WO2019011289A1 - 机械手的底照视觉系统及其工作方法 - Google Patents

机械手的底照视觉系统及其工作方法 Download PDF

Info

Publication number
WO2019011289A1
WO2019011289A1 PCT/CN2018/095393 CN2018095393W WO2019011289A1 WO 2019011289 A1 WO2019011289 A1 WO 2019011289A1 CN 2018095393 W CN2018095393 W CN 2018095393W WO 2019011289 A1 WO2019011289 A1 WO 2019011289A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
camera
position information
pick
image
Prior art date
Application number
PCT/CN2018/095393
Other languages
English (en)
French (fr)
Inventor
蒋剑
Original Assignee
苏州工业园区凯艺精密科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州工业园区凯艺精密科技有限公司 filed Critical 苏州工业园区凯艺精密科技有限公司
Publication of WO2019011289A1 publication Critical patent/WO2019011289A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators

Definitions

  • the invention relates to the technical field of manipulators, in particular to a bottom illumination system of a manipulator and a working method thereof.
  • the robot includes a mechanical arm and a picking device at the end of the mechanical arm.
  • the vacuum holding and holding device As an example, after the vacuum holding and holding device sucks the workpiece, the held workpiece is transported to the target by the operation of the mechanical arm. Location.
  • the workpiece In the process of sucking up the workpiece by the vacuum holding and holding device, the workpiece may have a small probability of displacement and rotation with respect to the vacuum holding and holding device, and the corresponding workpiece position and the recording position in the coordinate system may be deviated. If the workpiece is required to have an accuracy of less than 0.2 mm, such misalignment and rotation may cause the workpiece to be placed in place.
  • the vacuum suction picking device there is even a case where the vacuum holding and holding device is not sucked to the workpiece, and the workpiece is not placed in place.
  • an embodiment of the present invention provides a bottom illumination system for a robot, the bottom vision system comprising a robot apparatus and a worktable for placing a workpiece, the bottom vision system having a record a coordinate system having initial position information of the workpiece, the robot apparatus comprising a picking device and a mechanical arm that drives the movement of the picking device, the bottom lighting system further comprising a calibration module and a bottom camera; wherein the picking device is in accordance with The workpiece initial position information is moved to a range of viewing angles of the bottom camera after picking up the workpiece, the bottom camera captures a workpiece image picked up by the picking device, and the calibration module sets the coordinates according to the workpiece image
  • the workpiece initial position information in the system is calibrated to the current position information of the workpiece, and the picking device continues to move according to the current position information of the workpiece to complete the transfer of the workpiece.
  • the viewing angle of the bottom camera is set to be vertical upward, and the picking device moves to the front of the bottom camera after picking up the workpiece, so that the bottom camera captures the camera. The image of the workpiece picked up by the pick-up device.
  • the pick-up device includes a plurality of pick-up heads that can pick up workpieces independently, and the pick-up heads sequentially move to directly above the bottom-illuminated camera after picking up the workpiece, so that the bottom photograph The camera sequentially collects a plurality of workpiece images picked up by the pickup head.
  • the pickup device is provided as a vacuum suction device, and the pickup head is provided to suck the suction head of the workpiece by providing a vacuum pressure.
  • the pick-up device when the calibration module determines that there is no workpiece in the workpiece image according to the workpiece image, the pick-up device returns and re-picks the workpiece.
  • the bottom illumination system includes a second camera disposed on the robot arm, and the second camera captures an initial image of the workpiece on the workbench, the coordinate system is based on The workpiece initial image obtains the workpiece initial position information.
  • the number of the second cameras is set to two.
  • an embodiment of the present invention provides a working method of a bottom illumination system for a manipulator as described above, the working method comprising the steps of:
  • the picking device picks up the workpiece according to the initial position information of the workpiece in the coordinate system
  • the picking device moves to the viewing angle of the bottom camera
  • the bottom camera captures the image of the workpiece picked up by the picking device
  • the calibration module calibrates the workpiece initial position information in the coordinate system to current position information of the workpiece, and the picking device continues to move according to the current position information of the workpiece until the transfer of the workpiece is completed.
  • the working method further includes the steps of:
  • the pick-up device when the calibration module determines that there is no workpiece in the workpiece image, the pick-up device returns and re-picks the workpiece.
  • the bottom illumination system includes a second camera disposed on the robot arm, and the second camera captures an initial image of the workpiece on the workbench, the coordinate system is based on The workpiece initial image obtains the workpiece initial position information.
  • the beneficial effects of the present invention are: before the pick-up device picks up the workpiece, before the workpiece is transported, the bottom position camera and the calibration module are used to calibrate the workpiece position data in the coordinate system, thereby picking up the pick-up device.
  • the workpiece is displaced, rotated, etc., and the position data of the workpiece is corrected to ensure that the robot device can accurately place the workpiece to a predetermined position, and the high precision requirement in the workpiece can be satisfied (for example, accuracy within 0.2 mm is required)
  • the pick-up device can be prevented from blindly "dropping" the workpiece, improving work efficiency.
  • FIG. 1 is a perspective view of a illuminating vision system according to an embodiment of the present invention, illustrating a picking device corresponding to a bottom camera;
  • FIG. 2 is a perspective view of a illuminating vision system in accordance with an embodiment of the present invention, illustrating that the picking device does not correspond to a bottom camera.
  • the robot apparatus 1 and the table 2 for placing a workpiece are included.
  • the table 2 is a platform structure extending along a plane; the robot device 1 is located at one side of the table 2, and the robot device 1 includes a pick-up device 5 at the end and a robot arm 3 that drives the movement of the pick-up device 5.
  • the working range of the pick-up device 5 covers the working area of the table 2, that is to say, under the driving of the robot arm 3, the pick-up device 5 is movably fitted to any position of the working area of the table 2. In order to pick up and transfer the workpiece placed at any position in the working area of the workbench 2.
  • the plane of the workbench 2 is defined as a horizontal plane, and the direction perpendicular to the plane of the workbench 2 is defined as a vertical direction; the side where the robot apparatus 1 is located is defined as the upper side of the workbench 2.
  • the bottom illumination system has a coordinate system in which initial position information of the workpiece is recorded, and the initial position information of the workpiece indicates the position of the workpiece on the table 2 (including coordinates, angle, size, posture, etc.) ).
  • the picking device 5 moves to the corresponding position of the table 2 according to the initial position information of the workpiece and picks up the workpiece.
  • the bottom illumination system may also perform secondary positioning of the workpiece picked up by the pick-up device 5 before the pick-up device 5 picks up the workpiece and transports the workpiece.
  • the bottom illumination system further includes a calibration module and a bottom camera 4 disposed on the worktable 2.
  • the viewing angle range of the bottom camera 4 overlaps with the working range of the pickup device 5, that is, the pickup device 5 can The motion is in the range of the angle of view of the camera 4.
  • the pick-up device 5 first moves into the viewing angle range of the bottom-illuminated camera 4 in order to transport the workpiece picked up by it to the viewing angle range of the bottom-illuminated camera 4; at this time, the bottom-illuminated camera 4 Obtaining a workpiece image picked up by the picking device 5 by photographing; the calibration module calibrates the workpiece initial position information in the coordinate system to current position information of the workpiece according to the workpiece image; and then, the picking device 5 according to the current workpiece The position information continues to move to complete the transfer of the workpiece.
  • the present invention sets the bottom camera 4 and the calibration module, and after the pick-up device 5 picks up the workpiece, the pick-up device 5 first corresponds to the bottom-illuminated camera 4, and the bottom-illuminated camera 4 captures the image of the workpiece on the pick-up device 5 at this time ( Including the angle, posture and the like of the workpiece at this time, the calibration module then calibrates the data in the coordinate system according to the workpiece image, and the pick-up device 5 performs a subsequent transfer operation, thereby appearing in the process of picking up the workpiece for the pick-up device 5.
  • the workpiece is displaced, rotated, etc., and the position data of the workpiece is corrected to ensure that the robot device 1 can accurately place the workpiece to a predetermined position, and can also meet the high precision requirement in the workpiece (for example, an accuracy of 0.2 mm or less is required).
  • the calibration module determines, according to the workpiece image, that there is no workpiece in the workpiece image, that is, corresponding to the case where the picking device 5 does not pick up the workpiece, the picking device 5 Return and re-pick the workpiece.
  • the pick-up device 5 can be prevented from blindly "dropping" the workpiece, thereby improving work efficiency.
  • the viewing angle of the bottom camera 4 is perpendicular to the plane of the table 2, that is, the viewing angle of the bottom camera 4 is set to be vertical upward; the picking device 5 can be moved directly above the bottom camera 4 to facilitate its placement.
  • the picked-up workpiece is transported directly above the bottom-illuminated camera 4, and at this time, the bottom-illuminated camera 4 can conveniently collect the image of the workpiece picked up by the pick-up device 5 by shooting.
  • the pick-up device 5 includes a plurality of pick-up heads 21, each of which can pick up the workpiece independently.
  • a plurality of pick-up heads 21 are sequentially moved to directly above the bottom-illuminated camera 4 after picking up the workpiece to transport the picked-up workpiece directly above the base-illuminated camera 4, so that the base-illuminated camera 4 sequentially collects the workpiece images picked up by the pick-up heads 21.
  • the number of the pickup heads 21 in the present embodiment is set to two, and for convenience of explanation, the two pickup heads 21 are named as the first pickup head 21 and the second pickup head 21, respectively.
  • the process is as follows: the first pick-up head 21 picks up the first workpiece, the second pick-up head 21 picks up the second workpiece; then, under the driving of the mechanical arm 3, the pick-up device 5 moves to the top of the bottom-illuminated camera 4; the first pick-up head 21 moves Directly above the camera 4 to position the first workpiece within the viewing angle of the bottom camera 4, the bottom camera 4 captures the first workpiece image, and the calibration module positions the first workpiece in the coordinate system according to the first workpiece image.
  • the information is calibrated to the current position information of the first workpiece; then, the picking device 5 moves the fine adjustment position, and the second picking head 21 is moved directly above the bottom camera 4 so that the second workpiece is located within the viewing angle range of the bottom camera 4,
  • the camera 4 collects a second workpiece image
  • the calibration module calibrates the second workpiece initial position information in the coordinate system to the second workpiece current position information according to the second workpiece shadow image; finally, under the driving of the robot arm 3, the picking device 5 Transmitting and delivering the first workpiece to the corresponding target position according to the current position information of the first workpiece, and transferring the second workpiece according to the current position information of the second workpiece To put in place the appropriate destination.
  • the pick-up device 5 may be specifically configured to pick up the workpiece by suction, grabbing, etc.
  • the pick-up device 5 is provided as a vacuum suction device, and the pick-up head 21 is arranged to suck the workpiece by providing vacuum pressure. Hold the head.
  • the bottom illumination system further includes a second camera 22, the second camera 22 is disposed on the robot arm 3, and the second camera 22 is configured to collect an initial image of the workpiece on the workbench 2, the bottom illumination system
  • the coordinate system obtains the initial position information of the workpiece according to the initial image of the workpiece, and the robot device 1 performs an action of picking up the workpiece according to the initial position information of the workpiece.
  • the number of second cameras 22 is set to two.
  • the operator can match the appropriate camera according to actual needs (such as the size of the workpiece, the working area of the worktable 2, the boundary shape of the workpiece, the precision requirement, etc.), for example, one of the second cameras 22 is set as a telephoto camera to It is used for precise imaging of the workpiece on the workbench 2 to facilitate identification of the detailed structure of the workpiece; wherein the other second camera 22 is configured as a short-focus camera for obtaining a larger range of work area 2 work area images.
  • the robot apparatus further includes a vertically arranged base 6, a moving mechanism, a swinging mechanism, and a rotating mechanism, and the base 6, the moving mechanism, the swinging mechanism, the rotating mechanism, and the mechanical arm 3 are sequentially connected.
  • the direction defined by the base 6 toward the end of the robot arm 3 is defined as "far"
  • the direction from the end of the robot arm 3 to the base 6 is defined as "near”.
  • the base 6, the moving mechanism, the swinging mechanism, the rotating mechanism, and the mechanical arm 3 are connected in sequence from near to far, that is, the base 6, the moving mechanism, the swinging mechanism, and the The rotating mechanism is sequentially connected to the proximal end of the robot arm 3.
  • the moving mechanism includes a first transmission base 8 and a first motor 7 that drives the first transmission base 8 to move in a first direction.
  • the first motor 7 is fixed at one end of the base 6, and the base 6 is provided with two shaft guide rods along the length thereof.
  • the two shaft guide rods are perpendicular to the table 2 and parallel to the output shaft of the first motor 7,
  • a transmission base 8 is fitted in the shaft guide rod.
  • the output of the first motor 7 is screwed to the spindle nut in the first transmission seat 8 via a lead screw 9. That is, the first direction in the present invention is configured as the longitudinal direction of the shaft guide rod.
  • the first transmission base 8 is horizontally movable along the length direction of the shaft guide rod (ie, the first direction).
  • the swinging mechanism is connected at a proximal end to the first transmission base 8 and is rotatable in a first plane perpendicular to the first direction, that is to say the oscillating plane of the oscillating mechanism is parallel to the table 2.
  • the first transmission base 8 extends horizontally perpendicular to the first direction, and the first transmission base 8 is provided with a second motor;
  • the swinging mechanism includes a second transmission seat 12, and the proximal end of the second transmission base 12
  • the second shaft 10 is connected to the distal end of the first transmission base 8; the output end of the second motor is coupled to the second input gear 11 on the second transmission base 12 via a gear transmission mechanism.
  • the second motor drives the second transmission seat 12 to swing about the second shaft 10 in a first plane perpendicular to the first direction (ie, the second transmission seat 12 is wound around the second shaft 10) Rotating relative to the first transmission base 8).
  • the swinging mechanism further includes a third transmission seat 15, and the proximal end of the third transmission seat 15 is connected to the distal end of the second transmission seat 12 through the third shaft 13.
  • a third motor is fixed on the second transmission base 12
  • a third output gear is fixed to the output end of the third motor
  • a third input gear 14 is fixed on the axial end of the third shaft 13.
  • the third output gear is meshed with the third input gear 14 such that the output of the third motor is coupled to the third transmission 15 via a gearing mechanism.
  • the third motor drives the third transmission seat 15 to oscillate about the third axis 13 in a first plane perpendicular to the first direction (ie, the third transmission seat 15 is wound around the third axis 13) Rotating relative to the second transmission seat 12).
  • the shaft guiding rod, the second shaft 10 and the third shaft 13 are all parallel, so that the robot device 1 has a simple structure and is convenient to install.
  • the output shaft of the first motor 7, the output shaft of the second motor, and the output shaft of the third motor are parallel to each other, thereby ensuring a small footprint of the entire structure and making the working range of the robot arm 3 large.
  • the end faces of the first transmission base 8, the second transmission base 12, and the third transmission base 15 are parallel to each other, and the working range of the mechanical arm 3 is ensured to be large.
  • the rotating mechanism is mounted at a distal end of the swinging mechanism and drives the mechanical arm 3 to rotate about a rotating shaft of the fourth bearing 24, and the rotating shaft of the fourth bearing 24 is perpendicular to the first direction.
  • the rotating mechanism includes a side convex mount 23 fixedly coupled to the distal end of the third transmission base 15 and a fourth motor 16 disposed on the side convex mount 23; the output end of the fourth motor 16 is fixed to the mechanical At the proximal end of the arm 3, the output of the fourth motor 16 and the proximal end of the robot arm 3 are connected within the fourth bearing 24.
  • the fourth motor 16 drives the robot arm 3 to rotate about the rotation axis of the fourth bearing 24.
  • the rotation axis of the fourth bearing 24 is coaxial with the output shaft of the fourth motor 16, both of which are perpendicular to the first direction. That is, the fourth motor 16 allows the robot arm 3 to be swung around the central axis of the robot arm 3.
  • the robot apparatus 1 of the present invention can make the mechanical arm 3 move and flip horizontally and vertically by the cooperation of the moving mechanism, the swinging mechanism, the rotating mechanism and the mechanical arm 3, thereby ensuring a large working range. .
  • the mechanical arm 3 is further provided with a fifth motor 17, and the output end of the fifth motor 17 is arranged perpendicular to the longitudinal direction of the robot arm 3, that is, the output shaft of the fifth motor 17 is perpendicular to the output shaft of the fourth motor 16.
  • the output shaft of the first motor 7, the output shaft of the second motor, and the output shaft of the third motor are parallel to each other.
  • the output end of the fifth motor 17 is provided with a fifth input gear 18, the fifth input gear 18 is meshed with the fifth output gear 19, and the fifth output gear 19 is fitted to the fifth output shaft 20, and the output end of the fifth output shaft 20 is mounted.
  • the suction device 5 is disposed at the end of the five-axis robot device 1 to facilitate fine work.
  • all of the gears in the present application are all made of a flexible material. It is preferably made of PLA (polylactic acid) plastic material and can be produced by 3D printing. Of course, other flexible or elastic materials can be used, and other methods such as injection molding can be used.
  • PLA polylactic acid
  • all the gears including the second input gear 11, the third output gear, the third input gear 14, the fifth input gear 18, the fifth output gear 19, and the like, are provided with an annular ring. Continuous pore structure.
  • the fifth input gear 18 and the fifth output gear 19, the ring inner ring of the fifth input gear 18 is provided with an annular discontinuous vent structure 25, and the ring inner ring of the fifth output gear 19 is also provided with an annular discontinuity.
  • the vent structure 25, such that the fifth input gear 18 and the fifth output gear 19 which are in mesh with each other are deformed in the direction of the own axis, so that the two are always kept in a pressed state, thereby ensuring a smooth and accurate transmission, and The accuracy requirements for the gears are further reduced.
  • the pores of the pore structure may be any one of a circular shape, a rectangular shape, an arc shape, a fan shape, or a shape.
  • the irregular shape refers to an irregular closed shape, such as an asymmetrical closed shape, or a closed shape having four sides but different lengths and non-parallel, and other irregularities.
  • a plurality of layers of the pore structure may be arranged along the tooth portion extending radially to the gear surface.
  • the pore structure is preferably a three-layer arrangement.
  • the second camera 22 is disposed on the output end surface of the robot arm 3 corresponding to the fifth output shaft 20, so that the second camera 22 can be easily obtained with an optimum viewing angle, thereby facilitating accurate positioning of the pickup device 5 when picking up the workpiece.
  • an embodiment of the present application further provides a working method of the bottom illumination system, in combination with the structure of the bottom vision system, the working method includes the following steps:
  • Step the picking device 5 picks up the workpiece according to the initial position information of the workpiece in the coordinate system
  • the initial position information of the workpiece in the coordinate system may be manually preset in the coordinate system, or may be collected and recorded by the bottom vision system in this embodiment.
  • the second camera 22 collects an initial image of the workpiece on the workbench 2, and the coordinate system of the bottom illumination system obtains the initial position information (including coordinates, angle, size, posture, and the like) of the workpiece according to the initial image of the workpiece;
  • the robot apparatus 1 is configured such that, under the driving of the robot arm 3, the pickup device 5 performs an action of picking up a workpiece based on the workpiece initial position information.
  • Step the picking device 5 moves to the viewing angle range of the bottom camera 4;
  • the viewing angle of the bottom camera 4 is set to be vertically upward. Accordingly, the picking device 5 can be moved directly above the bottom camera 4 to facilitate transporting the workpiece picked up to the top view of the bottom camera 4.
  • the pick-up device 5 includes a plurality of pick-up heads 21 each capable of independently picking up workpieces, and the plurality of pick-up heads 21 are sequentially moved to directly above the bottom-illuminated camera 4 after picking up the workpieces to transport the picked-up workpieces. To the bottom of the camera 4 directly above the viewing angle range.
  • Step, the bottom camera 4 captures the image of the workpiece picked up by the picking device 5;
  • the bottom-illuminated camera 4 can sequentially collect a plurality of workpiece images picked up by the pick-up heads 21.
  • the calibration module calibrates the initial position information of the workpiece in the coordinate system to the current position information of the workpiece, and the picking device 5 continues to move according to the current position information of the workpiece until the transfer of the workpiece is completed;
  • the bottom camera 23 and the calibration module are used to perform the workpiece position data in the coordinate system.
  • the calibration is performed to calibrate the workpiece displacement, rotation and the like which occur during the picking up of the workpiece by the pick-up device 5, so that the robot device 1 can accurately place the workpiece to a predetermined position, and can also meet the high-precision requirement for placing the workpiece (for example, Accuracy within 0.2mm).
  • the working method further includes the step of: when the calibration module determines that there is no workpiece in the workpiece image according to the workpiece image, the picking device 5 returns and re-picks the workpiece.
  • No workpiece in the workpiece image in this step corresponds to the case where the picking device 5 does not pick up the workpiece, so that when the picking device 5 does not pick up the workpiece, the picking device 5 can be prevented from blindly "dropping" the workpiece. Increase work efficiency.
  • the bottom illumination system and the working method thereof have the beneficial effects that the pickup device 5 can be monitored by acquiring the initial position information of the workpiece on the work table 2 by using the second camera 22.
  • the process of picking up the workpiece ensures that the picking device 5 picks up the workpiece accurately, and reduces the probability of abnormality of the workpiece being displaced, rotated, and missed during picking up the workpiece; using the bottom camera before transferring the workpiece after the picking device 5 picks up the workpiece 4 and the calibration module calibrates the workpiece position data in the coordinate system, thereby calibrating the workpiece misalignment, rotation, and the like occurring during the picking up of the workpiece by the picking device 5, thereby ensuring that the robot device 1 can accurately deliver the workpiece to the target.
  • the pick-up device 5 can also meet the high-precision requirement in the workpiece (for example, the accuracy within 0.2 mm is required); and when the pick-up device 5 does not pick up the workpiece, the pick-up device 5 can be prevented from blindly "dropping" the workpiece, lifting Work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明提供了一种机械手的底照视觉系统及其工作方法,所述底照视觉系统包括机械手装置和用于放置工件的工作台,所述底照视觉系统具有记录有工件初始位置信息的坐标系,所述机械手装置包括拾取装置以及带动所述拾取装置运动的机械臂,其特征在于,所述底照视觉系统还包括校准模块和底照摄像头;其中,所述拾取装置在依照所述工件初始位置信息拾取工件之后运动至所述底照摄像头的视角范围内,所述底照摄像头采集所述拾取装置所拾取的工件影像,所述校准模块根据所述工件影像将所述坐标系中的所述工件初始位置信息校准为工件当前位置信息,所述拾取装置依照所述工件当前位置信息继续运动以完成工件的转运。

Description

机械手的底照视觉系统及其工作方法
本申请要求了申请日为2017年07月14日,申请号为201710574334.3,发明名称为“一种机械手的底照式视觉系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及机械手技术领域,具体为一种机械手的底照视觉系统及其工作方法。
背景技术
现有技术中,机械手包括机械臂以及位于机械臂末端的拾取装置,以真空吸持拾取装置为例,真空吸持拾取装置吸持工件后,通过机械臂的运转将吸持的工件转运到目标位置处。而真空吸持拾取装置在吸起工件的过程中,工件会出现相对真空吸持拾取装置具有小概率的错动、转动,相应的工件位置和在坐标系中的记录位置就会存在偏差,而如果投放工件需要0.2mm以内的精度,这种错位、转动的情况会造成工件投放不到位。另外,真空吸持拾取装置在吸起工件的过程中,甚至还会出现真空吸持拾取装置没吸持到工件的情况,同样会造成工件投放不到位。
发明内容
本发明的目的在于提供一种机械手的底照视觉系统及其工作方法,以解决现有技术中由于工件错动、转动或未拾取到工件而造成地工件投放不到位的问题。
为实现上述发明目的之一,本发明一实施例提供了一种机械手的底照视觉系统,所述底照视觉系统包括机械手装置和用于放置工件的工作台,所述底照视觉系统具有记录有工件初始位置信息的坐标系,所述机械手装置包括拾取装置以及带动所述拾取装置运动的机械臂,所述底照视觉系统还包括校准模块和底照摄像头;其中,所述拾取装置在依照所述工件初始位置信息拾取工件之后运动至所述底照摄像头的视角范围内,所述底照摄像头采集所述拾取装置所拾取的工件影像,所述校准模块根据所述工件影像将所述坐标系中的所述工件初始位置信息校准为工件当前位置信息,所述拾取装置依照所述工件当前位置信息继续运动以完成工件的转运。
作为本发明一实施例的进一步改进,所述底照摄像头的视角布设为竖直向上,所述拾取装置在拾取工件之后运动至所述底照摄像头正上方,以使所述底照摄像头采集所述拾取装置所拾取的工件影像。
作为本发明一实施例的进一步改进,所述拾取装置包括可独立拾取工件的若干拾取头,若干所述拾取头在拾取工件之后依次运动至所述底照摄像头正上方,以使所述底照摄像头依次采集若干所述拾取头所拾取的工件影像。
作为本发明一实施例的进一步改进,所述拾取装置设置为真空吸取装置,所述拾取头设置为 通过提供真空压力以吸取工件的吸持头。
作为本发明一实施例的进一步改进,所述校准模块根据所述工件影像判定所述工件影像中无工件时,所述拾取装置返回并重新拾取工件。
作为本发明一实施例的进一步改进,所述底照视觉系统包括设置于所述机械臂上的第二摄像头,所述第二摄像头采集所述工作台上的工件初始影像,所述坐标系根据所述工件初始影像获得所述工件初始位置信息。
作为本发明一实施例的进一步改进,所述第二摄像头的数目设置为两个。
为实现上述发明目的之一,本发明一实施例提供了一种如上所述的机械手的底照视觉系统的工作方法,所述工作方法包括步骤:
拾取装置依照坐标系中的工件初始位置信息拾取工件;
拾取装置运动至底照摄像头的视角范围内;
底照摄像头采集拾取装置所拾取的工件影像;
根据所述工件影像,校准模块将所述坐标系中的所述工件初始位置信息校准为工件当前位置信息,拾取装置依照所述工件当前位置信息继续运动直至完成工件的转运。
作为本发明一实施例的进一步改进,所述工作方法还包括步骤:
根据所述工件影像,校准模块判定所述工件影像中无工件时,拾取装置返回并重新拾取工件。
作为本发明一实施例的进一步改进,所述底照视觉系统包括设置于所述机械臂上的第二摄像头,所述第二摄像头采集所述工作台上的工件初始影像,所述坐标系根据所述工件初始影像获得所述工件初始位置信息。
与现有技术相比,本发明的有益效果体现在:在拾取装置拾取工件之后转运投放工件之前,先利用底照摄像头和校准模块对坐标系中的工件位置数据进行校准,从而针对拾取装置拾取工件过程中出现的工件错动、转动等情况,修正工件的位置数据,保证机械手装置可以精准地投放工件至预定位置处,还可满足投放工件中的高精度需求(例如需要0.2mm以内的精度);并且在拾取装置未拾取到工件的情况发生时,可避免拾取装置盲目地“空投”工件,提升工作效率。
附图说明
图1为本发明一实施例的底照视觉系统的立体图,其示意了拾取装置对应于底照摄像头;
图2为本发明一实施例的底照视觉系统的立体图,其示意了拾取装置未对应于底照摄像头。
具体实施方式
以下将结合附图所示的实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构或功能上的变换均包含在本发明的保护 范围内。
参图1至图2所示的本发明一实施例的底照视觉系统,其包括机械手装置1和用于放置工件的工作台2。工作台2为沿一平面延伸的平台结构;机械手装置1位于工作台2的一侧,机械手装置1包括末端的拾取装置5以及带动拾取装置5运动的机械臂3。在机械臂3的带动下,拾取装置5的工作范围覆盖工作台2的工作区域,也就是说:在机械臂3的带动下,拾取装置5可运动地配合至工作台2的工作区域任意位置处,以便于拾取并转运放置在工作台2工作区域任意位置处的工件。
为便于描述,本申请中,工作台2所在平面定义为水平面,垂直于工作台2所在平面的方向定义为竖直方向;机械手装置1所在侧定义为工作台2的上方。
其中,所述底照视觉系统具有坐标系,所述坐标系中记录有工件初始位置信息,该工件初始位置信息标示了工件在工作台2上的位置(包括坐标、角度、尺寸、姿态等参数)。在机械臂3的带动下,拾取装置5依照所述工件初始位置信息运动至工作台2对应位置处并拾取工件。在本申请中,在拾取装置5拾取工件之后转运投放工件之前,所述底照视觉系统还可对拾取装置5所拾取到的工件进行二次定位。
具体地,所述底照视觉系统还包括校准模块以及设置于工作台2上的底照摄像头4,底照摄像头4的视角范围与拾取装置5的工作范围有交叠,也就是拾取装置5可以运动到底照摄像头4的视角范围内。其中,拾取装置5在拾取工件之后,拾取装置5首先运动至底照摄像头4的视角范围内以便于将其所拾取的工件运送至底照摄像头4的视角范围内;这时,底照摄像头4通过拍摄采集拾取装置5所拾取到的工件影像;所述校准模块根据所述工件影像将坐标系中的所述工件初始位置信息校准为工件当前位置信息;而后,拾取装置5依照所述工件当前位置信息继续运动以完成工件的转运投放。
这样,本发明通过设置底照摄像头4和校准模块,在拾取装置5拾取工件后,拾取装置5首先对应至底照摄像头4处,底照摄像头4拍下此时拾取装置5上的工件影像(包括此时工件的角度、姿态等参数),然后所述校准模块根据工件影像对坐标系中的数据进行校准,拾取装置5再执行后续的转运作业,从而针对拾取装置5拾取工件过程中出现的工件错动、转动等情况,修正工件的位置数据,保证机械手装置1可以精准地投放工件至预定位置处,还可满足投放工件中的高精度需求(例如需要0.2mm以内的精度)。
进一步地,当底照摄像头4采集到工件影像后,所述校准模块根据所述工件影像判定所述工件影像中无工件时,也就是对应于拾取装置5未拾取到工件的情况,拾取装置5返回并重新拾取工件。这样,拾取装置5未拾取到工件的情况发生时,可避免拾取装置5盲目地“空投”工件, 提升工作效率。
进一步地,底照摄像头4的视角垂直于工作台2所在平面向上,也即底照摄像头4的视角布设为竖直向上;拾取装置5可运动至底照摄像头4的正上方以便于将其所拾取的工件运送至底照摄像头4的正上方,此时底照摄像头4通过拍摄可方便地采集到拾取装置5所拾取到的工件影像。
进一步地,拾取装置5包括若干拾取头21,若干拾取头21均可独立拾取工件。若干拾取头21在拾取工件之后依次运动至底照摄像头4的正上方以将拾取的工件运送至底照摄像头4正上方,以使底照摄像头4依次采集若干拾取头21所拾取的工件影像。以在本实施例中进行说明,本实施例中拾取头21的数目设置为两个,为便于说明,两个拾取头21分别命名为第一拾取头21和第二拾取头21。则过程如下:第一拾取头21拾取第一工件,第二拾取头21拾取第二工件;而后在机械臂3的带动下,拾取装置5运动至底照摄像头4上方;第一拾取头21运动至底照摄像头4正上方以使第一工件位于底照摄像头4的视角范围内,底照摄像头4采集第一工件影像,所述校准模块依照第一工件影像将坐标系内第一工件初始位置信息校准为第一工件当前位置信息;而后,拾取装置5通过运动微调位置,第二拾取头21运动至底照摄像头4正上方以使第二工件位于底照摄像头4的视角范围内,底照摄像头4采集第二工件影像,所述校准模块依照第二工件影影像将坐标系内第二工件初始位置信息校准为第二工件当前位置信息;最后,在机械臂3的带动下,拾取装置5依照第一工件当前位置信息将第一工件转运并投放至相应目标位置处,并依照第二工件当前位置信息将第二工件转运并投放至相应目标位置处。
进一步地,拾取装置5具体可设置为通过吸取、抓取等方式拾取工件,在本实施例中,拾取装置5设置为真空吸取装置,其拾取头21设置为通过提供真空压力以吸取工件的吸持头。
进一步地,所述底照视觉系统还包括第二摄像头22,第二摄像头22设置于机械臂3上,第二摄像头22用于采集工作台2上的工件初始影像,所述底照视觉系统的所述坐标系根据所述工件初始影像获得所述工件初始位置信息,进而机械手装置1根据所述工件初始位置信息执行拾取工件的动作。这样,通过在机械臂3上设置第二摄像头22,利用第二摄像头22获取工作台2上的工件初始位置信息,可以监测拾取装置5拾取工件的过程,保证拾取装置5精准拾取工件,减小拾取工件过程中工件错动、转动、漏拾的异常问题发生几率。
优选地,第二摄像头22的数目设置为与两个。这样,操作人员可根据实际需求(例如工件的尺寸、工作台2工作区域面积、工件的边界形状、精度需求等)搭配合适的摄像头,例如:其中一个第二摄像头22设置为长焦摄像头,以用于对工作台2上的工件进行精准成像,便于识别工件的细节结构;其中另一第二摄像头22设置为短焦摄像头,以用于获得更大范围的工作台2工作区域影像。
进一步地,所述机械手装置还包括立式布置的底座6、移动机构、摆动机构和旋转机构,底座6、所述移动机构、所述摆动机构、所述旋转机构、机械臂3依次连接。为便于描述,本申请中,定义由底座6指向机械臂3末端的方向定义为“远”,相反的,由机械臂3末端指向底座6的方向定义为“近”。相应的,底座6、所述移动机构、所述摆动机构、所述旋转机构、机械臂3由近及远依次连接,也就是说,底座6、所述移动机构、所述摆动机构、所述旋转机构于机械臂3近端依次连接。
所述移动机构包括第一传动座8及驱动第一传动座8沿第一方向移动的第一电机7。具体地,第一电机7固设于底座6的一端,底座6沿其长度方向设置两根轴向导杆,两根轴向导杆垂直于工作台2且平行于第一电机7的输出轴,第一传动座8套装于所述轴向导杆内。第一电机7的输出端通过丝杆9螺纹连接第一传动座8内的丝杆螺母。也就是说,本发明中的第一方向构造为所述轴向导杆的长度方向。当第一电机7工作时,第一传动座8可沿所述轴向导杆的长度方向(即为第一方向)水平移动。
所述摆动机构近端连接至第一传动座8上并能够在与第一方向垂直的第一平面内摆动,也即所述摆动机构的摆动平面平行于工作台2。具体地,第一传动座8上垂直于所述第一方向水平延伸,第一传动座8上设置有第二电机;所述摆动机构包括第二传动座12,第二传动座12的近端通过第二轴10连接至第一传动座8的远端;所述第二电机的输出端通过齿轮传动机构连接第二传动座12上的第二输入齿轮11。当所述第二电机工作时,所述第二电机驱动第二传动座12绕第二轴10在与第一方向垂直的第一平面内摆动(也即第二传动座12绕第二轴10相对第一传动座8转动)。
在本实施例中,所述摆动机构还包括第三传动座15,第三传动座15的近端通过第三轴13连接至第二传动座12的远端。具体地,第二传动座12上固装有第三电机,所述第三电机的输出端固装有第三输出齿轮;第三轴13的轴端固装有第三输入齿轮14,所述第三输出齿轮啮合连接第三输入齿轮14,以使所述第三电机的输出端通过齿轮传动机构连接第三传动座15。当所述第三电机工作时,所述第三电机驱动第三传动座15绕第三轴13在与第一方向垂直的第一平面内摆动(也即第三传动座15绕第三轴13相对第二传动座12转动)。
其中,所述轴向导杆、第二轴10和第三轴13均相平行,使得机械手装置1的结构简单、安装方便。第一电机7的输出轴、所述第二电机的输出轴及所述第三电机的输出轴相互平行,可以确保整个结构占地面积少,并使得机械臂3的工作范围大。并且,第一传动座8、第二传动座12、第三传动座15的端面相互平行,确保机械臂3的工作范围大。
所述旋转机构安装在所述摆动机构远端,并带动机械臂3围绕第四轴承24的旋转轴旋转, 第四轴承24的旋转轴与第一方向垂直。具体地,所述旋转机构包括固定连接于第三传动座15远端的侧凸安装座23及设置在侧凸安装座23上的第四电机16;第四电机16的输出端固接至机械臂3近端,第四电机16的输出端和机械臂3的近端于第四轴承24内实现连接。当第四电机16工作时,第四电机16驱动机械臂3围绕第四轴承24的旋转轴旋转。其中,第四轴承24的旋转轴与第四电机16的输出轴同轴设置,二者均与第一方向相垂直。也即,第四电机16使得机械臂3可绕机械臂3的中心轴回转。
这样,本发明的机械手装置1,通过所述移动机构、所述摆动机构、所述旋转机构及机械臂3的配合,可使得机械臂3可于水平、垂直向动作及翻转,保证工作范围大。
另外,机械臂3上还设置有第五电机17,第五电机17的输出端垂直于机械臂3的长度方向布置,也即第五电机17的输出轴与第四电机16的输出轴相垂直,与第一电机7的输出轴、所述第二电机的输出轴及所述第三电机的输出轴相互平行。第五电机17的输出端套装有第五输入齿轮18,第五输入齿轮18啮合连接第五输出齿轮19,第五输出齿轮19套装于第五输出轴20,第五输出轴20的输出端安装有吸取装置5。这样,吸取装置5设置于五轴机械手装置1的末端,利于完成精细作业。
进一步地,在本申请中所有的齿轮,包括第二输入齿轮11、所述第三输出齿轮、第三输入齿轮14、第五输入齿轮18、第五输出齿轮19等均由柔性材料制成,优选PLA(polylactic acid,聚乳酸)塑料材质,可以通过3D打印制得。当然,也可以使用其他具有柔性或弹性的材质,使用相应的如注塑等其他方法制得。
进一步地,所有的齿轮,包括第二输入齿轮11、所述第三输出齿轮、第三输入齿轮14、第五输入齿轮18、第五输出齿轮19等的齿圈内环均设置有环状不连续气孔结构。如第五输入齿轮18和第五输出齿轮19,第五输入齿轮18的齿圈内环设置有环状不连续气孔结构25,第五输出齿轮19的齿圈内环也设置有环状不连续气孔结构25,这样,相互啮合的第五输入齿轮18和第五输出齿轮19均会发生向自身轴心方向的变形,可使二者始终保持挤压的状态,保证了平稳准确的传动,并且对齿轮的精度要求进一步降低。
在本实施例中,所述气孔结构的气孔具体可以为圆形、矩形、弧形、扇形或异形等形状中的任意一个。具体来说,异形是指不规则的闭合形状,例如不对称闭合形状,或具有四条边的闭合形状但长度不同也互不平行,以及其他不规则情况。
进一步地,沿齿部向齿轮表面径向延伸,可以排布有若干层所述气孔结构。在本实施例中,所述气孔结构优选为三层排布结构。
另外,第二摄像头22设置在机械臂3的对应于第五输出轴20的输出端面上,这样,可便于 第二摄像头22获得最佳的视角,从而利于拾取装置5拾取工件时的精准定位。
进一步地,本申请一实施例还提供一种所述底照视觉系统的工作方法,结合所述底照视觉系统的结构,所述工作方法包括步骤:
步骤,拾取装置5依照坐标系中的工件初始位置信息拾取工件;
该步骤中,坐标系中的工件初始位置信息可以是人工预设在坐标系中,也可以如本实施例中由所述底照视觉系统自行采集并记录,具体地,在本实施例中,第二摄像头22采集工作台2上的工件初始影像,所述底照视觉系统的坐标系根据所述工件初始影像获得所述工件初始位置信息(包括坐标、角度、尺寸、姿态等参数);进而机械手装置1被配置为,在机械臂3的带动下,拾取装置5根据所述工件初始位置信息执行拾取工件的动作。
步骤,拾取装置5运动至底照摄像头4的视角范围内;
该步骤中,底照摄像头4的视角布设为竖直向上,相应的,拾取装置5可运动至底照摄像头4的正上方以便于将其所拾取的工件运送至底照摄像头4的正上方视角范围内;另外,在本实施例中,拾取装置5包括均可独立拾取工件的若干拾取头21,若干拾取头21在拾取工件之后依次运动至底照摄像头4的正上方以将拾取的工件运送至底照摄像头4正上方视角范围内。
步骤,底照摄像头4采集拾取装置5所拾取的工件影像;
该步骤中,本实施例的拾取装置5的若干拾取头21依次运动至底照摄像头4的正上方时,底照摄像头4可依次采集若干拾取头21所拾取的若干工件影像。
步骤,根据所述工件影像,校准模块将坐标系中的工件初始位置信息校准为工件当前位置信息,拾取装置5依照工件当前位置信息继续运动直至完成工件的转运;
这样,本发明一实施例的所述底照视觉系统的工作方法,在拾取装置5拾取工件之后转运投放工件之前,先利用底照摄像头4和所述校准模块对坐标系中的工件位置数据进行校准,从而实现对拾取装置5拾取工件过程中出现的工件错动、转动等情况进行校准,保证机械手装置1可以精准地投放工件至预定位置处,还可满足投放工件的高精度需求(例如需要0.2mm以内的精度)。
进一步地,所述工作方法还包括步骤:校准模块根据所述工件影像判定所述工件影像中无工件时,拾取装置5返回并重新拾取工件。该步骤中的所述工件影像中无工件对应于拾取装置5未拾取到工件的情况,这样,一旦拾取装置5未拾取到工件的情况发生时,可避免拾取装置5盲目地“空投”工件,提升工作效率。
与现有技术相比,本发明一实施例的所述底照视觉系统及其工作方法的有益效果在于:通过利用第二摄像头22获取工作台2上的工件初始位置信息,可以监测拾取装置5拾取工件的过程,保证拾取装置5精准拾取工件,减小拾取工件过程中工件错动、转动、漏拾的异常问题发生几率; 在拾取装置5拾取工件之后转运投放工件之前,先利用底照摄像头4和所述校准模块对坐标系中的工件位置数据进行校准,从而实现对拾取装置5拾取工件过程中出现的工件错动、转动等情况进行校准,保证机械手装置1可以精准地投放工件至目标位置处,还可满足投放工件中的高精度需求(例如需要0.2mm以内的精度);并且在拾取装置5未拾取到工件的情况发生时,可避免拾取装置5盲目地“空投”工件,提升工作效率。
以上所描述的实施方式仅仅是示意性的,其中作为校准模块、坐标系等显示的部件/结构可以是或者也可以不是物理模块,其可具体为位于包括保存设备在内的本地和远程计算机保存介质中的执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种机械手的底照视觉系统,所述底照视觉系统包括机械手装置和用于放置工件的工作台,所述底照视觉系统具有记录有工件初始位置信息的坐标系,所述机械手装置包括拾取装置以及带动所述拾取装置运动的机械臂,其特征在于,所述底照视觉系统还包括校准模块和底照摄像头;其中,所述拾取装置在依照所述工件初始位置信息拾取工件之后运动至所述底照摄像头的视角范围内,所述底照摄像头采集所述拾取装置所拾取的工件影像,所述校准模块根据所述工件影像将所述坐标系中的所述工件初始位置信息校准为工件当前位置信息,所述拾取装置依照所述工件当前位置信息继续运动以完成工件的转运。
  2. 根据权利要求1所述的机械手的底照视觉系统,其特征在于,所述底照摄像头的视角布设为竖直向上,所述拾取装置在拾取工件之后运动至所述底照摄像头正上方,以使所述底照摄像头采集所述拾取装置所拾取的工件影像。
  3. 根据权利要求2所述的机械手的底照视觉系统,其特征在于,所述拾取装置包括可独立拾取工件的若干拾取头,若干所述拾取头在拾取工件之后依次运动至所述底照摄像头正上方,以使所述底照摄像头依次采集若干所述拾取头所拾取的工件影像。
  4. 根据权利要求3所述的机械手的底照视觉系统,其特征在于,所述拾取装置设置为真空吸取装置,所述拾取头设置为通过提供真空压力以吸取工件的吸持头。
  5. 根据权利要求1所述的机械手的底照视觉系统,其特征在于,所述校准模块根据所述工件影像判定所述工件影像中无工件时,所述拾取装置返回并重新拾取工件。
  6. 根据权利要求1所述的机械手的底照视觉系统,其特征在于,所述底照视觉系统包括设置于所述机械臂上的第二摄像头,所述第二摄像头采集所述工作台上的工件初始影像,所述坐标系根据所述工件初始影像获得所述工件初始位置信息。
  7. 根据权利要求6所述的机械手的底照视觉系统,其特征在于,所述第二摄像头的数目设置为两个。
  8. 一种权利要求1所述的机械手的底照视觉系统的工作方法,其特征在于,所述工作方法包括步骤:
    拾取装置依照坐标系中的工件初始位置信息拾取工件;
    拾取装置运动至底照摄像头的视角范围内;
    底照摄像头采集拾取装置所拾取的工件影像;
    根据所述工件影像,校准模块将坐标系中的所述工件初始位置信息校准为工件当前位置信 息,拾取装置依照所述工件当前位置信息继续运动直至完成工件的转运。
  9. 根据权利要求8所述的机械手的底照视觉系统的工作方法,其特征在于,所述工作方法还包括步骤:
    根据所述工件影像,校准模块判定所述工件影像中无工件时,拾取装置返回并重新拾取工件。
  10. 根据权利要求8所述的机械手的底照视觉系统的工作方法,其特征在于,所述底照视觉系统包括设置于所述机械臂上的第二摄像头,所述第二摄像头采集所述工作台上的工件初始影像,所述坐标系根据所述工件初始影像获得所述工件初始位置信息。
PCT/CN2018/095393 2017-07-14 2018-07-12 机械手的底照视觉系统及其工作方法 WO2019011289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710574334.3 2017-07-14
CN201710574334.3A CN107336240A (zh) 2017-07-14 2017-07-14 一种机械手的底照式视觉系统

Publications (1)

Publication Number Publication Date
WO2019011289A1 true WO2019011289A1 (zh) 2019-01-17

Family

ID=60218844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095393 WO2019011289A1 (zh) 2017-07-14 2018-07-12 机械手的底照视觉系统及其工作方法

Country Status (2)

Country Link
CN (1) CN107336240A (zh)
WO (1) WO2019011289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125036A (zh) * 2019-04-25 2019-08-16 广东工业大学 一种基于模板匹配的自识别分拣系统和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107336240A (zh) * 2017-07-14 2017-11-10 苏州工业园区凯艺精密科技有限公司 一种机械手的底照式视觉系统
CN108858279A (zh) * 2018-09-10 2018-11-23 苏州小工匠机器人有限公司 末端具有主轴电机的机械手
CN108839005A (zh) * 2018-09-10 2018-11-20 苏州小工匠机器人有限公司 带有储气空间的机械手
CN109041568A (zh) * 2018-09-25 2018-12-18 苏州小工匠机器人有限公司 自动化贴片机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435837A (en) * 1981-03-05 1984-03-06 President And Fellows Of Harvard College Pattern recognition and orientation system
JP2003121112A (ja) * 2001-10-15 2003-04-23 Denso Wave Inc 位置検出装置
CN104858858A (zh) * 2015-04-13 2015-08-26 上海金东唐科技股份有限公司 一种自动抓取机构及自动抓取方法
CN106272426A (zh) * 2016-09-12 2017-01-04 佛山市南海区广工大数控装备协同创新研究院 太阳能电池片串焊前视觉定位及角度检测设备及检测方法
CN106817851A (zh) * 2017-02-16 2017-06-09 苏州华天视航智能装备技术有限公司 一种fpc精密对位机
CN107336240A (zh) * 2017-07-14 2017-11-10 苏州工业园区凯艺精密科技有限公司 一种机械手的底照式视觉系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6688838B2 (en) * 2002-03-04 2004-02-10 Applied Materials, Inc. Cleanroom lift having an articulated arm
CN101893060B (zh) * 2010-08-10 2012-01-04 中国人民解放军国防科学技术大学 基于柔顺结构的自适应消隙齿轮传动机构
CN103317506A (zh) * 2013-06-07 2013-09-25 深圳华意隆电气股份有限公司 一种机械手用升降旋转装置及应用该装置的机械手
CN103692433B (zh) * 2013-12-23 2017-02-08 厦门理工学院 可模型解耦的三臂杆五自由度平移焊接机器人及其解耦方法
KR101478480B1 (ko) * 2014-01-17 2014-12-31 두산중공업 주식회사 다관절 매니퓰레이터
CN207415367U (zh) * 2017-07-14 2018-05-29 苏州工业园区凯艺精密科技有限公司 一种机械手的底照式视觉系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435837A (en) * 1981-03-05 1984-03-06 President And Fellows Of Harvard College Pattern recognition and orientation system
JP2003121112A (ja) * 2001-10-15 2003-04-23 Denso Wave Inc 位置検出装置
CN104858858A (zh) * 2015-04-13 2015-08-26 上海金东唐科技股份有限公司 一种自动抓取机构及自动抓取方法
CN106272426A (zh) * 2016-09-12 2017-01-04 佛山市南海区广工大数控装备协同创新研究院 太阳能电池片串焊前视觉定位及角度检测设备及检测方法
CN106817851A (zh) * 2017-02-16 2017-06-09 苏州华天视航智能装备技术有限公司 一种fpc精密对位机
CN107336240A (zh) * 2017-07-14 2017-11-10 苏州工业园区凯艺精密科技有限公司 一种机械手的底照式视觉系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125036A (zh) * 2019-04-25 2019-08-16 广东工业大学 一种基于模板匹配的自识别分拣系统和方法

Also Published As

Publication number Publication date
CN107336240A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019011289A1 (zh) 机械手的底照视觉系统及其工作方法
CN111250406B (zh) 基于视觉定位的pcb检测流水线自动放置方法及系统
JP6181758B2 (ja) 部品実装装置
US8769809B2 (en) Method for mounting a component
JP2012129434A (ja) 対基板作業機
CN107662818B (zh) 全自动高速填盘机
KR102121972B1 (ko) 로봇, 로봇의 제어장치 및 로봇의 위치 교시 방법
JP2013212580A (ja) ビンピッキングシステム
JP2020183907A (ja) 電子部品検査装置
JP6190229B2 (ja) 部品実装装置
JP2016096174A (ja) 部品実装機および部品実装ヘッド
CN113071909A (zh) 一种高精度棱镜自动排片机
CN109041568A (zh) 自动化贴片机
JP2021158372A (ja) 部品実装機
JP6818028B2 (ja) 部品実装機
JP4909255B2 (ja) 部品実装装置におけるヘッド移動位置補正方法及び同装置
JP5800376B1 (ja) 電子部品搬送装置
JP2017191888A (ja) 部品実装機および部品実装ヘッド
JPH056912A (ja) 電子部品装着装置
JP2011216614A (ja) 部品実装装置および部品実装方法
JP5752401B2 (ja) 部品保持方位検出方法
JP6320925B2 (ja) 部品実装機
CN207415367U (zh) 一种机械手的底照式视觉系统
JPH06216576A (ja) 電子部品受渡し装置
CN219336406U (zh) 激光打标装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18832515

Country of ref document: EP

Kind code of ref document: A1