WO2019013287A1 - 内燃機関用ピストン及びその製造方法 - Google Patents

内燃機関用ピストン及びその製造方法 Download PDF

Info

Publication number
WO2019013287A1
WO2019013287A1 PCT/JP2018/026349 JP2018026349W WO2019013287A1 WO 2019013287 A1 WO2019013287 A1 WO 2019013287A1 JP 2018026349 W JP2018026349 W JP 2018026349W WO 2019013287 A1 WO2019013287 A1 WO 2019013287A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
internal combustion
combustion engine
thickness
outer peripheral
Prior art date
Application number
PCT/JP2018/026349
Other languages
English (en)
French (fr)
Inventor
大輔 平上
山下 朋広
幹 高須賀
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2019529783A priority Critical patent/JP6791385B2/ja
Priority to CN201880031876.9A priority patent/CN110621868B/zh
Priority to EP18832780.3A priority patent/EP3653863A4/en
Priority to KR1020197037725A priority patent/KR20200008163A/ko
Publication of WO2019013287A1 publication Critical patent/WO2019013287A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • F02F2003/0061Multi-part pistons the parts being connected by casting, brazing, welding or clamping by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing

Definitions

  • the present invention relates to a piston for an internal combustion engine and a method of manufacturing the same.
  • Priority is claimed on Japanese Patent Application No. 2017-138445, filed July 14, 2017, the content of which is incorporated herein by reference.
  • pistons for diesel engines are particularly required to have high temperature durability.
  • weight reduction of the piston is also required in order to reduce power loss due to inertia when the piston moves up and down.
  • the piston skirt portion and the cylinder thermally expand due to the temperature rise accompanying combustion, in order to keep the gap between them constant, it is necessary to make the thermal expansion coefficient of the piston skirt portion similar to the thermal expansion coefficient of the cylinder There is also.
  • pistons made of aluminum alloy have a problem that the high temperature endurance temperature is as low as about 300.degree.
  • Patent Document 1 proposes a piston using a cast steel in which a base structure is ⁇ ferrite-martensite and eutectic carbides in the structure are 3 ⁇ m or less to form eutectic colonies.
  • a base structure is ⁇ ferrite-martensite and eutectic carbides in the structure are 3 ⁇ m or less to form eutectic colonies.
  • pistons manufactured by cast steel have limitations in reducing the thickness of the pistons due to manufacturing limitations.
  • the material of the entire piston is steel, there is a problem that the weight of the piston is large.
  • Patent Document 2 in order to provide a cooling channel in a ring portion of a piston, it is proposed to divide the piston into upper and lower parts and forge each of them, and then join and integrate these upper and lower parts by laser It is done.
  • the top of the piston is taken as the upper part of the piston and the piston skirt side is taken as the lower part of the piston.
  • Patent Document 3 discloses a structure aiming at heat resistance and weight reduction of a piston. That is, while steel having high heat resistance is used for the upper part of the piston, an aluminum alloy is used for the purpose of weight reduction for the lower part of the piston. And these piston upper part and piston lower part are integrated by friction joining.
  • a piston that joins steel and an aluminum alloy the load applied to the joint due to the reciprocation increases, so it is necessary to increase the joint area. Therefore, there is a problem that the inner side close to the rotation axis of the joint surface is not joined even if the welding is performed under the condition that the outer joint strength far from the rotation axis of the joint surface is high during friction welding. Conversely, when joining is performed under conditions where the inner joint strength close to the rotation axis of the joint surface is high, there is a problem that the alloy layer becomes thick on the outer side and the joint strength becomes low.
  • the expansion rate can be suppressed low.
  • the aluminum alloy contains a large amount of Si, a thick oxide film adheres to the surface.
  • the No. 4000 series aluminum alloy has a low melting point as compared to other aluminum alloys. Therefore, when friction welding is performed on the piston skirt as in Patent Document 3 above, when the frictional force is increased to remove the oxide film, a part of the aluminum alloy is melted to form an intermetallic compound at the interface with the steel. Have the problem of
  • pistons for diesel engines are required to have both a lighter piston for improving combustion efficiency and a high temperature durability at the top of the piston.
  • the piston skirt portion is also required to have a low expansion rate in order to keep the gap between the piston skirt portion and the cylinder constant between the low temperature start of the diesel engine and the high load and high load operation.
  • the entire piston is made of an aluminum alloy with priority given to the above-mentioned weight reduction, the high temperature fatigue characteristics of the upper portion of the piston become low, and the durability becomes a problem. Conversely, if the entire piston is made of steel with priority given to durability, the weight increases and fuel efficiency decreases.
  • the piston upper part is made of steel excellent in heat resistance
  • the piston lower part is made of lightweight aluminum alloy
  • the piston upper part and the piston lower part are solid-phase joined by friction bonding.
  • a thick transition layer made of a steel-aluminum alloy is formed at the bonding interface between the upper and lower pistons. Since this transition layer contains an embrittled structure, when the transition layer is formed thick, the bonding strength between the upper and lower pistons decreases.
  • Patent Document 3 has the same problem. That is, when frictionally bonding between the upper and lower portions of the piston, the transition layer on the outer peripheral side is appropriate when the side near the rotation axis in these joint surfaces is the inner peripheral side and the side farther from the rotational axis is the outer peripheral side. Even with the thickness, the oxide layer can not be removed because the thickness on the inner peripheral side is insufficient, and the bonding strength may be low. On the other hand, as a result of making the transition layer on the inner peripheral side to a suitable thickness, the thickness on the outer peripheral side may be too thick to be brittle and the bonding strength may be lowered.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a piston having a high durability and a light weight, and a method of manufacturing the same.
  • a piston for an internal combustion engine includes a first steel component and a second aluminum alloy component joined to the first component via an annular joint layer.
  • the thickness of the bonding layer is 1.0 ⁇ m or more and 20.0 ⁇ m or less on both the inner peripheral side and the outer peripheral side of the bonding layer.
  • both the inner and outer circumferential sides of the bonding layer are in the range of 1.0 ⁇ m to 20.0 ⁇ m, the bonding layer becomes excessively thick and brittle or the bonding layer becomes excessively thin. It is also possible to avoid the problem that sufficient bonding strength can not be maintained.
  • a difference obtained by subtracting the thickness on the inner peripheral side from the thickness on the outer peripheral side of the bonding layer may be 10.0 ⁇ m or less .
  • uniform bonding strength can be obtained along the radial direction.
  • Another aspect of the present invention is a method of manufacturing a piston for an internal combustion engine according to the above (1) or (2), wherein the step of fixing the first part in a fixed position; A step of pressing and frictionally heating the first part while rotating the part, and stopping the rotation of the second part, and pressing the second part against the first part to form the bonding layer And in the friction heating step, a cooling fluid is applied to the outer peripheral surface of the second component at a position closer to the second component than the bonding position between the first component and the second component. Supply.
  • the bonding layer between the first component and the second component can be formed to a thickness within the range of 1.0 ⁇ m to 20.0 ⁇ m on both the inner peripheral side and the outer peripheral side. . Therefore, the second part can be joined with high joint strength to the first part.
  • the following method may be performed: In the step of frictional heating, the second part is rotated at a rotational speed of 1000 rpm to 2500 rpm. The second component is pressed against the first component in the step of pressing the first component with a pressing force of 2.0 MPa or more and 20.0 MPa or less for 10.0 seconds or more and 60.0 seconds or less to form the bonding layer.
  • the pressing force is greater than or equal to 10.0 MPa and less than or equal to 50.0 MPa and greater than or equal to that of the friction heating process, and the pressure is applied for 1.0 second or more and 10.0 seconds or less.
  • the bonding layer can be formed to an appropriate thickness more reliably.
  • the temperature of the outer peripheral surface of the second part may be 200 ° C. or more and 550 ° C. or less in the friction heating step. .
  • the thickness on the outer peripheral side of the bonding layer can be managed to a more appropriate thickness.
  • FIG. 2 is a cross-sectional view of the same internal combustion engine piston as viewed on a cross section AA of FIG. 1;
  • FIG. 2 is a cross-sectional view of the same internal combustion engine piston as viewed on a cross section BB of FIG. 1;
  • FIG. 2 is a cross-sectional view of a piston upper portion of the same internal combustion engine piston as viewed on a cross section AA of FIG. 1;
  • FIG. 2 is a cross-sectional view of a piston upper portion of the same internal combustion engine piston as viewed on a cross section BB of FIG. 1;
  • FIG. 2 is a cross-sectional view of a lower portion of a piston of the same internal combustion engine piston as viewed on a cross section AA of FIG. 1;
  • FIG. 2 is a cross-sectional view of a lower portion of a piston of the same internal combustion engine piston as viewed on a cross section BB of FIG. 1;
  • FIG. 8 is an explanatory view in which the joint surface of the upper portion of the piston for the internal combustion engine and the joint surface of the lower portion of the piston are coaxially overlapped.
  • It is a schematic diagram which shows an example of the piston manufacturing apparatus for internal combustion engines. It is the C section enlarged view of FIG. It is a flowchart which shows the manufacturing method of the piston for internal combustion engines concerning the embodiment. It is a flowchart which shows the continuation of FIG. 8A. It is a sectional view equivalent to A.
  • FIG. 1 is a perspective view of a piston 1 for an internal combustion engine according to the present embodiment.
  • FIG. 2A is a cross-sectional view of the piston for the internal combustion engine as viewed on a cross section AA of FIG.
  • FIG. 2B is a cross-sectional view of the piston for the internal combustion engine as viewed from the cross section BB of FIG.
  • FIG. 3A is a cross-sectional view of a piston upper portion of the piston for the internal combustion engine as viewed on a cross section AA of FIG.
  • FIG. 1 is a perspective view of a piston 1 for an internal combustion engine according to the present embodiment.
  • FIG. 2A is a cross-sectional view of the piston for the internal combustion engine as viewed on a cross section AA of FIG.
  • FIG. 2B is a cross-sectional view of the piston for the internal combustion engine as viewed from the cross section BB of FIG.
  • FIG. 3A is a cross-sectional view of a piston upper portion of the piston for the
  • FIG. 3B is a cross-sectional view of a piston upper portion of the piston for the internal combustion engine as viewed on a cross section BB of FIG.
  • FIG. 4A is a cross-sectional view of a lower portion of a piston of the piston for the internal combustion engine as viewed on a cross section AA of FIG.
  • FIG. 4B is a cross-sectional view of the lower portion of the piston of the piston for the internal combustion engine as viewed from the BB cross section of FIG.
  • symbol CL in each figure shows the central axis of the piston 1 for internal combustion engines.
  • the internal combustion engine piston 1 is a piston suitable for use in an automobile engine, particularly a diesel engine.
  • a piston 1 for an internal combustion engine includes a disc-like piston upper portion 2 (first component) and a cylindrical piston lower portion 3 integrally joined to the lower surface of the piston upper portion 2 2 parts) and.
  • a cavity 2a forming a part of the combustion chamber is formed in the top portion 2b forming the upper surface of the piston upper portion 2.
  • the cavity 2a is a substantially annular recessed space formed coaxially with the central axis CL, and a central portion 2a1 of the cavity 2a protrudes upward.
  • a cooling channel 2d and a recess 2e are formed on the lower surface 2c which is a joint surface of the piston upper portion 2.
  • the cooling channel 2d is an annular flow passage formed coaxially with the central axis CL.
  • the recess 2e is also formed on the back surface side of the central portion 2a1 so as to be coaxial with the central axis line CL.
  • the recess 2e has different cross-sectional shapes when viewed in the cross section shown in FIG. 3A and in the cross section shown in FIG. 3B, and the width dimensions in the left-right direction orthogonal to the axis line CL differ from each other. Furthermore, on the outer peripheral surface 2f of the piston upper portion 2, the top ring groove 2f, the second ring groove 2f2, and the third ring groove 2f3 are formed in this order from the top to the bottom so as to be coaxial with the central axis CL There is.
  • the lower piston portion 3 has a skirt 3a.
  • the skirt portion 3a has a substantially cylindrical shape with a part cut away, and a pair of cut portions formed between the pair of arc outer peripheral surfaces 3b and both side edges of the arc outer peripheral surfaces 3b. And a notch 3c.
  • Each arc outer peripheral surface 3 b has the same outer diameter as the outer peripheral surface 2 f of the piston upper portion 2 as shown in FIG. 2A and is flush.
  • each notch surface 3c is formed of two flat surfaces 3c1 and 3c2 which are recessed from the arc outer peripheral surface 3b and are V-shaped. Further, a boss portion 3d is formed which bulges outward in the radial direction of the internal combustion engine piston 1 from the two flat surfaces 3c1 and 3c2. As shown in FIGS. 2A and 2B, the boss 3d bulges inward in the radial direction of the piston 1 for an internal combustion engine also inside the skirt 3a.
  • a piston pin hole 3d1 for inserting a piston pin (not shown) is formed in each of the pair of bosses 3d formed in this manner.
  • the pair of piston pin holes 3d1 have a common axis line PCL. The axis PCL coincides with the axis of the inserted piston pin.
  • the upper surface 3 e of the piston lower portion 3 shown in FIGS. 4A and 4B is a joint surface joined to the lower surface 2 c of the piston upper portion 2.
  • An annular cooling channel 3f is formed on the upper surface 3e to form a flow channel with the cooling channel 2d.
  • an opening 3g is formed in the upper surface 3e so as to be continuous with the recess 2e of the piston upper portion 2.
  • the opening 3g has the same shape as the opening of the recess 2e, and is in communication with the internal space of the skirt 3a.
  • the openings 3g have different cross-sectional shapes when viewed in the cross section shown in FIG. 4A and in the cross section shown in FIG.
  • a transition layer a (hereinafter referred to as an Fe-Al transition layer) is formed at thick line positions shown in FIGS. 2A and 2B.
  • the upper portion 2 of the piston is exposed to high temperature by combustion in the cylinder.
  • the combustion efficiency of the internal combustion engine piston 1 is improved by performing high temperature and high compression combustion in the combustion chamber. Therefore, in order to enhance the combustion efficiency, sufficient high temperature fatigue strength of the piston upper portion 2 is required.
  • the piston upper portion 2 is obtained by forming the steel into a shape shown in FIGS. 2A, 3A and 3B by casting, hot forging or cold forging.
  • steel to be used low-alloy steel SCM 435 or SCM 440 can be suitably adopted.
  • the piston lower portion 3 is made of aluminum alloy. That is, by cold forging the aluminum alloy, the lower piston portion 3 having a shape as shown in FIGS. 4A and 4B is obtained.
  • the aluminum alloy a general No. 4000 series can be suitably used.
  • the piston upper portion 2 is made of steel and the piston lower portion 3 is made of aluminum alloy, and then the piston lower portion 3 is joined to the piston upper portion 2 to achieve weight saving and high-temperature fatigue strength compatible with each other. You can get
  • friction bonding is solid phase bonding in which an alloy layer is hardly formed at the bonding interface.
  • friction bonding in the joint surface between the piston upper portion 2 and the piston lower portion 3, the base materials of the steel and the aluminum alloy are not melted together, but both base materials diffuse to form a thin layer. It is joined by that.
  • a thick alloy layer is not formed on the bonding surface, and high bonding strength can be realized.
  • the piston upper portion 2 is fixed, and then the piston lower portion 3 is pressed against the piston upper portion 2 while rotating.
  • the No. 4000 series aluminum alloy used as the piston lower portion 3 has a problem that the melting point is lower than that of other aluminum alloys, and the oxide film on the surface is thick.
  • it may be considered to increase the pressing force and the rotational speed at the time of friction bonding, but in that case, the aluminum alloy is heated to partially melt and form a thick Fe-Al transition layer.
  • Such a thick Fe--Al transition layer may significantly reduce the bonding strength between the upper piston portion 2 and the lower piston portion 3.
  • the pressing force and rotational speed during friction bonding are reduced to avoid the formation of a thick Fe-Al transition layer, then the oxide film can not be completely removed, resulting in sufficient bonding strength. The result is that you can not
  • the joint strength is lowered if the thickness of the Fe-Al transition layer at the joint interface between the piston upper portion 2 and the piston lower portion 3 is less than 1.0 ⁇ m or more than 20.0 ⁇ m. did.
  • the thickness of the Fe-Al transition layer means that the concentration of steel or aluminum alloy is 95% by mass at the joint between the steel piston upper portion 2 and the aluminum alloy piston lower portion 3. Mean the length along the axis CL, which decreases from 5% to 5%.
  • the thickness of the Fe—Al transition layer is less than 1.0 ⁇ m, the oxide film on the bonding surface can not be completely removed, resulting in a decrease in bonding strength.
  • the thickness of the Fe-Al transition layer is 20.0 ⁇ m or more, the Fe-Al transition layer is brittle, so brittle fracture is likely to occur, and the bonding strength is lowered.
  • the bonding strength between the piston upper portion 2 and the piston lower portion 3 is remarkably improved.
  • the tensile strength at the joint between the piston upper portion 2 and the piston lower portion 3 is equal to or higher (300 MPa or more) than the tensile strength of the base material of the 4000 series aluminum alloy.
  • the breaking stress of the internal combustion engine piston 1 is mainly determined by the tensile strength of the lower piston portion 3.
  • the breaking stress of the internal combustion engine piston 1 is determined by the joint strength of the joint.
  • the breaking stress of the internal combustion engine piston 1 was measured by the following procedure. Fix the piston upper part 2 side at a fixed position of a tensile test jig (not shown), insert a shaft (not shown) into the piston pin hole 3d1 of the piston lower part 3, and hold the jig for holding the shaft It is moved in a direction away from the piston upper portion 2 along the axis line CL. In this manner, the tensile load between the piston upper portion 2 and the piston lower portion 3 is gradually increased, and the tensile load at the time of breakage is divided by the joint area between the piston upper portion 2 and the piston lower portion 3 Let it be stress.
  • the lower limit of the thickness of the Fe-Al transition layer is preferably 1.7 ⁇ m, more preferably 5.8 ⁇ m.
  • the upper limit of the thickness of the Fe-Al transition layer is preferably 19.8 ⁇ m, more preferably 16.8 ⁇ m.
  • FIG. 5 is an explanatory view in which the joint surface (lower surface 2c) of the piston upper portion 2 of the internal combustion engine piston 1 and the joint surface (upper surface 3e) of the piston lower portion 3 are coaxially overlapped.
  • the piston 1 for an internal combustion engine is divided into four pieces at four cross sections C1 to C4 including the axis line CL.
  • the cross sections are determined so as to have equal angular intervals (that is, 90.degree. Intervals) as viewed from the line of sight along the axis line CL.
  • line analysis by EPMA is performed to determine the thickness from the point at which the aluminum component is 95% to the point at which the aluminum component is 5%.
  • the beam diameter of EPMA is 2 nm.
  • the thickness of the Fe—Al transition layer is the same, so one of them is selected to obtain the thickness. Further, there are two measurement points per cross section: one point on the outer peripheral side of the piston 1 for an internal combustion engine and one point on the inner peripheral side. Specific positions of these two points will be described with reference to FIG.
  • the thickness measurement is performed at a position P1 20 ⁇ m deep toward the radially inner side from the outer peripheral surface of the internal combustion engine piston 1. Further, on the inner peripheral side in the cross section C3, first, among the points on the opening of the recess 2e and the points on the opening 3g, the point most distant from the central axis line CL is determined. Then, a circle whose center is the center axis CL and whose center is the defined point is defined. More specifically, referring to FIG. 5, since the opening of the recess 2e and the opening 3g have the same shape, first, the shape of the opening 3g will be noted.
  • the point farthest from the central axis line CL is P0. Therefore, a circle IC including the point P0 on the circumference and centering on the central axis line CL is defined. And let the position which left
  • the thickness of the Fe—Al transition layer is determined. Similar measurements are made at the other cross sections C1, C2, C4. As a result of performing thickness measurement at two points in each of all the cross sections C1 to C4, a total of eight measurement results of four points on the outer peripheral side and four points on the inner peripheral side can be obtained. Subsequently, an average value of thickness measurement values of four points P1 on the outer peripheral side is obtained. Similarly, an average value of thickness measurement values of four points P2 on the inner peripheral side is obtained. Sufficient bonding strength is secured if the thickness average value on the outer circumference side and the thickness average value on the inner circumference side thus obtained are within the above-mentioned range of 1.0 to 20.0 ⁇ m. Ru.
  • both the lower surface 2c and the upper surface 3e a simple circular plane by eliminating both the recess 2e and the opening 3g.
  • the peripheral speed of the central portion of the circular plane is slower than the peripheral speed of the outer peripheral portion, there is a possibility that an appropriate bonding strength can not be obtained. Therefore, it is preferable that the lower surface 2c and the upper surface 3e be a substantially annular surface in which the central portion is opened.
  • the peripheral speed is different between the inner and outer peripheral sides, so the thickness of the Fe-Al transition layer is larger on the outer peripheral side where the peripheral speed is faster than the inner peripheral side where the peripheral speed is slow.
  • Tend to In friction bonding of the piston lower portion 3 made of an aluminum alloy it is necessary to remove the oxide film formed on the upper surface 3e and to make the Fe—Al transition layer have an appropriate thickness. In particular, it is necessary to prevent insufficient removal of the oxide film on the inner peripheral side of the annular portion and insufficient thickness of the Fe—Al transition layer.
  • the thickness of the Fe-Al transition layer can be made uniform without causing a large difference between the inner peripheral side and the outer peripheral side of the annular portion by adopting a manufacturing method described later to solve this problem. I am able to secure it. Specifically, the difference obtained by subtracting the thickness on the inner peripheral side from the thickness on the outer peripheral side of the Fe—Al transition layer is 10.0 ⁇ m or less. Therefore, a transition layer having high bonding strength is formed over the entire annular portion, and sufficient bonding strength can be secured over the entire bonding surface.
  • the manufacturing apparatus 10 of the piston 1 for internal combustion engines which concerns on this embodiment is shown in FIG. Moreover, the expanded sectional view of the A section of FIG. 6 is shown in FIG. As shown in FIG. 6, the manufacturing apparatus 10 holds the base 11, the fixed chuck 12 fixed on the base 11, the rotation drive unit 13 installed on the base 11, and the rotation drive unit 13. The rotary chuck 14, the air supply source 15, the nozzle 16 connected to the air supply source 15 via the flexible piping 15 a, and a control device (not shown) are provided.
  • the fixed chuck 12 holds the piston upper portion 2 so that its central axis CL is horizontal and fixes it in a fixed position.
  • the rotary chuck 14 holds the lower piston 3 coaxially with the upper piston 2.
  • the rotary drive unit 13 rotates the rotary chuck 14 about the central axis CL and moves the rotary chuck 14 closer to or away from the stationary chuck 12.
  • the rotation drive unit 13 includes a first measurement unit (not shown) that measures the number of rotations of the rotation chuck 14 and a second measurement unit (not shown) that measures the pressing force (friction pressure and upset pressure) of the rotation chuck 14. Have.
  • the nozzle 16 has a compressed air, which is a cooling fluid supplied from the air supply source 15 via the flexible piping 15 a, at the joint surface (lower surface 2 c) between the piston upper portion 2 and the piston lower portion 3. And the outer peripheral surface 3A of the lower piston 3 at a position shifted toward the lower piston 3 by a predetermined distance from the mating surface of the upper surface 3e).
  • the nozzle 16 is fixed, since the lower piston portion 3 is rotating at the time of frictional heating, the outer peripheral surface of the lower piston portion 3 can be uniformly cooled in the circumferential direction within the strip cooling range including the position P .
  • a liquid such as water may be used instead of the compressed air.
  • the control device performs drive control of the rotation drive unit 13 and ON / OFF control of blowing of compressed air from the nozzle 16.
  • step S 1 the piston upper portion 2 is fixed to the fixed chuck 12 and the piston lower portion 3 is fixed to the rotary chuck 14. Then, positioning in the rotational direction is performed so that the recess 2e and the opening 3g overlap correctly.
  • step S 2 the control unit activates the air supply source 15 and starts forced cooling in which compressed air is blown only from the nozzle 16 to the outer peripheral side of the lower piston portion 3. In addition, it does not blow compressed air on the inner peripheral side of piston lower part 3, but it becomes natural heat dissipation.
  • the rotary drive unit 13 receiving the instruction from the control unit rotates the rotary chuck 14 holding the lower piston portion 3.
  • the first measurement unit measures the number of rotations of the rotary chuck 14 and performs feedback control so as to achieve a predetermined number of rotations.
  • the rotary drive unit 13 feeds the rotary chuck 14 toward the fixed chuck 12.
  • the rotary drive unit 13 further presses the rotary chuck 14 toward the fixed chuck 12 so that a predetermined frictional pressure can be obtained while maintaining the rotational speed of the rotary chuck 14 at the predetermined rotational speed.
  • step S6 it is measured by the second measuring unit whether or not the frictional pressure, which is the strength of the pressing force of the lower part 3 of the piston against the upper part 2 of the piston, is within a predetermined range.
  • the frictional pressure which is the strength of the pressing force of the lower part 3 of the piston against the upper part 2 of the piston.
  • the upper surface 3e of the lower piston 3 is in sliding contact with the lower surface 2c of the upper piston 2 with a predetermined frictional pressure, and as a result, both the upper surface 3e and the lower surface 2c are heated by frictional heat.
  • the frictional heat and the frictional pressure remove the oxide film covering the upper surface 3 e of the lower piston 3.
  • the outer peripheral side of the lower piston portion 3 continues to be cooled, and excessive heating can be prevented.
  • a large difference does not occur in the heating amount between the inner peripheral side and the outer peripheral side, and uniform heating can be performed.
  • step S7 it is determined whether or not a predetermined time has elapsed from the start of application of the frictional pressure. That is, the elapsed time from the start of the contact in step S4 to the present time is confirmed. As a result of confirmation, when the predetermined application time has not yet been reached (step S7: NO), the process returns to step S6, and the frictional pressure is controlled again. On the other hand, if it is determined that the predetermined application time has been reached (step S7: YES), the process proceeds to step S8.
  • the present invention is not limited to this mode.
  • the control unit may perform control so as to satisfy these conditions.
  • step S8 the rotation of the rotary chuck 14 is stopped.
  • the relative rotational position of the piston lower portion 3 with respect to the piston upper portion 2 about the central axis line CL is made to coincide with the rotational position positioned in step S1.
  • the lower piston portion 3 is positioned with respect to the upper piston portion 2 so that the recess 2e of the upper piston portion 2 and the opening 3g overlap correctly.
  • the lower piston portion 3 held by the rotary chuck 14 is pressed against the upper piston portion 2 with a predetermined upset pressure.
  • the upset pressure at this time is preferably in the range of 2 to 10 times the frictional pressure. If the upset pressure is less than twice, the Fe-Al transition layer is excessively formed and becomes too thick. Furthermore, the oxide film is not sufficiently removed, and the bonding strength is reduced. Conversely, if the upset pressure exceeds 10 times, the Fe-Al transition layer becomes too thin.
  • step S10 NO
  • step S9 the process returns to step S9, and the lower piston portion 3 is further fed.
  • step S10: YES the process proceeds to step S11 without performing further delivery.
  • the upper surface 3e of the lower piston portion 3 is completely solid phase bonded to the lower surface 2c of the upper piston portion 2 to form an Fe--Al transition layer forming a bonding layer of a predetermined thickness.
  • This Fe—Al transition layer is extremely thin and has high bonding strength as compared to the case of melting and bonding an aluminum alloy.
  • the outer peripheral side of the annular portion is prevented from being excessively heated by cooling, the outer peripheral side portion of the Fe—Al transition layer is prevented from becoming brittle and being broken from there.
  • the peripheral speed is slower than the outer peripheral side, and the oxide layer covering the upper surface 3e of the piston lower part 3 can not be removed completely. It is possible to compensate by increasing the number of rotations of the lower piston portion 3 so as to avoid the situation where the above can not be obtained. At that time, as described above, since the cooling is continued appropriately on the outer peripheral side of the annular portion, there is no problem even if the rotational speed of the lower piston portion 3 is increased.
  • step S10 pressure control for appropriately managing upset pressure in step S10 is employed, but not limited to this mode, displacement control may be employed.
  • step S10 it is determined whether the feed amount of the rotary chuck 14 has reached a predetermined value. When it is determined that the delivery amount is not sufficient, the process returns to step S9, and when it is determined that the delivery amount is sufficient, the process proceeds to step S11.
  • step S11 it is determined whether or not a predetermined time has elapsed from the start of the application of the upset pressure. That is, the elapsed time from the start of the upset in step S9 to the current time is confirmed. As a result of confirmation, when the predetermined application time has not yet been reached (step S11: NO), the process returns to step S10, and the upset pressure is controlled again. On the other hand, as a result of confirmation, when the predetermined application time is reached (step S11: YES), the process proceeds to step S12 to cancel the application of the upset pressure. In the subsequent step S13, the control unit stops the air supply source 15, and stops the blowing of the compressed air from the nozzle 16.
  • the piston 1 for an internal combustion engine is removed from the manufacturing apparatus 10 by releasing the fixation by the fixed chuck 12 and the rotary chuck 14. Thereafter, since burrs appear at the joint between the piston upper portion 2 and the piston lower portion 3, the burrs are removed by turning, and the manufacturing process is completed.
  • the upper surface 3e of the lower piston portion 3 is frictionally heated in steps S4 to S7 of the manufacturing process.
  • the No. 4000 series aluminum alloy which is the material of the piston lower portion 3, has a low melting point, and the surface layer of the bonding interface is melted if the heat generation occurs at the time of friction heating. For this reason, it is necessary to remove the oxide film on the surface while suppressing the amount of heat generation.
  • the rotational speed at the time of frictional heating is 1000 rpm or more, preferably 1032 rpm or more, and more preferably 1054 rpm or more.
  • the rotational speed at the time of frictional heating exceeds 2500 rpm, the calorific value increases and the temperature of the bonding interface increases, so the transition layer after upsetting becomes thick and the bonding strength decreases. Therefore, the rotational speed at the time of frictional heating is 2500 rpm or less, preferably 2493 rpm or less, and more preferably 2492 rpm or less.
  • the pressing force at the time of friction heating shown in steps S4 to S7 exceeds 20.0 MPa, the temperature of the bonding interface becomes high, so the Fe—Al transition layer after upsetting becomes thick and the bonding strength becomes low. Therefore, the pressing force (frictional pressure) at the time of friction heating is 20.0 MPa or less, preferably 19.4 MPa or less, more preferably 19.2 MPa or less.
  • the upper limit value of the pressing force at the time of friction heating is preferably 50.0 MPa, more preferably 40.0 MPa, and still more preferably 35.0 MPa.
  • the thickness of the Fe-Al transition layer becomes less than 1.0 ⁇ m, and the bonding strength after upset may be reduced. . If the temperature of the outer peripheral surface is more than 550 ° C., the thickness of the Fe—Al transition layer becomes more than 20.0 ⁇ m, and there is a possibility that the bonding strength may be reduced due to the embrittlement.
  • the rotational speed and the frictional pressure of the lower piston portion 3 are increased so that the temperature on the inner peripheral side of the annular portion, which has a slow peripheral speed, is also 200 ° C. to 550 ° C. Therefore, the temperature on the outer peripheral side of the annular portion, which has a high peripheral speed, tends to be higher than the temperature on the inner peripheral side.
  • the outer peripheral surface temperature of the lower piston portion 3 is suppressed to 200 ° C. to 550 ° C. by blowing compressed air. As a result, the temperatures on both the inner and outer circumferential sides of the annular portion are controlled within the temperature range of 200 ° C. to 550 ° C.
  • the difference obtained by subtracting the thickness on the inner peripheral side from the thickness on the outer peripheral side of the Fe-Al transition layer which is the bonding layer is 10.0 ⁇ m or less
  • the Fe-Al transition layer can be made to have an even thickness distribution such that Therefore, the joint strength between the piston upper portion 2 and the piston lower portion 3 can be sufficiently enhanced.
  • Example No. 1 of the present invention In 1 to 13, the thickness of the transition layer is in the range of 1.0 to 20.0 ⁇ m on both the inner and outer circumferential sides, and the breaking stress in the tensile test is as high as 300 MPa or more, and the fracture point is the joining surface Other than the lower part of the piston.
  • the outer peripheral surface temperature of the lower piston portion 3 was as low as 198 ° C., because the rotational speed at the time of frictional heating was below the above-described lower limit value.
  • the thickness of the Fe—Al transition layer was as thin as 0.2 ⁇ m, and the breaking stress was as low as 190 MPa. In the tensile test, it fractured at the joint.
  • the sample No. 18 had a high rotational speed at the time of friction heating and did not perform forced air cooling from the outside of the friction bonding surface. Therefore, the temperature of the outer peripheral surface of the piston lower portion 3 was 563 ° C., the thickness of the Fe—Al transition layer was too thick at 27.6 ⁇ m, and the breaking stress was as low as 123 MPa. In the tensile test, it fractured at the joint.
  • No. No. 21 had an appropriate pressing time at the time of upsetting, but because the pressing force was too low, the outer peripheral thickness t1 of the Fe—Al transition layer became too thick, and as a result, sufficient bonding strength was not obtained. That is, in the comparative example, since the upset pressing force is too weak, the extra portion on the outer peripheral side of the Fe—Al transition layer can not be pushed out, and the outer peripheral side thickness t1 of the Fe—Al transition layer is increased. As a result, in the tensile test, it fractured at the joint location. No. In No.
  • the method of manufacturing the piston 1 for an internal combustion engine includes the steps of: fixing the piston upper portion 2 in a fixed position; pressing the friction member against the piston upper portion 2 while rotating the piston lower portion 3; After stopping the rotation of the lower portion 3, pressing the lower portion 3 of the piston against the upper portion 2 of the piston to form an Fe—Al bonding layer. Then, in the step of frictional heating, compressed air is blown to the outer peripheral surface of the lower piston 3 at a position closer to the lower piston 3 than the joining position between the upper piston 2 and the lower piston 3.
  • the pressing force of 2.0 MPa or more and 20.0 MPa or less with respect to the piston upper portion 2 while rotating the piston lower portion 3 at a rotational speed of 1000 rpm to 2500 rpm is 10.0 seconds or more and 60.0 seconds Press below.
  • the pressing force of the piston lower portion 3 against the piston upper portion 2 is 10.0 MPa or more and 50.0 MPa or less and the pressing force larger than the friction heating step is 1.0 seconds or more 10.0 Press for less than a second.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

この内燃機関用ピストンは、鋼製の第1部品と、前記第1部品に対し環状の接合層を介して接合されたアルミニウム合金製の第2部品とを備え、前記接合層の厚さが、前記接合層の内周側及び外周側の双方とも1.0μm以上20.0μm以下である。

Description

内燃機関用ピストン及びその製造方法
 本発明は、内燃機関用ピストン及びその製造方法に関する。
 本願は、2017年7月14日に、日本国に出願された特願2017-138445号に基づき優先権を主張し、その内容をここに援用する。
 自動車用エンジンの高出力化及び低燃費化に伴い、シリンダー内の燃焼温度及び燃焼圧力が高くなりつつある。中でも、ディーゼルエンジン用のピストンは高温耐久性が特に求められる。加えて、ピストンが上下運動する際の、慣性力による動力損失を減らすために、ピストンの軽量化も求められている。さらに、ピストンスカート部及びシリンダーは燃焼に伴う温度上昇によって熱膨張するが、これらの間の隙間を一定に保つために、ピストンスカート部の熱膨張率をシリンダーの熱膨張率と同程度にする必要もある。
 従来のディーゼルエンジン用ピストンとしては、軽量化のためにJIS AC8A等のアルミニウム合金を鋳造して製造されたものが用いられてきた。しかし、アルミニウム合金で製造されたピストンは、高温耐久温度が約300℃と低いという問題がある。
 上述のような内燃機関用ピストンが、各種提案されている。
 例えば特許文献1には、基地組織がδフェライト-マルテンサイトでかつ組織中の共晶炭化物が3μm以下で共晶コロニーを形成する鋳鋼を用いたピストンが提案されている。鋳造による一体物として製造する場合、ニアネットシェイプで製造できるので、機械加工等のコストを低減できるメリットがある。
 しかし、鋳鋼によって製造されるピストンは、その製造上の制約により、ピストンの肉厚を薄くすることに限界がある。加えて、ピストン全体の材質が鋼であるため、ピストンの重量が大きいという問題がある。
 また、特許文献2には、ピストンのリング部にクーリングチャンネルを設けるために、ピストンを上下部品に分割してそれぞれを鍛造し、その後、これら上下部品をレーザーで接合して一体化することが提案されている。ここで、ピストンの頭頂部側をピストン上部、ピストンスカート側をピストン下部とする。
 しかし、レーザー接合に際しては、その接合方向に関する制約があることから、上下部品の形状にも制約が生じる。また、レーザー接合は溶融接合であるため、アルミニウム合金と鋼の接合により形成される合金層が厚くなる。この合金層は脆化組織を含むため、厚い合金層は接合強度の低下を招く。
 また、特許文献3には、ピストンの耐熱性及び軽量化を目的とした構造が開示されている。すなわち、ピストン上部に耐熱性が高い鋼を用いる一方、ピストン下部に軽量化を目的としてアルミニウム合金を用いる。そして、これらピストン上部及びピストン下部間を摩擦接合によって一体化する。
 しかし、鋼とアルミニウム合金を接合するピストンでは、往復運動による接合部にかかる荷重が大きくなるため、接合面積を大きくする必要がある。そのため、摩擦圧接時に接合面の回転軸より遠い外側の接合強度が高くなる条件で接合しても、接合面の回転軸に近い内側は未接合となる問題があった。逆に、接合面の回転軸に近い内側の接合強度が高くなる条件で接合すると、外側は合金層が厚くなり、接合強度が低くなるという問題があった。
国際公開第2004/094808号 日本国特表2014-531558号公報 日本国特開2000-303904号公報
 ピストンスカート部に4000番系のアルミニウム合金を用いる場合、膨張率を低く抑えることができる。しかし、アルミニウム合金中にSiを多量に含有するため、表面に酸化膜が厚く付着する。また、4000番系のアルミニウム合金は、他のアルミニウム合金と比較して低融点である。そのため、上記特許文献3のようにピストンスカート部を摩擦接合する場合、酸化膜を除去するために摩擦力を大きくすると、アルミニウム合金の一部が溶融して鋼との界面に金属間化合物を生成するという問題がある。
 前述したように、ディーゼルエンジン用ピストンには、燃焼効率改善のためのピストン軽量化と、ピストン上部の高温耐久性との両方が求められる。また、ディーゼルエンジンを低温で始動させてから高温で高負荷運転するまでの間、ピストンスカート部とシリンダーとの隙間を一定にするために、ピストンスカート部は低膨張率であることも求められる。
 上記の軽量化を優先させてピストン全体をアルミニウム合金で製造した場合、ピストン上部の高温疲労特性が低くなり、耐久性が問題になる。逆に、耐久性を優先させてピストン全体を鋼で製造した場合、重量が大きくなり、燃費効率が低下する。
 これら問題の双方を解決するためには、ピストン上部を耐熱性に優れた鋼製とするとともにピストン下部を軽量なアルミニウム合金製とし、これらピストン上部及びピストン下部間を摩擦接合により固相接合することが好ましい。しかし、摩擦接合の温度が高くなると、これらピストン上部及びピストン下部間の接合界面に、鋼-アルミニウム合金からなる遷移層が厚く生成される。この遷移層は、脆化組織を含むので、遷移層が厚く生成されると、ピストン上部及びピストン下部間の接合強度が低下する。
 上記特許文献3に開示の技術も同様の問題を有している。すなわち、ピストン上部及びピストン下部間の摩擦接合に際し、これらの接合面内の回転軸に近い側を内周側、そして回転軸より遠い側を外周側とした場合、外周側の遷移層を適切な厚みにしても、内周側の厚みが足りないために酸化層が除去しきれず、接合強度が低いことがある。逆に、内周側の遷移層を適切な厚みにした結果、外周側の厚みが厚すぎて脆くなり、接合強度が低くなることもある。
 本発明は、上記事情に鑑みてなされたものであり、耐久性が高く軽量な内燃機関用ピストンとその製造方法の提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために、以下の態様を採用した。
(1)本発明の一態様に係る内燃機関用ピストンは、鋼製の第1部品と、前記第1部品に対し環状の接合層を介して接合されたアルミニウム合金製の第2部品とを備え、前記接合層の厚さが、前記接合層の内周側及び外周側の双方とも1.0μm以上20.0μm以下である。
 上記(1)に記載の態様によれば、耐熱性が高い鋼製の第1部品と、軽量なアルミニウム合金製の第2部品との組み合わせにより、高い耐久性と軽量化とを両立できる。さらに、接合層の内周側及び外周側の双方が1.0μm~20.0μmの範囲内にあるので、接合層が過度に厚みを持って脆化したり、または接合層が過度に薄くなって十分な接合強度が保てなかったりする不具合も回避出来る。
(2)上記(1)に記載の内燃機関用ピストンにおいて、前記接合層の、前記外周側における前記厚みから前記内周側における前記厚みを差し引いた差分が、10.0μm以下であってもよい。
 上記(2)に記載の場合、径方向に沿って均等な接合強度を得ることが出来る。
(3)本発明の他の態様は、上記(1)または上記(2)に記載の内燃機関用ピストンの製造方法であって、前記第1部品を定位置に固定する工程と、前記第2部品を回転させながら前記第1部品に対し押し付けて摩擦加熱する工程と、前記第2部品の回転を停止させた後、前記第2部品を前記第1部品に対し押し付けて前記接合層を形成する工程と、を有し、前記摩擦加熱する工程で、前記第1部品及び前記第2部品間の接合位置よりも前記第2部品側の位置における前記第2部品の外周面に対し、冷却流体を供給する。
 上記(3)に記載の態様によれば、第1部品及び第2部品間の接合層を、その内周側及び外周側の双方において1.0μm~20.0μmの範囲内の厚みに形成できる。よって、第1部品に対して高い接合強度をもって第2部品を接合させることができる。
(4)上記(3)に記載の燃焼機関用ピストンの製造方法において、以下のようにしてもよい:前記摩擦加熱する工程で、前記第2部品を1000rpm~2500rpmの回転数で回転させながら前記第1部品に対し2.0MPa以上20.0MPa以下の押し付け力で10.0秒以上60.0秒以下、押し付け、前記接合層を形成する工程で、前記第2部品を前記第1部品に対し10.0MPa以上50.0MPa以下かつ前記摩擦加熱する工程よりも大きい押し付け力で1.0秒以上10.0秒以下、押し付ける。
 上記(4)に記載の場合、より確実に、接合層を適切な厚みに形成することができる。
(5)上記(3)または(4)に記載の燃焼機関用ピストンの製造方法において、前記摩擦加熱する工程で、前記第2部品の外周面の温度を200℃以上550℃以下にしてもよい。
 上記(5)に記載の場合、接合層の外周側の厚みをより適切な厚みに管理できる。
 本発明の上記各態様によれば、耐久性が高く軽量な内燃機関用ピストンとその製造方法を提供できる。
本発明の一実施形態に係る内燃機関用ピストンの斜視図である。 同内燃機関用ピストンを図1のA-A断面で見た断面図である。 同内燃機関用ピストンを図1のB-B断面で見た断面図である。 同内燃機関用ピストンのピストン上部を図1のA-A断面で見た断面図である。 同内燃機関用ピストンのピストン上部を図1のB-B断面で見た断面図である。 同内燃機関用ピストンのピストン下部を図1のA-A断面で見た断面図である。 同内燃機関用ピストンのピストン下部を図1のB-B断面で見た断面図である。 同内燃機関用ピストンのピストン上部の接合面とピストン下部の接合面とを同軸に重ね合わせた説明図である。 同内燃機関用ピストン製造装置の一例を示す模式図である。 図6のC部拡大図である。 同実施形態に係る内燃機関用ピストンの製造方法を示すフローチャートである。 図8Aの続きを示すフローチャートである。Aに相当する断面図である。
 本発明の一実施形態に係る内燃機関用ピストン及びその製造方法を、図面を参照しながら以下に説明する。
 図1は、本実施形態に係る内燃機関用ピストン1の斜視図である。図2Aは、同内燃機関用ピストンを図1のA-A断面で見た断面図である。図2Bは、同内燃機関用ピストンを図1のB-B断面で見た断面図である。図3Aは、同内燃機関用ピストンのピストン上部を図1のA-A断面で見た断面図である。図3Bは、同内燃機関用ピストンのピストン上部を図1のB-B断面で見た断面図である。図4Aは、同内燃機関用ピストンのピストン下部を図1のA-A断面で見た断面図である。図4Bは、同内燃機関用ピストンのピストン下部を図1のB-B断面で見た断面図である。
 なお、各図における符号CLは、内燃機関用ピストン1の中心軸線を示す。
 内燃機関用ピストン1は、自動車用エンジン、特にディーゼルエンジンへの用途に適したピストンである。
 図1~図2Bに示すように、内燃機関用ピストン1は、円盤状のピストン上部2(第1部品)と、このピストン上部2の下面に一体に接合された筒状のピストン下部3(第2部品)と、を備えている。
 図3A及び図3Bに示すように、ピストン上部2の上面をなす頂部2bには、燃焼室の一部を形成するキャビティ2aが形成されている。キャビティ2aは、中心軸線CLと同軸に形成された略円環状の凹部空間であり、その中央部分2a1が上方に向かって隆起している。
 また、ピストン上部2の接合面をなす下面2cには、クーリングチャンネル2d及び凹所2eが形成されている。クーリングチャンネル2dは、中心軸線CLと同軸に形成された円環状の流路である。また、凹所2eも、中心軸線CLと同軸をなすように、前記中央部分2a1の裏面側に形成されている。凹所2eは、図3Aに示す断面で見た場合と、図3Bに示す断面で見た場合とで断面形状が異なっており、軸線CLに直交する左右方向の幅寸法が互いに異なっている。
 さらに、ピストン上部2の外周面2fには、トップリング溝2f1,セカンドリング溝2f2,サードリング溝2f3が中心軸線CLと同軸をなすように、上から下に向かってこの順に並んで形成されている。
 図4A及び図4Bに示すように、ピストン下部3は、スカート部3aを有する。
 図1に示すように、スカート部3aは一部が切り欠かれた概略筒状をなしており、一対の円弧外周面3bと、これら円弧外周面3bの両側縁間に形成された一対の切り欠き面3cとを有している。各円弧外周面3bは、図2Aに示すように、ピストン上部2の外周面2fと同じ外径寸法を有し、面一になっている。
 一方、図1に示すように、各切り欠き面3cは、円弧外周面3bよりも凹んでV字状をなす2平面3c1,3c2により形成されている。さらに、これら2平面3c1,3c2より、内燃機関用ピストン1の径方向外方に向かって膨らむボス部3dが形成されている。このボス部3dは、図2A及び図2Bに示すように、スカート部3aの内部においても内燃機関用ピストン1の径方向内方に向かって膨らんでいる。このように形成された一対のボス部3dには、図示されないピストンピンを挿通させるピストンピン穴3d1がそれぞれ形成されている。これら一対のピストンピン穴3d1は、共通の軸線PCLを有している。この軸線PCLが、挿通された前記ピストンピンの軸線と一致する。
 また、図4A及び図4Bに示すピストン下部3の上面3eは、ピストン上部2の下面2cに接合する接合面となっている。上面3eには、前記クーリングチャンネル2dと共に流路を形成する環状のクーリングチャンネル3fが形成されている。さらに、上面3eには、ピストン上部2の凹所2eに連なる開口3gが形成されている。この開口3gは、凹所2eの開口と同一形状を有し、そして、スカート部3aの内部空間に連通している。開口3gは、図4Aに示す断面で見た場合と、図4Bに示す断面で見た場合とで断面形状が異なっており、軸線CLに直交する左右方向の幅寸法が互いに異なっている。
 以上説明のように、上面3eと下面2cは、互いに同一形状を有している。そして、下面2cに対して上面3eが摩擦接合することで、図2A及び図2Bに示す太線位置に遷移層a(以下、Fe-Al遷移層と称する)が形成されている。
 以上説明の構成を有する内燃機関用ピストン1のうち、特にピストン上部2は、シリンダー内部の燃焼によって高温に晒される。内燃機関用ピストン1の燃焼効率は、その燃焼室内において高温かつ高圧縮の燃焼を行うことにより向上する。よって、燃焼効率を高めるためには、ピストン上部2の十分な高温疲労強度が求められる。
 しかしながら、アルミニウム合金は高温疲労強度が低いため、高温及び高圧縮で燃焼室内を燃焼させることができない。そのため、ピストン上部2には高温疲労強度が高い鋼を用いる。具体的には、鋼を、鋳造、熱間鍛造、もしくは冷間鍛造することにより、図2A,図3A及び図3Bに示す形状に成形することで、ピストン上部2を得る。用いる鋼としては、低合金鋼であるSCM435またはSCM440を好適に採用することができる。
 しかし、ピストン上部2に加えてピストン下部3も鋼製とすると、内燃機関用ピストン1全体としての重量が過度に増す。この場合、内燃機関用ピストン1が上下運動する際の慣性重量が大きくなり、エネルギーロスが増大する。したがって、ピストン下部3はアルミニウム合金製とする。すなわち、アルミニウム合金を冷間鍛造することにより、図4A及び図4Bに示すような形状のピストン下部3を得る。アルミニウム合金としては、一般的な4000番系を好適に用いることができる。
 ピストン上部2を鋼により製造するとともにピストン下部3をアルミニウム合金で製造した後、ピストン上部2に対してピストン下部3を接合することで、軽量化及び高い高温疲労強度を両立した内燃機関用ピストン1を得ることができる。
 しかし、鋼製のピストン上部2とアルミニウム合金製のピストン下部3との界面を一旦溶融させて接合する方法では、接合界面に鋼とアルミニウム合金からなる脆い合金層が厚く形成され、ピストン上部2及びピストン下部3間の接合強度を保てない。
 そこで、接合界面に合金層が殆ど形成されない固相接合である摩擦攪拌接合(Friction Stir Welding。以下、単に摩擦接合と言う)を採用することが考えられる。摩擦接合をした場合、ピストン上部2及びピストン下部3間の接合面では、鋼とアルミニウム合金の母材とが溶け合っているのではなく、両方の母材同士が拡散し合って薄い層を形成することで接合している。この手法によれば、接合面に厚い合金層が生成されず、高い接合強度を実現できる。
 摩擦接合によってピストン上部2及びピストン下部3間を固相接合するには、まずピストン上部2を固定し、続いてピストン下部3を回転させながらピストン上部2に押し付ける。
 しかし、ピストン下部3として用いられる4000番系のアルミニウム合金は、他のアルミニウム合金と比較して融点が低く、しかも表面の酸化膜が厚いという問題がある。酸化膜を除去するために、摩擦接合時の押し付け力及び回転数を高めることも考えられるが、その場合、アルミニウム合金が高温化して一部溶解し、厚いFe-Al遷移層を形成する。このような厚いFe-Al遷移層は、ピストン上部2及びピストン下部3間の接合強度を著しく損なう虞がある。逆に、厚いFe-Al遷移層の形成を避けるために摩擦接合時の押し付け力及び回転数を抑えると、今度は酸化膜が除去しきれずに残り、その結果として、やはり十分な接合強度が得られないという結果になる。
 このように、従来の摩擦接合を単純に適用しただけでは、実用に耐えうる接合強度が得られないため、実用化が難しいというのが実情である。本発明者らは、上記状況の中で鋭意検討を進めた結果、摩擦接合により最適な接合強度を得るためのFe-Al遷移層の厚みに関する条件と、その条件を満足するための最適な製造方法とを得るに至った。
 すなわち、度重なる検討の結果、ピストン上部2及びピストン下部3間の接合界面におけるFe-Al遷移層の厚さが1.0μm未満または20.0μm超であると、接合強度が低下することが判明した。なお、「Fe-Al遷移層の厚さ」とは、鋼製のピストン上部2とアルミニウム合金製のピストン下部3との接合部において、鋼もしくはアルミニウム合金の濃度が質量%で母材の95%から5%に低下するまでの、軸線CLに沿った長さを意味する。
 具体的に言うと、Fe-Al遷移層の厚さが1.0μm未満になると、接合面の酸化膜が完全に除去できないため、接合強度が低くなる。逆に、Fe-Al遷移層の厚さが20.0μm以上になると、Fe-Al遷移層が脆いために脆性破壊しやすくなり、接合強度が低くなる。
 一方、Fe-Al遷移層の厚さが1.0~20.0μmの範囲内であると、ピストン上部2及びピストン下部3間の接合強度が著しく向上する。具体的に言うと、ピストン上部2及びピストン下部3間の接合部における引張強度が、4000番系のアルミニウム合金の母材の引張強度以上(300MPa以上)になる。このように接合部の接合強度が十分に高いときには、内燃機関用ピストン1に対して引張荷重を加えた場合、鋼及び接合部よりも引張強度が低いアルミニウム合金製のピストン下部3で破断する。よって、内燃機関用ピストン1の破断応力は、主にピストン下部3の引張強度によって決まることになる。一方、接合部の接合強度が十分でないときには、引張荷重によって接合部で破断する。この場合には、内燃機関用ピストン1の破断応力は、接合部の接合強度によって決まることになる。
 なお、内燃機関用ピストン1の破断応力は、以下の手順により測定した。ピストン上部2側を引張試験用治具(不図示)の定位置に固定し、ピストン下部3のピストンピン穴3d1に軸体(不図示)を挿入し、そして前記軸体を保持する治具を前記軸線CLに沿ってピストン上部2から離間する方向に移動させる。このようにして、ピストン上部2及びピストン下部3間の引張荷重を徐々に増していき、破断が生じた際の引張荷重を、ピストン上部2及びピストン下部3間の接合面積で除算した値を破断応力とする。
 前記Fe-Al遷移層の厚さの下限は、好ましくは1.7μmであり、より好ましくは5.8μmである。一方、前記Fe-Al遷移層の厚さの上限は、好ましくは19.8μmであり、より好ましくは16.8μmである。
 Fe-Al遷移層の厚さの測定方法について、図5を参照して述べる。図5は、内燃機関用ピストン1のピストン上部2の接合面(下面2c)とピストン下部3の接合面(上面3e)とを同軸に重ね合わせた説明図である。
 まず、内燃機関用ピストン1を、軸線CLを含む4断面C1~C4において切断して4個のピースに分ける。4断面C1~C4としては、軸線CLに沿った視線で見て等角度間隔(すなわち90°間隔)となるように断面を決める。
 4断面C1~C4のそれぞれにおいて、EPMAによる線分析を行い、アルミニウム成分が95%である点から5%である点にかけての厚みを求める。その際、EPMAのビーム径は、2nmとする。
 なお、1カ所の断面において互いに接合していた2つの切断面では、Fe-Al遷移層の厚さが互いに同じであるから、それらのどちらか一方を選んで厚みを求める。また、一断面あたりの測定箇所は、内燃機関用ピストン1の外周側1点と内周側1点の計2点である。これら2点の具体的な位置を図5により説明する。
 例えば断面C3における外周側においては、内燃機関用ピストン1の外周面よりその径方向内側に向かって20μm深さの位置P1で厚み測定を行う。また、断面C3における内周側においては、まず、凹所2eの開口上の各点と、開口3g上の各点とのうち、中心軸線CLから最も離れた点を定める。そして、定めた点を周上の点としてかつ中心軸線CLを中心とする円を規定する。図5を用いてより具体的に言うと、凹所2eの開口と開口3gとが同じ形状を有するため、まず開口3gの形状に注目する。開口3g上の各点のうちで中心軸線CLから最も離れた点がP0である。そこで、点P0を周上に含んでかつ中心軸線CLを中心とする円ICを規定する。そして、この円ICと断面C3の交点よりも径方向外方に向かって20μm離れた位置を点P2とする。
 このようにして求めた点P1,P2のそれぞれにおいて、Fe-Al遷移層の厚さを求める。同様の測定を、他の断面C1,C2,C4においても行う。全断面C1~C4のそれぞれにおいて2点ずつ厚み測定を行った結果、外周側4点と内周側4点の合計8点の測定結果が得られる。
 続いて、外周側である4つの点P1の厚み測定値の平均値を求める。同様に、内周側である4つの点P2の厚み測定値の平均値を求める。このようにして求めた外周側の厚み平均値と、内周側の厚み平均値とのいずれもが、上述した1.0~20.0μmの範囲内であれば、十分な結合強度が確保される。
 前記内周側の点P2を規定する際、円ICを基準とした理由について説明する。
 摩擦接合においては、ピストン上部2の接合面(下面2c)に対してピストン下部3の接合面(上面3e)を押し付けつつ、回転させる。その際、凹所2e及び開口3gが共に円形ではないため、ピストン下部3の回転と共に摩擦を受けたり受けなかったりを繰り返す部分が、下面2c及び上面3e双方の内周側に生じる。そのような部分が図5の円ICよりも内周側であり、強固な摩擦接合を得る上では、円ICよりも外側の環状部分におけるFe-Al遷移層の厚さを管理することが求められる。このような理由により、安定した摩擦接合が得られる、円ICよりも外側にある上記環状部分内でFe-Al遷移層の厚さを管理することが求められる。
 なお、凹所2e及び開口3gの双方を無くして、下面2c及び上面3eのそれぞれを単純な円形平面とすることも考えられる。しかし、この場合、円形平面の中央部分の周速が外周部分の周速よりも遅いため、適切な接合強度が得られない虞がある。そのため、下面2c及び上面3eとしては、中央部分が開口した略環状面であることが好ましい。
 一方、上記環状部分内でも、内周側と外周側とでは周速が異なるため、周速の遅い内周側よりも周速の早い外周側の方がFe-Al遷移層の厚さが厚くなる傾向にある。
 アルミニウム合金からなるピストン下部3の摩擦接合に際しては、上面3eに形成されている酸化膜を取り除くと共にFe-Al遷移層を適切な厚みにする必要がある。特に、上記環状部分の内周側における酸化膜除去不足とFe-Al遷移層の厚さ不足を生じないようにする必要がある。そのために、ピストン下部3の回転数及び押し付け力(以下、摩擦圧力)の少なくとも一方を単純に増すことも考えられる。しかし、この場合、上記環状部分の外周側で周速が上がりすぎて必要以上に高温化し、Fe-Al遷移層が厚くなりすぎる虞がある。
 本実施形態では、この問題に対して後述の製造方法を採用することにより、Fe-Al遷移層の厚みを、上記環状部分の内周側と外周側で大きな差を生じず均等な厚み分布を確保できるようにしている。具体的には、Fe-Al遷移層の、外周側における厚みから内周側における厚みを差し引いた差分が、10.0μm以下になっている。そのため、上記環状部分の全体において接合強度の高い遷移層が形成され、接合面全体において十分な結合強度を確保することができる。
 本実施形態に係る内燃機関用ピストン1の製造装置10を、図6に示す。また、図6のA部の拡大断面図を図7に示す。
 図6に示すように、製造装置10は、基台11と、基台11上に固定された固定チャック12と、基台11上に据え付けられた回転駆動部13と、回転駆動部13に保持された回転チャック14と、空気供給源15と、空気供給源15にフレキシブル配管15aを介して接続されたノズル16と、図示されない制御装置と、を備えている。
 固定チャック12は、ピストン上部2を、その中心軸線CLが水平をなすように保持して定位置に固定する。
 回転チャック14は、ピストン上部2と同軸にピストン下部3を保持する。
 回転駆動部13は、回転チャック14を中心軸線CL回りに回転させると共に、回転チャック14を固定チャック12に対して接近離間させる。回転駆動部13は、回転チャック14の回転数を測定する第1測定部(不図示)と、回転チャック14の押し付け力(摩擦圧力及びアプセット圧力)を測定する第2測定部(不図示)とを有する。
 図6及び図7に示すように、ノズル16は、空気供給源15からフレキシブル配管15aを介して供給される冷却流体である圧縮空気を、ピストン上部2及びピストン下部3間の接合面(下面2c及び上面3eの合わせ面)よりも所定距離、ピストン下部3側へずれた位置において、このピストン下部3の外周面3Aに対して吹き付ける。この所定距離としては、例えば、前記接合面よりピストン下部3に向かってL1=2mmの位置Pが好ましい。ノズル16は固定されているが、摩擦加熱時のピストン下部3は回転しているため、ピストン下部3の外周面を、位置Pを含む帯状冷却範囲で、周方向において均等に冷却することができる。なお、冷却流体としては、圧縮空気の代わりに、水などの液体を用いてもよい。
 前記制御装置は、回転駆動部13の駆動制御と、ノズル16からの圧縮空気の吹き付けのON/OFF制御とを行う。
 続いて、製造装置10を用いた、内燃機関用ピストン1の製造方法について、図8A及び図8Bのフローチャートを用いて説明する。
 まずステップS1において、ピストン上部2を固定チャック12に固定し、またピストン下部3を回転チャック14に固定する。そして、凹所2eと開口3gが正しく重なるように、回転方向の位置決めをする。
 続くステップS2において、前記制御部が空気供給源15を起動させ、ノズル16からピストン下部3の外周側のみに対して圧縮空気を吹きつける強制冷却を開始する。なお、ピストン下部3の内周側には圧縮空気を吹きつけず、自然放熱となる。
 続くステップS3において、前記制御部からの指示を受けた回転駆動部13が、ピストン下部3を保持した回転チャック14を回転させる。その際、前記第1測定部が回転チャック14の回転数を測定し、所定の回転数となるようにフィードバック制御を行う。回転チャック14の回転数が安定した後、回転駆動部13は、回転チャック14を固定チャック12に向かって送り出す。
 続くステップS4では、ピストン下部3の上面3eがピストン上部2の下面2cに対して軽く当接し、その際の反力を、前記第2測定部が検知する。これにより、ピストン上部2とピストン下部3が同軸に接したと判断される。
 続くステップS5では、回転チャック14の回転数を前記所定の回転数に維持したまま、所定の摩擦圧力が得られるよう、回転駆動部13が、回転チャック14を固定チャック12に向かってさらに押し付けていく。
 続くステップS6では、ピストン上部2に対するピストン下部3の押し付け力の強さである摩擦圧力が所定範囲内にあるか否かを、前記第2測定部で測定する。測定の結果、摩擦圧力が不足(ステップS6:NO)であれば、ステップS5に戻ってさらにピストン下部3を送り出す。一方、摩擦力が適切(ステップS6:YES)であれば、それ以上の送り出しは行わずにステップS7へ進む。
 このようにして、ピストン下部3の上面3eがピストン上部2の下面2cに回転しながら所定の摩擦圧力をもって摺接し、その結果として上面3e及び下面2cの双方が摩擦熱により加熱される。この摩擦熱と摩擦圧力により、ピストン下部3の上面3eを覆う酸化膜が除去される。加えて、ステップS2より継続して圧縮空気の吹きつけを行っているため、ピストン下部3の外周側が冷却され続け、過度の加熱が防げる。その結果、図5において示した上記環状部分の全面において、その内周側と外周側とで加熱量に大きな差が生じず均等に加熱することができる。
 続くステップS7では、摩擦圧力の印加開始から所定時間を経過したか否かが判断される。すなわち、ステップS4での当接開始から現時点までの経過時間を確認する。確認の結果、まだ所定の印加時間に達していない場合(ステップS7:NO)には、ステップS6に戻り、再び、摩擦圧力を制御する。一方、確認の結果、所定の印加時間に達した場合(ステップS7:YES)には、ステップS8へと進む。
 なお、上記ステップS5~S7では、摩擦圧力を測定することでフィードバック制御を行うものとしたが、この形態のみに限られない。例えば、内燃機関用ピストン1を複数回、試作して、その結果として最適な結果が得られた際の、回転チャック14の回転数、回転チャック14の送り出し量、そして摩擦圧力の印加時間などの各条件を求めておく。そして、以降の実製品の生産では、これら条件を満たすように前記制御部による制御を行えばよい。
 続くステップS8では、回転チャック14の回転を停止させる。その際、ピストン上部2に対するピストン下部3の中心軸線CL回りの相対回転位置を、ステップS1で位置決めした回転位置と一致させる。その結果、ピストン上部2の凹所2eと開口3gが正しく重なるように、ピストン上部2に対してピストン下部3が位置決めされる。
 続くステップS9では、回転チャック14に保持されたピストン下部3を、ピストン上部2に対して所定のアプセット圧力をもって押し付ける。この時のアプセット圧力としては、摩擦圧力の2倍以上10倍以下の範囲内であることが好ましい。アプセット圧力が2倍未満では、Fe-Al遷移層が過度に形成され、厚くなりすぎる。さらに、酸化膜が十分に除去されず、接合強度が低下する。逆に、アプセット圧力が10倍を超えるとFe-Al遷移層が薄くなりすぎる。
 続くステップS10では、ピストン上部2に対するピストン下部3の押し付け力の強さであるアプセット圧力が所定範囲内にあるか否かを、前記第2測定部で測定する。測定の結果、アプセット圧力が不足(ステップS10:NO)であれば、ステップS9に戻ってさらにピストン下部3を送り出す。一方、アプセット圧力が適切(ステップS10:YES)であれば、それ以上の送り出しは行わずにステップS11へ進む。
 このようにして、ピストン下部3の上面3eがピストン上部2の下面2cに対して完全に固相接合され、所定厚みの接合層をなすFe-Al遷移層が形成される。このFe-Al遷移層は、アルミニウム合金を溶融させて接合する場合に比べて極めて薄く、接合強度が高い。しかも、上述したように上記環状部分の外周側を冷却によって過度に加熱することを抑えているので、Fe-Al遷移層の外周側部分が脆化してここより破断することを防いでいる。
 一方、上記環状部分の内周側においては、外周側よりも周速が遅いためにピストン下部3の上面3eを覆う酸化層が除去しきれない事態や、摩擦加熱が不十分なために接合強度が得られない事態などを回避できるよう、ピストン下部3の回転数を増して補うことが可能となっている。その際、上述したように、上記環状部分の外周側においては、適切に冷却され続けているので、ピストン下部3の回転数を増しても問題を生じない。
 なお、本実施形態では、ステップS10においてアプセット圧力を適正に管理する圧力制御を採用しているが、この形態のみに限らず、変位制御を採用してもよい。この場合、ステップS10において、回転チャック14の送り出し量が規定に達したか否かが判断される。そして、送り出し量が足りていないと判断された場合にはステップS9に戻り、送り出し量が足りていると判断された場合にはステップS11へと進む。
 続くステップS11では、アプセット圧力の印加開始から所定時間を経過したか否かが判断される。すなわち、ステップS9でのアプセット開始から現時点までの経過時間を確認する。確認の結果、まだ所定の印加時間に達していない場合(ステップS11:NO)には、ステップS10に戻り、再び、アプセット圧力を制御する。一方、確認の結果、所定の印加時間に達した場合(ステップS11:YES)には、ステップS12へと進んでアプセット圧力の印加を解く。
 続くステップS13では、前記制御部が空気供給源15を停止させ、ノズル16からの圧縮空気の吹きつけを停止させる。
 続くステップS14では、固定チャック12及び回転チャック14による固定を解除することで、内燃機関用ピストン1を製造装置10から取り外す。その後、ピストン上部2及びピストン下部3の接合箇所にバリが出るため、旋削によりバリを除去し、製造工程が終了する。
 本製造工程のうち、ステップS4~S7においてピストン下部3の上面3eを摩擦加熱している。ピストン下部3の素材である4000番系のアルミニウム合金は、融点が低く、摩擦加熱時に発熱させ過ぎると接合界面の表層が溶けてしまう。このため、発熱量を抑えながら表面の酸化膜を除去する必要がある。
 摩擦加熱時におけるピストン下部3の回転数が1000rpm未満であると、酸化膜が十分に除去されないため、アプセット後の接合強度が低下する。したがって、摩擦加熱時の回転数は、1000rpm以上であり、好ましくは1032rpm以上であり、さらに好ましくは1054rpm以上である。
 一方、摩擦加熱時の回転数が2500rpmを超えると、発熱量が大きくなり、接合界面の温度が高くなるため、アプセット後の遷移層が厚くなって接合強度が低下する。したがって、摩擦加熱時の回転数は、2500rpm以下であり、好ましくは2493rpm以下であり、さらに好ましくは2492rpm以下である。
 ステップS4~S7に示した摩擦加熱時の押し付け力が20.0MPaを超えると、接合界面の温度が高くなるので、アプセット後のFe-Al遷移層が厚くなって接合強度が低くなる。したがって、摩擦加熱時の押し付け力(摩擦圧力)は、20.0MPa以下であり、好ましくは19.4MPa以下であり、より好ましくは19.2MPa以下である。一方、摩擦加熱時の押し付け力の上限値としては50.0MPa、より好ましくは40.0MPa、さらに好ましくは35.0MPa、とすることが好ましい。
 摩擦加熱時の押し付け時間が10.0秒間未満であると、酸化膜が十分に除去されないため、接合強度が低下する。したがって、摩擦加熱時の押し付け時間は、10.0秒間以上であり、好ましくは10.3秒間以上であり、より好ましくは15.9秒間以上である。一方、摩擦加熱時の押し付け時間の上限値としては60.0秒間、より好ましくは50.0秒間、さらに好ましくは40.0秒間、とすることが好ましい。
 さらに、摩擦加熱時の接合面位置におけるピストン下部3の外周面温度が200℃未満であるとFe-Al遷移層の厚さが1.0μm未満となり、アプセット後の接合強度が低下する虞がある。また、前記外周面温度が550℃超であるとFe-Al遷移層の厚さが20.0μm超となり、脆化によって接合強度が低下する虞がある。
 したがって、ピストン下部3の外周面温度は、好ましくは200℃~550℃である。前記外周面温度の下限は、より好ましくは231℃であり、さらに好ましくは307℃である。また、前記外周面温度の上限は、より好ましくは510℃であり、さらに好ましくは500℃である。なお、前記外周面温度は、放射温度計を用いて測定し、最大温度を測定値として採用することができる。
 本実施形態では、周速の遅い、上記環状部分の内周側の温度も200℃~550℃となるようにピストン下部3の回転数や摩擦圧力を増している。そのため、周速の速い、上記環状部分の外周側の温度が内周側の温度よりも高めになりがちである。これを防ぐために、本実施形態では、圧縮空気の吹きつけにより、ピストン下部3の外周面温度を200℃~550℃に抑えている。その結果、上記環状部分の内周側及び外周側の双方の温度を、200℃~550℃の温度範囲内に制御している。
 また、上記環状部分の内周側及び外周側における温度差も生じないので、接合層であるFe-Al遷移層の、外周側における厚みから内周側における厚みを差し引いた差分が10.0μm以下となるように、Fe-Al遷移層を均等な厚み分布にすることができる。よって、ピストン上部2及びピストン下部3間の接合強度を十分に高めることが出来る。
 以上説明の本実施形態の内燃機関用ピストン1及びその製造方法によれば、耐熱性が高いピストン上部2と軽量なピストン下部3とを有し、なおかつこれらピストン上部2及びピストン下部3間の接合強度が高い内燃機関用ピストン1を得ることができる。この内燃機関用ピストン1としては、自動車用エンジン、特にディーゼルエンジン等に好適に用いることが可能である。
 本発明を、実施例を参照しながらより具体的に説明する。
 上述の図3A,図3Bに示すピストン上部2をSCM435で製造するとともに、図4A,図4Bに示すピストン下部3をA4032のアルミニウム合金で製造した。そして、ピストン上部2に対してピストン下部3を摩擦接合して内燃機関用ピストン1を製造した。この摩擦接合の際、摩擦加熱時回転数、摩擦加熱時押し付け力、摩擦加熱時押し付け時間、強制空冷の有無、の各条件を変え、アプセット直前におけるピストン下部3の外周面温度を測定した。外周面温度は、放射温度計を用いて、図7に示すように、接合面よりピストン下部3側に向かってL2=2mmの位置P’を測定した。
 さらに、アプセット時の押し付け力、押し付け時間、の各条件を変え、アプセット後に得られたFe-Al遷移層の外周側厚さt1、内周側厚さt2、厚みの差分(t1-t2)、そして破断応力を求めた。
 以上の結果を、表1にまとめる。
 なお、接合界面のピストン下部3の外周面温度、Fe-Al遷移層の各部厚さは、いずれも、上述の方法により測定した。また、引張試験での破断箇所が接合面でなくピストン下部3である場合には、接合面の接合強度が十分であると判断し、破断箇所が接合面である場合には、接合面の接合強度が十分でないと判断した。
Figure JPOXMLDOC01-appb-T000001
 表1において、No.1~13が上述の条件を全て満足する本発明例であり、No.14~27が上述の条件を満足しない比較例である。
 本発明例であるNo.1~13は、遷移層の厚さが内周側及び外周側の双方において1.0~20.0μmの範囲内であり、引張試験での破断応力が300MPa以上と高く、破断箇所が接合面以外のピストン下部であった。
 これに対し、No.14は、摩擦加熱時の回転数が上述の下限値を下回るため、ピストン下部3の外周面温度が198℃と低かった。その結果、Fe-Al遷移層の厚さが0.2μmと薄く、破断応力が190MPaと低かった。引張試験では接合箇所で破断した。
 No.15は、摩擦加熱時の回転数が上述の範囲の上限を上回るため、Fe-Al遷移層の厚さが21.3μmと厚くなりすぎ、破断応力が298MPaと低かった。引張試験では接合箇所で破断した。
 No.16は、摩擦加熱時の押し付け力が上述の範囲の上限を上回る上に、摩擦加熱時の押し付け力がアプセット時の押し付け力よりも高いため、Fe-Al遷移層の厚さが25.3μmと厚くなりすぎ、破断応力が265MPaと低かった。引張試験では接合箇所で破断した。
 No.17は、摩擦加熱時の押し付け時間が上述の範囲の下限を下回るため、ピストン下部3の外周面温度が196℃と低かった。その結果、Fe-Al遷移層の厚さが0.3μmと薄く、破断応力が156MPaと低かった。引張試験では接合箇所で破断した。
 No.18は、摩擦加熱時の回転数が高く、摩擦接合面の外側からの強制空冷を行わなかった。そのため、ピストン下部3の外周面温度が563℃となり、Fe-Al遷移層の厚さが27.6μmと厚くなりすぎ、破断応力が123MPaと低かった。引張試験では接合箇所で破断した。
 No.19は、強制空冷を行わなかった以外の条件は満たされているものの、やはりピストン下部3の外周面温度が557℃と高くなった。その結果、Fe-Al遷移層の厚さが21.6μmと厚くなりすぎ、破断応力も257MPaと低かった。引張試験では接合箇所で破断した。
 No.20は、Fe-Al遷移層の外周側厚みt1が適切であるものの、内周側厚みt2が薄すぎるために十分な接合強度が得られなかった。本比較例では、強制空冷なしの条件下でFe-Al遷移層の外周側厚みt1を適正にするために摩擦加熱時回転数を適正範囲外まで下げている。しかし、Fe-Al遷移層の内周側の温度が上がらず、内周側厚みt2が薄くなったものと推察される。引張試験では、接合箇所で破断した。
 No.21は、アプセット時の押し付け時間が適切であるものの、押し付け力が低すぎるためにFe-Al遷移層の外周側厚みt1が厚くなりすぎ、その結果、十分な接合強度が得られなかった。すなわち、本比較例ではアプセット押し付け力が弱すぎるため、Fe-Al遷移層の外周側にある余分な部分を外部に押し出せず、Fe-Al遷移層の外周側厚みt1が厚くなった。その結果、引張試験では接合箇所で破断した。
 No.22は、アプセット時の押し付け時間が適切であるものの、押し付け力が高すぎるためにFe-Al遷移層の内周側厚みt2が薄くなりすぎ、その結果、十分な接合強度が得られなかった。すなわち、本比較例ではアプセット時の押し付け力が強すぎたため、Fe-Al遷移層の内周側の部分を余計に押し出しすぎてしまい、内周側厚みt2が薄くなりすぎた。その結果、引張試験では接合箇所で破断した。
 No.23は、アプセット時の押し付け力が適切であるものの、押し付け時間が短すぎるためにFe-Al遷移層の外周側厚みt1が厚くなりすぎ、その結果、十分な接合強度が得られなかった。すなわち、本比較例ではアプセット時の押し付け時間が短すぎたため、Fe-Al遷移層の外周側にある余分な部分を外部に押し出せなかった。そのため、Fe-Al遷移層の外周側厚みt1が厚くなった。その結果、引張試験では接合箇所で破断した。
 No.24は、アプセット時の押し付け力が適切であるものの、押し付け時間が長すぎるためにFe-Al遷移層における内周側厚みt2が薄くなりすぎ、その結果、十分な接合強度が得られなかった。すなわち、本比較例ではアプセット時の押し付け時間が長すぎたため、Fe-Al遷移層の内周側の部分を外部に押し出しすぎた。そのため、Fe-Al遷移層の内周側厚みt2が薄くなった。その結果、引張試験では接合箇所で破断した。
 No.25は、摩擦加熱時の押し付け力が低すぎたためにFe-Al遷移層の外周側厚みt1及び内周側厚みt2の双方が薄くなりすぎ、その結果、十分な接合強度が得られなかった。すなわち、本比較例では摩擦加熱時の押し付け力が弱すぎたためにFe-Al遷移層の温度が十分に上がらず、Fe-Al遷移層の外周側厚みt1及び内周側厚みt2の双方が薄くなった。その結果、引張試験では接合箇所で破断した。
 No.26は、摩擦加熱時の押し付け時間が長すぎたためにFe-Al遷移層の外周側厚みt1が厚くなりすぎ、その結果、十分な接合強度が得られなかった。すなわち、本比較例では摩擦加熱時の押し付け時間が長すぎたためにFe-Al遷移層の外周面温度が高くなりすぎ、Fe-Al遷移層の外周側厚みt1が厚くなった。その結果、引張試験では接合箇所で破断した。
 No.27は、摩擦加熱時の回転数が高すぎたためにFe-Al遷移層の外周側厚みt1及び内周側厚みt2の双方が厚くなりすぎ、その結果、十分な接合強度が得られなかった。すなわち、本比較例では摩擦加熱時の回転数がかなり速いため、Fe-Al遷移層の温度が高くなりすぎ、Fe-Al遷移層の外周側厚みt1及び内周側厚みt2の双方が厚くなった。その結果、引張試験では接合箇所で破断した。
 以上のことから、強制空冷を行うとともに上述した各種条件を満たすことで、高温耐久性に優れた鋼製のピストン上部2と軽量なアルミニウム合金製のピストン下部3とを備え、そしてこれらピストン上部2及びピストン下部3間の接合強度が高い内燃機関用ピストン1を得られることが確認された。
 以上に説明した、本実施形態の内燃機関用ピストン1の骨子を以下に纏める。
(1)本実施形態の内燃機関用ピストン1は、鋼製のピストン上部2と、ピストン上部2に対し環状のFe-Al接合層を介して接合されたアルミニウム合金製のピストン下部3とを備え、Fe-Al接合層の厚さが、Fe-Al接合層の内周側及び外周側の双方とも1.0μm以上20.0μm以下である。
(2)前記接合層の、前記外周側における前記厚みから前記内周側における前記厚みを差し引いた差分が、10.0μm以下である。
(3)本実施形態の内燃機関用ピストン1の製造方法は、ピストン上部2を定位置に固定する工程と、ピストン下部3を回転させながらピストン上部2に対し押し付けて摩擦加熱する工程と、ピストン下部3の回転を停止させた後、ピストン下部3をピストン上部2に対し押し付けてFe-Al接合層を形成する工程と、を有する。そして、前記摩擦加熱する工程では、ピストン上部2及びピストン下部3間の接合位置よりもピストン下部3側の位置におけるピストン下部3の外周面に対し、圧縮空気を吹き付ける。
(4)前記摩擦加熱する工程で、ピストン下部3を1000rpm~2500rpmの回転数で回転させながらピストン上部2に対し2.0MPa以上20.0MPa以下の押し付け力で10.0秒以上60.0秒以下、押し付ける。さらに、Fe-Al接合層を形成する工程で、ピストン下部3をピストン上部2に対し10.0MPa以上50.0MPa以下かつ前記摩擦加熱する工程よりも大きい押し付け力で1.0秒以上10.0秒以下、押し付ける。
(5)前記摩擦加熱する工程では、ピストン下部3の外周面の温度を200℃以上550℃以下にする。
 本発明によれば、耐久性が高く軽量な内燃機関用ピストンとその製造方法を提供することができる。
 1 内燃機関用ピストン
 2 ピストン上部(第1部品)
 2c 下面(接合面)
 3 ピストン下部(第2部品)
 3A 外周面
 3e 上面(接合面)
 a 接合層,Fe-Al遷移層

Claims (5)

  1.  鋼製の第1部品と、前記第1部品に対し環状の接合層を介して接合されたアルミニウム合金製の第2部品とを備え、
     前記接合層の厚さが、前記接合層の内周側及び外周側の双方とも1.0μm以上20.0μm以下である
    ことを特徴とする内燃機関用ピストン。
  2.  前記接合層の、前記外周側における前記厚みから前記内周側における前記厚みを差し引いた差分が、10.0μm以下である
    ことを特徴とする請求項1に記載の内燃機関用ピストン。
  3.  請求項1又は2に記載の内燃機関用ピストンの製造方法であって、
     前記第1部品を定位置に固定する工程と、
     前記第2部品を回転させながら前記第1部品に対し押し付けて摩擦加熱する工程と、
     前記第2部品の回転を停止させた後、前記第2部品を前記第1部品に対し押し付けて前記接合層を形成する工程と、
    を有し、
     前記摩擦加熱する工程で、前記第1部品及び前記第2部品間の接合位置よりも前記第2部品側の位置における前記第2部品の外周面に対し、冷却流体を供給する
    ことを特徴とする内燃機関用ピストンの製造方法。
  4.  前記摩擦加熱する工程で、
      前記第2部品を1000rpm~2500rpmの回転数で回転させながら前記第1部品に対し2.0MPa以上20.0MPa以下の押し付け力で10.0秒以上60.0秒以下、押し付け、
     前記接合層を形成する工程で、
      前記第2部品を前記第1部品に対し10.0MPa以上50.0MPa以下かつ前記摩擦加熱する工程よりも大きい押し付け力で1.0秒以上10.0秒以下、押し付ける、
    ことを特徴とする請求項3に記載の内燃機関用ピストンの製造方法。
  5.  前記摩擦加熱する工程で、前記第2部品の外周面の温度を200℃以上550℃以下にする
    ことを特徴とする請求項3または4に記載の内燃機関用ピストンの製造方法。
PCT/JP2018/026349 2017-07-14 2018-07-12 内燃機関用ピストン及びその製造方法 WO2019013287A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019529783A JP6791385B2 (ja) 2017-07-14 2018-07-12 内燃機関用ピストン及びその製造方法
CN201880031876.9A CN110621868B (zh) 2017-07-14 2018-07-12 内燃机用活塞及其制造方法
EP18832780.3A EP3653863A4 (en) 2017-07-14 2018-07-12 PISTON FOR A COMBUSTION ENGINE AND MANUFACTURING PROCESS FOR IT
KR1020197037725A KR20200008163A (ko) 2017-07-14 2018-07-12 내연 기관용 피스톤 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138445 2017-07-14
JP2017-138445 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019013287A1 true WO2019013287A1 (ja) 2019-01-17

Family

ID=65001277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026349 WO2019013287A1 (ja) 2017-07-14 2018-07-12 内燃機関用ピストン及びその製造方法

Country Status (5)

Country Link
EP (1) EP3653863A4 (ja)
JP (1) JP6791385B2 (ja)
KR (1) KR20200008163A (ja)
CN (1) CN110621868B (ja)
WO (1) WO2019013287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230339039A1 (en) * 2020-09-25 2023-10-26 Osaka University Friction pressure welding method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062613A (ja) * 1992-06-17 1994-01-11 Izumi Ind Ltd 内燃機関用ピストンおよびその製造方法
JP2000303904A (ja) 1999-04-21 2000-10-31 Riken Tanzou Kk 内燃機関ピストンの製造方法
WO2004094808A1 (ja) 2003-03-31 2004-11-04 Hitachi Metals, Ltd. 内燃機関用ピストン
JP2005271016A (ja) * 2004-03-24 2005-10-06 Sumitomo Light Metal Ind Ltd 鋼管とアルミニウム合金中空部材の摩擦圧接方法
JP2014531558A (ja) 2011-09-21 2014-11-27 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH レーザ溶接したピストンアセンブリおよび当該ピストンの組み立て接合方法
JP2015217396A (ja) * 2014-05-14 2015-12-07 株式会社東芝 金属中空部材の摩擦圧接方法および発電設備用部材
WO2017022184A1 (ja) * 2015-07-31 2017-02-09 国立大学法人大阪大学 摩擦接合方法
JP2017517679A (ja) * 2014-05-23 2017-06-29 フェデラル−モーグル・リミテッド・ライアビリティ・カンパニーFederal−Mogul Llc 高温内燃機関のためのキーストーン形の第2のリング溝を有するピストン
JP2017122456A (ja) * 2011-04-15 2017-07-13 フェデラル−モーグル・リミテッド・ライアビリティ・カンパニーFederal−Mogul Llc ピストン
JP2017138445A (ja) 2016-02-03 2017-08-10 キヤノン株式会社 画像形成装置、画像診断方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2421282A1 (fr) * 1978-03-31 1979-10-26 Renault Piston de moteur a combustion interne
JPS63138141A (ja) * 1986-11-29 1988-06-10 Kobe Steel Ltd 内燃機関のピストンの製造方法
DE102010045221B4 (de) * 2010-09-13 2017-10-05 Daimler Ag Stahlkolben für Verbrennungsmotoren
JP2014185522A (ja) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Ltd 内燃機関のピストン
CN105033438B (zh) * 2015-04-15 2017-05-24 苏州安庆富电子科技有限公司 一种铝钢复合件的焊接方法以及铝钢复合件
KR20160128067A (ko) * 2015-04-28 2016-11-07 동양피스톤 주식회사 금속 접합 구조체의 제조방법 및 피스톤 제조 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062613A (ja) * 1992-06-17 1994-01-11 Izumi Ind Ltd 内燃機関用ピストンおよびその製造方法
JP2000303904A (ja) 1999-04-21 2000-10-31 Riken Tanzou Kk 内燃機関ピストンの製造方法
WO2004094808A1 (ja) 2003-03-31 2004-11-04 Hitachi Metals, Ltd. 内燃機関用ピストン
JP2005271016A (ja) * 2004-03-24 2005-10-06 Sumitomo Light Metal Ind Ltd 鋼管とアルミニウム合金中空部材の摩擦圧接方法
JP2017122456A (ja) * 2011-04-15 2017-07-13 フェデラル−モーグル・リミテッド・ライアビリティ・カンパニーFederal−Mogul Llc ピストン
JP2014531558A (ja) 2011-09-21 2014-11-27 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH レーザ溶接したピストンアセンブリおよび当該ピストンの組み立て接合方法
JP2015217396A (ja) * 2014-05-14 2015-12-07 株式会社東芝 金属中空部材の摩擦圧接方法および発電設備用部材
JP2017517679A (ja) * 2014-05-23 2017-06-29 フェデラル−モーグル・リミテッド・ライアビリティ・カンパニーFederal−Mogul Llc 高温内燃機関のためのキーストーン形の第2のリング溝を有するピストン
WO2017022184A1 (ja) * 2015-07-31 2017-02-09 国立大学法人大阪大学 摩擦接合方法
JP2017138445A (ja) 2016-02-03 2017-08-10 キヤノン株式会社 画像形成装置、画像診断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653863A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230339039A1 (en) * 2020-09-25 2023-10-26 Osaka University Friction pressure welding method

Also Published As

Publication number Publication date
CN110621868B (zh) 2022-05-27
KR20200008163A (ko) 2020-01-23
JPWO2019013287A1 (ja) 2020-04-02
EP3653863A1 (en) 2020-05-20
EP3653863A4 (en) 2021-03-24
CN110621868A (zh) 2019-12-27
JP6791385B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
KR101752216B1 (ko) 보강된 이중 갤러리 피스톤 및 그 제작 방법
CN103429878B (zh) 内燃机活塞及其制造方法
JP6246124B2 (ja) レーザ溶接したピストンアセンブリおよび当該ピストンの組み立て接合方法
JP5310714B2 (ja) 金属管の接合構造及び熱交換器
US9440310B2 (en) Monolite piston laser welding spatter control
JP2007524512A (ja) ピストンおよび製造の方法
US20100154214A1 (en) Turbine wheel and shaft joining processes
JP2013519832A (ja) ピストンアセンブリ
JP2016510859A (ja) 溶接支持部を備えたピストンアセンブリ
US20190218996A1 (en) Piston and manufacturing method thereof
KR20040030875A (ko) 내연기관 피스톤의 환형 냉각 튜브를 형성하기 위하여 캐리어 후프 내에 조립 및 용접되는 금속 시트 링의 장착 방법, 및 캐리어 후프와 조립된 핀 금속 시트 링의 제조 방법
JP2018062004A (ja) ハイブリッドコンポーネント及びハイブリッドコンポーネントの製造方法
JP2017527732A (ja) ピストンの製造に適用されるハイブリッド誘導溶接処理
WO2019013287A1 (ja) 内燃機関用ピストン及びその製造方法
JP2018505341A (ja) 封止された冷却ギャラリを備えるピストンおよびその構成方法
JP2010253534A (ja) 冷却路内蔵部材および冷却路内蔵部材の製造方法
JP3797853B2 (ja) 通電接合によるアルミニウム合金複合部材の製造方法
US20180111231A1 (en) Method for metallurgically bonding a cylinder liner into a bore in an engine block
US9518531B2 (en) Piston for internal combustion engines
JP6947704B2 (ja) 溶接部形成構造及び金属部材の接合方法
WO2019081760A1 (en) BI-ROTATING FRICTION WELDING
JP5289137B2 (ja) 組立クランクシャフトおよびその製造方法
WO2023248817A1 (ja) 金属接合体の製造方法及びダイカスト部材の接合方法
JP2023045415A (ja) ろう付け用金属皮膜形成工具
JP2001182611A (ja) シリンダヘッドとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529783

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037725

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018832780

Country of ref document: EP

Effective date: 20200214