WO2019017201A1 - 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具 - Google Patents

硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具 Download PDF

Info

Publication number
WO2019017201A1
WO2019017201A1 PCT/JP2018/025305 JP2018025305W WO2019017201A1 WO 2019017201 A1 WO2019017201 A1 WO 2019017201A1 JP 2018025305 W JP2018025305 W JP 2018025305W WO 2019017201 A1 WO2019017201 A1 WO 2019017201A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
content ratio
tool
average
composite
Prior art date
Application number
PCT/JP2018/025305
Other languages
English (en)
French (fr)
Inventor
佐藤 賢一
卓也 石垣
光亮 柳澤
西田 真
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018115431A external-priority patent/JP7025727B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2019017201A1 publication Critical patent/WO2019017201A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present invention is a high-speed interrupted cutting process in which an impactive load acts on the cutting edge while generating high heat such as alloy steel, and the hard coating layer has excellent chipping resistance and wear resistance.
  • the present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool) that exhibits excellent cutting performance over long-term use.
  • tungsten carbide hereinafter referred to as WC
  • TiCN titanium carbonitride
  • cBN cubic boron nitride
  • a coated tool in which a Ti—Al-based composite nitride layer is coated by PVD or CVD as a hard coating layer on the surface of the tool base (hereinafter referred to as generically referred to as tool base). It is known to exhibit excellent wear resistance.
  • the coated tool on which the conventional Ti-Al based composite nitride layer or composite carbonitride layer is formed is relatively excellent in wear resistance, an abnormality such as chipping when used under high speed interrupted cutting conditions
  • Various proposals have been made for the improvement of the hard coating layer, since it is prone to wear and tear.
  • Patent Document 1 the surface of a cutting tool substrate made of cemented carbide, cermet or cBN-based ultrahigh-pressure sintered body
  • the surface-coated cutting tool formed by vapor deposition of a composite nitride layer having a composition formula: (Al 1-x Ti x ) N (x is 0.40 to 0.60) and an average layer thickness of 1 to 10 ⁇ m the following (a) A surface-coated cutting tool has been proposed which exhibits excellent fracture resistance in high-speed heavy cutting by vapor deposition of a hard coating layer composed of a composite nitride layer satisfying (b).
  • the measured inclination angle within the range of 0 to 55 degrees with respect to the normal direction is a pitch of 0.25 degree
  • the area ratio of crystal grains in which crystal orientation ⁇ 111> exists in the inclination angle section within the range of 0 to 15 degrees is 50% of the total area of the crystal grains
  • B The ratio of small angle grain boundaries where the angle between adjacent crystal grains forming the grain boundaries is more than 0 ° and not more than 15 ° is 50% or more of the total grain boundaries
  • Patent Document 2 when the diffraction intensity of the (111) plane in the X-ray diffraction of the coating layer is I (111) and the diffraction intensity of the (200) plane is I (200), I (200) / I A surface-coated end mill has been proposed in which the value of (111) is 2.0 or less, and on the above-mentioned coating layer, a composite nitroxide of Ti and Al is further coated.
  • Patent Document 3 proposes a coated cutting tool in which the coating layer contains a refractory layer containing a plurality of subphase groups including aluminum oxynitride or composite aluminum oxynitride and alumina or composite alumina. .
  • JP 2008-264890 A Japanese Patent Application Laid-Open No. 9-291353 JP, 2015-47690, A
  • the present invention solves the above-mentioned problems and provides a coated tool exhibiting excellent chipping resistance and wear resistance over long-term use even when subjected to high-speed interrupted cutting of alloy steel or the like. With the goal.
  • the inventor of the present invention aims to improve the chipping resistance and wear resistance of a coated tool provided with a hard coating layer including at least a composite carbonitride layer of Ti and Al (sometimes expressed as TiAlCN) on a tool substrate.
  • a hard coating layer including at least a composite carbonitride layer of Ti and Al (sometimes expressed as TiAlCN) on a tool substrate.
  • the present inventors diligently studied how positive addition of a trace amount of O not only to the surface of the hard coating layer but also to the thickness direction affects the improvement of the chipping resistance and the abrasion resistance.
  • TiAlCN film obtained by adding a small amount of C to the TiAlN film has a lattice distortion due to the addition of C compared to the TiAlN film, the hardness is improved.
  • a predetermined distribution of a trace amount of O is given in the thickness direction of the coating, the oxidation resistance of the TiAlCN coating itself is improved, and the chipping resistance and the wear resistance in high speed interrupted cutting are more enhanced. Further improvement was found (hereinafter, a layer in which O is positively added to TiAlCN may be referred to as "TiAlCNO layer").
  • Patent Document 2 when oxygen is contained in the outermost layer Ti / Al composite nitride or carbonitride, the coefficient of friction can be reduced and the tool life can be improved by the reduction of cutting heat, Zr, It is possible to improve the oxidation resistance by replacing one or more components of Hf, Y, Si, W, and Cr in the range of 0.05 to 60 at% with respect to Ti, respectively.
  • the former does not mention improvement in oxidation resistance, and does not disclose even a guideline for the amount of oxygen to be contained, and the latter shows improvement in oxidation resistance against Ti.
  • Oxidation resistance are those which do not even suggest the knowledge to improve I.
  • the present invention was made based on the above findings, and “(1) Surface coated cutting in which hard coating layer is provided on the surface of a tool base made of tungsten carbide base cemented carbide, titanium carbonitride base cermet or cubic boron nitride base ultrahigh pressure sintered body
  • the hard coating layer at least includes a composite carbon oxy-nitride layer of Ti and Al having an average layer thickness of 3.0 to 20.0 ⁇ m
  • the composite carbonitrid oxide layer of Ti and Al includes grains having a face-centered cubic structure of NaCl type
  • C Composition The composition of the composite oxycarbonitride layer of the Ti and Al formula: (Ti 1-x Al x ) (C y N 1-y-z O z) when expressed in, Al Ti and Al
  • a surface coated cutting tool characterized in that.
  • (2) The composite carbonitrid oxide layer of Ti and Al is characterized in that the ratio of grains of Ti and Al composite carbonitrid oxide having a face-centered cubic structure of NaCl type is 60 area% or more.
  • the surface-coated cutting tool according to (1) is characterized in that the ratio of grains of Ti and Al composite carbonitrid oxide having a face-centered cubic structure of NaCl type is 60 area% or more.
  • composition of the composite oxycarbonitride lower layer composition formula: (Ti 1-s Al s ) when expressed in (C t N 1-t- u O u), the mean occupying the total amount of Ti and Al in the Al
  • the content ratio s, the average content ratio t in the total amount of C, N and O in C, and the average content ratio u in the total amount of C, N and O in O (however, all of s, t and u are The atomic ratio) satisfies 0.00 ⁇ s ⁇ x, 0.000 ⁇ t ⁇ 0.050, and 0.000 ⁇ u ⁇ 0.100, respectively.
  • the surface-coated cutting tool according to (1) or (2) characterized in that (4) It consists of one or more layers of a carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer, and a carbon oxynitride layer of Ti adjacent to and immediately above the tool substrate,
  • the surface-coated cutting tool according to any one of (1) to (3) having a Ti compound layer of 0.1 to 20.0 ⁇ m as a total average layer thickness.
  • It is characterized by having at least a layer having an aluminum oxide layer having an average layer thickness of 1.0 to 25.0 ⁇ m on the composite carbonitriding oxide layer of Ti and Al.
  • the composite carbonitrid oxide layer of Ti and Al is bisected in the layer thickness direction, the average content ratio of O in the tool substrate side region is z a , and the average content ratio of O in the tool surface side region is The surface-coated cutting tool according to any one of (1) to (4), wherein z a ⁇ z b, where z b (where z a and z b both represent an atomic ratio).
  • the content ratio of O to C, N and O in the total amount of the layer continuously extends from the tool base toward the tool surface in the layer thickness direction of the layer.
  • the surface-coated cutting tool according to (6) which is characterized in that it increases. " It is.
  • the present invention relates to a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate, the hard coating layer comprising at least a TiAlCNO layer having an average layer thickness of 3.0 to 20.0 ⁇ m.
  • the average content ratio y in the total amount and the average content ratio z in the total amount of C, N and O of O are each 0.60 ⁇ x 0.95, 0.010 ⁇ y ⁇ 0.050, and 0.060 ⁇ z ⁇ 0.100.
  • the hard coating layer including the TiAlCNO layer is enhanced in hardness and oxidation resistance, and even when subjected to high-speed interrupted cutting of alloy steel, etc.
  • the coated tool of the invention has excellent chipping resistance and exhibits excellent wear resistance over long-term use. Further, by setting the area ratio of crystal grains having a face-centered cubic structure of NaCl type in the TiAlCNO layer to 60 area% or more, the hardness of the hard coating layer is improved, and more excellent wear resistance is exhibited. .
  • the average content ratio of O in the tool substrate side region is z a and the average content ratio of the tool surface side region is z b , z a ⁇ z b
  • the active addition of a small amount of O to the TiAlCN layer and the distribution that the O average content ratio of the tool surface side area is higher than the tool base side area makes the tool surface side of the TiAlCNO layer during cutting work
  • An oxide layer is likely to be formed in the region, and the oxide layer serves as a protective layer to improve chipping resistance and chipping resistance and to exhibit excellent chipping resistance.
  • the adhesion strength with the hard coating layer is improved and the chipping resistance is further improved. .
  • the hard coating layer of the present invention at least includes a TiAlCNO layer represented by a composition formula: (Ti 1 ⁇ x Al x ) (C y N 1 ⁇ y ⁇ z O z ).
  • the TiAlCNO layer has high hardness and excellent chipping resistance and abrasion resistance, but the effect is particularly exhibited when the average layer thickness is 3.0 to 20.0 ⁇ m. This is because if the average layer thickness is less than 3.0 ⁇ m, the wear resistance over a long period of use can not be sufficiently secured because the layer thickness is thin, while if the average layer thickness exceeds 20.0 ⁇ m, TiAlCNO The crystal grains of the layer tend to be coarsened and chipping tends to occur. Therefore, the average layer thickness was set to 3.0 to 20.0 ⁇ m. More preferably, it is 5.0 to 15.0 ⁇ m.
  • Average composition of TiAlCNO layer The composition of the TiAlCNO layer in the present invention is The average content ratio (hereinafter referred to as “average content ratio of Al”) x in the total content of Ti and Al of Al is The average content ratio of C to C, N and O in the total amount (hereinafter referred to as “average content ratio of C”) y, The average content ratio of C to O, the total content of N and O (hereinafter referred to as “the average content ratio of O”) z, In order to satisfy 0.60 ⁇ x ⁇ 0.95, 0.010 ⁇ y ⁇ 0.050, 0.060 ⁇ z ⁇ 0.100 (where x, y and z are all atomic ratios), respectively. Determined.
  • the reason is as follows.
  • the average content ratio x of Al is less than 0.60, the hardness of the TiAlCNO layer is inferior, and therefore, when it is subjected to high speed intermittent cutting of alloy steel or the like, the wear resistance is not sufficient. If it exceeds 95, the average content of Ti relatively decreases, so embrittlement tends to occur, and the chipping resistance decreases. Therefore, 0.60 ⁇ x ⁇ 0.95, but more preferably 0.70 ⁇ x ⁇ 0.90. Further, the reason why the average content ratio y of C is set to 0.010 ⁇ y ⁇ 0.050 is because hardness can be improved while maintaining the chipping resistance in the above-mentioned range.
  • the average content ratio z of O is less than 0.060, the oxidation resistance is not sufficiently imparted, and if it exceeds 0.100, segregation of the oxide occurs, which is not preferable because the chipping resistance is lowered. .
  • the area ratio of crystal grains having a face-centered cubic structure of the NaCl type in the TiAlCNO layer is preferably 60 area% or more.
  • the area ratio is more preferably 75 area% or more.
  • Average O content of tool substrate side and tool surface side in TiAlCNO layer In the TiAlCNO layer, in a region obtained by dividing the layer into two in the layer thickness direction, when an average content ratio of O in the tool substrate side region is z a and an average content ratio of O in the tool surface side region is z b , z By being a ⁇ z b , an oxide is easily formed in the tool surface side area at the time of cutting, and this oxide serves as a protective layer to improve chipping resistance and chipping resistance.
  • z b it is desirable that 0.100 ⁇ z b ⁇ 0.150.
  • the lower layer adjacent to and adjacent to the TiAlCNO layer may be a composite carbonitrided lower layer of Ti and Al having a different composition from that of the TiAlCNO layer (hereinafter referred to as “lower TiAlCNO layer”. You may provide "a lower layer.” By providing this lower TiAlCNO layer, it is possible to reliably exhibit better chipping resistance and wear resistance over long-term use.
  • the composition of the lower TiAlCNO layer is The average content ratio (hereinafter referred to as “average content ratio of Al”) s in total content of Ti and Al of Al is The average content ratio of C to C, N and O in the total amount (hereinafter referred to as “average content ratio of C”) t
  • the average content ratio of C, N and O in the total amount of O (hereinafter referred to as “average content ratio of O”) u is In each case, 0.00 ⁇ s ⁇ x, 0.000 ⁇ t ⁇ 0.050, 0.000 ⁇ u ⁇ 0.100 (where s, t and u are all atomic ratios) are determined to be satisfied. The reason is as follows.
  • the hardness is improved while maintaining the chipping resistance, and when it is smaller than x, the adhesion between the TiAlCNO layer and the lower layer on the tool substrate or the tool substrate is improved, and the peel resistance is improved. . On the other hand, if it is larger than x, the adhesion strength is lowered and the peel resistance is lowered.
  • the hardness can be improved by containing C, because the average content ratio t of C is set to 0.000 ⁇ t ⁇ 0.050, and the average content ratio is in the range of 0.050 or less If it is, it is because hardness can be improved maintaining chipping resistance.
  • the chipping resistance is improved, but when the average content ratio u exceeds 0.100, segregation of the oxide occurs, which is not preferable because the chipping resistance is lowered.
  • the layer thickness of the lower TiAlCNO layer is 0.05 to 1.00 ⁇ m, the adhesion strength between the TiAlCNO layer and the surface of the tool base is improved, and the chipping resistance is improved. If the thickness is less than 0.05 ⁇ m, the effect of the lower TiAlCNO layer can not be sufficiently exhibited. If the thickness is more than 1.00 ⁇ m, the adhesion strength with the TiAlCNO layer is reduced, and the chipping resistance is reduced. It was defined as 00 ⁇ m.
  • the content of O in the TiAlCNO layer is preferably continuously increased in the layer thickness direction from the tool substrate side to the tool surface side. If it is continuously increased, an oxide is more likely to be formed on the tool surface side, and this oxide layer becomes a protective layer to further improve chipping resistance and chipping resistance.
  • to continuously increase means to measure the content ratio of O every 0.5 ⁇ m in the layer thickness direction from immediately above the tool base to the tool surface, and use that value using the least squares method. When linear approximation is performed, it means that a straight line with a positive inclination is obtained in the layer thickness direction from the tool base side toward the tool surface side.
  • conditions for forming the TiAlCNO layer and the lower TiAlCNO layer of the present invention are, for example, as follows.
  • Reactive gas composition (% below is% by volume to the total of the gas group A and the gas group B combined)
  • Gas group A NH 3 : 2.0 to 6.0%
  • H 2 65.0 to 75.0%
  • Gas group B AlCl 3 : 0.6 to 0.9%
  • TiCl 4 0.2 to 0.3%
  • CO 0.5 to 1.0%
  • N 2 : 0.0 to 10.0%
  • H 2 the rest
  • Reaction atmosphere temperature 700 to 900 ° C
  • Supply cycle 1.0 to 5.0 seconds
  • Gas supply time per cycle 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B 0.10 to 0.20 seconds
  • gas group Addition of CO as a component of B is a feature for producing the coated tool according to the present invention.
  • This CO gas is a source of C and O of the TiAlCNO layer.
  • a source of C and O it can also be used CO 2 gas.
  • the conditions for forming the lower TiAlCNO layer provided immediately below the TiAlCNO layer of the present invention are as follows, for example.
  • Reactive gas composition (% below is% by volume to the total of the gas group A and the gas group B combined)
  • Gas group A NH 3 : 2.0 to 6.0%, H 2 : 65.0 to 75.0%
  • Gas group B AlCl 3 : 0.2 to 0.5%, TiCl 4 : 0.3 to 0.5%, CO: 0.0 to 1.0%, C 2 H 4 : 0.0 to 4.
  • reaction atmosphere pressure 4.5 ⁇ 5.0 kPa
  • Reaction atmosphere temperature 700 to 900 ° C
  • Supply cycle 1.0 to 5.0 seconds
  • Gas supply time per cycle 0.15 to 0.25 seconds
  • Phase difference between gas group A and gas group B supply 0.10 to 0.20 seconds
  • the conditions for forming a TiAlCNO layer having different average contents of oxygen on the tool base side and the tool surface side of the present invention are as follows, for example.
  • % of reaction gas composition is volume% with respect to the whole which set gas group A and gas group B together. 1.
  • Gas group A NH 3 : 2.0 to 5.0%, H 2 : 65.0 to 75.0%
  • Gas group B AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, CO 2 : 0.0 to 0.6%, N 2 : 0.0 to 10.0 %, H 2 : Remaining reaction pressure: 4.5 to 5.0 kPa Reaction atmosphere temperature: 700 to 900 ° C
  • Supply cycle 1.0 to 5.0 seconds
  • Gas supply time per cycle 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds 2.
  • Tool surface area Gas group A: NH 3 : 2.0 to 5.0%, H 2 : 65.0 to 75.0%
  • Supply cycle 1.0 to 5.0 seconds
  • Gas supply time per cycle 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds 3.
  • the present invention has sufficient chipping resistance and wear resistance by providing the TiAlCNO layer as a hard covering layer, and a lower TiAlCNO layer having a composition different from that of the TiAlCNO layer, but a carbide layer of Ti, a nitride layer,
  • a tool substrate comprising a lower layer comprising a Ti compound layer comprising one or more layers of a carbonitride layer, a carbon oxide layer and a carbon oxynitride layer and having a total average layer thickness of 0.1 to 20.0 ⁇ m
  • At least an aluminum oxide layer is provided as a top layer on the TiAlCNO layer with a total average layer thickness of 1.0 to 25.0 ⁇ m (with z a ⁇ z b Together with the effects exhibited by these layers, at times except for some time, it is possible to exert even better abrasion resistance and thermal stability.
  • the total average layer thickness of the lower layer is less than 0.1 ⁇ m, the effect of the lower layer is not sufficiently exhibited.
  • the crystal grains of the lower layer are easily coarsened and chipping occurs It becomes easy to do.
  • the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 ⁇ m, the effect of the upper layer is not sufficiently exhibited, while if it exceeds 25.0 ⁇ m, the crystal grains of the upper layer are easily coarsened. , Prone to chipping.
  • the coating tool of this invention WHEREIN: The schematic diagram which laminated
  • coated tool the schematic diagram which laminated
  • coated tool of the present invention will be specifically described by way of examples.
  • the case where WC-based cemented carbide or TiCN-based cermet is used as a tool substrate is described, but the same applies to the case where a cBN-based ultra-high pressure sintered body is used as a tool substrate.
  • Example 1 WC powder, TiC powder, TaC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder, all having an average particle diameter of 1 to 3 ⁇ m, are prepared as raw material powders, and these raw material powders are compounded as shown in Table 1
  • Add to the composition add a wax, mix in a ball mill in acetone for 24 hours, dry under reduced pressure, press-mold into a green compact of a predetermined shape at a pressure of 98 MPa, and press the green compact in a vacuum of 5 Pa 1370 Vacuum sintered under a condition of holding for 1 hour at a predetermined temperature in the range of ⁇ 1470 ° C, and after sintering, manufacture tool substrates A to C made of WC base cemented carbide with insert shape of ISO standard SEEN 1203 AFSN respectively did.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are compounded into the composition shown in Table 2, wet mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa, this green compact
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of a TiCN-based cermet having an insert shape of ISO standard SEEN 1203 AFSN was produced.
  • the film formation conditions by CVD are as follows.
  • the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B combined) as NH 3 : 2.0 to 6.0% as gas group A, H 2 : 65.0 to 75 .0%, AlCl 3 as gas group B: 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, CO: 0.5 to 1.0%, N 2 : 0.0 to 10.0%, H 2 : Remaining, Reaction atmosphere pressure: 4.5 to 5.0 kPa, Reaction atmosphere temperature: 700 to 900 ° C., Supply cycle 1.0 to 5.0 seconds, Gas supply time per cycle 0 Phase difference of 0.
  • the present invention having an average layer thickness shown in Table 7, an average content ratio of Al, an average content ratio x, s, C, an average content ratio y, t, O of z, u by forming a TiAlCNO layer under the above conditions Coated tools 1 to 12 were manufactured.
  • the lower TiAlCNO layer was formed under the forming conditions H to J shown in Tables 4 and 5 before forming the TiAlCNO layer.
  • the lower TiAlCNO layer is formed, for example, of a gas group A consisting of NH 3 and H 2 , a gas group B consisting of AlCl 3 , TiCl 4 , CO, N 2 , H 2 , and reaction gases as a method of supplying each gas.
  • a gas group A consisting of NH 3 and H 2
  • a gas group B consisting of AlCl 3 , TiCl 4 , CO, N 2 , H 2
  • reaction gases as a method of supplying each gas.
  • the composition (vol% with respect to the total of the gas group A and the gas group B combined) is NH 3 as gas group A: 2.0 to 6.0%, H 2 : 65.0 to 75.0%, gas group B As AlCl 3 : 0.2 to 0.5%, TiCl 4 : 0.3 to 0.5%, CO: 0.0 to 1.0%, C 2 H 4 : 0.0 to 4.0%, N 2 : 0.0 to 10.0%, H 2 : remainder, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., feed cycle 1.0 to 5.0 seconds, 1 Gas supply time per cycle 0.15 to 0.25 seconds, phase difference between supply of gas group A and gas group B 0.1 It is obtained by forming a film for a predetermined time with 0 to 0.20 seconds. With respect to the coated tools 6 to 11 of the present invention, the lower layer and / or the upper layer shown in Table 6 were formed under the forming conditions shown in Table 3.
  • the film thicknesses of the tool substrates A to D are formed by CVD under the forming conditions A ′ to G ′ shown in Tables 4 and 5 on the surfaces of the tool substrates A to D, to obtain an average layer thickness shown in Table 8.
  • a hard coating layer including at least a TiAlCNO layer was vapor deposited to produce a comparative coated tool.
  • the TiAlCN layer was formed by using C 2 H 4 gas instead of CO gas for E ′ to G ′.
  • TiAlCNO may be present, and in Table 8, it is described as "TiAlCNO layer".
  • the film formation of the lower TiAlCNO layer before forming the TiAlCNO layer did.
  • the lower layer and / or the upper layer shown in Table 6 were formed under the forming conditions shown in Table 3 for the comparative coated tools 6 to 11.
  • the average layer thickness can be determined by using a scanning electron microscope to select a suitable cross-section (longitudinal cross-section) of the constituent layers of the present invention coated tools 1 to 12 and comparative coated tools 1 to 12 in the direction perpendicular to the tool substrate. ) was selected and observed, and the layer thicknesses at five points in the observation field of view were measured and averaged.
  • an electron beam is irradiated from the sample longitudinal cross-section side in a sample whose longitudinal cross-section has been polished using an electron-probe-micro-analyzer (EPMA)
  • EPMA electron-probe-micro-analyzer
  • the average content ratio y, t of C was determined by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • the average content ratio y, t of C indicates the average value in the depth direction for the TiAlCNO layer and the lower TiAlCNO layer. However, the average content ratio of C excludes the average content ratio of unavoidable C which is contained even if the gas containing C is intentionally not used as a gas raw material.
  • the average content ratios z and u of O in samples obtained by polishing sample cross sections using Auger Electron Spectroscopy (AES), electron beams are applied to each layer from the longitudinal cross section side to obtain Auger electron obtained.
  • the average content ratio z, u of O was determined from the analysis results of. Tables 7 and 8 show the values of x, y, z, s, t and u obtained above (x, y, z, s, t and u are all atomic ratios).
  • the area ratio of crystal grains having a face-centered cubic structure of NaCl type in the TiAlCNO layer is 100 ⁇ m
  • the film thickness is 100 ⁇ m in the longitudinal cross sectional direction (the direction perpendicular to the longitudinal cross section (parallel to the tool substrate surface))
  • the direction is a range of sufficient length in the film thickness measurement range
  • the vertical cross section of the TiAlCNO layer is polished, and an acceleration of 15 kV is applied to the polished surface at an incident angle of 70 degrees using an electron beam backscattering diffraction imager.
  • the dry-type high-speed face milling cutter which is a type of high-speed interrupted cutting of alloy steel, and a center-cut cutting test are conducted to measure the flank wear width of the cutting edge.
  • Tool base WC base cemented carbide, TiCN base cermet, Cutting test: dry high-speed face milling, center cut cutting, Work material: JIS ⁇ SCM 440 block material of width 100 mm, length 400 mm, Speed of rotation: 764 min -1 , Cutting speed: 300 m / min, Notch: 3.0 mm, Single blade feed amount: 0.30 mm / blade, Cutting time: 8 minutes, (Normal cutting speed: 150 to 200 m / min) Table 9 shows the results.
  • Example 2 Prepare WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m as raw material powders, Add the wax to the formulation shown in Table 10, add wax, ball mill mix in acetone for 24 hours, dry under reduced pressure, press-form into a green compact of a specified shape with a pressure of 98 MPa, and press this green compact Vacuum sintering is performed in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 ° C. to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to honing of R: 0.07 mm to obtain an ISO standard.
  • Tool substrates ⁇ to ⁇ made of WC-based cemented carbide with an insert shape of CNMG 120 412 were respectively manufactured.
  • NbC powder NbC powder
  • WC powder Co powder
  • Ni powder having an average particle diameter of 0.5 to 2 ⁇ m
  • These raw material powders are compounded into the composition shown in Table 11, wet mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa, and this green compact is subjected to nitrogen of 1.3 kPa Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, apply a honing process of R: 0.09 mm to the cutting edge portion to obtain a TiCN group having an insert shape of ISO standard / CNMG 120 412.
  • a tool base ⁇ made of cermet was formed.
  • the present invention having an average layer thickness shown in Table 13, an average content ratio of Al, an average content ratio of y, c, and an average content ratio of y, t, O of z, u by forming a TiAlCNO layer under the above conditions Coated tools 13-24 were manufactured. Further, for the coated tools 16 to 21 of the present invention, the lower TiAlCNO layer was formed under the forming conditions H to J shown in Table 4 and Table 5 before forming the TiAlCNO layer as in Example 1. With respect to the coated tools 18 to 23 of the present invention, the lower layer and / or the upper layer shown in Table 12 were formed under the forming conditions shown in Table 3.
  • the coated tool according to the present invention is also subjected to the conditions shown in Table 4 and Table 5 and the average layer thickness shown in Table 14 using the CVD apparatus on the surface of the tool base ⁇ to ⁇ and the tool base ⁇ as well.
  • comparative coated tools 13 to 24 shown in Table 14 were manufactured by vapor deposition of a hard coated layer.
  • the film formation of the lower TiAlCNO layer before forming the TiAlCNO layer did.
  • the lower layer and / or the upper layer shown in Table 12 were formed under the forming conditions shown in Tables 3 to 5 for the comparative coated tools 18 to 23 similarly to the coated tools 18 to 23 of the present invention.
  • the average layer thickness was determined by observing the cross sections of the respective constituent layers of the coated tools 13 to 24 of the present invention and the comparative coated tools 13 to 24 using a scanning electron microscope (magnification: 5000) was measured and averaged.
  • Example 2 the average Al content ratio x, s and C average content ratio y, t for the TiAlCNO layer and the lower TiAlCNO layer of the coated tools 13 to 24 of the present invention and the comparative coated tools 13 to 24.
  • the average content ratio z and u of O was measured, and the area ratio of crystal grains having a face-centered cubic structure of NaCl type in the TiAlCNO layer was determined. The results are shown in Tables 13 and 14.
  • Cutting condition 1 Tool base: WC base cemented carbide, TiCN base cermet, Work material: JIS ⁇ S55C in the longitudinal direction equally spaced four vertical grooved round bar, Cutting speed: 330 m / min, Notch: 2.0 mm, Feeding: 0.2 mm / rev, Cutting time: 5 minutes, (Normal cutting speed is 220m / min),
  • Cutting condition 2 Tool base: WC base cemented carbide, TiCN base cermet, Work material: JIS ⁇ FCD 600 longitudinal direction equally spaced four vertical grooved round bar, Cutting speed: 300 m / min, Notch: 2.0 mm, Feeding: 0.2 mm / rev, Cutting time: 5 minutes, (Normal cutting speed is 180m / min), Table 15 shows the results of the cutting test.
  • Example 3 Using CVD apparatus on the surfaces of the tool substrates A to D shown in Tables 1 and 2, under the forming conditions K to N shown in Tables 16 and 17, consist of K1 to M1, ie, NH 3 and H 2 Gas group A and gas group B consisting of AlCl 3 , TiCl 4 , CO 2 , N 2 and H 2 , and reaction gas composition (% for gas group A and gas group B together as a method for supplying each gas (NH 3 : 2.5 to 5.0% as gas group A, 68.0 to 75.0% as H 2 ), and AlCl 3 as gas group B: 0.7 to 0.9.
  • reaction atmosphere pressure 4.5 ⁇ 5.0kPa
  • reaction atmosphere temperature 700 to 900 ° C
  • supply cycle 1.0 to 3.0 seconds
  • 1 cycle per cycle The phase difference between the supply of gas group A and gas group B is 0.10 to 0.15 seconds, and film formation on the tool substrate side area is performed by CVD for a predetermined time. went.
  • K to N indicating formation conditions shown in Tables 16 and 17, K2 to M2, that is, a gas group A consisting of NH 3 and H 2 , AlCl 3 , TiCl 4 , CO 2 , N
  • reaction gas composition (% is% by volume to the total of the gas group A and the gas group B combined), NH 3 : 2.5 to 5.0%, H 2 : 68.0 to 75.0%, AlCl 3 as gas group B: 0.7 to 0.9%, TiCl 4 : 0.2 to 0.3%, CO 2 : 0.
  • the CO 2 gas ratio is continuously increased (monotonous increase function is increased) from the film formation start time to the film formation end time, and the layer thickness direction of the TiAlCNO layer Film formation was performed so that the content ratio of O continuously increased from the tool substrate side region toward the tool surface region side (for details, see Tables 16 and 17).
  • the lower TiAlCNO layer was formed under the forming conditions H and J shown in Table 4 and Table 5 before forming the TiAlCNO layer as in Example 1.
  • the lower layers shown in Table 18 were formed under the forming conditions shown in Table 3 for the coated tools 28 to 30 of the present invention.
  • the present invention having an average layer thickness shown in Table 19, an average content ratio of Al, an average content ratio x of s, C and an average content ratio z of u of t, O by forming a TiAlCNO layer under the above conditions Coated tools 25-30 were produced.
  • the average layer thickness was determined by observing the cross-sections of the respective constituent layers of the coated tools 25 to 30 of the present invention and the comparative coated tools 25 to 30 using a scanning electron microscope (magnification: 5000). Was measured and averaged.
  • the average content ratio x of aluminum, the average content ratio y of s and C, y, t, and the average content ratio z of O of TiAlCNO layers of the coated tools 25 to 30 according to the present invention and the comparative coated tools 25 to 30 are measured.
  • the area ratio of crystal grains having a face-centered cubic structure of NaCl type in the TiAlCNO layer was determined in the same manner as in Examples 1 and 2.
  • the presence or absence of a change in the layer thickness direction of the average content ratio z a , z b value of O and the content ratio of O was measured on the tool substrate side and the tool surface side. The results are shown in Tables 19 and 20.
  • a dry high-speed face milling which is a type of high-speed interrupted cutting of cast iron shown below
  • a center cut cutting test was carried out for the coated tools 25 to 28 of the present invention and the comparative coated tools 25 to 28.
  • dry type high speed face milling which is a kind of high speed interrupted cutting of alloy steel shown below
  • center cut cutting processing test is carried out. The wear width was measured.
  • Cutting condition 1 Tool base: WC base cemented carbide, TiCN base cermet, Cutting test: dry high-speed face milling, center cut cutting, Work material: JIS ⁇ FCD 600 block material of width 100mm, length 400mm, Speed of rotation: 764 min -1 , Cutting speed: 300 m / min, Notch: 2.0 mm, Single-edge feed: 0.20 mm / blade, Cutting time: 8 minutes, (Normal cutting speed: 180 to 220 m / min)
  • Cutting condition 2 Tool base: WC base cemented carbide, TiCN base cermet, Cutting test: dry high-speed face milling, center cut cutting, Work material: JIS ⁇ SCM 440 block material of width 100 mm, length 400 mm, Rotation speed: 802 min -1 , Cutting speed: 315 m / min, Notch: 3.0 mm, Single-edge feed: 0.20 mm / blade, Cutting time: 8 minutes, (Normal cutting speed: 150 to 200 m / min) Table 21 shows the results.
  • the coated tool of the present invention contains grains having a face-centered cubic structure of the NaCl type in the TiAlCNO layer, and the average content of predetermined Al, average content of C High hardness and high oxidation resistance due to having an average content ratio of O and O.
  • high speed interrupted cutting with high heat generation and intermittent high impact acting on the cutting edge Even when used in processing, it exhibits excellent wear resistance over long-term use without chipping and breakage.
  • the coated tool of the present invention can be used not only as a high-speed interrupted cutting of alloy steel but also as a coated tool for various work materials, and exhibits excellent cutting performance over long-term use. Therefore, it is possible to cope with the demand for high performance of the cutting device, labor saving and energy saving of the cutting process, and cost reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

合金鋼等の高速断続切削等に供した場合であっても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具を提供する。 工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、 (a)前記硬質被覆層は、平均層厚3.0~20.0μmのTiとAlの複合炭窒酸化物層を少なくとも含み、 (b)前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有する結晶粒を含み、 (c)前記TiとAlの複合炭窒酸化物層の組成を組成式:(Ti1-xAl)(C1-y-z)で表した場合、0.60≦x≦0.95、0.010≦y≦0.050、0.060≦z≦0.100を満足する、 ことを特徴とする表面被覆切削工具。

Description

硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具
 本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層が優れた耐チッピング性、耐摩耗性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti-Al系の複合窒化物層をPVDやCVDにより被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
 ただ、前記従来のTi-Al系の複合窒化物層や複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
 例えば、特許文献1には、超硬合金、サーメットあるいはcBN基超高圧焼結体からなる切削工具基体の表面に、
 組成式:(Al1-XTi)N(Xは0.40~0.60)、平均層厚1~10μmの複合窒化物層を蒸着形成した表面被覆切削工具において、下記(a)、(b)を満たす複合窒化物層からなる硬質被覆層を蒸着形成することにより高速重切削加工で優れた耐欠損性を発揮する表面被覆切削工具が提案されている。
(a)表面研磨面の法線方向に対する結晶粒の結晶方位<111>がなす傾斜角について、法線方向に対して0~55度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0~15度の範囲内の傾斜角区分に結晶方位<111>が存在する結晶粒の面積割合が結晶粒全面積の50%以上
(b)結晶粒界を構成する隣り合う結晶粒同士のなす角が0度を超え15度以下である小角粒界の割合が全粒界の50%以上
 また、特許文献2には、被覆層のX線回折における(111)面の回折強度をI(111)、(200)面の回折強度をI(200)としたときにI(200)/I(111)の値が2.0以下であり、前記被覆層の上に更にTiとAlの複合窒酸化物を被覆した表面被覆エンドミルが提案されている。
 加えて、特許文献3には、被覆層が、オキシ窒化アルミニウムまたは複合オキシ窒化アルミニウムおよびアルミナまたは複合アルミナを含む、複数の副相群を含む耐火性層を含有した被覆切削工具が提案されている。
特開2008-264890号公報 特開平9-291353号公報 特開2015-47690号公報
 近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。
 しかし、前記特許文献1~3で提案されている被覆工具では、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工において、耐チッピング、耐摩耗性が未だ十分ではなく、満足できる工具寿命を有しているとはいえない。
 そこで、本発明は前記課題を解決し、合金鋼等の高速断続切削等に供した場合であっても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。
 本発明者は、TiとAlとの複合炭窒化物層(TiAlCNと表すことがある)を少なくとも含む硬質被覆層を工具基体に設けた被覆工具の耐チッピング性、耐摩耗性の改善を図るべく、特に、当該硬質被覆層の表面のみならず、厚さ方向にわたっての微量のOの積極的な添加が耐チッピング性、耐摩耗性の向上にどのような影響を与えるかについて鋭意検討した。
 すなわち、TiAlN皮膜に微量のCを添加したTiAlCN皮膜はTiAlN皮膜に比して、Cの添加による格子歪みを有するために硬さが向上しているものであるが、さらに、微量のOを積極的に添加すると、加えて、皮膜の厚さ方向に微量のOの所定の分布を与えると、TiAlCN皮膜自体の耐酸化性が向上して、高速断続切削における耐チッピング性、耐摩耗性がより一層向上することを知見した(以下、TiAlCNにOを積極的に添加した層を「TiAlCNO層」と表すことがある)。
 なお、前記特許文献2では、最外層のTiとAlの複合窒化物、炭窒化物に酸素を含有させると、摩擦係数の低減が可能となり切削熱の低減によって工具寿命が向上すること、Zr、Hf、Y、Si、W、Crのうちの1種または2種以上の成分をTiに対して0.05~60at%の範囲で置き換えることにより耐酸化性の向上が可能となることが、それぞれ、記載されているものの、前者は耐酸化性の向上についての言及はなく、しかも、含有させる酸素量については指針となるものさえ開示しておらず、後者は耐酸化性の向上はTiに対してZr等の置き換えによってもたらされるとの記載に留まっており、いずれも、微量のOの積極的な添加により、工具基体表面の法線方向のどの部分においてもTiAlCNOが形成されることによって耐酸化性が向上する前記知見を示唆すらしないものである。
 本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚3.0~20.0μmのTiとAlの複合炭窒酸化物層を少なくとも含み、
(b)前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有する結晶粒を含み、
(c)前記TiとAlの複合炭窒酸化物層の組成を組成式:(Ti1-xAl)(C1-y-z)で表した場合、AlのTiおよびAlの合量に占める平均含有割合x、CのC、NおよびOの合量に占める平均含有割合y、並びに、OのC、NおよびOの合量に占める平均含有割合z(ただし、x、yおよびzはいずれも原子比)は、それぞれ、0.60≦x≦0.95、0.010≦y≦0.050、0.060≦z≦0.100を満足する、
ことを特徴とする表面被覆切削工具。
(2)前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有するTiとAl複合炭窒酸化物の結晶粒の占める割合が60面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合炭窒酸化物層と隣接してその直下に、前記TiとAlの複合炭窒酸化物層とは組成の異なる平均層厚0.05~1.00μmのTiとAlの複合炭窒酸化物下部層を有し、
 当該複合炭窒酸化物下部層の組成を組成式:(Ti1-sAl)(C1-t-u)で表した場合、AlのTiおよびAlの合量に占める平均含有割合s、CのC、NおよびOの合量に占める平均含有割合t、並びに、OのC、NおよびOの合量に占める平均含有割合u(ただし、s、tおよびuはいずれも原子比)は、それぞれ、0.00<s<x、0.000<t≦0.050、0.000<u≦0.100を満足する、
ことを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記工具基体に隣接してその直上に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、合計平均層厚として0.1~20.0μmのTi化合物層を有することを特徴とする(1)~(3)のいずれかに記載の表面被覆切削工具。
(5)前記TiとAlの複合炭窒酸化物層の上に、1.0~25.0μmの平均層厚を有する酸化アルミニウム層を有する層を少なくとも有することを特徴とする(1)~(4)のいずれかに記載の表面被覆切削工具。
(6)前記TiとAlの複合炭窒酸化物層は、層厚方向に2等分し、工具基体側領域のOの平均含有割合をz、工具表面側領域のOの平均含有割合をz(ただし、zおよびzはいずれも原子比)とするとき、z<zであることを特徴とする(1)~(4)に記載の表面被覆切削工具。
(7)前記TiとAlの複合炭窒酸化物層において、OのC、NおよびOの合量に占める含有割合が、当該層の層厚方向で工具基体から工具表面方向に向かって連続的に増加することを特徴とする(6)に記載の表面被覆切削工具。」
である。
 本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層として、平均層厚3.0~20.0μmのTiAlCNO層を少なくとも含み、該TiAlCNO層を、組成式:(Ti1-xAl)(C1-y-z)で表した場合、AlのTiおよびAlの合量に占める平均含有割合x、CのC、NおよびOの合量に占める平均含有割合y、並びに、OのC、NおよびOの合量に占める平均含有割合z(ただし、x、yおよびzはいずれも原子比)が、それぞれ、0.60≦x≦0.95、0.010≦y≦0.050、0.060≦z≦0.100を満足する。すなわち、微量のOの積極的な添加により、TiAlCNO層を含む硬質被覆層の高硬度化と耐酸化性がもたらされ、合金鋼等の高速断続切削加工に供した場合であっても、本発明の被覆工具は優れた耐チッピング性を備えるとともに、長期の使用にわたって優れた耐摩耗性を発揮する。
 また、前記TiAlCNO層におけるNaCl型の面心立方構造を有する結晶粒の面積割合が60面積%以上とすることにより、前記硬質被覆層の硬さが向上し、より優れた耐摩耗性を発揮する。
 さらに、前記TiAlCNO層を層厚方向に2等分し、工具基体側領域のOの平均含有割合をz、工具表面側領域の前記平均含有割合をzとするとき、z<zであることを満足する。すなわち、前記TiAlCN層への微量のOの積極的な添加と、工具基体側領域に比して工具表面側領域のO平均含有割合が高いという分布により、切削加工時に当該TiAlCNO層の工具表面側領域に、酸化物層が形成されやすくなり、この酸化物層が保護層となって耐チッピング性および耐欠損性が向上し、優れた耐チッピング性を発揮する。
 加えて、前記TiAlCNO層とは組成の異なるTiAlCNO層を隣接して工具基体側に下部層として設けたことにより、前記硬質被覆層との付着強度が向上し、一層優れた耐チッピング性を発揮する。
本発明に係る硬質被覆層の模式図の一例であり、()内の層は必要に応じて設けるものである。 本発明に係る硬質被覆層の模式図の他の例であり、工具基体側と工具表面側で酸素の平均含有割合が異なるTiAlCNO層を含むもので、()内の層は必要に応じて設けるものである。
 本発明について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において数値範囲を「~」で表現するとき、その範囲は上限および下限の数値を含んでいる。
TiAlCNO層の平均層厚:
 本発明の硬質被覆層は、組成式:(Ti1-xAl)(C1-y-z)で表されるTiAlCNO層を少なくとも含む。このTiAlCNO層は、硬さが高く、優れた耐チッピング性、耐摩耗性を有するが、特に平均層厚が3.0~20.0μmのとき、その効果が際立って発揮される。これは、平均層厚が3.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCNO層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
 したがって、その平均層厚を3.0~20.0μmと定めた。より好ましくは5.0~15.0μmである。
TiAlCNO層の平均組成:
 本発明におけるTiAlCNO層の組成は、
AlのTiとAlの合量に占める平均含有割合(以下、「Alの平均含有割合」という)xが、
CのC、NとOの合量に占める平均含有割合(以下、「Cの平均含有割合」という)yが、
OのC、NとOの合量に占める平均含有割合(以下、「Oの平均含有割合」という)zが、
それぞれ、0.60≦x≦0.95、0.010≦y≦0.050、0.060≦z≦0.100(ただし、x、y、zはいずれも原子比)を満足するように定める。
 その理由は、以下のとおりである。
 Alの平均含有割合xが0.60未満であると、TiAlCNO層は硬さが劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、0.95を超えると相対的にTiの平均含有割合が減少するため脆化が起こりやすくなり、耐チッピング性が低下する。したがって、0.60≦x≦0.95としたが、より好ましくは0.70≦x≦0.90である。
 また、Cの平均含有割合yを0.010≦y≦0.050と定めたのは、前記範囲において耐チッピング性を保ちつつ硬さを向上させることができるためである。
 さらに、Oの平均含有割合zは、0.060未満であると耐酸化性を十分に与えることがなく、0.100を超えると酸化物の偏析が起こり、耐チッピング性が低下するため好ましくない。
TiAlCNO層内のNaCl型の面心立方構造を有する個々の結晶粒の面積割合:
 前記TiAlCNO層におけるNaCl型の面心立方構造を有する結晶粒の面積割合が60面積%以上であることが好ましい。これにより、高硬度であるNaCl型の面心立方構造を有する結晶粒の面積割合が六方晶構造の結晶粒に比べて相対的に高くなり、硬さが向上するという効果を得ることができる。この面積割合は、より好ましくは75面積%以上である。
TiAlCNO層における工具基体側と工具表面側のO平均含有割合:
 TiAlCNO層において、当該層を層厚方向に2等分した領域において、工具基体側領域のOの平均含有割合をz、工具表面側領域のOの平均含有割合をzとするとき、z<zであることにより、切削加工時に工具表面側領域に酸化物が形成されやすくなり、この酸化物が保護層となって耐チッピング性および耐欠損性が向上する。すなわち、zがzより小さいと、工具基体側領域の酸化物の形成が多くなってしまい、TiAlCNO層と工具基体との付着強度を確保できず耐チッピング性が損なわれてしまう。Oの含有割合の層厚方向の変化については後述する。
 なお、zは、0.100<z≦0.150であることが望ましい。
TiAlCNO層と隣接してその直下に設ける前記TiAlCNO層とは組成の異なるTiとAlの複合炭窒化酸化物下部層:
 本発明では、前記TiAlCNO層と隣接して直下に、前記TiAlCNO層とは組成の異なるTiとAlの複合炭窒化酸化物下部層(以下、「下部TiAlCNO層」ということがあり、表中には「下部層」と表記する)を設けてもよい。
 この下部TiAlCNO層を設けることにより、長期の使用にわたってより優れた耐チッピング性、耐摩耗性を確実に発揮することができる。
 ここで、下部TiAlCNO層の組成は、
AlのTiとAlの合量に占める平均含有割合(以下、「Alの平均含有割合」という)sが、
CのC、NとOの合量に占める平均含有割合(以下、「Cの平均含有割合」という)tが、
OのC、NとOの合量に占める平均含有割合(以下、「Oの平均含有割合」という)uが、
それぞれ、0.00<s<x、0.000<t≦0.050、0.000<u≦0.100(ただし、s、t、uはいずれも原子比)を満足するように定める。
 その理由は、以下のとおりである。
 Alが含有されることで耐チッピング性を保ちつつ硬さが向上し、xより小さいと前記TiAlCNO層と工具基体もしくは工具基体上の下部層との密着性が向上し、耐剥離性が向上する。一方で、xより大きいと付着強度が低下し、耐剥離性が低下する。
 また、Cの平均含有割合tを0.000<t≦0.050と定めたのは、Cを含有させることで、硬さを向上させることができ、平均含有割合が0.050以下の範囲であれば耐チッピング性を保ちつつ硬さを向上させることができるためである。さらに、Oを含有させると耐チッピング性が向上するが、その平均含有割合uは0.100を超えると酸化物の偏析が起こり、耐チッピング性が低下するため好ましくない。
 さらに、下部TiAlCNO層の層厚は0.05~1.00μmのとき、前記TiAlCNO層と工具基体表面との付着強度が向上し、耐チッピング性が向上する。0.05μm未満となると、下部TiAlCNO層の効果を十分に発揮できず、1.00μmより厚くなると前記TiAlCNO層との付着強度が低下し、耐チッピング性が低下するため、0.05~1.00μmと定めた。
TiAlCNO層内の前記Oの含有割合の層厚方向の変化:
 TiAlCNO層内のOの含有割合は、層厚方向に工具基体側から工具表面側に向かって、連続的に増加していることが好ましい。連続的に増加していると工具表面側に酸化物がより一層形成されやすくなり、この酸化物層が保護層となって耐チッピング性および耐欠損性がより向上するためである。
 ここで、本発明において、連続的に増加しているとは、工具基体直上から工具表面まで層厚方向に0.5μmごとのOの含有割合を測定し、その値を最小自乗法を用いて直線近似したとき、当該層厚方向に工具基体側から工具表面側に向かって正の傾きの直線が得られることをいう。
 次に、本発明のTiAlCNO層および下部TiAlCNO層を成膜するための条件を示すと、例えば、以下のとおりである。
反応ガス組成(以下の%は、ガス群Aおよびガス群Bをあわせた全体に対する容量%である)
 ガス群A:NH:2.0~6.0%、H:65.0~75.0%
 ガス群B:AlCl:0.6~0.9%、TiCl:0.2~0.3%、CO:0.5~1.0%、N:0.0~10.0%、H:残り、
 反応雰囲気圧力:4.5~5.0kPa
 反応雰囲気温度:700~900℃
 供給周期1.0~5.0秒
 1周期当たりのガス供給時間0.15~0.25秒
 ガス群Aとガス群Bの供給の位相差0.10~0.20秒
 ここで、ガス群Bの成分としてCOを添加することが本発明に係る被覆工具を製造するための特徴である。このCOガスは、TiAlCNO層のCおよびOの供給源となる。なお、CおよびOの供給源として、COガスを用いることもできる。
 また、本発明のTiAlCNO層の直下に設ける下部TiAlCNO層を成膜するための条件を示すと、例えば、以下のとおりである。
反応ガス組成(以下の%は、ガス群Aおよびガス群Bをあわせた全体に対する容量%である)
 ガス群A:NH:2.0~6.0%、H:65.0~75.0%
 ガス群B:AlCl:0.2~0.5%、TiCl:0.3~0.5%、CO:0.0~1.0%、C:0.0~4.0%、N:0.0~10.0%、H:残り、反応雰囲気圧力:4.5~5.0kPa
 反応雰囲気温度:700~900℃
 供給周期1.0~5.0秒
 1周期当たりのガス供給時間0.15~0.25秒
 ガス群Aとガス群Bの供給の位相差0.10~0.20秒
 また、本発明の工具基体側と工具表面側で酸素の平均含有割合の異なるTiAlCNO層を成膜するための条件を示すと、例えば、以下のとおりである。なお、反応ガス組成の%は、ガス群Aおよびガス群Bをあわせた全体に対する容量%である。
1.工具基体側領域
 ガス群A: NH:2.0~5.0%、H:65.0~75.0%
 ガス群B: AlCl:0.6~0.9%、TiCl:0.2~0.3%、CO:0.0~0.6%、N:0.0~10.0%、H:残り
 反応雰囲気圧力:4.5~5.0kPa
 反応雰囲気温度:700~900℃
 供給周期:1.0~5.0秒
 1周期当たりのガス供給時間:0.15~0.25秒
 ガス群Aとガス群Bの供給の位相差:0.10~0.20秒
2.工具表面側領域
 ガス群A: NH:2.0~5.0%、H:65.0~75.0%
 ガス群B: AlCl:0.6~0.9%、TiCl:0.2~0.3%、CO:0.7~1.0%、N:0.0~10.0%、H:残り
 反応雰囲気圧力:4.5~5.0kPa
 反応雰囲気温度:700~900℃
 供給周期:1.0~5.0秒
 1周期当たりのガス供給時間:0.15~0.25秒
 ガス群Aとガス群Bの供給の位相差:0.10~0.20秒
3.層厚方向に工具基体側から工具表面側に向かってOの含有割合の連続的増加
 TiAlCNO層内のOの含有割合は、層厚方向に工具基体側から工具表面側に向かって、連続的に増加させるために、成膜開始から成膜終了時までCOガスの割合を連続的に増加させながら成膜を行う。
その他の層:
 本発明は、硬質被覆層としての前記TiAlCNO層、当該TiAlCNO層とは組成の異なる下部TiAlCNO層を設けることによって十分な耐チッピング性、耐摩耗性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層を工具基体に隣接して設けた場合、および/または、少なくとも酸化アルミニウム層が1.0~25.0μmの合計平均層厚で上部層として前記TiAlCNO層の上に設けられた場合(z<zであるときを除く)には、これらの層が奏する効果と相俟って、一層優れた耐摩耗性および熱的安定性を発揮することができる。
 ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると上部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
 本発明被覆工具において、上記各層を積層した模式図を図1に示す。
 また、本発明被覆工具において、工具基体側と表面領域側で酸素濃度が異なる層を積層した模式図を図2に示す。
 本発明の被覆工具を実施例により具体的に説明する。
 なお、以下の実施例では、工具基体として、WC基超硬合金あるいはTiCN基サーメットを用いた場合について説明するが、cBN基超高圧焼結体を工具基体として用いた場合も同様である。
<実施例1>
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。
 次に、これらの工具基体A~Dの表面に、CVD装置を用い、TiAlCNO層を形成した。
 CVDによる成膜条件は、次のとおりである。
 表4、表5に示される形成条件A~G、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、CO、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH:2.0~6.0%、H:65.0~75.0%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、CO:0.5~1.0%、N:0.0~10.0%、H:残り、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1.0~5.0秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒とし、所定時間、CVDを行った。
 前記の条件でTiAlCNO層を形成することにより、表7に示す平均層厚、Alの平均含有割合x、s、Cの平均含有割合y、t、Oの平均含有割合z、uを有する本発明被覆工具1~12を製造した。
 また、本発明被覆工具4~9については、前記TiAlCNO層形成前に表4、表5に示される形成条件H~Jにより、下部TiAlCNO層の成膜を行った。なお、下部TiAlCNO層は、例えば、NHとHからなるガス群Aと、AlCl、TiCl、CO、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH:2.0~6.0%、H:65.0~75.0%、ガス群BとしてAlCl:0.2~0.5%、TiCl:0.3~0.5%、CO:0.0~1.0%、C:0.0~4.0%、N:0.0~10.0%、H:残り、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1.0~5.0秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒とし所定時間成膜することで得られる。
 なお、本発明被覆工具6~11については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
 また、比較の目的で、工具基体A~Dの表面に表4、表5に示される形成条件A´~G´でCVDにより成膜を行うことにより、表8に示される平均層厚を有し、少なくともTiAlCNO層を含む硬質被覆層を蒸着形成して比較被覆工具を製造した。なお、E´~G´についてはCOガスの代わりにCガスを使用することで、TiAlCN層を形成した。ただし、酸素の存在が完全否定されないため、TiAlCNOが存在する可能性があり、表8では「TiAlCNO層」と表記している。
 また、本発明被覆工具4~9と同様に、比較被覆工具4~9については、表4~5に示される形成条件H´~J´で、前記TiAlCNO層形成前に下部TiAlCNO層の成膜を行った。
 なお、本発明被覆工具6~11と同様に、比較被覆工具6~11については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
 平均層厚は、本発明被覆工具1~12、比較被覆工具1~12の各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡を用いて適切な倍率(例えば倍率5000倍)を選択して観察し、観察視野内の5点の層厚を測って平均して求めた。
 TiAlCNO層のAlの平均含有割合x、sについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、縦断面を研磨した試料において、電子線を試料縦断面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合x、sを求めた。
 Cの平均含有割合y、tについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合y、tはTiAlCNO層および下部TiAlCNO層についての深さ方向の平均値を示す。
 ただし、Cの平均含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの平均含有割合を除外している。
 Oの平均含有割合z、uについては、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用い、試料断面を研磨した試料において、電子線を縦断面側から各層に照射し、得られたオージェ電子の解析結果よりOの平均含有割合z、uを求めた。
 表7、表8に、前記で求めたx、y、z、s、t、uの値を示す(x、y、z、s、t、uは、いずれも原子比)。
 また、TiAlCNO層におけるNaCl型の面心立方構造を有する結晶粒の面積割合は、測定範囲を、縦断面方向(縦断面に垂直な方向(工具基体表面に平行な方向))に100μm、膜厚方向は膜厚の測定範囲で十分な長さの範囲とし、前記TiAlCNO層の縦断面を研磨し、電子線後方散乱回折像装置を用いて、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で照射して得られる電子線後方散乱回折像に基づき個々の結晶粒の結晶構造を解析することにより求めた。その結果を、表7および表8に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 次に、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~12、比較被覆工具1~12について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
 工具基体:WC基超硬合金、TiCN基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・SCM440 幅100mm、長さ400mmのブロック材、
 回転速度:764 min-1
 切削速度:300 m/min、
 切り込み:3.0 mm、
 一刃送り量:0.30 mm/刃、
 切削時間:8分、
(通常の切削速度:150~200m/min)
 表9に、その結果を示す。
Figure JPOXMLDOC01-appb-T000009
<実施例2>
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。
Figure JPOXMLDOC01-appb-T000010
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。
Figure JPOXMLDOC01-appb-T000011
 次に、これらの工具基体α~γおよび工具基体δの表面に、CVD装置を用い、表4、表5に示される形成条件A~G、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、CO、N、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH:2.0~6.0%、H:65.0~75.0%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、CO:0.5~1.0%、N:0.0~10.0%、H:残り、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1.0~5.0秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、CVDを行った。
 前記の条件でTiAlCNO層を形成することにより、表13に示す平均層厚、Alの平均含有割合x、s、Cの平均含有割合y、t、Oの平均含有割合z、uを有する本発明被覆工具13~24を製造した。
 また、本発明被覆工具16~21については、実施例1と同様に、前記TiAlCNO層形成前に表4、表5に示される形成条件H~Jにより、下部TiAlCNO層の成膜を行った。
 なお、本発明被覆工具18~23については、表3に示される形成条件で、表12に示される下部層および/または上部層を形成した。
 また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、CVD装置を用い、表4および表5に示される条件かつ表14に示される平均層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具13~24を製造した。
 また、本発明被覆工具16~21と同様に、比較被覆工具16~21については、表4~5に示される形成条件H´~J´で、前記TiAlCNO層形成前に下部TiAlCNO層の成膜を行った。
 なお、本発明被覆工具18~23と同様に、比較被覆工具18~23については、表3~表5に示される形成条件で、表12に示される下部層および/または上部層を形成した。
 平均層厚は、本発明被覆工具13~24、比較被覆工具13~24の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて観察し、観察視野内の5点の層厚を測って平均して求めた。
 また、実施例1と同様に、前記本発明被覆工具13~24、比較被覆工具13~24のTiAlCNO層および下部TiAlCNO層について、Alの平均含有割合x、sとCの平均含有割合y、t、Oの平均含有割合z、uを測定し、さらに、前記TiAlCNO層におけるNaCl型の面心立方構造を有する結晶粒の面積割合を求めた。これらの結果を表13、表14に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具13~24、比較被覆工具13~24について、以下に示す、炭素鋼・鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
 工具基体:WC基超硬合金、TiCN基サーメット、
 被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:330 m/min、
 切り込み:2.0 mm、
 送り:0.2 mm/rev、
 切削時間:5 分、
(通常の切削速度は、220m/min)、
切削条件2:
 工具基体:WC基超硬合金、TiCN基サーメット、
 被削材:JIS・FCD600の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:300 m/min、
 切り込み:2.0 mm、
 送り:0.2 mm/rev、
 切削時間:5 分、
(通常の切削速度は、180m/min)、
 表15に、前記切削試験の結果を示す。
Figure JPOXMLDOC01-appb-T000015
<実施例3>
 表1および表2に示した工具基体A~Dの表面に、CVD装置を用い、表16、表17に示される形成条件K~Nにおいて、K1~M1、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、CO、N、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(%は、ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH:2.5~5.0%、H:68.0~75.0%、ガス群BとしてAlCl:0.7~0.9%、TiCl:0.2~0.3%、CO:0.0~0.6%、N:0.0~5.0%、H:残り、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1.0~3.0秒、1周期当たりのガス供給時間0.15~0.20秒、ガス群Aとガス群Bの供給の位相差0.10~0.15秒とし、所定時間、CVDにより、工具基体側領域の成膜を行った。次に、表16、表17に示される形成条件を示す形成記号K~Nにおいて、K2~M2、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、CO、N、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(%は、ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、NH:2.5~5.0%、H:68.0~75.0%、ガス群BとしてAlCl:0.7~0.9%、TiCl:0.2~0.3%、CO:0.7~0.8%、N:0.0~5.0%、H:残り、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1.0~3.0秒、1周期当たりのガス供給時間0.15~0.20秒、ガス群Aとガス群Bの供給の位相差0.10~0.15秒とし、所定時間、CVDにより、工具表面側領域の成膜を行った。
 また、表16、表17に示される形成条件Nでは、成膜開始時から成膜終了時にかけてCOガス割合を連続的に増加(単調増加関数の増加)させ、前記TiAlCNO層の層厚方向にOの含有割合が工具基体側領域から工具表面領域側に向かって連続的に増加するよう、成膜を行った(詳細は表16、表17を参照)。
 また、本発明被覆工具29、30については、実施例1と同様に、前記TiAlCNO層形成前に表4、表5に示される形成条件H、Jにより、下部TiAlCNO層の成膜を行った。
 なお、本発明被覆工具28~30については、表3に示される形成条件で、表18に示される下部層を形成した。
 前記の条件でTiAlCNO層を形成することにより、表19に示す平均層厚、Alの平均含有割合x、s、Cの平均含有割合y、t、Oの平均含有割合z、uを有する本発明被覆工具25~30を製造した。
 また、比較の目的で、同じく工具基体A~Dの表面に、CVD装置を用い、表16、表17に示される形成条件K´~N´で成膜を行うことにより、表20に示される平均層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表20に示される比較被覆工具25~30を製造した。
 また、本発明被覆工具29、30と同様に、比較被覆工具29、30については、表4~5に示される形成条件H´、J´で、前記TiAlCNO層形成前に下部TiAlCNO層の成膜を行った。
 なお、本発明被覆工具28~30と同様に、比較被覆工具29~30については、表3に示される形成条件で、表18に示される下部層を形成した(比較被覆工具28については下部層を設けていない)。
 平均層厚は、本発明被覆工具25~30、比較被覆工具25~30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて観察し、観察視野内の5点の層厚を測って平均して求めた。
 また、前記本発明被覆工具25~30、比較被覆工具25~30のTiAlCNO層について、Alの平均含有割合x、sとCの平均含有割合y、t、Oの平均含有割合z、uを測定し、また、前記TiAlCNO層におけるNaCl型の面心立方構造を有する結晶粒の面積割合を実施例1、2と同様に求めた。さらに、工具基体側と工具表面側でOの平均含有割合z、z値およびOの含有割合の層厚方向の変化の有無を測定した。これらの結果を表19、表20に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 次に、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~4および25~30、比較被覆工具1~4および25~30について、以下に示す、鋳鉄の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。また、本発明被覆工具25~28、比較被覆工具25~28について、以下に示す合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削条件1:
 工具基体:WC基超硬合金、TiCN基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・FCD600 幅100mm、長さ400mmのブロック材、
 回転速度:764 min-1
 切削速度:300 m/min、
 切り込み:2.0 mm、
 一刃送り量:0.20 mm/刃、
 切削時間:8分、
(通常の切削速度:180~220m/min)
切削条件2:
 工具基体:WC基超硬合金、TiCN基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・SCM440 幅100mm、長さ400mmのブロック材、
 回転速度:802 min-1
 切削速度:315 m/min、
 切り込み:3.0 mm、
 一刃送り量:0.20 mm/刃、
 切削時間:8分、
(通常の切削速度:150~200m/min)
 表21に、その結果を示す。
Figure JPOXMLDOC01-appb-T000021
 表9、表15および表21に示される結果から、本発明の被覆工具は、TiAlCNO層にNaCl型の面心立方構造を有する結晶粒を含み、所定のAlの平均含有割合、Cの平均含有割合、Oの平均含有割合を有していることから高硬度でかつ耐酸化性が高く、その結果、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、チッピング、欠損の発生もなく、長期の使用にわたって優れた耐摩耗性を発揮する。
 これに対して、TiAlCNO層において、所定のAlの平均含有割合、Cの平均含有割合、Oの平均含有割合を満足していない比較被覆工具は、高速断続切削加工において、チッピング等の異常損傷の発生、あるいは、摩耗進行により、短時間で寿命に至ることが明らかである。
 前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分に満足する対応ができるものである。

Claims (7)

  1.  炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
    (a)前記硬質被覆層は、平均層厚3.0~20.0μmのTiとAlの複合炭窒酸化物層を少なくとも含み、
    (b)前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有する結晶粒を含み、
    (c)前記TiとAlの複合炭窒酸化物層の組成を組成式:(Ti1-xAl)(C1-y-z)で表した場合、AlのTiおよびAlの合量に占める平均含有割合x、CのC、NおよびOの合量に占める平均含有割合y、並びに、OのC、NおよびOの合量に占める平均含有割合z(ただし、x、yおよびzはいずれも原子比)は、それぞれ、0.60≦x≦0.95、0.010≦y≦0.050、0.060≦z≦0.100を満足する、
    ことを特徴とする表面被覆切削工具。
  2.  前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有するTiとAl複合炭窒酸化物の結晶粒の占める割合が60面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。
  3.  前記TiとAlの複合炭窒酸化物層と隣接してその直下に、前記TiとAlの複合炭窒酸化物層とは組成の異なる平均層厚0.05~1.00μmのTiとAlの複合炭窒酸化物下部層を有し、
     当該複合炭窒酸化物下部層の組成を組成式:(Ti1-sAl)(C1-t-u)で表した場合、AlのTiおよびAlの合量に占める平均含有割合s、CのC、NおよびOの合量に占める平均含有割合t、並びに、OのC、NおよびOの合量に占める平均含有割合u(ただし、s、tおよびuはいずれも原子比)は、それぞれ、0.00<s<x、0.000<t≦0.050、0.000<u≦0.100を満足する、
    ことを特徴とする請求項1または2に記載の表面被覆切削工具。
  4.  前記工具基体に隣接してその直上に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、合計平均層厚として0.1~20.0μmのTi化合物層を有することを特徴とする請求項1~3のいずれかに記載の表面被覆切削工具。
  5.  前記TiとAlの複合炭窒酸化物層の上に、1.0~25.0μmの平均層厚を有する酸化アルミニウム層を有する層を少なくとも有することを特徴とする請求項1~4のいずれかに記載の表面被覆切削工具。
  6.  前記TiとAlの複合炭窒酸化物層は、層厚方向に2等分し、工具基体側領域のOの平均含有割合をz、工具表面側領域のOの平均含有割合をz(ただし、zおよびzはいずれも原子比)とするとき、z<zであることを特徴とする請求項1~4のいずれかに記載の表面被覆切削工具。
  7.  前記TiとAlの複合炭窒酸化物層において、OのC、NおよびOの合量に占める含有割合が、当該層の層厚方向で工具基体から工具表面方向に向かって連続的に増加することを特徴とする請求項6に記載の表面被覆切削工具。
PCT/JP2018/025305 2017-07-18 2018-07-04 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具 WO2019017201A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017139262 2017-07-18
JP2017-139262 2017-07-18
JP2017226489 2017-11-27
JP2017-226489 2017-11-27
JP2018-115431 2018-06-18
JP2018115431A JP7025727B2 (ja) 2017-07-18 2018-06-18 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具

Publications (1)

Publication Number Publication Date
WO2019017201A1 true WO2019017201A1 (ja) 2019-01-24

Family

ID=65015921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025305 WO2019017201A1 (ja) 2017-07-18 2018-07-04 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具

Country Status (1)

Country Link
WO (1) WO2019017201A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820871A (ja) * 1994-07-08 1996-01-23 Toshiba Tungaloy Co Ltd 耐摩耗性被覆部材
JP2003048104A (ja) * 2001-08-06 2003-02-18 Mmc Kobelco Tool Kk 耐摩耗被覆層がすぐれた耐熱塑性変形性を発揮する表面被覆超硬合金製切削工具
JP2004106107A (ja) * 2002-09-18 2004-04-08 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2005256081A (ja) * 2004-03-11 2005-09-22 Kobe Steel Ltd 硬質積層皮膜および硬質積層皮膜の形成方法
JP2009154248A (ja) * 2007-12-27 2009-07-16 Mitsubishi Materials Corp 表面被覆切削工具
JP2012071396A (ja) * 2010-09-29 2012-04-12 Kyocera Corp 表面被覆部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820871A (ja) * 1994-07-08 1996-01-23 Toshiba Tungaloy Co Ltd 耐摩耗性被覆部材
JP2003048104A (ja) * 2001-08-06 2003-02-18 Mmc Kobelco Tool Kk 耐摩耗被覆層がすぐれた耐熱塑性変形性を発揮する表面被覆超硬合金製切削工具
JP2004106107A (ja) * 2002-09-18 2004-04-08 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2005256081A (ja) * 2004-03-11 2005-09-22 Kobe Steel Ltd 硬質積層皮膜および硬質積層皮膜の形成方法
JP2009154248A (ja) * 2007-12-27 2009-07-16 Mitsubishi Materials Corp 表面被覆切削工具
JP2012071396A (ja) * 2010-09-29 2012-04-12 Kyocera Corp 表面被覆部材

Similar Documents

Publication Publication Date Title
JP6620482B2 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP6478100B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6417959B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2014163081A1 (ja) 表面被覆切削工具
CN107405695B (zh) 硬质包覆层发挥优异的耐崩刀性的表面包覆切削工具
WO2016047584A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP7098932B2 (ja) 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP6507959B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6905807B2 (ja) 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
WO2016148056A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2016052479A1 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP3963354B2 (ja) 被覆切削工具
JP7021607B2 (ja) 硬質被覆層が優れた耐欠損性および耐チッピング性を発揮する表面被覆切削工具
JP6857298B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6709536B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP7025727B2 (ja) 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具
JP6650108B2 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP5035980B2 (ja) 高速ミーリング加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具およびその製造方法
JP6761597B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2016190332A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2018161739A (ja) 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5035979B2 (ja) 高速ミーリング加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具およびその製造方法
JP2018051674A (ja) 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
JP6857299B2 (ja) 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP6957824B2 (ja) 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835012

Country of ref document: EP

Kind code of ref document: A1