WO2019012883A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2019012883A1
WO2019012883A1 PCT/JP2018/022114 JP2018022114W WO2019012883A1 WO 2019012883 A1 WO2019012883 A1 WO 2019012883A1 JP 2018022114 W JP2018022114 W JP 2018022114W WO 2019012883 A1 WO2019012883 A1 WO 2019012883A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
sub
projection
flow direction
fluid
Prior art date
Application number
PCT/JP2018/022114
Other languages
English (en)
French (fr)
Inventor
岩崎 充
回谷 雄一
真由美 山中
勉 古川
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2019012883A1 publication Critical patent/WO2019012883A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Definitions

  • the present invention relates to a heat exchanger that exchanges heat between a first fluid and a second fluid.
  • An exhaust heat exchanger which includes an exhaust flow passage through which exhaust gas discharged from an internal combustion engine flows, and which exchanges heat between the exhaust and a cooling medium flowing outside the exhaust flow passage.
  • a tube in which an exhaust flow path is formed is disposed inside the casing, and the tube has a fin as a heat transfer member for promoting heat exchange between the exhaust and the cooling fluid. It is arranged.
  • the exhaust introduced into the exhaust heat exchanger is cooled by flowing in the tube in contact with the fins (see JP2015-206535A).
  • a projection is formed on the surface of the fin.
  • the protrusions are formed such that the height of projection from the fin surface increases from the upstream side to the downstream side in the exhaust flow direction.
  • An object of the present invention is to further improve heat exchange performance in a heat exchanger.
  • a heat exchanger is a heat exchanger that performs heat exchange between a first fluid and a second fluid, and a fin disposed in a fluid passage through which the first fluid flows.
  • a main projecting portion provided on the fin and protruding in a direction to block the flow of the first fluid, and provided on the fin and having a height lower than a projecting height of the main projecting portion from the installation surface And a secondary protrusion.
  • the main projection makes the first fluid easy to generate a spiral vortex, and the sub projection increases the heat radiation area, thereby promoting heat exchange and causing the first fluid to flow Is promoted. This can provide a heat exchanger with even higher heat exchange performance.
  • FIG. 1 is a cross-sectional view parallel to the exhaust flow direction of the internal combustion engine flowing into the heat exchanger according to the first embodiment of the present invention and perpendicular to the main surface of the tube.
  • FIG. 2 is a cross-sectional view parallel to the exhaust flow direction of the heat exchanger according to the first embodiment of the present invention and along the main surface of the tube.
  • FIG. 3 is a perspective view for explaining a tube.
  • FIG. 4 is an enlarged perspective view showing a part of the fins arranged in the exhaust flow passage of the tube.
  • FIG. 5 is a perspective view for explaining one section of a flat wall in the fin used in the first embodiment.
  • FIG. 6 is an enlarged perspective view showing a part of a fin disposed in an exhaust flow passage of a tube used for a heat exchanger according to a second embodiment.
  • FIG. 7 is a perspective view for explaining one section of a flat wall in the fin used in the second embodiment.
  • FIG. 8 is a schematic view for explaining the function and effect of the fin used in the second embodiment.
  • FIG. 9 is a perspective view for explaining a section of a flat wall in a modification of the fin used in the second embodiment.
  • the heat exchanger according to the present invention is applied as an exhaust heat exchanger that performs heat exchange between exhaust gas discharged from an internal combustion engine and a cooling medium to cool the exhaust gas.
  • the first fluid flowing into the heat exchanger is the exhaust gas exhausted from the internal combustion engine and the second fluid is the cooling medium will be described.
  • FIG. 1 is a cross-sectional view parallel to the exhaust flow direction of the internal combustion engine flowing into the heat exchanger 1 according to the first embodiment of the present invention and perpendicular to the main surface 3A of the tube 3.
  • FIG. 2 is a cross-sectional view parallel to the exhaust flow direction of the heat exchanger 1 according to the first embodiment of the present invention and along the main surface 3A of the tube 3.
  • the heat exchanger 1 has an outer case 2, a plurality of tubes 3 housed in the outer case 2, and a vent, and the outer case 2 and the plurality of tubes 3. And tanks disposed at both ends of the
  • These parts are made of, for example, a material (for example, a stainless steel material) excellent in heat resistance and corrosion resistance.
  • a material for example, a stainless steel material
  • the contact points between the tubes 3, the contact points between the end of the tube 3 and the outer case 2, and the contact points between the outer case 2 and the tanks 4, 5 are fixed by brazing.
  • the outer case 2 is provided with a cooling fluid inlet 21 and a cooling fluid outlet 22 of a cooling fluid which is a cooling fluid.
  • a fluid passage 23 is formed by the gap between the adjacent tubes 3 and the gap between the tubes 3 at the both end positions and the inner surface of the outer case 2.
  • Both ends of all the tubes 3 are opened in the pair of tanks 4 and 5.
  • An exhaust inlet 4 a is provided in one tank 4. Further, the tank 5 is provided with an exhaust outlet 5a.
  • FIG. 3 is a perspective view for explaining the tube 3.
  • Each of the tubes 3 is formed in a length that can be accommodated in the outer case 2 in the exhaust flow direction.
  • the tube 3 has a front surface member 31 constituting the front surface 3A and a back surface member 32 constituting the back surface 3B, and is a flat cylindrical rectangular parallelepiped formed by brazing the front surface member 31 and the back surface member 32. is there.
  • An abutting portion 32 a is formed at the exhaust inlet end of the back surface member 32 of the tube 3. Further, an abutting portion 32 b is formed at the exhaust outlet end of the back surface member 32. Further, as shown in FIG. 1, a contact portion 32 c is formed at the central portion of the back surface member 32.
  • the tube 3 is in contact with the surface member 31 of the adjacent tube at the contact portion 32a, the contact portion 32b, and the contact portion 32c, and is stacked inside the exterior case 2.
  • an exhaust passage 33 is formed in the inside of the tube 3.
  • the fins 6 are disposed in the exhaust passage 33, and the exhaust passage 33 is partitioned by the fins 6 into a plurality of small passages 33 a.
  • FIG. 4 is a perspective view showing a part of the fins 6 disposed in the exhaust flow path 33 of the tube 3 in an enlarged manner.
  • the fin 6 has a flat wall 61 along the front surface 3A and the back surface 3B, and an upright wall 62 connected in a crossing direction of the flat wall 61, and a direction crossing the exhaust flow direction S , In the width direction) has a rectangular waveform shape.
  • the flat wall 61 is parallel to the front surface 3A and the back surface 3B of the tube 3, and the rising wall 62 is formed perpendicularly to the front surface 3A, the back surface 3B and the flat wall 61.
  • the flat wall 61 and the standing wall 62 formed in the fins 6 are offset in the width direction for each section that can be divided by a predetermined length in the exhaust flow direction.
  • each of the plurality of small flow paths 33 a formed in the exhaust flow path 33 is formed by being surrounded by the flat wall 61 of the fin 6, the standing wall 62, the surface member 31 and the back surface member 32 There is.
  • the fin 6 is provided with a main projection 71 installed so as to project from the flat wall 61 in the direction to block the exhaust flow, and a sub projection 72 73 74 that is lower than the height of projection of the main projection 71 from the installation surface. And 75.
  • the direction in which the exhaust flow is blocked is the direction toward the inner side of the tube 3.
  • FIG. 5 is a perspective view for explaining one section of the flat wall 61 in the fin 6 used in the first embodiment.
  • the sub protrusion parts 72, 73, 74, and 75 are the same structures, the sub protrusion part 72 is demonstrated here.
  • the installation surface on which the sub projection 72 is installed is a flat wall 61. That is, in the present embodiment, the installation surface on which the main projection 71 is installed and the installation surface on which the sub projection 72 is installed are both flat walls 61.
  • the protrusion height h2 of the sub protrusion 72 from the flat wall 61 is smaller than the protrusion height h1 of the main protrusion 71 from the flat wall 61.
  • the main projecting portion 71 has a base end 71 b with the flat wall 61 and a tip end 71 f opposite to the base end 71 b, and the tip end 71 f is on the upstream side in the exhaust flow direction S. It is cut out to be located. Further, the main projecting portion 71 is cut and raised so that the height from the flat wall 61 becomes higher from the base end 71b located on the downstream side in the exhaust flow direction S to the tip end 71f located on the upstream side.
  • the sub projection 72 has a base end 72b with the flat wall 61 and a tip end 72f which is an end opposite to the base end 72b, and the tip end 72f is downstream in the exhaust flow direction S. It is cut out to be located on the side. Further, the sub-projecting portion 72 is cut and raised so that the height from the flat wall 61 becomes higher from the base end 72b located on the upstream side in the exhaust flow direction S toward the tip end 72f located on the downstream side.
  • the projection height of the main projection 71 from the flat wall 61 is on the upstream side of the exhaust flow direction S of the main projection 71 and immediately before the main projection 71.
  • a secondary projection 76 having a projection height h3 lower than the height h1 is provided.
  • the auxiliary projection 76 has a proximal end 76b with the flat wall 61 and a distal end 76f opposite to the proximal end 76b, and the distal end 76f is on the upstream side in the exhaust flow direction S. It is cut out to be located. Further, the sub projection 76 is cut and raised so that the height from the flat wall 61 is increased from the base end 76 b located on the downstream side in the exhaust flow direction S toward the tip end 76 f located on the upstream side.
  • the main projection 71 is formed such that the surface receiving the exhaust has a predetermined angle with respect to the exhaust flow direction S with the normal line of the flat wall 61 as an axis. Further, in the present embodiment, the sub projection 72 and the sub projection 76 are also formed on the flat wall 61 at the same angle as the main projection 71.
  • the exhaust gas discharged from the internal combustion engine flows through the exhaust flow passage 33 in the tube 3. Further, a cooling fluid is flowing in the fluid passage 23 in the outer case 2. Thereby, the exhaust and the cooling fluid can exchange heat with each other through the tube 3 and the fins 6.
  • the main projection 71 formed on the fins 6 inhibits the exhaust flowing through the exhaust flow path 33, and heat exchange can be promoted by disturbing the exhaust.
  • the exhaust gas collides with the main protrusion 71 to form a low pressure region just downstream of the main protrusion 71 in the exhaust flow direction S.
  • a flow occurs.
  • the flow of exhaust in the exhaust flow path 33 is promoted.
  • the main projection 71 is formed such that the surface receiving the exhaust has a predetermined angle with respect to the exhaust flow direction S with the vertical line of the flat wall 61 as an axis. For this reason, in the low pressure area formed immediately below the downstream side of the main protrusion 71, further pressure spots occur in the width direction.
  • the heat radiation area can be increased by providing the sub protrusions 72 to 75.
  • the sub protrusions 72 to 75 are installed on the flat wall 61 at the same angle as the installation angle of the main protrusion 71 on the flat wall 61. Therefore, the sub protrusions 72 to 75 are along the spiral angle of the spiral vortex formed on the downstream side of the main protrusion 71. Thus, the sub protrusions 72 to 75 do not disturb the spiral vortex. Also, the life of the spiral vortex can be kept longer.
  • the heat dissipation area can also be increased by the sub projection 76 installed upstream of the main projection 71 in the exhaust flow direction S.
  • the main projection 71 facilitates the generation of a spiral vortex.
  • the heat exchanger 1 includes the sub-projections 72 to 75 and the sub-projections 76 to increase the heat radiation area to promote the heat exchange and to promote the exhaust flow. Being able to promote heat transfer. Therefore, according to the heat exchanger 1 which concerns on 1st Embodiment, heat exchange performance can be improved.
  • Second Embodiment ⁇ Configuration of Second Embodiment> Subsequently, a second embodiment of the present invention will be described.
  • the appearance of the heat exchanger 1 'according to the second embodiment is the same as that of the heat exchanger 1 shown in FIGS. 1 and 2, but the configuration of the fin 100 incorporated in the tube 3 is different from that of the fin 6. .
  • FIG. 6 is an enlarged perspective view showing a part of the fin 100 disposed in the exhaust flow path 33 of the tube 3 used in the heat exchanger 1 'according to the second embodiment.
  • the sub-projecting portion installed downstream of the main projecting portion 71 in the exhaust flow direction is a flat surface where the main projecting portion 71 is installed. It is installed on both the wall 101 and the standing wall 102 which is a surface connected in the cross direction of the flat wall 101.
  • the fin 100 is provided with the flat wall 101 and the standing wall 102 connected in the cross direction of the flat wall 101, as shown in FIG.
  • the flat wall 101 and the standing wall 102 are alternately cut and raised in the width direction of the tube 3 and have a corrugated shape whose cross section in the width direction is rectangular.
  • the flat wall 101 is parallel to the front surface 3A and the back surface 3B of the tube 3, and the rising wall 102 is formed perpendicularly to the front surface 3A, the back surface 3B and the flat wall 61. Further, like the fins 6 used in the first embodiment, the flat wall 101 and the standing wall 102 formed on the fin 100 are offset in the width direction for each section that can be divided by a predetermined length in the exhaust flow direction. ing.
  • the fin 100 includes sub protrusions 81, 82, 83, 84, 85, 86 and sub protrusions 91, 92, 93, 94, 95, 96 on the upstanding wall 102.
  • FIG. 7 is a perspective view for explaining one section of the flat wall 101.
  • the fin 100 is provided with a main projection 71 installed to project in a direction to block the exhaust flow, and a sub projection provided downstream of the flat wall 101 in the exhaust flow direction same as the main projection 71.
  • 72, 73, 74, 75 are provided.
  • the fin 100 further has openings 81 a, 82 a, 83 a, 83 a, 83 a, 83 a, through which exhaust gas flows adjacent to the sub protrusions 81, 82, 83, 84, 85, 86 formed on the upright wall 102.
  • 84a, 85a, 86a are formed.
  • openings 91a, 92a, 93a, 94a, 95a, 96a through which exhaust gas flows are formed adjacent to the sub protrusions 91, 92, 93, 94, 95, 96.
  • sub protrusion 81 since the sub protrusions 81, 82, 83, 84, 85, and 86 have the same configuration, the sub protrusion 81 will be described. In addition, since the sub protrusions 91, 92, 93, 94, 95, 96 also have the same configuration, the sub protrusion 91 will be described.
  • the sub-projecting portion 81 has a proximal end 81b with the upright wall 102 and a distal end 81f which is an end opposite to the proximal end 81b, and the distal end 81f is positioned upstream of the exhaust flow direction. Cut out to be In addition, the sub projection 81 is cut so that the projection height in the width direction from the rising wall 102 becomes higher from the base end 81 b located downstream in the exhaust flow direction S toward the tip 81 f located upstream It has been awakened.
  • the opening 81 a is an opening made by cutting and raising the sub projection 81.
  • the protrusion height h4 of the sub protrusion 81 from the upright wall 102 is smaller than the protrusion height h1 of the main protrusion 71 from the flat wall 101.
  • the sub-projecting portion 91 has a proximal end 91 b with the upright wall 102 and a distal end 91 f which is an end opposite to the proximal end 91 b, and the distal end 91 f is on the downstream side in the exhaust flow direction S. It is cut out to be located.
  • the sub projection 91 is cut and raised so that the projection height in the width direction from the rising wall 102 becomes higher from the base end 91 b located on the upstream side in the exhaust flow direction S toward the tip 91 f located on the downstream side. It is done.
  • the opening 91 a is an opening made by cutting and raising the sub projection 91.
  • the height h5 of protrusion of the sub protrusion 91 from the upright wall 102 is smaller than the height h1 of the protrusion of the main protrusion 71 from the flat wall 101.
  • the base end 81b of the sub projection 81 is located on the upstream side in the exhaust flow direction S, and the tip 81f is located on the downstream side.
  • the protruding height in the width direction from the wall 102 is cut and raised so as to be higher from the proximal end 81 b located on the upstream side toward the distal end 81 f located on the downstream side.
  • the tip 91 f of the sub projection 91 is located on the upstream side in the exhaust flow direction S, and the base end 91 b is cut out on the downstream side, and the protrusion in the width direction from the rising wall 103 The height is cut and raised so as to be lower toward the proximal end 91 b located downstream from the distal end 91 f located upstream.
  • the heat exchanger 1 ' according to the present embodiment includes the main protrusion 71 and the sub protrusions 72 to 75, as in the first embodiment. Therefore, the heat exchanger 1 'has the heat dissipation promoted by the generation of the spiral vortex by the main protrusion 71, and the heat dissipation area is increased by providing the sub protrusions 72 to 75 and the sub protrusion 76. Heat exchange can be promoted.
  • the heat exchanger 1 ' is also provided with sub-projecting portions 81 to 86 and sub-projecting portions 91 to 96 on the upstanding wall 102. Further, openings 81a to 86a through which exhaust gas flows are formed adjacent to the sub protrusions 81 to 86. Further, openings 91a to 96a through which the exhaust gas flows are formed adjacent to the sub protrusions 91 to 96.
  • the heat exchanger 1 'generates an exhaust flow (broken lines F2 and F3) meandering between the adjacent small flow paths 33a in addition to the spiral vortex flow F1, as shown in FIG. .
  • the exhaust introduced into the exhaust flow path 33 collides with the sub-projecting portions 81 to 86 located on the upstream side in the exhaust flow direction S, and passes through the openings 81a to 86a and then to the adjacent small flow path 33a. It flows in again from the openings 91a to 96a by the side projections 91 to 96 located on the side.
  • the heat exchanger 1 according to the second embodiment, the heat exchange performance can be further improved.
  • the inclination directions of the sub protrusions 81 to 86 and the sub protrusions 91 to 96 provided on the rising wall 102 of the fin 100 used in the heat exchanger 1 'according to the second embodiment may be the same.
  • the inclination directions of the sub protrusions 81 to 86 and the sub protrusions 91 to 96 provided on the rising wall 103 facing the rising wall 102 may be formed in the same manner.
  • FIG. 9 is a perspective view for explaining one section of the flat wall 101 in the modification of the fin 100 used in the second embodiment.
  • the rising wall 102 of the fin 100 used in the heat exchanger 1 ′ according to the second embodiment is formed adjacent to each of the plurality of sub protrusions 111 and the sub protrusions 111.
  • An opening 111a is formed.
  • the sub projection 111 has a base end 111b with the upright wall 102 and a tip end 111f which is an end opposite to the base end 111b, and the tip end 111f is positioned downstream in the exhaust flow direction. Cut out to be Further, the sub projection 111 is cut and raised so that the projection height in the width direction from the rising wall 102 becomes higher from the base end 111 b located on the upstream side in the exhaust flow direction S toward the tip end 111 f located on the downstream side. It is done.
  • the height h6 of protrusion of the auxiliary protrusion 111 from the upstanding wall 102 is smaller than the height h1 of protrusion of the main protrusion 71 from the flat wall 101.
  • the case where the four sub protrusions 72, 73, 74, and 75 are formed has been described.
  • the number of sub protrusions 72 is not limited to four.
  • the protrusion height h2 of the sub protrusion 72 from the flat wall 61 is lower than the protrusion height h1 of the main protrusion 71 from the flat wall 61, and the sub protrusions have the same height.
  • the protrusion height h2 of the sub protrusion 72 may be smaller than the protrusion height h1 of the main protrusion 71, and the sub protrusions may have different heights. For example, it may be lower toward the downstream side in the exhaust flow direction. Also, sub-projections of different heights may be alternately formed.
  • the sub projection 76 formed on the upstream side in the exhaust flow direction of the main projection 71 may not be provided.
  • a plurality of main protrusions 71 may be provided, and the main protrusions 71 may be inclined in the same direction in the exhaust flow direction.
  • the main projections 71 may be paired and inclined so as to face each other.
  • the proximal ends may be separated and the tips may be inclined so as to approach each other while the proximal ends are separated, and even when the proximal ends are closer to each other, the tips may be opposed so as to be separated Good.
  • the protrusion height h4 of the sub protrusion 81 from the upstanding wall 102 is smaller than the protrusion height h1 of the main protrusion 71 from the flat wall 101.
  • the height h5 may be the same as or different from the height h5 of the rising wall 102.
  • the base end 111b of the sub projection 111 may be on the downstream side in the exhaust flow direction S. That is, the tip end 111f is located on the upstream side in the exhaust flow direction, the base end 111b is located on the downstream side in the flow direction, and the protruding height in the width direction from the upstanding wall 102 is located on the upstream side in the exhaust flow direction S It may be cut and raised so as to be higher toward the distal end 111f located downstream from the proximal end 111b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本発明に係る熱交換器(1,1')は、内燃機関から排出される排気と冷却流体との間で熱交換を行う熱交換器であって、排気が流れる排気流路(33)に配置されるフィン(6)と、フィン(6)に設けられ、排気流れを遮る方向に突出して設置された主突出部(71)と、フィン(6)に設けられ、主突出部(71)の設置面からの突出高さ(h1)よりも低く形成された副突出部(72,73,74,75,76)と、を備える。

Description

熱交換器
 本発明は、第1の流体と第2の流体との間で熱交換を行う熱交換器に関する。
 内燃機関から排出される排気が流通する排気流路を備え、排気と排気流路の外部を流通する冷却媒体との間で熱交換を行う排気熱交換器が提案されている。排気熱交換器には、ケーシングの内部に、排気流路が形成されるチューブが配置されており、チューブには、排気と冷却流体との熱交換を促進するための伝熱部材としてのフィンが配置されている。排気熱交換器内に導入された排気は、フィンに接触しながらチューブ内を流通することによって冷却される(JP2015-206535A参照)。
 JP2015-206535Aに記載の排気熱交換器では、フィンの表面に突起部が形成されている。突起部は、フィン表面からの突出高さが排気流れ方向上流側から下流側に向けて高くなるように形成されている。
 JP2015-206535Aに記載の排気熱交換器では、この突起部が形成されたことにより、突起部の排気流れ方向下流側において、排気の旋回流れが生じるため、チューブ内における排気の流通が促進されるとともに、チューブ内への未燃焼物質の堆積が抑制できる。
 しかしながら、近年、熱交換器の高性能化に対する要求が高まる傾向にあり、JP2015-206535Aに記載された熱交換器においても、更なる高性能化のための改善の余地が模索されていた。
 本発明は、熱交換器において、熱交換性能を、より一層高めることを目的とする。
 本発明のある態様による熱交換器は、第1の流体と第2の流体との間で熱交換を行う熱交換器であって、前記第1の流体が流れる流体通路に配置されるフィンと、前記フィンに設けられ、第1の流体の流れを遮る方向に突出して設置された主突出部と、前記フィンに設けられ、前記主突出部の設置面からの突出高さよりも低く形成された副突出部と、を備える。
 上記態様によれば、主突出部により、第1の流体が螺旋渦流を生じ易くなり、副突出部により、放熱面積が増加されるため、熱交換が促進されるとともに、第1の流体の流れが促進される。これにより、熱交換性能を、より一層高めた熱交換器を提供することができる。
図1は、本発明の第1実施形態に係る熱交換器に流入する内燃機関の排気流れ方向に平行かつチューブの主要な表面に垂直な断面図である。 図2は、本発明の第1実施形態に係る熱交換器の排気流れ方向に平行かつチューブの主要な表面に沿った断面図である。 図3は、チューブを説明する斜視図である。 図4は、チューブの排気流路に配置されるフィンの一部を拡大して示す斜視図である。 図5は、第1実施形態に用いられるフィンにおける平壁の一区画分を説明する斜視図である。 図6は、第2実施形態に係る熱交換器に用いられるチューブの排気流路に配置されるフィンの一部を拡大して示す斜視図である。 図7は、第2実施形態に用いられるフィンにおける平壁の一区画分を説明する斜視図である。 図8は、第2実施形態に用いられるフィンの作用効果を説明する模式図である。 図9は、第2実施形態に用いられるフィンの変形例における平壁の一区画を説明する斜視図である。
 本発明の実施形態では、本発明に係る熱交換器を、内燃機関から排出される排気と冷却媒体との間で熱交換を行って排気を冷却する排気熱交換器として適用した場合について説明する。以下では、熱交換器に流入する第1の流体が内燃機関から排出される排気の場合であって、第2の流体が冷却媒体の場合について説明する。
 [第1実施形態]
 <第1実施形態の構成>
 本発明の第1実施形態に係る熱交換器1について、図面を参照して詳細に説明する。図1は、本発明の第1実施形態に係る熱交換器1に流入する内燃機関の排気流れ方向に平行かつチューブ3の主要な表面3Aに垂直な断面図である。図2は、本発明の第1実施形態に係る熱交換器1の排気流れ方向に平行かつチューブ3の主要な表面3Aに沿った断面図である。
 熱交換器1は、図1及び図2に示すように、外装ケース2と、外装ケース2内に収容された複数のチューブ3と、通気口が形成されており外装ケース2及び複数のチューブ3の両端部に配置されたタンク4,5とを備える。
 これら部品は、例えば耐熱性、耐腐食性に優れた材料(例えば、ステンレス材)より形成されている。チューブ3における互いの当接箇所、チューブ3の端部と外装ケース2との当接箇所、外装ケース2とタンク4,5との当接箇所は、それぞれ、ろう付けによって固定されている。
 外装ケース2には、冷却流体である冷却流体の冷却流体入口部21と冷却流体出口部22が設けられている。外装ケース2内には、隣り合うチューブ3の隙間、及び、両端位置のチューブ3と外装ケース2の内面の隙間によって流体通路23が形成されている。
 一対のタンク4,5内には、全てのチューブ3の両端が開口している。一方のタンク4には排気入口部4aが設けられている。また、タンク5には排気出口部5aが設けられている。
 図3は、チューブ3を説明する斜視図である。チューブ3の各々は、排気流れ方向において、外装ケース2に収容可能な長さに形成されている。チューブ3は、表面3Aを構成する表面部材31と、裏面3Bを構成する裏面部材32とを有し、表面部材31と裏面部材32とが、ろう付けされて形成された扁平筒状の直方体である。
 チューブ3の裏面部材32の排気入口端には当接部32aが形成されている。また、裏面部材32の排気出口端には当接部32bが形成されている。また、図1に示すように、裏面部材32の中央部には当接部32cが形成されている。チューブ3は、当接部32a、当接部32b、当接部32cにおいて隣接するチューブの表面部材31に当接されて、外装ケース2内部に積層されている。
 図3に示すように、チューブ3の筒内部には、排気流路33が形成されている。排気流路33には、フィン6が配置されており、排気流路33は、フィン6によって、複数の小流路33aに仕切られている。
 次に、本実施形態に係る熱交換器1におけるフィン6について説明する。図4は、チューブ3の排気流路33に配置されるフィン6の一部を拡大して示す斜視図である。
 フィン6は、図4に示すように、表面3A及び裏面3Bに沿った平壁61と、平壁61の交差方向に連なる起立壁62とを有し、排気流れ方向Sに交差する方向(以下、幅方向という)断面が矩形の波形形状を有する。
 本実施形態では、平壁61は、チューブ3の表面3A及び裏面3Bに平行であり、起立壁62は、表面3A、裏面3B及び平壁61に垂直に形成されている。
 また、フィン6に形成された平壁61及び起立壁62は、排気流れ方向における所定長さで区切られてできる区画ごとに、幅方向にオフセットされている。
 本実施形態においては、排気流路33に形成される複数の小流路33aのそれぞれは、フィン6の平壁61、起立壁62、表面部材31及び裏面部材32に囲まれることによって形成されている。
 また、フィン6は、平壁61から排気流れを遮る方向に突出して設置された主突出部71と、主突出部71の設置面からの突出高さよりも低い副突出部72,73,74,75とを備える。ここで、排気流れを遮る方向とは、チューブ3の筒内側内部に向かう方向である。
 図5は、第1実施形態に用いられるフィン6における平壁61の一区画分を説明する斜視図である。なお、副突出部72,73,74,75は同様の構成であるため、ここでは、副突出部72について説明する。
 本実施形態において、副突出部72が設置された設置面とは平壁61である。すなわち、本実施形態においては、主突出部71が設置された設置面と副突出部72が設置された設置面は、いずれも平壁61である。
 本実施形態において、副突出部72の平壁61からの突出高さh2は、主突出部71の平壁61からの突出高さh1よりも低い。
 本実施形態において、主突出部71は、平壁61との基端71bと、基端71bの反対側の端部である先端71fとを有し、先端71fが排気流れ方向Sの上流側に位置するように切り出される。また、主突出部71は、排気流れ方向Sの下流側に位置する基端71bから上流側に位置する先端71fに向けて平壁61からの高さが高くなるように切り起こされている。
 また、本実施形態において、副突出部72は、平壁61との基端72bと、基端72bの反対側の端部である先端72fとを有し、先端72fが排気流れ方向Sの下流側に位置するように切り出される。また、副突出部72は、排気流れ方向Sの上流側に位置する基端72bから下流側に位置する先端72fに向けて平壁61からの高さが高くなるように切り起こされている。
 また、本実施形態に係る熱交換器1においては、主突出部71の排気流れ方向Sの上流側であって、主突出部71の直前に、平壁61からの主突出部71の突出高さh1よりも低い突出高さh3を有する副突出部76が設置されている。
 本実施形態において、副突出部76は、平壁61との基端76bと、基端76bの反対側の端部である先端76fとを有し、先端76fが排気流れ方向Sの上流側に位置するように切り出される。また、副突出部76は、排気流れ方向Sの下流側に位置する基端76bから上流側に位置する先端76fに向けて平壁61からの高さが高くなるように切り起こされている。
 本実施形態において、主突出部71は、排気を受ける面が、平壁61の法線を軸として排気流れ方向Sに対して所定角度を有するように形成されている。また、本実施形態では、副突出部72及び副突出部76も主突出部71と同じ角度で平壁61に形成されている。
 <第1実施形態における効果>
 本実施形態に係る熱交換器1では、図示しない内燃機関から排出された排気がチューブ3内の排気流路33を流れる。また、外装ケース2内の流体通路23には、冷却流体が流れている。これにより、排気と冷却流体とがチューブ3及びフィン6を介して互いに熱交換することができる。
 本実施形態においては、フィン6に形成された主突出部71が排気流路33を流れる排気を阻害し、排気を撹乱することによって、熱交換を促進することができる。
 フィン6では、排気が主突出部71に衝突することによって、排気流れ方向Sにおける主突出部71の下流側直下に低圧領域が形成される。排気は、低圧領域に引き込まれ易くなるため、流れが生じる。これにより、排気流路33内における排気の流通が促進される。
 また、本実施形態では、主突出部71は、排気を受ける面が、平壁61の垂線を軸として排気流れ方向Sに対して所定角度を有して形成されている。このため、主突出部71の下流側直下に形成される低圧領域には、幅方向において、さらなる圧力斑が生じる。
 これにより、排気は、より低圧になる領域に引き込まれ易くなる。その結果、本実施形態においては、図5に示すように、主突出部71の下流側に、排気流れ方向Sを軸とする螺旋渦流が形成される。フィン6において、排気が螺旋渦流を作ることにより、熱伝達を促進させることができる。
 また、本実施形態においては、副突出部72~75が設置されていることにより、放熱面積を増加させることができる。
 さらに、副突出部72~75は、主突出部71の平壁61における設置角度と同じ角度で平壁61に設置されている。このため、副突出部72~75は、主突出部71の下流側に形成される螺旋渦流の螺旋角度に沿う。これにより、副突出部72~75は、螺旋渦流を妨げることがない。また、螺旋渦流の寿命をより長く保つことができる。
 また、本実施形態においては、主突出部71の排気流れ方向Sの上流側に設置された副突出部76によっても放熱面積を増加させることができる。また、副突出部76が設置されていることにより、主突出部71によって、螺旋渦流が生じ易くなる。
 以上のように、第1実施形態に係る熱交換器1は、副突出部72~75及び副突出部76を備えることにより、放熱面積を増加させて熱交換を促進するとともに、排気流れが促進されて、熱伝達を促進させることができる。したがって、第1実施形態に係る熱交換器1によれば、熱交換性能を向上させることができる。
 [第2実施形態]
 <第2実施形態の構成>
 続いて、本願発明の第2実施形態について説明する。第2実施形態に係る熱交換器1’の外観は、図1及び図2に示される熱交換器1と同様であるが、チューブ3に内蔵されるフィン100の構成が、フィン6とは異なる。
 以下、第2実施形態において用いられるフィン100について、図面を参照して詳細に説明する。図6は、第2実施形態に係る熱交換器1’に用いられるチューブ3の排気流路33に配置されるフィン100の一部を拡大して示す斜視図である。
 第2実施形態に係る熱交換器1’に用いられるフィン100は、主突出部71の排気流れ方向下流側に設置される副突出部が、主突出部71が設置された設置面である平壁101と、平壁101の交差方向に連なる面である起立壁102の両方に設置される。
 フィン100は、図6に示すように、平壁101と、平壁101の交差方向に連なる起立壁102とを備える。平壁101と起立壁102とは、チューブ3の幅方向に交互に切り起こされており、幅方向断面が矩形の波形形状を有する。
 本実施形態では、平壁101は、チューブ3の表面3A及び裏面3Bに平行であり、起立壁102は、表面3A、裏面3B及び平壁61に垂直に形成されている。また、第1実施形態に用いられるフィン6と同様、フィン100に形成された平壁101及び起立壁102は、排気流れ方向における所定長さで区切られてできる区画ごとに、幅方向にオフセットされている。
 フィン100は、起立壁102に、副突出部81,82,83,84,85,86及び副突出部91,92,93,94,95,96を備える。
 図7は、平壁101の一区画を説明する斜視図である。図7に示すように、フィン100は、排気流れを遮る方向に突出して設置された主突出部71と、主突出部71と同じ平壁101の排気流れ方向下流側に設置された副突出部72,73,74,75とを備える。
 図7に示すように、フィン100は、さらに、起立壁102に形成される副突出部81,82,83,84,85,86に隣接して、排気が流通する開口81a,82a,83a,84a,85a,86aが形成されている。また、副突出部91,92,93,94,95,96に隣接して排気が流通する開口91a,92a,93a,94a,95a,96aが形成されている。
 ここで、副突出部81,82,83,84,85,86は同様の構成であるため、副突出部81について説明する。また、副突出部91,92,93,94,95,96も同様の構成であるため、副突出部91について説明する。
 本実施形態において、副突出部81は、起立壁102との基端81bと、基端81bに対する反対側の端部である先端81fとを有し、先端81fが排気流れ方向の上流側に位置するように切り出される。また、副突出部81は、起立壁102からの幅方向の突出高さが、排気流れ方向Sの下流側に位置する基端81bから上流側に位置する先端81fに向けて高くなるように切り起こされている。
 本実施形態においては、開口81aは、副突出部81を切り起こすことによってできる開口である。
 本実施形態において、副突出部81の起立壁102からの突出高さh4は、平壁101からの主突出部71の突出高さh1よりも低く形成されている。
 本実施形態において、副突出部91は、起立壁102との基端91bと、基端91bに対する反対側の端部である先端91fとを有し、先端91fが排気流れ方向Sの下流側に位置するように切り出される。また、副突出部91は、起立壁102から幅方向の突出高さが、排気流れ方向Sの上流側に位置する基端91bから下流側に位置する先端91fに向けて高くなるように切り起こされている。
 本実施形態においては、開口91aは、副突出部91を切り起こすことによってできる開口である。
 本実施形態において、副突出部91の起立壁102からの突出高さh5は、平壁101からの主突出部71の突出高さh1よりも低く形成されている。
 一方、上述した起立壁102に対向する起立壁103においては、副突出部81の基端81bが排気流れ方向Sの上流側に位置し、先端81fが下流側に位置するように切り出され、起立壁102からの幅方向の突出高さが、上流側に位置する基端81bから下流側に位置する先端81fに向けて高くなるように切り起こされている。
 また、起立壁103においては、副突出部91の先端91fが排気流れ方向Sの上流側に位置し、基端91bが下流側に位置するように切り出され、起立壁103からの幅方向の突出高さが、上流側に位置する先端91fから下流側に位置する基端91bに向けて低くなるように切り起こされている。
 <第2実施形態における効果>
 本実施形態に係る熱交換器1’は、第1実施形態と同様に、主突出部71及び副突出部72~75を備える。したがって、熱交換器1’は、主突出部71により螺旋渦流が生じることにより、熱伝達が促進されるとともに、副突出部72~75及び副突出部76を備えることにより、放熱面積を増加させて熱交換を促進することができる。
 また、熱交換器1’は、第1実施形態の構成に加えて、起立壁102にも副突出部81~86及び副突出部91~96を備える。さらに、副突出部81~86に隣接して、排気が流通する開口81a~86aが形成されている。また、副突出部91~96に隣接して、排気が流通する開口91a~96aが形成されている。
 熱交換器1’は、このような構成を備えることにより、図8に示すように、螺旋渦流F1に加えて、隣接する小流路33a間を蛇行する排気流れ(破線F2及びF3)が生じる。
 すなわち、排気流路33に導入された排気は、排気流れ方向Sの上流側に位置する副突出部81~86に衝突して開口81a~86aから隣接する小流路33aに抜けた後、下流側に位置する副突出部91~96によって開口91a~96aから再び流れ込む。
 これにより、排気流れ方向Sに連続するフィン100全体に亘って、隣接する小流路33a間を蛇行する排気流れが形成される。
 したがって、排気流路33を画成する起立壁102表面に形成される温度境界層(排気停滞層ともいう)を撹乱させることができ、熱伝達が促進される。これにより、第2実施形態に係る熱交換器1’によれば、熱交換性能を、より一層向上させることができる。
 <第2実施形態の変形例>
 第2実施形態に係る熱交換器1'に用いられるフィン100の起立壁102に設けられる副突出部81~86及び副突出部91~96の傾斜方向が同じであってもよい。また、起立壁102に対向する起立壁103に設けられる副突出部81~86及び副突出部91~96の傾斜方向も同じに形成されていてもよい。
 図9は、第2実施形態に用いられるフィン100の変形例における平壁101の一区画を説明する斜視図である。
 図9に示すように、第2実施形態に係る熱交換器1'に用いられるフィン100の起立壁102には、複数の副突出部111と、副突出部111の各々に隣接して形成された開口111aが形成されている。
 本変形例において、副突出部111は、起立壁102との基端111bと、基端111bに対する反対側の端部である先端111fとを有し、先端111fが排気流れ方向の下流側に位置するように切り出される。また、副突出部111は、起立壁102から幅方向の突出高さが、排気流れ方向Sの上流側に位置する基端111bから下流側に位置する先端111fに向けて高くなるように切り起こされている。
 副突出部111の起立壁102からの突出高さh6は、平壁101からの主突出部71の突出高さh1よりも低く形成されている。
 上述の変形例によれば、起立壁102に形成された複数の副突出部111及び開口111aを備えることにより、図9に示すように、螺旋渦流F1に加えて、隣接する小流路33a間を行き来する排気流れ(破線F4及びF5)が生じる。これにより、排気流路33を画成する起立壁102表面に形成される温度境界層が撹乱されて、熱伝達が促進される。したがって、上述の変形例も同様、熱交換性能を、より一層向上させることができる。
 [その他の実施形態]
 上述した本発明の実施形態は、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。
 第1実施形態及び第2実施形態において、4つの副突出部72,73,74,75が形成されている場合を説明した。しかし、副突出部72の数は4つに限定されない。
 第1実施形態においては、平壁61からの副突出部72の突出高さh2は、平壁61からの主突出部71の突出高さh1よりも低く、副突出部同士は、同じ高さであると説明した。しかし、副突出部72の突出高さh2は、主突出部71の突出高さh1よりも低ければよく、副突出部同士は異なる高さであってもよい。例えば、排気流れ方向の下流側に向かうにつれて低くなっていてもよい。また、異なる高さの副突出部が交互に形成されていてもよい。
 また、第1実施形態及び第2実施形態において、主突出部71の排気流れ方向上流側に形成される副突出部76は、備えなくともよい。
 また、第1実施形態及び第2実施形態において、主突出部71は複数でもよく、主突出部71を排気流れ方向に同列に傾斜させてもよい。
 また、第1実施形態及び第2実施形態において、主突出部71を一対にして互いが対向するように傾斜させてもよい。また、互いの基端同士が離間しつつ先端同士が近づくように対向して傾斜してもよく、更に互いの基端同士が近づきつつ、先端同士が離間するように対向して傾斜してもよい。
 第2実施形態において、副突出部81の起立壁102からの突出高さh4は、平壁101からの主突出部71の突出高さh1よりも低く形成されていれば、副突出部91の起立壁102からの突出高さh5と同じであってもよいし、異なっていてもよい。
 また、第2実施形態の変形例において、副突出部111の基端111bは、排気流れ方向Sの下流側にあってもよい。すなわち、先端111fが排気流れ方向の上流側に位置し、基端111bが流れ方向下流側に位置しており、起立壁102から幅方向の突出高さが、排気流れ方向Sの上流側に位置する基端111bから下流側に位置する先端111fに向けて高くなるように切り起こされていてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は、2017年7月10日に日本国特許庁に出願された特願2017-134710に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (11)

  1.  第1の流体と第2の流体との間で熱交換を行う熱交換器であって、
     前記第1の流体が流れる流体通路に配置されるフィンと、
     前記フィンに設けられ、第1の流体の流れを遮る方向に突出して設置された主突出部と、
     前記フィンに設けられ、前記主突出部の設置面からの突出高さよりも低く形成された副突出部と、
     を備える熱交換器。
  2.  請求項1に記載の熱交換器であって、
     前記副突出部は、前記主突出部の設置面に設置される、
    熱交換器。
  3.  請求項1又は2に記載の熱交換器であって、
     前記副突出部は、前記主突出部の前記第1の流体の流れ方向の下流側に設置される、
    熱交換器。
  4.  請求項1から3のいずれか1項に記載の熱交換器であって、
     前記主突出部は、前記主突出部の設置面に設置された基端の反対側である先端が、前記基端よりも排気流れ方向の上流側に位置する、
    熱交換器。
  5.  請求項1から4のいずれか1項に記載の熱交換器であって、
     前記副突出部は、前記副突出部の設置面に設置された前記副突出部の基端の反対側である前記副突出部の先端が、前記副突出部の基端よりも排気流れ方向の下流側に位置する、
    熱交換器。
  6.  請求項1又は2に記載の熱交換器であって、
     前記副突出部が、前記主突出部の前記第1の流体の流れ方向の上流側に設置される、
    熱交換器。
  7.  請求項1又は2に記載の熱交換器であって、
     前記副突出部が、前記主突出部の前記第1の流体の流れ方向における上流側であって、前記主突出部の直前に設置される、
    熱交換器。
  8.  請求項6又は7に記載の熱交換器であって、
     前記主突出部の前記第1の流体の流れ方向の上流側に設置された前記副突出部の先端が、前記副突出部の基端よりも前記第1の流体の流れ方向の上流側に位置する、
    熱交換器。
  9.  請求項1から8のいずれか1項に記載の熱交換器であって、
     前記副突出部は、前記主突出部の設置面の交差方向に連なる起立壁に設置された、
    熱交換器。
  10.  請求項9に記載の熱交換器であって、
     前記起立壁には、前記副突出部に隣接して、前記第1の流体が流通する開口が形成された熱交換器。
  11.  請求項10に記載の熱交換器であって、
     前記起立壁には、複数の前記副突出部が形成されており、
     前記第1の流体の流れ方向の上流側に設置された前記副突出部は、前記起立壁に設置された基端の反対側である先端が、前記第1の流体の流れ方向の上流側に位置するように形成されており、
     前記第1の流体の流れ方向の下流側に設置された前記副突出部は、前記基端の反対側である先端が、前記第1の流体の流れ方向の下流側に位置するように形成されている、
    熱交換器。
PCT/JP2018/022114 2017-07-10 2018-06-08 熱交換器 WO2019012883A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017134710A JP2019015478A (ja) 2017-07-10 2017-07-10 熱交換器
JP2017-134710 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019012883A1 true WO2019012883A1 (ja) 2019-01-17

Family

ID=65002042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022114 WO2019012883A1 (ja) 2017-07-10 2018-06-08 熱交換器

Country Status (2)

Country Link
JP (1) JP2019015478A (ja)
WO (1) WO2019012883A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979783A (ja) * 1995-09-08 1997-03-28 Denso Corp 電子回路基板用放熱フィン
JPH11281280A (ja) * 1998-03-27 1999-10-15 Sanyo Electric Co Ltd 可変スリット熱交換器
JP2007278571A (ja) * 2006-04-05 2007-10-25 Denso Corp 伝熱部材およびそれを用いた熱交換器
JP2016080325A (ja) * 2014-10-22 2016-05-16 カルソニックカンセイ株式会社 熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979783A (ja) * 1995-09-08 1997-03-28 Denso Corp 電子回路基板用放熱フィン
JPH11281280A (ja) * 1998-03-27 1999-10-15 Sanyo Electric Co Ltd 可変スリット熱交換器
JP2007278571A (ja) * 2006-04-05 2007-10-25 Denso Corp 伝熱部材およびそれを用いた熱交換器
JP2016080325A (ja) * 2014-10-22 2016-05-16 カルソニックカンセイ株式会社 熱交換器

Also Published As

Publication number Publication date
JP2019015478A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
JP5768795B2 (ja) 排気熱交換装置
EP3415854A1 (en) Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
US7267163B2 (en) Heat exchanger
JP2009127937A (ja) 熱交換器
JP6203080B2 (ja) 熱交換器
US11454448B2 (en) Enhanced heat transfer surface
JP2020106168A (ja) 熱交換器及び温水装置
JP2015232435A (ja) 熱交換器及び熱交換ユニット
JP2003279293A (ja) 排気熱交換器
US20210247102A1 (en) Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same
JP2009103404A (ja) 熱交換器
WO2019012883A1 (ja) 熱交換器
JP2008128611A (ja) Egrクーラ
JP2006207966A (ja) 熱交換器
JP4211671B2 (ja) 熱交換器
WO2017094366A1 (ja) 熱交換器用フィン
US20230251041A1 (en) Heat exchanger
JP2018100789A (ja) 熱交換器および温水装置
JPWO2019163973A1 (ja) 熱交換器のタンク構造
WO2019229180A1 (en) A core of a heat exchanger comprising corrugated fins
US20130327512A1 (en) Heat exchanger
JP2016200071A (ja) Egrガスクーラ
JP7452672B2 (ja) フィンチューブ熱交換器
WO2022137755A1 (ja) 熱交換器
JP2018200119A (ja) 排気熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832702

Country of ref document: EP

Kind code of ref document: A1