WO2019017018A1 - 内視鏡装置及び計測支援方法 - Google Patents

内視鏡装置及び計測支援方法 Download PDF

Info

Publication number
WO2019017018A1
WO2019017018A1 PCT/JP2018/014389 JP2018014389W WO2019017018A1 WO 2019017018 A1 WO2019017018 A1 WO 2019017018A1 JP 2018014389 W JP2018014389 W JP 2018014389W WO 2019017018 A1 WO2019017018 A1 WO 2019017018A1
Authority
WO
WIPO (PCT)
Prior art keywords
captured image
view
display
field
objective lens
Prior art date
Application number
PCT/JP2018/014389
Other languages
English (en)
French (fr)
Inventor
岳一 龍田
慎一郎 園田
一誠 鈴木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880039620.2A priority Critical patent/CN110769733A/zh
Priority to JP2019530875A priority patent/JPWO2019017018A1/ja
Priority to EP18835490.6A priority patent/EP3656274A4/en
Publication of WO2019017018A1 publication Critical patent/WO2019017018A1/ja
Priority to US16/703,635 priority patent/US11160438B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0605Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for spatially modulated illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the present invention relates to an endoscope apparatus and a measurement support method.
  • the endoscope apparatus it is performed to measure the distance to the observation object, the size of the observation object, and the like.
  • Patent Document 1 observation is performed in which planar light is irradiated by processing a captured image obtained by imaging an observation region while sweeping planar light from the tip of an endoscope and sweeping planar light.
  • An endoscopic device for obtaining three-dimensional information of an object is described.
  • planar light is irradiated from the tip of the endoscope, and a mesh line indicating the locus of the planar light and a curve where the planar light intersects with the observation target are superimposed and displayed on the captured image.
  • An endoscopic device is described. In this endoscope apparatus, when two points on a curve superimposed on a captured image are selected, the distance between the two points is calculated and displayed.
  • Patent Document 1 and Patent Document 2 irradiate planar light within the field of view of the objective optical system of the endoscope.
  • the field of view of the endoscope's objective optical system is distorted at its periphery. For this reason, it is difficult to accurately measure the observation target in a state where planar light is irradiated around the field of view of the objective optical system of the endoscope.
  • observation range which is a range in the optical axis direction in which an object can be focused and sufficient resolution can be obtained. For this reason, in the state where the planar light for measurement is not irradiated within the observation range, it is not possible to accurately measure the observation object.
  • the observation range of the endoscope there is an optimum observation range particularly suitable for observing a subject.
  • the user of the endoscope often performs an operation of adjusting the position of the tip of the endoscope so that an observation object such as a polyp falls within the optimum observation range.
  • the user of the endoscope is arranged so that the observation object comes as close to the center of the captured image as possible from the relationship of distortion around the field of view of the objective optical system described above (in other words, the optical axis of the objective optical system) In many cases, it is necessary to adjust the position of the tip of the endoscope so that the object to be observed comes to the top).
  • Patent Document 1 and Patent Document 2 do not describe how to apply planar light to the field of view of the objective optical system.
  • Patent Document 1 and Patent Document 2 complicate the structure of the tip of the endoscope and the image processing, and increases the manufacturing cost of the endoscope apparatus.
  • the present invention has been made in view of the above circumstances, and it is possible to accurately measure an observation object, and to prevent an increase in manufacturing cost of an endoscope, and an endoscope apparatus and measurement support method Intended to provide.
  • An endoscope apparatus includes an imaging optical system including an objective lens disposed at a distal end portion of the endoscope, an imaging element for imaging a subject through the imaging optical system, and imaging the subject with the imaging element
  • a signal processing unit that processes a captured image signal obtained to generate a captured image, a measurement auxiliary light emission unit that emits a planar measurement auxiliary light from the tip, and a plane formed by the measurement auxiliary light
  • a display control unit that causes the display unit to display the captured image including the crossing line between the measurement auxiliary light formed at the intersection with the subject and the subject, and the measurement assisting light emitting unit includes the objective lens
  • the auxiliary light is emitted in a state where the optical axis intersects with the plane at a specific point on the optical axis of the optical axis, and the distance from the tip of the objective lens of the specific one point is 5 mm or more and 20 mm or less
  • a processing step a measurement auxiliary light emission control step of emitting a planar measurement auxiliary light from the tip, and the measurement auxiliary light formed at a portion where a plane formed by the measurement auxiliary light intersects the object
  • a display control step of causing the display unit to display the captured image including an intersection line with a subject, and in the measurement auxiliary light emission control step, the optical axis and the optical axis at a specific point on the optical axis of the objective lens.
  • the measurement assisting light is emitted from the tip end in a state where the plane intersects with the plane, and the distance from the tip end of the objective lens of the specific one point is 5 mm or more and 20 mm or less To.
  • an endoscope apparatus and a measurement support method that can accurately measure an observation target and can prevent an increase in the manufacturing cost of the endoscope.
  • FIG. 4 is a schematic cross-sectional view of a IV-IV line (a line passing through the optical axis Ax of the objective lens 21 and along the first direction D1) at the tip 10C shown in FIG. 2; It is a perspective view which shows visual field 21A and effective imaging range 21C in depth of field R1 shown in FIG. It is a perspective view which shows the relationship between the visual field 21A shown in FIG.
  • FIG. 7 is a view showing an example of a captured image displayed on the display unit 7 of the endoscope apparatus 100 in a state where the polyp P is at a distance L1 from the objective lens 21.
  • FIG. 1 is a view showing a schematic configuration of an endoscope apparatus 100 according to an embodiment of the present invention.
  • the endoscope apparatus 100 includes an endoscope 1 and a main unit 2 including a control device 4 to which the endoscope 1 is connected and a light source device 5.
  • control device 4 Connected to the control device 4 are a display unit 7 for displaying a captured image and the like, and an input unit 6 for receiving an input operation.
  • the control device 4 controls the endoscope 1 and the light source device 5.
  • the endoscope 1 is a tubular member extending in one direction and is provided at the proximal end of the insertion portion 10 inserted into the subject and the insertion portion 10, and the observation mode switching operation, the photographing and recording operation, and the air / water supply
  • the operation unit 11 provided with buttons for performing operations, suction operations, etc., the angle knob 12 provided adjacent to the operation unit 11, and the endoscope 1 are attached to and detached from the light source device 5 and the control device 4, respectively.
  • a universal cord 13 including connector portions 13A and 13B for possible connection.
  • various channels such as a forceps channel for inserting a treatment tool such as forceps, a channel for air supply and water supply, and a channel for suction are provided inside the operation unit 11 and the insertion unit 10. Is provided.
  • the insertion part 10 is comprised from the flexible part 10A which has flexibility, the curved part 10B provided in the front-end
  • the bending portion 10 ⁇ / b> B is configured to be bendable by the turning operation of the angle knob 12.
  • the bending portion 10B can be bent in any direction and at any angle depending on the region of the subject where the endoscope 1 is used, and the tip portion 10C can be oriented in a desired direction.
  • FIG. 2 is a plan view of the distal end portion 10C in the endoscope apparatus 100 shown in FIG.
  • the distal end surface 10D of the distal end portion 10C is substantially circular, and in the distal end surface 10D, the objective lens 21 positioned on the most object side of the optical members constituting the imaging optical system of the endoscope 1, and the illumination A lens 50, a measurement assisting lens 34 for emitting measurement assisting light described later, an opening 29 for taking in and out the treatment tool described above, and an air / water feeding nozzle 60 for performing air / water feeding It is provided.
  • the optical axis Ax of the objective lens 21 extends in the direction perpendicular to the paper surface of FIG.
  • a first direction D1 which is one of two directions perpendicular to the optical axis Ax and a second direction D2 which is the other of the two directions. And are illustrated.
  • the objective lens 21 and the measurement assisting lens 34 are arranged along the first direction D1.
  • FIG. 3 is a schematic view showing an internal configuration of the endoscope apparatus 100 shown in FIG.
  • the light source device 5 includes a light source control unit 51 and a light source unit 52.
  • the light source unit 52 generates illumination light for irradiating the subject.
  • the illumination light emitted from the light source unit 52 is incident on the light guide 53 contained in the universal code 13, and is irradiated on the subject through the illumination lens 50 provided at the distal end portion 10 C of the insertion unit 10.
  • a white light source that emits white light or a plurality of light sources including a white light source and light sources that emit light of other colors (for example, blue light sources that emit blue light) are used.
  • a plurality of illumination lenses 50 may be provided on the distal end surface 10D of the distal end portion 10C in accordance with the type of light emitted from the light source unit 52.
  • the light source control unit 51 is connected to the system control unit 44 of the control device 4.
  • the light source control unit 51 controls the light source unit 52 based on an instruction from the system control unit 44.
  • the distal end portion 10C of the endoscope 1 includes an imaging optical system including an objective lens 21 and a lens group 22, an imaging element 23 for imaging an object through the imaging optical system, an analog-to-digital converter (ADC) 24, and a RAM.
  • Memory 25 such as (Random Accsess Memory), communication interface (I / F) 26, imaging control unit 27, measurement auxiliary light emission unit 30, illumination light emitted from light source unit 52 to lens for illumination 50
  • a light guide 53 for guiding is provided.
  • the light guide 53 extends from the tip end portion 10C to the connector portion 13A of the universal cord 13. In the state where the connector portion 13A of the universal cord 13 is connected to the light source device 5, the illumination light emitted from the light source portion 52 of the light source device 5 can enter the light guide 53.
  • CMOS complementary metal oxide semiconductor
  • the imaging device 23 has a light receiving surface in which a plurality of pixels are two-dimensionally arranged, and converts the optical image formed on the light receiving surface by the above-described imaging optical system into an electrical signal (imaging signal) in each pixel And output to the ADC 24.
  • imaging signal electrical signal
  • the imaging device 23 for example, one equipped with a color filter such as a primary color or a complementary color is used.
  • a set of imaging signals output from each pixel of the light receiving surface of the imaging device 23 is referred to as a captured image signal.
  • the imaging device 23 When white light emitted from a white light source is split in time division by a color filter of a plurality of colors to generate illumination light as the light source unit 52, the imaging device 23 has a color filter You may use what is not.
  • the imaging device 23 may be disposed at the tip 10 C in a state where the light receiving surface is perpendicular to the optical axis Ax of the objective lens 21, or the light receiving surface is parallel to the optical axis Ax of the objective lens 21. It may be arranged at tip part 10C in the state which becomes.
  • the imaging optical system provided in the endoscope 1 includes an optical member such as a lens or a prism (including the above-described lens group 22) on the optical path of light from a subject between the imaging element 23 and the objective lens 21; And an objective lens 21.
  • the imaging optical system may be configured of only the objective lens 21.
  • the ADC 24 converts the imaging signal output from the imaging device 23 into a digital signal of a predetermined number of bits.
  • the memory 25 temporarily stores the imaging signal that has been digitally converted by the ADC 24.
  • the communication I / F 26 is connected to the communication interface (I / F) 41 of the control device 4.
  • the communication I / F 26 transmits the imaging signal stored in the memory 25 to the control device 4 through a signal line in the universal code 13.
  • the imaging control unit 27 is connected to the system control unit 44 of the control device 4 via the communication I / F 26.
  • the imaging control unit 27 controls the imaging device 23, the ADC 24, and the memory 25 based on a command from the system control unit 44 received by the communication I / F 26.
  • the measurement assisting light emitting unit 30 includes a light source 31, a diffractive optical element (DOE) 32, a prism 33, and the measurement assisting lens 34 described above.
  • DOE diffractive optical element
  • the light source 31 emits light (specifically, visible light) of a color that can be detected by the pixels of the imaging device 23.
  • the light source 31 includes a light emitting element such as a laser diode (LD) or a light emitting diode (LED), and a condensing lens that condenses light emitted from the light emitting element.
  • a light emitting element such as a laser diode (LD) or a light emitting diode (LED)
  • a condensing lens that condenses light emitted from the light emitting element.
  • the light emitted from the light source 31 is, for example, red light with a wavelength of 650 nm, but is not limited to this wavelength.
  • the light source 31 is controlled by the system control unit 44, and emits light based on a command from the system control unit 44.
  • the DOE 32 converts light emitted from the light source 31 into measurement assist light 30A which is planar light.
  • the prism 33 is an optical member for changing the traveling direction of the planar measurement auxiliary light 30A converted by the DOE 32.
  • a plane formed by the planar measurement auxiliary light 30A emitted from the DOE 32 is parallel to the optical axis Ax of the objective lens 21.
  • the prism 33 changes the traveling direction of the planar measurement auxiliary light 30A such that this plane intersects the field of view (field of view 21A described later) of the imaging optical system including the objective lens 21 and the lens group 22.
  • the planar measurement auxiliary light 30A emitted from the prism 33 is irradiated to the subject through the measurement auxiliary lens 34.
  • the measurement assisting light emitting unit 30 is not limited to the configuration shown in FIG. 3 as long as planar light can be emitted from the tip end portion 10C toward the field of view of the imaging optical system.
  • the light source 31 may be provided in the light source device 5, and the light emitted from the light source 31 may be guided to the DOE 32 by an optical fiber.
  • the planar measurement auxiliary light 30A may be emitted in the direction crossing the field of view of the imaging optical system.
  • the control device 4 includes a communication I / F 41 connected to the communication I / F 26 of the endoscope 1 by the universal cord 13, a signal processing unit 42, a display control unit 43, and a system control unit 44.
  • the communication I / F 41 receives an imaging signal transmitted from the communication I / F 26 of the endoscope 1 and transmits the imaging signal to the signal processing unit 42.
  • the signal processing unit 42 incorporates a memory for temporarily storing an imaging signal received from the communication I / F 41, and processes a captured image signal which is a set of imaging signals stored in the memory to generate a captured image. .
  • the display control unit 43 causes the display unit 7 to display the captured image generated by the signal processing unit 42.
  • the system control unit 44 controls each unit of the control device 4 and sends commands to the imaging control unit 27 of the endoscope 1, the light source control unit 51 of the light source device 5, and the light source 31. Control the
  • the system control unit 44 controls the imaging element 23 via the imaging control unit 27.
  • the system control unit 44 controls the light source unit 52 via the light source control unit 51. Further, the system control unit 44 controls the light source 31.
  • the imaging control unit 27, the light source control unit 51, the signal processing unit 42, the display control unit 43, and the system control unit 44 each execute various programs to execute programs and processing, RAM (Ramdom Access Memory), and Includes ROM (Read Only Memory).
  • the various processors include a CPU (central processing unit) that is a general-purpose processor that executes programs and performs various processes, and a programmable logic that is a processor that can change the circuit configuration after manufacturing a field programmable gate array (FPGA) or the like.
  • the processor includes a dedicated electric circuit or the like which is a processor having a circuit configuration specially designed to execute specific processing such as a device (Programmable Logic Device: PLD) or an ASIC (Application Specific Integrated Circuit).
  • the structures of these various processors are electric circuits in which circuit elements such as semiconductor elements are combined.
  • the imaging control unit 27, the light source control unit 51, the signal processing unit 42, the display control unit 43, and the system control unit 44 may each be configured of one of various types of processors, or the same or different types 2
  • a combination of two or more processors for example, a combination of multiple FPGAs or a combination of a CPU and an FPGA may be configured.
  • FIG. 4 is a schematic cross-sectional view of the IV-IV line (line passing through the optical axis Ax of the objective lens 21 and along the first direction D1) at the tip end portion 10C shown in FIG.
  • the components other than the objective lens 21 and the measurement assisting lens 34 are omitted as constituent elements of the tip portion 10C.
  • an optical axis direction D3 which is a direction parallel to the optical axis Ax of the objective lens 21 is illustrated.
  • the imaging optical system including the objective lens 21 has a field of view 21A indicated by an alternate long and short dash line in FIG.
  • the image pickup device 23 can pick up an object within the field of view 21A.
  • the field of view 21A has a circular shape in a cross section perpendicular to the optical axis Ax.
  • the depth of field R1 of the imaging optical system shown in FIG. 4 is a range between the position P1 and the position P3 in the optical axis direction D3.
  • the imaging optical system is often designed so that the range of 3 mm or more and 100 mm or less from the objective lens 21 is the depth of field R1.
  • the position P1 is a position at a distance of, for example, 3 mm from the tip of the objective lens 21 (the point on the tip closest to the object side in the direction along the optical axis Ax of the objective lens 21).
  • the distance from the tip of the lens 21 is, for example, 100 mm. Note that these numerical values are an example, and are not limited to these numerical values.
  • the imaging device 23 it is possible to capture an image of the subject within the field of view 21A and within the depth of field R1 with high resolution.
  • the field of view 21A is, for example, in the range of 140 ° to 170 ° in terms of the angle of view.
  • the field of view 21A is set wide. Therefore, the optical image of the subject formed on the light receiving surface of the imaging device 23 by the imaging optical system is distorted around the field of view 21A.
  • an effective field of view 21B indicated by a broken line in FIG. 4 is determined in advance as a range of the field of view 21A in which distortion does not substantially occur in the optical image.
  • the effective field of view 21B is a range suitable for displaying a scale serving as an indicator of the size of the subject described later.
  • the overlapping range of the effective field of view 21B and the depth of field R1 is hereinafter referred to as an effective imaging range 21C.
  • the subject within the effective imaging range 21C can be observed with high resolution and no distortion.
  • the measurement auxiliary light emission unit 30 emits the measurement auxiliary light 30A in a state where a plane formed by the measurement auxiliary light 30A intersects the optical axis Ax at the position P2 in the optical axis direction D3.
  • the position P2 is within the depth of field R1, and the distance L1 from the tip of the objective lens 21 to the position P2 is 5 mm or more and 20 mm or less.
  • a range of 5 mm or more and 20 mm or less from the tip of the objective lens 21 in the optical axis direction D3 (hereinafter, referred to as an optimum observation range) is a range in which the observation frequency of the subject is particularly high in endoscopic examination.
  • the doctor using the endoscope 1 operates the endoscope 1 so that the observation object falls within the optimum observation range, and the observation object in the optimum observation range Is often confirmed on the captured image.
  • the observation target is located on the front side of the optimum observation range, the observation target may become too large in the captured image and may not be suitable for diagnosis.
  • the observation object is behind the optimal observation range, it may be difficult to observe the detailed state of the observation object, and may not be suitable for diagnosis. Under these circumstances, the observation of the observation object is frequently performed with the observation object in the optimum observation range.
  • the lower limit value of the optimum observation range may be set to 3 mm, which is just the depth of field R1, depending on the doctor. Therefore, the distance L1 may be in the range of 3 mm or more and 20 mm or less.
  • the measurement auxiliary light emission unit 30 has a plane formed by the measurement auxiliary light 30A on one side (the lower side in the example of FIG. 4) of the first direction D1 at the end on the objective lens 21 side of the effective imaging range 21C. In the state of passing through the end and passing through the end on the other side (upper side in the example of FIG. 4) of the first direction D1 at the end of the effective imaging range 21C opposite to the objective lens 21 side, Emit 30A.
  • FIG. 5 is a perspective view showing the visual field 21A and the effective imaging range 21C in the depth of field R1 shown in FIG.
  • FIG. 6 is a perspective view showing the relationship between the field of view 21A and the effective imaging range 21C shown in FIG. 5 and the plane 30F formed by the measurement auxiliary light 30A.
  • an end 211A on the objective lens 21 side and an end 213A on the opposite side of the objective lens 21 are provided as an end of the optical axis direction D3 of the visual field 21A in the depth of field R1. It is shown. 5 and 6 show a cross section 212A in a plane perpendicular to the optical axis Ax at the position P2 of the field of view 21A in the depth of field R1.
  • 5 and 6 show an end 211B on the objective lens 21 side and an end 213B on the opposite side of the objective lens 21 as an end of the effective imaging range 21C in the optical axis direction D3.
  • There is. 5 and 6 show a cross section 212B in a plane perpendicular to the optical axis Ax at the position P2 of the effective imaging range 21C.
  • the shape in a cross section perpendicular to the optical axis Ax is a square whose optical axis Ax passes the center.
  • the square is formed of two sides parallel to the first direction D1 and two sides parallel to the second direction D2.
  • the flat surface 30F formed by the measurement assisting light 30A is an end E1 of one side of the end 211B of the effective imaging range 21C in the first direction D1 (inward of the tip surface 10D in the radial direction).
  • the center line E2 in the first direction D1 in the cross section 212B of the effective imaging range 21C, and the end on the other side of the first direction D1 in the end 213B of the effective imaging range 21C (radially outside the tip surface 10D) It crosses the visual field 21A while passing through the part E3.
  • a flat subject H1 perpendicular to the optical axis Ax (a subject with a uniform distance from the tip of the objective lens 21 as a whole) is disposed at the position P1 in FIG.
  • An optical image OP1 obtained by forming an image by the optical system is as shown in FIG.
  • An effective field of view 21B is additionally shown in FIG.
  • the optical image OP1 shown in FIG. 7 includes the subject H1 and the intersecting line 30f of the subject H1 formed by irradiating the subject H1 with the measurement auxiliary light 30A and the plane 30F.
  • An optical image OP2 obtained by disposing the subject H1 at the position P2 in FIG. 4 and forming an image of the subject H1 by the imaging optical system is as shown in FIG.
  • An effective field of view 21B is additionally shown in FIG.
  • the optical image OP2 shown in FIG. 8 includes the subject H1 and the intersection line 30f of the subject H1 formed by irradiating the subject H1 with the measurement auxiliary light 30A and the plane 30F.
  • FIG. 9 additionally shows the effective field of view 21B.
  • the optical image OP3 shown in FIG. 9 includes the subject H1 and the intersecting line 30f of the subject H1 formed by irradiating the subject H1 with the measurement auxiliary light 30A and the plane 30F.
  • the position of the intersecting line 30f in the optical image formed on the light receiving surface of the imaging device 23 moves in one direction depending on the distance of the subject from the tip of the objective lens 21.
  • the signal processing unit 42 of the control device 4 processes a captured image signal obtained by converting an optical image as shown in FIGS. 7 to 9 into an electrical signal to generate a captured image.
  • the signal processing unit 42 generates a captured image corresponding to the optical image in the predetermined signal processing range 42A shown in FIGS. 7 to 9.
  • the signal processing unit 42 may generate a captured image corresponding to the entire optical image.
  • the display control unit 43 of the control device 4 detects the intersection line 30f included in the captured image obtained when capturing an object H1 having a uniform distance from the tip of the objective lens 21. Is set as the horizontal direction of the pickup image generated by the signal processing unit 42, and the pickup image is displayed on the display unit 7 according to the setting.
  • the display control unit 43 causes the display unit 7 to display the captured image so that the horizontal direction of the captured image matches the horizontal direction on the display surface of the display unit 7.
  • the position of the intersection line 30f in the captured image displayed on the display unit 7 changes in the vertical direction as the distance to the subject on which the intersection line 30f is formed changes.
  • intersection line 30f displayed on the display unit 7 moves the display screen upward from below in the vertical direction.
  • the display control unit 43 When displaying the captured image including the intersection line 30 f on the display unit 7, the display control unit 43 displays a scale indicating the actual size of the intersection line 30 f by overlapping the intersection line 30 f.
  • This scale constitutes a scale that is an indicator of the size of the subject.
  • the ROM incorporated in the display control unit 43 stores a data table indicating the relationship between the position in the vertical direction in the captured image generated by the signal processing unit 42 and the actual size size per pixel of the image at that position. ing.
  • the position yn in the vertical direction of the intersection line 30f in this captured image is determined. Further, the length of the crossing line 30f included in the captured image obtained by this imaging is measured using the grid of the grid paper. The length of the measured intersection line 30f is divided by the total number of pixels in the horizontal direction of the captured image to obtain the actual size per pixel at the position yn. Finally, the actual size information per pixel and the position yn are associated with each other and stored in the ROM.
  • the data table described above is created by repeatedly performing such an operation while finely changing the position of the graph paper in the optical axis direction D3.
  • the display control unit 43 detects the intersection line 30f from the captured image generated by the signal processing unit 42, and uses one of a large number of pixel data constituting the intersection line 30f as a starting point.
  • the display control unit 43 sequentially selects the plurality of pieces of pixel data in the horizontal direction from the starting point.
  • the display control unit 43 obtains information of the actual size per pixel at the position from the position in the vertical direction of the selected pixel data and the above data table.
  • the display control unit 43 integrates the actual size obtained in this manner each time pixel data is selected, and selects it when the integrated value becomes an integral multiple of a unit length (for example, 1 mm). Pixel data is specified as pixel data on which a scale should be superimposed. Further, the display control unit 43 also specifies the pixel data of the starting point as pixel data on which the scale should be superimposed.
  • the display control unit 43 displays a scale (for example, a vertical line extending in the vertical direction) indicating an interval of a unit length on the pixel data specified by such processing. Thereby, the display unit 7 displays a scale that is an index of the size of the subject.
  • a scale for example, a vertical line extending in the vertical direction
  • the display method of a graduation is an example, and is not limited to this.
  • FIG. 10 is a view showing an example of a captured image displayed on the display unit 7 of the endoscope apparatus 100 in a state where the polyp P is located at a distance L1 from the tip of the objective lens 21.
  • FIG. 11 is a view showing an example of a captured image in a state in which the polyp P is at a position farther from the objective lens 21 than in the state shown in FIG.
  • FIG. 12 is a view showing an example of a captured image in a state in which the polyp P is closer to the objective lens 21 than in the state shown in FIG.
  • the direction H shown in FIGS. 10 to 12 indicates the horizontal direction of the display screen of the display unit 7.
  • the direction V shown in FIGS. 10 to 12 indicates the vertical direction of the display screen of the display unit 7.
  • the captured image 70 displayed on the display unit 7 includes a crossing line 30f and a scale 70A indicating a unit length. As shown in FIGS. 10 to 12, as the intersection line 30f is on the display screen on the upper side in the direction V, the interval of the scale 70A is displayed more finely.
  • the position P2 of the point where the plane 30F formed by the measurement auxiliary light 30A and the optical axis Ax of the objective lens 21 intersect is 5 mm or more and 20 mm from the tip of the objective lens 21. It exists in the following optimal observation range.
  • the user operates the endoscope 1 so that the observation object such as a polyp falls within the optimum observation range, and the observation object comes near the center of the captured image displayed on the display unit 7
  • the observation object and the crossing line 30f can be displayed near the center of the display screen, as shown in FIG. 10, only by performing the generally performed operation of operating the endoscope 1.
  • the user can confirm the state of the polyp P in detail.
  • the intersection line 30 f included in the captured image 70 is displayed on the polyp P in a portion of the captured image 70 which is hardly distorted. Therefore, when measuring the size of the polyp P using the crossing line 30f, the measurement can be performed with high accuracy.
  • the user only performs the familiar task of operating the endoscope 1 so that the observation target comes within the optimum observation range and near the center of the captured image.
  • the state of the observation object and the size of the observation object can be accurately known, which can be useful for diagnosis and the like.
  • the position P2 of the intersection of the plane 30F formed by the measurement assisting light 30A and the optical axis Ax of the objective lens 21 is fixed. For this reason, it is possible to prevent an increase in the manufacturing cost of the endoscope apparatus 100 as compared with the configuration in which the measurement assisting light 30A is swept.
  • the endoscope apparatus 100 by operating the endoscope 1 so that the intersection line 30f displayed on the display unit 7 comes near the center of the captured image, the observation object is within the optimal observation range. It is also possible to put in. Therefore, the state of the observation object can be confirmed accurately and quickly.
  • the flat surface 30F passes through the end E1 and passes through the end E3 to cross the effective imaging range 21C. For this reason, if the observation target is present in the effective imaging range 21C, the plane 30F always intersects the observation target, so that the size of the observation target can be measured. Therefore, even in a situation where the observation object can not be put into the optimum observation range, the size of the observation object can be measured, which can be useful for diagnosis.
  • a scale indicating the actual size of the intersection line 30f is displayed on the intersection line 30f included in the captured image displayed on the display unit 7. Therefore, according to the scale, the user can grasp the size of the observation object only by visual observation.
  • the user can know the size of the object to be observed without performing a special operation such as selecting two points on the captured image, so that the endoscopic examination can be smoothly advanced.
  • the display control unit 43 does not always display the scale 70A illustrated in FIGS. 10 to 12, but displays the scale 70A only when the user performs an operation by pressing a button provided on the operation unit 11 or the like. You may do so.
  • the scale 70A can be displayed only when the user wants to perform measurement, and when the measurement is not performed, the observation visual field can be expanded.
  • the display control unit 43 preferably adds information indicating the effective field of view 21B to the captured image generated by the signal processing unit 42, and causes the display unit 7 to display the captured image to which the information is added.
  • FIG. 13 is a view showing an example of a captured image displayed on the display unit 7 of the endoscope apparatus 100 of the first modified example.
  • the captured image 70 shown in FIG. 13 is the same as that shown in FIG. 10 except that a frame 70B corresponding to the effective field of view 21B is added.
  • the user can grasp which range on the captured image is captured without distortion. Therefore, it is possible to determine that the scale 70A outside the frame 70B is not used for measurement because it is affected by distortion, and generation of measurement error can be prevented.
  • the display control unit 43 hides the graduation 70A on the intersection line 30f when the entire intersection line 30f overlaps the portion outside the effective field of view 21B in the captured image generated by the signal processing unit 42. Is preferred.
  • FIG. 14 is a view showing an example of a captured image displayed on the display unit 7 of the endoscope apparatus 100 of the second modified example.
  • the entire intersection line 30 f is located outside the range 21 b corresponding to the effective field of view 21 B.
  • the range 21 b is not displayed on the display unit 7 and is only illustrated for the purpose of explanation.
  • the display control unit 43 does not display a scale on the intersection line 30f.
  • the display control unit 43 displays a scale on the intersection line 30f.
  • the display control unit 43 validates the display form of the scale on the intersection line 30 f when the entire intersection line 30 f overlaps the part outside the effective field of view 21 B in the captured image generated by the signal processing unit 42. It is preferable to change in the case where the entire intersection line 30f overlaps the portion of the visual field 21B.
  • FIG. 15 is a view showing an example of a captured image displayed on the display unit 7 of the endoscope apparatus 100 of the third modified example.
  • the entire intersection line 30f is located outside the range 21b corresponding to the effective field of view 21B.
  • the range 21 b is not displayed on the display unit 7 and is only illustrated for the purpose of explanation.
  • the display control unit 43 displays a scale 70a of a display form different from the scale 70A illustrated in FIG. 13 on the intersection line 30f.
  • the scale 70a is displayed, for example, in a color different from that of the scale 70A, or in a line type (for example, a broken line) different from that of the scale 70A.
  • the user can recognize that the crossing line 30f is out of the effective field of view 21B due to the difference in the display form of the scale. For this reason, it can prevent that measurement is performed by the crossing line 30f which exists in the large range of distortion, and can prevent a measurement error.
  • intersection line 30f overlaps the effective visual field 21B and a portion outside the effective visual field 21B in the captured image generated by the signal processing unit 42
  • the display control unit 43 places the intersection line 30f on the external side of the effective visual field 21B. It is preferable to hide the scale 70A of.
  • FIG. 16 is a view showing an example of a captured image displayed on the display unit 7 of the endoscope apparatus 100 of the fourth modified example.
  • the captured image 70 shown in FIG. 16 is the same as that shown in FIG. 10 except that the scale 70A on the intersection line 30f is not displayed outside the range 21b corresponding to the effective field of view 21B. .
  • the range 21 b is not displayed on the display unit 7 and is only illustrated for the purpose of explanation.
  • the display control unit 43 places the intersection line 30f on the external side of the effective visual field 21B.
  • the display mode it is preferable to change the display mode with respect to the scale 70A on the intersection line 30f overlapping the effective field of view 21B.
  • FIG. 17 is a view showing an example of a captured image displayed on the display unit 7 of the endoscope apparatus 100 of the fifth modification.
  • the intersection line 30f overlaps the range 21b corresponding to the effective field of view 21B and the outside of the range 21b.
  • a scale 70A is displayed on a portion overlapping the range 21b of the crossing line 30f
  • a scale 70aa is displayed on a portion overlapping the range 21b of the crossing line 30f.
  • the range 21 b is not displayed on the display unit 7 and is only illustrated for the purpose of explanation.
  • the graduation 70aa is displayed, for example, in a color different from that of the graduation 70A, or in a line type (for example, a broken line) different from that of the graduation 70A.
  • the user can recognize which part of the intersection line 30f is out of the effective field of view 21B by the difference in the display form of the scale. For this reason, it can prevent that measurement is performed by the graduation 70aa which exists in the large range of distortion, and can prevent a measurement error.
  • the measurement assisting light emitting unit 30 of the endoscope apparatus 100 may not be fixed to the distal end portion 10C of the endoscope 1 but may be removable.
  • the measurement assisting light emitting unit 30 may be retrofitted to the opening 29 of the tip end portion 10C as an accessory. According to this configuration, it is possible to add a new function to the existing endoscope.
  • the display control unit 43 may handle the direction in which the intersecting line 30f included in the captured image when capturing the subject H1 is the vertical direction of the captured image. In this case, as the distance of the subject from the tip of the objective lens 21 changes, the intersecting line 30f extending in the vertical direction displayed on the display unit 7 moves in the horizontal direction on the captured image.
  • the plane 30F formed by the measurement assisting light 30A also intersects a range outside the effective field of view 21B (effective imaging range 21C) in the field of view 21A.
  • the DOE 32 may be designed such that the plane 30F intersects only the effective field of view 21B.
  • the optical image OP1 shown in FIG. 7 is changed to that shown in FIG. That is, in the horizontal direction of the captured image, the crossing line 30f is displayed only in the range not affected by the distortion, so that the measurement on the observation object can be performed with high accuracy by the scale on the crossing line 30f. .
  • the present invention can be applied similarly to a rigid endoscope.
  • An imaging optical system including an objective lens disposed at the tip of an endoscope, an imaging element for imaging a subject through the imaging optical system, and a captured image signal obtained by imaging the subject by the imaging element
  • a signal processing unit that processes the signal to generate a captured image
  • a measurement assist light emitting unit that emits a planar measurement assist light from the tip end, and a portion where a plane formed by the measurement assist light intersects the subject
  • a display control unit that causes the display unit to display the captured image including the intersection line between the measurement assist light and the subject, and the measurement assist light emitting unit is configured to identify a specific on the optical axis of the objective lens.
  • An endoscope apparatus which emits the measurement auxiliary light in a state where the optical axis intersects with the plane at one point, and the distance from the tip of the objective lens at the particular one point is 5 mm or more and 20 mm or less.
  • the plane formed by the measurement auxiliary light is an effective field of view predetermined in a field of view of the imaging optical system and a subject of the imaging optical system
  • the end on the objective lens side of the effective imaging range which is the overlapping range with the depth of field, and the end on one side in the vertical direction perpendicular to the optical axis, and the objective lens side of the effective imaging range An endoscopic device passing through the other end of said vertical direction at the opposite end.
  • the display control unit may include the crossing line included in the captured image when capturing an object having a uniform distance from the tip of the objective lens.
  • the endoscope apparatus which displays the said captured image as a horizontal direction or perpendicular
  • the display control unit causes the information indicating the effective field of view predetermined in the field of view of the imaging optical system to be added to the captured image and displayed. Endoscope device.
  • Measurement auxiliary light emission control step for emitting the measurement auxiliary light from the tip end portion, and an intersection line between the measurement auxiliary light and the object formed in a portion where the plane formed by the measurement auxiliary light intersects the object
  • the measurement auxiliary light is emitted from the tip end, and the distance from the tip end of the objective lens to the specific one point is 5 mm or more and 20 mm or less .
  • An imaging optical system including an objective lens disposed at a distal end portion of an endoscope; An imaging element for imaging an object through the imaging optical system; A measurement auxiliary light emitting unit that emits a planar measurement auxiliary light from the tip; A processor, and The above processor is Processing a captured image signal obtained by capturing an image of a subject by the image sensor to generate a captured image; Causing the display unit to display the captured image including a crossing line between the subject and the measurement assisting light formed in a portion where the plane formed by the measurement assisting light intersects the subject; The measurement auxiliary light emitting unit emits the measurement auxiliary light in a state where the optical axis intersects the plane at a specific point on the optical axis of the objective lens, The endoscope apparatus whose distance from the tip part of the above-mentioned objective lens of one above-mentioned one point is 5 mm or more and 20 mm or
  • Endoscope device 100 Endoscope device 1 Endoscope 2 Body portion 10 Insertion portion 10A Flexible portion 10B Curved portion 10C Tip portion 10D Tip surface 11 Operation portion 12 Angle knob 13 Universal cord 13A, 13B Connector portion 6 Input portion 7 Display portion 21 Objective lens Ax Optical axis 22 Lens group 23 Image sensor 24 ADC 25 memory 26 communication interface 27 imaging control unit 29 opening 30 measurement auxiliary light emission unit 30A measurement auxiliary light 31 light source 32 DOE 33 Prism 34 Measurement Auxiliary Lens 4 Control Device 41 Communication Interface 42 Signal Processing Unit 43 Display Control Unit 44 System Control Unit 5 Light Source Device 50 Lighting Lens 51 Light Source Control Unit 52 Light Source Unit 53 Light Guide 60 Air Supply Water Supply Nozzle D1 First Direction D2 Second direction D3 Optical axis direction L1 Distance R1 Depth of field 21A Field of view 21B Effective field of view 21C Effective imaging range P1, P2, P3 Position 211A, 213A, 211B, 213B End 212A, 212B Cross section 30F Plane E1, E1 E3

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

観察対象物の計測を精度よく行い、且つ内視鏡の製造コストの増加を防ぐことのできる内視鏡装置及び計測支援方法を提供する。内視鏡装置(100)は、内視鏡(1)の先端部(10C)の対物レンズ(21)を含む撮像光学系を通して被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成する信号処理部(42)と、平面状の計測補助光(30A)を先端部(10C)から出射する計測補助光出射部(30)と、計測補助光(30A)によって形成される平面(30F)が被写体と交わる部分に形成される交差ライン(30f)を含む撮像画像を表示部(7)に表示させる表示制御部(43)とを備える。計測補助光出射部(30)は、対物レンズ(21)の光軸(Ax)上の特定の一点において光軸(Ax)と平面(30F)が交わる状態で計測補助光(30A)を出射し、この特定の一点の対物レンズ(21)の先端部からの距離は、5mm以上20mm以下である。

Description

内視鏡装置及び計測支援方法
 本発明は、内視鏡装置及び計測支援方法に関する。
 内視鏡装置では、観察対象物までの距離又は観察対象物の大きさ等を計測することが行われている。
 例えば、特許文献1には、内視鏡の先端から平面光を掃引し、平面光を掃引している状態にて観察部位を撮像した撮像画像を処理することによって、平面光が照射された観察対象物の三次元情報を得る内視鏡装置が記載されている。
 また、特許文献2には、内視鏡の先端から平面光を照射し、この平面光の軌跡を示す網線と、この平面光が観察対象物と交わる曲線とを撮像画像に重ねて表示する内視鏡装置が記載されている。この内視鏡装置では、撮像画像に重ねられた曲線上の2点を選択すると、この2点間の距離が算出されて表示されるようになっている。
特開平4-12724号公報 特表2017-508529号公報
 特許文献1及び特許文献2に記載の内視鏡装置は、内視鏡の対物光学系の視野内に平面光を照射する。しかし、内視鏡の対物光学系の視野は、その周辺部において歪みを生じる。このため、内視鏡の対物光学系の視野の周辺に平面光が照射されている状態では、観察対象物の計測を精度よく行うことが難しい。
 また、内視鏡の対物光学系の視野には、被写体にピントが合って十分な解像度を得ることのできる光軸方向の範囲である観察範囲が存在する。このため、この観察範囲内に計測用の平面光が照射されていない状態では、観察対象物の計測を精度よく行うことができない。
 また、内視鏡の観察範囲には、被写体を観察するのに特に適した最適観察範囲が存在する。内視鏡の使用者は、この最適観察範囲内にポリープ等の観察対象物が入るように、内視鏡の先端位置を調整する作業を行うことが多い。
 また、内視鏡の使用者は、上述した対物光学系の視野の周辺の歪みの関係から、観察対象物が撮像画像上のできるだけ中央付近にくるように(言い換えると、対物光学系の光軸上に観察対象物がくるように)、内視鏡の先端位置を調整する作業を行うことが多い。
 したがって、使用者が高い頻度で行うこれらの作業を考慮して、対物光学系の視野内に計測用の平面光を照射する必要がある。
 特許文献1及び特許文献2には、対物光学系の視野に対し、平面光をどのように照射すべきかについて記載されていない。
 また、特許文献1及び特許文献2に記載されている平面光を掃引する方法は、内視鏡の先端の構造及び画像処理が複雑になり、内視鏡装置の製造コストが増加する。
 本発明は、上記事情に鑑みてなされたものであり、観察対象物の計測を精度よく行うことができ、且つ内視鏡の製造コストの増加を防ぐことのできる内視鏡装置及び計測支援方法を提供することを目的とする。
 本発明の内視鏡装置は、内視鏡の先端部に配置された対物レンズ、を含む撮像光学系と、上記撮像光学系を通して被写体を撮像する撮像素子と、上記撮像素子により被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成する信号処理部と、平面状の計測補助光を上記先端部から出射する計測補助光出射部と、上記計測補助光によって形成される平面が上記被写体と交わる部分に形成される上記計測補助光と上記被写体との交差ラインを含む上記撮像画像を表示部に表示させる表示制御部と、を備え、上記計測補助光出射部は、上記対物レンズの光軸上の特定の一点において上記光軸と上記平面が交わる状態にて上記計測補助光を出射し、上記特定の一点の上記対物レンズの先端部からの距離は、5mm以上20mm以下である。
 本発明の計測支援方法は、内視鏡の先端部に配置された対物レンズ、を含む撮像光学系を通して撮像素子により被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成する信号処理ステップと、平面状の計測補助光を上記先端部から出射させる計測補助光出射制御ステップと、上記計測補助光によって形成される平面が上記被写体と交わる部分に形成される上記計測補助光と上記被写体との交差ラインを含む上記撮像画像を表示部に表示させる表示制御ステップと、を備え、上記計測補助光出射制御ステップでは、上記対物レンズの光軸上の特定の一点において上記光軸と上記平面とが交わる状態にて、上記先端部から上記計測補助光を出射させ、上記特定の一点の上記対物レンズの先端部からの距離を5mm以上20mm以下とする。
 本発明によれば、観察対象物の計測を精度よく行うことができ、且つ内視鏡の製造コストの増加を防ぐことのできる内視鏡装置及び計測支援方法を提供することができる。
本発明の一実施形態である内視鏡装置100の概略構成を示す図である。 図1に示す内視鏡装置100における先端部10Cの平面図である。 図1に示す内視鏡装置100の内部構成を示す模式図である。 図2に示した先端部10CにおけるIV-IV線(対物レンズ21の光軸Axを通り且つ第一の方向D1に沿った線)の断面模式図である。 図4に示す被写界深度R1内における視野21A及び有効撮像範囲21Cを示す斜視図である。 図5に示す視野21A及び有効撮像範囲21Cと計測補助光30Aによって形成される平面30Fとの関係を示す斜視図である。 図1に示す内視鏡装置100の撮像光学系によって結像される光学像の一例を示す図である。 図1に示す内視鏡装置100の撮像光学系によって結像される光学像の一例を示す図である。 図1に示す内視鏡装置100の撮像光学系によって結像される光学像の一例を示す図である。 ポリープPが対物レンズ21から距離L1の位置にある状態で内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。 図10に示す状態よりもポリープPが対物レンズ21から離れた位置にある状態の撮像画像の例を示す図である。 図10に示す状態よりもポリープPが対物レンズ21に近づいた位置にある状態の撮像画像の例を示す図である。 第一の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。 第二の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。 第三の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。 第四の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。 第五の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。 第六の変形例の内視鏡装置100の先端部10Cの先端面10Dの構成を示す図である。 第八の変形例の内視鏡装置100における視野21A及び有効撮像範囲21Cと計測補助光30Aによって形成される平面30Fとの関係を示す斜視図である。 第八の変形例の内視鏡装置100の撮像光学系によって結像される光学像の一例を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の一実施形態である内視鏡装置100の概略構成を示す図である。
 図1に示すように、内視鏡装置100は、内視鏡1と、この内視鏡1が接続される制御装置4及び光源装置5からなる本体部2と、を備える。
 制御装置4には、撮像画像等を表示する表示部7と、入力操作を受け付ける入力部6とが接続されている。制御装置4は、内視鏡1及び光源装置5を制御する。
 内視鏡1は、一方向に延びる管状部材であって被検体内に挿入される挿入部10と、挿入部10の基端部に設けられ、観察モード切替操作、撮影記録操作、送気送水操作、及び吸引操作等を行うためのボタンが設けられた操作部11と、操作部11に隣接して設けられたアングルノブ12と、内視鏡1を光源装置5と制御装置4にそれぞれ着脱可能に接続するコネクタ部13A及び13Bを含むユニバーサルコード13と、を備える。
 なお、図示は省略されているが、操作部11及び挿入部10の内部には、鉗子等の処置具を挿入する鉗子チャンネル、送気及び送水用のチャンネル、吸引用のチャンネル等の各種のチャンネルが設けられる。
 挿入部10は、可撓性を有する軟性部10Aと、軟性部10Aの先端に設けられた湾曲部10Bと、湾曲部10Bの先端に設けられた硬質の先端部10Cとから構成される。
 湾曲部10Bは、アングルノブ12の回動操作により湾曲可能に構成されている。この湾曲部10Bは、内視鏡1が使用される被検体の部位等に応じて、任意の方向及び任意の角度に湾曲でき、先端部10Cを所望の方向に向けることができる。
 図2は、図1に示す内視鏡装置100における先端部10Cの平面図である。
 先端部10Cの先端面10Dは略円形となっており、この先端面10Dには、内視鏡1の撮像光学系を構成する光学部材のうちの最も被写体側に位置する対物レンズ21と、照明用レンズ50と、後述する計測補助光を出射するための計測補助用レンズ34と、上述した処置具を出し入れするための開口29と、送気送水を行うための送気送水ノズル60と、が設けられている。
 対物レンズ21の光軸Axは、図2の紙面に垂直な方向に延びている。図2には、この光軸Axに垂直な互いに直交する2つの方向のうちの一方の方向である第一の方向D1と、この2つの方向のうちの他方の方向である第二の方向D2とが図示されている。図2の例では、対物レンズ21と計測補助用レンズ34とが第一の方向D1に沿って配列されている。
 図3は、図1に示す内視鏡装置100の内部構成を示す模式図である。
 光源装置5は、光源制御部51と、光源部52と、を備える。
 光源部52は、被写体に照射するための照明光を発生させる。光源部52から出射された照明光は、ユニバーサルコード13に内蔵されたライトガイド53に入射し、挿入部10の先端部10Cに設けられた照明用レンズ50を通って被写体に照射される。
 光源部52としては、白色光を出射する白色光源、又は、白色光源とその他の色の光を出射する光源(例えば青色光を出射する青色光源)を含む複数の光源等が用いられる。先端部10Cの先端面10Dには、光源部52から出射させる光の種類に合わせて照明用レンズ50が複数設けられていてもよい。
 光源制御部51は、制御装置4のシステム制御部44と接続されている。光源制御部51は、システム制御部44からの指令に基づいて光源部52を制御する。
 内視鏡1の先端部10Cには、対物レンズ21及びレンズ群22を含む撮像光学系と、この撮像光学系を通して被写体を撮像する撮像素子23と、アナログデジタル変換回路(ADC)24と、RAM(Random Accsess Memory)等のメモリ25と、通信インタフェース(I/F)26と、撮像制御部27と、計測補助光出射部30と、光源部52から出射された照明光を照明用レンズ50に導くためのライトガイド53と、が設けられている。
 ライトガイド53は、先端部10Cからユニバーサルコード13のコネクタ部13Aまで延びている。ユニバーサルコード13のコネクタ部13Aが光源装置5に接続された状態で、光源装置5の光源部52から出射される照明光がライトガイド53に入射可能な状態となる。
 撮像素子23は、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等が用いられる。
 撮像素子23は、複数の画素が二次元状に配置された受光面を有し、上記の撮像光学系によってこの受光面に結像された光学像を各画素において電気信号(撮像信号)に変換し、ADC24に出力する。撮像素子23は、例えば原色又は補色等のカラーフィルタを搭載するものが用いられる。撮像素子23の受光面の各画素から出力される撮像信号の集合を撮像画像信号という。
 なお、光源部52として、白色光源から出射される白色光を複数色のカラーフィルタによって時分割で分光して照明光を生成するものを用いる場合には、撮像素子23はカラーフィルタを搭載していないものを用いてもよい。
 撮像素子23は、対物レンズ21の光軸Axに対して受光面が垂直となる状態で先端部10Cに配置されていてもよいし、対物レンズ21の光軸Axに対して受光面が平行となる状態で先端部10Cに配置されていてもよい。
 内視鏡1に設けられる撮像光学系は、撮像素子23と対物レンズ21との間における被写体からの光の光路上にあるレンズ、プリズム等の光学部材(上記のレンズ群22を含む)と、対物レンズ21と、によって構成される。撮像光学系は、対物レンズ21のみで構成される場合もある。
 ADC24は、撮像素子23から出力された撮像信号を所定のビット数のデジタル信号に変換する。
 メモリ25は、ADC24でデジタル変換された撮像信号を一時的に記憶する。
 通信I/F26は、制御装置4の通信インタフェース(I/F)41と接続される。通信I/F26は、メモリ25に記憶された撮像信号を、ユニバーサルコード13内の信号線を通して制御装置4に伝送する。
 撮像制御部27は、通信I/F26を介して制御装置4のシステム制御部44と接続されている。撮像制御部27は、通信I/F26により受信されるシステム制御部44からの指令に基づいて、撮像素子23、ADC24、及びメモリ25を制御する。
 計測補助光出射部30は、光源31と、回折光学素子(Diffractive Optical Element:DOE)32と、プリズム33と、前述の計測補助用レンズ34と、を備える。
 光源31は、撮像素子23の画素によって検出可能な色の光(具体的には可視光)を出射する。光源31は、LD(Laser Diode)又はLED(Light Emitting Diode)等の発光素子と、この発光素子から出射される光を集光する集光レンズと、を含む。
 光源31が出射する光は、例えば波長650nmの赤色光とされるが、この波長に限定されない。光源31は、システム制御部44によって制御され、システム制御部44からの指令に基づいて光出射を行う。
 DOE32は、光源31から出射された光を、平面状の光である計測補助光30Aに変換する。
 プリズム33は、DOE32で変換後の平面状の計測補助光30Aの進行方向を変えるための光学部材である。DOE32から出射された平面状の計測補助光30Aによって形成される平面は、対物レンズ21の光軸Axと平行となっている。
 プリズム33は、この平面が、対物レンズ21及びレンズ群22を含む撮像光学系の視野(後述する視野21A)と交差するように、平面状の計測補助光30Aの進行方向を変更する。プリズム33から出射された平面状の計測補助光30Aは、計測補助用レンズ34を通って被写体へと照射される。
 なお、計測補助光出射部30は、平面状の光を先端部10Cから撮像光学系の視野に向けて出射できればよく、図3に示す構成に限定されない。
 例えば、光源31が光源装置5に設けられ、光源31から出射された光が光ファイバによってDOE32まで導光される構成であってもよい。
 また、プリズム33を用いずに、光源31及びDOE32の向きを光軸Axに対し斜めにすることで、撮像光学系の視野を横切る方向に平面状の計測補助光30Aを出射させる構成としてもよい。
 制御装置4は、ユニバーサルコード13によって内視鏡1の通信I/F26と接続される通信I/F41と、信号処理部42と、表示制御部43と、システム制御部44と、を備える。
 通信I/F41は、内視鏡1の通信I/F26から伝送されてきた撮像信号を受信して信号処理部42に伝達する。
 信号処理部42は、通信I/F41から受けた撮像信号を一次記憶するメモリを内蔵しており、メモリに記憶された撮像信号の集合である撮像画像信号を処理して、撮像画像を生成する。
 表示制御部43は、信号処理部42によって生成された撮像画像を表示部7に表示させる。
 システム制御部44は、制御装置4の各部を制御すると共に、内視鏡1の撮像制御部27と光源装置5の光源制御部51と光源31とに指令を送り、内視鏡装置100の全体を統括制御する。
 システム制御部44は、撮像制御部27を介して撮像素子23の制御を行う。また、システム制御部44は、光源制御部51を介して光源部52の制御を行う。また、システム制御部44は光源31の制御を行う。
 撮像制御部27、光源制御部51、信号処理部42、表示制御部43、及びシステム制御部44は、それぞれ、プログラムを実行して処理を行う各種のプロセッサと、RAM(Ramdom Access Memory)と、ROM(Read Only Memory)を含む。
 各種のプロセッサとしては、プログラムを実行して各種処理を行う汎用的なプロセッサであるCPU(Central Prosessing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、又はASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 これら各種のプロセッサの構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 撮像制御部27、光源制御部51、信号処理部42、表示制御部43、及びシステム制御部44は、それぞれ、各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ又はCPUとFPGAの組み合わせ)で構成されてもよい。
 図4は、図2に示した先端部10CにおけるIV-IV線(対物レンズ21の光軸Axを通り且つ第一の方向D1に沿った線)の断面模式図である。図4では、先端部10Cの構成要素として対物レンズ21と計測補助用レンズ34以外の図示が省略されている。図4には、対物レンズ21の光軸Axに平行な方向である光軸方向D3が図示されている。
 対物レンズ21を含む撮像光学系は、図4中の一点鎖線で示される視野21Aを有している。撮像素子23では、この視野21A内にある被写体を撮像することが可能である。視野21Aは、光軸Axに垂直な断面における形状が円状となっている。
 対物レンズ21を含む撮像光学系には、被写体にピントが合う範囲である被写界深度が存在する。図4に示す撮像光学系の被写界深度R1は、光軸方向D3における位置P1と位置P3の間の範囲となっている。
 この被写界深度R1は任意に決められるが、内視鏡では、対物レンズ21から3mm以上100mm以下の範囲が被写界深度R1となるように撮像光学系の設計が行われることが多い。
 つまり、位置P1は、対物レンズ21の先端部(対物レンズ21の光軸Axに沿った方向において最も被写体側にある先端の点)からの距離が例えば3mmの位置であり、位置P3は、対物レンズ21の先端部からの距離が例えば100mmの位置である。なお、これらの数値は一例であって、この数値に限定されない。
 したがって、撮像素子23では、視野21A内にあり且つ被写界深度R1内にある被写体については、この被写体を高い解像度で撮像することが可能である。
 なお、視野21Aは、画角で表現すると例えば140°~170°の範囲とされる。このように、内視鏡1においては視野21Aが広く設定されている。このため、撮像光学系によって撮像素子23の受光面に結像される被写体の光学像は、視野21Aの周辺において歪みを生じる。
 内視鏡装置100では、視野21Aのうち、光学像に歪みがほぼ生じない範囲として、図4において破線で示す有効視野21Bが予め決められている。有効視野21Bは、後述する被写体の大きさの指標となる目盛を表示するのに適した範囲となる。有効視野21Bと被写界深度R1との重複する範囲を以下では有効撮像範囲21Cと言う。
 撮像素子23によって撮像して得られる撮像画像に含まれる被写体のうち、この有効撮像範囲21Cに入っている被写体については、高い解像度且つ歪みがない状態で観察が可能となる。
 計測補助光出射部30は、計測補助光30Aによって形成される平面が光軸方向D3の位置P2において光軸Axと交差する状態で、計測補助光30Aを出射する。この位置P2は、被写界深度R1内にあり、対物レンズ21の先端部から位置P2までの距離L1は5mm以上20mm以下となっている。
 光軸方向D3の対物レンズ21の先端部から5mm以上20mm以下の範囲(以下、最適観察範囲という)は、内視鏡検査において、特に被写体の観察頻度が高い範囲である。
 内視鏡1を使用する医師は、ポリープ等の観察対象物がある場合に、この観察対象物を、この最適観察範囲に入るよう内視鏡1を操作し、最適観察範囲にある観察対象物を撮像画像上で確認することが多い。
 この最適観察範囲よりも手前側に観察対象物があると、撮像画像において観察対象物が大きくなりすぎてしまって診断に適さない場合がある。一方、この最適観察範囲よりも奥側に観察対象物があると、観察対象物の詳細な状態を観察することが難しくなり、診断に適さない場合がある。これらの事情から、観察対象物の観察は、この観察対象物が最適観察範囲にある状態で行われる頻度が高い。
 なお、最適観察範囲の下限値は、医師によっては被写界深度R1ぎりぎりの3mmとされる場合もある。このため、距離L1は3mm以上20mm以下の範囲としてもよい。
 計測補助光出射部30は、計測補助光30Aによって形成される平面が、有効撮像範囲21Cの対物レンズ21側の端部における第一の方向D1の一方側(図4の例では下方側)の端部を通り、且つ有効撮像範囲21Cの対物レンズ21側と反対側の端部における第一の方向D1の他方側(図4の例では上方側)の端部を通る状態で、計測補助光30Aを出射する。
 図5は、図4に示す被写界深度R1内における視野21A及び有効撮像範囲21Cを示す斜視図である。図6は、図5に示す視野21A及び有効撮像範囲21Cと計測補助光30Aによって形成される平面30Fとの関係を示す斜視図である。
 図5及び図6には、被写界深度R1内における視野21Aの光軸方向D3の端部として、対物レンズ21側の端部211Aと、対物レンズ21側と反対側の端部213Aとが示されている。また、図5及び図6には、被写界深度R1内の視野21Aの位置P2における光軸Axに垂直な面での断面212Aが示されている。
 また、図5及び図6には、有効撮像範囲21Cの光軸方向D3の端部として、対物レンズ21側の端部211Bと、対物レンズ21側と反対側の端部213Bとが示されている。また、図5及び図6には、有効撮像範囲21Cの位置P2における光軸Axに垂直な面での断面212Bが示されている。
 図5に示すように、有効撮像範囲21Cは、光軸Axに垂直な断面での形状が、光軸Axが中心を通る正方形となっている。この正方形は、第一の方向D1に平行な2つの辺と、第二の方向D2に平行な2つの辺とによって構成されている。
 図6に示すように、計測補助光30Aによって形成される平面30Fは、有効撮像範囲21Cの端部211Bにおける第一の方向D1の一方側(先端面10Dの径方向内側)の端部E1を通り、有効撮像範囲21Cの断面212Bにおける第一の方向D1の中心線E2を通り、有効撮像範囲21Cの端部213Bにおける第一の方向D1の他方側(先端面10Dの径方向外側)の端部E3を通る状態で、視野21Aと交差している。
 このような構成により、例えば光軸Axに垂直な平面状の被写体H1(対物レンズ21の先端部からの距離が全体で均一な被写体)を図4の位置P1に配置し、この被写体H1を撮像光学系によって結像して得られる光学像OP1は、図7に示すようなものとなる。図7には、有効視野21Bが補助的に示されている。
 図7に示す光学像OP1は、被写体H1と、この被写体H1に計測補助光30Aが照射されることで形成された被写体H1と平面30Fとの交差ライン30fとを含む。
 また、図4の位置P2に被写体H1を配置し、この被写体H1を撮像光学系によって結像して得られる光学像OP2は、図8に示すようなものとなる。図8には、有効視野21Bが補助的に示されている。
 図8に示す光学像OP2は、被写体H1と、この被写体H1に計測補助光30Aが照射されることで形成された被写体H1と平面30Fとの交差ライン30fとを含む。
 また、図4の位置P3に被写体H1を配置し、この被写体H1を撮像光学系によって結像して得られる光学像OP3は、図9に示すようなものとなる。図9には、有効視野21Bが補助的に示されている。
 図9に示す光学像OP3は、被写体H1と、この被写体H1に計測補助光30Aが照射されることで形成された被写体H1と平面30Fとの交差ライン30fとを含む。
 このように、対物レンズ21の先端部からの被写体の距離によって、撮像素子23の受光面に結像される光学像における交差ライン30fの位置は一方向に移動する。
 制御装置4の信号処理部42は、図7~図9に示すような光学像から電気信号に変換された撮像画像信号を処理して撮像画像を生成する。本実施形態においては、信号処理部42が、図7~図9に示す予め決められた信号処理範囲42A内の光学像に対応する撮像画像を生成する。もちろん、信号処理部42は、光学像全体に対応する撮像画像を生成してもよい。
 制御装置4の表示制御部43は、図7~図9に示したように、対物レンズ21の先端部からの距離が均一な被写体H1を撮像した場合に得られる撮像画像に含まれる交差ライン30fが延びる方向を、信号処理部42によって生成される撮像画像の水平方向として設定し、この設定にしたがって撮像画像を表示部7に表示させる。
 つまり、表示制御部43は、撮像画像の水平方向が、表示部7の表示面における水平方向と一致するように、撮像画像を表示部7に表示させる。
 したがって、表示部7に表示される撮像画像中の交差ライン30fは、交差ライン30fが形成されている被写体までの距離が変わることによって、その垂直方向の位置が変わることになる。
 以下では、被写体が対物レンズ21から遠ざかるほど、表示部7に表示される交差ライン30fが、表示画面を垂直方向の下から上に向かって移動するものとして説明する。
 表示制御部43は、交差ライン30fを含む撮像画像を表示部7に表示させる場合に、この交差ライン30fに重ねて、交差ライン30fの実寸サイズを示す目盛を表示させる。この目盛は、被写体の大きさの指標となる目盛を構成する。
 表示制御部43に内蔵されたROMには、信号処理部42によって生成される撮像画像における垂直方向の位置と、その位置における画像の1ピクセルあたりの実寸サイズとの関係を示すデータテーブルが記憶されている。
 例えば、上述した被写体H1として例えば1mm角の升目が並べられた方眼紙を用意し、対物レンズ21の先端部から任意の距離にこの方眼紙を置いた状態で、この方眼紙を撮像素子23によって撮像する。
 そして、この撮像画像における交差ライン30fの垂直方向の位置ynを求める。また、この撮像によって得た撮像画像に含まれる交差ライン30fの長さを、方眼紙の升目を使って計測する。この計測した交差ライン30fの長さを、撮像画像の水平方向の総ピクセル数で除算することで、上記の位置ynにおける1ピクセルあたりの実寸サイズを求める。最後に、この1ピクセルあたりの実寸サイズの情報と位置ynとを対応付けてROMに記憶する。
 このような作業を、光軸方向D3における方眼紙の位置を細かく変えながら繰り返し行うことで、上述したデータテーブルが作成される。
 具体的には、表示制御部43は、信号処理部42によって生成された撮像画像から交差ライン30fを検出し、この交差ライン30fを構成する多数の画素データの1つを起点とする。
 そして、表示制御部43は、この多数の画素データを、この起点から水平方向に向かって画素データを順次選択していく。表示制御部43は、選択した画素データの垂直方向の位置と上記のデータテーブルから、その位置における1ピクセルあたりの実寸サイズの情報を得る。
 表示制御部43は、このようにして得た実寸サイズを、画素データを選択する毎に積算していき、積算値が単位長さ(例えば1mm)の整数倍になったときに選択している画素データを、目盛を重ねるべき画素データとして特定する。また、表示制御部43は、起点の画素データについても、目盛を重ねるべき画素データとして特定する。
 表示制御部43は、このような処理で特定した画素データ上に、単位長さの間隔を示す目盛(例えば垂直方向に延びる縦線)を表示させる。これにより、表示部7には、被写体の大きさの指標となる目盛が表示される。
 なお、目盛の表示方法は一例であり、これに限定されない。
 図10は、ポリープPが対物レンズ21の先端部から距離L1の位置にある状態で内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。
 図11は、図10に示す状態よりもポリープPが対物レンズ21から離れた位置にある状態の撮像画像の例を示す図である。
 図12は、図10に示す状態よりもポリープPが対物レンズ21に近づいた位置にある状態の撮像画像の例を示す図である。
 図10~図12に示す方向Hは、表示部7の表示画面の水平方向を示している。図10~図12に示す方向Vは、表示部7の表示画面の垂直方向を示している。
 図10~図12に示すように、表示部7に表示される撮像画像70は、交差ライン30f及び、単位長さを示す目盛70Aを含む。図10~図12に示すように、交差ライン30fが表示画面上で方向Vの上側にあるほど、目盛70Aの間隔は細かく表示される。
 以上のように、内視鏡装置100では、計測補助光30Aによって形成される平面30Fと対物レンズ21の光軸Axとの交差する点の位置P2が、対物レンズ21の先端部から5mm以上20mm以下の最適観察範囲内に存在する。
 このため、使用者は、ポリープ等の観察対象物がこの最適観察範囲に入るように内視鏡1を操作し、更に、表示部7に表示される撮像画像の中心付近に観察対象物がくるように内視鏡1を操作するという一般的に行われる作業を行うだけで、図10に示したように、観察対象物と交差ライン30fを表示画面の中心付近に表示させることができる。
 図10に示す状態では、最適観察範囲にポリープPがあるため、使用者はポリープPの状態を詳細に確認することができる。また、撮像画像70に含まれる交差ライン30fは撮像画像70上の歪みのほとんどない部分においてポリープP上に表示されることになる。このため、この交差ライン30fを用いてポリープPの大きさを計測する場合に、その計測を高い精度で行うことができる。
 このように、内視鏡装置100によれば、使用者は、最適観察範囲内かつ撮像画像の中心付近に観察対象物がくるように内視鏡1の操作を行うという慣れた作業を行うだけで、観察対象物の状態と観察対象物の大きさを正確に知ることができ、診断等に役立てることができる。
 また、内視鏡装置100によれば、計測補助光30Aによって形成される平面30Fと対物レンズ21の光軸Axとの交点の位置P2は固定されている。このため、計測補助光30Aを掃引する構成と比較して内視鏡装置100の製造コストの増加を防ぐことができる。
 また、内視鏡装置100によれば、表示部7に表示される交差ライン30fが、撮像画像の中心付近に来るように内視鏡1を操作することで、観察対象物を最適観察範囲内に入れることも可能である。このため、観察対象物の状態の確認を正確かつ素早く行うことができる。
 また、内視鏡装置100では、図6に示すように、平面30Fが、端部E1を通過し且つ端部E3を通過して有効撮像範囲21Cを横切る構成である。このため、有効撮像範囲21Cに観察対象物が存在すれば、その観察対象物には必ず平面30Fが交差するため、その観察対象物の大きさを計測することができる。したがって、観察対象物を最適観察範囲に入れることができない状況であっても、観察対象物の大きさを計測することができ、診断に役立てることができる。
 また、内視鏡装置100では、表示部7に表示された撮像画像に含まれる交差ライン30f上に、この交差ライン30fの実寸サイズを示す目盛が表示される。このため、使用者は、この目盛にしたがい、目視だけで観察対象物の大きさを把握することができる。
 使用者は、撮像画像上で2点を選択する等の特別な操作をすることなく、観察対象物の大きさを知ることができるため、内視鏡検査をスムーズに進めることが可能となる。
 なお、表示制御部43は、図10~図12に例示した目盛70Aを常時表示させるのではなく、操作部11に設けられたボタン操作等がなされて使用者から指示があったときのみ表示させるようにしてもよい。この構成によれば、使用者が計測を行いたい時だけ目盛70Aを表示させることができ、計測を行わない場合には、観察視野を広げることができる。
 以下、内視鏡装置100の変形例について説明する。
(第一の変形例)
 表示制御部43は、信号処理部42によって生成された撮像画像に対し、有効視野21Bを示す情報を付加し、この情報が付加された撮像画像を表示部7に表示させることが好ましい。
 図13は、第一の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。
 図13に示す撮像画像70は、有効視野21Bに相当する枠70Bが追加されている点を除いては、図10に示したものと同じである。
 このように、有効視野21Bを示す枠70Bが撮像画像上に表示されることで、使用者は、撮像画像上のどの範囲が歪みなく撮像されているのかを把握することができる。このため、枠70B外にある目盛70Aについては、歪みの影響を受けているため計測に利用しないという判断が可能となり、計測誤差の発生を防ぐことができる。
(第二の変形例)
 表示制御部43は、信号処理部42によって生成された撮像画像のうち、有効視野21B外の部分に、交差ライン30fの全体が重なる場合には、交差ライン30f上の目盛70Aを非表示にすることが好ましい。
 図14は、第二の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。
 図14に示す撮像画像70では、有効視野21Bに相当する範囲21b外に、交差ライン30fの全体が位置している。なお、この範囲21bは表示部7に表示されるものではなく、説明のために図示されているだけである。
 この状態では、表示制御部43は、交差ライン30f上に目盛を表示させない。一方、表示制御部43は、範囲21bに交差ライン30fが重なる場合には、交差ライン30f上に目盛を表示させる。
 この構成によれば、歪みの大きな範囲にある交差ライン30fによって計測が行われるのを防ぐことができ、計測誤差を防止することができる。
(第三の変形例)
 表示制御部43は、信号処理部42によって生成された撮像画像のうち、有効視野21B外の部分に、交差ライン30fの全体が重なる場合には、交差ライン30f上の目盛の表示形態を、有効視野21Bの部分に交差ライン30fの全体が重なる場合に対して変更することが好ましい。
 図15は、第三の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。
 図15に示す撮像画像70では、有効視野21Bに相当する範囲21b外に、交差ライン30fの全体が位置している。なお、この範囲21bは表示部7に表示されるものではなく、説明のために図示されているだけである。
 この状態では、表示制御部43は、交差ライン30f上に、図13に例示した目盛70Aとは異なる表示形態の目盛70aを表示させる。
 目盛70aは、例えば、目盛70Aとは異なる色で表示されたり、目盛70Aとは異なる線種(例えば破線)で表示されたりする。
 この構成によれば、目盛の表示形態の違いによって、交差ライン30fが有効視野21B外にあることを使用者が認識することができる。このため、歪みの大きな範囲にある交差ライン30fによって計測が行われるのを防ぐことができ、計測誤差を防止することができる。
(第四の変形例)
 表示制御部43は、信号処理部42によって生成された撮像画像のうち、有効視野21Bと有効視野21B外の部分とに交差ライン30fが重なる場合には、有効視野21B外と重なる交差ライン30f上の目盛70Aについては非表示にすることが好ましい。
 図16は、第四の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。
 図16に示す撮像画像70は、有効視野21Bに相当する範囲21b外において、交差ライン30f上の目盛70Aが非表示となっている点を除いては、図10に示したものと同じである。なお、この範囲21bは表示部7に表示されるものではなく、説明のために図示されているだけである。
 このように、有効視野21Bと重なる交差ライン30fの部分にだけ目盛70Aが表示されることで、歪みの大きな範囲にある交差ライン30fによって計測が行われるのを防ぐことができ、計測誤差を防止することができる。
(第五の変形例)
 表示制御部43は、信号処理部42によって生成された撮像画像のうち、有効視野21Bと有効視野21B外の部分とに交差ライン30fが重なる場合には、有効視野21B外と重なる交差ライン30f上の目盛70Aについては、有効視野21Bと重なる交差ライン30f上の目盛70Aに対し、表示形態を変更することが好ましい。
 図17は、第五の変形例の内視鏡装置100の表示部7に表示される撮像画像の一例を示す図である。
 図17に示す撮像画像70では、有効視野21Bに相当する範囲21bと、その範囲21b外とに交差ライン30fが重なっている。そして、交差ライン30fのうちの範囲21bと重なる部分には目盛70Aが表示され、交差ライン30fのうちの範囲21b外と重なる部分には目盛70aaが表示されている。なお、この範囲21bは表示部7に表示されるものではなく、説明のために図示されているだけである。
 目盛70aaは、例えば、目盛70Aとは異なる色で表示されたり、目盛70Aとは異なる線種(例えば破線)で表示されたりする。
 この構成によれば、目盛の表示形態の違いによって、交差ライン30fのどの部分が有効視野21B外にあるのかを使用者が認識することができる。このため、歪みの大きな範囲にある目盛70aaによって計測が行われるのを防ぐことができ、計測誤差を防止することができる。
(第六の変形例)
 内視鏡装置100の計測補助光出射部30は、内視鏡1の先端部10Cに固定されているのではなく、着脱可能であってもよい。例えば、図18に示すように、先端部10Cの開口29に対し、計測補助光出射部30をアクセサリとして後付けできるような構成としてもよい。この構成によれば、既存の内視鏡に対し新しい機能を付加することが可能となる。
(第七の変形例)
 表示制御部43は、被写体H1を撮像した場合の撮像画像に含まれる交差ライン30fが延びる方向を、撮像画像の垂直方向として取り扱ってもよい。この場合には、対物レンズ21の先端部からの被写体の距離が変わることによって、表示部7に表示される垂直方向に延びる交差ライン30fが、撮像画像上を水平方向に移動することになる。
(第八の変形例)
 図6に示すように、計測補助光30Aによって形成される平面30Fは、視野21Aのうち有効視野21B(有効撮像範囲21C)外の範囲とも交差している。しかし、図19に示すように、有効視野21Bに対してのみ平面30Fが交差するように、DOE32が設計されていてもよい。
 この場合には、例えば図7に示す光学像OP1は図20に示したものに変更される。つまり、撮像画像の水平方向では、歪みの影響を受けない範囲にのみ交差ライン30fが表示されることになるため、交差ライン30f上の目盛によって観察対象物の計測を高い精度で行うことができる。
 この第八の変形例と、第二の変形例(図14)又は第三の変形例(図15)と、を組み合わせることで、計測誤差の発生を更に防ぐことができる。
 ここまでの説明では、内視鏡1として軟性内視鏡の例を示したが、硬性内視鏡であっても同様に本発明を適用可能である。
 以上のように、本明細書には以下の事項が開示されている。
(1) 内視鏡の先端部に配置された対物レンズ、を含む撮像光学系と、上記撮像光学系を通して被写体を撮像する撮像素子と、上記撮像素子により被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成する信号処理部と、平面状の計測補助光を上記先端部から出射する計測補助光出射部と、上記計測補助光によって形成される平面が上記被写体と交わる部分に形成される上記計測補助光と上記被写体との交差ラインを含む上記撮像画像を表示部に表示させる表示制御部と、を備え、上記計測補助光出射部は、上記対物レンズの光軸上の特定の一点において上記光軸と上記平面が交わる状態にて上記計測補助光を出射し、上記特定の一点の上記対物レンズの先端部からの距離は、5mm以上20mm以下である内視鏡装置。
(2) (1)記載の内視鏡装置であって、上記計測補助光によって形成される上記平面は、上記撮像光学系の視野において予め決められている有効視野と上記撮像光学系の被写界深度との重複する範囲である有効撮像範囲の上記対物レンズ側の端部、における上記光軸に垂直な垂直方向の一方側の端部を通り、且つ上記有効撮像範囲の上記対物レンズ側と反対側の端部における上記垂直方向の他方側の端部を通る内視鏡装置。
(3) (2)記載の内視鏡装置であって、上記表示制御部は、上記対物レンズの上記先端部からの距離が均一な被写体を撮像した場合の上記撮像画像に含まれる上記交差ラインが延びる方向を、上記撮像画像の水平方向又は垂直方向として上記撮像画像を表示させる内視鏡装置。
(4) (1)~(3)のいずれか1つに記載の内視鏡装置であって、上記表示制御部は、上記撮像画像に含まれる上記交差ライン上に被写体の大きさの指標となる目盛を表示させる内視鏡装置。
(5) (4)記載の内視鏡装置であって、上記表示制御部は、上記撮像光学系の視野において予め決められている有効視野を示す情報を、上記撮像画像に付加して表示させる内視鏡装置。
(6) (4)記載の内視鏡装置であって、上記表示制御部は、上記撮像画像のうち、上記撮像光学系の視野において予め決められている有効視野外の部分に、上記交差ラインの全体が重なる場合には、上記目盛を非表示にする内視鏡装置。
(7) (4)記載の内視鏡装置であって、上記表示制御部は、上記撮像画像のうち、上記撮像光学系の視野において予め決められている有効視野外の部分に、上記交差ラインの全体が重なる場合には、上記撮像画像のうちの上記有効視野の部分に上記交差ラインが重なる場合に対して上記目盛の表示状態を変更する内視鏡装置。
(8) (4)記載の内視鏡装置であって、上記表示制御部は、上記撮像画像のうち、上記撮像光学系の視野において予め決められている有効視野及び上記有効視野外に上記交差ラインが重なる場合には、上記有効視野外と重なる上記交差ラインの部分の上記目盛を非表示にする内視鏡装置。
(9) (4)記載の内視鏡装置であって、上記表示制御部は、上記撮像画像のうち、上記撮像光学系の視野において予め決められている有効視野及び上記有効視野外に上記交差ラインが重なる場合には、上記有効視野外と重なる上記交差ラインの部分の上記目盛を、上記有効視野と重なる上記交差ラインの部分の上記目盛の表示形態とは異なる表示形態で表示させる内視鏡装置。
(10) 内視鏡の先端部に配置された対物レンズ、を含む撮像光学系を通して撮像素子により被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成する信号処理ステップと、平面状の計測補助光を上記先端部から出射させる計測補助光出射制御ステップと、上記計測補助光によって形成される平面が上記被写体と交わる部分に形成される上記計測補助光と上記被写体との交差ラインを含む上記撮像画像を表示部に表示させる表示制御ステップと、を備え、上記計測補助光出射制御ステップでは、上記対物レンズの光軸上の特定の一点において上記光軸と上記平面とが交わる状態にて、上記先端部から上記計測補助光を出射させ、上記特定の一点の上記対物レンズの先端部からの距離を5mm以上20mm以下とする計測支援方法。
 上記記載から、以下の付記項1に記載の内視鏡装置を把握することができる。
 [付記項1]
 内視鏡の先端部に配置された対物レンズ、を含む撮像光学系と、
 上記撮像光学系を通して被写体を撮像する撮像素子と、
 平面状の計測補助光を上記先端部から出射する計測補助光出射部と、
 プロセッサと、を備え、
 上記プロセッサは、
  上記撮像素子により被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成し、
  上記計測補助光によって形成される平面が上記被写体と交わる部分に形成される上記計測補助光と上記被写体との交差ラインを含む上記撮像画像を表示部に表示させ、
 上記計測補助光出射部は、上記対物レンズの光軸上の特定の一点において上記光軸と上記平面が交わる状態にて上記計測補助光を出射し、
 上記特定の一点の上記対物レンズの先端部からの距離は、5mm以上20mm以下である内視鏡装置。
100 内視鏡装置
1 内視鏡
2 本体部
10 挿入部
10A 軟性部
10B 湾曲部
10C 先端部
10D 先端面
11 操作部
12 アングルノブ
13 ユニバーサルコード
13A、13B コネクタ部
6 入力部
7 表示部
21 対物レンズ
Ax 光軸
22 レンズ群
23 撮像素子
24 ADC
25 メモリ
26 通信インタフェース
27 撮像制御部
29 開口
30 計測補助光出射部
30A 計測補助光
31 光源
32 DOE
33 プリズム
34 計測補助用レンズ
4 制御装置
41 通信インタフェース
42 信号処理部
43 表示制御部
44 システム制御部
5 光源装置
50 照明用レンズ
51 光源制御部
52 光源部
53 ライトガイド
60 送気送水ノズル
D1 第一の方向
D2 第二の方向
D3 光軸方向
L1 距離
R1 被写界深度
21A 視野
21B 有効視野
21C 有効撮像範囲
P1,P2,P3 位置
211A、213A,211B,213B 端部
212A,212B 断面
30F 平面
E1,E3 端部
E2 中心線
H1 被写体
OP1,OP2,OP3 光学像
30f 交差ライン
42A 信号処理範囲
70 撮像画像
70A 目盛
P ポリープ
H 水平方向
V 垂直方向
70B 枠
21b 有効視野に相当する範囲
70a,70aa 目盛

Claims (10)

  1.  内視鏡の先端部に配置された対物レンズ、を含む撮像光学系と、
     前記撮像光学系を通して被写体を撮像する撮像素子と、
     前記撮像素子により被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成する信号処理部と、
     平面状の計測補助光を前記先端部から出射する計測補助光出射部と、
     前記計測補助光によって形成される平面が前記被写体と交わる部分に形成される前記計測補助光と前記被写体との交差ラインを含む前記撮像画像を表示部に表示させる表示制御部と、を備え、
     前記計測補助光出射部は、前記対物レンズの光軸上の特定の一点において前記光軸と前記平面が交わる状態にて前記計測補助光を出射し、
     前記特定の一点の前記対物レンズの先端部からの距離は、5mm以上20mm以下である内視鏡装置。
  2.  請求項1記載の内視鏡装置であって、
     前記計測補助光出射部は、前記撮像光学系の視野において予め決められている有効視野と前記撮像光学系の被写界深度との重複する範囲である有効撮像範囲の前記対物レンズ側の端部における前記光軸に垂直な垂直方向の一方側の端部を通り、且つ前記有効撮像範囲の前記対物レンズ側と反対側の端部における前記垂直方向の他方側の端部を通る平面状の前記計測補助光を出射する内視鏡装置。
  3.  請求項2記載の内視鏡装置であって、
     前記表示制御部は、前記対物レンズの前記先端部からの距離が均一な被写体を撮像した場合の前記撮像画像に含まれる前記交差ラインが延びる方向を、前記撮像画像の水平方向又は垂直方向として前記撮像画像を表示させる内視鏡装置。
  4.  請求項1~3のいずれか1項記載の内視鏡装置であって、
     前記表示制御部は、前記撮像画像に含まれる前記交差ライン上に被写体の大きさの指標となる目盛を表示させる内視鏡装置。
  5.  請求項4記載の内視鏡装置であって、
     前記表示制御部は、前記撮像光学系の視野において予め決められている有効視野を示す情報を、前記撮像画像に付加して表示させる内視鏡装置。
  6.  請求項4記載の内視鏡装置であって、
     前記表示制御部は、前記撮像画像のうち、前記撮像光学系の視野において予め決められている有効視野外の部分に、前記交差ラインの全体が重なる場合には、前記目盛を非表示にする内視鏡装置。
  7.  請求項4記載の内視鏡装置であって、
     前記表示制御部は、前記撮像画像のうち、前記撮像光学系の視野において予め決められている有効視野外の部分に、前記交差ラインの全体が重なる場合には、前記撮像画像のうちの前記有効視野の部分に前記交差ラインが重なる場合に対して前記目盛の表示状態を変更する内視鏡装置。
  8.  請求項4記載の内視鏡装置であって、
     前記表示制御部は、前記撮像画像のうち、前記撮像光学系の視野において予め決められている有効視野及び前記有効視野外に前記交差ラインが重なる場合には、前記有効視野外と重なる前記交差ラインの部分の前記目盛を非表示にする内視鏡装置。
  9.  請求項4記載の内視鏡装置であって、
     前記表示制御部は、前記撮像画像のうち、前記撮像光学系の視野において予め決められている有効視野及び前記有効視野外に前記交差ラインが重なる場合には、前記有効視野外と重なる前記交差ラインの部分の前記目盛を、前記有効視野と重なる前記交差ラインの部分の前記目盛の表示形態とは異なる表示形態で表示させる内視鏡装置。
  10.  内視鏡の先端部に配置された対物レンズ、を含む撮像光学系を通して撮像素子により被写体を撮像して得られる撮像画像信号を処理して撮像画像を生成する信号処理ステップと、
     平面状の計測補助光を前記先端部から出射させる計測補助光出射制御ステップと、
     前記計測補助光によって形成される平面が前記被写体と交わる部分に形成される前記計測補助光と前記被写体との交差ラインを含む前記撮像画像を表示部に表示させる表示制御ステップと、を備え、
     前記計測補助光出射制御ステップでは、前記対物レンズの光軸上の特定の一点において前記光軸と前記平面とが交わる状態にて、前記先端部から前記計測補助光を出射させ、
     前記特定の一点の前記対物レンズの先端部からの距離を5mm以上20mm以下とする計測支援方法。
PCT/JP2018/014389 2017-07-18 2018-04-04 内視鏡装置及び計測支援方法 WO2019017018A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880039620.2A CN110769733A (zh) 2017-07-18 2018-04-04 内窥镜装置及测量支持方法
JP2019530875A JPWO2019017018A1 (ja) 2017-07-18 2018-04-04 内視鏡装置及び計測支援方法
EP18835490.6A EP3656274A4 (en) 2017-07-18 2018-04-04 ENDOSCOPY DEVICE AND MEASUREMENT SUPPORT METHOD
US16/703,635 US11160438B2 (en) 2017-07-18 2019-12-04 Endoscope device and measurement support method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017139095 2017-07-18
JP2017-139095 2017-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/703,635 Continuation US11160438B2 (en) 2017-07-18 2019-12-04 Endoscope device and measurement support method

Publications (1)

Publication Number Publication Date
WO2019017018A1 true WO2019017018A1 (ja) 2019-01-24

Family

ID=65015022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014389 WO2019017018A1 (ja) 2017-07-18 2018-04-04 内視鏡装置及び計測支援方法

Country Status (5)

Country Link
US (1) US11160438B2 (ja)
EP (1) EP3656274A4 (ja)
JP (1) JPWO2019017018A1 (ja)
CN (1) CN110769733A (ja)
WO (1) WO2019017018A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559076A (zh) * 2019-10-18 2019-12-13 庄源东 术中射线透视联合可见光图像融合系统
EP3698714A1 (en) * 2019-02-20 2020-08-26 Fujifilm Corporation Endoscope apparatus
JPWO2021029277A1 (ja) * 2019-08-13 2021-02-18
EP3951473A4 (en) * 2019-03-29 2022-05-18 FUJIFILM Corporation ENDOSCOPE AND ENDOSCOPIC DEVICE
EP4020055A4 (en) * 2019-08-23 2022-10-26 FUJIFILM Corporation ENDOSCOPE DEVICE, METHOD OF OPERATION THEREOF AND PROGRAM FOR ENDOSCOPE DEVICE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3544482A4 (en) 2016-11-28 2020-07-22 Adaptivendo LLC SEPARABLE DISPOSABLE SHAFT ENDOSCOPE
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
JPWO2022049807A1 (ja) * 2020-09-02 2022-03-10
USD1031035S1 (en) 2021-04-29 2024-06-11 Adaptivendo Llc Endoscope handle
JP2022181645A (ja) * 2021-05-26 2022-12-08 富士フイルム株式会社 内視鏡業務支援装置及び内視鏡業務支援システム並びに内視鏡業務支援装置の作動方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249208A (ja) * 1985-08-29 1987-03-03 Toshiba Corp 距離測定機能付内視鏡
JPS6273223A (ja) * 1985-09-26 1987-04-03 Toshiba Corp 内視鏡装置
JPH0313805A (ja) * 1989-06-12 1991-01-22 Welch Allyn Inc 物体の内部観察方法とその装置
JPH03128043A (ja) * 1989-10-16 1991-05-31 Toshiba Corp 形状計測内視鏡装置
JPH0412724A (ja) 1990-05-02 1992-01-17 Nippon Telegr & Teleph Corp <Ntt> 計測内視鏡
JP2009297435A (ja) * 2008-06-17 2009-12-24 Olympus Corp 受動的多自由度システムおよび内視鏡装置
JP2017508529A (ja) 2014-03-02 2017-03-30 ブイ.ティー.エム.(バーチャル テープ メジャー)テクノロジーズ リミテッド 内視鏡測定システム及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE362469C (de) * 1921-03-02 1922-10-31 Hans Kollmorgen G M B H Instrument zur Besichtigung von Koerperhoehlen
JPS5380285U (ja) * 1976-12-07 1978-07-04
JPH0285706A (ja) * 1988-09-22 1990-03-27 Toshiba Corp 計測内視鏡
JPH04145313A (ja) * 1990-10-08 1992-05-19 Toshiba Corp 形状計測内視鏡におけるパターン光の自動抽出方法
JP2008194156A (ja) * 2007-02-09 2008-08-28 Hoya Corp 電子内視鏡装置
JPWO2009084345A1 (ja) 2007-12-28 2011-05-19 オリンパスメディカルシステムズ株式会社 医療機器システム
JP2016095458A (ja) * 2014-11-17 2016-05-26 オリンパス株式会社 内視鏡装置
JP6437878B2 (ja) * 2015-05-11 2018-12-12 オリンパス株式会社 内視鏡の観察光学系ユニット及び内視鏡装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249208A (ja) * 1985-08-29 1987-03-03 Toshiba Corp 距離測定機能付内視鏡
JPS6273223A (ja) * 1985-09-26 1987-04-03 Toshiba Corp 内視鏡装置
JPH0313805A (ja) * 1989-06-12 1991-01-22 Welch Allyn Inc 物体の内部観察方法とその装置
JPH03128043A (ja) * 1989-10-16 1991-05-31 Toshiba Corp 形状計測内視鏡装置
JPH0412724A (ja) 1990-05-02 1992-01-17 Nippon Telegr & Teleph Corp <Ntt> 計測内視鏡
JP2009297435A (ja) * 2008-06-17 2009-12-24 Olympus Corp 受動的多自由度システムおよび内視鏡装置
JP2017508529A (ja) 2014-03-02 2017-03-30 ブイ.ティー.エム.(バーチャル テープ メジャー)テクノロジーズ リミテッド 内視鏡測定システム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656274A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3698714A1 (en) * 2019-02-20 2020-08-26 Fujifilm Corporation Endoscope apparatus
JP2020130634A (ja) * 2019-02-20 2020-08-31 富士フイルム株式会社 内視鏡装置
JP7069062B2 (ja) 2019-02-20 2022-05-17 富士フイルム株式会社 内視鏡装置
US11490784B2 (en) 2019-02-20 2022-11-08 Fujifilm Corporation Endoscope apparatus
EP3951473A4 (en) * 2019-03-29 2022-05-18 FUJIFILM Corporation ENDOSCOPE AND ENDOSCOPIC DEVICE
JPWO2021029277A1 (ja) * 2019-08-13 2021-02-18
WO2021029277A1 (ja) * 2019-08-13 2021-02-18 富士フイルム株式会社 内視鏡システム及びその作動方法
CN114207499A (zh) * 2019-08-13 2022-03-18 富士胶片株式会社 内窥镜系统及其工作方法
JP7116264B2 (ja) 2019-08-13 2022-08-09 富士フイルム株式会社 内視鏡システム及びその作動方法
EP4020055A4 (en) * 2019-08-23 2022-10-26 FUJIFILM Corporation ENDOSCOPE DEVICE, METHOD OF OPERATION THEREOF AND PROGRAM FOR ENDOSCOPE DEVICE
CN110559076A (zh) * 2019-10-18 2019-12-13 庄源东 术中射线透视联合可见光图像融合系统

Also Published As

Publication number Publication date
US11160438B2 (en) 2021-11-02
EP3656274A1 (en) 2020-05-27
CN110769733A (zh) 2020-02-07
US20200107698A1 (en) 2020-04-09
JPWO2019017018A1 (ja) 2020-04-09
EP3656274A4 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2019017018A1 (ja) 内視鏡装置及び計測支援方法
JP6692440B2 (ja) 内視鏡システム
US11419694B2 (en) Endoscope system measuring size of subject using measurement auxiliary light
WO2018051679A1 (ja) 計測支援装置、内視鏡システム、内視鏡システムのプロセッサ、及び計測支援方法
JP7115897B2 (ja) 内視鏡装置
JP6157782B1 (ja) 画像較正用検具および内視鏡システム
US11490785B2 (en) Measurement support device, endoscope system, and processor measuring size of subject using measurement auxiliary light
JP7099971B2 (ja) 内視鏡装置、キャリブレーション装置、及びキャリブレーション方法
JP2011055938A (ja) 内視鏡装置
JP6738465B2 (ja) 内視鏡システム
WO2019017019A1 (ja) 内視鏡装置及び計測支援方法
JP2008194156A (ja) 電子内視鏡装置
JP2010046216A (ja) 光断層画像取得装置及び光断層画像取得方法
JP2008125989A (ja) 内視鏡ポイント光照射位置調整システム
WO2021039471A1 (ja) 内視鏡装置及びその作動方法並びに内視鏡装置用プログラム
WO2017026277A1 (ja) 処理装置、処理方法及び処理プログラム
JP2016029961A (ja) 内視鏡装置
JP2017086803A (ja) 計測装置、内視鏡システム、及び計測方法
JPWO2015186385A1 (ja) 挿入補助具及び光走査型観察システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835490

Country of ref document: EP

Effective date: 20200218