WO2019015003A1 - 射频消融导管及系统 - Google Patents

射频消融导管及系统 Download PDF

Info

Publication number
WO2019015003A1
WO2019015003A1 PCT/CN2017/097887 CN2017097887W WO2019015003A1 WO 2019015003 A1 WO2019015003 A1 WO 2019015003A1 CN 2017097887 W CN2017097887 W CN 2017097887W WO 2019015003 A1 WO2019015003 A1 WO 2019015003A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
catheter
needle
radiofrequency
catheter body
Prior art date
Application number
PCT/CN2017/097887
Other languages
English (en)
French (fr)
Inventor
程健
刘弘毅
马家骏
Original Assignee
常州朗合医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州朗合医疗器械有限公司 filed Critical 常州朗合医疗器械有限公司
Priority to EP17918195.3A priority Critical patent/EP3656326A4/en
Priority to US16/632,837 priority patent/US20200146749A1/en
Publication of WO2019015003A1 publication Critical patent/WO2019015003A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00166Multiple lumina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1432Needle curved
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors

Definitions

  • the present application relates to the field of medical devices, and in particular to a radio frequency ablation catheter and system.
  • Radiofrequency thermal ablation is a minimally invasive tumor in situ treatment technique that converts radio frequency signals into temperature fields and treats human tissue through thermal effects.
  • the electrode needle is directly inserted into the lesion tissue, and the high-frequency alternating current of the tip of the electrode needle is injected into the lesion tissue, and the ions in the lesion tissue change with the change of the current direction, thereby generating heat and causing local tissue of the lesion.
  • the temperature rises; when the temperature of the tissue exceeds 60 ° C, the cells die, eventually solidifying and inactivating the tumor tissue.
  • a safer approach is to use an ablation catheter with electrodes to enter the lung tumor location through the natural airway, and then apply radiofrequency thermal ablation to the lung tumor through an ablation catheter to reduce the risk of adverse reactions.
  • most of the lung lesions are located on one side of the bronchus. If a simple cylindrical ablation electrode is used, the ablation catheter can reach the periphery of the lesion through the bronchus, but cannot penetrate into the interior of the tumor, but only close to the tumor location, through the ablation catheter.
  • the generated RF field only has a partial area acting on The tumor site, and part of the normal tissue, causes normal tissue to be affected and necrotic, and the area of ablation and necrosis is too large.
  • aspects of the present application provide a radiofrequency ablation catheter and system for accurately locating a lesion location and puncture into a lesion for radiofrequency ablation, achieving targeted ablation therapy and reducing damage to normal tissue.
  • the embodiment of the present application provides a radio frequency ablation catheter, including:
  • a ring electrode disposed on the head of the catheter body
  • a positioning sensor disposed within the catheter body
  • the ablation needle can extend from the catheter body head and penetrate into the lesion tissue.
  • the positioning sensor is configured to output a current signal to a control system external to the radio frequency ablation catheter according to a positioning magnetic field in a space in which it is located, for the control system to determine the radio frequency wire ablation catheter Position and control the ablation needle and the ring electrode to perform radiofrequency ablation.
  • the catheter body is a multi-lumen structure; the positioning sensor is fixed in one of the plurality of lumens; the ablation needle is fixed in the multi-lumen Other lumens.
  • each of the other lumens is provided with the same number of ablation needles.
  • the ablation needle is a straight needle, and the straight needle is straight after extending out of the catheter body;
  • the ablation needle is a curved needle, and the curved needle is opposite to the catheter after extending the catheter body The body is bent at a set angle.
  • the ablation needle has a tail end connected to one end of the push-pull force/torque transmitting mechanism, and the other end of the push-pull force/torque transmitting mechanism is coupled to the push-pull handle.
  • the ring electrode contains a temperature sensor inside.
  • At least two polar electrodes are present in the ablation needle and the ring electrode.
  • the ablation needle has a polarity opposite to that of the ring electrode.
  • the portion of the ablation needle other than the needle tip is provided with an insulating layer.
  • the embodiment of the present application further provides a radio frequency ablation system, comprising: the radio frequency ablation catheter provided by the above embodiment, a control system for controlling the operation of the radio frequency ablation catheter, and a connection between the radio frequency ablation catheter and the control system. Connector.
  • the radiofrequency ablation catheter in addition to the ring electrode, is provided with a telescopic movable ablation needle which can protrude from the head of the catheter body and penetrate into the lesion tissue; in addition, a positioning sensor is disposed in the catheter body. By positioning the sensor for navigation, the radiofrequency ablation catheter can be accurately positioned to the lesion location, and then the ablation needle can accurately penetrate the lesion tissue to perform radiofrequency ablation treatment, thereby achieving targeted precision ablation treatment and reducing damage to normal tissue.
  • 1a is a schematic structural diagram of a radio frequency ablation catheter according to an embodiment of the present application.
  • 1b is an ablation needle of a radio frequency ablation catheter extending from a catheter body head according to an embodiment of the present application.
  • FIG. 2 is a perspective view of a radiofrequency ablation catheter having a single lumen structure according to another embodiment of the present application
  • FIG. 3 is a schematic structural view of a radio frequency ablation catheter having a multi-lumen structure according to another embodiment of the present application.
  • FIG. 4 is a schematic structural view of a radiofrequency ablation catheter having a single straight needle based on a single lumen structure according to another embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a radiofrequency ablation catheter having a single curved needle according to a single lumen structure according to another embodiment of the present application;
  • FIG. 6 is a schematic structural view of a radio frequency ablation catheter having a plurality of curved needles based on a single lumen structure according to another embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a radio frequency ablation catheter having a plurality of curved needles according to a multi-lumen structure according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a radio frequency ablation system according to another embodiment of the present application.
  • the embodiment of the present application provides a novel radio frequency ablation catheter.
  • the radiofrequency ablation catheter is provided with a retractable moving ablation needle, which can be from the catheter body head. Extend and penetrate into the lesion tissue; in addition, a positioning sensor is arranged in the catheter body, and the positioning sensor is used for navigation, and the radiofrequency ablation catheter can be accurately positioned to the lesion position through the natural airway, and then the ablation needle can accurately penetrate the lesion tissue. Radiofrequency ablation Treatment to achieve targeted precision ablation treatment, reducing damage to normal tissue.
  • the radiofrequency ablation catheter provided by the embodiment of the present application includes a retractable ablation needle and a self-contained positioning sensor.
  • the structure is inevitably different from the conventional radiofrequency ablation catheter.
  • the radiofrequency ablation catheter is a relatively sophisticated medical device, the new one is added.
  • the device or function is not easy to implement, and often requires repeated experiments to finally obtain a more reasonable implementation structure.
  • the structure of the radio frequency ablation catheter provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 1a is a schematic structural diagram of a radio frequency ablation catheter according to an embodiment of the present application.
  • the radiofrequency ablation catheter includes a catheter body 10, a ring electrode 11 disposed at the head of the catheter body 10, a positioning sensor 12 disposed in the catheter body 10, and a telescopic movement disposed in the catheter body 10.
  • Ablation needle 13 is a schematic structural diagram of a radio frequency ablation catheter according to an embodiment of the present application.
  • the radiofrequency ablation catheter includes a catheter body 10, a ring electrode 11 disposed at the head of the catheter body 10, a positioning sensor 12 disposed in the catheter body 10, and a telescopic movement disposed in the catheter body 10.
  • Ablation needle 13 is a schematic structural diagram of a radio frequency ablation catheter according to an embodiment of the present application.
  • the radiofrequency ablation catheter includes a catheter body 10, a ring electrode 11 disposed at the head of the catheter body 10, a positioning sensor 12 disposed in the catheter body 10, and a telescopic movement disposed in the catheter
  • the ring electrode 11 may be fixed to the head of the catheter body 10 by various methods such as a hot melt method, an adhesive bonding method, a forging method, or a microfluidic processing technique.
  • the embodiment does not limit the shape of the ring electrode 11.
  • the ring electrode 11 may be a cylindrical shape, a sheet shape, a strip shape, a curved wire shape or a disk shape.
  • the ablation needle 13 has a certain elasticity and can be electrically conductive.
  • the ablation needle 13 and the ring electrode 11 may be made of a metal material such as copper, stainless steel, platinum-iridium alloy, or the like, or other conductive materials may be used.
  • the ablation needle 13 and the ring electrode 11 cooperate with each other, and are mainly used for ablation treatment of the lesion tissue.
  • the ablation needle 13 can extend from the head of the catheter body 10 and penetrate into the lesion tissue. As shown in FIG. 1b, a schematic structural view of the ablation needle 13 extending beyond the head of the catheter body 10 is shown.
  • Both the ablation needle 13 and the ring electrode 11 generate a radio frequency current, which is injected into the lesion tissue, so that the ions in the lesion tissue change with the change of the current direction, and the lesion tissue generates a high temperature when the temperature exceeds a certain temperature (generally 60 ° C). At the time, the lesion tissue dies, eventually solidifying and inactivating the tumor tissue for therapeutic purposes.
  • the positioning sensor 12 is configured to output a current signal to a control system external to the radio frequency ablation catheter based on a positioning magnetic field in a space in which it is located, for the control system to determine the position of the radiofrequency ablation catheter. Further, the positioning sensor 12 is further configured to output a current signal to a control system external to the radio frequency ablation catheter according to a positioning magnetic field in a space in which it is located, for the control system to control the ablation needle 13 and the ring electrode 11 to perform radio frequency ablation.
  • the positioning sensor 12 in this embodiment adopts the principle of electromagnetic navigation, which is different from the ordinary magnetic navigation principle.
  • the principle of magnetic navigation is mainly: relying on an external magnetic field to attract or repel the permanent magnets in the ablation catheter to affect the moving direction of the ablation catheter.
  • the working principle of the positioning sensor 12 in this embodiment is mainly: generating a current signal in response to the positioning magnetic field of the space in which it is located, and outputting the signal to the control system outside the radio frequency ablation catheter, and the control system determines the position of the radio ablation catheter on the one hand, On the other hand, the control system determines the position of the ablation needle 13 and the ring electrode 11 corresponding to the lesion area.
  • the positioning sensor 12 is electrically connected to the control system via wires.
  • the control system includes a magnetic field generator for generating a magnetic field in a range of positioning spaces; the positioning sensor 12 itself is not magnetic, and the coils in the positioning sensor 12 are used to sense the positioning magnetic field generated by the magnetic field generator.
  • the magnetic field generator generates a positioning magnetic field in a certain range of positioning space to ensure that the magnetic field characteristics of each point in the positioning space are unique.
  • the coils in the positioning sensor 12 generate a current signal in a varying magnetic field that is conducted by the wires of the positioning sensor 12 to the control system.
  • the control system converts and analyzes the current signals transmitted by the positioning sensor 12 to determine the precise position of the radiofrequency ablation catheter and the radiofrequency ablation catheter. The position of the inner ablation needle 13 and the ring electrode 11 relative to the lesion area.
  • control system further includes: a radio frequency ablation generator for controlling the ablation needle 13 and the ring electrode 11 to generate a radio frequency current.
  • a radio frequency ablation generator for controlling the ablation needle 13 and the ring electrode 11 to generate a radio frequency current.
  • the intensity, time, and the like of the radio frequency current generated by the ablation needle 13 and the ring electrode 11 can be controlled.
  • the ablation needle 13 and the ring electrode 11 can generate a radio frequency current under the control of a radio frequency ablation generator.
  • the navigation path through the natural airway to the area where the lesion tissue is located is planned; the radiofrequency ablation catheter is guided through the natural airway according to the navigation path To the region where the lesion tissue is located; determining the position of the ablation needle 13 and the ring electrode 11 in the radiofrequency ablation catheter relative to the lesion tissue according to the positioning sensor 12; piercing the ablation needle 13 into the lesion tissue; and then energizing the ablation needle 13 and the ring electrode 11
  • the control ablation needle 13 and the ring electrode 11 generate a radio frequency current that is injected into the lesion tissue for ablation.
  • the radio frequency ablation catheter can be accurately positioned to the lesion by the positioning sensor.
  • the combination of the ablation needle can accurately penetrate the lesion tissue to perform radiofrequency ablation treatment, thereby achieving targeted precise ablation treatment and reducing damage to normal tissues.
  • the implementation structure of the catheter body 10 is not limited.
  • the catheter body 10 can be a single lumen structure, as shown in FIG.
  • the positioning sensor 12 and the ablation needle 13 are both disposed in the cavity of the catheter body 10 and are insulated.
  • the catheter body 10 can also be a multi-lumen structure, as shown in FIG.
  • the positioning sensor 12 is fixed in one of the plurality of lumens; the ablation needle 13 is fixed in other lumens in the multiple lumens.
  • the total number of ablation needles 13 can be one or more.
  • One or more ablation needles 13 can be placed in different lumens. Wherein, the same number of ablation needles 13 can be disposed in each lumen, that is, the ablation needles 13 are evenly distributed in the lumens. Alternatively, a different number of ablation needles 13 can be placed in each lumen.
  • the ablation needle 13 needs to have some flexibility and need to be electrically conductive to facilitate radiofrequency ablation.
  • the entire ablation needle 13 can be electrically conductive.
  • the ablation needle 13 is provided with an insulating layer other than the tip of the needle for insulation treatment to reduce electromagnetic interference.
  • the shape of the ablation needle 13 is not limited. Any shape that has a certain elasticity and can be telescopically moved inside and outside the catheter body 10 and can be inserted into the tissue of the lesion is applicable to the embodiment of the present application.
  • the ablation needle 13 can be a straight needle.
  • the so-called straight needle is straight after extending out of the head of the catheter body 10.
  • the straight needle may be a single wire that is elastic, or it may be a structure in which a plurality of wires are wound and woven.
  • the structure may be a layer of a woven structure or a multilayer woven structure.
  • the portion of the straight needle within the catheter body 10 can flex as the catheter body 10 bends and can conduct electrical current.
  • Straight pins can be wired to an external control system.
  • the straight needle may be fully conductive, or only the tip portion may be electrically conductive and the other portions may be insulated.
  • the single or multiple wires can be used to make full use of the wire's resistance to force, so that the straight needle can flexibly extend or retract from the catheter body 10.
  • the straight needle may be a single piece or a plurality of pieces.
  • the radiofrequency ablation catheter with a single straight needle is easier to handle, the puncture direction is easy to control, and it can be accurately penetrated into the lesion tissue.
  • the structure of a radiofrequency ablation catheter having a single straight needle is as Figure 4 shows.
  • the ablation needle 13 can be a curved needle.
  • the curved needle is bent at a set angle with respect to the catheter body 10 after extending out of the head of the catheter body 10.
  • This embodiment does not limit the curved shape of the curved needle, and may have various sizes.
  • a curved needle may be a flexible single wire or a plurality of wire wound woven structures.
  • the structure may be a layer of a woven structure or a multilayer woven structure.
  • the portion of the curved needle within the catheter body 10 can flex as the catheter body 10 bends and can conduct electrical current.
  • the curved pin can be wired to an external control system.
  • the curved needle may be fully electrically conductive, or only the tip portion may be electrically conductive and the other portions may be insulated.
  • the tip portion of the curved needle is curved and naturally returns to a curved shape after extending out of the head of the catheter body 10, and can be inserted into the inside of the lesion tissue.
  • the direction in which the tip portion is bent is relatively fixed to the head of the catheter body 10.
  • the catheter body 10 can transmit torque, and rotating the catheter body 10 can change the orientation of the ablation needle 13.
  • the actual direction of the curved needle can be accurately determined by the positioning sensor 12.
  • the curved needle may be a single piece or a plurality of pieces.
  • a radiofrequency ablation catheter with a single curved needle can be easily penetrated into a more severe lesion tissue (such as a tumor on the side of the bronchial wall) for ablation treatment, and the puncture direction is easy to control.
  • a more severe lesion tissue such as a tumor on the side of the bronchial wall
  • the puncture direction is easy to control.
  • the structure of a radiofrequency ablation catheter having a single curved needle is shown in FIG.
  • the tails of the plurality of curved needles are fixedly connected together, and the plurality of curved needles are insulated from each other, and the head of the catheter body 10 is extended to naturally restore the curved shape in a plurality of directions. And can be inserted into the interior of the lesion tissue from different directions.
  • This embodiment does not limit the number of curved needles, and may be, for example, two, three or more.
  • the present embodiment does not limit the curved shape and the bending angle of the curved needle.
  • a radiofrequency ablation catheter with multiple curved needles can puncture into different parts of the lesion tissue, increase the contact area with the lesion tissue, and obtain a large effective ablation area, which is better for ablation treatment of larger size lesion tissue.
  • the structure of a radiofrequency ablation catheter having a plurality of curved needles is shown in FIG.
  • the structure of a radiofrequency ablation catheter having a plurality of curved needles is shown in FIG.
  • the radio frequency ablation catheter of the present embodiment may further include: means for controlling the ablation needle 13 to protrude or retract from the head of the catheter body 10.
  • the components for controlling the ablation needle 13 to extend or retract from the head of the catheter body 10 are not defined herein, and any structure or component that can control the ablation needle 13 to extend or retract from the head of the catheter body 10 is suitable for use in the practice of the present application. example.
  • the ablation needle 13 has a distal end connected to one end of the push-pull force/torque transmitting mechanism, and the other end of the push-pull force/torque transmitting mechanism is coupled to the push-pull handle.
  • the ablation needle 13 can be controlled to extend from the head of the catheter body 10 by pushing the push-pull handle inward; the ablation needle 13 can be controlled to retract from the head of the catheter body 10 by pulling the push-pull handle outward.
  • the push-pull force/torque transmission mechanism may be a single wire rope or a wire rope woven from a plurality of steel wires.
  • the push-pull force/torque transmitting mechanism may be a single superelastic nickel-titanium wire or a nickel-titanium rope woven from a plurality of superelastic nickel-titanium wires.
  • the ring electrode 11 internally includes a temperature sensor 14; the temperature sensor 14 is connected to a control system external to the radio frequency ablation catheter through a wire, and is mainly used for testing and controlling the radiofrequency ablation process.
  • the temperature to ensure the therapeutic effect of radiofrequency ablation.
  • the temperature sensor 14 is mainly used to detect the temperature of the ring electrode 11 in real time and feed it back to an external control system to control the power and time at which the ring electrode 11 generates current for therapeutic purposes.
  • the type of positioning sensor is not limited.
  • the positioning sensor may be an electromagnetic navigation positioning sensor, but is not limited thereto.
  • a 5-degree-of-freedom electromagnetic navigation sensor or a 6-degree-of-freedom electromagnetic navigation sensor can be employed.
  • radio frequency ablation may cause interference to the positioning sensor and affect the positioning effect. Therefore, a positioning sensor with an electromagnetic shielding layer, such as a 5-degree-of-freedom electromagnetic navigation sensor, may be used, but is not limited thereto.
  • the wires connecting the positioning sensor to the external control system can also be shielded to further reduce the interference experienced during the transmission of the current signal.
  • the main components of the radiofrequency ablation catheter are primarily shown, and some of the wires or connecting wires are not shown.
  • the ablation needle 13, the ring electrode 11, the positioning sensor 12, the temperature sensor 14, and the like all need to be connected to an external control system by wires.
  • the wires may be located within the cavity of the inner catheter body 10 and connected to an external control system.
  • FIG. 8 is a schematic structural diagram of a radio frequency ablation system according to another embodiment of the present application. As shown in FIG. 8, the radio frequency ablation system includes a radio frequency ablation catheter 1, a control system 2, and a connector 3.
  • the control system 2 is mainly used to control the operation of the radiofrequency ablation catheter 1, the radiofrequency ablation catheter 1 operates under the control of the control system 2; the radiofrequency ablation catheter 1 and the control system 2 are connected through the connector 3, that is, the radiofrequency ablation catheter 1 and the connector 3 Connected at one end, the control system 2 is connected to the other end of the connector 3.
  • the structure of the radio frequency ablation catheter 1 is shown in FIG. 1a to FIG. 5 and will not be described in detail herein.
  • connection of the radiofrequency ablation catheter 1 to the connector 3 mainly means that the ring electrode, the ablation needle and the positioning sensor are respectively connected to the connector 3.
  • the ring electrode, the ablation needle and the positioning sensor can be connected to the connector 3 by wires.
  • the embodiment of the present application does not limit the implementation form of the wire.
  • the wires are connected to the connector 3 through the inside of the inner catheter body.
  • the radio frequency ablation catheter 1 is connected to the connector 3 in such a manner that the ring electrode and the ablation needle are respectively connected to the connector 3 through a wire; the positioning sensor is connected to the connector 3 through a plurality of wires, depending on the positioning sensor.
  • the positioning sensor uses a 5-DOF electromagnetic navigation sensor, it can be connected to the connector 3 by two wires; if the positioning sensor uses a 6-degree-of-freedom electromagnetic navigation sensor, four wires can be connected to the connector 3.
  • the ring electrode contains a temperature sensor inside, the temperature sensor can be connected to the connector 3 through two wires.
  • Radiofrequency ablation is performed on the basis of CT images and/or bronchial tree 3D images in the lesion area (such as the lung area).
  • the working principle of the radiofrequency ablation system is briefly described as follows:
  • the control system 2 introduces CT image data and/or bronchial tree three-dimensional images of the lesion area, and plots the initial navigation path of the lesion area from the main trachea to the multi-stage bronchus on the CT image data and/or the bronchial tree three-dimensional image.
  • the radiofrequency ablation catheter 1 is delivered to the airway through the bronchoscope, and the magnetic field generator in the control system 2 continuously generates a magnetic field; the positioning sensor in the radiofrequency ablation catheter 1 generates a current signal in response to the magnetic field in the airway and Real-time feedback to the control system 2; the control system 2 continuously calculates the position coordinates of the radiofrequency ablation catheter 1 according to the current signal fed back by the positioning sensor, and continuously guides the radiofrequency ablation catheter to advance along the navigation path in the bronchial tree until the radiofrequency ablation catheter 1 is guided to reach the lesion The most recent intrabronchial position; after the radiofrequency ablation catheter 1 reaches the intratracheal position, the control system 2 calculates the position and orientation of the ablation needle in the radiofrequency ablation catheter 1 relative to the lesion tissue based on the current signal fed back by the positioning sensor.
  • the ablation needle is pushed out of the catheter body of the radiofrequency ablation catheter 1 to penetrate the lesion tissue; then, the radiofrequency ablation generator in the control system 2 provides an ablation protocol to the radiofrequency ablation catheter 1 (mainly including the output power and ablation time of the ablation electrode) Etc., to control the radiofrequency ablation catheter 1 for radiofrequency ablation, wherein the radiofrequency ablation generator can also adjust the ablation protocol depending on the treatment.
  • the radiofrequency ablation generator can also adjust the ablation protocol depending on the treatment.
  • control system 2 also tracks the position coordinates of the radiofrequency ablation catheter 1 in real time according to the current signal fed back by the positioning sensor, and manually adjusts the position of the radiofrequency ablation catheter 1 in the airway, thereby overcoming the respiratory motion or other due to the lungs.
  • the expected external movement causes a change in the position of the lesion resulting in an inaccurate position of the radiofrequency ablation catheter for more accurate radiofrequency ablation.
  • the radiofrequency ablation catheter in addition to the ring electrode, is provided with a retractable moving ablation needle, which can protrude from the head of the catheter body and penetrate into the lesion tissue;
  • the positioning sensor is arranged, and the positioning sensor is used for navigation, and the radiofrequency ablation catheter can be accurately positioned to the lesion position, and then the ablation needle can accurately penetrate the lesion tissue to perform radiofrequency ablation treatment, thereby achieving targeted precise ablation treatment and reducing the normal tissue. damage.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Cardiology (AREA)
  • Robotics (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种射频消融导管包括:导管本体(10);环设于导管本体(10)的头部的环电极(11);设置于导管本体(10)内的定位传感器(12);以及设置于导管本体(10)内可伸缩移动的消融针(13);使用时,消融针(13)可从导管本体(10)的头部伸出并刺入病灶组织内。该射频消融导管可以精确定位病灶位置并穿刺进入病灶实施射频消融治疗,实现定向精准消融治疗,减少对正常组织的损伤。还公开了一种射频消融系统。

Description

射频消融导管及系统
交叉引用
本申请引用于2017年7月20日递交的名称为“射频消融导管及系统”的第2017105978669号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及医疗器械领域,尤其涉及一种射频消融导管及系统。
背景技术
射频热消融术是一种微创性肿瘤原位治疗技术,其将射频信号转化成温度场,通过热效应对人体组织进行治疗。在应用射频消融治疗时,将电极针直接插入病灶组织内,电极针尖端的高频交流电射入病灶组织,病灶组织中的离子随着电流方向的改变而改变,从而产生热量,使病灶局部组织温度升高;当组织的温度超过60℃,细胞死亡,最终凝固和灭活肿瘤组织。
常规的射频热消融术是借助于超声或计算机断层扫描(Computed Tomography,CT)等影像技术引导,采用经皮穿刺方式将电极针直接插入肿瘤内。对于肺部肿瘤,采用经皮穿刺方式将电极针插入肿瘤,有产生气胸的风险。有研究表明,在肺部经皮穿刺将电极针插入肿瘤,有20-40%的气胸发生率,而气胸是一种严重的不良反应,有可能致命。
更安全的方式是采用带电极的消融导管经自然气道进入肺部肿瘤位置,再通过消融导管对肺部肿瘤应用射频热消融术,可以降低不良反应发生的风险。然而,大部分的肺部病灶位于支气管的一侧,消融导管如果使用简单的圆柱状消融电极,能够通过支气管到达病灶周围,但不能穿刺进入肿瘤的内部,而只能靠近肿瘤位置,通过消融导管产生的射频场只有部分区域作用于 肿瘤部位,而部分作用于正常组织,导致正常组织受到波及而坏死,消融坏死的面积过大。
因此,急需一种能够经自然气道进入肺部,并可以精确定位病灶位置并穿刺进入病灶实施射频消融治疗的消融导管和系统。
发明内容
本申请的多个方面提供一种射频消融导管及系统,用以精确定位病灶位置并穿刺进入病灶实施射频消融治疗,实现定向精准消融治疗,减少对正常组织的损伤。
本申请实施例提供一种射频消融导管,包括:
导管本体;
环设于所述导管本体头部的环电极;
设置于所述导管本体内的定位传感器;以及
设置于所述导管本体内可伸缩移动的消融针;
在使用时,所述消融针可从所述导管本体头部伸出并刺入病灶组织内。
在一可选实施方式中,所述定位传感器,用于根据其所在空间中的定位磁场向所述射频消融导管外部的控制系统输出电流信号,以供所述控制系统确定所述射频线消融导管的位置并控制所述消融针和所述环电极实施射频消融术。
在一可选实施方式中,所述导管本体为多管腔结构;所述定位传感器固设于所述多管腔中的一个管腔内;所述消融针固设于所述多管腔中的其它管腔内。
在一可选实施方式中,所述其它管腔中的每个管腔内设有相同数量的消融针。
在一可选实施方式中,所述消融针为直型针,所述直型针在伸出所述导管本体后为直型;或者,
所述消融针为弯型针,所述弯型针在伸出所述导管本体后相对所述导管 本体以设定角度弯曲。
在一可选实施方式中,所述消融针的尾端连接推拉力/扭力传递机构的一端,推拉力/扭力传递机构的另一端连接推拉手柄。
在一可选实施方式中,所述环电极内部含有温度传感器。
在一可选实施方式中,所述消融针和所述环电极中至少存在两种极性的电极。
在一可选实施方式中,所述消融针的极性与所述环电极的极性相反。
在一可选实施方式中,所述消融针除针尖以外的部分设有绝缘层。
本申请实施例还提供一种射频消融系统,包括:上述实施例提供的射频消融导管、用于控制所述射频消融导管工作的控制系统以及用于连接所述射频消融导管与所述控制系统的连接器。
在本申请实施例中,射频消融导管上除了环电极之外,还设置可伸缩移动的消融针,可从导管本体头部伸出并刺入病灶组织内;另外,在导管本体内设置定位传感器,通过定位传感器进行导航,可以将射频消融导管准确定位到病灶位置,进而结合消融针能够准确刺入病灶组织内实施射频消融治疗,从而实现定向精准消融治疗,减少对正常组织的损伤。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1a为本申请一实施例提供的射频消融导管的结构示意图;
图1b为本申请一实施例提供的射频消融导管的消融针伸出导管本体头部 后的示意图;
图2为本申请另一实施例提供的具有单管腔结构的射频消融导管的立体示意图;
图3为本申请另一实施例提供的具有多管腔结构的射频消融导管的结构示意图;
图4为本申请又一实施例提供的基于单管腔结构具有单根直型针的射频消融导管的结构示意图;
图5为本申请又一实施例提供的基于单管腔结构具有单根弯型针的射频消融导管的结构示意图;
图6为本申请又一实施例提供的基于单管腔结构具有多根弯型针的射频消融导管的结构示意图;
图7为本申请又一实施例提供的基于多管腔结构具有多根弯型针的射频消融导管的结构示意图;
图8为本申请又一实施例提供的射频消融系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对现有射频消融术面临的问题,本申请实施例提供一种新型的射频消融导管,该射频消融导管除了包括环电极之外,还设置有可伸缩移动的消融针,可从导管本体头部伸出并刺入病灶组织内;另外,在导管本体内设置定位传感器,通过定位传感器进行导航,可以将射频消融导管通过自然气道准确定位到病灶位置,进而结合消融针能够准确刺入病灶组织内实施射频消融 治疗,从而实现定向精准消融治疗,减少对正常组织的损伤。
本申请实施例提供的射频消融导管包括可伸缩的消融针并自带定位传感器,在结构上,势必不同于传统射频消融导管;另外,考虑到射频消融导管是比较精密的医疗器械,所以增加新的器件或功能并不容易实现,往往需要经过反复实验,最终才能得到较为合理的实现结构。下面将结合附图,对本申请实施例提供的射频消融导管的结构进行详细说明。
图1a为本申请一实施例提供的射频消融导管的结构示意图。如图1a所示,该射频消融导管包括:导管本体10、环设于导管本体10头部的环电极11、设置于导管本体10内的定位传感器12以及设置于导管本体10内可伸缩移动的消融针13。
可选地,可以采用热熔法、采用粘合剂粘接法、锻压法、微流控加工技术等各种方式,将环电极11固设于导管本体10的头部。
可选地,本实施例并不限定环电极11的形状,例如环电极11可以是圆柱状、片状、条状、弯曲丝状或盘状等。
消融针13具有一定弹性并且可以导电。可选地,消融针13和环电极11可以采用金属材料,如铜、不锈钢、铂铱合金等,也可以采用其他导电材料。消融针13和环电极11相互配合,主要用于对病灶组织进行消融治疗。在使用时,消融针13可从导管本体10头部伸出并刺入病灶组织内。如图1b所示,为消融针13伸出导管本体10头部的结构示意图。消融针13和环电极11均产生射频电流,该射频电流射入病灶组织,这样病灶组织中的离子随着电流方向的改变而改变,病灶组织产生高温,当超过一定温度(一般为60℃)时,病灶组织死亡,最终凝固和灭活肿瘤组织,达到治疗目的。
在本实施例中,定位传感器12,用于根据其所在空间中的定位磁场向所述射频消融导管外部的控制系统输出电流信号,以供所述控制系统确定射频消融导管的位置。进一步,定位传感器12还用于根据其所在空间中的定位磁场向所述射频消融导管外部的控制系统输出电流信号,以供所述控制系统控制消融针13和环电极11实施射频消融术。
可选地,本实施例中的定位传感器12采用电磁导航(Electromagnetic Navigation)原理,不同于普通的磁导航(Magnetic Navigation)原理。磁导航原理主要是:依靠外部磁场吸引或排斥消融导管中的永磁体以影响消融导管的移动方向。而本实施例中定位传感器12的工作原理主要是:响应于其所在空间的定位磁场而产生电流信号,并输出至射频消融导管外部的控制系统,一方面供控制系统确定射频消融导管的位置,另一方面供控制系统确定消融针13和环电极11相对应病灶区域的位置。
定位传感器12与控制系统通过导线进行电气连接。该控制系统包括磁场发生器,用以在一定范围的定位空间中产生磁场;定位传感器12本身没有磁性,定位传感器12中的线圈用于感受磁场发生器所产生的定位磁场。其中,磁场发生器在一定范围的定位空间中产生定位磁场,以保证定位空间中每一点的磁场特性是唯一的。定位传感器12中的线圈在变化磁场中产生电流信号,由定位传感器12的导线传导至控制系统,控制系统转换和分析定位传感器12传输来的电流信号以确定射频消融导管的精确位置以及射频消融导管内消融针13和环电极11相对病灶区域的位置。
可选的,上述控制系统还包括:射频消融发生器,用于控制消融针13和环电极11产生射频电流。例如,可以控制消融针13和环电极11产生射频电流的强度、时间等。消融针13和环电极11可在射频消融发生器的控制下产生射频电流。
本实施例提供的射频消融导管的工作原理如下:
在定位传感器12的引导下,在病变器官的CT影像或者由CT数据重建的三维模型上,规划经自然气道到达病灶组织所在区域的导航路径;根据导航路径将射频消融导管经自然气道引导至病灶组织所在区域;根据定位传感器12确定射频消融导管内的消融针13和环电极11相对于病灶组织的位置;将消融针13刺入病灶组织;然后,给消融针13和环电极11通电,控制消融针13和环电极11产生射频电流,该射频电流射入病灶组织进行消融。
在本实施例中,通过定位传感器可以将射频消融导管准确定位到病灶位 置,进而结合消融针能够准确刺入病灶组织内实施射频消融治疗,从而实现定向精准消融治疗,减少对正常组织的损伤。
在本申请各实施例中,并不限定导管本体10的实现结构。可选地,导管本体10可以是单管腔结构,如图2所示。其中,定位传感器12和消融针13均设置于导管本体10的腔内,并做绝缘处理。可选地,导管本体10也可以是多管腔结构,如图3所示。其中,定位传感器12固设于所述多管腔中的一个管腔内;消融针13固设于所述多管腔中的其它管腔内。消融针13的总数量可以是一根或多根。不同管腔内可以设置一根或多根消融针13。其中,每个管腔内可以设置相同数量的消融针13,即消融针13均匀分布于这些管腔内。或者,每个管腔内也可以设置不同数量的消融针13。
在本申请各实施例中,消融针13需要具有一定的弹性并且需要导电,以便于实施射频消融术。可选地,整个消融针13可以都导电。或者,消融针13除针尖之外的其它部分设置绝缘层,以做绝缘处理,可以降低电磁干扰。
在本申请各实施例中,并不限定消融针13的形状,凡是具有一定弹性、可在导管本体10内外伸缩移动并且可以刺入病灶组织内的形状均适用于本申请实施例。
可选地,消融针13可以是直型针。所谓直型针在伸出导管本体10的头部后为直型。例如,直型针可以是有弹性的单根金属丝,或者,也可以是多根金属丝缠绕编织的结构。当直型针采用多根金属丝缠绕编织的结构时,可以是一层编织结构,也可以是多层编织结构。直型针在导管本体10内的部分可随导管本体10的弯曲而弯曲,并且可以传导电流。直型针可以通过导线连接外部的控制系统。可选地,直型针可以是完全导电,也可以只有针尖部分导电而其他部分做绝缘处理。其中,选用单根或多根金属丝,可充分利用金属丝对力的传导性,使得直型针可以灵活地从导管本体10内伸出或收回。进一步,上述直型针可以是单根,也可以是多根。具有单根直型针的射频消融导管更加易于操作,穿刺方向容易控制,能够精准穿刺到病灶组织内部。结合导管本体10的单管腔结构,一种具有单根直型针的射频消融导管的结构如 图4所示。
可选地,消融针13可以是弯型针。所谓弯型针在伸出导管本体10的头部后相对导管本体10以设定角度弯曲。本实施例并不限定弯型针的弯曲形状,可以有多种尺寸。与直型针类似,弯型针可以是有弹性的单根金属丝,或者,也可以是多根金属丝缠绕编织的结构。当弯型针采用多根金属丝缠绕编织的结构时,可以是一层编织结构,也可以是多层编织结构。弯型针在导管本体10内的部分可随导管本体10的弯曲而弯曲,并且可以传导电流。弯型针可以通过导线连接外部的控制系统。可选地,弯型针可以是完全导电,也可以只有针尖部分导电而其他部分做绝缘处理。弯型针的针尖部分是弯曲的,在伸出导管本体10的头部后自然恢复弯型,并可插入病灶组织内部。其中,针尖部分弯曲的方向与导管本体10的头部是相对固定的。导管本体10可以传递扭力,旋转导管本体10就可以改变消融针13的朝向。其中,依靠定位传感器12可以精确确定弯型针的实际方向。进一步,上述弯型针可以是单根,也可以是多根。具有单根弯型针的射频消融导管能够较容易穿刺到较偏的病灶组织(例如支气管壁一侧的肿瘤)进行消融治疗,穿刺方向容易控制。结合导管本体10的单管腔结构,一种具有单根弯型针的射频消融导管的结构如图5所示。
对于具有多根弯型针的射频消融导管,多根弯型针的尾部连接固定在一起,多根弯型针之间彼此绝缘,伸出导管本体10头部后向多个方向自然恢复弯型,并且可从不同方向插入病灶组织内部。本实施例并不限定弯型针的数量,例如可以是2根,3根或者更多。另外,本实施例也不限定弯型针的弯曲形状和弯曲角度。具有多根弯型针的射频消融导管能够穿刺进入病灶组织的不同部位,增大与病灶组织的接触面积,获得较大的有效消融区域,对于尺寸较大的病灶组织的消融治疗效果较好。结合导管本体10的单管腔结构,一种具有多根弯型针的射频消融导管的结构如图6所示。结合导管本体10的多管腔结构,一种具有多根弯型针的射频消融导管的结构如图7所示。
在使用射频消融导管实施射频消融术的过程中,需要控制消融针13从导 管本体10头部伸出或收回。基于此,本实施例的射频消融导管还可以包括:用于控制消融针13从导管本体10头部伸出或收回的部件。这里不对用于控制消融针13从导管本体10头部伸出或收回的部件进行限定,凡是可以能够控制消融针13从导管本体10头部伸出或收回的结构或组件都适用于本申请实施例。
在一可选实施方式中,消融针13的尾端连接推拉力/扭力传递机构的一端,推拉力/扭力传递机构的另一端连接推拉手柄。通过向里推动推拉手柄,可以控制消融针13从导管本体10头部伸出;通过向外拉动推拉手柄,可以控制消融针13从导管本体10头部收回。可选地,推拉力/扭力传递机构可以是单根钢丝绳,或者是多根钢丝编织而成的钢丝绳。或者,推拉力/扭力传递机构也可以是单根超弹性镍钛丝,或者是多根超弹性镍钛丝编织而成的镍钛绳。
在一可选实施方式中,如图1a所示,环电极11内部含有温度传感器14;温度传感器14通过导线与所述射频消融导管外部的控制系统连接,主要用于测试及控制射频消融过程中的温度,以保证射频消融术的治疗效果。例如,温度传感器14主要用于实时检测环电极11的温度,并反馈给外部的控制系统,以便控制环电极11产生电流的功率和时间,从而达到治疗目的。
在本申请各实施例中,并不限定定位传感器的类型。可选的,定位传感器可以是电磁导航定位传感器,但不限于此。例如,可以采用5自由度电磁导航传感器或6自由度电磁导航传感器。
在实际使用过程中,射频消融可能会对定位传感器造成干扰,影响定位效果,所以可以采用带有电磁屏蔽层的定位传感器,例如5自由度电磁导航传感器,但不限于此。另外,连接定位传感器与外部控制系统的导线也可以带有屏蔽,以进一步减少电流信号传输过程中所受到的干扰。通过采用带有电磁屏蔽层的定位传感器,不仅可以屏蔽射频消融造成的干扰,提高定位精度,还可以在射频消融过程中进行实时定位,防止消融导管发生预期外的移动造成消融位置偏移,提高治疗的准确性和效率。
在此说明,在本申请各附图中,主要示出射频消融导管的主要部件,有些导线或连接线并未示出。消融针13、环电极11、定位传感器12以及温度传感器14等都需要通过导线连接至外部的控制系统。可选地,这些导线可位于内导管本体10的腔体内并连接至外部的控制系统。
本申请前述实施例提供的射频消融导管可应用于射频消融系统,与射频消融系统中的其它部件相互配合,完成射频消融术。图8为本申请又一实施例提供的射频消融系统的结构示意图。如图8所示,该射频消融系统包括:射频消融导管1、控制系统2以及连接器3。控制系统2主要用于控制射频消融导管1工作,射频消融导管1在控制系统2的控制下工作;射频消融导管1与控制系统2通过连接器3连接,即射频消融导管1与连接器3的一端连接,控制系统2与连接器3的另一端连接。其中,射频消融导管1的结构如图1a-图5所示,在此不再详述。
以图1a所示射频消融导管1的结构为例,射频消融导管1与连接器3连接主要是指:环电极、消融针以及定位传感器分别与连接器3连接。其中,环电极、消融针以及定位传感器可以通过导线与连接器3连接。本申请实施例并不限定导线的实现形式。优选的,这些导线通过内导管本体内部与连接器3连接。
优选的,射频消融导管1与连接器3的连接方式为:环电极和消融针分别通过一根导线与连接器3连接;定位传感器通过多根导线与连接器3连接,具体视定位传感器采用的型号而定。例如,如果定位传感器采用5自由度电磁导航传感器,则可以用两根导线与连接器3连接;如果定位传感器采用6自由度电磁导航传感器,则可以采用四根导线与连接器3连接。可选的,如果环电极内部含有温度传感器,则温度传感器可以通过两根导线与连接器3连接。
以射频消融系统在病变区域(如肺部区域)的CT图像和/或支气管树三维影像的基础上进行射频消融为例,简单说明射频消融系统的工作原理,如下:
初始路径规划阶段:
控制系统2导入病变区域的CT图像数据和/或支气管树三维影像,在CT图像数据和/或支气管树三维影像上绘制病变区域的经主气管至多级支气管的初始导航路径。
路径导航阶段:
沿着初始导航路径,通过支气管镜将射频消融导管1送达气道,控制系统2中的磁场发生器不断产生磁场;射频消融导管1中的定位传感器响应于气道中的磁场而产生电流信号并实时反馈给控制系统2;控制系统2根据定位传感器反馈的电流信号不断计算射频消融导管1的位置坐标,不断引导射频消融导管在支气管树中沿导航路径前进,直到引导射频消融导管1到达离病灶位置最近的支气管内位置;在射频消融导管1到达该气管内位置后,控制系统2根据定位传感器反馈的电流信号计算射频消融导管1中的消融针相对病灶组织的位置和方向。
射频消融阶段:
将消融针从射频消融导管1的导管本体中推出使之刺入病灶组织;接着,控制系统2中的射频消融发生器向射频消融导管1提供消融方案(主要包括消融电极的输出功率和消融时间等),以控制射频消融导管1进行射频消融,其中,根据治疗情况,射频消融发生器还可以调整消融方案。
另外,控制系统2还会根据定位传感器反馈的电流信号,实时跟踪射频消融导管1的位置坐标,并由人工调整射频消融导管1在气道中的位置,这样可以克服因肺部的呼吸运动或其它预期外的移动引起病灶位置改变导致射频消融导管位置不够精确的问题,以便更加精确地进行射频消融。
在本实施例提供的射频消融系统中,射频消融导管上除了环电极之外,还设置可伸缩移动的消融针,可从导管本体头部伸出并刺入病灶组织内;另外,在导管本体内设置定位传感器,通过定位传感器进行导航,可以将射频消融导管准确定位到病灶位置,进而结合消融针能够准确刺入病灶组织内实施射频消融治疗,从而实现定向精准消融治疗,减少对正常组织的损伤。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (11)

  1. 一种射频消融导管,其特征在于,包括:
    导管本体;
    环设于所述导管本体头部的环电极;
    设置于所述导管本体内的定位传感器;以及
    设置于所述导管本体内可伸缩移动的消融针;
    在使用时,所述消融针可从所述导管本体头部伸出并刺入病灶组织内。
  2. 根据权利要求1所述的射频消融导管,其特征在于,所述定位传感器,用于根据其所在空间中的定位磁场向所述射频消融导管外部的控制系统输出电流信号,以供所述控制系统确定所述射频线消融导管的位置并控制所述消融针和所述环电极实施射频消融术。
  3. 根据权利要求1所述的射频消融导管,其特征在于,所述导管本体为多管腔结构;所述定位传感器固设于所述多管腔中的一个管腔内;所述消融针固设于所述多管腔中的其它管腔内。
  4. 根据权利要求3所述的射频消融导管,其特征在于,所述其它管腔中的每个管腔内设有相同数量的消融针。
  5. 根据权利要求1所述的射频消融导管,其特征在于,所述消融针为直型针,所述直型针在伸出所述导管本体头部后为直型;或者,
    所述消融针为弯型针,所述弯型针在伸出所述导管本体头部后相对所述导管本体以设定角度弯曲。
  6. 根据权利要求1所述的射频消融导管,其特征在于,所述消融针的尾端连接推拉力/扭力传递机构的一端,推拉力/扭力传递机构的另一端连接推拉手柄。
  7. 根据权利要求1所述的射频消融导管,其特征在于,所述环电极内部含有温度传感器。
  8. 根据权利要求1所述的射频消融导管,其特征在于,所述消融针和所 述环电极中至少存在两种极性的电极。
  9. 根据权利要求8所述的射频消融导管,其特征在于,所述消融针的极性与所述环电极的极性相反。
  10. 根据权利要求1所述的射频消融导管,其特征在于,所述消融针除针尖以外的部分设有绝缘层。
  11. 一种射频消融系统,其特征在于,包括:权利要求1-10任一项所述的射频消融导管、用于控制所述射频消融导管工作的控制系统以及用于连接所述射频消融导管与所述控制系统的连接器。
PCT/CN2017/097887 2017-07-20 2017-08-17 射频消融导管及系统 WO2019015003A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17918195.3A EP3656326A4 (en) 2017-07-20 2017-08-17 HIGH FREQUENCY ABLATION CATHETER AND SYSTEM
US16/632,837 US20200146749A1 (en) 2017-07-20 2017-08-17 Radiofrequency ablation catheter and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710597866.9A CN107260300A (zh) 2017-07-20 2017-07-20 射频消融导管及系统
CN201710597866.9 2017-07-20

Publications (1)

Publication Number Publication Date
WO2019015003A1 true WO2019015003A1 (zh) 2019-01-24

Family

ID=60077957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097887 WO2019015003A1 (zh) 2017-07-20 2017-08-17 射频消融导管及系统

Country Status (4)

Country Link
US (1) US20200146749A1 (zh)
EP (1) EP3656326A4 (zh)
CN (1) CN107260300A (zh)
WO (1) WO2019015003A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107822708A (zh) * 2017-11-30 2018-03-23 中国科学技术大学 一种射频消融针
CN108354665B (zh) * 2018-02-12 2023-11-03 安徽硕金医疗设备有限公司 一种射频消融系统及其控制方法
CN108433807A (zh) * 2018-03-19 2018-08-24 华中科技大学 一种具备主动形变功能的柔性消融电极以及穿刺消融针
CN110123444A (zh) * 2019-06-03 2019-08-16 江苏吉瑞达电子有限公司 医用带压力传感器射频消融导管
CN112294431A (zh) * 2019-07-30 2021-02-02 上海睿刀医疗科技有限公司 用于不可逆电穿孔设备的超声可显影电极针
CN110870791B (zh) * 2019-12-04 2021-09-03 上海微创电生理医疗科技股份有限公司 医用介入式针组件与医用介入式导管
CN111012481B (zh) 2019-12-31 2023-12-01 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN112237475B (zh) * 2020-11-04 2022-08-12 深圳半岛医疗有限公司 微针治疗控制装置及射频微针治疗仪
CN112220556B (zh) * 2020-12-14 2021-03-12 上海微创电生理医疗科技股份有限公司 一种医用导管及医疗设备
CN114343826B (zh) * 2021-12-03 2024-05-10 杭州德诺电生理医疗科技有限公司 消融导管
CN115399886B (zh) * 2022-06-27 2023-10-31 中国科学院自动化研究所 手术机器人、手术机器人控制方法及存储介质
CN115153811B (zh) * 2022-09-07 2022-12-27 杭州德诺电生理医疗科技有限公司 消融导管及消融系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861002A (en) * 1991-10-18 1999-01-19 Desai; Ashvin H. Endoscopic surgical instrument
CN101022768A (zh) * 2004-08-05 2007-08-22 Vnus医疗技术有限公司 用于凝固和/或收缩中空解剖结构的方法和器械
US20130085488A1 (en) * 2009-05-27 2013-04-04 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
CN106236248A (zh) * 2016-08-30 2016-12-21 苏州品诺维新医疗科技有限公司 一种射频消融设备、系统和方法
CN106344150A (zh) * 2016-11-23 2017-01-25 常州朗合医疗器械有限公司 射频消融导管及系统
CN106539624A (zh) * 2016-11-23 2017-03-29 常州朗合医疗器械有限公司 医疗路径导航方法、规划方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723156B2 (ja) * 2000-03-31 2011-07-13 アンジオ ダイナミクス インコーポレイテッド 組織生検および処置の装置
US20050283149A1 (en) * 2004-06-08 2005-12-22 Thorne Jonathan O Electrosurgical cutting instrument
US7680543B2 (en) * 2006-09-14 2010-03-16 Lazure Technologies, Llc Tissue ablation and removal
US20110098704A1 (en) * 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8682410B2 (en) * 2011-03-10 2014-03-25 Medtronic Ablation Frontiers Llc Multi-array monophasic action potential medical device
US9078662B2 (en) * 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US20150157405A1 (en) * 2013-12-05 2015-06-11 Biosense Webster (Israel) Ltd. Needle catheter utilizing optical spectroscopy for tumor identification and ablation
US9848943B2 (en) * 2014-04-18 2017-12-26 Biosense Webster (Israel) Ltd. Ablation catheter with dedicated fluid paths and needle centering insert
CN105455897A (zh) * 2015-12-30 2016-04-06 迈德医疗科技(上海)有限公司 柔性射频消融电极

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861002A (en) * 1991-10-18 1999-01-19 Desai; Ashvin H. Endoscopic surgical instrument
CN101022768A (zh) * 2004-08-05 2007-08-22 Vnus医疗技术有限公司 用于凝固和/或收缩中空解剖结构的方法和器械
US20130085488A1 (en) * 2009-05-27 2013-04-04 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
CN106236248A (zh) * 2016-08-30 2016-12-21 苏州品诺维新医疗科技有限公司 一种射频消融设备、系统和方法
CN106344150A (zh) * 2016-11-23 2017-01-25 常州朗合医疗器械有限公司 射频消融导管及系统
CN106539624A (zh) * 2016-11-23 2017-03-29 常州朗合医疗器械有限公司 医疗路径导航方法、规划方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656326A4 *

Also Published As

Publication number Publication date
EP3656326A4 (en) 2021-04-14
EP3656326A1 (en) 2020-05-27
US20200146749A1 (en) 2020-05-14
CN107260300A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019015003A1 (zh) 射频消融导管及系统
WO2018094848A1 (zh) 射频消融导管及系统
US11678931B2 (en) Electrosurgical probe for delivering RF and microwave energy
JP5819035B2 (ja) コンプレックス細分化心房電位図の作成のためのコンピュータプログラム、コンピュータ可読媒体および装置
JP2021180906A (ja) マイクロ波エネルギー送達デバイス
JP2019146973A (ja) 切除システム
CN106539624B (zh) 医疗路径导航方法、规划方法及系统
US7306593B2 (en) Prediction and assessment of ablation of cardiac tissue
JP2017086913A5 (zh)
WO2011103129A2 (en) System and method for using tissue contact information in an automated mapping of cardiac chambers employing magneticly shaped fields
US20220304745A1 (en) Electrode basket having high-density circumferential band of electrodes
JP7258514B2 (ja) 送信コイルを備えた食道プローブ
JP2019502472A (ja) ポーズ制御アブレーションの方法およびシステム
CN106236257B (zh) 冠状窦导管图像的对准
US20220071706A1 (en) Ablation system with display for real-time ablation growth projection, and method therefor
US20140031808A1 (en) Medical device tracking and energy feedback
Meglan et al. Techniques for epicardial mapping and ablation with a miniature robotic walker
CN105434047A (zh) 一种用于介入导管的超声定位方法和装置
CN206548599U (zh) 射频消融导管及系统
CN107468331A (zh) 射频消融导管及系统
US20230105973A1 (en) Cardiac ablation catheters with integrated navigation sensors
US20230105390A1 (en) Systems and methods for deployment detection of electroporation ablation catheters
CN215739393U (zh) 一种二尖瓣峡部消融装置
JP2018191501A (ja) 電磁的ナビゲーションシステムの無線用具を充電するためのロケーション伝送信号の使用
US20230390529A1 (en) Catheter, catheter system and processing system for determining parameters during a tissue puncturing process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017918195

Country of ref document: EP

Effective date: 20200220