.
  • the bonding material 13 is made of V (vanadium) or the like which has low scattering ability and absorption ability of fast neutrons and easily transmits fast neutrons.
  • the fast neutrons are moderated and scattered in the neutron moderator 12 and become thermal neutrons having an energy of about 50 meV and emitted from the rear surface of the neutron moderator 12.
  • the spread of the proton beam P around the central axis X is sufficiently smaller than that of the neutron moderator 12, this configuration causes thermal neutrons to be scattered from a wide range over the plane of the neutron moderator 12 (vertical direction in FIG. 1). It is emitted backward.
  • the above points are the same as those described in Non-Patent Document 1.
  • the neutron optical element 20 is mounted and used on the right side (downstream side) of the neutron surface light source 10 in the figure, and the upstream first collimator (collimator) 21 and the downstream second collimator (collimator) 22 are It is configured to be fixed in a housing (support portion) 25. Since all the parts shown in FIG. 1 are placed in an atmosphere evacuated, scattering of neutrons by air in the neutron optical element 20 can be ignored. Further, in order to suppress the leakage of neutrons and to increase the intensity of the obtained neutron beam, it is preferable to bring the first collimator 21 on the upstream side into close contact with the neutron moderator (thermal neutron generating portion) 12.
  • Both the first collimator 21 and the second collimator 22 are formed of neutron absorbers having high absorption capability to thermal neutrons.
  • the first collimator 21 and the second collimator 22 are provided with openings 21A and 22A which respectively penetrate these in the front-rear direction (thickness direction).
  • the basic configurations of the first collimator 21 and the second collimator 22 are the same, and the sizes and intervals of the openings are different.
  • FIG. 2A is a perspective view showing the configuration of the first collimator 21, and FIG. 2B is a view showing the configuration of the second collimator 22.
  • Both the first collimator 21 and the second collimator 22 have a rectangular plate shape. Further, the rectangular openings 21A and 22A are respectively provided in the same arrangement configuration (two-dimensional arrangement of odd number in each of vertical and horizontal directions). In FIG. 1, this number is five, and this number is generally an odd number.
  • the structure in which the openings 22A in the second collimator 22 are arranged is a reduced form of the structure in which the openings 21A in the first collimator 21 are arranged. Therefore, assuming that the length of one side of the opening 21A in FIG. 2A is D1, and the length of one side of the opening 22A in FIG. 2B is D2, D1> D2. Further, the thickness of the first collimator 21 and the thickness of the second collimator 22 are equal to each other, and T. In FIG.
  • FIG. 1 shows a cross section of a portion where there are five openings 21A and two openings 22A arranged at the center in the left-right direction. This cross section is along the proton beam P, central axis X, as described above.
  • a straight line (broken line in the figure corresponding to a neutron beam) passing between each of the upstream openings 21A (upstream openings) and each of the corresponding downstream openings 22A (downstream openings) N1 to N5) are configured to pass through a focusing point F set behind the neutron optical element 20.
  • the focusing point F is provided on the detector 50 capable of detecting a two-dimensional distribution of neutron beam intensity.
  • the thermal neutrons diffused and emitted backward from the entire surface of the neutron moderator 12 only the one directed to the focusing point F is extracted, so the neutral wire intensity at the focusing point F can be locally increased. it can.
  • Such a neutron intensity distribution detected by the detector 50 is schematically shown on the right side of FIG.
  • FIG. 3 shows the structure of a neutron source 2 having such a configuration and using a neutron optical element 30 as a modified example of the above-described neutron optical element 20.
  • a third collimator (collimator) 23 having a similar structure is provided between the first collimator 21 and the second collimator 22 described above.
  • the openings 23 A are formed in the same arrangement (two-dimensional arrangement of five each by height and width) as the openings 21 A in the first collimator 21 and the openings 22 A in the second collimator 22.
  • each opening 21A (upstream opening) in the first collimator 21 and each opening 22A (downstream opening) in the second collimator 22 is such that a straight line passing between them passes the condensing point F Is configured as.
  • the positional relationship between each opening 21A in the first collimator 21 and each opening 23A in the third collimator 23, and the positional relationship between each opening 23A in the third collimator 23 and each opening 22A in the second collimator 22, Both are the same, and a straight line passing between the corresponding openings is set to pass the condensing point F.
  • the neutron beams N1 to N5 sequentially pass through the corresponding openings 21A, 23A, 22A, and reach the condensing point F.
  • the neutron beam M1 passing the opening 22A from the top after passing the opening 21A at the top, and the third opening 22A from the top after passing the opening 21A at the top The passing neutron beam M2 also reaches the detector 50.
  • the neutron beam also reaches a location separated from the focusing point F in the detector 50, whereby the neutron beam intensity at the location separated from the focusing point F can not be sufficiently reduced There is a case.
  • the portions of the third collimator 23 other than the opening 23A are set to allow the neutron beams M1 and M2 to pass, and the neutron beams M1 and M2 are located behind the third collimator 23 Passage can be suppressed.
  • the neutron beam passing through each opening 21A has a spread, and the neutron beams N1 to N5, M1 and M2 also have a spread, so the actual situation is more complicated. By using it, the intensity of neutrons corresponding to the neutrons M1 and M2 can be reduced.
  • the neutron beam intensity at points other than the light spot F can be reduced. That is, the neutron beam intensity at the condensing point F can be made relatively high compared to the surroundings, and the contrast of the neutron beam intensity can be enhanced.
  • the position resolution is the spread of the intensity distribution of the neutron beam near the focusing point F in the configuration of FIG. 1 (W in FIG. 1)
  • W depends on the opening widths D1 and D2 of the openings 21A and 22A in FIGS. 2A and 2B, and W can be reduced by narrowing the opening width.
  • the aperture width in each collimator is set in consideration of the neutron beam intensity required on the sample S and the position resolution in the experiment.
  • FIG. 4 is a view showing the state of the neutron beam passing through the uppermost opening 21A (upstream opening) and the opening 22A (downstream opening) in the configuration of FIG.
  • the reflection and diffraction of the neutron beam on the inner surfaces of the first collimator 21 and the second collimator 22 constituting the openings 21A and 22A can be ignored.
  • the neutron beam passing through the top opening 21A and the top opening 22A is in the range between broken lines N11 and N12.
  • FIG. 5 shows a situation similar to that of FIG. 4 except that the thickness T of the first collimator 21 and the second collimator 22 is larger than that of FIG.
  • the neutron beam passing through the top opening 21A and the top opening 22A is in the range between the broken lines N21 and N22.
  • the thickness T of each of the first collimator 31 and the second collimator 32 in FIGS. 2A and 2B is preferably thin, and the same applies to the collimator inserted between them.
  • each collimator is preferably thinly made of a material having high neutron beam absorption capability and high mechanical strength.
  • each collimator can be manufactured as a sintered body obtained by molding and sintering B 4 C powder.
  • Cd cadmium
  • Gd gadolinium
  • each collimator can be formed thin to increase the transmittance.
  • the number of collimators to be used (the number of layers) is also set in consideration of the required neutron beam intensity, the positional resolution in the experiment, and the like, as in the above-described aperture width.
  • the sample is placed between the neutron optical element and the detector 50.
  • the condensing point F is set on the detector 50, but the position of the condensing point F can be set as appropriate.
  • FIG. 1 it is preferable that the upstream first collimator 21 and the neutron moderator 12 be in close contact with each other as described above.
  • the sample S is preferably brought close to the downstream collimator.
  • FIGS. 6 and 7 show the configuration when the sample S and the detector 50 are arranged as described above.
  • a neutron optical element in which a collimator similar to that of FIG. 3 has a three-layer structure is used.
  • the neutron optical element 31 in which the sample S is disposed immediately after the second collimator 22 so as to be in contact with the second collimator 22 and whose focusing point F is set on the detector 50 is used.
  • the neutron beam in the case where there is no scattering by the sample S (when the sample S is not installed) and the neutron beam after scattering by the sample S can be detected with high intensity.
  • the neutron beams N1 to N5 in the drawing are condensed at the condensing point F on the detector 50.
  • the neutron beam is detected at a point deviated from the focusing point F.
  • the intensity distribution detected by the detector 50 in this case is broadened compared to the absence of the sample S. Information on the sample S can be obtained by analyzing the difference in intensity distribution.
  • the point that the sample S is installed immediately after the second collimator 22 is the same as the above, but the neutron whose focal point F is set on the sample S (immediately after the second collimator 22) An optical element 32 is used. For this reason, the neutron beam transmitted through the sample S or diffracted by the sample S is separated again into five on the detector 50 in response to the neutron beams N1 to N5. On the other hand, the neutron beam intensity on the sample S and the contrast thereof, and the position resolution of the portion of the sample S irradiated with the neutron beam can be enhanced.
  • the neutron beam intensity in the detector 50 and its resolution are enhanced or the neutron beam intensity in the sample S and its resolution are enhanced can be collected by the same element by changing the mutual distance of the collimator in the neutron optical element
  • the points can also be made variable. In this case, a common one can be used as the most upstream collimator, and this setting can be made by providing a moving mechanism that changes the mutual position of the collimator downstream of this.
  • the condensing point F can also be set at a location other than the sample S and the detector 50.
  • FIG. 8 shows a common focusing point F (thermal neutron generating portion 12 to focusing point F) with the openings of the three collimators in FIG. 6 being common (three types of rectangular shapes of 70 mm ⁇ 70 mm, 40 mm ⁇ 40 mm, 10 mm ⁇ 10 mm). It is the result of measuring the distance dependency from the optical axis center (focusing point F) of the neutron beam intensity (count number) when the distance up to 1500 mm) is obtained. This shape reflects the beam shape of the neutron beam obtained by the above-mentioned neutron optical element.
  • FIG. 9 shows the result of measuring the flight time of neutrons (corresponding to the wavelength of neutrons) corresponding to FIG. 8, and a common peak (the most frequent flight time) is obtained regardless of the aperture area There is. For this reason, a neutron beam with high directivity can be obtained using the above-mentioned neutron optical element, and various measurements, such as small angle neutron scattering, can be performed using this.
  • the distance between adjacent collimators is determined by a housing (support portion) 25 that mechanically supports and fixes the collimators. Therefore, even when the collimators used are the same, a plurality of types of housings 25 can be provided, and the position (focal length) of the focusing point F can be adjusted by the selection. In addition, the mounting position of each collimator with respect to the single housing 25 can be set to a plurality, and the position of the focusing point F can also be adjusted by this.
  • Such a configuration can be easily realized by manufacturing each collimator and the housing 25 separately.
  • a material having high neutron absorption capability as described above and suitable for a collimator is not necessarily preferable as a material for forming the housing 25 for securing the mechanical strength and the like of the entire device.
  • the collimator has a simple structure in which only an opening is formed in a flat plate as described above, the collimator can be easily and inexpensively manufactured easily, while the housing 25 is made of such a material. It may not be easy to manufacture. For this reason, it is particularly preferable to separately manufacture each collimator and the housing 25 of different materials, which also facilitates the adjustment of the focal length as described above.
  • the neutron beam intensity or intensity distribution (beam shape) obtained near the focusing point F is also influenced by the neutron transmittance of the portion other than the aperture in the collimator. Therefore, it is possible to adjust the neutron beam intensity and the beam shape not only by setting the position (distance) of the collimator as described above, but also by the setting and thickness of the material constituting the collimator. Therefore, when manufacturing each collimator and the housing 25 separately as different materials as described above, a plurality of collimators having the same shape including the arrangement and size of the opening and different materials are manufactured. Among these, the collimator may be selectable. At this time, different collimator thicknesses may be provided.
  • the change of the specifications (setting of the position of the focusing point F) in the above-mentioned neutron optical element is easy, and the basic structure of the above-mentioned neutron optical element is the shape shown in FIGS. 2A and 2B. It is very simple because it is obtained by combining the collimators of Therefore, this neutron optical element can be made inexpensive.
  • the apertures are two-dimensionally arrayed in 5 rows and 5 rows.
  • this configuration and the number can be set as appropriate.
  • rectangular openings are arranged and set in each collimator. In this case, the openings can be efficiently arranged without providing a useless area in the collimator, and the manufacture of the collimator is easy.
  • the shape of the opening is arbitrary, and for example, a honeycomb shape or the like can be used. Further, in the above example, the openings are two-dimensionally arranged, but the openings may be one-dimensionally arranged and light may be collected only in the arrangement direction.
  • FIGS. 2A and 2B can manufacture a sintered body in such a shape.
  • such shapes can be easily manufactured by other manufacturing methods.
  • FIGS. 10A and 10B show the structures of such collimators 120 and 130 in correspondence with FIGS. 2A and 2B.
  • the collimator 120 is extended in the longitudinal direction in the figure and is provided with a plurality of columnar first beam portions 120A provided in parallel in the lateral direction, and extended in the lateral direction and provided in parallel in the longitudinal direction.
  • a plurality of second beam portions 120B are configured in combination.
  • a plurality of columnar first beam portions 120A and a plurality of second beam portions 120B are manufactured, and a plurality of collimators having openings of different sizes only by changing the combination type thereof Can be easily manufactured.
  • the structure of the location where the first beam portion 120A and the second beam portion 120B intersect can be set as appropriate.
  • Figure 2A Even when using a material that makes it difficult to manufacture a collimator having a shape such as 2B at low cost, the first beam portion 120A and the second beam portion 120B having a simple shape as described above can be easily manufactured. Thus, the collimator 120 can be manufactured easily and inexpensively. As described above, a plurality of identical first beam portions 120A and second beam portions 120B are manufactured respectively, and then the form of the combination is changed to manufacture the collimator 120. Can be obtained particularly inexpensively.
  • the collimator 130 is configured by combining a plurality of thin plate-like first beam portions 130A and a plurality of thin plate-like second beam portions 130B in the same manner as in FIG. 10A. Even when it is difficult to manufacture the columnar first beam portion 120A and the second beam portion 120B as described above, the thin plate shaped first beam portion 130A and the second beam portion 130B are particularly easily It can be manufactured. Therefore, the collimator 130 can be obtained particularly inexpensively, and the collimator 130 can be obtained even when using a material that is particularly difficult to process.
  • this neutron optical element is combined with RANS, but similarly, it is a target that emits neutrons by irradiating a proton beam from a high-intensity proton accelerator J-PARC (Japan Proton Accelerator Research Complex). It is apparent that the same effect can be obtained by similarly using this neutron optical element for a certain surface light source and the like.
  • This neutron optical element is particularly effective for surface light sources that emit thermal neutrons.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

中性子線を高効率で集光する中性子光学素子、これを用いた高強度の中性子源を得る。 上流側の開口(21A)(上流側開口)の各々と、これに対応する下流側の開口(22A)(下流側開口)の各々との間を通る直線(中性子線に対応する図中の破線N1~N5)は、この中性子光学素子20の後方に設定された集光点Fを通るように構成される。中性子減速材(12)の全面から後方に拡散して放射される熱中性子のうち、集光点(F)に向かうもののみが抽出されるため、集光点(F)における中性線強度を局所的に高めることができる。

Description

中性子光学素子及び中性子源
 本発明は、中性子線の進行方向を選別して調整するために用いられる中性子光学素子、及びこれが用いられた中性子源に関する。
 中性子線は、中性子回折等、中性子線を物質に対して照射してその散乱・回折等を調べることによって、この物質の構造を調べるために用いられている。中性子は電子等と異なり電荷をもたず、物質に対する透過性が高く原子核によって散乱される。このため、中性子線を用いた場合には、同様に散乱・回折によって物質の様々な構造特性を調べるために用いられる電子線やX線を用いた場合とは異なる情報が得られる。特に、エネルギーの低い熱中性子の散乱によって各種の情報を得る中性子小角散乱は軽元素の分析において極めて有効である。
 一方で、中性子線を発する中性子源の構成、特性は、電子線源やX線源等とは大きく異なる。電子線源やX線源としては、エネルギーが調整された(準)単色で高強度の電子線やX線を発するものが使用可能であるのに対して、このような性質をもつ中性子源を得ることは困難であり、実際に使用されている主な中性子源としては、例えば放射性同位体や、大型施設(原子炉や大型加速器)がある。前者においては非常に低強度の中性子線しか得られず、後者の場合は高強度の中性子線は得られるものの、核分裂や核破砕反応を行わせるための大規模の設備が必要となる。こうした原子炉の維持管理は容易ではないために、上記のような分析用に用いられる中性子源としては適さない。
 原子炉等よりも小規模であり高強度の中性子線が得られる中性子源としては、例えば非特許文献1に記載されたRANS(Riken Accelerator-driven compact Neutron Source)がある。RANSにおいては、7MeV程度の陽子ビームが加速器で生成され、Be薄膜に照射される。これによって、Bと中性子(高速中性子)が生成されるが、この中性子のエネルギーはMeV程度と高いために、例えば上記の中性子小角散乱の実験用には適さない。このため、RANSにおいては、高速中性子に対する減速材となるポリエチレンで構成されたブロックがBeの薄膜よりも陽子ビーム側から見て後方に固定されている。これによって、高速中性子が減速されて散乱されたエネルギーが50meV程度の熱中性子が、高強度で後方に発せられる。また、発せられる中性子線のオン・オフは加速器で生成される陽子ビームのオン・オフで制御されるため、制御されたパルス状の中性子線を得ることができる。
 一方、この構成において、加速器から発せられる陽子ビームは点源とみなせる程度に細く、高い指向性をもつが、その後に発生した高速中性子はポリエチレンブロックで減速散乱される際に広がるため、最終的に生成される熱中性子はポリエチレンブロックの広い範囲から様々な方向に発散して発せられる。すなわち、この中性子源は、ポリエチレンブロックの広い範囲から中性子を発する面光源となる。
「陽子線加速器駆動理研小型中性子源RANSによる中性子利用」、大竹淑恵、 小林知洋、 太田秀男、 山田雅子、 橋口孝夫、 ▲柳▼町信三、 竹谷篤、 ▲高▼村正人、 關義親、 池田義雅、須長秀行、 王盛、 山形豊、 加藤純一、第12回日本加速器学会年会プロシーディングス、1358頁、2015年8月6日
 このような面光源となる中性子源から発せられた中性子線の全積分強度は高いものの、中性子線を各種の散乱実験等に用いるためには、空間上のある1点(例えば被分析試料上や検出器上の1点)に中性子線を集中させ、この1点で中性子線の強度を局所的に高める(集光する)ことが特に好ましい。電子線に対しては静磁場や静電場を利用して、X線に対しては反射鏡を利用して、これらを高効率で集光する光学素子を得ることが可能であるのに対して、中性子線に対しては、これを同様に高効率で集光することが困難であった。
 このため、中性子線を高効率で集光する中性子光学素子、これを用いた高強度の中性子源が求められた。
 本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。
 本発明は、上記課題を解決すべく、以下に掲げる構成とした。
 本発明の中性子光学素子は、一方向を法線とする面の一方の側の表面から発散するように発せられる中性子線を集光する中性子光学素子であって、中性子吸収体で構成され前記一方向と交差する板状であり前記一方向に沿って貫通する複数の開口が配列されて形成された複数のコリメータを具備し、前記一方の側と反対の他方の側に設けられた前記コリメータにおける前記開口である上流側開口と、前記一方の側に設けられた前記コリメータにおける前記開口である下流側開口は、同一構成の配列でそれぞれ複数設けられ、他方の側に設けられた前記コリメータにおける前記上流側開口の各々と、当該上流側開口の各々に対応した前記配列における前記下流側開口の各々とを結ぶ直線が、前記一方の側に設けられた前記コリメータよりも前記一方の側に設定された集光点を通過するように構成されたことを特徴とする。
 本発明の中性子光学素子は、前記コリメータにおいて、複数の前記開口は、並行に設けられた複数の第1の梁部と、前記第1の梁部と交差するように並行に設けられた第2の梁部と、の組み合わせにより形成されたことを特徴とする。
 本発明の中性子光学素子において、前記コリメータは、前記一方向に沿って3つ以上離間して設けられ、3つ以上の前記コリメータの中における隣接する2つの前記コリメータからなる複数の組み合わせに対して、共通の前記集光点が設定されたことを特徴とする。
 本発明の中性子光学素子は、前記下流側開口の開口幅、前記配列において隣接する前記下流側開口の間隔は、それぞれ前記上流側開口の開口幅、前記配列において隣接する前記上流側開口の間隔よりも小さいことを特徴とする。
 本発明の中性子光学素子において、前記コリメータは、BC焼結体で構成されたことを特徴とする。
 本発明の中性子光学素子において、前記コリメータは、BC、Gd、Cdのいずれかで構成されたことを特徴とする。
 本発明の中性子光学素子は、複数の前記コリメータを、前記一方向に沿った離間した箇所において、前記一方向に沿った間隔を固定して支持する支持部を具備し、前記支持部が複数種類準備された中での前記支持部の選択により、あるいは前記コリメータの前記支持部に対する固定位置の調整により、前記一方向に沿って隣接する前記コリメータの間隔が調整可能とされたことを特徴とする。
 本発明の中性子光学素子は、前記開口を含んだ形態が同一であり異なる材料で構成された複数の前記コリメータが準備された中で、前記コリメータが選択されて用いられることを特徴とする。
 本発明の中性子源は、表面から熱中性子線を発する板状の熱中性子発生部を具備する中性子面光源と、前記中性子光学素子とが組み合わされたことを特徴とする。
 本発明の中性子源は、最も前記他方の側に設けられた前記コリメータと前記熱中性子発生部とが接する構成とされたことを特徴とする。
 本発明の中性子源は、前記中性子光学素子が真空雰囲気中に配置されたことを特徴とする。
 本発明の中性子源は、前記中性子面光源において、前記熱中性子発生部は中性子減速材で構成され、前記熱中性子発生部に対する前記他方の側にBeで構成された高速中性子発生部が設けられ、前記高速中性子発生部は、前記一方の側に向かって発せられる陽子線で照射される構成とされたことを特徴とする。
 本発明は以上のように構成されているので、中性子線を高効率で集光する中性子光学素子、これを用いた高強度の中性子源を得ることができる。
本発明の実施の形態に係る中性子光学素子が用いられた中性子源の構成を示す図である。 本発明の実施の形態に係る中性子光学素子において用いられるコリメータの構成を示す斜視図(その1)である。 本発明の実施の形態に係る中性子光学素子において用いられるコリメータの構成を示す斜視図(その2)である。 本発明の実施の形態に係る中性子光学素子の変形例が用いられた中性子源の構成を示す図である。 本発明の実施の形態に係る中性子光学素子において、コリメータが薄い場合における中性子源の通過状況を示す図である。 本発明の実施の形態に係る中性子光学素子において、コリメータが厚い場合における中性子源の通過状況を示す図である。 本発明の実施の形態に係る中性子光学素子を試料の分析に用いる際の形態を示す第1の例である。 本発明の実施の形態に係る中性子光学素子を試料の分析に用いる際の形態を示す第2の例である。 本願発明の実施例において、コリメータの開口面積を変えてビーム形状(中性子線強度分布)を測定した結果である。 本願発明の実施例において、コリメータの開口面積を変えて中性子の飛行時間を測定した結果である。 本発明の実施の形態に係る中性子光学素子において用いられるコリメータの第1の変形例の構成を示す斜視図である。 本発明の実施の形態に係る中性子光学素子において用いられるコリメータの第2の変形例の構成を示す斜視図である。
 本発明の実施の形態に係る中性子光学素子が用いられる中性子源について説明する。図1は、この中性子源1の構造を示す断面図である。この中性子源1は、中性子面光源10と、中性子光学素子20とが組み合わせて構成される。中性子面光源10は、非特許文献1に記載されたRANSであり、ここでは、RANSにおいて使用される陽子ビームの進行方向に沿った断面が示されている。
 この中性子面光源10においては、Be(ベリリウム)で構成され図1中の上下方向及び紙面垂直方向に広がる面状のBe箔11が用いられる。Be箔11に対して垂直に、加速器で生成されたエネルギーが7MeVの陽子ビーム(陽子線)Pが後方(図中右側:一方の側)に向かって入射する。陽子ビームPは、前後方向(図中左右方向:一方向)となる中心軸Xに沿って放射されるように加速器で生成されて前方より照射され、陽子ビームPの中心軸X周りの空間的広がりは例えば10mm以下と十分に小さい。これによって、Beの核反応によりBe箔11からMeV程度のエネルギーをもつ高速中性子が発せられる。
 Be箔11の後方には、Be箔11よりも厚い板状とされた中性子減速材(熱中性子発生部)12が、接合材13を介して接合されている。中性子減速材12の大きさ(図1における上下方向の長さ)は例えば150mm程度、厚さ(図における左右方向の厚さ)は40mm程度とされ、Be箔11、中性子減速材12は共に中心軸Xと垂直に設置されるものとする。中性子減速材12は、高速中性子を減速、散乱させる材料として、例えばポリエチレンで構成される。接合材13は、逆に高速中性子の散乱能、吸収能が低く高速中性子を透過させやすいV(バナジウム)等で構成される。この高速中性子が中性子減速材12中で減速、散乱されて50meV程度のエネルギーとされた熱中性子となって中性子減速材12の後方の表面から発せられる。陽子ビームPの中心軸X周りの広がりは中性子減速材12よりも十分に小さいが、この構成によって、熱中性子は中性子減速材12の面内(図1における上下方向)にわたり広い範囲から散乱して後方に発せられる。上記の点については、非特許文献1に記載されたものと同様である。
 この中性子光学素子20は、この中性子面光源10の図中右側(下流側)に装着されて用いられ、上流側の第1コリメータ(コリメータ)21、下流側の第2コリメータ(コリメータ)22が、筐体(支持部)25中で固定されて構成されている。図1に示された部分は、全て真空排気された雰囲気中に設置されるため、中性子光学素子20中における中性子の空気による散乱は無視できる。また、中性子の漏れを抑制し、かつ得られる中性子線の強度を高めるためには、上流側の第1コリメータ21と中性子減速材(熱中性子発生部)12を密着させることが好ましい。
 第1コリメータ21、第2コリメータ22は共に熱中性子に対する吸収能の高い中性子吸収体で構成される。第1コリメータ21、第2コリメータ22には、それぞれこれらを前後方向(厚さ方向)で貫通する開口21A、22Aが配列されて設けられる。第1コリメータ21、第2コリメータ22の基本的構成は同様であり、各開口の大きさ、間隔が異なる。図2Aは第1コリメータ21、図2Bは第2コリメータ22の構成を示す斜視図である。第1コリメータ21、第2コリメータ22は共に矩形の板状とされる。また、矩形形状の開口21A、22Aは同一の配列構成(縦横奇数個ずつの2次元配列)でそれぞれに設けられている。図1ではこの個数は5個であり、この個数は一般には奇数である。
 図2A、図2Bに示されるように、第2コリメータ22における開口22Aが配列した構造は、第1コリメータ21における開口21Aが配列した構造を縮小した形態とされている。このため、図2Aにおける開口21Aの1辺の長さをD1、図2Bにおける開口22Aの1辺の長さをD2として、D1>D2とされる。また、第1コリメータ21の厚さ、第2コリメータ22の厚さは等しく、共にTとされる。図1においては、第1コリメータ21における左右方向における中央において上下方向に並んだ開口21A、また、第1コリメータ21における配列の中心にある開口21Aと、第2コリメータ22における配列の中心にある開口22Aとは、中心軸X上にある。このため、第1コリメータ21における一つの開口21Aと、第2コリメータ22においてこの一つの開口21Aと配列中において同じ位置にある開口22Aとを対応付けることができる。図1においては、左右方向における中央にそれぞれ5つ配列した開口21A、開口22Aがある箇所の断面が示されている。この断面は前記の通り、陽子ビームP、中心軸Xに沿っている。
 図1において、上流側の開口21A(上流側開口)の各々と、これに対応する下流側の開口22A(下流側開口)の各々との間を通る直線(中性子線に対応する図中の破線N1~N5)は、この中性子光学素子20の後方に設定された集光点Fを通るように構成される。ここでは、集光点Fは、中性子線強度の2次元分布を検出可能な検出器50上に設けられているものとする。中性子減速材12の全面から後方に拡散して放射される熱中性子のうち、集光点Fに向かうもののみが抽出されるため、集光点Fにおける中性線強度を局所的に高めることができる。図1中右側には、検出器50で検出されるこのような中性子強度分布が模式的に示されている。
 図1の中性子光学素子20においては、2つのコリメータ(第1コリメータ21、第2コリメータ22)が用いられたが、さらに多くのコリメータを用いて、中性子線の交差を禁じて、強度分布を更に急峻にすることができる。図3は、こうした構成を具備し上記の中性子光学素子20の変形例となる中性子光学素子30が用いられた中性子源2の構造を示す。ここでは、前記の第1コリメータ21、第2コリメータ22の間に、同様の構造を具備する第3コリメータ(コリメータ)23が設けられている。第3コリメータ23においても、開口23Aが、第1コリメータ21における開口21A、第2コリメータ22における開口22Aと同一の配列(縦横5個ずつの2次元配列)で形成されている。
 前記の通り、第1コリメータ21における各開口21A(上流側開口)と第2コリメータ22における各開口22A(下流側開口)の位置関係は、これらの間を通過する直線が集光点Fを通るように構成されている。図3の構造においては、第1コリメータ21における各開口21Aと第3コリメータ23における各開口23Aの位置関係、第3コリメータ23における各開口23Aと第2コリメータ22おける各開口22Aの位置関係も、共に同様とされ、対応する開口間を通過する直線が集光点Fを通過するように設定される。
 このため、図1の構成と同様に、中性子線N1~N5はそれぞれ対応する開口21A、23A、22Aを順次通過し、集光点Fに達する。一方、図1においては、例えば1番上の開口21Aを通過した後に上から2番目の開口22Aを通過する中性子線M1、1番上の開口21Aを通過した後に上から3番目の開口22Aを通過する中性子線M2も検出器50に達する。このため、図1の構成においては、検出器50において集光点Fから離間した箇所にも中性子線が到達し、これによって、集光点Fから離間した箇所における中性子線強度を十分に低減できない場合がある。
 これに対して、図3の構成においては、第3コリメータ23における開口23A以外の部分を中性子線M1、M2が通過するように設定し、中性子線M1、M2が第3コリメータ23よりも後方に通過することを抑制することができる。厳密には、各開口21Aを通過する中性子線は広がりをもち、上記の中性子線N1~N5、M1、M2も広がりをもつために、実際の状況はより複雑であるが、第3コリメータ23を用いることによって、中性子線M1、M2に対応する中性子線の強度を低下させることができる。
 図3の構成においては、3つのコリメータ(第1コリメータ21、第2コリメータ22、第3コリメータ23)が用いられたが、同様にして、4つ以上のコリメータを用いることによって、試料Sにおいて集光点F以外の点における中性子線強度を低下させることができる。すなわち、集光点Fにおける中性子線強度を周囲と比べて相対的に高くし、中性子線の強度のコントラストを高めることができる。
 例えばこのような中性子線を試料に照射して分析を行う際には、その位置分解能は、図1の構成における集光点F付近での中性子線の強度分布の広がり(図1におけるW)に依存し、位置分解能を高めるためには、Wを小さくすることが好ましい。Wは、図2A、図2Bにおける開口21A、22Aの開口幅D1、D2に依存し、この開口幅を狭くすることによって、Wを小さくすることができる。一方、この開口幅を狭くした場合には開口を通過する中性子線の積分強度が低下するため、集光点Fにおける中性子線強度は低下する。このため、上記の構成においては、試料S上で要求される中性子線強度と実験における位置分解能等を考慮して、各コリメータにおける開口幅が設定される。
 また、図4は、図1の構成において最も上側の開口21A(上流側開口)、開口22A(下流側開口)を通過する中性子線の状況を示す図である。ここで、開口21A、22Aを構成する第1コリメータ21、第2コリメータ22の内面における中性子線の反射や回折は無視できるものとする。この場合において、一番上の開口21A及び一番上の開口22Aを通過する中性子線は破線N11とN12の間の範囲のものとなる。
 これに対して、図5は、第1コリメータ21、第2コリメータ22の厚さTを図4の場合よりも大きくした以外の点については図4と同様とした場合の状況を示す。この場合には、一番上の開口21A及び一番上の開口22Aを通過する中性子線は破線N21とN22の間の範囲のものとなる。この場合には、厚い第1コリメータ21、第2コリメータ22によって遮られる中性子線の成分が増えるため、図4の場合と比べて、この範囲が大幅に狭まる。このため、図2A、図2Bにおける第1コリメータ31、第2コリメータ32の厚さTは、薄いことが好ましく、これらの間に挿入されるコリメータについても同様である。一方、これらが薄い場合には、これらを開口以外の箇所で透過する中性子線の成分が発生する。このため、各コリメータは、中性子線の吸収能が高く、かつ機械的強度が高い材料で薄く構成することが好ましい。
 具体的には、各コリメータを構成する材料として、中性子吸収能の高いホウ素(B)を含むBCを好ましく用いることができる。この場合には、BC粉体を成形、焼結した焼結体として各コリメータを製造することができる。また、同様に中性子吸収能が高い金属であるCd(カドミウム)、Gd(ガドリニウム)等も用いることができる。こうした金属材料を用いた場合には、特に各コリメータを薄く形成して、透過率を高めることができる。
 また、図3に示されたようにコリメータの数を多くした場合(第1コリメータ21、第2コリメータ22の間に他のコリメータを挿入した場合)には、前記の通り、集光点F以外の中性子線強度を低下させることによってWを小さくすることができるが、図4、5に示されたように、挿入されたコリメータによって遮蔽される中性子線の成分が大きくなるために、挿入されるコリメータが増えるに従って、やはり集光点Fにおける中性子線の広がりが低下する。このため、使用するコリメータの数(層数)も、上記の開口幅と同様に、要求される中性子線強度と実験における位置分解能等を考慮して設定される。
 次に、上記の中性子光学素子あるいは中性子源を用いて中性子小角散乱実験を行う際の形態について説明する。この場合には、試料は中性子光学素子と検出器50の間に設置される。図1、3等においては、検出器50上に集光点Fが設定されるものとしたが、集光点Fの位置は、適宜設定することができる。
 図1の構成においては、前記の通り、上流側の第1コリメータ21と中性子減速材12とは密着させることが好ましい。同様に、試料Sも、下流側のコリメータに近接させることが好ましい。図6、7は、このように試料Sと検出器50が配置された場合の構成を示す図である。ここでは、図3と同様のコリメータが3層構造とされた中性子光学素子が用いられるものとする。
 図6の構成においては、試料Sが第2コリメータ22の直後に第2コリメータ22と接するように設置され、集光点Fが検出器50上に設定された中性子光学素子31が用いられる。このため、検出器50において、試料Sによる散乱がない場合(試料Sが設置されない場合)における中性子線、試料Sによる散乱後の中性子線を高強度で検出することができる。ここで、試料Sが存在しない場合には、前記の通り、図中の中性子線N1~N5は検出器50上の集光点Fに集光する。一方、試料Sで散乱された中性子線は図中の散乱中性子線S1、S2のように方向が変化するため、集光点Fから外れた箇所で検出されるため、結局、試料Sが存在する場合に検出器50で検出される強度分布は、試料Sが存在しない場合と比べて広がる。この強度分布の差を解析することによって、試料Sに関する情報を得ることができる。
 この場合においては、図1の強度分布(実線)におけるWを小さくすることによって、よりこの解析における位置分解能が高まる。この際、検出器50上に集光点Fを設定することによって、検出器50で検出される信号の強度を高めることによってS/N比を高め、測定を高精度で行うことができる。
 図7の構成においては、試料Sが第2コリメータ22の直後に設置される点は上記と同様であるが、集光点Fが試料S上(第2コリメータ22の直後)に設定された中性子光学素子32が用いられる。このため、試料Sを透過あるいは試料Sで回折された中性子線は検出器50上では中性子線N1~N5に対応して再び5つに分離して検出される。一方で、試料S上における中性子線強度及びこのコントラスト、試料Sにおいて中性子線が照射される箇所の位置分解能を高めることができる。
 すなわち、検出器50における中性子線強度及びその分解能を高めるか、試料Sにおける中性子線強度及びその分解能を高めるかを、中性子光学素子におけるコリメータの相互の距離を変えることによって、同一の素子で集光点を可変にすることもできる。この場合においては、最も上流側のコリメータとしては、共通のものを用いることができ、これよりも下流側のコリメータの相互位置を変更する移動機構を設けることによって、この設定をすることができる。また、集光点Fを試料S、検出器50以外の箇所に設定することもできる。
 実際にBC焼結体で構成された3種類のコリメータを用いた図6の構成における検出器50で検出された結果について説明する。図8は図6における3つのコリメータの開口を共通(70mm×70mm、40mm×40mm、10mm×10mmの3種類の矩形形状)として共通の集光点F(熱中性子発生部12から集光点Fまでの距離を1500mm)が得られるようにした場合における、中性子線強度(カウント数)の光軸中心(集光点F)からの距離依存性を測定した結果である。この形状は、上記の中性子光学素子によって得られた中性子線のビーム形状を反映する。開口面積によらずに、指向性が高められたビーム形状が得られ、開口面積を大きくとることにより、高い中性子線強度が得られることが確認できる。図9は、図8に対応して中性子の飛行時間(中性子の波長に対応)を測定した結果であり、開口面積によらずに、共通のピーク(最も頻度の高い飛行時間)が得られている。このため、上記の中性子光学素子を用いて、指向性の高い中性子線を得ることができ、これを用いて中性子小角散乱等、各種の測定を行うことができる。
 図1、3等の構成において、隣接するコリメータの間隔は、コリメータを機械的に支持して固定する筐体(支持部)25で定まる。このため、使用される各コリメータは同一とした場合でも、筐体25を複数種類設け、その選択によって、集光点Fの位置(焦点距離)を調整することができる。また、単体の筐体25に対する各コリメータの装着位置が複数に設定可能とすることもでき、これによって集光点Fの位置を調整可能とすることもできる。
 こうした構成は、各コリメータと筐体25を別体として製造することによって容易に実現することができる。また、上記のような中性子吸収能が高くコリメータに適した材料は、装置全体の機械的強度等を確保する筐体25を構成する材料としては好ましいとは限らない。更に、コリメータが上記のような平板に開口を形成しただけの単純な構造であれば、コリメータを容易かつ安価に容易に製造することができるのに対して、筐体25をこのような材料で製造することは容易ではない場合もある。このため、各コリメータと筐体25は異なる材料で別体として製造することが特に好ましく、これによって上記のような焦点距離の調整も特に容易となる。
 一方、集光点F付近で得られる中性子線強度あるいは強度分布(ビーム形状)は、コリメータにおける開口以外の部分の中性子透過率等にも影響を受ける。このため、中性子線強度やビーム形状は、上記のようなコリメータの位置(間隔)設定だけでなく、コリメータを構成する材料の設定や厚さによっても調整することが可能である。このため、上記のように各コリメータと筐体25を異なる材料で別体として製造する場合には、開口部の配置や大きさを含んだ形状が同一であり材料が異なる複数のコリメータを製造し、この中からコリメータを選択可能としてもよい。この際、コリメータの厚さの異なるものを設けてもよい。
 このように、上記の中性子光学素子における仕様の変更(集光点Fの位置の設定)は容易であり、かつ、上記の中性子光学素子の基本構造は、図2A、図2Bに示された形状のコリメータを組み合わせることによって得られるため、非常に単純である。このため、この中性子光学素子を安価とすることができる。
 なお、上記の例においては、コリメータにおいて開口は縦横5個ずつに2次元配列された。しかしながら、この構成、個数は適宜設定することができる。前記の通り、分析の位置分解能を高めるためには開口を小さくすることが好ましく、この場合に中性子線強度を高めるためには、開口の個数をより多く設定し、広い範囲からの中性子線を集光させることが好ましい。また、上記の例においては、図2A、図2Bに示されたように、各コリメータに矩形形状の開口が配列して設定された。この場合には、コリメータにおいて無駄な領域を設けずに開口を効率的に配列させることができ、かつ、コリメータの製造が容易である。しかしながら、開口の形状は任意であり、例えばハニカム形状等のものを用いることができる。また、上記の例では開口が2次元配列されたが、開口を1次元配列してその配列方向のみで集光をしてもよい。
 また、図2A、2Bに示されたような、格子状のコリメータは、焼結体をこのような形状として製造することができる。一方で、こうした形状は、他の製造方法によっても容易に製造することができる。図10A、図10Bは、こうしたコリメータ120、130の構造を図2A、図2Bに対応させて示す図である。
 図10Aにおいて、コリメータ120は、図における縦方向に延伸し横方向において並行に複数設けられた複数の柱状の第1の梁部120Aと、横方向に延伸し縦方向において並行に複数設けられた複数の第2の梁部120Bとが、組み合わされて構成される。この場合には、複数の柱状の第1の梁部120Aと、複数の第2の梁部120Bを製造し、その組み合わせの型を変えるだけで、大きさの異なる開口部を具備する複数のコリメータを容易に製造することができる。図10においては単純化して記載されているが、第1の梁部120Aと第2の梁部120Bとが交差する箇所の構造は、適宜設定が可能である。
 図2A。2Bのような形状のコリメータを安価に製造することが困難である材料を用いた場合でも、上記のような単純な形状の第1の梁部120A、第2の梁部120Bは容易に製造できるために、このコリメータ120を容易かつ安価に製造することができる。上記のように、同一の第1の梁部120A、第2の梁部120Bをそれぞれ多数製造した上でその組み合わせの形態を変えてコリメータ120を製造することにより、開口部の大きさの異なる複数のコリメータ120を特に安価に得ることができる。
 図10Bにおいては、コリメータ130は、複数の薄板状の第1の梁部130Aと、複数の薄板状の第2の梁部130Bとが図10Aの場合と同様に組み合わせて構成されている。上記のような柱状の第1の梁部120A、第2の梁部120Bを製造することが困難な場合においても、薄板状の第1の梁部130A、第2の梁部130Bは特に容易に製造することができる。このため、このコリメータ130は特に安価に得ることができ、特に加工の難しい材料を用いた場合でもこのコリメータ130を得ることができる。
 また、上記の例では、この中性子光学素子がRANSと組み合わされるものとしたが、同様に、大強度陽子加速器J-PARC(Japan Proton Accelerator Research Complex)による陽子線が照射されて中性子を発するターゲットである面光源等に対しても、この中性子光学素子を同様に用いることによって、同様の効果を奏することは明らかである。特に、熱中性子を発する面光源に関しては、この中性子光学素子は有効である。
1、2 中性子源
10 中性子面光源
11 Be箔
12 中性子減速材(熱中性子発生部)
13 接合材
20、30、31、32 中性子光学素子
21 第1コリメータ(コリメータ)
21A 開口(上流側開口)
22 第2コリメータ(コリメータ)
22A 開口(下流側開口)
23 第3コリメータ(コリメータ)
23A 開口
25 筐体(支持部)
50 検出器
120、130 コリメータ
120A、130A 第1の梁部
120B、130B 第2の梁部
F 集光点
N1~N5、N11、N11、N12、N21、N22、M1、M2 中性子線
S1、S2 散乱中性子線
P 陽子ビーム(陽子線)
S 試料

Claims (12)

  1.  一方向を法線とする面の一方の側の表面から発散するように発せられる中性子線を集光する中性子光学素子であって、
     中性子吸収体で構成され前記一方向と交差する板状であり前記一方向に沿って貫通する複数の開口が配列されて形成された複数のコリメータを具備し、
     前記一方の側と反対の他方の側に設けられた前記コリメータにおける前記開口である上流側開口と、前記一方の側に設けられた前記コリメータにおける前記開口である下流側開口は、同一構成の配列でそれぞれ複数設けられ、
     他方の側に設けられた前記コリメータにおける前記上流側開口の各々と、当該上流側開口の各々に対応した前記配列における前記下流側開口の各々とを結ぶ直線が、前記一方の側に設けられた前記コリメータよりも前記一方の側に設定された集光点を通過するように構成されたことを特徴とする中性子光学素子。
  2.  前記コリメータにおいて、複数の前記開口は、並行に設けられた複数の第1の梁部と、前記第1の梁部と交差するように並行に設けられた第2の梁部と、の組み合わせにより形成されたことを特徴とする請求項1に記載の中性子光学素子。
  3.  前記コリメータは、前記一方向に沿って3つ以上離間して設けられ、
     3つ以上の前記コリメータの中における隣接する2つの前記コリメータからなる複数の組み合わせに対して、共通の前記集光点が設定されたことを特徴とする請求項1又は2に記載の中性子光学素子。
  4.  前記下流側開口の開口幅、前記配列において隣接する前記下流側開口の間隔は、それぞれ前記上流側開口の開口幅、前記配列において隣接する前記上流側開口の間隔よりも小さいことを特徴とする請求項1から請求項3までのいずれか1項に記載の中性子光学素子。
  5.  前記コリメータは、BC焼結体で構成されたことを特徴とする請求項1から請求項4までのいずれか1項に記載の中性子光学素子。
  6.  前記コリメータは、BC、Gd、Cdのいずれかで構成されたことを特徴とする請求項1から請求項3までのいずれか1項に記載の中性子光学素子。
  7.  複数の前記コリメータを、前記一方向に沿った離間した箇所において、前記一方向に沿った間隔を固定して支持する支持部を具備し、
     前記支持部が複数種類準備された中での前記支持部の選択により、あるいは前記コリメータの前記支持部に対する固定位置の調整により、前記一方向に沿って隣接する前記コリメータの間隔が調整可能とされたことを特徴とする請求項1から請求項6までのいずれか1項に記載の中性子光学素子。
  8.  前記開口を含んだ形態が同一であり異なる材料で構成された複数の前記コリメータが準備された中で、前記コリメータが選択されて用いられることを特徴とする請求項1から請求項7までのいずれか1項に記載の中性子光学素子。
  9.  表面から熱中性子線を発する板状の熱中性子発生部を具備する中性子面光源と、請求項1から請求項8までのいずれか1項に記載の中性子光学素子とが組み合わされたことを特徴とする中性子源。
  10.  最も前記他方の側に設けられた前記コリメータと前記熱中性子発生部とが接する構成とされたことを特徴とする請求項9に記載の中性子源。
  11.  前記中性子光学素子が真空雰囲気中に配置されたことを特徴とする請求項9又は9に記載の中性子源。
  12.  前記中性子面光源において、前記熱中性子発生部は中性子減速材で構成され、
     前記熱中性子発生部に対する前記他方の側にBeで構成された高速中性子発生部が設けられ、前記高速中性子発生部は、前記一方の側に向かって発せられる陽子線で照射される構成とされたことを特徴とする請求項9から請求項11までのいずれか1項に記載の中性子源。
PCT/JP2018/025943 2017-07-19 2018-07-10 中性子光学素子及び中性子源 WO2019017233A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019530972A JP7166637B2 (ja) 2017-07-19 2018-07-10 中性子光学素子及び中性子源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-140192 2017-07-19
JP2017140192 2017-07-19

Publications (1)

Publication Number Publication Date
WO2019017233A1 true WO2019017233A1 (ja) 2019-01-24

Family

ID=65015462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025943 WO2019017233A1 (ja) 2017-07-19 2018-07-10 中性子光学素子及び中性子源

Country Status (2)

Country Link
JP (1) JP7166637B2 (ja)
WO (1) WO2019017233A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422899A (ja) * 1990-05-18 1992-01-27 Nkk Corp 中性子小角散乱装置用ガイド管支持交換機構
JP2005536757A (ja) * 2002-08-25 2005-12-02 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング 中性子小角散乱測定技術用の中性子光学素子
JP2008022920A (ja) * 2006-07-18 2008-02-07 Hitachi Ltd ホウ素中性子捕捉療法用の医療装置
JP2010230328A (ja) * 2009-03-25 2010-10-14 Toshiba Corp 中性子グリッド及びその製造方法
CN102332318A (zh) * 2011-07-18 2012-01-25 中国原子能科学研究院 中子织构衍射仪的第一准直器调整装置
JP2013088265A (ja) * 2011-10-18 2013-05-13 Katsuhiro Dobashi 放射線コリメーター及び該放射線コリメーターの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010559A (ja) 2005-07-01 2007-01-18 Axion Japan:Kk 放射線用コリメータ、放射線検出装置、及び放射線用コリメータの製造方法
JP2008088265A (ja) * 2006-09-29 2008-04-17 Pentel Corp ボールペン用油性インキ組成物
JP6713653B2 (ja) 2015-01-23 2020-06-24 国立大学法人 筑波大学 中性子発生用ターゲット、中性子発生装置、中性子発生用ターゲットの製造方法及び中性子発生方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422899A (ja) * 1990-05-18 1992-01-27 Nkk Corp 中性子小角散乱装置用ガイド管支持交換機構
JP2005536757A (ja) * 2002-08-25 2005-12-02 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング 中性子小角散乱測定技術用の中性子光学素子
JP2008022920A (ja) * 2006-07-18 2008-02-07 Hitachi Ltd ホウ素中性子捕捉療法用の医療装置
JP2010230328A (ja) * 2009-03-25 2010-10-14 Toshiba Corp 中性子グリッド及びその製造方法
CN102332318A (zh) * 2011-07-18 2012-01-25 中国原子能科学研究院 中子织构衍射仪的第一准直器调整装置
JP2013088265A (ja) * 2011-10-18 2013-05-13 Katsuhiro Dobashi 放射線コリメーター及び該放射線コリメーターの製造方法

Also Published As

Publication number Publication date
JPWO2019017233A1 (ja) 2020-05-28
JP7166637B2 (ja) 2022-11-08

Similar Documents

Publication Publication Date Title
US6377661B1 (en) Radiation imager collimator
JP4278108B2 (ja) 超小角x線散乱測定装置
US5263075A (en) High angular resolution x-ray collimator
US9040930B2 (en) Beam sensing
JP2006519394A5 (ja)
US10948432B2 (en) Sample inspection apparatus employing a diffraction detector
JP6306738B2 (ja) 検査デバイス、方法およびシステム
JP7337090B2 (ja) 中性子撮像システムおよび方法
AU2018309611B2 (en) Convergent x-ray imaging device and method
US7787591B2 (en) Primary collimator and systems for x-ray diffraction imaging, and method for fabricating a primary collimator
JP7166637B2 (ja) 中性子光学素子及び中性子源
GB2560165A (en) Sample inspection apparatus employing a diffraction detector
CN212275989U (zh) 一种超强激光驱动多辐射源的同轴测量系统
US8068582B2 (en) Methods and systems for the directing and energy filtering of X-rays for non-intrusive inspection
JP6199282B2 (ja) 放射線計測装置及び放射線計測システム
KR102222309B1 (ko) 동시 계수 기반 즉발감마선 방사화 영상 장치 및 이를 이용한 영상 생성방법
GB2560164A (en) Sample inspection apparatus employing a diffraction detector
WO2020067116A1 (ja) 中性子検出ユニット、非破壊検査システム、中性子用コリメータ
GB2560696A (en) Sample inspection apparatus employing a diffraction detector
GB2560163A (en) Sample inspection apparatus employing a diffraction detector
JPH08211159A (ja) 放射線検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834800

Country of ref document: EP

Kind code of ref document: A1