WO2019012172A1 - Nuevos derivados heteroaryl amida como inhibidores selectivos de histona deacetilasa 1 y 2 (hdac1/2) - Google Patents

Nuevos derivados heteroaryl amida como inhibidores selectivos de histona deacetilasa 1 y 2 (hdac1/2) Download PDF

Info

Publication number
WO2019012172A1
WO2019012172A1 PCT/ES2018/070491 ES2018070491W WO2019012172A1 WO 2019012172 A1 WO2019012172 A1 WO 2019012172A1 ES 2018070491 W ES2018070491 W ES 2018070491W WO 2019012172 A1 WO2019012172 A1 WO 2019012172A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amino
fluorophenyl
pyridin
optionally substituted
Prior art date
Application number
PCT/ES2018/070491
Other languages
English (en)
French (fr)
Inventor
Julio Castro Palomino Laria
Juan CAMACHO GÓMEZ
Rodolfo RODRÍGUEZ IGLESIAS
Original Assignee
Medibiofarma, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201880056722.5A priority Critical patent/CN111051300B/zh
Priority to MX2020000349A priority patent/MX2020000349A/es
Priority to KR1020207003894A priority patent/KR102574135B1/ko
Priority to ES18789777T priority patent/ES2911040T3/es
Priority to DK18789777.2T priority patent/DK3653620T3/da
Priority to HRP20220472TT priority patent/HRP20220472T1/hr
Priority to US16/629,457 priority patent/US11241428B2/en
Application filed by Medibiofarma, S.L. filed Critical Medibiofarma, S.L.
Priority to EA202090259A priority patent/EA039144B1/ru
Priority to LTEPPCT/ES2018/070491T priority patent/LT3653620T/lt
Priority to PL18789777T priority patent/PL3653620T3/pl
Priority to CA3069273A priority patent/CA3069273A1/en
Priority to JP2020523052A priority patent/JP7026787B2/ja
Priority to RS20220320A priority patent/RS63156B1/sr
Priority to BR112020000564-9A priority patent/BR112020000564A2/pt
Priority to EP18789777.2A priority patent/EP3653620B9/en
Priority to SI201830644T priority patent/SI3653620T1/sl
Priority to AU2018300123A priority patent/AU2018300123B2/en
Publication of WO2019012172A1 publication Critical patent/WO2019012172A1/es
Priority to ZA2020/00727A priority patent/ZA202000727B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Definitions

  • the present invention relates to novel heteroaryl amide derivatives as selective inhibitors of at least one class I histone deacetylase enzyme selected from HDAC1 and HDAC2.
  • Other objects of the present invention are to provide a process for preparing these compounds; pharmaceutical compositions comprising an effective amount of these compounds; compounds for use in the treatment of pathological conditions, disorders or diseases that can be enhanced by inhibition of the activity of at least one histone deacetylase class I enzyme, selected from HDAC1 and HDAC2, such as cancer, neurodegenerative diseases, infectious diseases, inflammatory diseases, insufficiency cardiac hypertrophy, diabetes, polycystic kidney disease, sickle cell anemia and ⁇ -thalassemia disease.
  • HDAC1 and HDAC2 histone deacetylase class I enzyme
  • Histone deacetylases catalyze the removal of acetyl groups from histones, proteins that organize and modulate the structure of chromatin in nucleosomes. HDAC-mediated deacetylation of histones linked to chromatin regulates the expression of a variety of genes throughout the genome. It is important to note that HDACs have been linked to cancer, as well as other health conditions.
  • HDAC class I HDACs 1, 2, 3 and 8
  • HDAC 4, 5, 6, 7, 9 and 10 HDAC 4, 5, 6, 7, 9 and 10.
  • HDAC class II HDAC 4, 5, 6, 7, 9 and 10
  • HDAC 4 zinc-dependent aminohydrolases with a conserved catalytic nucleus but differing in size, domain structure, tissue expression pattern, and cellular localization
  • HDAC11 Another HDAC, HDAC11, is on the boundary between the two classes.
  • Class III HDACs (Sirtuins 1 -7) depend on NAD + and are not related in sequence with classes I and II (HOLBERT, Marc A., MARMORSTEIN, Ro ⁇ en.) Structure and activity of enzymes that remove histone modifications. in structural biology, 2005, vol.15, no.6, pp.673-680).
  • HDAC Classes I and II zinc-dependent histone deacetylases
  • the family of zinc-dependent histone deacetylases has been implicated in different ways in different disease states. The zinc-dependent HDACs have received much attention as pharmacological targets against cancer.
  • Inhibitors of these enzymes show a remarkable ability to induce terminal differentiation of transformed cells, presumably by altering gene expression patterns by influencing the acetylation status of selected histone lysine residues (MARKS, Paul A., et al. Histone deacetylase inhibitors, Advances in cancer research, 2004, vol 91, p 137- 168).
  • HDACs form multiprotein complexes with many regulatory proteins within the cell. Each isoenzyme interacts with a specific set of regulatory proteins and transcription factors and has a specific set of substrates, and thus each regulates a specific set of genes and proteins (WITT, Olaf, et al., HDAC family: What are the relevant cancer? targets? Cancer letters, 2009, vol 277, no 1, pp. 8-21 j.
  • HDAC1 and HDAC2 are emerging therapeutic targets for the treatment of cancer and other diseases. (HUANG, Lili.
  • RNAi The decrease in HDAC1 expression mediated by RNAi inhibits proliferation and, importantly, induces apoptosis in several tumor cell lines in vitro (GLASER, Keith B., et al Role of class I and class II histone deacetylases in carcinoma cells using siRNA.
  • HDAC2 histone deacetylase 2
  • ACDP pancreatic ductal adenocarcinoma cells
  • HDAC2 controls ciliogenesis independently of Kras, which facilitates the expression of Aurora A, suggesting that HDAC2 is a new regulator of primary cilium formation in ACDP cells (KOBAYASHI, Tetsuo, et al., HDAC2 promotes loss of primary cilla in pancreatic ductal adenocarcinoma, EMBO reports, 2016, page e201541922).
  • HDAC1 / HDAC2 inhibitors are a potential therapeutic option for acute B-cell lymphoblastic leukemia (B-ALL), and that a specific inhibitor could be therapeutically useful for patients with B-ALL (STUBBS, Matthew C, et al., Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option for B-ALL, Clinical Cancer Research, 2015, vol 21, no 10, pp. 2348-2358).
  • BBB blood-brain barrier
  • HDAC1 and HDAC2 are necessary to decrease the expression of BRCA1, CHK1 and RAD51, enhance apoptosis and DNA damage induced by cytarabine or daunorubicin and cancel the activation of cell cycle checkpoint induced by cytarabine or daunorubicin in acute myeloid leukemia (AML) cells
  • ZHAO J., et al., Histone deacetylases 1 and 2
  • BRCA 1, CHK1, and RAD51 expression in acute myeloid leukemia cells Oncotarget, 2016.
  • Histone deacetylase 2 is crucial for embryonic development, affects the signaling of cytokines relevant to the immune response and is often significantly overexpressed in solid tumors. Specifically, aberrant HDAC2 expression has been demonstrated in lung cancer, and its inactivation resulted in the regression of tumor cell growth and activation of cellular apoptosis through the activation of p53 and Bax and the suppression of Bcl2 (JUNG, Kwang Hwa, et al.) HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins Journal of cellular biochemistry, 2012, vol.1 13, no 6, pp. 2167-2177 ).
  • HDAC1 and HDAC2 were significantly expressed in higher amounts in cancer cells compared to normal tissue. Specifically, high expression of HDAC2 was associated with poor survival in low-grade and early-stage tumors (p ⁇ 0.05), suggesting that HDAC2 expression had an impact on patient survival (QUINT, Karl , et al., Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC, Virchows Archiv, 201 1, vol 459, no 2, pp. 129-139).
  • fructose-1, 6-bisphosphatase correlates with high levels of HDAC1 and HDAC2 proteins in the tissues of the patient with hepatocellular carcinoma (HCC).
  • HCC hepatocellular carcinoma
  • HDAC2 Overexpression of HDAC2 has been correlated with metastasis, progression and increased expression of multidrug resistance protein in breast cancer, suggesting that HDAC2 could be a prognostic factor in patients with breast cancer, especially patients who received therapy with anthracyclines (ZHAO, Haishan, et al., HDAC2 overexpression is a poor prognostic factor of breast cancer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy, Japanese journal of clinical oncology, 2016).
  • HDAC1 histone deacetylases HDAC1, HDAC2, HDAC3, and HDAC6 in invasive ductal carcinomas of the breast, Journal of breast cancer, 2014, vol.17, no.4, pp. 323-331).
  • HDAC1 and HDAC2 are associated with HDAC pan inhibitors.
  • HDAC1 / HDAC2 and neurodegenerative diseases Several evidences of the participation of HDAC1 and HDAC2 in cancer suggest that selective inhibitors for these subtypes can demonstrate an improved therapeutic index through better clinical efficacy and / or better tolerability compared to HDAC pan inhibitors.
  • HDAC1 / HDAC2 and neurodegenerative diseases Several evidences of the participation of HDAC1 and HDAC2 in cancer suggest that selective inhibitors for these subtypes can demonstrate an improved therapeutic index through better clinical efficacy and / or better tolerability compared to HDAC pan inhibitors.
  • HDAC1 / HDAC2 and neurodegenerative diseases Several evidences of the participation of HDAC1 and HDAC2 in cancer suggest that selective inhibitors for these subtypes can demonstrate an improved therapeutic index through better clinical efficacy and / or better tolerability compared to HDAC pan inhibitors.
  • HDAC histone deacetylase
  • HDAC inhibitors have been shown to improve cognitive deficits in genetic models of neurodegenerative diseases (FISCHER, Andre, et al., Recovery of learning and memory is associated with chromatin remodeling, Nature, 2007, vol 447 , No. 7141, pp. 178-182.) and have also been used to treat cognitive deficits associated with the early stage of Alzheimer's disease (KILGORE, Mark, et al., Inhibitors of class 1 histone deacetylases, reverse context, memory deficits in a mouse model of Alzheimer's disease, Neuropsychopharmacology, 2010, vol.35, no.4, p.870-880). These studies suggest that modulation of memory through HDAC inhibition has considerable therapeutic potential for many cognitive and memory disorders.
  • HDAC1 and HDAC2 highly homologous, are detected in different stages of neuronal compromise and differentiation during the evolution of the central nervous system depending on age. This implies its contribution to the regulation of gene expression specific to the development and maintenance of the central nervous system (CNS). These processes seem to be particularly sensitive to the interruption in the regulation of epigenetic genes, leading, among others, to syndromes associated with mental retardation, as well as to complex psychiatric disorders.
  • CNS central nervous system
  • HDAC2 histone deacetylase 2
  • HDAC2 regulates memory processes and, as such, is an interesting target for memory improvement or extinction in conditions that affect memory, such as, but not limited to, disease. Alzheimer's, post-traumatic stress disorder or drug addiction.
  • XU Ke, et al., Targeting HDACs: a promising therapy for Alzheimer's disease, Oxidative medicine and cellular longevity, 2011, vol 2011.).
  • HDAC1 in polyglutamine disorders, including Huntington's disease, and the use of selective HDAC1 inhibitors as a therapeutic intervention for these disorders
  • THOMAS Elizabeth A. Involvement of HDAC1 and HDAC3 in the pathology of polyglutamine disorders: therapeutic implications for selective HDAC1 / HDAC3 inhibitors, Pharmaceuticals, 2014, vol.7, no.6, p.634-661 ⁇
  • a specific inhibitor of the HDAC1-2 isoform has been identified with protective effects against neuronal death induced by MPP + / MPTP- in the Parkinson's disease (PD) model both in vitro and in vivo, suggesting that the selective inhibition of HDAC1 and 2 can pave the way to new strategies for the treatment of EP (CHOONG, Chi-Jing, et al A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson's disease, Neurobiology of aging, 2016, vol 37, p.103-116 ).
  • HDAC1 / HDAC2 and inflammatory diseases Studies have shown a new line of evidence showing the participation of epigenetic regulation of chromatin structure by histone hypoacetylation mediated by HDAC1 / 2 in persistent spontaneous nociception (NEP) induced by bee venom (VA) and thermal hypersensitivity, demonstrating the beneficial effects of HDACi class I in the prevention of peripheral inflammatory pain.
  • NEP persistent spontaneous nociception
  • VA bee venom
  • thermal hypersensitivity demonstrating the beneficial effects of HDACi class I in the prevention of peripheral inflammatory pain.
  • Selective class I histone deacetylase inhibitors suppress persistent spontaneous nociception and thermal hypersensitivity in a mouse model of venom-induced inflammatory pain, Acta physiologica Sinica, 2015, vol.67, no.5, p.447 -454).
  • HDAC1 and HDAC2 have demonstrated the expression of higher levels of HDAC1 and HDAC2 in the left ventricles (LV) of rats with heart failure (HF).
  • HF heart failure
  • LKHAGVA Baigalmaa, et al., Novel histone deacetylase inhibitor modulates cardiac peroxisome proliferator-activated receptors and inflammatory cytokines in heart failure, Pharmacology, 2015, vol.96, No. 3-4, pp. 184-191).
  • Acetylation of proteins is an essential mechanism in the regulation of transcriptional and inflammatory events.
  • non-selective inhibitors of histone deacetylase can protect the retina from ischemic injury in rats.
  • This study has shown that suppressing HDAC2 expression can effectively reduce ischemic retinal injury, suggesting that the development of selective HDAC2 inhibitors can provide an effective treatment for ischemic retinal injury.
  • FAN Jie, et al., Inhibition of HDAC2 Protects the Retina From Ischemic Injury
  • HDAC2 Protects Retina From Ischemic Injury
  • HDAC2 has been identified as an important molecular target in the heart, and linked to Gsk3beta, are considered components of a regulatory pathway that provides an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.
  • TMVEDI Chinmay M., et al., Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3fi activity, Nature medicine, 2007, vol 13, no 3, pp. 324-331).
  • MNKINSEY Timothy A. Targeting inflammation in heart failure with histone deacetylase inhibitors. Molecular medicine, 201 1, vol.17, no.5, p.434).
  • HDAC1 / HDAC2 in other diseases
  • HDAC2 histone deacetylase
  • HDAC entinostat selective for the inhibition of class I HDACs, induced the expression of the virus in latent infected primary CD4 + T cells, making this compound a new attractive option for future clinical trials.
  • WIGHTMAN, Fiona, et al .. Entinostat isa histone deacetylase inhibitor selective for class 1 histone deacetylases and activates HIV production from latently infected primary T cells, AIDS (London, England), 2013, vol.27, no 18, p.2853) .
  • HDAC1 polycystic kidney disease
  • HDAC1 / HDAC2 induces fetal hemoglobin (HBF) through the activation of GATA2.
  • Therapeutic intervention aimed at the reactivation of the fetal hemoglobin protein (HbF) is a promising approach to improve sickle cell anemia (SCD) and ⁇ -thalassemia.
  • SCD sickle cell anemia
  • ⁇ -thalassemia Studies have shown that the genetic suppression of histone deacetylase 1 or 2 is sufficient to induce HbF.
  • SHEARSTONE Jeffrey R., et al., Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2, PloSone, 2016, vol.11, no.4, p.E0153767.
  • HDAC class I inhibitors have been shown to positively regulate the expression of PD-L1 and, to a lesser extent, PD-L2 in melanomas. Treatment with HDAC inhibitors resulted in rapid positive regulation of histone acetylation of the PDL1 gene leading to improved and lasting gene expression. Said positive regulation of PD-L1 was limited to the inhibition of HDAC class I, specifically HDAC1 and HDAC2. The efficacy of combining inhibition of HDAC with PD-1 blockade for the treatment of melanoma was explored in a murine model B16F10. The results highlight the ability of epigenetic modifiers to increase immunotherapies, providing a reason to combine HDAC inhibitors with PD-1 blockade.
  • histone deacetylase inhibitors have been developed and approved as a treatment for human diseases, specifically as anticancer agents, such as: vorinostat (cutaneous T-cell lymphoma and multiple myeloma), romidepsin (peripheral T-cell lymphoma) and belinostat (Lymphoma of cells Peripheral T).
  • vorinostat cutaneous T-cell lymphoma and multiple myeloma
  • romidepsin peripheral T-cell lymphoma
  • belinostat Limphoma of cells Peripheral T.
  • HDAC inhibitors are approved for cutaneous and / or peripheral T-cell lymphoma, these drugs are still being studied in clinical trials for other types of cancer, either as single agents or in combination with other medications, and other HDAC inhibitors are They are in different stages of clinical trials for several hematological and solid tumors. In addition to the promising effects on anti-cancer activities, the use of HDAC inhibitors is also growing in other diseases, such as intestinal fibrosis, autoimmune diseases, inflammatory diseases, metabolic disorders and many more.
  • HDAC inhibitors are also associated with toxicities.
  • the most common adverse events of grade 3 and 4 observed with the use of HDAC inhibitors were thrombocytopenia, neutropenia, anemia, fatigue and diarrhea (MOTTAMAL, Madhusoodanan, et al., Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. , 2015, vol.20, no.3, p.3898-39419).
  • HDAC inhibitors do not show a prominent selectivity to HDAC isoenzymes. This fact could be a cause of serious problems in a clinical environment, especially in the treatment of diseases and conditions in which a prolonged administration of the drug is required. Therefore, the design of selective HDAC inhibitors allows the preferential inhibition of only the isoenzyme (s) relevant to a particular disease or condition, thus reducing the likelihood of counterproductive and / or adverse effects and minimizing cytotoxic effects in patients, resulting from an undesired inhibition of other HDAC isoenzymes. Therefore, it is desirable to develop new selective inhibitors of HDAC isoforms that offer more efficacy and less toxicity in patients. There remains a need to provide HDAC inhibitors, particularly potent and / or selective inhibitors of particular HDAC classes.
  • the problem to be solved by the present invention is to provide new compounds as inhibitors of histone deacetylase class I, and more particularly as selective inhibitors of histone deacetylase HDAC1 and HDAC2.
  • the inventors of the present invention have developed new N- (3-aminopyridin-2-yl) nicotinamide derivatives suitably substituted as potent and selective inhibitors of HDAC1 and / or HDAC2.
  • the present invention relates to heteroarylamide derivatives of formula (I):
  • - X 1 and X 2 independently represent a group selected from -CH and N;
  • phenyl group optionally substituted with one or more substituents selected from the group consisting of a halogen atom, a straight or branched CrC 4 haloalkyl group, and straight or branched CrC 4 alkoxy
  • REPLACEMENT SHEET (RULE 26) C 3 -C 6 cycloalkoxy and C 5 -C 6 heterocyclic ring optionally substituted with one or more halogen atoms
  • R 2 represents a group selected from:
  • R 3 and R 4 form together with the nitrogen atom to which they are attached a five or six member saturated cycle optionally comprising an additional heteroatom as part of the cycle selected from N and O, which is optionally substituted with a CC 3 alkyl group or a group -N (R 5 ) (R 6 ), wherein R 5 and R 6 form together with the nitrogen atom to which they are attached a five or six member saturated cycle optionally comprising an additional heteroatom as part of the cycle selected from N and O, which is optionally substituted with a CC 3 alkyl group, or
  • R 3 and R 4 independently represent a group selected from hydrogen atom, C 3 -C 6 cycloalkyl group and linear or branched CC 3 alkyl, which is optionally substituted with a five or six membered heterocycle comprising one or two heteroatoms selected from N and O as part of the cycle, which is optionally substituted with a linear or branched CC 3 alkyl group b) phenyl ring optionally substituted with one or more substituents selected from halogen atoms and a cyano group
  • aspects of the present invention are: Aspect 2) processes for the preparation of the compounds of aspect 1.
  • compositions comprising an effective amount of a compound of aspect 1.
  • compositions according to aspect 3 further comprising a therapeutically effective amount of one or more therapeutic agents selected from the group consisting of chemotherapeutic agents, anti-inflammatory agents, spheroids, immunosuppressants, therapeutic antibodies and adenosine antagonists.
  • aspects 5 Compounds as defined in aspect 1 for use in the treatment of diseases or pathological conditions that can be improved by inhibiting histone deacetylase class I, specifically HDAC1 and HDAC2.
  • Aspect 6 methods for the treatment of diseases that can be improved by the inhibition of histone deacetylase class I, selected from HDAC1 and HDAC2 by administering the compounds of aspect 1 or the pharmaceutical compositions of aspect 3 or 4 to a subject that such treatment is needed, wherein said diseases can be selected from cancer selected from among colon, lung, breast, central nervous system (CNS) cancer, uterine cervical cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, gastric cancer, cancer tissue and malignant cell tumors T selected from acute myeloid leukemia, acute lymphoblastic leukemia, cutaneous T-cell lymphoma, peripheral T-cell lymphoma, B-cell lymphoma and multiple myeloma; neurodegenerative diseases selected from Alzheimer's disease, post-traumatic stress disorder, drug addiction, Parkinson's disease, Huntington's disease, ⁇ -amyloid toxicity ( ⁇ ), Friedreich's ataxia, myotonic dystrophy, spinal muscular atrophy, X-fragile syndrome ,
  • Central nervous system (CNS) cancer is selected from meningioma, neuroblastoma, glioblastoma, blastoma medulla, glioma, astrocytomas, oligodendrogliomas, ependymomas, gangliogliomas, neurilemomas (Schwannomas) and craniopharyngiomas.
  • Aspect 7 Combination products of the compounds of aspect 1 with one or more therapeutic agent selected from the group consisting of chemotherapeutic agents, anti-inflammatory agents, steroids, immunosuppressants, therapeutic antibodies and adenosine antagonists, which can be used in combination with the compounds of the present application for the treatment of diseases, disorders or conditions associated with HDAC.
  • the one or more additional pharmaceutical agents can be administered to a patient simultaneously or sequentially.
  • chemotherapeutics include proteasome inhibitors (e.g., bortezomib), chemotherapeutic agents for the treatment of CNS cancer, including temozolomide, carboplatin, carmustine (BCNU), cisplatin, cyclophosphamide, etoposide, irinotecan, lomustine (CCNU), methotrexate , procarbazine, vincristine and other chemotherapeutic agents such as thalidomide, revlimide and DNA damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine and the like.
  • proteasome inhibitors e.g., bortezomib
  • chemotherapeutic agents for the treatment of CNS cancer including temozolomide, carboplatin, carmustine (BCNU), cisplatin, cyclophosphamide, etoposide, i
  • anti-inflammatory compounds examples include aspirin, choline salicylates, celecoxib, diclofenac potassium, diclofenac sodium, diclofenac sodium with misoprostol, diflunisal, etodolac, fenoprofen, flurbiprofen, ibuprofen, ketoprofen, meclofenamate sodium, mefenamic acid, nabumetone, naproxen, naproxen sodium, oxaprozin, piroxican, rofecoxib, salsalate, sodium salicylate, sulindac, sodium tolmetin, valdecoxib and the like.
  • steroids examples include corticosteroids such as cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, prednisone and the like.
  • immunosuppressants include azathioprine, chlorambucil, cyclophosphamide, cyclosporin, daclizumab, infliximab, methotrexate, tacrolimus, and the like.
  • Example of therapeutic antibodies for use in combination therapy include, but are not limited to, trastuzumab (e.g., anti-HER2), ranibizumab (e.g., anti-VEGF-A), bevacizumab (e.g., anti-VEGF), panitumumab (for example, trastuzumab (e.g., anti-HER2), ranibizumab (e.g., anti-VEGF-A), bevacizumab (e.g., anti-VEGF), panitumumab (for example,
  • REPLACEMENT SHEET (RULE 26) anti-EGFR
  • cetuximab for example, anti-EGFR
  • rituxan anti-CD20
  • antibodies directed to c-MET antibodies directed to c-MET.
  • adenosine antagonist agents for use in combination therapy includes, but is not limited to, CPI-444; PBF-509; and AZD4635 (HTL-1071).
  • the present invention relates to a combination product comprising a compound of formula (I) or its pharmaceutically acceptable salts and one or more immunotherapeutic agents useful in the treatment of cancer, more preferably colon, lung , breast, selected central nervous system cancer of meningioma, neuroblastoma, glioblastoma, blastoma medulla, glioma, astrocytomas, oligodendrogliomas, ependymomas, gangliogliomas, neurilemomas (Schwannomas) and craniopharyngiomas, cervical cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, gastric cancer, tissue cancer and T-cell malignancies such as leukemias and lymphomas, for example, acute myeloid
  • a combination product comprises a compound of formula (I) or a pharmaceutically acceptable salt or co-crystal thereof, and one or more immunotherapeutic agents selected from the group consisting of anti-CTLA4 antibodies, such as Ipilimumab and Tremelimumab, anti-PD1 antibodies such as MDX-1106 (nivolumab), MK3475 (pembrolizumab), CT-01 1 (pidilizumab) and AMP-224 and anti-PDL1 antibodies such as MPDL3280A, MEDI4736 and MDX-1105.
  • the components of the combination product are in the same formulation or in separate formulations.
  • a combination product comprises a compound of formula (I) or a pharmaceutically acceptable salt or co-crystal thereof, and one or more chemotherapeutic agents selected from the group consisting of carboplatin, carmustine (BCNU), cisplatin, cyclophosphamide, Etoposide, Irinotecan, Lomustine (CCNU), Methotrexate, Procarbazine, Temozolomide, Vincristine.
  • chemotherapeutic agents selected from the group consisting of carboplatin, carmustine (BCNU), cisplatin, cyclophosphamide, Etoposide, Irinotecan, Lomustine (CCNU), Methotrexate, Procarbazine, Temozolomide, Vincristine.
  • the derivatives of the present invention and pharmaceutically acceptable salts and pharmaceutical compositions comprising such compounds and / or salts thereof can be used in a method of treating pathological conditions or diseases of the human body comprising administering to a subject who needs such treatment, an effective amount of heteroaryl lido derivatives of the invention or a pharmaceutically acceptable salt thereof.
  • the heteroaryl amide derivatives of the invention are useful in the treatment or prevention of diseases known to be susceptible to improvement by treatment with inhibitors of histone deacetylase class I, selected from HDAC1 and HDAC2.
  • diseases include cancers such as colon cancer, lung, breast, central nervous system (CNS) cancers selected from meningioma, neuroblastoma, glioblastoma, blastoma medulla, glioma, astrocytomas, oligodendrogliomas, ependymomas, gangliogliomas, neurilemomas (Schwannomas) and craniopharyngiomas.
  • CNS central nervous system
  • leukemias and lymphomas such as leukemias and lymphomas, for example, acute myeloid leukemia, acute lymphoblastic leukemia, cutaneous T-cell lymphoma, peripheral T-cell lymphoma , B-cell lymphoma and multiple myeloma; selected neurodegenerative diseases of Alzheimer's disease, post-traumatic stress disorder, drug addiction, Parkinson's disease, Huntington's disease, ⁇ -amyloid toxicity ( ⁇ ), Friedreich's ataxia, myotonic dystrophy, spinal muscular atrophy, fragile X syndrome, spinocerebellar ataxia, Kennedy disease, amyotrophic lateral sclerosis, Niemann-Pick disease, Pitt Hopkins syndrome, spinal and bulbar muscular atrophy; infectious diseases, inflammatory diseases selected from allergy, asthma, autoimmune diseases, celiac disease, glomerulonephritis, hepatitis, inflammatory pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary pulmonary
  • halogen atom comprises chlorine, fluorine, bromine or iodine atoms, preferably fluorine, chlorine or bromine atoms.
  • halo when used as a prefix has the same meaning.
  • haloalkyl is used to designate CC 4 alkyl substituted by one or more halogen atoms, preferably one, two or three halogen atoms.
  • the halogen atoms are selected from the group consisting of fluorine or chlorine atoms.
  • the haloalkyl groups are CC 4 alkyl substituted with one, two or three fluorine or chlorine atoms.
  • alkyl group is used to designate linear or branched hydrocarbon radicals (C n H 2 n + i) having from 1 to 6 carbon atoms.
  • alkyl groups have from 1 to 3 carbon atoms (CrC 3 alkyl).
  • cycloalkyl embraces cyclic hydrocarbon groups having from 3 to 12 carbon atoms. Said cycloalkyl groups may have a single cyclic ring or multiple fused rings. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, or multiple ring structures such as adamantanyl, bicyclo [2.2.1] heptane, 1, 3,3-trimethylbicyclo [2.2 .1] hept-2-yl, (2,3,3-trimethylbicyclo [2.2.1] hept-2-yl). In a preferred embodiment, said cycloalkyl groups encompass cyclic hydrocarbon groups having from 3 to 6 carbon atoms.
  • CC 4 alkoxy is used to designate radicals containing a linear or branched CC 4 alkyl group attached to an oxygen atom (C n H 2 n + 1-O-).
  • Preferred alkoxy radicals include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, sec-butoxy, t-butoxy, trifluoromethoxy, difluoromethoxy, hydroxy methoxy, 2-hydroxyethoxy or 2-hydroxypropoxy.
  • cycloalkoxy is used to designate radicals containing C 3 -C 6 cycloalkyl groups attached to an oxygen atom.
  • heteroaryl ring and “C 5 -C 6 heteroaryl ring” are used interchangeably to designate heteroaromatic rings containing carbon, hydrogen and one or more heteroatoms selected from N, O and S as part From the ring.
  • Preferred groups are optionally substituted pyridyl, pyrimidinyl, thienyl.
  • a heteroaryl radical carries 2 or more substituents, the substituents may be the same or different.
  • C 5 -C 6 heterocyclic ring and “five- or six-membered saturated heterocycle” are used interchangeably to designate saturated heterocyclic containing carbon, hydrogen and one or more heteroatoms selected from N and O as part of the ring .
  • Said groups may be optionally substituted with one or more substituents.
  • Preferred radicals are optionally substituted piperidinyl, piperazinyl and morpholinyl. When the heterocyclic radical carries 2 or more substituents, the substituents may be the same or different.
  • atoms, radicals, chains or cycles present in the general structures of the invention are "optionally substituted.” This means that these atoms, radicals, chains or cycles can be unsubstituted or substituted at any position by one or more, for example 1, 2, 3 or 4, substituents, whereby the hydrogen atoms attached to the unsubstituted atoms , radicals, chains or cycles are replaced by atoms, radicals, chains or chemically acceptable cycles. When two or more substituents are present, each substituent may be the same or different
  • the term "pharmaceutically acceptable salt” is used to designate salts with a pharmaceutically acceptable acid or base.
  • the pharmaceutically acceptable acids include inorganic acids, for example hydrochloric, sulfuric, phosphoric, diphosphoric, hydrobromic, hydroxydic and nitric acids, and organic acids, for example, citric, fumaric, maleic, malic, mandelic, ascorbic, oxalic, succinic, tartaric, benzoic, acetic, methanesulfonic, ethanesulfonic, benzenesulfonic or p-toluenesulfonic.
  • Pharmaceutically acceptable bases include alkali metal hydroxides (eg, sodium or potassium), alkaline earth metal (eg, calcium or magnesium) and organic bases, for example, alkylamines, arylalkylamines and heterocyclic amines.
  • X "n can be an anion of various mineral acids such as, for example, chloride, bromide, iodide, sulfate, nitrate, phosphate or an anion of an organic acid such as, for example, acetate, maleate, fumarate, citrate, oxalate, succinate, tartrate, malate, mandelate, trifluoroacetate, methanesulfonate and - toluenesulfonate.
  • mineral acids such as, for example, chloride, bromide, iodide, sulfate, nitrate, phosphate
  • an organic acid such as, for example, acetate, maleate, fumarate, citrate, oxalate, succinate, tartrate, malate, mandelate, trifluoroacetate, methanesulfonate and - toluenesulfonate.
  • X "n is preferably an anion selected from chloride, bromide, iodide, sulfate, nitrate, acetate, maleate, oxalate, succinate or trifluoroacetate More preferably X- is chloride, bromide, trifluoroacetate or methanesulfonate.
  • the term “inhibitor” refers to a molecule such as a compound, a drug, enzyme or a hormone that blocks or otherwise interferes with a particular biological activity.
  • the term “inhibitor” is synonymous with the term antagonist.
  • selective HDAC1 / 2 means that the compound binds to HDAC1 and HDAC2 to a substantially greater extent, such as 5X, 10X, 15X, 20X greater or more, than to any other type of HDAC enzyme, such as HDAC3 or HDAC6. That is, the compound is selective for HDAC1 and / or HDAC2 over any other type of HDAC enzyme.
  • X 1 is a group -CH.
  • X 1 and X 2 are -CH groups.
  • R 1 represents a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen atoms, haloalkyl CC 4 and alkoxy CC 4 .
  • R 1 represents a phenyl group optionally substituted with one or more substituents selected from halogen atoms.
  • R 1 represents a five- or six-membered heteroaryl ring optionally substituted with one or more substituents selected from the group consisting of a cyano group, a halogen atom and a CC 4 haloalkyl.
  • R 1 represents a pyridyl or thienyl ring.
  • R 2 represents a group -N (R 3 ) (R 4 ), in which R 3 and R 4 form together with the nitrogen atom to which a saturated heterocycle of 5 or 6 is attached members optionally comprising a heteroatom selected from N and O as part of the ring, heterocycle which is optionally substituted with a CC 3 alkyl group or a -N (R 5 ) (R 6 ) group, wherein R 5 and R 6 form together with the nitrogen atom to which a saturated five or six member cycle is attached optionally comprising an additional heteroatom selected from N and O as part of the cycle, said cycle is optionally substituted with a CC 3 alkyl group.
  • R 2 represents a piperazinyl, piperidinyl or morpholinyl ring optionally substituted with a CC 3 alkyl group or a -N (R 5 ) (R 6 ) group.
  • R 2 represents a group -N (R 3 ) (R 4 ), wherein R 3 and R 4 independently represent a group selected from hydrogen atom, C 3 -C 6 cycloalkyl group and alkyl Linear or branched CC 3 , which is optionally substituted by a 5- or 6-membered heterocycle comprising one or two N atoms as part of the cycle, said cycle is optionally substituted with a C1-C3 alkyl group.
  • R 2 represents the group - N (R 3 ) (R 4 ), where R 3 represents a linear C 1 -C 3 alkyl substituted with a 5 or 6 membered saturated heterocycle comprising one or two N atoms , said heterocycle is optionally substituted with a CrC 3 alkyl group; and R 4 is a hydrogen atom.
  • R 2 represents a phenyl ring optionally substituted with one or more substituents selected from halogen atoms and cyano group.
  • the phenyl ring is substituted with a halogen atom or with a cyano group.
  • R 2 represents a C 3 -C 6 cycloalkyl.
  • R 2 represents a cyclopropyl or cyclopentyl ring.
  • R 2 represents a C 5 -C 6 heteroaryl optionally substituted with one or more substituents selected from halogen atoms and cyano group.
  • the C 5 -C 6 heteroaryl is substituted with a halogen atom or with a cyano group.
  • R 2 represents a pyridyl or pyrimidinyl ring optionally substituted with one or more substituents selected from halogen atoms and cyano group, preferably substituted with a halogen atom or with a cyano group.
  • X 1 and X 2 represent -CH groups
  • R 1 represents a phenyl group optionally substituted with one or more halogen atoms
  • R 2 represents a group -N (R 3 ) (R 4 ) wherein R 3 and R 4 form together with the nitrogen atom to which a 6-membered saturated heterocycle is attached optionally comprising a heteroatom selected from N and O, which is optionally substituted a C1-C3 or a group -N (R 5) (R 6) where R 5 and R 6 form together with the nitrogen atom to which they are attached a saturated cycle five or six membered optionally comprising one additional heteroatom selected from N and O, which is optionally substituted with a C1-C3 alkyl group.
  • R 2 represents a piperazinyl ring optionally substituted with a CC 3 alkyl group.
  • Particular individual compounds of the present invention include: N- (3-amino-6-phenylpyridin-2-yl) -6- (4-methylpiperazin-1-yl) nicotinamide N- (3-amino-6-phenylpyridin-2-yl) nicotinamide
  • Reagents and conditions a) NH3, EtOH, 0 ° C-RT, 3-6 h; b) R 1 -B (OH) 2 , Pd 2 (dba) 3 , SPhos, K3P04, toluene / H20, refluxed overnight.
  • Reagents and conditions c) ethyl chloro formate, TEA, NaHMDS, THF, -35 ° C - room temperature.
  • the carboxylic acid of formula (V) is activated in the form of a mixed anhydride.
  • This anhydride is generated by reacting the corresponding acid with ethyl chloroformate in the presence of triethyl amine.
  • the synthesis of the amides of formula (VI) is carried out by reacting the heteroarylamine of formula (IV) with the corresponding mixed carboxylic acid anhydride in the presence of a base, for example sodium bis (trimethylsilyl) amide (NaHMDS) at temperatures between -35 ° C to room temperature.
  • a base for example sodium bis (trimethylsilyl) amide (NaHMDS)
  • Reagents and conditions d) R 2 -B (OH) 2 , Pd 2 (dba) 3 , SPhos, K 3 PO 4 , toluene / H 2 0, refluxed overnight / primary or secondary amine, DIPEA, DMSO, 110 ° C; e) H2, (Pd / C).
  • the compounds of general formula (I) are prepared in two steps from intermediates of formula (VI).
  • R 2 represents an optionally substituted cycloalkyl, phenyl or heteroaryl group, according to the present invention
  • the R 2 group is introduced by a Suzuki-type coupling with the corresponding boronic acids or boronate derivatives, using the standard procedures for the palladium catalyzed reaction to provide compounds of formula (VII).
  • the compounds of formula (I) of the present invention can also be prepared using the same reactions as described above, but employing the sequence depicted in Scheme 5.
  • Reagents and conditions h) R 2 -B (OH) 2 , Pd 2 (dba) 3 , SPhos, K 3 P0 4 , toluene / H 2 0, reflux overnight / primary or secondary amine, DI PEA, DMSO, 110 ° C; i) ethyl chloro formate, TEA, NaHMDS, THF, -35 ° C-room temperature; j) H 2 , (Pd / C). Pharmacological activity
  • the inhibitory activities of the compounds of the present invention were determined using HDAC biochemical assays (biochemical assay services Reaction Biology Corp.). The compound with the indicated doses was tested in the biochemical assays of HDAC 1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10 and HDAC1 1 enzymes.
  • TSA Trichostatin A
  • TMP269 Trichostatin A
  • Substrate for HDAC1, 2, 3, 6, 10 fluorogenic peptide of residues 379-382 (RHKK (Ac) AMC) of p53.
  • Substrate for HDAC4, 5, 7, 9 and 1 1 Fluorogenic substrate HDAC Class2a (Trifluoroacetyl Usina).
  • Substrate for HDAC 8 Fluorogenic peptide from residues 379-382 (RHK (Ac) K (Ac) AMC) of p53.
  • the compounds to be tested in 100% DMSO were added to the enzyme mixture by acoustic technology (Echo550, nanoliter range). The mixture was centrifuged and preincubated. c. Mixture of 2X substrate (HDAC substrate fluorogen and co-factor (500 ⁇ of nicotinamide adenine dinucleotide (NAD +) in all Sirt assays) was added to all reaction wells to initiate the reaction. The plates were incubated for 1-2 hours, at 30 ° C with a seal, etc. The deviller was used with Trichostatin A (or TMP269 or NAD ⁇ +>) to stop the reaction and generate fluorescent color. The fluorescence was read (excitation, 360; emission, 460) using the EnVision Multilabel Plate Reader (Perkin Elmer) G. The reading of the end point was taken for analysis after the development reached the plateau.
  • HDAC substrate fluorogen and co-factor 500 ⁇ of nicotinamide adenine dinucleotide (NA
  • the compounds of the present invention are potent inhibitors of histone deacetylases 1 and / or 2 (HDAC1 and / or HDAC2).
  • the compounds of the present invention are potent and selective inhibitors of HDAC1 and HDAC2 against other histone deacetylase subtypes.
  • the derivatives of the invention and their pharmaceutically acceptable salts, and pharmaceutical compositions comprising such compounds and / or salts thereof can be used in a method of treating disorders of the human body which comprises administering to a subject that requires said treatment an effective amount of the compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • the compounds of the invention are useful in the treatment or prevention of diseases known to be susceptible to improvement by the inhibition of histone deacetylase class I, particularly histone deacetylases 1 and 2 (HDAC1, HDAC2).
  • diseases are selected from cancer; neurodegenerative diseases; infectious diseases; inflammatory diseases; heart failure and cardiac hypertrophy; diabetes; polycystic kidney disease and sickle cell anemia (SCD) and ⁇ -thalassemia disease.
  • SCD sickle cell anemia
  • a therapeutic use of the compounds of the present invention is to treat proliferative diseases or disorders such as cancer.
  • Cancer includes colon, lung, breast, central nervous system (CNS) cancer, uterine cervical cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, gastric cancer, tissue cancer and T-cell malignancies selected from acute myeloid leukemia, acute lymphoblastic leukemia, lymphoma of cutaneous T cells, peripheral T-cell lymphoma, B-cell lymphoma and multiple myeloma.
  • CNS central nervous system
  • uterine cervical cancer pancreatic adenocarcinoma
  • hepatocellular carcinoma gastric cancer
  • tissue cancer and T-cell malignancies selected from acute myeloid leukemia, acute lymphoblastic leukemia, lymphoma of cutaneous T cells, peripheral T-cell lymphoma, B-cell lymphoma and multiple myeloma.
  • Central nervous system (CNS) cancer includes meningioma, neuroblastoma, glioblastoma, blastoma medulla, glioma, astrocytomas, oligodendrogliomas, ependymomas, gangliogliomas, neurilemomas (Schwannomas), and craniopharyngiomas.
  • Another therapeutic use of the compounds of the present invention is also for treating selected neurodegenerative diseases of Alzheimer's disease, post-traumatic stress disorder or drug addiction, Parkinson's disease, Huntington's disease, ⁇ -amyloid toxicity ( ⁇ ), ataxia of Friedreich, dystrophy myotonic, spinal muscular atrophy, fragile X syndrome, spinocerebellar ataxia, Kennedy's disease, amyotrophic lateral sclerosis, Niemann Pick, Pitt Hopkins, spinal and bulbar muscular atrophy.
  • Another therapeutic use of the compounds of the present invention is also to treat diseases or disorders of viral infections such as HIV.
  • compositions comprising, as an active ingredient, at least heteroarylamide derivatives of formula (I) or a pharmaceutically acceptable salt thereof in association with other therapeutic agents and a pharmaceutically acceptable excipient such as a carrier or diluent.
  • the active ingredient may comprise from 0.001% to 99% by weight, preferably from 0.01% to 90% by weight of the composition depending on the nature of the formulation and whether an additional dilution must be made before application.
  • the compositions are prepared in a form suitable for oral, topical, nasal, rectal, percutaneous or injectable administration.
  • compositions of this invention are well known per se and the actual excipients used depend, among others, on the intended method of administration of the compositions.
  • compositions of this invention are preferably adapted for injectable administration and per os.
  • compositions for oral administration may take the form of tablets, retarder tablets, sublingual tablets, capsules, inhalation aerosols, inhalation solutions, inhalation of dry powder or liquid preparations, such as mixtures, elixirs, syrups or suspensions, containing all the compound of the invention; such preparations can be made by methods well known in the art.
  • the diluents which can be used in the preparation of the compositions, include those liquid and solid diluents, which are compatible with the active ingredient, together with coloring or flavoring agents, if desired.
  • the tablets or capsules they may conveniently contain between 2 and 500 mg of active ingredient or the equivalent amount of a salt thereof.
  • the liquid composition adapted for oral use may be in the form of solutions or suspensions.
  • the solutions may be aqueous solutions of a soluble salt or other derivative of the active compound in association with, for example, sucrose to form syrup.
  • the suspensions may comprise an insoluble active compound of the invention or a pharmaceutically acceptable salt thereof in association with water, together with a suspending agent or flavoring agent.
  • compositions for parenteral injection can be prepared from soluble salts, which may or may not be lyophilized and which can be dissolved in aqueous media without pyrogens or other suitable parenteral injection fluid.
  • Effective doses are usually in the range of 2 to 2000 mg of active ingredient per day.
  • the daily dosage can be administered in one or more treatments, preferably from 1 to 4 treatments per day.
  • the present invention will be further illustrated by the following examples. The following is provided by way of illustration and does not limit the scope of the invention in any way.
  • the synthesis of the compounds of the invention is illustrated by the following examples which include the preparation of the intermediate compounds, which do not limit the scope of the invention in any way.
  • Pd2 (dba) 3 Tris (dibenzylideneacetone) dipalladium SPhos: dicyclohexyl (2 ', 6'-dimethoxy- [1,1'-biphenyl] -2-yl) phosphine
  • the HPLC-MS was performed on a Gilson instrument equipped with a Gilson 321 piston pump, a Gilson 864 vacuum degasser, a Gilson 189 injection module, a Gilson 1/1000 splitter, a Gilson 307 pump, a Gilson 170 detector and a Thermoquest Fennigan aQa detector.
  • Step 4 Synthesis of 6-chloro-N- (3-nitro-6-phenylpyridin-2-yl) nicotinamide (Intermediate 4)
  • a solution of 6-chloro-3-nicotonic acid (1 g) in THF (10 g) was added. mi), TEA (1.5 mL) and ethyl chloro formiate (1.45 mL) and allowed to stir for 1 h at room temperature.
  • the reaction mixture was diluted with water, and the precipitate that formed was filtered and dried to obtain anhydride.
  • a solution of intermediate 3 (1 g) in THF (50 ml), NaHMDS (10 ml) was slowly added at -35 ° C and allowed to stir for 1 hour at the same temperature.
  • Step 5 Synthesis of 6- (4-methylpiperazin-1 -yl) -N- (3-nitro-6-phenylpyridin-2-yl) nicotinamide (Intermediate 5)
  • Step 6 Synthesis of N- (3-amino-6-phenylpyridin-2-yl) -6- (4-methylpiperazin-1-yl) nicotinamide.
  • Example 7 N- (3-amino-6- (4-methoxyphenyl) pyridin-2-yl) -6- (4-methylpiperazin-1-yl) nicotinamide
  • Example 8 N- (5-amino- [2,4'-bipyridin] -6-yl) -6- (4-methylpiperazin-1-yl) nicotinamide.
  • Step 3 Synthesis of 2-chloro-N- (3-nitro-6-phenylpyridin-2-yl) pyrimidine-5-carboxamide (Intermediate 6)
  • Step 7 Synthesis of 2- (4-methyl-piperazin-1-yl) -N- (3-nitro-6-phenylpyridin-2-yl) pyrimidine-5-carboxamide (Intermediate 7)
  • Step 8 Synthesis of N- (3-amino-6-phenylpyridin-2-yl) -2- (4-methylpiperazin-1-yl) pyrimidine-5-carboxamide.
  • Example 10 To a solution of intermediate 7 (200 mg) in ethanol (10 ml) and ethyl acetate (25 ml) was added Pd / C (10%) (30 mg, 15% (w / w)) and left to stir overnight under hydrogen gas. After completion of the reaction monitored by TLC, the reaction mixture was filtered through celite and evaporated to give a residue. The residue was purified by column chromatography to obtain Example 10 as an off-white solid (70 mg, 18% yield).
  • Example 11 N- (3-amino-6-phenylpyridin-2-yl) pyrimidine-5-carboxamide.
  • Example 14 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -2-morpholinopyrimidine-5-carboxamide.
  • Example 15 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -2- (4-methylpiperazin-1-yl) pyrimidine-5-carboxamide.
  • Step 1 Synthesis of 2 (cyclopropylamino) -N- (3-nitro-6-phenylpyridin-2-yl) pyrimidine-5-carboxamide (Intermediate 8)
  • Step 2 Synthesis of N- (3-amino-6-phenylpyridin-2-yl) -2- (cyclopropylamino) pyrimidine-5-carboxamide.
  • Example 16 To a solution of intermediate 8 (300 mg) in ethanol (10 ml) and ethyl acetate (50 ml) was added Pd / C (10%) (60 mg, 15% (w / w)) and left to stir overnight under hydrogen gas (atm balloon). After completion of the reaction monitored by TLC, the reaction mixture was filtered through celite and evaporated to give a residue. The residue was purified by preparative HPLC to obtain Example 16 as a pale yellow solid (130 mg, 26% yield).
  • Example 17 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -2- (cyclopropylamino) pyrimidine-5-carboxamide.
  • Step 1 Synthesis of methyl 6-phenylnicotinate (Intermediate 10)
  • Step 3 Synthesis of 6- (4-fluorophenyl-3-nitropyridin-2-amine (Intermediate 12)
  • Intermediate 2 700 mg
  • 4-fluoro-phenyl boronic acid 788 mg
  • Cs 2 CO 3 2.1 g
  • 50 ml of 1,4-dioxane and 3 ml of water were added to a 3-ounce round bottom flask. mouths and 100 mi. Nitrogen was bubbled directly into the mixture for 20 minutes.
  • Pd (dppf) CI 2 .CH 2 Cl 2 (328 mg, 0.1 eq.) was added and the mixture was heated to reflux at 1 10 ° C for 2 h under nitrogen.
  • the reaction mixture was diluted with ethyl acetate / water.
  • Step 5 Synthesis of N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6-phenylnicotinamide.
  • Example 18 Synthesis of N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6-phenylnicotinamide.
  • Example 19 N- (3-Amino-6- (4-fluorophenyl) pyridin-2-yl) -6- (4-fluorophenyl) nicotinamide.
  • Example 20 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) - [2,4'-bipyridine] -5-carboxamide.
  • Example 21 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) - [2,3'-bipyridine] -5-carboxamide.
  • Example 22 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6- (3-cyanophenyl) nicotinamide.
  • Step 1 Synthesis of 6-cyclopropyl-N- (6- (4-fluorophenyl) -3-nitropyridin-2-yl) nicotinamide (Intermediate 15)
  • Step 2 Synthesis of N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6-cyclopropyl-nicotinamide (Example 23)
  • Example 24 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6-cyclopentyl-nicotinamide.
  • Step-1 Synthesis of 6-chloro-N- (6- (4-fluorophenyl) -3-nitropyridin-2-yl) nicotinamide (Intermediate 16)
  • Step 2 Synthesis of N- (6- (4-fluorophenyl) -3-nitropyridin-2-yl) -6- (piperazin-1-yl) nicotinamide (intermediate 17)
  • Step 3 Synthesis of N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6- (piperazin-1-yl) nicotinamide (Example 25)
  • Example 26 N- (5-amino-2- (4-fluorophenyl) pyrimidin-4-yl) -6- (piperazin-1-yl) nicotinamide.
  • Step-1 Synthesis of tert-butyl (1- (5 - ((6- (4-fluorophenyl) -3-nitropyridin-2-yl) carbamoyl) pyridin-2-yl) piperidin-4-yl) carbamate (Intermediate 18)
  • Step 2 Synthesis of 6- (4-aminopiperidin-1-yl) -N- (6- (4-fluorophenyl) -3-nitropyridin-2-yl) nicotinamide (intermediate 19)
  • TFA 3 mL
  • the reaction mixture was basified (pH ⁇ 8) with sodium hydrogen carbonate and evaporated to give a residue to obtain the required intermediate 19 as a brown solid (390 mg, 98% yield) .
  • Step 3 Synthesis of N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6- (4-aminopiperidin-1-yl) nicotinamide (Example 27)
  • Example 28 N- (5-amino-2- (4-fluorophenyl) pyrimidin-4-yl) -6- (4-aminopiperidin-1-yl) nicotinamide.
  • Step 1 Synthesis of 3-nitro-6- (thiophen-2-yl) pyridin-2-amine (lntermediate 20)
  • Step 2 Synthesis of 6- (4-methylpiperazin-1-yl) -N- (3-nitro-6- (thiophen-2-yl) pyridin-2-yl) nicotinamide (Intermediate 22)
  • Step 3 Synthesis of N- (3-amino-6- (thiophen-2-yl) pyridin-2-yl) -6- (4-methylpiperazin-1-yl) nicotinamide.
  • Example 29 To an intermediate solution 22 (200 mg) in methanol / ethanol (20/3 ml) and THF / ethyl acetate (9/9 ml) was added Pd / C (10%) (40 mg, 20% ( p / p)) and the reaction was allowed to stir overnight under hydrogen gas (Globo atm). After completion of the reaction monitored by TLC, the reaction mixture was filtered through celite and evaporated to give a residue. The residue was purified by column chromatography to obtain the required compound as a pale orange solid (25 mg, 13% yield).
  • Step 1 Synthesis of N- (6- (4-fluorophenyl) -3-nitropyridin-2-yl) -6 - ((2- (4-methylpiperazin-1-yl) ethyl) amino) nicotinamide (Intermediate 23)
  • Intermediate 16 500 mg
  • DMSO 20 ml
  • DIPEA 1.44 ml, 6 eq.
  • 2- (4-Methylpiperazin-1-yl) -ethyl-diazene 400 mg was added and then the reaction was allowed to warm to 1 10 ° C for 16 h. After this time, the reaction mixture was diluted with water and ethyl acetate was added.
  • Step 2 Synthesis of N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6 - ((2- (4-methylpiperazin-1-yl) ethyl) amino) nicotinamide (Example 30)
  • Intermediate 23 240 mg
  • ethanol 7.5 ml
  • water 2.5 ml
  • Fe 112 mg
  • NH4CI 215 mg
  • the reaction was allowed to warm to 90 ° C. 1 hour.
  • the reaction mixture was filtered through celite and evaporated to give a residue.
  • the residue was purified by preparative HPLC to obtain the required compound as a pale yellow solid (21 mg, 10% yield).
  • Example 31 N- (3-amino-6- (4-fluorophenyl) pyridin-2-yl) -6 - ((2- (pyridin-3-yl) ethyl) amino) nicotinamide.

Abstract

La presente invención se refiere a nuevos derivados de heteroarilamida de fórmula (I) como inhibidores selectivos de la histona desacetilasa 1 y 2 (hdac1-2) a los procedimientos para su preparación, a composiciones farmacéuticas que comprenden dichos compuestos y al uso de dichos compuestos para fabricar un medicamento para el tratamiento de condiciones patológicas o enfermedades que pueden mejorar por inhibición la actividad de la histona desacetilasa clase I, particularmente HDAC1 y HDAC2, tales como cáncer, enfermedades neurodegenerativas, enfermedades infecciosas, enfermedades inflamatorias, insuficiencia cardíaca e hipertrofia cardíaca, diabetes, enfermedad renal poliquística, anemia de células falciformes y enfermedad de β -talasemia y a métodos para el tratamiento de las enfermedades antes mencionadas.

Description

NUEVOS DERIVADOS HETEROARYL AMIDA COMO INHIBIDORES SELECTIVOS DE HISTONA DEACETILASA 1 Y 2 (HDAC1/2)
Campo de la invención
La presente invención se refiere a nuevos derivados heteroaril amida como inhibidores selectivos de al menos una enzima histona deacetilasa clase I seleccionada de HDAC1 y HDAC2.
Otros objetivos de la presente invención son proporcionar un procedimiento para preparar estos compuestos; composiciones farmacéuticas que comprenden una cantidad eficaz de estos compuestos; compuestos para uso en el tratamiento de condiciones patológicas, trastornos o enfermedades que pueden mejorar por inhibición la actividad de al menos una enzima histona deacetilasa clase I, seleccionada de HDAC1 y HDAC2, tal como cáncer, enfermedades neurodegenerativas, enfermedades infecciosas, enfermedades inflamatorias, insuficiencia cardíaca e hipertrofia cardíaca, diabetes, enfermedad renal poliquística, anemia de células falciformes y enfermedad de β-talasemia.
Estado de la técnica
Las histonas deacetilasas (HDAC) catalizan la eliminación de los grupos acetilo de las histonas, proteínas que organizan y modulan la estructura de la cromatina en los nucleosomas. La desacetilación mediada por HDAC de las histonas unidas a la cromatina regula la expresión de una variedad de genes en todo el genoma. Es importante destacar que los HDAC se han relacionado con el cáncer, así como otras condiciones de salud.
Existen al menos 18 subtipos HDAC y se subdividen en tres familias de HDAC: HDAC clase I (HDACs 1 , 2, 3 y 8) y clase II (HDAC 4, 5, 6, 7, 9 y 10) son aminohidrolasas zinc-dependientes con un núcleo catalítico conservado pero que difieren en tamaño, estructura del dominio, patrón de expresión tisular y localización celular (Johnstone, Ricky W. Histone-deacetylase inhibitors: novel drugs for the treatment of cáncer. Nature reviews Drug discovery, 2002, vol. 1, no 4, p. 287-299). Otro HDAC, HDAC11 , se encuentra en el límite entre las dos clases. Los HDAC de clase III (Sirtuinas 1 -7) dependen de NAD+ y no están relacionados en secuencia con las clases I y II (HOLBERT, Marc A.; MARMORSTEIN, Roñen. Structure and activity of enzymes that remove histone modifications. Current opinión in structural biology, 2005, vol. 15, no 6, p. 673-680). Como un regulador de la modificación postraduccional común de la acetilación de proteínas, las histonas deacetilasas zinc-dependientes (HDAC Clases I y II) juegan un papel crítico en diversos procesos celulares. La familia de las histonas deacetilasas zinc-dependientes ha estado implicada de diversas maneras en diferentes estados de enfermedad. Los HDAC zinc-dependientes han recibido mucha atención como dianas farmacológicas contra el cáncer. Los inhibidores de estas enzimas muestran una notable capacidad para inducir la diferenciación terminal de las células transformadas, presumiblemente alterando los patrones de expresión génica al influir en el estado de acetilación de los residuos de lisina de histona seleccionada (MARKS, Paul A., et al. Histone deacetylase inhibitors. Advances in cáncer research, 2004, vol. 91, p. 137- 168).
Sin embargo, se conoce que las HDAC forman complejos multiprotéicos con muchas proteínas reguladoras dentro de la célula. Cada isoenzima interactúa con una serie específica de proteínas reguladoras y factores de transcripción y tiene un conjunto específico de sustratos, y así cada una regula una serie específica de genes y proteínas (WITT, Olaf, et al. HDAC family: What are the cáncer relevant targets?. Cáncer letters, 2009, vol. 277, no 1 , p. 8-21 j.
HDAC1 / HDAC2 v cáncer
A diferencia de otras enzimas de clase I, HDAC1 y HDAC2 son dianas terapéuticas emergentes para el tratamiento del cáncer y otras enfermedades. (HUANG, Lili.
Targeting histone deacetylases for the treatment of cáncer and inflammatory diseases.
Journal of cellular physiology, 2006, vol. 209, no 3, p. 611-616). La disminución de la expresión de HDAC1 mediada por ARNi inhibe la proliferación y, de forma importante, induce la apoptosis en varias líneas de células tumorales in vitro (GLASER, Keith B., et al. Role of class I and class II histone deacetylases in carcinoma cells using siRNA.
Biochemical and biophysical research Communications, 2003, vol. 310, no 2, p. 529-
536).
Asimismo, se ha demostrado que, en ausencia de HDAC1 las células pueden detenerse en la fase G1 del ciclo celular o en la transición G2/M, resultando en la pérdida de células mitóticas, la inhibición del crecimiento celular y un aumento en el porcentaje de células apoptóticas (SENESE, Silvia, et al. Role for histone deacetylase 1 in human tumor cell proliferation. Molecular and cellular biology, 2007, vol. 27, no 13, p. 4784-4795). Además, también es conocido que en las células de cáncer de colon HDAC1 y HDAC2 están sobreexpresadas, en este caso las interacciones entre factores de transcripción y moduladores epigenéticos orquestan la activación de la actividad promotora HDAC1 y HDAC2 en dichas células (YANG, Hui, et al. Overexpression of histone deacetylases in cáncer cells is controlled by interplay of transcription factors and epigenetic modulators. The FASEB Journal, 2014, vol. 28, no 10, p. 4265-4279).
Se ha demostrado que la inhibición selectiva de HDAC1/HDAC2 utilizando compuestos o interferencia de ARN indujo la diferenciación y la disminución de la viabilidad en líneas celulares de neuroblastoma (FRUMM, Stacey M., et al. Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation. Chemistry & biology, 2013, vol. 20, no 5, p. 713-725).
Recientemente, estudios revelaron que la inhibición o el silenciamiento de la histona deacetilasa 2 (HDAC2) restaura la formación de cilios primarios en células de adenocarcinoma ductal pancreático (ACDP). La pérdida de cilios primarios se observa con frecuencia en las células tumorales, incluidas las células ACDP, lo que sugiere que la ausencia de este orgánulo puede promover la tumorigénesis a través de la transducción de señal aberrante y la incapacidad de salir del ciclo celular. La inactivación de HDAC2 da como resultado una disminución de la expresión de Aurora A, lo que promueve el desensamblaje de los cilios primarios. Según estos estudios, HDAC2 controla la ciliogénesis independientemente de Kras, lo que facilita la expresión de Aurora A, sugiriendo que HDAC2 es un nuevo regulador de la formación de cilio primario en células ACDP (KOBAYASHI, Tetsuo, et al. HDAC2 promotes loss of primary cilla in pancreatic ductal adenocarcinoma. EMBO reports, 2016, p. e201541922). Por otro lado, se ha demostrado que los inhibidores HDAC1/HDAC2 son una opción terapéutica potencial para la leucemia linfoblástica aguda de células B (B-ALL), y que un inhibidor específico podría ser terapéuticamente útil para pacientes con B-ALL (STUBBS, Matthew C, et al. Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option for B-ALL. Clinical Cáncer Research, 2015, vol. 21 , no 10, p. 2348- 2358).
Con respecto a los tumores del Sistema Nervioso Central (SNC), específicamente tumores cerebrales y de la médula espinal, se conoce que la penetración de la barrera Hematoencefálica (BHE) es uno de los principales problemas que impiden el tratamiento exitoso del glioblastoma (GBM), ya que más del 98% las drogas no pueden cruzar el BHE. En este sentido, se ha reportado un inhibidor HDAC clase I, específicamente inhibidor HDAC1 / HDAC2, que cruzó la BHE. Este inhibidor exhibió citotoxicidad in-vitro en un panel de líneas celulares iniciadoras de tumor cerebral (líneas BTIC) y prolongó la supervivencia en combinación con un agente alquilante temozolomida (TMZ) en un modelo BTIC ortotópico in-vivo (GRINSHTEIN, Natalie, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget, 2016, vol. 7, no 37, p. 59360-59376).
Otros estudios han señalado que los inhibidores selectivos de histona deacetilasa clase I superan la resistencia a la temozolomida y regulan negativamente la expresión de genes pro-supervivencia NF-KB-regulados en una línea celular de glioblastoma resistente a temozolomida. (Zong-yang Li, et al, Histone Deacetylase Inhibitor RGFP109 Overcomes Temozolomide Resistance by Blocking NF-KB-Dependent Transcription in Glioblastoma Cell Lines, Neurochem Res, September 2016, DOI 10.1007/S11064-016-2043-5).
Existen estudios que demuestran que la inhibición de HDAC1 y HDAC2 es necesaria para disminuir la expresión de BRCA1 , CHK1 y RAD51 , potenciar la apoptosis y la lesión del ADN inducida por citarabina o daunorrubicina y anular la activación del punto de control del ciclo celular inducida por citarabina o daunorrubicina en células de leucemia mieloide aguda (LMA) (ZHAO, J., et al. Histone deacetylases 1 and 2 cooperate in regulating BRCA 1, CHK1, and RAD51 expression in acute myeloid leukemia cells. Oncotarget, 2016).
La histona deacetilasa 2 (HDAC2) es crucial para el desarrollo embrionario, afecta la señalización de las citoquinas relevante para la respuesta inmune y, a menudo, es sobreexpresada significativamente en tumores sólidos. Específicamente, en el cáncer de pulmón se ha demostrado la expresión aberrante de HDAC2, y su inactivación dio como resultado la regresión del crecimiento de las células tumorales y la activación de la apoptosis celular a través de la activación de p53 y Bax y la supresión de Bcl2 (JUNG, Kwang Hwa, et al. HDAC2 overexpression confers oncogenic potential to human lung cáncer cells by deregulating expression of apoptosis and cell cycle proteins. Journal of cellular biochemistry, 2012, vol. 1 13, no 6, p. 2167-2177).
Por otro lado, otros estudios han demostrado una expresión elevada de HDAC1/HDAC2 en la displasia cervical y el carcinoma de cuello uterino frente al epitelio cervical uterino normal. En dichos estudios se combinaron el bortezomib y un inhibidor de HDAC y mostraron la eliminación sinérgica de las líneas celulares de cáncer de cuello uterino HPV-positivas, pero no para HPV-negativa. De forma similar, el tratamiento de xenoinjertos HeLa con la combinación de bortezomib y el inhibidor HDAC1/HDAC2 retardó el crecimiento tumoral significativamente más eficazmente que cualquier agente bortezomib solo, sugiriendo que el tratamiento combinado de inhibidores HDAC con bortezomib justifica la exploración para el tratamiento del cáncer de cuello uterino (LIN, Zhenhua, et al. Combination of proteasome and HDAC inhibitors for uterine cervical cáncer treatment. Clinical Cáncer Research, 2009, vol. 15, no 2, p. 570-577). Otros estudios han relacionado las expresiones HDAC 1 y HDAC2 en carcinoma hepatocelular (CHC) y su correlación con los datos clínicos y de supervivencia del paciente. Dichos estudios demostraron que HDAC1 y HDAC2 fueron significativamente expresados en mayor cantidad en las células cancerosas en comparación con el tejido normal. Específicamente, la alta expresión de HDAC2 se asoció con una supervivencia deficiente en tumores de grado bajo y de etapa temprana (p <0,05), lo que sugiere que la expresión de HDAC2 tuvo un impacto en la supervivencia del paciente (QUINT, Karl, et al. Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC. Virchows Archiv, 201 1 , vol. 459, no 2, p. 129-139). Adicionalmente, se ha encontrado que la baja expresión de fructosa-1 ,6-bisfosfatasa (FBP1) se correlaciona con altos niveles de proteínas HDAC1 y HDAC2 en los tejidos del paciente con carcinoma hepatocelular (CHC). El tratamiento de células de CHC con inhibidores HDAC o la eliminación de HDAC1 y / o HDAC2 restauró la expresión de FBP1 e inhibió el crecimiento de células de CHC (Yang J, et al. Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. Sci Rep. 2017 Mar 6; 7:43864).
La sobreexpresión de HDAC2 se ha correlacionado con la metástasis, la progresión y la mayor expresión de proteína de resistencia a múltiples fármacos en cáncer de mama, sugiriendo que HDAC2 podría ser un factor de pronóstico de pacientes con cáncer de mama, especialmente los pacientes que recibieron terapia con antraciclinas (ZHAO, Haishan, et al. HDAC2 overexpression is a poor prognostic factor of breast cáncer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy. Japanese journal of clinical oncology, 2016). Al mismo tiempo, la expresión de HDAC1 se correlacionó significativamente con los subtipos moleculares de tumores, siendo observada la mayor expresión en tumores luminales en carcinomas ductales infiltrantes de mama (SEO, Jinwon, et al. Expression of histone deacetylases HDAC1, HDAC2, HDAC3, and HDAC6 in invasive ductal carcinomas of the breast. Journal of breast cáncer, 2014, vol. 17, no 4, p. 323-331).
Varias evidencias de la participación de HDAC1 y HDAC2 en cáncer sugieren que los inhibidores selectivos para estos subtipos pueden demostrar un índice terapéutico mejorado a través de una mejor eficacia clínica y/o una mejor tolerabilidad en comparación con los inhibidores pan HDAC. HDAC1 / HDAC2 y enfermedades neurodegenerativas
Una cantidad significativa de datos implica HDAC en diversos procesos biológicos. En línea con esto, estudios han mostrado que las HDAC clase I juegan un papel esencial en el desarrollo del sistema nervioso.
Con respecto a lo anterior, el tratamiento con inhibidores de HDAC ha demostrado mejorar los déficits cognitivos en modelos genéticos de enfermedades neurodegenerativas (FISCHER, Andre, et al. Recovery of learning and memory is associated with chromatin remodeling. Nature, 2007, vol. 447, no 7141 , p. 178-182.) y también se han utilizado para tratar los déficits cognitivos asociados con la etapa temprana de la enfermedad de Alzheimer (KILGORE, Mark, et al. Inhibitors of class 1 histone deacetylases reverse contextúa! memory déficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology, 2010, vol. 35, no 4, p. 870-880). Estos estudios sugieren que la modulación de la memoria a través de la inhibición de HDAC tiene un potencial terapéutico considerable para muchos trastornos cognitivos y de memoria. La literatura emergente posiciona ahora a los HDACS clase I, específicamente HDAC1 y HDAC2, como puntos de control importantes en el desarrollo del cerebro. Los HDAC1 y HDAC2, altamente homólogos, se detectan en diferentes etapas de compromiso y diferenciación neuronal durante la evolución del sistema nervioso central dependiente de la edad. Esto implica su contribución a la regulación de la expresión génica específica del desarrollo y al mantenimiento del sistema nervioso central (SNC). Estos procesos parecen ser particularmente sensibles a la interrupción en la regulación de genes epigenéticos, lo que lleva, entre otros, a síndromes asociados con el retraso mental, así como a trastornos psiquiátricos complejos. La expresión de HDAC1 y HDAC2 durante el desarrollo cerebral y la participación de HDAC1 y HDAC2 en la neurogénesis se han demostrado ampliamente a través de estudios realizados. (ZIEMKA-NALECZ, Malgorzata; JAWORSKA, Joanna; ZALEWSKA, Teresa. Histone deacetylases 1 and 2 are required for brain development. International Journal of Developmental Biology, 2015, vol. 59, no 4-5-6, p. 171-177; and references therein).
Asimismo, otros estudios han demostrado que la inhibición farmacológica selectiva de HDAC2 es factible y que la inhibición de la actividad catalítica de esta enzima puede servir como un enfoque terapéutico para mejorar los procesos de aprendizaje y memoria que se ven afectados en muchos trastornos neurológicos y psiquiátricos. (WAGNER, F. F., et al. Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chemical science, 2015, vol. 6, no 1 , p. 804-8159).
Por lo tanto, se ha demostrado que HDAC2 regula los procesos de memoria y, como tales, es un objetivo interesante para la mejora de la memoria o la extinción en afecciones que afectan a la memoria, tales como, pero no limitadas a la enfermedad de Alzheimer, el trastorno de estrés postraumático o la adicción a las drogas. (XU, Ke, et al. Targeting HDACs: a promising therapy for Alzheimer's disease. Oxidative medicine and cellular longevity, 2011 , vol. 2011.).
Además de eso, otros estudios han revelado la participación de HDAC1 en trastornos de poliglutamina, incluida la enfermedad de Huntington, y el uso de inhibidores selectivos de HDAC1 como intervención terapéutica para estos trastornos (THOMAS, Elizabeth A. Involvement of HDAC1 and HDAC3 in the pathology of polyglutamine disorders: therapeutic implications for selective HDAC1/HDAC3 inhibitors. Pharmaceuticals, 2014, vol. 7, no 6, p. 634-661^ De manera similar, ha sido identificado un inhibidor específico de la isoforma HDAC1-2 con efectos protectores contra la muerte neuronal inducida por MPP +/MPTP- en el modelo de enfermedad de Parkinson (EP) tanto in vitro como in vivo, lo que sugiere que la inhibición selectiva de HDAC1 y 2 puede allanar el camino a nuevas estrategias para el tratamiento de la EP. (CHOONG, Chi-Jing, et al. A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson's disease. Neurobiology of aging, 2016, vol. 37, p. 103-116).
HDAC1 / HDAC2 y enfermedades inflamatorias Estudios han demostrado una nueva línea de evidencia que muestra la participación de la regulación epigenética de la estructura de la cromatina por la hipoacetilación de histonas mediada por HDAC1/2 en la nocicepción espontánea persistente (NEP) inducida por el veneno de abeja (VA) y la hipersensibilidad térmica, demostrando los efectos beneficiosos de los HDACi clase I en la prevención del dolor inflamatorio periférico. (YANG, F., et al. Selective class I histone deacetylase inhibitors suppress persistent spontaneous nociception and thermal hypersensitivity in a rat model of bee venom-induced inflammatory pain, Acta physiologica Sínica, 2015, vol. 67, no 5, p. 447-454). Por otro parte, otros estudios han demostrado la expresión de niveles más altos de HDAC1 y HDAC2 en los ventrículos izquierdos (VI) de las ratas con insuficiencia cardíaca (IC). Este estudio sugiere que la inhibición de HDAC puede mejorar la función cardíaca y atenuar los efectos de la insuficiencia cardíaca (IC) en el metabolismo y la inflamación cardiaca (LKHAGVA, Baigalmaa, et al. Novel histone deacetylase inhibitor modulates cardiac peroxisome proliferator-activated receptors and inflammatory cytokines in heart failure. Pharmacology, 2015, vol. 96, no 3-4, p. 184-191).
La acetilación de proteínas es un mecanismo esencial en la regulación de eventos transcripcionales e inflamatorios. Los estudios han mostrado que los inhibidores no selectivos de la histona deacetilasa pueden proteger la retina de la lesión isquémica en ratas. Este estudio ha demostrado que suprimiendo la expresión de HDAC2 se puede reducir eficazmente la lesión isquémica de la retina, lo que sugiere que el desarrollo de inhibidores selectivos de HDAC2 puede proporcionar un tratamiento eficaz para la lesión retiniana isquémica. (FAN, Jie, et al. Inhibition of HDAC2 Protects the Retina From Ischemic Injury Inhibition of HDAC2 Protects Retina From Ischemic Injury. Investigative ophthalmology & visual science, 2013, vol. 54, no 6, p. 4072-4080).
HDAC1 / HDAC2 e insuficiencia cardíaca
HDAC2 ha sido identificado como una diana molecular importante en el corazón, y unido a Gsk3beta, se consideran componentes de una vía reguladora que proporciona una diana terapéutica atractiva para el tratamiento de la hipertrofia cardíaca y la insuficiencia cardíaca. (TRIVEDI, Chinmay M., et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3fi activity. Nature medicine, 2007, vol. 13, no 3, p. 324-331). La inducción de Hsp70 en respuesta a diversos estrés hipertróficos y la consiguiente activación de HDAC2 desencadenan hipertrofia cardíaca, haciendo hincapié en Hsp70/HDAC2 como un mecanismo novedoso que regula la hipertrofia (MCKINSEY, Timothy A. Targeting inflammation in heart failure with histone deacetylase inhibitors. Molecular medicine, 201 1 , vol. 17, no 5, p. 434).
El tratamiento in-vivo de la insuficiencia cardíaca congestiva (ICC) con Mocetinostat redujo la sobre-regulación dependiente de ICC de HDAC1 y HDAC2 en el miocardio de ICC, mejoró la función cardíaca y disminuyó el tamaño de la cicatriz y la cantidad total de colágeno, demostrando una regulación in-vivo de fibroblastos cardíacos vía inhibición de HDAC 1-2 (NURAL-GUVENER, Hikmet, et al. Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signalling in ischemic heart failure. International journal of molecular sciences, 2015, vol. 16, no 5, p. 11482- 1 1499).
HDAC1 / HDAC2 en otras enfermedades Recent reports indícate that HDAC2 has been reported to bind with IRS-1 in liver cells of the diabetes db/db mouse. These mice have been routinely used for screening various insulin mimetics as well as insulin sensitizers
Informes recientes indican que HDAc2 ha sido reportado que se une con IRS-1 en células hepáticas del ratón diabético db/db. Estos ratones se han usado de manera rutinaria para detectar diversos miméticos de insulina y sensibilizadores de insulina. (BAYLEY, Jeppe Seamus; PEDERSEN, Thomas Holm; NIELSEN, Ole Baskgaard. Skeletal muscle dysfunction in the db/db mouse model of type 2 diabetes. Muscle & nerve, 2016, vol. 54, no 3, p. 460-468).
Esta unión de HDAC2 con IRS-1 condujo a una disminución de la acetilación y redujo la fosforilación de tirosina mediada por el receptor de insulina de IRS-1. Por consiguiente, el inhibidor de HDAC Trichostatin A (TSA) o el silenciamiento génico de HDAC2 potencian la acetilación de IRS-1 y atenúan parcialmente la resistencia a la insulina. (C. Kaiser, S.R. James, Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation, BMC Biol. 2 (2004) 23). Por otro lado, los inhibidores selectivos de la histona deacetilasa (HDAC) se han convertido en una terapia potencial contra la latencia para la infección persistente por el virus de la inmunodeficiencia humana tipo 1 (VIH-1). (BARTON, Kirston M., et al. Selective HDAC inhibition for the disruption of latent HIV-1 infection. PloS one, 2014, vol. 9, no 8, p. e102684). Específicamente el inhibidor de HDAC entinostat, selectivo para la inhibición de los HDAC de clase I, indujo la expresión del virus en células T CD4 + primarias infectadas de forma latente, haciendo este compuesto una nueva opción atractiva para futuros ensayos clínicos. (WIGHTMAN, Fiona, et al. Entinostat i s a histone deacetylase inhibitor selective for class 1 histone deacetylases and activates HIV production from latently infected primary T cells. AIDS (London, England), 2013, vol. 27, no 18, p. 2853).
Otros estudios han revelado un papel crítico para HDAC1 en la patogénesis de la enfermedad poliquística del riñon (PKD) y apuntan a los inhibidores de HDAC como fármacos candidatos para el tratamiento de la PKD. Dichos estudios demostraron que la inhibición de las HDAC de clase I, por supresión de HDAC1 , suprimió la formación de quistes renales y la curvatura del cuerpo causada por la deficiencia de pkd2. (CAO, Ying, et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proceedings of the National Academy of Sciences, 2009, vol. 106, no 51 , p. 21819-21824).
Es conocido que la inhibición química de HDAC1 / HDAC2 induce la hemoglobina fetal (HBF) a través de la activación de GATA2. La intervención terapéutica dirigida a la reactivación de la proteína de la hemoglobina fetal (HbF) es un enfoque prometedor para mejorar la anemia de células falciformes (SCD) y la β-talasemia. Los estudios han demostrado que la supresión genética de la histona deacetilasa 1 o 2 es suficiente para inducir HbF. (SHEARSTONE, Jeffrey R., et al. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2. PloS one, 2016, vol. 11 , no 4, p. e0153767).
Finalmente, se ha demostrado que los inhibidores de HDAC clase I regulan positivamente la expresión de PD-L1 y, en menor medida, PD-L2 en melanomas. El tratamiento con inhibidores de HDAC dio como resultado una regulación positiva rápida de la acetilación de histonas del gen PDL1 conduciendo a una expresión génica mejorada y duradera. Dicha regulación positiva de PD-L1 se limitó a la inhibición de HDAC clase I, específicamente HDAC1 y HDAC2. La eficacia de combinar la inhibición de HDAC con el bloqueo de PD-1 para el tratamiento del melanoma se exploró en un modelo murino B16F10. Los resultados destacan la capacidad de los modificadores epigenéticos para aumentar las inmunoterapias, proporcionando una razón para combinar los inhibidores HDAC con el bloqueo PD-1. (WOODS, David M., et al. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cáncer immunology research, 2015, vol. 3, no 12, p. 1375-1385).
INHIBIDORES HDAC
Varios inhibidores de histonas deacetilasas se han desarrollado y aprobado como tratamiento de enfermedades humanas, específicamente como agentes anticancerosos, tales como: vorinostat (linfoma de células T cutáneo y mieloma múltiple), romidepsin (linfoma de células T periféricas) y belinostat (Linfoma de células T periférico). (TAN, Jiahuai, et al. Novel histone deacetylase inhibitors in clinical triáis as anti-cancer agents. Journal of hematology & oncology, 2010, vol. 3, no 1 , p. 5). Aunque estos inhibidores están aprobados para el linfoma de células T cutáneo y / o periférico, estos fármacos aún se están estudiando en ensayos clínicos para otros tipos de cáncer, ya sea como agentes únicos o en combinación con otros medicamentos, y otros inhibidores de HDAC se encuentran en diferentes etapas de ensayos clínicos para varios tumores hematológicos y sólidos. Además de los efectos prometedores sobre las actividades contra el cáncer, también está creciendo el uso de inhibidores de HDAC en otras enfermedades, como la fibrosis intestinal, enfermedades autoinmunes, inflamatorias, trastornos metabólicos y muchos más.
Sin embargo, los inhibidores de HDAC también están asociados con toxicidades. Los eventos adversos de grado 3 y 4 más comunes observados con el uso de inhibidores de HDAC fueron trombocitopenia, neutropenia, anemia, fatiga y diarrea (MOTTAMAL, Madhusoodanan, et al. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, vol. 20, no 3, p. 3898-39419).
Los inhibidores HDAC conocidos no muestran una prominente selectividad a isoenzimas HDAC. Este hecho podría ser una causa de problemas graves en un entorno clínico, especialmente en el tratamiento de enfermedades y afecciones en las que se requiere una administración prolongada del fármaco. Por lo tanto, el diseño de inhibidores selectivos de HDAC permite la inhibición preferencial de solo la (s) isoenzima (s) relevante (s) a una enfermedad o condición particular, reduciendo así la probabilidad de efectos contraproducentes y/o adversos y minimizando los efectos citotóxicos en pacientes, resultantes de una inhibición indeseada de otras isoenzimas HDAC. Por lo tanto, es deseable desarrollar nuevos inhibidores selectivos de isoformas HDAC que ofrezcan más eficacia y menos toxicidad en los pacientes. Sigue existiendo la necesidad de proporcionar inhibidores de HDAC, particularmente inhibidores potentes y / o selectivos de clases particulares de HDAC.
Por lo tanto, el problema a ser resuelto por la presente invención es proporcionar nuevos compuestos como inhibidores de la histona deacetilasa clase I, y más particularmente como inhibidores selectivos de histona deacetilasa HDAC1 y HDAC2.
Los autores de la presente invención han desarrollado nuevos derivados de N-(3- aminopiridin-2-il)nicotinamida convenientemente sustituidos como inhibidores potentes y selectivos de HDAC1 y/o HDAC2.
Resumen de la invención
En uno de sus aspectos (aspecto 1 ), la presente invención se refiere a derivados de heteroarilamida de fórmula (I):
Figure imgf000014_0001
donde:
- X1 y X2 representan independientemente un grupo seleccionado de entre -CH y N;
- R1 representa:
a) grupo fenil opcionalmente sustituido con uno o más sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo haloalquilo CrC4 lineal o ramificado, y alcoxi CrC4 lineal o ramificado, b) anillo heteroarilo de cinco o seis miembros opcionalmente sustituido con uno o más sustituyentes seleccionados del grupo que consiste en átomo de halógeno, alcoxi CrC4 lineal o ramificado, grupo ciano, haloalquilo Ci- C4 lineal o ramificado, alquilo d- C lineal o ramificado, cicloalquilo C3-C6,
HOJA DE REEMPLAZO (REGLA 26) cicloalcoxi C3-C6 y anillo heterocíclico C5-C6 opcionalmente sustituido con uno o más átomos de halógeno
R2 representa un grupo seleccionado de:
a) Grupo - N(R3)(R4), donde:
1- R3 y R4 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional como parte del ciclo seleccionado de entre N y O, el cual es opcionalmente sustituido con un grupo alquilo C C3 o un grupo -N (R5) (R6), donde R5 y R6 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional como parte del ciclo seleccionado entre N y O, que está opcionalmente sustituido con un grupo alquilo C C3, o
2- R3 y R4 representan independientemente un grupo seleccionado entre átomo de hidrógeno, grupo cicloalquilo C3-C6 y alquilo C C3 lineal o ramificado, el cual está opcionalmente sustituido con un heterociclo de cinco o seis miembros que comprende uno o dos heteroátomos seleccionados entre N y O como parte del ciclo, el cual es opcionalmente sustituido con un grupo alquilo C C3 lineal o ramificado b) anillo de fenilo opcionalmente sustituido con uno o más sustituyentes seleccionados de entre átomos de halógeno y un grupo ciano
c) Cicloalquilo C3-C6 opcionalmente sustituido con uno o más sustituyentes seleccionados de grupo alquilo C C3 lineal o ramificado y un grupo hidroxilo
d) heteroarilo C5-C6 opcionalmente sustituido con un grupo seleccionado de entre átomo de halógeno, alquilo C C3 lineal o ramificado y alcoxi C C3 lineal o ramificado y -N (R5) (R6) en el que R5 y R6 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional seleccionado entre N y O como parte del ciclo y que está opcionalmente sustituido con un grupo alquilo C C3,
e) átomo de hidrógeno, y sales farmacéuticamente aceptables de estos compuestos. Otros aspectos de la presente invención son: Aspecto 2) procesos para la preparación de los compuestos del aspecto 1.
Aspecto 3) composiciones farmacéuticas que comprenden una cantidad eficaz de un compuesto del aspecto 1.
Aspecto 4) composiciones farmacéuticas según el aspecto 3 que comprenden además una cantidad terapéuticamente efectiva de uno o más agentes terapéuticos seleccionados del grupo que consiste en agentes quimioterapéuticos, agentes antiinflamatorios, esferoides, inmunosupresores, anticuerpos terapéuticos y antagonistas de adenosina.
Aspecto 5) Compuestos como se define en el aspecto 1 para su uso en el tratamiento de enfermedades o afecciones patológicas que pueden mejorarse mediante la inhibición de la histona deacetilasa clase I, específicamente HDAC1 y HDAC2.
Aspecto 6) métodos para el tratamiento de enfermedades que pueden mejorarse mediante la inhibición de la histona deacetilasa clase I, seleccionada de entre HDAC1 y HDAC2 mediante la administración de los compuestos del aspecto 1 o las composiciones farmacéuticas del aspecto 3 o 4 a un sujeto que necesita dicho tratamiento, donde dichas enfermedades pueden seleccionarse entre cáncer seleccionado de entre colon, pulmón, mama, cáncer del sistema nervioso central (SNC), cáncer cervical uterino, adenocarcinoma pancreático, carcinoma hepatocelular, cáncer gástrico, cáncer de tejidos y tumores malignos de células T seleccionados de leucemia mieloide aguda , leucemia linfoblástica aguda, linfoma cutáneo de células T, linfoma periférico de células T, linfoma de células B y mieloma múltiple; enfermedades neurodegenerativas seleccionadas de entre enfermedad de Alzheimer, trastorno de estrés postraumático, adicción a las drogas, enfermedad de Parkinson, enfermedad de Huntington, toxicidad de amiloide β (Αβ), ataxia de Friedreich, distrofia miotónica, atrofia muscular espinal, síndrome X-frágil, ataxia espinocerebelosa, enfermedad de Kennedy , esclerosis lateral amiotrófica, Niemann-Pick, Pitt Hopkins, atrofia muscular espinal y bulbar, enfermedades infecciosas, enfermedades inflamatorias seleccionadas de alergia, asma, enfermedades autoinmunes, enfermedad celíaca, glomerulonefritis, hepatitis, enfermedad inflamatoria intestinal, lesión por reperfusión y rechazo de trasplante, insuficiencia cardíaca e hipertrofia cardíaca, diabetes, enfermedad renal poliquística y anemia de células falciformes (SCD) y enfermedad de β-talasemia. El cáncer del sistema nervioso central (SNC) se selecciona de meningioma, neuroblastoma, glioblastoma, medulo blastoma, glioma, astrocitomas, oligodendrogliomas, ependimomas, gangliogliomas, neurilemomas (Schwannomas) y craneofaringiomas.
Aspecto 7) productos de combinación de los compuestos del aspecto 1 con uno o más agente terapéutico seleccionado del grupo que consiste en agentes quimioterapéuticos, agentes antiinflamatorios, esteroides, ¡nmunosupresores, anticuerpos terapéuticos y antagonistas de adenosina, que se pueden usar en combinación con los compuestos de la presente solicitud para el tratamiento de enfermedades, trastornos o afecciones asociados a HDAC. El uno o más agentes farmacéuticos adicionales se pueden administrar a un paciente de manera simultánea o secuencial.
Los ejemplos de quimioterapéuticos incluyen inhibidores de proteosoma (por ejemplo, bortezomib), agentes quimioterapéuticos para el tratamiento del cáncer del SNC, que incluyen temozolomida, carboplatino, carmustina (BCNU), cisplatino, ciclofosfamida, etopósido, irinotecán, lomustina (CCNU), metotrexato, procarbazina, vincristina y otros agentes quimioterapéuticos tales como talidomida, revlimida y agentes que dañan el ADN tales como melfalán, doxorrubicina, ciclofosfamida, vincristina, etopósido, carmustina y similares.
Ejemplos de compuestos antiinflamatorios incluyen aspirina, salicilatos de colina, celecoxib, diclofenaco de potasio, diclofenaco de sodio, diclofenaco de sodio con misoprostol, diflunisal, etodolaco, fenoprofeno, flurbiprofeno, ibuprofeno, ketoprofeno, meclofenamato sódico, ácido mefenámico, nabumetona, naproxeno, naproxeno sódico, oxaprozina, piroxicano, rofecoxib, salsalato, salicilato de sodio, sulindaco, tolmetina sódica, valdecoxib y similares.
Ejemplos de esteroides incluyen corticosteroides tales como cortisona, dexametasona, hidrocortisona, metilprednisolona, prednisolona, prednisona y similares.
Ejemplos de ¡nmunosupresores incluyen azatioprina, clorambucilo, ciclofosfamida, ciclosporina, daclizumab, infliximab, metotrexato, tacrolimus y similares.
Ejemplo de anticuerpos terapéuticos para uso en terapia de combinación incluyen, pero no se limitan a, trastuzumab (por ejemplo, anti-HER2), ranibizumab (por ejemplo, anti-VEGF-A), bevacizumab (por ejemplo, anti-VEGF), panitumumab (por ejemplo,
HOJA DE REEMPLAZO (REGLA 26) anti-EGFR), cetuximab (por ejemplo, anti-EGFR), rituxan (anti-CD20) y anticuerpos dirigidos a c-MET.
El ejemplo de agentes antagonistas de adenosina para uso en terapia de combinación incluye, pero no se limita a, CPI-444; PBF-509; y AZD4635 (HTL-1071). En otro aspecto más (Aspecto 8) la presente invención se refiere a un producto de combinación que comprende un compuesto de fórmula (I) o sus sales farmacéuticamente aceptables y uno o más agentes inmunoterapéuticos útiles en el tratamiento del cáncer, más preferiblemente colon, pulmón, mama, cáncer del sistema nervioso central seleccionado de meningioma, neuroblastoma, glioblastoma, medulo blastoma, glioma, astrocitomas, oligodendrogliomas, ependimomas, gangliogliomas, neurilemomas (Schwannomas) y craneofaringiomas, cáncer de cuello uterino, adenocarcinoma pancreático, carcinoma hepatocelular, cáncer gástrico, cáncer de tejidos y malignidades de células T tales como leucemias y linfomas, por ejemplo, leucemia mieloide aguda, leucemia linfoblástica aguda, linfoma cutáneo de células T, linfoma periférico de células T, linfoma de células B y mieloma múltiple.
En una realización preferida, un producto de combinación comprende un compuesto de fórmula (I) o una sal o cocristal farmacéuticamente aceptable del mismo, y uno o más agentes inmunoterapéuticos seleccionados del grupo que consiste en anticuerpos anti-CTLA4, tales como Ipilimumab y Tremelimumab, anticuerpos anti-PD1 tales como MDX-1106 (nivolumab), MK3475 (pembrolizumab), CT-01 1 (pidilizumab) y AMP-224 y anticuerpos anti-PDL1 tales como MPDL3280A, MEDI4736 y MDX-1105. Los componentes del producto de combinación están en la misma formulación o en formulaciones separadas.
En otra realización preferida, un producto de combinación comprende un compuesto de fórmula (I) o una sal o cocristal farmacéuticamente aceptable del mismo, y uno o más agentes quimioterapéuticos seleccionados del grupo que consiste en carboplatino, carmustina (BCNU), cisplatino, ciclofosfamida, Etopósido, Irinotecán, Lomustina (CCNU), Metotrexato, Procarbazina, Temozolomida, Vincristina.
Por consiguiente, los derivados de la presente invención y las sales farmacéuticamente aceptables y composiciones farmacéuticas que comprenden tales compuestos y / o sales de los mismos, pueden usarse en un método de tratamiento de afecciones patológicas o enfermedades del cuerpo humano que comprende administrar a un sujeto que necesita dicho tratamiento, una cantidad efectiva de los derivados de heteroari lamida de la invención o una sal farmacéuticamente aceptable de la misma.
Como se dijo anteriormente, los derivados de heteroaril amida de la invención son útiles en el tratamiento o prevención de enfermedades que se conocen son susceptibles de mejorar por tratamiento con inhibidores de histona deacetilasa clase I, seleccionados de entre HDAC1 y HDAC2. Dichas enfermedades comprenden cánceres tales como cáncer de colon, pulmón, mama, cánceres del sistema nervioso central (SNC) seleccionado de entre meningioma, neuroblastoma, glioblastoma, medulo blastoma, glioma, astrocitomas, oligodendrogliomas, ependimomas, gangliogliomas, neurilemomas (Schwannomas) y craneofaringiomas, cáncer de cuello uterino, adenocarcinoma pancreático, carcinoma hepatocelular, cáncer gástrico, cáncer de tejidos y malignidades de células T como leucemias y linfomas, por ejemplo, leucemia mieloide aguda, leucemia linfoblástica aguda, linfoma cutáneo de células T, linfoma de células T periférico, linfoma de células B y mieloma múltiple; enfermedades neurodegenerativas seleccionadas de enfermedad de Alzheimer, trastorno de estrés postraumático, adicción a las drogas, enfermedad de Parkinson, enfermedad de Huntington, toxicidad de amiloide β (Αβ), ataxia de Friedreich, distrofia miotónica, atrofia muscular espinal, síndrome de X frágil, ataxia espinocerebelosa, enfermedad de Kennedy, esclerosis lateral amiotrófica, enfermedad de Niemann-Pick, síndrome Pitt Hopkins, atrofia muscular espinal y bulbar; enfermedades infecciosas, enfermedades inflamatorias seleccionadas de alergia, asma, enfermedades autoinmunes, enfermedad celíaca, glomerulonefritis, hepatitis, enfermedad inflamatoria del intestino, lesión por reperfusión y rechazo de trasplante; insuficiencia cardíaca e hipertrofia cardíaca; diabetes, enfermedad renal poliquística y anemia de células falciformes (SCD) y enfermedad de β-talasemia.
Como se usa en este documento, el término átomo de halógeno comprende átomos de cloro, flúor, bromo o yodo, preferiblemente átomos de flúor, cloro o bromo. El término halo cuando se usa como prefijo tiene el mismo significado.
Como se usa en este documento, el término haloalquilo se usa para designar alquilo C C4 sustituido por uno o más átomos de halógeno, preferiblemente uno, dos o tres átomos de halógeno. Preferiblemente, los átomos de halógeno se seleccionan del grupo que consiste en átomos de flúor o cloro. En una realización preferida, los grupos haloalquilo son alquilo C C4 sustituido con uno, dos o tres átomos de flúor o cloro. Como se usa en este documento, el término grupo alquilo se usa para designar radicales hidrocarbonados lineales o ramificados (CnH2n + i ) que tienen de 1 a 6 átomos de carbono. Los ejemplos incluyen metilo, etilo, n-propilo, i-propilo, n-butilo, sec-butilo, tere-butilo, n-pentilo, 1-metil-butilo, 2-metil-butilo, isopentilo, 1-etilpropilo, 1 , 1- dimetilpropilo, 1 ,2-dimetilpropilo, n-hexilo, 1-etilbutilo, 2-etilbutilo, 1 , 1-dimetilbutilo, 1 ,2- dimetilbutilo, 1 ,3-dimetilbutilo, 2,2-dimetilbutilo, 2,3-dimetilbutilo, radicales 2- metilpentilo y 3-metilpentilo. En una realización preferida, dichos grupos alquilo tienen de 1 a 3 átomos de carbono (CrC3 alquilo).
Como se usa en este documento, el término cicloalquilo abarca grupos hidrocarburos cíclicos que tienen de 3 a 12 átomos de carbono. Dichos grupos cicloalquilo pueden tener un único anillo cíclico o múltiples anillos condensados. Dichos grupos cicloalquilo incluyen, a modo de ejemplo, estructuras de anillo único tales como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo y similares, o estructuras de anillos múltiples tales como adamantanilo, biciclo[2.2.1]heptano, 1 ,3,3trimetilbiciclo[2.2.1]hept-2-il, (2,3,3- trimetilbiciclo[2.2.1]hept-2-il). En una realización preferida, dichos grupos cicloalquilo abarcan grupos cíclicos de hidrocarburo que tienen de 3 a 6 átomos de carbono.
Como se usa en el presente documento, el término alcoxi C C4 se usa para designar radicales que contienen un grupo alquilo C C4 lineal o ramificado unido a un átomo de oxígeno (CnH2n + 1-O-). Los radicales alcoxi preferidos incluyen metoxi, etoxi, n-propoxi, i-propoxi, n-butoxi, sec-butoxi, t-butoxi, trifluorometoxi, difluorometoxi, hidroxi metoxi, 2- hidroxietoxi o 2-hidroxipropoxi.
Como se usa en este documento, el término cicloalcoxi se usa para designar radicales que contienen grupos cicloalquilo C3-C6 unidos a un átomo de oxígeno.
Como se usa en este documento, los términos anillo heteroarilo de cinco o seis miembros y anillo heteroarilo C5-C6 se usan indistintamente para designar anillos heteroaromáticos que contienen carbono, hidrógeno y uno o más heteroátomos seleccionados entre N, O y S como parte del anillo. Los grupos preferidos son piridilo, pirimidinilo, tienilo opcionalmente sustituidos. Cuando un radical heteroarilo porta 2 o más sustituyentes, los sustituyentes pueden ser iguales o diferentes. Como se usa en este documento, el término anillo heterocíclico C5-C6 y heterociclo saturado de cinco o seis miembros se usan indistintamente para designar heterocíclico saturado que contiene carbono, hidrógeno y uno o más heteroátomos seleccionados de N y O como parte del anillo. Dichos grupos pueden estar opcionalmente sustituidos con uno o más sustituyentes. Los radicales preferidos son piperidinilo, piperazinilo y morfolinilo opcionalmente sustituidos. Cuando el radical heterocíclico porta 2 o más sustituyentes, los sustituyentes pueden ser iguales o diferentes.
Como se usa en el presente documento, algunos de los átomos, radicales, cadenas o ciclos presentes en las estructuras generales de la invención están "opcionalmente sustituidos". Esto significa que estos átomos, radicales, cadenas o ciclos pueden estar no sustituidos o sustituidos en cualquier posición por uno o más, por ejemplo 1 , 2, 3 o 4, sustituyentes, por lo que los átomos de hidrógeno unidos a los átomos no sustituidos, radicales, cadenas o ciclos son reemplazados por átomos, radicales, cadenas o ciclos químicamente aceptables. Cuando dos o más sustituyentes están presentes, cada sustituyente puede ser el mismo o diferente
Como se usa aquí, el término sal farmacéuticamente aceptable se usa para designar sales con un ácido o base farmacéuticamente aceptable. Los ácidos farmacéuticamente aceptables incluyen ácidos inorgánicos, por ejemplo ácido clorhídrico, sulfúrico, fosfórico, difosfórico, bromhídrico, hidroyódico y nítrico, y ácidos orgánicos, por ejemplo, cítrico, fumárico, maleico, málico, mandélico, ascórbico, oxálico, succínico, tartárico, benzoico, acético, metanosulfónico, etanosulfónico, bencenosulfónico o p-toluenosulfónico. Las bases farmacéuticamente aceptables incluyen hidróxidos de metal alcalino (por ejemplo, sodio o potasio), metal alcalinotérreo (por ejemplo, calcio o magnesio) y bases orgánicas, por ejemplo alquilaminas, arilalquilaminas y aminas heterocíclicas.
Otras sales preferidas de acuerdo con la invención son compuestos de amonio cuaternario en donde un equivalente de un anión (X"n) está asociado con la carga positiva del átomo de N. X"n puede ser un anión de diversos ácidos minerales tales como, por ejemplo, cloruro, bromuro, yoduro, sulfato, nitrato, fosfato o un anión de un ácido orgánico tal como, por ejemplo, acetato, maleato, fumarato, citrato, oxalato, succinato, tartrato, malato, mandelato, trifluoroacetato, metanosulfonato y p- toluenosulfonato. X"n es preferiblemente un anión seleccionado entre cloruro, bromuro, yoduro, sulfato, nitrato, acetato, maleato, oxalato, succinato o trifluoroacetato. Más preferiblemente, X- es cloruro, bromuro, trifluoroacetato o metanosulfonato.
Como se usa en el presente documento, el término "inhibidor" se refiere a una molécula tal como un compuesto, un fármaco, enzima o una hormona que bloquea o de otro modo interfiere con una actividad biológica particular. El término "inhibidor" es sinónimo del término antagonista. El término "selectivo HDAC1/2" significa que el compuesto se une a HDAC1 y HDAC2 en una extensión sustancialmente mayor, como 5X, 10X, 15X, 20X mayor o más, que a cualquier otro tipo de enzima HDAC, como HDAC3 o HDAC6. Es decir, el compuesto es selectivo para HDAC1 y/o HDAC2 sobre cualquier otro tipo de enzima HDAC.
De acuerdo con una realización de la presente invención, X1 es un grupo -CH. En una realización más preferida, X1 y X2 son grupos -CH.
De acuerdo con una realización de la presente invención, R1 representa un grupo fenilo opcionalmente sustituido con uno o más sustituyentes seleccionados del grupo que consiste en átomos de halógeno, haloalquilo C C4 y alcoxi C C4. En una realización más preferida, R1 representa un grupo fenilo opcionalmente sustituido con uno o más sustituyentes seleccionados de átomos de halógeno.
En otra realización de la presente invención, R1 representa un anillo heteroarilo de cinco o de seis miembros opcionalmente sustituido con uno o más sustituyentes seleccionados del grupo que consiste en un grupo ciano, un átomo de halógeno y un haloalquilo C C4. En una realización más preferida, R1 representa un anillo piridilo o tienilo.
Según una realización de la presente invención, R2 representa un grupo -N(R3)(R4), en el que R3 y R4 forman junto con el átomo de nitrógeno al que están unidos un heterociclo saturado de 5 o 6 miembros que comprende opcionalmente un heteroátomo seleccionado entre N y O como parte del ciclo, heterociclo que está opcionalmente sustituido con un grupo alquilo C C3 o un grupo -N(R5)(R6), en el que R5 y R6 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros comprendiendo opcionalmente un heteroátomo adicional seleccionado entre N y O como parte del ciclo, dicho ciclo está opcionalmente sustituido con un grupo alquilo C C3. En una realización más preferida, R2 representa un anillo de piperazinilo, piperidinilo o morfolinilo opcionalmente sustituido con un grupo alquilo C C3 o un grupo -N(R5)(R6).
Según una realización de la presente invención, R2 representa un grupo -N(R3)(R4), en donde R3 y R4 representan independientemente un grupo seleccionado entre átomo de hidrógeno, grupo cicloalquilo C3-C6 y alquilo C C3 lineal o ramificado, el cual es opcionalmente sustituido por un heterociclo de 5 o 6 miembros que comprende uno o dos átomos de N como parte del ciclo, dicho ciclo está opcionalmente sustituido con un grupo alquilo C1-C3. En una realización más preferida, R2 representa el grupo - N(R3)(R4), donde R3 representa un alquilo C1-C3 lineal sustituido con un heterociclo saturado de 5 o 6 miembros que comprende uno o dos átomos de N, dicho heterociclo está opcionalmente sustituido con un grupo alquilo CrC3; y R4 es un átomo de hidrógeno.
De acuerdo con una realización de la presente invención, R2 representa un anillo de fenilo opcionalmente sustituido con uno o más sustituyentes seleccionados de átomos de halógeno y grupo ciano. En una realización preferida, el anillo de fenilo está sustituido con un átomo de halógeno o con un grupo ciano. De acuerdo con otra realización de la presente invención, R2 representa un cicloalquilo C3-C6. En una realización más preferida, R2 representa un anillo de ciclopropilo o ciclopentilo.
De acuerdo con otra realización de la presente invención, R2 representa un heteroarilo C5-C6 opcionalmente sustituido con uno o más sustituyentes seleccionados entre átomos de halógeno y grupo ciano. En una realización preferida, el heteroarilo C5-C6 está sustituido con un átomo de halógeno o con un grupo ciano. En una realización más preferida, R2 representa un anillo piridilo o pirimidinilo opcionalmente sustituido con uno o más sustituyentes seleccionados entre átomos de halógeno y grupo ciano, preferiblemente sustituido con un átomo de halógeno o con un grupo ciano. En una realización preferida adicional de la presente invención en los compuestos de fórmula (I), X1 y X2 representan grupos -CH, R1 representa un grupo fenilo opcionalmente sustituido con uno o más átomos de halógeno, y R2 representa un grupo -N(R3)(R4) en donde R3 y R4 forman junto con el átomo de nitrógeno al que están unidos un heterociclo saturado de 6 miembros que comprende opcionalmente un heteroátomo seleccionado entre N y O, el cual está opcionalmente sustituido con un grupo alquilo C1-C3 o un grupo -N(R5)(R6), donde R5 y R6 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional seleccionado entre N y O, el cual está opcionalmente sustituido con un grupo alquilo C1-C3 . En una realización más preferida, R2 representa un anillo piperazinilo opcionalmente sustituido con un grupo alquilo C C3.
Compuestos individuales particulares de la presente invención incluyen: N-(3-amino-6-fenilpiridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida N-(3-amino-6-fenilpiridin-2-il)nicotinamida
N-(3-amino-6- (4-fluorofenil) piridin-2-il)nicotinamida
N-(3-amino-6-fenilpiridin-2-il)-6-morfolinonicotinamida
N-(3-amino-6- (4-fluorofenil)piridin-2-il)-6-morfolinonicotinamida N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-morfolinonicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida
N-(3-amino-6-(4-metoxifenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinami
N-(5-amino-[2,4'-bipiridin]-6-il)-6-(4-metilpiperazin-1-il)nicotinarriida
N-(3-amino-6-(3,4-difluorofenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinami N-(3-amino-6-fenilpiridin-2-il)-2-(4-metilpiperazin-1-il)pirimidina-5-carboxami
N-(3-amino-6-fenilpiridin-2-il)pirimidina-5-carboxamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)pirimidina-5-carboxarTiida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-2-morfolinopirimidina-5-carboxamida N-(3-amino-6-(4-fluorofenil)piridin-2-il)-2-(4-metilpiperazin-1-il)pirimidina-5- carboxamida
N-(3-amino-6-fenilpiridin-2-il)-2-(ciclopropilamino)pirimidina-5-carboxamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-2-(ciclopropilamino)pirimidina-5- carboxamida N-(3-amino-6- (4-fluorofenil)piridin-2-il)-6-fenilnicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-fluorofenil)nicotinamida N-(3-amino-6-(4-fluorofenil)piridin-2-il)-[2,4'-bipiridina]-5-carboxamida N-(3-amino-6-(4-fluorofenil)piridin-2-il)-[2,3'-bipiridina]-5-carboxamida N-(3-amino-6- (4-fluorofenil)piridin-2-il)-6-(3-cianofenil)nicotinamida N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-ciclopropilnicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(piperazin-1-il)nicotinamida N-(5-amino-2-(4-fluorofenil)pirimidin-4-il)-6-(piperazin-1-il)nicotinami
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-aminopiperidin-1-il)nicotin
N-(5-amino-2-(4-fluorofenil)pirimidin-4-il)-6-(4-am
N-(3-amino-6-(tiofen-2-il)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinam N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-((2-(4-metilpiperazin-1-il)etil)amin nicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6- ((2- (piridin-3-il)etil)amino)nicotinamida La síntesis de los compuestos de fórmula (I) se resumen en los siguientes esquemas. En el Esquema 1 , se describe la síntesis del compuesto intermedio de fórmula (IV). Esquema 1
Figure imgf000025_0001
(II) (III) (IV)
Reactivos y condiciones: a) NH3, EtOH, 0°C-RT, 3-6 h; b) R1-B (OH)2, Pd2 (dba)3, SPhos, K3P04, tolueno/H20, refluido durante la noche.
Los reactivos comercialmente disponibles de fórmula (II) se hacen reaccionar con amoníaco en etanol a 0°C para proporcionar los derivados de fórmula (III). Acoplamiento de tipo Suzuki con ácido borónico o derivados de boronato usando un catalizador de paladio tal como Tris (dibencilidenacetona) dipaladio (0) en presencia de SPhos (diciclohexil(2',6'-dimetoxi-[1 , T-bifenil]-2)-il)fosfina) y una solución acuosa de una base tal como fosfato tribásico monohidrato de potasio a 110°C durante 12 h proporcionan los compuestos de fórmula (IV), de acuerdo con el Esquema 1.
Esquema 2
En el Esquema 2, se describe la síntesis del compuesto intermedio de fórmula (VI).
Figure imgf000026_0001
(IV) (V) (VI)
Reactivos y condiciones: c) cloro formiato de etilo, TEA, NaHMDS, THF, -35°C- temperatura ambiente.
Para la preparación de las amidas de fórmula (VI), el ácido carboxílico de fórmula (V) se activa en forma de un anhídrido mixto. Este anhídrido se genera haciendo reaccionar el ácido correspondiente con cloroformiato de etilo en presencia de trietil amina. La síntesis de las amidas de fórmula (VI) se lleva a cabo mediante la reacción de la heteroarilamina de fórmula (IV) con el anhídrido de ácido carboxílico mezclado correspondiente en presencia de una base, por ejemplo bis (trimetilsilil) amida sódica (NaHMDS) a temperaturas entre -35°C hasta temperatura ambiente.
Esquema 3
En el Esquema 3, se describe la síntesis de compuestos de fórmula (I) de acuerdo con la presente invención en donde R2 es un anillo de fenilo o heteroarilo.
Figure imgf000026_0002
(VI) (Vil) (i)
Reactivos y condiciones: d) R2-B (OH)2, Pd2 (dba)3, SPhos, K3PO4, tolueno/H20, refluido durante la noche/amina primaria o secundaria, DIPEA, DMSO, 110°C; e) H2, (Pd/C).
Los compuestos de fórmula general (I) se preparan en dos etapas a partir de compuestos intermedios de fórmula (VI). Cuando R2 representa un grupo cicloalquilo, fenilo o heteroarilo opcionalmente sustituido, de acuerdo con la presente invención, el grupo R2 se introduce mediante un acoplamiento de tipo Suzuki con los correspondientes ácidos borónicos o derivados de boronato, usando los procedimientos estándar para la reacción catalizada por paladio para proporcionar compuestos de fórmula (VII).
Esquema 4
En el Esquema 4, se describe la síntesis de compuestos de fórmula (I) de acuerdo con la presente invención en donde R2 es -N(R3)(R4).
Figure imgf000027_0001
(VI) (Vlla) (la)
Reactivos y condiciones: f) R2-B(OH)2, Pd2(dba)3, SPhos, K3P04, tolueno/H20, reflujo durante la noche / -N(R3)(R4), DIPEA, DMSO, 110°C; g) H2, (Pd/C). En los casos en que R2 representa un grupo -NR3R4, de acuerdo con la definición de la presente invención, la reacción del intermedio (VI) con aminas primarias o secundarias en presencia de N, N-diisopropiletilamina (DIPEA) en DMSO a 1 10°C conduce a los compuestos de fórmula (Vlla).
La posterior reducción del grupo nitro de los compuestos de fórmula (Vlla) tiene lugar con hidrógeno gaseoso en presencia de catalizador de paladio (Pd/C) como se describe en el Esquema 3 proporcionando compuestos de fórmula (I), que son el objeto de la presente invención.
Alternativamente, los compuestos de fórmula (I) de la presente invención también se pueden preparar usando las mismas reacciones que se han descrito anteriormente, pero empleando la secuencia representada en el Esquema 5.
Esquema 5
Figure imgf000028_0001
Reactivos y condiciones: h) R2-B(OH)2, Pd2(dba)3, SPhos, K3P04, tolueno / H20, reflujo durante la noche/amina primaria o secundaria, DI PEA, DMSO, 110°C; i) cloro formiato de etilo, TEA, NaHMDS, THF, -35°C-temperatura ambiente; j) H2, (Pd/C). Actividad farmacológica
Ensayo de histona deacetilasa
Las actividades inhibidoras de los compuestos de la presente invención se determinaron usando ensayos bioquímicos HDAC (servicios de ensayo bioquímico Reaction Biology Corp.). El compuesto con las dosis indicadas se probó en los ensayos bioquímicos de las enzimas HDAC 1 , HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC 8, HDAC9, HDAC10 y HDAC1 1.
Los compuestos se analizaron en modo IC50 individual de 10 dosis con una dilución en serie de 3 veces comenzando a 10 μΜ frente a 11 HDAC. Los compuestos de referencia HDAC Trichostatin A (TSA) y TMP269 se analizaron en IC50 de 10 dosis con una dilución en serie de 3 veces comenzando a 10 μΜ.
Sustrato para HDAC1 , 2, 3, 6, 10: péptido fluorogénico de los residuos 379-382 (RHKK(Ac)AMC) de p53. Sustrato para HDAC4, 5, 7, 9 y 1 1 : Sustrato fluorogénico HDAC Class2a (Trifluoroacetil Usina). Sustrato para HDAC 8: péptido fluorogénico de los residuos 379-382 ( R H K(Ac) K( Ac) A M C) de p53. Procedimiento de reacción general: (Determinación IC50 estándar) a. Se añadió enzima 2X a los pocilios de la placa de reacción, excepto a los pocilios de control sin enzima (No En). Agregar memoria intermedia en pozos No En. b. Se añadieron los compuestos a ensayar en 100% de DMSO a la mezcla de enzimas mediante tecnología acústica (Echo550, rango de nanolitros). La mezcla se centrifugó y se preincubó. c. Mezcla de sustrato 2X (sustrato HDAC fluorogeno y co-factor (500 μΜ de dinucleótido de nicotinamida y adenina (NAD +) en todos los ensayos de Sirt) se añadieron a todos los pocilios de reacción para iniciar la reacción. Las placas se centrifugaron y se agitaron. d. Las placas se incubaron durante 1-2 horas, a 30 ° C con sello. e. Se usó el desabollador con Tricostatina A (o TMP269 o NAD <+>) para detener la reacción y generar color fluorescente. f. Se leyó la fluorescencia (excitación, 360; emisión, 460) usando el Lector de placas EnVision Multilabel (Perkin Elmer) g. La lectura del punto final se tomó para el análisis después de que el desarrollo alcanzara la meseta.
Análisis de datos: los porcentajes de actividad de la enzima (con respecto a los controles de DMSO) y los valores de IC50 se calcularon usando el programa GraphPad Prism 4 basado en una ecuación dosis-respuesta sigmoidal. El valor en blanco (DMSO) se ingresó como 1.00E-12 de concentración para el ajuste de la curva.
Resultados
Los resultados para los compuestos seleccionados de la invención en el ensayo de inhibición de la actividad HDAC se muestran en la Tabla 1 (Intervalos IC50: A <0,2 μΜ; 0,2 μΜ <B <1 μΜ; 1 μΜ <= C <50 μΜ; D> = 50 μΜ ).
Tabla 1.
Ejemplo IC50 IC50 IC50 IC50 IC50 IC50
No. HDAC HDAC2 HDAC3 HDAC8 HDAC6 HDAC10
1 (μΜ) (μΜ) (μΜ) (μΜ) (μΜ) (μΜ)
1 A 2 A
3 A
4 A
5 A A D D C
6 A A D D D C
7 B
8 B
9 B
10 A
13 A
14 A
15 A
16 A
17 C A D D
21 B
22 B
24 B
25 B A D D C C
27 A A D C C
29 A A C C C
30 A
* Celdas vacías: indican que no hay inhibición o actividad compuesta que no se pueda ajustar a una curva IC50 Como se puede ver a partir de los resultados descritos en la Tabla 1 , los compuestos de la presente invención son potentes inhibidores de las histonas deacetilasas 1 y/o 2 (HDAC1 y/o HDAC2).
En algunas realizaciones, como se puede ver a partir de los resultados descritos en la Tabla 1 , los compuestos de la presente invención son inhibidores potentes y selectivos de HDAC1 y HDAC2 frente a otros subtipos de histona deacetilasa.
Por consiguiente, los derivados de la invención y sus sales farmacéuticamente aceptables, y las composiciones farmacéuticas que comprenden tales compuestos y/o sales de los mismos, pueden usarse en un método de tratamiento de trastornos del cuerpo humano que comprende administrar a un sujeto que requiere dicho tratamiento una cantidad efectiva del compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo.
Los compuestos de la invención son útiles en el tratamiento o prevención de enfermedades que se sabe que son susceptibles de mejora mediante la inhibición de histona deacetilasa clase I, particularmente histona deacetilasas 1 y 2 (HDAC1 , HDAC2). Tales enfermedades se seleccionan de cáncer; enfermedades neurodegenerativas; enfermedades infecciosas; enfermedades inflamatorias; insuficiencia cardíaca e hipertrofia cardíaca; diabetes; enfermedad renal poliquística y anemia de células falciformes (ECF) y enfermedad de β-talasemia. Un uso terapéutico de los compuestos de la presente invención es tratar enfermedades o trastornos proliferativos tales como cáncer. El cáncer incluye colon, pulmón, mama, cáncer del sistema nervioso central (CNS), cáncer cervical uterino, adenocarcinoma pancreático, carcinoma hepatocelular, cáncer gástrico, cáncer de tejidos y malignidades de células T seleccionadas de leucemia mieloide aguda, leucemia linfoblástica aguda, linfoma de células T cutáneo, linfoma periférico de células T, linfoma de células B y mieloma múltiple. El cáncer del sistema nervioso central (SNC) incluye meningioma, neuroblastoma, glioblastoma, medulo blastoma, glioma, astrocitomas, oligodendrogliomas, ependimomas, gangliogliomas, neurilemomas (Schwannomas) y craneofaringiomas. Otro uso terapéutico de los compuestos de la presente invención es también para tratar enfermedades neurodegenerativas seleccionadas de enfermedad de Alzheimer, trastorno de estrés postraumático o adicción a las drogas, enfermedad de Parkinson, enfermedad de Huntington, toxicidad de amiloide-β (Αβ), ataxia de Friedreich, distrofia miotónica, atrofia muscular espinal, síndrome X frágil, ataxia espinocerebelosa, enfermedad de Kennedy, esclerosis lateral amiotrófica, Niemann Pick, Pitt Hopkins, atrofia muscular espinal y bulbar.
Otro uso terapéutico de los compuestos de la presente invención es también tratar enfermedades o trastornos de infecciones virales como el VIH.
Otro uso terapéutico de los compuestos de la presente invención es también para tratar enfermedades inflamatorias seleccionadas entre alergia, asma, enfermedades autoinmunes, enfermedad celíaca, glomerulonefritis, hepatitis, enfermedad inflamatoria del intestino, lesión por reperfusión y rechazo de trasplante. La presente invención también proporciona composiciones farmacéuticas que comprenden, como un ingrediente activo, al menos derivados de heteroarilamida de fórmula (I) o una sal farmacéuticamente aceptable de los mismos en asociación con otros agentes terapéuticos y un excipiente farmacéuticamente aceptable tal como un vehículo o diluyente. El ingrediente activo puede comprender de 0,001 % a 99% en peso, preferiblemente de 0,01 % a 90% en peso de la composición dependiendo de la naturaleza de la formulación y si se debe realizar una dilución adicional antes de la aplicación. Preferiblemente, las composiciones se preparan en una forma adecuada para administración oral, tópica, nasal, rectal, percutánea o inyectable.
Los excipientes farmacéuticamente aceptables, que se mezclan con el compuesto activo o sales de dicho compuesto, para formar las composiciones de esta invención, son bien conocidos per se y los excipientes reales usados dependen, entre otros, del método previsto de administración de las composiciones.
Las composiciones de esta invención están adaptadas preferiblemente para administración inyectable y per os. En este caso, las composiciones para administración oral pueden tomar la forma de tabletas, tabletas retardantes, tabletas sublinguales, cápsulas, aerosoles de inhalación, soluciones de inhalación, inhalación de polvo seco o preparaciones líquidas, tales como mezclas, elixires, jarabes o suspensiones, conteniendo todo el compuesto de la invención; tales preparaciones pueden ser hechas por métodos bien conocidos en la técnica. Los diluyentes, que pueden usarse en la preparación de las composiciones, incluyen aquellos diluyentes líquidos y sólidos, que son compatibles con el ingrediente activo, junto con agentes colorantes o saborizantes, si se desea. Los comprimidos o cápsulas pueden contener convenientemente entre 2 y 500 mg de ingrediente activo o la cantidad equivalente de una sal del mismo.
La composición líquida adaptada para uso oral puede estar en forma de soluciones o suspensiones. Las soluciones pueden ser soluciones acuosas de una sal soluble u otro derivado del compuesto activo en asociación con, por ejemplo, sacarosa para formar jarabe. Las suspensiones pueden comprender un compuesto activo insoluble de la invención o una sal farmacéuticamente aceptable del mismo en asociación con agua, junto con un agente de suspensión o agente aromatizante.
Las composiciones para inyección parenteral pueden prepararse a partir de sales solubles, que pueden o no estar liofilizadas y que pueden disolverse en medios acuosos sin pirógenos u otro fluido de inyección parenteral apropiado.
Las dosis efectivas normalmente están en el rango de 2 a 2000 mg de ingrediente activo por día. La dosificación diaria puede administrarse en uno o más tratamientos, preferiblemente de 1 a 4 tratamientos por día. La presente invención será adicionalmente ilustrada mediante los siguientes ejemplos. Lo siguiente se proporciona a modo de ilustración y no limita el alcance de la invención de ninguna manera. La síntesis de los compuestos de la invención es ilustrada mediante los siguientes ejemplos que incluyen la preparación de los compuestos intermedios, que no limitan el alcance de la invención de ninguna manera. Abreviaturas
En la presente solicitud se utilizan las siguientes abreviaturas, con las definiciones correspondientes:
RT: temperatura ambiente
Pd2 (dba) 3: Tris (dibencilidenacetona) dipaladio SPhos: diciclohexil (2',6'-dimetoxi- [1 , 1'-bifenil]-2-il) fosfina
TEA: trietilamina
NaHMDS: Sodio bis (trimetilsilil) amida THF: Tetrahidrofurano
DMSO: dimetilsulfóxido EXAMPLES
General. Los reactivos, disolventes y productos de partida se adquirieron de fuentes comerciales. El término "concentración" se refiere a la evaporación al vacío usando un rotaevaporador de Büchi. Cuando sea indicado, los productos de reacción se purificaron por cromatografía ultrarrápida sobre gel de sílice (40-63 μηι) con el sistema disolvente indicado. Los datos espectroscópicos se midieron en un espectrómetro Varían Mercury 400. Los puntos de fusión se midieron en un instrumento Büchi 535. Los HPLC-MS fueron realizados en un instrumento Gilson equipado con una bomba de pistón Gilson 321 , un desgasificador de vacío Gilson 864, un módulo de inyección Gilson 189, un divisor Gilson 1/1000, una bomba Gilson 307, un detector Gilson 170 y un detector Thermoquest Fennigan aQa.
Esquema 6: Síntesis del Ejemplo 1
Figure imgf000034_0001
Paso 1 : Síntesis de 6-cloro-3-nitropiridin-2-amina (Intermedio 2)
Una solución del compuesto 1 (5 g, 0,026 mol) en etanol (50 mi) a 0°C se purgó con gas amoníaco durante 3 h, luego se dejó en agitación durante la noche a temperatura ambiente. La mezcla de reacción se diluyó con agua, y el precipitado que se formó se filtró y se lavó con agua, seguido de hexano y se secó para obtener el Intermedio 2 (3,65 g, 81 ,2% de rendimiento). Paso 2: Síntesis de 3-nitro-6-fenilpiridin-2-amina (Intermedio 3)
Intermedio 2 (8.62 g, 0.05 mol), ácido fenilborónico (5.05 g), diciclohexil (2',6'-dimetoxi- [1 , 1'-bifenil]-2-il)fosfina (0.567 g), fosfato de potasio tribásico monohidrato (23,85 g), 30 mi de tolueno y 3 mi de agua se añadieron a un matraz de fondo redondo con 3 bocas de 100 mi. Se burbujeó nitrógeno directamente en la mezcla durante 20 minutos. Se añadió Pd2(dba)3 (0,316 g) y la mezcla se calentó a reflujo durante la noche bajo nitrógeno. La mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna eluyendo con 20% de acetato de etilo/hexano inicialmente y se añadió acetato de etilo para limpiar el producto. El producto se lavó con hexano para obtener el intermedio 3 (8,02 g, 75% de rendimiento).
Paso 4: Síntesis de 6-cloro-N- (3-nitro-6-fenilpiridin-2-il)nicotinamida (Intermedio 4) Se añadió una solución de ácido 6-cloro-3-nicotónico (1 g) en THF (10 mi), TEA (1 ,5 mi) y cloro formiato de etilo (1 ,45 mi) y se dejó agitar durante 1 ha temperatura ambiente. La mezcla de reacción se diluyó con agua, y el precipitado que se formó se filtró y se secó para obtener anhídrido. Se añadió lentamente una solución del intermedio 3 (1 g) en THF (50 mi), NaHMDS (10 mi) a -35°C y se dejó agitar durante 1 hora a la misma temperatura. A esta solución, se añadió anhídrido (1.2 g) en THF (5 mi) inmediatamente y permitió que la mezcla de reacción se calentara a temperatura ambiente. Después de completarse, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el intermedio 4 requerido (0,96 g, 78% de rendimiento).
Paso 5: Síntesis de 6- (4-metilpiperazin-1 -il) -N- (3-nitro-6-fenilpiridin-2-il) nicotinamida (Intermedio 5)
A una solución de N-metilpiperazina (226 mg) en DMSO (10v) se añadió DI PEA (437 mg) y el intermedio 4 (400 mg) se calentó en un tubo de sellado a 110 ° C durante la noche. Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el intermedio 5 requerido como un sólido amarillo pálido (310 mg, 67% de rendimiento).
Paso 6: Síntesis de N-(3-amino-6-fenilpiridin-2-il)-6-(4-metilpiperazin-1- il)nicotinamida. Ejemplo 1
A una solución del intermedio 5 (310 mg) en etanol (20 mi) y acetato de etilo (35 mi) se añadió Pd / C (10%) (46 mg, 15% (p / p)) y se dejó agitar durante la noche bajo gas de hidrógeno. Después de completada la reacción monitorizada por TLC, la mezcla de reacción fue filtrada a través de celite y evaporada para dar un residuo. El residuo se purificó por Prep. HPLC para obtener el ejemplo 1 como un sólido blanquecino (20 mg, 10% de rendimiento).
1 H-RMN (400 MHz, DMSO-d6): 1 1 = 10,25 (br, s, 1 H), 8,80 (d, J = 4,4 Hz, 1 H), 8, 15 (d, J = 1 1 ,6 Hz, 1 H), 7,955 (d , J = 7,2 Hz, 2H), 7,68 (d, J = 8,0 Hz, 1 H), 7,42 (t, J = 7,6 Hz, 2H), 7,31 (m, 2H), 6,92 (d, J = 9,2 Hz, 1 H ), 5, 14 (br, s, 2H), 3,65 (t, J = 4,8 Hz, 4H), 2,40 (t, J = 4,8 Hz, 4H), 2,22 (s, 3H).
HPLC-MS: Rt 11 ,120 m/z 389,6 (MH+).
Los siguientes ejemplos se sintetizaron usando el procedimiento descrito en el esquema 6 a partir de los correspondientes derivados de piridin-2-amina y ácido nicotínico. Ejemplo 2: N- (3-amino-6-fenilpiridin-2-il)nicotinamida
1 H-RMN (400 MHz, DMSO-d6): δ = 10,60 (s, 1 H), 9, 18 (s, 1 H), 8,77 (dd, J = 6,0, 1 ,2 Hz, 1 H), 8,37 (d, J = 8,0 Hz , 1 H), 7,94 (d, J = 7,6 Hz, 2 H), 7,71 (d, J = 8,4 Hz, 1 H), 7,58 (m, 1 H), 7,42 (t, J = 7,6 Hz, H), 7,31 (m , 2H), 5,29 (br s, 2H).
HPLC-MS: Rt 9,891 m/z 291 ,0 (MH+). Ejemplo 3: N-(3-amino-6(4-fluorofenil)piridin-2-il)nicotinamida
1 H-RMN (400 MHz, DMSO-d6) δ = 10,59 (s, 1 H), 9, 17 (d, J = 2,0 Hz, 1 H), 8,77 (dd, J = 6,8, 1 ,6 Hz, 1 H), 8,37 (m, 1 H), 7,98 (m, 2 H), 7,69 (d, J = 8,4 Hz, 1 H), 7,58 (m, 1 H), 7,26 (m, 3 H), 5,29 (br, s, 2 H).
HPLC-MS: Rt 10.590 m/z 309.0 (MH+). Ejemplo 4: N-(3-amino-6-fenilpiridin-2-il)-6-morfolinonicotinamida 1 H-RMN (400 MHz, DMSO-d6) δ = 10,27 (br, s, 1 H), 8,28 (d, J = 2.0 Hz, 1 H), 8, 19 (dd, J = 1 1 ,0, 2,0 Hz, 1 H), 7,96 ( d, J = 7,6 Hz, 2 H), 7,68 (d, J = 8,4 Hz, 1 H), 7,42 (t, J = 7,6 Hz, 2 H), 7,31 (m, 2 H), 6,93 (d, J = 9,2 Hz, 1 H), 5,15 (br, s, 2H), 3,72 (m, 4H), 3,60 (m, 4H). HPLC-MS: Rt 9,828 m/z 376,3 (MH+).
Ejemplo 5: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-morfolinonicotinamida
1 H-RMN (400 MHz, DMSO-d6) δ = 10,27 (br, s, 1 H), 8,81 (d, J = 2,4 Hz, 1 H), 8, 18 (dd, J = 1 1 ,6, 2,4 Hz, 1 H), 8,00 ( m, 2 H), 7,67 (d, J = 8,0 Hz, 1 H), 7,26 (m, 3 H), 6,93 (d, J = 8,8 Hz, 1 H), 5, 15 (br, s, 2 H), 3,72 (m, 4 H ), 3,61 (m, 4 H). HPLC-MS: Rt 10,855 m/z 394,4 (MH+).
Ejemplo 6: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-metilpiperazin-1- il)nicotinamida
1 H-RMN (400 MHz, DMSO-d6) δ = 10,24 (s, 1 H), 8,79 (br, s, 1 H), 8, 15 (dd, J = 1 1 ,6, 2,4 Hz, 1 H), 8,00 (m, 2H), 7,69 (d, J = 8,4 Hz, 1 H), 7,26 (m, 3H), 6,92 (d, J = 9,2 Hz, 1 H), 5,14 (br, s, 2H), 3,65 (br, s, 4H), 2,55 (br, s, 4H), 2,22 (s, 3H).
HPLC-MS: Rt 11.906 m/z 407.4 (MH+).
Ejemplo 7: N-(3-amino-6-(4-metoxifenil)piridin-2-il)-6-(4-metilpiperazin-1- il)nicotinamida
1 H-NMR (400 MHz, DMSO-d6) δ = 10,21 (s, 1 H), 8,79 (d, J = 2,8Hz, 1 H), 8,15 (dd, J = 11 ,6, 2,4 Hz, 1 H), 7,89 (d, J = 8.8 Hz, 2H), 7,59 (d, J = 8.0 Hz, 1 H), 7,25 (d, J = 8,4 Hz, 1 H), 6,97 (m, 3H), 5,01 (br, s, 2H), 3,78 ( s, 3H), 3,65 (t, J = 4,8 Hz, 4H), 2,41 (t, J = 4,8 Hz, 4H), 2,22 (s, 3H).
HPLC-MS: Rt 8,759 m/z 419,2 (MH+).
Ejemplo 8: N-(5-amino-[2,4'-bipiridin]-6-il)-6-(4-metilpiperazin-1-il)nicotinamida. 1 H-RMN (400 MHz, DMSO-d6) δ = 10,22 (s, 1 H), 8,79 (d, J = 2,4 Hz, 1 H), 8,57 (dd, J = 6,4, 2,0 Hz, 2H), 8,14 (dd, J = 11 ,6, 2,4 Hz, 1 H), 7,90 (dd, J = 6,4, 2,0 Hz, 2H), 7,84 (d, J = 8,4 Hz, 1 H), 7,27 (d, J = 8,4 Hz, 1 H), 6,92 ( d, J = 9,2 Hz, 1 H), 5,43 (br, s, 2 H), 3,65 (m, 4 H), 2,41 (m, 4 H), 2,22 (s, 3 H).
HPLC-MS: Rt 3.743 m/z 390.2 (MH+). Ejemplo 9: N-(3-amino-6-(3,4-difluorofenil)piridin-2-il)-6-(4-metilpiperazin-1- il)nicotinamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,09 (s, 1 H), 8,75 (br, s, 1 H), 8, 10 (d, J = 8,0 Hz, 1 H), 7,90 (m, 1 H), 7,75 ( br, s, 1 H), 7,66 (d, J = 7,6 Hz, 1 H), 7,41 (m, 1 H), 7,23 (d, J = 7,2 Hz, 1 H), 6,87 (d, J = 8,8 Hz, 1 H), 5, 15 (br, s, 2H), 3,61 (br, s, 4H), 2,38 (br, s, 4H), 2,2 (s, 3H).
HPLC-MS: Rt 10.548 m/z 425.2 (MH+). Esquema 7: Síntesis del Ejemplo 10
Figure imgf000038_0001
Paso 3: Síntesis de 2-cloro-N-(3-nitro-6-fenilpiridin-2-il)pirimidina-5-carboxamida (Intermedio 6)
Se añadió una solución de ácido 2-cloropirimidina-5-carboxílico (1 g) en THF (50 mi), TEA (2,73 g) y cloroformiato de etilo (1 ,7 g) y se dejó agitar durante 1 ha temperatura ambiente. La mezcla de reacción se diluyó con agua (50 mi) y el precipitado que se formó se filtró y se secó para obtener anhídrido. Se añadió lentamente una solución del intermedio 3 (1 g) en THF (50 mi), NaHMDS (12,7 mi) a -35°C y se dejó en agitación durante 1 hora a la misma temperatura. A esta solución, se añadió anhídrido en THF (5 mi) inmediatamente y permitió que la mezcla de reacción se calentara a temperatura ambiente. Después de completarse, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el compuesto intermedio 6 requerido (200 mg, 14% de rendimiento).
Paso 7: Síntesis de 2-(4-metilpiperazin-1-il)-N-(3-nitro-6-fenilpiridin-2- il)pirimidina-5-carboxamida (Intermedio 7)
A una solución, N-metilpiperazina (141 mg) en DMF (4 mi) se añadió DIPEA (272 mg) y el intermedio 4 (250 mg) se calentó en un tubo de sellado a 80 °C durante la noche. Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El crudo se trituró con n-pentano para obtener el intermedio 7 como un sólido marrón pálido (200 mg, 69% de rendimiento).
Etapa 8: Síntesis de N-(3-amino-6-fenilpiridin-2-il)-2-(4-metilpiperazin-1- il)pirimidina-5-carboxamida. Ejemplo 10. A una solución del intermedio 7 (200 mg) en etanol (10 mi) y acetato de etilo (25 mi) se añadió Pd/C (10%) (30 mg, 15% (p/p)) y se dejó agitar durante la noche bajo gas de hidrógeno. Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se filtró a través de celite y se evaporó para dar un residuo. El residuo fue purificado por cromatografía en columna para obtener el ejemplo 10 como un sólido blanquecino (70 mg, 18% de rendimiento).
1 H-RMN (400 MHz, DMSO-d6): δ= 10,33 (s, 1 H), 8,93 (s, 2H), 7,99 (m, 2H), 7,69 (d, J = 8,4 Hz, 1 H), 7,42 (t , J = 7,6 Hz, 2H), 7,31 (m, 2H), 5,20 (br, s, 2H), 3,85 (m, 4H), 2,39 (m, 4H), 2,22 (s, 3H).
HPLC-MS: Rt 6,673 m/z 390,5 (MH+). Los siguientes ejemplos fueron sintetizados usando el procedimiento descrito en el esquema 7 comenzando con los correspondientes derivados de piridin-2-amina y ácido pirimidina-5-carboxílico.
Ejemplo 11 : N-(3-amino-6-fenilpiridin-2-il)pirimidina-5-carboxamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,73 (s, 1 H), 9,36 (m, 3 H), 7,93 (d, J = 7,6 Hz, 2 H), 7,72 (d, J= 8,0 Hz, 1 H) , 7,42 (t, J = 7,2 Hz, 2 H), 7,31 (m, 2 H), 5,39 (s, 2H).
HPLC-MS: Rt 8,382 m/z 292,2 (MH+). Ejemplo 12: N-(3-amino-6-(4-fluorofenil)piridin-2-il)pirimidin-5-carboxamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,72 (s, 1 H), 9,36 (d, J = 4,8 Hz, 1 H), 9,31 (s, 2H), 7,98 (dd, J = 14,4, 6,0 Hz, 2H), 7,70 (d, J = 8,4 Hz, 1 H), 7,25 (m, 3H), 5,39 (sa, 2H).
HPLC-MS: Rt 11 ,104 m/z 310,3 (MH+). Ejemplo 13: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6- (4-metilpiperazin-1- il)nicotinamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,35 (s, 1 H), 8,96 (s, 2H), 7,95 (d, J = 7,6 Hz, 2H), 7,69 (d, J = 8,0 Hz, 1 H) , 7,42 (t, J = 7,6 Hz, 2H), 7,29 (m, 2H), 5,21 (s, 2H), 3,85 (t, J = 4,4 Hz, 4H), 3,69 (t, J = 4,4 Hz, 4H). HPLC-MS: Rt 12.094 m/z 377,3 (MH+).
Ejemplo 14: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-2-morfolinopirimidina-5- carboxamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,34 (s, 1 H), 8,97 (s, 2 H), 7,99 (m, 2 H), 7,68 (d, J = 8,4 Hz, 1 H), 7,32 (d, J = 8,4 Hz, 1 H), 7.27 (t, J = 8,8 Hz, 2H), 5,21 (br, s, 2H), 3,85 (t, J = 4,4 Hz, 4H), 3,69 (t, J = 4,4 Hz, 4H).
HPLC-MS: Rt 12,456 m/z 395,6 (MH+).
Ejemplo 15: N-(3-amino-6-(4-fluorofenil) piridin-2-il)-2-(4-metilpiperazin-1- il)pirimidina-5-carboxamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,32 (s, 1 H), 8,93 (s, 2H), 7,99 (m, 2H), 7,67 (d, J = 8,4 Hz, 1 H), 7,25 (t, J = 8,8 Hz, 3H), 5,21 (br, s, 2H), 3,86 (m, 4H), 2,44 (m, 4H), 2,24 (s, 3H).
HPLC-MS: Rt 7,205 m/z 408,3 (MH+). Esquema 8: Síntesis del ejemplo 16
Figure imgf000040_0001
Paso 1 : Síntesis de 2 (ciclopropilamino)-N-(3-nitro-6-fenilpiridin-2-il)pirimidina-5- carboxamida (Intermedio 8)
A una solución de ciclopropilamina (96,5 mg) en DMF (3 mi) se añadió DIPEA (327 mg) y el Intermedio 6 (300 mg) se calentó en el tubo de sellado a 110 ° C durante la noche. Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se diluyó con agua. El sólido precipitado se recogió por filtración para obtener el intermedio 8 requerido como un sólido amarillo pálido (300 mg, 93% de rendimiento).
Paso 2: Síntesis de N-(3-amino-6-fenilpiridin-2-il)-2-(ciclopropilamino)pirimidina- 5-carboxamida. Ejemplo 16. A una solución del intermedio 8 (300 mg) en etanol (10 mi) y acetato de etilo (50 mi) se añadió Pd/C (10%) (60 mg, 15% (p/p)) y se dejó agitar durante la noche bajo gas de hidrógeno (globo atm). Después de completada la reacción monitorizada por TLC, la mezcla de reacción se filtró a través de celite y se evaporó para dar un residuo. El residuo se purificó por HPLC preparativa para obtener el ejemplo 16 como un sólido amarillo pálido (130 mg, 26% de rendimiento).
1 H-RMN (400 MHz, DMSO-d6): δ = 10,26 (s, 1 H), 8,89 (s, 2H), 8,03 (d, J = 4,0 Hz, 1 H), 7,99 (m, 2 H), 7,66 (d, J = 8,4 Hz, 1 H), 7,42 (t, J = 8,4 Hz, 2 H), 7,31 (m, 2 H), 5,18 (s, 2H), 2,84 (m, 1 H), 0,75 (m, 2H), 0,55 (m, 2H).
HPLC-MS: Rt 11 ,419 m/z 347,1 (MH+). Los siguientes ejemplos fueron sintetizados usando el procedimiento descrito en el esquema 8 a partir de los correspondientes derivados de 2-cloro-N-(3-nitropiridin-2-il) pirimidina-5-carboxamida y aminas.
Ejemplo 17: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-2-(ciclopropilamino)pirimidin- 5-carboxamida. 1 H-RMN de: RMN (400 MHz, DMSO-d6) δ = 10,26 (s, 1 H), 8,89 (br, s, 2H), 8,03 (d, J = 4,0 Hz, 1 H), 7,99 (m, 2H), 7,66 (d, J = 8,4 Hz, 1 H), 7,25 (m, 3 H), 5, 18 (s ancho, s, 2 H), 2,86 (m, 1 H), 0,75 (m, 2 H), 0,54 (m, 2 H).
HPLC-MS: Rt 12.233 m/z 365,1 (MH+).
Esquema 9: Síntesis del Ejemplo 18
Figure imgf000042_0001
-3
Figure imgf000042_0002
Paso 1 : Síntesis de 6-fenilnicotinato de metilo (Intermedio 10)
El Intermedio 9 (500 mg), ácido fenil borónico (499 mg), Cs2C03 (1 ,52 g), 8 mi de 1 ,4- dioxano y 0,5 mi de agua se añadieron a un matraz de fondo redondo de 3 bocas y 100 mi . Se burbujeó nitrógeno directamente en la mezcla durante 20 minutos. Se añadió Pd (dppf) CI2.CH2CI2 (238 mg, 0, 1 eq.) y la mezcla se calentó a reflujo a 1 10 °C durante 2 h bajo nitrógeno. La mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna y se aisló el intermedio 10 como un sólido blanquecino (606 mg, 94% de rendimiento).
Paso 2: Síntesis del ácido 6-fenilnicotínico (Intermedio 11)
A una solución del Intermedio 10 (606 mg) en metanol (30 mi) se añadió una solución al 10% de NaOH (2,5 mi) y se dejó reaccionar a reflujo a 70 °C durante 3 h. Después de completarse la reacción monitorizada mediante TLC, la mezcla de reacción se evaporó y se acidificó con HCI 2N para obtener un sólido el cual fue filtrado y secado para obtener el intermedio 11 como un sólido blanquecino (460 mg, 75% de rendimiento).
Paso 3: Síntesis de 6-(4-fluorofenil -3-nitropiridin-2-amina (Intermedio 12) Se añadieron el intermedio 2 (700 mg), ácido 4-fluoro fenil borónico (788 mg), Cs2C03 (2, 1 g), 50 mi de 1 ,4-dioxano y 3 mi de agua a un matraz de fondo redondo de 3 bocas y 100 mi. Se burbujeó nitrógeno directamente en la mezcla durante 20 minutos. Se añadió Pd (dppf) CI2.CH2CI2 (328 mg, 0,1 eq.) y la mezcla se calentó a reflujo a 1 10 °C durante 2 h bajo nitrógeno. La mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo fue purificado por cromatografía en columna y aislado el intermedio 12 como un sólido amarillo pálido (725 mg, 67% de rendimiento). Etapa 4: Síntesis de N-(6-(4-fluorofenil)-3-nitropiridin-2-il)-6-fenilnicotinamida (Intermedio 13)
Se añadió una solución de intermedio 11 (250 mg) en THF (30 mi), TEA (380,6 mg) y cloroformiato de etilo (339 mg) y se dejó agitar durante 1 h a temperatura ambiente. La mezcla de reacción se diluyó con agua, y el precipitado que se formó se filtró y se secó para obtener anhídrido. Se añadió lentamente una solución del producto intermedio 12 (234 mg) en THF (30 mi), NaHMDS (1 ,0 M en THF) (3,2 mi) a -35°C y se dejó en agitación durante 1 hora a la misma temperatura. A esta solución, se añadió inmediatamente anhídrido en THF (5 mi) y permitió que la mezcla de reacción se calentara a temperatura ambiente. Después de completarse, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica fue secada sobre sulfato de magnesio, filtrada y evaporada para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el requerido intermedio 13 de color amarillo pálido (230 mg, rendimiento del 58%). Etapa 5: Síntesis de N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-fenilnicotinamida. Ejemplo 18.
A una solución del intermedio 13 (230 mg) en etanol (12 mi) y acetato de etilo (30 mi) se añadió Pd/C (10%) (35 mg, 15% (p/p)) y se dejó reaccionar para agitar toda la noche bajo gas de hidrógeno (globo atm). Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se filtró a través de celite y se evaporó para dar un residuo. El residuo fue purificado por cromatografía en columna para obtener el compuesto deseado como un sólido blanquecino (103 mg, 35% de rendimiento). 1 H-RMN (400 MHz, DMSO-d6): δ= 10,60 (s, 1 H), 9,26 (s, 1 H), 8,47 (dd, J = 10,8, 2,9 Hz, 1 H), 8,21 (d, J = 8,4 Hz , 2H), 8, 16 (d, J = 8,4 Hz, 1 H), 7,99 (m, 2H), 7,7 (d, J = 8,4 Hz, 1 H), 7,57 (m, 3H), 7,28 (m, 3H), 5,28 (s, 2H).
HPLC-MS: Rt 16,154 m/z 385,2 (MH+). Los siguientes ejemplos se sintetizaron usando el procedimiento descrito en el esquema 9 a partir de los correspondientes derivados de piridin-2-amina y ácido nicotínico.
Ejemplo 19: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-fluorofenil)nicotinamida.
1 H-NMR (400 MHz, DMSO-d6) δ = 10,60 (s, 1 H), 9,25 (s, 1 H), 8,47 (dd, J = 10,4, 2,4 Hz, 1 H), 8,28 (m, 2 H), 8, 16 ( d, J = 8,4 Hz, 1 H), 7,99 (m, 2 H), 7,7 (d, J = 8,4 Hz, 1 H), 7,39 (m, 2 H), 7,28 (m, 3 H), 5,28 (s, 2 H).
HPLC-MS: Rt 15,831 m/z 403,2 (MH+).
Ejemplo 20: N-(3-amino-6-(4-fluorofenil)piridin-2-il)- [2,4'-bipiridina]-5- carboxamida. 1 H-RMN (400 MHz, DMSO-d6) δ = 10,66 (s, 1 H), 9,31 (s, 1 H), 8,76 (d, J = 4,4, 2H), 8,54 (d, J = 7,6 Hz, 1 H), 8,32 (d, J = 8,0 Hz, 1 H), 8, 16 (d, J = 4,4 Hz, 2H), 7,96 (m, 2H), 7,7 (d, J = 8,4 Hz, 1 H), 7,28 (m, 3H), 5,31 (s, 2H).
HPLC-MS: Rt 11 ,682 m/z 386,1 (MH+).
Ejemplo 21 : N-(3-amino-6-(4-fluorofenil) piridin-2-il)-[2,3'-bipiridina]-5- carboxamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,63 (s, 1 H), 9,37 (d, J = 1 ,6 Hz, 1 H), 9,29 (d, J = 1 ,6 Hz, 1 H), 8,70 (dd, J = 6,4, 1 ,6 Hz, 1 H), 8,56 (m, 1 H), 8,51 (dd, J = 10,8, 2,4 Hz, 1 H), 8,26 (d, J = 8,0 Hz, 1 H), 7,99 (m, 2 H), 7,70 ( d, J = 8,4 Hz, 1 H), 7,59 (m, 1 H), 7,28 (m, 3 H), 5,30 (s, 2H). HPLC-MS: Rt 12,080 m/z 385,8 (MH+).
Ejemplo 22: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(3-cianofenil)nicotinamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,68 (s, 1 H), 9,29 (s, s, 1 H), 8,65 (s, s, 1 H), 8,57 (m, 2 H), 8,32 (d, J = 8,0 Hz, 1 H), 8,00 (m, 3 H), 7,79 (m, 2 H), 7,28 (m, 3 H), 5,33 (br, s, 2 H). HPLC-MS: Rt 14,559 m/z 410,2 (MH+). Esquema 10: Síntesis del ejemplo 23
Figure imgf000045_0001
Paso 1 : Síntesis de 6-ciclopropil-N-(6-(4-fluorofenil)-3-nitropiridin-2- il)nicotinamida (Intermedio 15)
Se añadió una solución del intermedio 14 (412 mg) en THF (35 mi), TEA (770,5 mg) y cloroformiato de etilo (686,6 mg) y se dejó agitar durante 1 h a temperatura ambiente. La mezcla de reacción fue diluida con agua, y el precipitado que se formó fue filtrado y secado para obtener anhídrido. Se añadió lentamente una solución del intermedio 12 (297 mg) en THF (35 mi), NaHMDS (1 ,0 M en THF) (5 mi) a -35°C y se dejó en agitación durante 1 hora a la misma temperatura. A esta solución, se añadió inmediatamente anhídrido en THF (5 mi) y se permitió que la mezcla de reacción se calentara a temperatura ambiente. Después de completarse, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica fue secada sobre sulfato de magnesio, filtrada y evaporada para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el requerido intermedio 15 como un sólido amarillo pálido (190 mg, 32% de rendimiento).
Paso 2: Síntesis de N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6- ciclopropilnicotinamida (Ejemplo 23)
A una solución del intermedio 15 (190 mg) en etanol (12 mi) y acetato de etilo (30 mi) se añadió Pd/C (10%) (28,5 mg, 15% (p/p)) y se dejó agitar durante la noche bajo gas de hidrógeno (globo atm). Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se filtró a través de celite y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el compuesto requerido como un sólido amarillo pálido (38 mg, 21 % de rendimiento).
1 H-RMN (400 MHz, DMSO-d6): δ= 10,45 (s, 1 H), 9,00 (d, J = 2,0 Hz, 1 H), 8,22 (dd, J = 10,8, 2,4 Hz, 1 H), 7,98 (m , 2H), 7,67 (d, J = 8,0 Hz, 1 H), 7,45 (d, J = 8,4 Hz, 1 H), 7,26 (m, 3 H), 5,21 (s, 2 H), 2,24 (m, 1 H), 1 ,05 (m, 4H).
HPLC-MS: Rt 13,997 m/z 349,1 (MH+).
El siguiente ejemplo se sintetizó usando el procedimiento descrito en el esquema 10 a partir del correspondiente derivado de piridin-2-amina y ácido 6-ciclopentilnicotínico. Ejemplo 24: N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-ciclopentilnicotinamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 10,51 (s, 1 H), 9,09 (d, J = 2,0 Hz, 1 H), 8,26 (dd, J = 10,8, 2,4 Hz, 1 H), 7,98 (m, 2H), 7,69 (d, J = 8,4 Hz, 1 H), 7,44 (d, J = 8,0 Hz, 1 H), 7,26 (m, 3 H), 5,25 (s, 2 H), 3,3 (m, 1 H), 2,04 ( m, 3H), 1 ,80 (m, 6H).
HPLC-MS: Rt 15.746 m/z 424.2 (MH+). Esquema 11 : Síntesis del ejemplo 25
Figure imgf000046_0001
Paso-1 : Síntesis de 6-cloro-N-(6-(4-fluorofenil)-3-nitropiridin-2-il)nicotinamida (Intermedio 16)
Se añadió una solución de ácido 6-cloro-3-nicotónico (430 mg) en THF (30 mi), TEA (830 mg) y cloroformiato de etilo (739 mg) y se dejó agitar durante 1 ha temperatura ambiente. La mezcla de reacción se diluyó con agua, y el precipitado que se formó se filtró y se secó para obtener anhídrido. Se añadió lentamente una solución del intermedio 12 (510 mg) en THF (30 mi), NaHMDS (6,8 mi) a -35°C y se dejó en agitación durante 1 hora a la misma temperatura. A esta solución, se añadió inmediatamente anhídrido en THF (5 mi) y permitió que la mezcla de reacción se calentara a temperatura ambiente. Después de completarse, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas fueron separadas y la capa acuosa se extrajo con acetato de etilo. La capa orgánica fue secada sobre sulfato de magnesio, filtrada y evaporada hasta un residuo. El residuo se purificó por cromatografía en columna para obtener el intermedio 16 requerido (665 mg, 78% de rendimiento).
Paso 2: Síntesis de N-(6-(4-fluorofenil)-3-nitropiridin-2-il)-6-(piperazin-1- il)nicotinamida (intermedio 17)
A una solución de piperazina (207,5 mg) en DMSO (4 mi) se añadió DIPEA (622,5 mg) y el intermedio 16 (300 mg) fue calentado en un tubo de sellado a 1 10 °C durante la noche. Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica fue secada sobre sulfato de magnesio, filtrada y evaporada para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el intermedio 17 requerido como un semisólido marrón pálido (142 mg, 28% de rendimiento).
Paso 3: Síntesis de N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(piperazin-1 - il)nicotinamida (Ejemplo 25)
A una solución del intermedio 17 (142 mg) en etanol (12 mi) y acetato de etilo (24 mi) se añadió Pd/ C (10%) (22,0 mg, 15% (p/p)) y se dejó agitar durante la noche bajo gas de hidrógeno (globo atm). Una vez completada la reacción monitorizada por TLC, la mezcla de reacción fue filtrada a través de celite y evaporada hasta un residuo. El residuo se purificó por cromatografía en columna para obtener el compuesto requerido como un sólido marrón (26 mg, 20% de rendimiento).
1 H-RMN (400 MHz, DMSO-d6): δ= 10,20 (br, s, 1 H), 8,75 (d, J = 2,0 Hz, 1 H), 8, 1 (dd, J = 1 1 ,2, 2,0 Hz, 1 H), 7,96 (m, 2H), 7,63 (d, J = 8,4 Hz, 1 H), 7,2 (m, 3H), 6,85 (d, J = 8,8 Hz, 1 H), 5, 1 1 (br, s, 2H), 3,54 (m, 4H), 2,75 (m, 4H), 1 ,95 (s, 1 H).
HPLC-MS: Rt 8,070 m/z 393,2 (MH+). El siguiente ejemplo se sintetizó usando el procedimiento descrito en el esquema 1 1 a partir de los correspondientes derivados de pirimidin-2-amina y ácido nicotínico.
Ejemplo 26: N-(5-amino-2-(4-fluorofenil)pirimidin-4-il)-6-(piperazin-1 - il)nicotinamida. 1 H-RMN (400 MHz, DMSO-d6) δ = 10,56 (s, 1 H), 8,78 (d, J = 2,4 Hz, 1 H), 8,36 (s, 1 H),
8.28 (m, 2H), 8, 13 (dd, J = 11 ,2, 2,4 Hz, 1 H), 7,29 (m, 2H), 6,90 (d, J = 8,8 Hz, 1 H),
5.29 (br, s, 2H), 3,60 (m, 4H), 2,79 (m, 4H ) (-NH faltante).
HPLC-MS: Rt 8, 120 m/z 394,2 (MH+). Esquema 12: Síntesis del ejemplo 27
Figure imgf000048_0001
Paso-1 : Síntesis de tert-butil(1-(5-((6- (4-fluorofenil)-3-nitropiridin-2-il) carbamoil) piridin-2-il) piperidin-4-il)carbamato (Intermedio 18)
A una solución de tere-butilo piperidin-4-ilcarbamato (469 mg) en DMSO (5 mi) se añadió DIPEA (726,2 mg) y el intermedio 16 (350 mg) se calentó en un tubo de sellado a 1 10 °C durante la noche. Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se diluyó con acetato de etilo/ gua. Las capas fueron separadas y la capa acuosa fue extraída con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el intermedio 18 requerido como semisólido de color marrón pálido (400 mg, 64% de rendimiento).
Paso 2: Síntesis de 6-(4-aminopiperidin-1-il)-N-(6-(4-fluorofenil)-3-nitropiridin-2- il)nicotinamida (intermedio 19) A una solución del intermedio 18 (390 mg) en DCM (12 mi) se añadió TFA (3 mi) a 0 ° C y se dejó agitar la reacción a temperatura ambiente durante 3 h bajo nitrógeno. Después de completarse la reacción monitorizada mediante TLC, la mezcla de reacción se alcalinizó (pH~8) con hidrogeno carbonato sódico y se evaporó para dar un residuo para obtener el intermedio 19 requerido como un sólido marrón (390 mg, 98% de rendimiento).
Paso 3: Síntesis de N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-aminopiperidin-1- il) nicotinamida (Ejemplo 27)
A una solución del intermedio 19 (319 mg) en etanol (12 mi) y acetato de etilo (25 mi) se añadió Pd/C (10%) (47,8 mg, 15% (p/p)) y se dejó agitar durante la noche bajo gas de hidrógeno (globo atm). Una vez completada la reacción monitorizada por TLC, la mezcla de reacción fue filtrada a través de celite y evaporada hasta un residuo. El residuo se purificó por cromatografía en columna para obtener el compuesto requerido como un sólido marrón pálido (140 mg, 46% de rendimiento). 1 H-RMN (400 MHz, DMSO-d6): δ = 10,33 (s, 1 H), 8,87 (d, J = 2,4 Hz, 1 H), 8,24 (dd, J = 1 1 ,2, 2,4 Hz, 1 H), 8,09 (br , s, 2 H), 8,06 (m, 2 H), 7,73 (d, J = 8,4 Hz, 1 H), 7,33 (m, 2 H), 7,04 (d, J = 9,2 Hz, 1 H), 5,21 (br, s, 2H), 4,57 (d, J = 13,6 Hz, 2H), 3, 10 (t, J = 11 ,6 Hz, 2H), 2,2 (d, J = 10,0 Hz, 2H), 1 ,55 (m, 2H).
HPLC-MS: Rt 7,974 m/z 407,2 (MH+). El siguiente ejemplo se sintetizó usando el procedimiento descrito en el esquema 12 a partir de los correspondientes derivados de pirimidin-2-amina y ácido nicotínico.
Ejemplo 28: N-(5-amino-2-(4-fluorofenil)pirimidin-4-il)-6-(4-aminopiperidin-1- il)nicotinamida.
1 H-RMN (400 MHz, DMSO-d6) δ = 8,74 (d, J = 2,0 Hz, 1 H), 8,33 (s, 1 H), 8,25 (m, 2 H), 8,08 (dd, J = 1 1 ,2, 2,4 Hz, 1 H), 7,26 (m, 2 H), 6,89 (d, J = 9,2 Hz, 1 H), 5,25 (s, 2H), 4,31 (d, J = 13,2 Hz, 2 H), 3,03 (m, 2 H), 2,89 (m, 1 H), 1 ,82 (m, 2 H), 1 , 19 (m, 2 H). (Falta NH y NH _ {2}).
HPLC-MS: Rt 8, 144 m/z 408,2 (MH+).
Esquema 13: Síntesis del ejemplo 29
Figure imgf000050_0001
Paso 1 : Síntesis de 3-nitro-6-(tiofen-2-il)piridin-2-amina(lntermedio 20)
Se añadieron el Intermedio 2 (600 mg), ácido tiofeno-2-borónico (533 mg), Cs2C03 (1 ,8 g), 10 mi de 1 ,4-dioxano y 2 mi de agua a un matraz de fondo redondo de 3 bocas de 100 mi. Se burbujeó nitrógeno directamente en la mezcla durante 20 minutos. Se añadió Pd(dppf) CI2.CH2CI2 (140 mg) y la mezcla se sometió a reflujo a 1 10 °C durante 3 h bajo nitrógeno. La mezcla de reacción fue diluida con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica fue secada sobre sulfato de magnesio, filtrada y evaporada hasta un residuo. El residuo se purificó por cromatografía en columna y se aisló el intermedio 20 como un sólido blanquecino (300 mg, 78% de rendimiento).
Paso 2: Síntesis de 6-(4-metilpiperazin-1-il)-N-(3-nitro-6-(tiofen-2-il)piridin-2- il)nicotinamida (Intermedio 22)
Se añadió una solución de intermedio 21 (597 mg) en DMF (30 mi), DIPEA (435 mg) y TBTU (953 mg) y se dejó agitar durante 1 h a temperatura ambiente. La mezcla de reacción se diluyó con agua, y el precipitado que se formó se filtró y se secó para obtener anhídrido. Se añadió lentamente una solución del intermedio 20 (300 mg) en THF (50 mi), NaHMDS (2,7 mi) a -35°C y se dejó agitar durante 1 hora a la misma temperatura. A esta solución, se añadió inmediatamente anhídrido en THF (5 mi) y se permitió que la mezcla de reacción se calentara a temperatura ambiente. Después de completarse, la mezcla de reacción se diluyó con acetato de etilo/agua. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica fue secada sobre sulfato de magnesio, filtrada y evaporada hasta un residuo. El residuo se purificó por cromatografía en columna para obtener el intermedio 22 requerido como un sólido amarillo (400 mg, 72% de rendimiento).
Paso 3: Síntesis de N-(3-amino-6-(tiofen-2-il)piridin-2-il)-6-(4-metilpiperazin-1 - il)nicotinamida. Ejemplo 29. A una solución intermedia 22 (200 mg) en metanol/etanol (20/3 mi) y THF/acetato de etilo (9/9 mi) se añadió Pd/C (10%) (40 mg, 20% (p/p) ) y se dejó agitar la reacción durante la noche bajo gas de hidrógeno (Globo atm). Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se filtró a través de celite y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el compuesto requerido como un sólido naranja pálido (25 mg, 13% de rendimiento).
1 H-RMN (400 MHz, DMSO-d6): δ= 10,23 (s, 1 H), 8,79 (d, J = 2,4 Hz, 1 H), 8, 15 (dd, J = 11 ,6, 2,4 Hz, 1 H), 7,61 (d , J = 8,4 Hz, 1 H), 7,52 (dd, J = 4,8, 1 ,2 Hz, 1 H), 7,44 (dd, J = 6,0, 1 ,2 Hz, 1 H), 7,22 (d, J = 8,0 Hz, 1 H), 7,08 (m, 1 H), 6,92 (d, J = 9,2 Hz, 1 H), 5,13 (br, s, 2H), 3,65 (t, J = 4,4 Hz, 4H), 2,40 (t, J = 4,8 Hz, 4H) , 2,22 (s, 3H). HPLC-MS: Rt 8,778 m/z 395,1 (MH+).
Esquema 14: Síntesis del ejemplo 30
Figure imgf000051_0001
Paso 1 : Síntesis de N-(6- (4-fluorofenil)-3-nitropiridin-2-il)-6-((2- (4-metilpiperazin- 1-il) etil) amino)nicotinamida (Intermedio 23) A una solución del intermedio 16 (500 mg) en DMSO (20 mi) y DIPEA (1 ,44 mi, 6 eq.) Se añadió 2-(4-Metilpiperazin-1-il)-etil-diazeno (400 mg) y luego la reacción se dejó calentar a 1 10 ° C durante 16 h. Después de este tiempo, la mezcla de reacción se diluyó con agua y se añadió acetato de etilo. Las capas se separaron y la capa acuosa se extrajo con acetato de etilo. La capa orgánica se secó sobre sulfato de magnesio, se filtró y se evaporó para dar un residuo. El residuo se purificó por cromatografía en columna para obtener el intermedio 23 requerido (250 mg, 42% de rendimiento).
Paso 2: Síntesis de N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-((2- (4- metilpiperazin-1-il)etil) amino) nicotinamida (Ejemplo 30 ) A una solución del intermedio 23 (240 mg) en etanol (7,5 mi) y agua (2,5 mi) se añadió Fe (112 mg) y NH4CI (215 mg), la reacción se dejó calentar a 90 ° C durante 1 h. Una vez completada la reacción monitorizada por TLC, la mezcla de reacción se filtró a través de celite y se evaporó para dar un residuo. El residuo se purificó por HPLC preparativa para obtener el compuesto requerido como un sólido amarillo pálido (21 mg, 10% de rendimiento).
1 H-RMN (400 MHz, DMSO-d6): δ= 10, 12 (s, 1 H), 8,71 (d, J = 2,4 Hz, 1 H), 8,00 (m, 3 H), 7,65 (d, J = 8,4 Hz, 1 H ), 7,26 (m, 3 H), 7,05 (br, 1 H), 6,55 (d, J = 8,8 Hz, 1 H), 5, 1 1 (br, s, 2 H), 3,45 (m, 2 H), 2,67 (m, 3 H) , 2,33 (m, 5 H), 2,18 (s, 3 H).
HPLC-MS: Rt 8,684 m/z 450,2 (MH+). El siguiente ejemplo se sintetizó usando el procedimiento descrito en el esquema 14 partiendo de los derivados correspondientes 2-cloro-N-(3-nitropiridin-2-il) pirimidina-5- carboxamida y amina.
Ejemplo 31 : N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-((2- (piridin-3-il)etil)amino) nicotinamida. 1 H-RMN (400 MHz, DMSO-d6) δ = 10, 13 (s, 1 H), 8,73 (d, J = 2,0 Hz, 1 H), 8,47 (s ancho, s, 1 H), 8,42 (d, J = 4,0 Hz, 1 H), 8,00 (m, 2H), 7,69 (m, 2H), 7,34 (m, 2H), 7,26 (m, 2H), 6,53 (d, J = 8,8 Hz, 1 H), 5, 12 (br, s, 2H) ), 3,61 (m, 4 H), 2,91 (br, s, 2 H).
HPLC-MS: Rt 9.725 m/z 429.1 (MH+).

Claims

REIVINDICACIONES
1- Un compuesto de fórmula (I):
Figure imgf000053_0001
(I)
donde:
- X1 y X2 representan independientemente un grupo seleccionado de entre -CH y N;
R1 representa:
a) grupo fenil opcionalmente sustituido con uno o más sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo haloalquilo C C4 lineal o ramificado, y alcoxi C C4 lineal o ramificado, b) anillo heteroarilo de cinco o seis miembros opcionalmente sustituido con uno o más sustituyentes seleccionados del grupo que consiste en átomo de halógeno, alcoxi C C4 lineal o ramificado, grupo ciano, haloalquilo C C4 lineal o ramificado, alquilo C C4 lineal o ramificado, cicloalquilo C3-C6, cicloalcoxi C3-C6 y anillo heterocíclico C5-C6 opcionalmente sustituido con uno o más átomos de halógeno
R2 representa un grupo seleccionado de:
a) Grupo - N(R3)(R4), donde:
l- R3 y R4 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional como parte del ciclo seleccionado de entre N y O, el cual es opcionalmente sustituido con un grupo alquilo C C3 o un grupo -N (R5) (R6), donde R5 y R6 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional como parte del ciclo seleccionado entre N y O, que está opcionalmente sustituido con un grupo alquilo C1-C3, o
2- R3 y R4 representan independientemente un grupo seleccionado entre átomo de hidrógeno, grupo cicloalquilo C3-C6 y alquilo C1-C3 lineal o ramificado, el cual está opcionalmente sustituido con un heterociclo de cinco o seis miembros que comprende uno o dos heteroátomos seleccionados entre N y O como parte del ciclo, el cual es opcionalmente sustituido con un grupo alquilo C1-C3 lineal o ramificado b) anillo de fenilo opcionalmente sustituido con uno o más sustituyentes seleccionados de entre átomos de halógeno y un grupo ciano
c) Cicloalquilo C3-C6 opcionalmente sustituido con uno o más sustituyentes seleccionados de grupo alquilo C C3 lineal o ramificado y un grupo hidroxilo
d) heteroarilo C5-C6 opcionalmente sustituido con un grupo seleccionado de entre átomo de halógeno, alquilo C C3 lineal o ramificado y alcoxi C C3 lineal o ramificado y -N (R5) (R6) en el que R5 y R6 forman junto con el átomo de nitrógeno al que están unidos un ciclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional seleccionado entre N y O como parte del ciclo y que está opcionalmente sustituido con un grupo alquilo C C3,
e) átomo de hidrógeno, y sales farmacéuticamente aceptables de los mismos.
2- Compuesto de acuerdo a la reivindicación 1 , en donde X1 y X2 son grupos -CH.
3- Compuesto de acuerdo con la reivindicación 2, en donde R1 representa un grupo fenilo opcionalmente sustituido con uno o más átomos de halógeno.
4. Compuesto de acuerdo a la reivindicación 3, en donde R2 representa un grupo - N(R3)(R4) en donde R3 y R4 forman junto con el átomo de nitrógeno al que están unidos un heterociclo saturado de cinco o seis miembros que comprende opcionalmente un heteroátomo adicional seleccionado de N y O como parte del ciclo, heterociclo que está opcionalmente sustituido con un grupo alquilo C C3 o un grupo - N(R5)(R6).
5. Compuesto de acuerdo con la reivindicación 4, en donde R2 representa un anillo de piperazinilo, piperidinilo o morfolinilo opcionalmente sustituido con un grupo alquilo C C3 o un grupo -(R5)(R6).
6. Compuesto de acuerdo con cualquiera de las reivindicaciones 1 , 2, 4 y 5, en donde R1 representa un anillo heteroarilo de cinco o seis miembros opcionalmente sustituido con uno o más sustituyentes seleccionados del grupo que consiste en grupo ciano, átomo de halógeno y haloalquilo C C4 lineal o ramificado.
7. Compuesto según una cualquiera de las reivindicaciones 1 a 3, en donde R2 representa un grupo -N(R3)(R4), donde R3 y R4 representan independientemente un grupo seleccionado entre átomo de hidrógeno, grupo cicloalquilo C3-C6 y alquilo C C3 lineal o ramificado, el cual está opcionalmente sustituido con un heterociclo saturado de 5 o 6 miembros comprendiendo uno o dos átomos de N, dicho heterociclo está opcionalmente sustituido con un grupo alquilo C C3, en particular en donde R2 representa un grupo -N(R3)(R4), donde R3 representa alquilo C C3 lineal sustituido por un heterociclo saturado de 5 o 6 miembros comprendiendo uno o dos átomos de N, el cual está opcionalmente sustituido con un grupo alquilo C C3; y R4 es un átomo de hidrógeno.
8. Compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 3, en el que R2 representa un anillo de fenilo opcionalmente sustituido con uno o más sustituyentes seleccionados entre átomo de halógeno y grupo ciano.
9. Compuesto de acuerdo con cualquiera de las reivindicaciones 1 a 3, en donde R2 representa un heteroarilo C5-C6 opcionalmente sustituido con uno o más sustituyentes seleccionados de entre átomo de halógeno y grupo ciano.
10. Compuesto de acuerdo con la reivindicación 1 en donde X1 y X2 son grupos -CH, R1 representa un grupo fenilo opcionalmente sustituido con uno o más átomos de halógeno, y R2 representa un grupo -N(R3)(R4) en donde R3 y R4 forman junto con el átomo de nitrógeno al que están unidos un heterociclo de 6 miembros que comprende opcionalmente un heteroátomo seleccionado entre N y O, el cual está opcionalmente sustituido con un grupo alquilo C C3 o un grupo -N(R5)(R6).
1 1. Compuesto de acuerdo con la reivindicación 10, en donde R2 representa un anillo de piperazinilo opcionalmente sustituido con un grupo alquilo C C3.
12. Compuesto de acuerdo con la reivindicación 1 , el cual es uno de: N-(3-amino-6-fenilpiridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida N-(3-amino-6-fenilpiridin-2-il)nicotinamida N-(3-amino-6- (4-fluorofenil) piridin-2-il)nicotinamida
N- (3- -amino-6-fenilpiridin-2-il)-6-morfolinonicotinamida
N- (3- -amino-6- (4-fluorofenil)piridin-2-il)-6-morfolinonicotinamida
N- (3- -amino-6-(4-fluorofenil)piridin-2-il)-6-morfolinonicotinamida
N- (3- -amino-6-(4-fluorofenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida
N- (3- -amino-6-(4-metoxifenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida
N- -(5- -amino-[2,4'-bipiridin]-6-il)-6-(4-metilpiperazin-1-il)nicotinarTiida
N- (3- -amino-6-(3,4-difluorofenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida
N- (3- -amino-6-fenilpiridin-2-il)-2-(4-metilpiperazin-1-il)pirimidina-5-carboxamida
N- (3- -amino-6-fenilpiridin-2-il)pirimidina-5-carboxamida
N- (3- -amino-6-(4-fluorofenil)piridin-2-il)pirimidina-5-carboxarTiida
N- -(3- -amino-6-(4-fluorofenil)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinamida
N- (3- -amino-6-(4-fluorofenil)piridin-2-il)-2-morfolinopirimidina-5-carboxamida
N- (3- -amino-6-(4-fluorofenil)piridin-2-il)-2-(4-metilpiperazin-1-il)pirimidina-5- carboxamida
N-(3-amino-6-fenilpiridin-2-il)-2-(ciclopropilamino)pirimidina-5-carboxamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-2-(ciclopropilamino)pirimidina-5- carboxamida
N-(3-amino-6- (4-fluorofenil)piridin-2-il)-6-fenilnicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-fluorofenil)nicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-[2,4'-bipiridina]-5-carboxamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-[2,3'-bipiridina]-5-carboxamida N-(3-amino-6- (4-fluorofenil)piridin-2-il)-6-(3-cianofenil)nicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-ciclopropilnicotinamida N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(piperazin-1-il)nicotinamida
N-(5-amino-2-(4-fluorofenil)pirimidin-4-il)-6-(piperazin-1-il)nicotinami
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-(4-aminopiperidin-1-il)nicotin
N-(5-amino-2-(4-fluorofenil)pirimidin-4-il)-6-(4-am N-(3-amino-6-(tiofen-2-il)piridin-2-il)-6-(4-metilpiperazin-1-il)nicotinam
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6-((2-(4-metilpiperazin-1-il)etil)amin nicotinamida
N-(3-amino-6-(4-fluorofenil)piridin-2-il)-6- ((2- (piridin-3-il)etil)amino)nicotinamida
13- Compuesto como se define en cualquiera de las reivindicaciones 1 a 12 para uso en el tratamiento de una enfermedad o condición patológica en donde las enfermedades o condición patológica se seleccionan del grupo que consiste en cáncer, en particular seleccionado del grupo que consiste en colon, pulmón, mama , cáncer del sistema nervioso central como meningioma, neuroblastoma, glioblastoma, medulo blastoma, glioma, astrocitomas, oligodendrogliomas, ependimomas, gangliogliomas, neurilemomas (Schwannomas) y craneofaringiomas, cáncer cervical uterino, adenocarcinoma pancreático, carcinoma hepatocelular, cáncer gástrico, cáncer de tejidos, y malignidades de células T seleccionadas de leucemia mieloide aguda, leucemia linfoblástica aguda, linfoma cutáneo de células T, linfoma periférico de células T, linfoma de células B y mieloma múltiple; enfermedades neurodegenerativas en particular seleccionadas de entre enfermedad de Alzheimer, trastorno de estrés postraumático o adicción a las drogas, enfermedad de Parkinson, enfermedad de Huntington, toxicidad de amiloide-β (Αβ), ataxia de Friedreich, distrofia miotónica, atrofia muscular espinal, síndrome X-frágil, ataxia espinocerebelosa, enfermedad de Kennedy, esclerosis lateral amiotrófica, Niemann Pick, Pitt Hopkins, atrofia muscular espinal y bulbar; enfermedades infecciosas; enfermedades inflamatorias; insuficiencia cardíaca e hipertrofia cardíaca; diabetes; enfermedad renal poliquística, anemia de células falciformes y enfermedad β-talasemia.
14- Uso de un compuesto como se define en cualquiera de las reivindicaciones 1 a 12 para la fabricación de un medicamento para el tratamiento de una enfermedad o condición patológica en donde las enfermedades o condición patológica se seleccionan del grupo que consiste en cáncer, en particular seleccionado del grupo que consiste en colon, pulmón, mama , cáncer del sistema nervioso central como meningioma, neuroblastoma, glioblastoma, medulo blastoma, glioma, astrocitomas, oligodendrogliomas, ependimomas, gangliogliomas, neurilemomas (Schwannomas) y craneofaringiomas, cáncer cervical uterino, adenocarcinoma pancreático, carcinoma hepatocelular, cáncer gástrico, cáncer de tejidos, y malignidades de células T seleccionadas de leucemia mieloide aguda, leucemia linfoblástica aguda, linfoma cutáneo de células T, linfoma periférico de células T, linfoma de células B y mieloma múltiple; enfermedades neurodegenerativas en particular seleccionadas de entre enfermedad de Alzheimer, trastorno de estrés postraumático o adicción a las drogas, enfermedad de Parkinson, enfermedad de Huntington, toxicidad de amiloide-β (Αβ), ataxia de Friedreich, distrofia miotónica, atrofia muscular espinal, síndrome X-frágil, ataxia espinocerebelosa, enfermedad de Kennedy, esclerosis lateral amiotrófica, Niemann Pick, Pitt Hopkins, atrofia muscular espinal y bulbar; enfermedades infecciosas; enfermedades inflamatorias; insuficiencia cardíaca e hipertrofia cardíaca; diabetes; enfermedad renal poliquística, anemia de células falciformes y enfermedad β-talasemia.
15- Método de tratamiento de una enfermedad o condición patológica seleccionada del grupo que consiste en cáncer, en particular seleccionado del grupo que consiste en colon, pulmón, mama , cáncer del sistema nervioso central como meningioma, neuroblastoma, glioblastoma, medulo blastoma, glioma, astrocitomas, oligodendrogliomas, ependimomas, gangliogliomas, neurilemomas (Schwannomas) y craneofaringiomas, cáncer cervical uterino, adenocarcinoma pancreático, carcinoma hepatocelular, cáncer gástrico, cáncer de tejidos, y malignidades de células T seleccionadas de leucemia mieloide aguda, leucemia linfoblástica aguda, linfoma cutáneo de células T, linfoma periférico de células T, linfoma de células B y mieloma múltiple; enfermedades neurodegenerativas en particular seleccionadas de entre enfermedad de Alzheimer, trastorno de estrés postraumático o adicción a las drogas, enfermedad de Parkinson, enfermedad de Huntington, toxicidad de amiloide-β (Αβ), ataxia de Friedreich, distrofia miotónica, atrofia muscular espinal, síndrome X-frágil, ataxia espinocerebelosa, enfermedad de Kennedy, esclerosis lateral amiotrófica, Niemann Pick, Pitt Hopkins, atrofia muscular espinal y bulbar; enfermedades infecciosas; enfermedades inflamatorias; insuficiencia cardíaca e hipertrofia cardíaca; diabetes; enfermedad renal poliquística, anemia de células falciformes y enfermedad β-talasemia; que comprende administrar a un sujeto que lo necesita una cantidad eficaz de un compuesto tal como se define en cualquiera de las reivindicaciones 1 a 12.
16. Composición farmacéutica que comprende un compuesto como se define en cualquiera de las reivindicaciones 1 a 12, un diluyente o vehículo farmacéuticamente aceptable y opcionalmente una cantidad terapéuticamente eficaz de uno o más agentes terapéuticos adicionales seleccionados del grupo que consiste en agentes quimioterapéuticos, agentes antiinflamatorios, esferoides, inmunosupresores y anticuerpos terapéuticos.
17- Producto de combinación que comprende un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 12 y al menos un agente terapéutico seleccionado del grupo que consiste en agentes quimioterapéuticos, agentes antiinflamatorios, esferoides, inmunosupresores, agentes inmunoterapéuticos, anticuerpos terapéuticos y antagonistas de adenosina, en particular aquellos seleccionados del grupo que consiste en anticuerpos anti-CTLA4, seleccionados de Ipilimumab y tremelimumab, anticuerpos anti-PD1 como MDX-1106 (nivolumab), MK3475 (pembrolizumab), CT-01 1 (pidilizumab) y AMP-224, anticuerpos anti-PDL1 seleccionado de MPDL3280A, MEDI4736 y MDX-1 105; Carboplatino, carmustina (BCNU), cisplatino, ciclofosfamida, etopósido, irinotecán, lomustina (CCNU), metotrexato, procarbazina, temozolomida, vincristina.
PCT/ES2018/070491 2017-07-10 2018-07-09 Nuevos derivados heteroaryl amida como inhibidores selectivos de histona deacetilasa 1 y 2 (hdac1/2) WO2019012172A1 (es)

Priority Applications (18)

Application Number Priority Date Filing Date Title
LTEPPCT/ES2018/070491T LT3653620T (lt) 2017-07-10 2018-07-09 Nauji heteroarilo amido dariniai kaip selektyvūs histono deacetilazės 1 ir 2 (hdac1-2) inhibitoriai
KR1020207003894A KR102574135B1 (ko) 2017-07-10 2018-07-09 히스톤 데아세틸라제 1 및 2 (hdac1-2)의 선택적인 저해제로서 새로운 헤테로아릴 아미드 유도체
ES18789777T ES2911040T3 (es) 2017-07-10 2018-07-09 Nuevos derivados de heteroaril amida como inhibidores selectivos de histona deacetilasa 1 y 2 (HDAC1/2)
DK18789777.2T DK3653620T3 (da) 2017-07-10 2018-07-09 Nye heteroarylamid-derivater som selektive inhibitorer af histondeacetylaser 1 og 2 (HDAC1-2)
HRP20220472TT HRP20220472T1 (hr) 2017-07-10 2018-07-09 Novi derivati heteroarilamida kao selektivni inhibitori histonskih deacetilaza 1 i 2 (hdac1-2)
US16/629,457 US11241428B2 (en) 2017-07-10 2018-07-09 Heteroaryl amide derivatives as selective inhibitors of histone deacetylases 1 and/or 2(HDAC1-2)
PL18789777T PL3653620T3 (pl) 2017-07-10 2018-07-09 Nowe pochodne heteroaryloamidowe jako selektywne inhibitory deacetylaz histonowych 1 i 2 (hdac1–2)
EA202090259A EA039144B1 (ru) 2017-07-10 2018-07-09 Новые гетероариламидные производные как селективные ингибиторы гистондеацетилаз 1 и/или 2 (hdac1-2)
AU2018300123A AU2018300123B2 (en) 2017-07-10 2018-07-09 New heteroaryl amide derivatives as selective inhibitors of histone deacetylases 1 and 2 (HDAC1-2)
CN201880056722.5A CN111051300B (zh) 2017-07-10 2018-07-09 作为组蛋白脱乙酰基酶1和/或2(hdac1-2)的选择性抑制剂的新杂芳基酰胺衍生物
CA3069273A CA3069273A1 (en) 2017-07-10 2018-07-09 Heteroaryl amide derivatives as selective inhibitors of histone deacetylases 1 and/or 2 (hdac1-2)
JP2020523052A JP7026787B2 (ja) 2017-07-10 2018-07-09 ヒストン脱アセチル化酵素1および/または2(hdac1-2)の選択的阻害剤としての新規なヘテロアリールアミド誘導体
RS20220320A RS63156B1 (sr) 2017-07-10 2018-07-09 Novi derivati heteroaril amida kao selektivni inhibitori histon deacetilaza 1 i 2 (hdac1-2)
BR112020000564-9A BR112020000564A2 (pt) 2017-07-10 2018-07-09 novos derivados de heteroarilamida como inibidores seletivos das histonas desacetilases 1 e/ou 2 (hdac1-2)
EP18789777.2A EP3653620B9 (en) 2017-07-10 2018-07-09 New heteroaryl amide derivatives as selective inhibitors of histone deacetylases 1 and 2 (hdac1-2)
SI201830644T SI3653620T1 (sl) 2017-07-10 2018-07-09 Novi derivati heteroaril amida kot selektivni inhibitorji histon deacetilaz 1 in 2(HDAC1-2)
MX2020000349A MX2020000349A (es) 2017-07-10 2018-07-09 Nuevos derivados heteroaryl amida como inhibidores selectivos de histona deacetilasa 1 y 2 (hdac1/2).
ZA2020/00727A ZA202000727B (en) 2017-07-10 2020-02-04 New heteroaryl amide derivatives as selective inhibitors of histone deacetylases 1 and 2 (hdac1-2)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17382447 2017-07-10
EP17382447.5 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019012172A1 true WO2019012172A1 (es) 2019-01-17

Family

ID=59315557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070491 WO2019012172A1 (es) 2017-07-10 2018-07-09 Nuevos derivados heteroaryl amida como inhibidores selectivos de histona deacetilasa 1 y 2 (hdac1/2)

Country Status (21)

Country Link
US (1) US11241428B2 (es)
EP (1) EP3653620B9 (es)
JP (1) JP7026787B2 (es)
KR (1) KR102574135B1 (es)
CN (1) CN111051300B (es)
AU (1) AU2018300123B2 (es)
BR (1) BR112020000564A2 (es)
CA (1) CA3069273A1 (es)
DK (1) DK3653620T3 (es)
EA (1) EA039144B1 (es)
ES (1) ES2911040T3 (es)
HR (1) HRP20220472T1 (es)
HU (1) HUE058353T2 (es)
LT (1) LT3653620T (es)
MX (1) MX2020000349A (es)
PL (1) PL3653620T3 (es)
PT (1) PT3653620T (es)
RS (1) RS63156B1 (es)
SI (1) SI3653620T1 (es)
WO (1) WO2019012172A1 (es)
ZA (1) ZA202000727B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524799A (zh) * 2022-03-11 2022-05-24 沈阳药科大学 一种hdac抑制剂及其制备方法和用途
WO2024030659A1 (en) 2022-08-05 2024-02-08 Tango Therapeutics, Inc. An hdac inhibitor for treating cancer with a modified stk11 activity or expression

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4306106A1 (en) * 2022-07-14 2024-01-17 Universidade de Aveiro Nitro-containing compounds, compositions and uses thereof
CN115463215A (zh) * 2022-07-26 2022-12-13 苏州大学 Hdac9及其抑制剂的新用途
CN115304513A (zh) * 2022-08-25 2022-11-08 湖北科技学院 具有抗炎活性的查尔酮类衍生物及其合成方法和应用
CN115368277B (zh) * 2022-09-15 2024-03-29 华侨大学 一种含异羟肟酸结构的联苯类化合物及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057779A2 (en) * 2014-10-08 2016-04-14 Acetylon Pharmaceuticals, Inc. Induction of gata2 by hdac1 and hdac2 inhibitors
WO2017004522A1 (en) * 2015-07-02 2017-01-05 Biomarin Pharmaceutical Inc. Histone deacetylase inhibtors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514859A (ja) 2005-11-03 2009-04-09 メルク エンド カムパニー インコーポレーテッド 置換ニコチンアミド化合物
US8119685B2 (en) 2006-04-26 2012-02-21 Merck Sharp & Dohme Corp. Disubstituted aniline compounds
CA2692153A1 (en) 2007-06-27 2009-01-08 Richard W. Heidebrecht, Jr. Pyridyl and pyrimidinyl derivatives as histone deacetylase inhibitors
JP5586692B2 (ja) 2009-06-08 2014-09-10 ギリアード サイエンシーズ, インコーポレイテッド アルカノイルアミノベンズアミドアニリンhdacインヒビター化合物
US9603950B1 (en) * 2015-10-25 2017-03-28 Institute Of Nuclear Energy Research Compounds of imaging agent with HDAC inhibitor for treatment of Alzheimer syndrome and method of synthesis thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057779A2 (en) * 2014-10-08 2016-04-14 Acetylon Pharmaceuticals, Inc. Induction of gata2 by hdac1 and hdac2 inhibitors
WO2017004522A1 (en) * 2015-07-02 2017-01-05 Biomarin Pharmaceutical Inc. Histone deacetylase inhibtors

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
BARTON, KIRSTON M. ET AL.: "Selective HDAC inhibition for the disruption of latent HIV-1 infection", PLOS ONE, vol. 9, no. 8, 2014, pages e102684
BAYLEY, JEPPE SEAMUS; PEDERSEN, THOMAS HOLM; NIELSEN, OLE BAEKGAARD: "Skeletal muscle dysfunction in the db/db mouse model of type 2 diabetes", MUSCLE & NERVE, vol. 54, no. 3, 2016, pages 460 - 468
C. KAISER; S.R. JAMES: "Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation", BMC BIOL., vol. 2, 2004, pages 23, XP021009958, DOI: doi:10.1186/1741-7007-2-23
CAO, YING ET AL.: "Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 106, no. 51, 2009, pages 21819 - 21824
CHOONG, CHI-JING ET AL.: "A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson's disease", NEUROBIOLOGY OF AGING, vol. 37, 2016, pages 103 - 116, XP029344328, DOI: doi:10.1016/j.neurobiolaging.2015.10.001
FAN, JIE ET AL.: "Inhibition of HDAC2 Protects the Retina From Ischemic Injury Inhibition of HDAC2 Protects Retina From Ischemic Injury", INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 54, no. 6, 2013, pages 4072 - 4080
FISCHER, ANDRE ET AL.: "Recovery of learning and memory is associated with chromatin remodeling", NATURE, vol. 447, no. 7141, 2007, pages 178 - 182
FRUMM, STACEY M. ET AL.: "Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation", CHEMISTRY & BIOLOGY, vol. 20, no. 5, 2013, pages 713 - 725, XP055133126, DOI: doi:10.1016/j.chembiol.2013.03.020
GLASER, KEITH B. ET AL.: "Role of class I and class II histone deacetylases in carcinoma cells using siRNA", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 310, no. 2, 2003, pages 529 - 536, XP004458975, DOI: doi:10.1016/j.bbrc.2003.09.043
GRINSHTEIN, NATALIE ET AL.: "Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells", ONCOTARGET, vol. 7, no. 37, 2016, pages 59360 - 59376
HOLBERT, MARC A.: "MARMORSTEIN, Ronen. Structure and activity of enzymes that remove histone modifications", CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 15, no. 6, 2005, pages 673 - 680
HUANG, LILI: "Targeting histone deacetylases for the treatment of cáncer and inflammatory diseases", JOURNAL OF CELLULAR PHYSIOLOGY, vol. 209, no. 3, 2006, pages 611 - 616
JOHNSTONE, RICKY W.: "Histone-deacetylase inhibitors: novel drugs for the treatment of cáncer", NATURE REVIEWS DRUG DISCOVERY, vol. 1, no. 4, 2002, pages 287 - 299, XP002975646, DOI: doi:10.1038/nrd772
JUNG, KWANG HWA ET AL.: "HDAC2 overexpression confers oncogenic potential to human lung cáncer cells by deregulating expression of apoptosis and cell cycle proteins", JOURNAL OF CELLULAR BIOCHEMISTRY, vol. 113, no. 6, 2012, pages 2167 - 2177
KILGORE, MARK ET AL.: "Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease", NEUROPSYCHOPHARMACOLOGY, vol. 35, no. 4, 2010, pages 870 - 880, XP055097974, DOI: doi:10.1038/npp.2009.197
KOBAYASHI, TETSUO ET AL.: "HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma", EMBO REPORTS, 2016, pages e201541922
LIN, ZHENHUA ET AL.: "Combination of proteasome and HDAC inhibitors for uteríne cervical cáncer treatment", CLINICAL CANCER RESEARCH, vol. 15, no. 2, 2009, pages 570 - 577, XP055033724, DOI: doi:10.1158/1078-0432.CCR-08-1813
LKHAGVA, BAIGALMAA ET AL.: "Novel histone deacetylase inhibitor modulates cardiac peroxisome proliferator-activated receptors and inflammatory cytokines in heart failure", PHARMACOLOGY, vol. 96, 2015, pages 184 - 191
MARKS, PAUL A. ET AL.: "Histone deacetylase inhibitors", ADVANCES IN CÁNCER RESEARCH, vol. 91, 2004, pages 137 - 168, XP009163027
MCKINSEY, TIMOTHY A: "Targeting inflammation in heart failure with histone deacetylase inhibitors", MOLECULAR MEDICINE, vol. 17, no. 5, 2011, pages 434, XP055230774, DOI: doi:10.2119/molmed.2011.00022
MOTTAMAL, MADHUSOODANAN ET AL.: "Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents", MOLECULES, vol. 20, no. 3, 2015, pages 3898 - 39419
NURAL-GUVENER, HIKMET ET AL.: "Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signalling in ischemic heart failure", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 16, no. 5, 2015, pages 11482 - 11499
QUINT, KARL ET AL.: "Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC", VIRCHOWS ARCHIV, vol. 459, no. 2, 2011, pages 129 - 139, XP019935490, DOI: doi:10.1007/s00428-011-1103-0
SENESE, SILVIA ET AL.: "Role for histone deacetylase 1 in human tumor cell proliferation", MOLECULAR AND CELLULAR BIOLOGY, vol. 27, no. 13, 2007, pages 4784 - 4795
SEO, JINWON ET AL.: "Expression of histone deacetylases HDAC1, HDAC2, HDAC3, and HDAC6 in invasive ductal carcinomas ofthe breast", JOURNAL OF BREAST CÁNCER, vol. 17, no. 4, 2014, pages 323 - 331
SHEARSTONE, JEFFREY R. ET AL.: "Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2", PLOS ONE, vol. 11, no. 4, 2016, pages e0153767
STUBBS, MATTHEW C. ET AL.: "Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option forB-ALL", CLINICAL CANCER RESEARCH, vol. 21, no. 10, 2015, pages 2348 - 2358
TAN, JIAHUAI ET AL.: "Novel histone deacetylase inhibitors in clinical tria/s as anti-cancer agents", JOURNAL OF HEMATOLOGY & ONCOLOGY, vol. 3, no. 1, 2010, pages 5, XP021070210
THOMAS, ELIZABETH A: "Involvement of HDAC1 and HDAC3 in the pathology of polyglutamine disorders: therapeutic implications for selective HDAC1/HDAC3 inhibitors", PHARMACEUTICALS, vol. 7, no. 6, 2014, pages 634 - 661
TRIVEDI, CHINMAY M. ET AL.: "Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3f3 activity", NATURE MEDICINE, vol. 13, no. 3, 2007, pages 324 - 331
WAGNER, F. F. ET AL.: "Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers", CHEMICAL SCIENCE, vol. 6, no. 1, 2015, pages 804 - 8159, XP055300906, DOI: doi:10.1039/C4SC02130D
WIGHTMAN, FIONA ET AL.: "Entinostat is a histone deacetylase inhibitor selective for class 1 histone deacetylases and activates HIV production from latently infected primary T cells", AIDS, vol. 27, no. 18, 2013, pages 2853, XP055240693, DOI: doi:10.1097/QAD.0000000000000067
WITT, OLAF ET AL.: "HDAC family: What are the cáncer relevant targets?", CANCER LETTERS, vol. 277, no. 1, 2009, pages 8 - 21, XP025981407, DOI: doi:10.1016/j.canlet.2008.08.016
WOODS, DAVID M. ET AL.: "HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade", CANCER IMMUNOLOGY RESEARCH, vol. 3, no. 12, 2015, pages 1375 - 1385, XP002756562, DOI: doi:10.1158/2326-6066.CIR-15-0077-T
XU, KE ET AL.: "Targeting HDACs: a promising therapy for Alzheimer's disease", OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, vol. 2011, 2011, XP055019290, DOI: doi:10.1155/2011/143269
YANG J ET AL.: "Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression", SCI REP., vol. 7, 6 March 2017 (2017-03-06), pages 43864
YANG, F. ET AL.: "Selective class I histone deacetylase inhibitors suppress persistent spontaneous nociception and thermal hypersensitivity in a rat model of bee venom-induced inflammatory pain", ACTA PHYSIOLOGICA SINICA, vol. 67, no. 5, 2015, pages 447 - 454
YANG, HUI ET AL.: "Overexpression ofhistone deacetylases in cáncer cells is controlled by interplay of transcription factors and epigenetic modulators", THE FASEB JOURNAL, vol. 28, no. 10, 2014, pages 4265 - 4279
ZHAO, HAISHAN ET AL.: "HDAC2 overexpression is a poor prognostic factor of breast cáncer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy", JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2016
ZHAO, J. ET AL.: "Histone deacetylases 1 and 2 cooperate in regulating BRCA1, CHK1, and RAD51 expression in acute myeloid leukemia cells", ONCOTARGET, 2016
ZIEMKA-NALECZ, MALGORZATA; JAWORSKA, JOANNA; ZALEWSKA, TERESA: "Histone deacetylases 1 and 2 are required for brain development", INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, vol. 59, no. 4-5-6, 2015, pages 171 - 177
ZONG-YANG LI ET AL.: "Histone Deacetylase Inhibitor RGFP109 Overcomes Temozolomide Resistance by Blocking NF- B-Dependent Transcription in Glioblastoma Cell Lines", NEUROCHEM RES, September 2016 (2016-09-01)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524799A (zh) * 2022-03-11 2022-05-24 沈阳药科大学 一种hdac抑制剂及其制备方法和用途
WO2024030659A1 (en) 2022-08-05 2024-02-08 Tango Therapeutics, Inc. An hdac inhibitor for treating cancer with a modified stk11 activity or expression

Also Published As

Publication number Publication date
RS63156B1 (sr) 2022-05-31
HRP20220472T1 (hr) 2022-05-27
EA202090259A1 (ru) 2020-05-25
EP3653620A1 (en) 2020-05-20
MX2020000349A (es) 2020-08-17
JP2020527173A (ja) 2020-09-03
CA3069273A1 (en) 2019-01-17
DK3653620T3 (da) 2022-03-28
US11241428B2 (en) 2022-02-08
KR20200038473A (ko) 2020-04-13
JP7026787B2 (ja) 2022-02-28
EP3653620B9 (en) 2022-03-23
PT3653620T (pt) 2022-04-22
CN111051300B (zh) 2022-12-23
ZA202000727B (en) 2022-07-27
AU2018300123B2 (en) 2022-03-17
HUE058353T2 (hu) 2022-07-28
PL3653620T3 (pl) 2022-06-20
SI3653620T1 (sl) 2022-05-31
ES2911040T3 (es) 2022-05-17
CN111051300A (zh) 2020-04-21
US20200138808A1 (en) 2020-05-07
BR112020000564A2 (pt) 2020-07-21
LT3653620T (lt) 2022-05-10
AU2018300123A1 (en) 2020-02-13
EP3653620B1 (en) 2022-02-02
KR102574135B1 (ko) 2023-09-01
EA039144B1 (ru) 2021-12-09

Similar Documents

Publication Publication Date Title
ES2911040T3 (es) Nuevos derivados de heteroaril amida como inhibidores selectivos de histona deacetilasa 1 y 2 (HDAC1/2)
ES2855135T3 (es) Amidas heterocíclicas como inhibidores de quinasa
ES2580961T3 (es) Derivados Tiazolilfenil-bencenosulfonamido como Inhibidores de Cinasa
US20230118795A1 (en) Aryl or heteroaryl pyridone or pyrimidine derivative, preparation method and use thereof
WO2017101803A1 (zh) 一种新型egfr和alk激酶的双重抑制剂
ES2963590T3 (es) Inhibidor de EZH2 y uso del mismo
ES2738573T3 (es) Sal de compuesto heterocíclico que contiene nitrógeno o cristal del mismo, composición farmacéutica e inhibidor de FLT3
WO2016082713A1 (zh) 2-氨基嘧啶类化合物及其药物组合物和应用
KR20170101908A (ko) 피리미딘 또는 피리딘계 화합물, 이의 제조방법 및 약학적 용도
ES2660215T3 (es) Potenciador de efecto antitumoral que comprende un compuesto de imidazooxazina
ES2818652T3 (es) Sal de derivado de piridinilaminopirimidina, método de preparación de la misma y aplicación de la misma
CA3093851A1 (en) Substituted 1,1&#39;-biphenyl compounds, analogues thereof, and methods using same
TW201105326A (en) Diamino heterocyclic carboxamide compound
BR112012004453A2 (pt) Composto inibidor de proteína quinase, sua composição farmacêutica e seu uso
AU2016382372B2 (en) Sulfonamide derivative and preparation method and use thereof
AU2017226005A1 (en) Inhibitors of WDR5 protein-protein binding
ES2300775T3 (es) Furazanobencimidazoles.
TW201625620A (zh) 作為蛋白去乙醯酶抑制劑及雙蛋白去乙醯酶蛋白激酶抑制劑之雜環氧肟酸及其使用方法
CN107531683B (zh) Usp7抑制剂化合物及使用方法
ES2389678T3 (es) Un inhibidor de la quinasa C-Kit para su uso en el tratamiento de tumores del estroma gastrointestinal o mastocitosis
WO2021098859A1 (zh) 氮杂七元环类抑制剂及其制备方法和应用
WO2022083657A1 (zh) 取代苯并或吡啶并嘧啶胺类抑制剂及其制备方法和应用
US20180155330A1 (en) N-(heteroaryl)-sulfonamide derivatives useful as s100-inhibitors
ES2782113T3 (es) Compuestos de quinolina fusionados como inhibidores de PI3K/mTor
WO2016140501A1 (en) Pyridine n-oxide for enhancer of zeste homolog 2 inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3069273

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020523052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000564

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018300123

Country of ref document: AU

Date of ref document: 20180709

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018789777

Country of ref document: EP

Effective date: 20200210

ENP Entry into the national phase

Ref document number: 112020000564

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200110