WO2019010945A1 - 基于探测线圈的回旋加速器磁场测量系统及其测量方法 - Google Patents

基于探测线圈的回旋加速器磁场测量系统及其测量方法 Download PDF

Info

Publication number
WO2019010945A1
WO2019010945A1 PCT/CN2018/073258 CN2018073258W WO2019010945A1 WO 2019010945 A1 WO2019010945 A1 WO 2019010945A1 CN 2018073258 W CN2018073258 W CN 2018073258W WO 2019010945 A1 WO2019010945 A1 WO 2019010945A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
coil
detection coil
cyclotron
detecting coil
Prior art date
Application number
PCT/CN2018/073258
Other languages
English (en)
French (fr)
Inventor
宋云涛
陈根
徐曼曼
陈永华
丁开忠
冯汉升
杨庆喜
郑金星
Original Assignee
合肥中科离子医学技术装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥中科离子医学技术装备有限公司 filed Critical 合肥中科离子医学技术装备有限公司
Publication of WO2019010945A1 publication Critical patent/WO2019010945A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers

Definitions

  • the invention belongs to the field of magnetic field measurement, and particularly relates to a compact superconducting cyclotron magnetic field measuring system based on a detecting coil and a measuring method thereof.
  • Cyclotrons have a wide range of applications in the field of nuclear medicine, especially in the fields of radiopharmaceutical pharmaceuticals, cancer treatment and other fields.
  • proton therapy has advanced radiological methods that directly attack tumor cells, avoid damage from healthy tissue radiation, and have short treatment time.
  • the proton therapy system is mainly composed of an isochronous superconducting cyclotron, an energy selection system, a beam transmission system, a treatment system, etc., wherein the host system of the superconducting cyclotron is used to extract a stable beam, and the electromagnetic field of the cavity is opposite to the beam. The flow is accelerated, and the movement of the beam requires the constraints of an isochronous magnetic field.
  • Isochronous superconducting cyclotrons are the core equipment in proton therapy systems, and the processing and installation of their magnet systems is critical. In order to ensure that an isochronous magnetic field is provided, a magnetic field measurement of the cyclotron is required.
  • the mounting position of the magnet or superconducting coil may not be completely symmetrical due to factors such as mechanical precision, mounting accuracy, material properties, and the like.
  • magnétique field measurement technology In recent years, with the continuous development of magnetic field measurement technology, the measurement range has reached 10 -15 ⁇ 10 3 T, and has been widely used in geophysics, space technology, military engineering, industry, biology, medicine, archaeology and other fields.
  • relatively mature magnetic field measurement methods include electromagnetic induction method, Hall effect method, magnetic saturation method, nuclear magnetic resonance method, superconducting effect method and magneto-optical effect method.
  • NMR nuclear magnetic resonance
  • the commonly used method is the Hall effect method.
  • the Hall device used has high sensitivity and small volume, the temperature stability is poor, the accuracy is generally only 0.5% to 5%, and it is easily damaged.
  • the electromagnetic induction method based on the detection coil is also a commonly used test method. It is equipped with a pointer type AC voltmeter for measurement, and can record the magnetic induction intensity of a magnetic field region.
  • the measurement accuracy of the electromagnetic induction method is second only to NMR. The range of magnetic fields that can be adapted is relatively wide.
  • the object of the present invention is to provide a closed-loop controlled coil-based compact superconducting isochronous cyclotron magnetic field measuring system and a measuring method thereof, which have the advantages of simple operation, compact structure, accurate positioning, accurate measurement, automatic data acquisition, etc.
  • the utility model is mainly used for measuring the average value of the magnetic induction intensity Br in the radial direction on the cylindrical surface in the vertical direction of the middle plane, and provides important and accurate data for the positional installation of the superconducting coil and the magnetic pole.
  • a detection coil-based cyclotron magnetic field measurement system including a detection coil alignment system, a detection coil drive system, a control system, and a data acquisition system;
  • the detecting coil aligning system is configured to adjust a center of the detecting coil and a geometric center of a plane of the cyclotron to coincide with each other;
  • the detecting coil driving system for driving the detecting coil to move along the axial direction of the accelerator in a magnetic field measuring region in the cyclone magnetic pole gap;
  • the control system is responsible for completing the full closed loop position control of the detecting coil
  • the data acquisition system is connected to the control system, and is responsible for receiving the command of the magnetic field measurement signal sent by the control system and the position information of the detection coil movement system, and storing the collected magnetic field measurement signal value in time.
  • the detecting coil centering system comprises a supporting platform and two sets of screw nut mechanisms; the two sets of screw nut mechanisms are crisscrossed and independent of each other, and the upper part is welded and fixed to the supporting table, and the supporting table supports the entire magnetic measuring device;
  • the detecting coil driving system comprises a servo motor module, a supporting rod, a guiding column, a guiding sleeve, an infrared range finder, a fixed disk, a detecting coil disk supporting disk and a detecting coil disk; the servo motor module is mounted on the fixed disk, and the detecting coil The disk support disk is connected, and the drive coil disk support disk is driven to move in a vertical direction.
  • the support coil disk support disk is mounted with a support rod and connected to the disk where the upper detection coil is located; the guide post is fixedly mounted on the fixed disk, and the guide sleeve is installed in the detection.
  • the coil disk is supported on the disk; the infrared range finder is mounted on the fixed disk, and detects the distance that the detecting coil supports the disk.
  • the control system includes a position detecting unit, a control unit and an executing mechanism; wherein the position detecting unit detects position information of the detecting coil in real time and feeds back to the control unit; the control unit receives the position information, and sends a driving instruction according to the position deviation; The drive command drives the servo motor and controls the detection coil movement system to complete the axial real-time adjustment of the coil.
  • the position detecting unit is operated by a grating ruler, and the movable ruler and the fixed length of the grating ruler are respectively mounted on the detecting coil supporting disk of the detecting coil moving system and the upper and lower rails of the fixed disk, and the data transmission is completed through the serial port and the control unit;
  • the control unit is a servo drive, the servo drive receives the position signal sent by the grating ruler, and sends a drive command through the position closed-loop control mode, and the motion control card is provided in the servo drive;
  • the actuator is a servo motor, and the servo motor receives the drive pulse, and the control
  • the detection coil moves the system to achieve axial movement of the coil.
  • the data acquisition system comprises a magnetic flux meter and a data acquisition card; wherein the magnetic flux meter is connected to the control unit through a serial port, and the data acquisition card is embedded in the control unit; when the control system analyzes and determines the current detection coil center and the accelerator geometric center When the coincidence is consistent, the control system will send a sampling signal to the fluxmeter, collect the magnetic field measurement values at various positions of the current disk during the movement, and store it on the data acquisition card in time.
  • the data acquisition card uses a high performance data acquisition card, and its model number is any one of NI9403, NI9411, NI9239, NI9239, NI9215, and NI9476.
  • the system further includes a service terminal respectively connected to the control system and the data collection system, and the service terminal is a computer or other electronic product capable of data analysis and processing.
  • the servo motor adopts a magnetic field shielding protection measure; the motion control card is a PCI-7344.
  • a measuring method of a cyclotron-based magnetic field measuring system based on a detecting coil comprising the following steps:
  • the motion control card sends a movement command to the servo motor, and the detection coil drive system drives the detection coil to start moving, and the magnetic field is measured. After the detection coil drive system moves a measurement step per drive detection coil, the actual position coordinate of the detection coil passes through the grating ruler. Feedback to the motion control card, the motion control card compares the current position and the preset position.
  • control system sends a sampling signal command to the data acquisition system to read the current magnetic field measurement value of the point, if Inconsistent, the motion command that the control system will adjust the position of the detection coil is sent to the servo motor and the aligning system in the form of digital pulse or analog signal through the control card, and the detection coil is repositioned, and the above process is repeated until the sampling point Position coordinates meet the test requirements;
  • control unit drives the servo motor to complete the home position return command, and the detecting coil drive system drives the detecting coil to return to the starting point along the original track (0, 0, 0). ;
  • the data acquisition card transmits all the required data to the service terminal of the control system to complete the data analysis of the cyclotron magnetic field measurement value.
  • the concentricity error between the detecting coil and the cyclotron is 0.1 mm; the level of the plane of the detecting coil and the plane of the cyclotron is less than 0.1 mm.
  • the invention has the beneficial effects that the invention is mainly used for measuring the magnetic induction intensity Br value on the cylindrical surface in the vertical direction of the middle plane, and adopts a combination of the servo motor drive system and the positioning system to realize the precise positioning of the detection coil in the vertical direction, so that the whole
  • the system can work normally in a small space; the advantages of simple operation, compact structure, accurate positioning, accurate measurement, and automatic data acquisition provide important and accurate reference data for the positional installation of the superconducting coil and the magnetic pole.
  • the measurement environment is in a strong magnetic field environment, in order to avoid the measurement component itself from interfering with the magnetic field, the non-magnetic material is preferentially selected in the component material selection; the servo motor adopts the magnetic field shielding protection measure.
  • Figure 1 is a schematic view showing the connection between various systems of the present invention
  • FIG. 2 is a control flow chart of magnetic field measurement of the present invention.
  • a detection coil-based cyclotron magnetic field measurement system includes a detection coil alignment system, a detection coil drive system, a control system, and a data acquisition system;
  • a detection coil alignment system for adjusting the center of the detection coil and the geometric center of the plane of the cyclotron to coincide with each other;
  • a detecting coil driving system for driving the detecting coil to move along the axial direction of the accelerator in a magnetic field measuring region in the cyclone magnetic pole gap;
  • the control system is responsible for completing the full closed loop position control of the detecting coil, and mainly comprises three parts: a position detecting unit, a control unit and an actuator; wherein the position detecting unit detects the position information of the detecting coil in real time and feeds back to the control unit; the control unit receives the position Information, sending a driving command according to the position deviation; the actuator receives the driving command, drives the servo motor, and controls the detecting coil moving system to complete the axial real-time adjustment of the coil;
  • the data acquisition system is connected to the control system, and is responsible for receiving the command of the magnetic field measurement signal sent by the control system and the position information of the detection coil moving system, and storing the collected magnetic field measurement signal value in time.
  • the detecting coil centering system comprises a supporting platform and two sets of screw nut mechanisms; the two sets of screw nut mechanisms are crisscrossed and independent of each other, and the upper part is welded with the supporting table, and the supporting table supports the entire magnetic measuring device (ie, the magnetic field) Measuring system); by manually adjusting the two sets of screw nut mechanism, the detecting coil can be moved in the X direction and the Y direction respectively, so that the center of the detecting coil and the geometric center of the accelerator coincide with each other.
  • the detecting coil driving system comprises a servo motor module, a supporting rod, a guiding column, a guiding sleeve, an infrared range finder, a fixed disk, a detecting coil disk supporting disk and a detecting coil disk; the servo motor module is fixed on the fixed disk, and The detection coil disk support disk is connected, and the detection coil disk support disk can be driven to move in a vertical direction.
  • the support coil disk support plate is mounted with a support rod, and the support rod is connected to the disk where the upper detection coil is located; the guide post is fixedly mounted on the fixed plate, and the guide column is fixedly mounted on the fixed plate.
  • the sleeve is mounted on the disk support disk of the detecting coil, and the guiding column and the guiding sleeve slide relative to each other to have a guiding function; the infrared range finder is mounted on the fixed disk, and detects the distance of the detecting coil supporting disk by the detecting.
  • the control system includes a position detecting unit, a control unit and an actuator; the position detecting unit is operated by a grating scale, and the movable ruler and the fixed length of the grating ruler are respectively mounted on the detecting coil disk supporting disk and the fixed disk of the detecting coil driving system.
  • the upper and lower rails complete the data transmission through the serial port and the control unit;
  • the control unit is a servo driver, the servo driver receives the position signal sent by the grating ruler, and sends a driving command through the position closed-loop control mode, and the motion control card is provided in the servo driver.
  • the actuator is a servo motor, and the servo motor receives a driving pulse, controls the detecting coil moving system, and realizes axial movement of the coil.
  • the data acquisition system comprises a fluxmeter and a data acquisition card; wherein the fluxmeter is connected to the control unit through a serial port, and the data acquisition card is embedded in the control unit; the fluxmeter communicates with the service terminal through the serial port, and the data acquisition card Communicate with the service terminal via USB.
  • control system When the control system analyzes that the center of the current detection coil coincides with the geometric center of the accelerator, the control system will send a position sampling signal of the disk movement to the fluxmeter, and collect the magnetic field measurement values at various positions of the current disk during the movement, and timely Stored on the data acquisition card.
  • the data acquisition card uses a high performance data acquisition card, and the model number thereof may be any one of NI9403, NI9411, NI9239, NI9239, NI9215, and NI9476.
  • the service terminal is a computer or other electronic product that can perform data analysis and processing, and the motion control card is PCI-7344.
  • Another object of the present invention is to provide a measuring method suitable for a compact superconducting cyclotron magnetic field measuring system, the specific steps are as follows:
  • the magnetic measuring device is aligned by the aligning system, and the magnetic measuring device is placed at the workstation of the accelerator, and the concentricity of the detecting coil and the cyclotron is adjusted by the aligning system, and the concentricity error of the two is correct. It is 0.1mm, and detects the level of the plane of the detecting coil and the plane of the cyclotron.
  • the horizontal support rods with a horizontal degree of less than 0.1 mm and outside the yoke are controlled. Calibration, position coordinates and record for infrared rangefinder detection and adjustment;
  • the preset coordinates are used to interact with the actual position coordinates of the detecting coil. Compare to determine whether the sampling point meets the acquisition requirement; set the center coordinates of the detection coil after the centering to the initial coordinates (0, 0, 0);
  • the motion control card sends a movement command to the servo motor, and the detection coil drive system drives the detection coil to start moving, and the magnetic field is measured.
  • the detection coil drive system moves a measurement step for each drive detection coil, the actual position coordinates of the detection coil pass.
  • the grating ruler feeds back to the motion control card, and the motion control card compares the current position and the preset position. If the two are consistent, the control system sends a sampling signal command to the data acquisition system to read the current magnetic field measurement value of the point.
  • the motion command that the control system will adjust the position of the detecting coil is sent to the servo motor and the centering mechanism in the form of a digital pulse or an analog signal through the control card, and the detecting coil is repositioned, and the above process is repeated. Until the position coordinates of the sampling point meet the test requirements;
  • the driving servo motor of the control unit completes the origin homing command, and the detecting coil driving system drives the detecting coil to return to the starting point along the original trajectory (0, 0, 0). ).
  • the data acquisition card transmits all the required data to the service terminal of the control system to complete the data analysis of the magnetic field measurement value of the cyclotron. .
  • the invention provides a closed-loop controlled detection coil-based cyclotron magnetic field measuring system, which adopts a grating ruler, a servo motor and a motion control card to form a closed-loop control system, thereby ensuring the accuracy of the detection coil test magnetic field; and having simple operation and compact structure
  • the advantages of accurate positioning, accurate measurement, and automatic data acquisition are mainly used to measure the average value of the magnetic induction intensity Br in the radial direction on the cylindrical surface in the vertical direction of the midplane, which provides important and accurate data for the positional installation of the superconducting coil and the magnetic pole.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Particle Accelerators (AREA)

Abstract

一种基于探测线圈的回旋加速器磁场测量系统,包括:探测线圈调心系统,用于调整探测线圈的中心与加速器中平面的中心相互重合;探测线圈驱动系统,用于驱动探测线圈在回旋加速器磁极间隙中的磁场测量区域内沿着加速器轴向而移动;控制系统,内设运动控制单元、位置测量单元;数据采集系统,与控制系统相互连接,负责接收控制系统发出的采集磁场测量信号的命令与探测线圈移动系统的位置信息,并及时存储所采集到的磁场测量信号值;还提供一种适用于紧凑型超导回旋加速器磁场测量系统的测量方法,主要用于测量中平面垂直方向圆柱面上径向方向磁感应强度Br平均值,为超导线圈和磁极的位置安装提供重要而精确的数据。

Description

基于探测线圈的回旋加速器磁场测量系统及其测量方法 技术领域
本发明属于磁场测量领域,具体涉及一种基于探测线圈的紧凑型超导回旋加速器磁场测量系统及其测量方法。
背景技术
回旋加速器在核医学领域有着广泛的应用,尤其是在放射性药物制药,肿瘤治疗等领域有重要意义。与传统的放疗相比,质子治疗具有直击肿瘤细胞、避免健康组织辐射而受伤害、治疗时间短等优势的先进放射方法。质子治疗系统主要由等时性超导回旋加速器、能量选择系统、束流传输系统、治疗系统等组成,其中,超导回旋加速器的主机系统用于引出稳定的束流,谐振腔的电磁场对束流进行加速,而且束流的运动需要等时性磁场的约束。等时性超导回旋加速器是质子治疗系统中的核心设备,其磁铁系统的加工和安装至关重要。为了保证提供等时性磁场,需要对回旋加速器进行磁场测量。
在磁铁加工过程中,会存在由于机械精度、安装精度、材料特性等因素而造成磁铁或超导线圈的安装位置不是完全对称的。为了满足加速器对磁场的使用要求,必须对加速器磁极间隙中圆柱面上Br平均值进行测量,为调整超导线圈和磁铁位置等工作提供重要的磁场实测数据。
近年来,随着磁场测量技术的不断发展,测量的范围达到10 -15~10 3T,已广泛应用于地球物理、空间技术、军事工程、工业、生物学、医学、考古等各个领域中。目前比较成熟的磁场测量方法主要有电磁感应法、霍尔效应法、磁饱和法、核磁共振法、超导效应法和磁光效应法等。
不同测量方法适合于不同的测量范围,并有着不同的测量要求。如果仅考虑测量精度,核磁共振(NMR)法是最好的,可以达到10 -6。然而,它只能应用于非常均匀的磁场区域测量,这导致它不适用于许多测量工作。对于稳恒磁场的测量,常用的方法是霍尔效应法,其所使用的霍尔器件虽然灵敏度 高、体积小,但温度稳定性较差,精度一般只有0.5%~5%,而且容易损坏。此外,基于探测线圈的电磁感应法也是比较常用的测试方法,它配以指针式交流电压表来进行测量,可以记录某一磁场区域的磁感应强度,而且,电磁感应法的测量精度仅次于NMR,适应的磁场强度范围比较广。
发明内容
本发明的目的在于提供一种闭环式控制的基于探测线圈的紧凑型超导等时性回旋加速器磁场测量系统及其测量方法,具有操作简单、结构紧凑、定位精确、测量精准、自动采集数据等优点,主要用于测量中平面垂直方向圆柱面上径向方向磁感应强度Br平均值,为超导线圈和磁极的位置安装提供重要而精确的数据。
本发明的目的可以通过以下技术方案实现:
基于探测线圈的回旋加速器磁场测量系统,包括探测线圈调心系统、探测线圈驱动系统、控制系统和数据采集系统;
所述探测线圈调心系统,用于调整探测线圈的中心与回旋加速器中平面的几何中心相互重合;
所述探测线圈驱动系统,用于驱动探测线圈在回旋加速器磁极间隙中的磁场测量区域内沿着加速器轴向而移动;
所述控制系统,负责完成探测线圈的全闭环位置控制;
所述数据采集系统,与控制系统相互连接,其负责接收控制系统发出的采集磁场测量信号的命令与探测线圈移动系统的位置信息,并及时存储所采集到的磁场测量信号值。
所述探测线圈调心系统包括支撑台、两组丝杆螺母机构;两组丝杆螺母机构呈十字交叉,相互独立,其上方与支撑台焊接固定,支撑台上支撑整个磁测装置;所述探测线圈驱动系统包括伺服电机模组、支撑杆、导柱、导套、红外测距仪、固定盘、探测线圈磁盘支撑盘、探测线圈磁盘;伺服电机模组安装在固定盘上,与探测线圈磁盘支撑盘相连,驱动探测线圈磁盘支撑盘在 垂直方向移动,探测线圈磁盘支撑盘上安装支撑杆,并连接至上方探测线圈所在的磁盘;导柱固定安装在固定盘上,导套安装在探测线圈磁盘支撑盘上;红外测距仪安装在固定盘上,通过其检测探测线圈支撑盘移动的距离。
所述控制系统包括位置检测单元,控制单元和执行机构;其中,位置检测单元实时检测探测线圈的位置信息,并反馈至控制单元;控制单元接收位置信息,根据位置偏差发送驱动指令;执行机构接收驱动指令,驱动伺服电机,控制探测线圈移动系统完成线圈的轴向实时调节。
所述位置检测单元由光栅尺充当,光栅尺的动尺和定尺分别安装在探测线圈移动系统的探测线圈支撑盘和固定盘的上下导轨上,并通过串口与控制单元完成数据传输;所述控制单元为伺服驱动器,伺服驱动器接收光栅尺发送的位置信号,通过位置闭环控制方式,发出驱动指令,伺服驱动器内设有运动控制卡;所述执行机构为伺服电机,伺服电机接收驱动脉冲,控制探测线圈移动系统,实现线圈的轴向移动。
所述数据采集系统包括磁通计、数据采集卡;其中,磁通计通过串口与控制单元通讯连接,数据采集卡内嵌在控制单元中;当控制系统分析判断当前探测线圈中心与加速器几何中心重合一致的时候,控制系统会发出采样信号至磁通计,采集当前磁盘在移动过程中各个位置处的磁场测量值,并及时地存储在数据采集卡上。
所述数据采集卡采用高性能数据采集卡,其型号是NI9403、NI9411、NI9239、NI9239、NI9215、NI9476中的任意一种。
该系统还包括分别与控制系统、数据采集系统连接的服务终端,所述服务终端为电脑或其他可进行数据分析处理的电子产品。
所述伺服电机采取磁场屏蔽保护措施;所述运动控制卡为PCI-7344。
基于探测线圈的回旋加速器磁场测量系统的测量方法,该测量方法包括以下步骤:
(1)采用调心系统对磁测装置进行调心,将磁测装置安放在加速器的工位处,通过调心机构调整好探测线圈与回旋加速器的同心度,并检测探测线圈所在平面与回旋加速器中平面的水平度,同时在磁轭外部的磁盘各个支撑杆处标定位置坐标并做记录;
(2)对控制单元伺服驱动器进行初始化,在运动控制卡中设定伺服电机的运行参数,并预设采样点的位置坐标,预设的坐标是用来与探测线圈实际位置坐标相互比较,以判定采样点是否满足采集要求;将调心后的探测线圈圆心坐标设定为初始化坐标(0,0,0);
(3)运动控制卡发送移动命令至伺服电机,探测线圈驱动系统驱动探测线圈开始移动,测量磁场,探测线圈驱动系统每驱动探测线圈移动一个测量步长后,探测线圈的实际位置坐标通过光栅尺反馈给运动控制卡,运动控制卡对当前位置和预设位置进行比较判断,如果二者是一致的,则控制系统会发出采样信号命令给数据采集系统读取当前该点的磁场测量值,如果二者不一致,控制系统将得出的调整探测线圈位置的运动命令通过控制卡以数字脉冲或模拟信号的形式发送给伺服电机和调心系统,对探测线圈再次定位,重复以上的过程直到采样点的位置坐标满足测试要求;
(4)当所有采样点的磁场测量值测量并存储完成之后,控制单元驱动伺服电机完成原点归位指令,探测线圈驱动系统驱动探测线圈沿着原轨迹返回至起始点(0,0,0);
(5)将所有符合要求的磁场测量值存储在数据采集系统的数据采集卡上,数据采集卡将所有符合要求的数据传输至控制系统的服务终端上,完成回旋加速器磁场测量值的数据分析。
步骤(1)中,探测线圈与回旋加速器的同心度误差为0.1mm;探测线圈所在平面与回旋加速器中平面的水平度小于0.1mm。
本发明的有益效果:本发明主要用于测量中平面垂直方向圆柱面上磁感 应强度Br值,采用伺服电机驱动系统和定位系统的相结合方式,实现探测线圈在垂直方向上的精确定位,使得整个系统可以在较小空间中正常工作;操作简单、结构紧凑、定位精确、测量精准、自动采集数据等优点,为超导线圈和磁极的位置安装提供重要而精确的参考数据。此外,由于测量环境是强磁场环境下,为避免测量部件本身对磁场产生干扰,因此,部件材料选择上优先考虑非磁性材料;伺服电机采取磁场屏蔽保护措施。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
图1为本发明各个系统之间的连接示意图;
图2为本发明磁场测量的控制流程图。
本发明的较佳实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
参见图1所示,基于探测线圈的回旋加速器磁场测量系统,包括探测线圈调心系统、探测线圈驱动系统、控制系统和数据采集系统;
探测线圈调心系统,用于调整探测线圈的中心与回旋加速器中平面的几何中心相互重合;
探测线圈驱动系统,用于驱动探测线圈在回旋加速器磁极间隙中的磁场测量区域内沿着加速器轴向而移动;
控制系统,负责完成探测线圈的全闭环位置控制,主要包含位置检测单元,控制单元和执行机构三部分;其中,位置检测单元实时检测探测线圈的位置信息,并反馈至控制单元;控制单元接收位置信息,根据位置偏差发送驱动指令;执行机构接收驱动指令,驱动伺服电机,控制探测线圈移动系统完成线圈的轴向实时调节;
数据采集系统,与控制系统相互连接,负责接收控制系统发出的采集磁场测量信号的命令与探测线圈移动系统的位置信息,并及时存储所采集到的磁场测量信号值。
所述探测线圈调心系统包括支撑台、两组丝杆螺母机构;两组丝杆螺母机构呈十字交叉,相互独立,其上方与支撑台相焊接,支撑台上支撑整个磁测装置(即磁场测量系统);通过手动调整两组丝杠螺母机构,可以使探测线圈分别向X方向和Y方向移动,达到探测线圈中心与加速器几何中心相互重合。
所述探测线圈驱动系统包括伺服电机模组、支撑杆、导柱、导套、红外测距仪、固定盘、探测线圈磁盘支撑盘、探测线圈磁盘;伺服电机模组固定在固定盘上,与探测线圈磁盘支撑盘相连,可以驱动探测线圈磁盘支撑盘在垂直方向移动,探测线圈磁盘支撑盘上安装支撑杆,支撑杆连接至上方探测线圈所在的磁盘;导柱固定安装在固定盘上,导套安装在探测线圈磁盘支撑盘上,导柱与导套相对滑动,具有导向作用;红外测距仪安装在固定盘上,通过其检测探测线圈支撑盘移动的距离。
所述控制系统包括位置检测单元,控制单元和执行机构;所述位置检测单元由光栅尺充当,光栅尺的动尺和定尺分别安装在探测线圈驱动系统的探测线圈磁盘支撑盘和固定盘的上下导轨上,并通过串口与控制单元完成数据传输;所述控制单元为伺服驱动器,伺服驱动器接收光栅尺发送的位置信号,通过位置闭环控制方式,发出驱动指令,伺服驱动器内设有运动控制卡;所述执行机构为伺服电机,伺服电机接收驱动脉冲,控制探测线圈移动系统,实现线圈的轴向移动。
所述数据采集系统包括磁通计、数据采集卡;其中,磁通计通过串口与控制单元通讯连接,数据采集卡内嵌在控制单元中;磁通计通过串口与服务终端通讯,数据采集卡通过USB与服务终端通讯。
当控制系统分析得到当前探测线圈中心与加速器几何中心重合一致的时候,控制系统会发出磁盘移动的位置采样信号至磁通计,采集当前磁盘在移动过程中各个位置处的磁场测量值,并及时地存储在数据采集卡上。
所述数据采集卡采用高性能数据采集卡,其型号可以是NI9403、NI9411、NI9239、NI9239、NI9215、NI9476中的任意一种。
所述服务终端为电脑或其他可以进行数据分析处理的电子产品,运动控制卡为PCI-7344。
参见图2所示,本发明的另一个目的是提供一种适用于紧凑型超导回旋加速器磁场测量系统的测量方法,具体步骤如下:
(1)首先,采用调心系统对磁测装置进行调心,将磁测装置安放在加速器的工位处,通过调心系统调整好探测线圈与回旋加速器的同心度,二者的同心度误差为0.1mm,并检测探测线圈所在平面与回旋加速器中平面的水平度,通过调整单个电机的位置高度以及采取机械配合的方法,控制水平度小于0.1mm,同时在磁轭外部的磁盘各个支撑杆处标定,位置坐标并做记录,以便红外测距仪检测和调整;
(2)其次,对控制单元的伺服驱动器进行初始化,在运动控制卡中设定伺服电机的运行参数,并预设采样点的位置坐标,预设的坐标是用来与探测线圈实际位置坐标相互比较,以判定采样点是否满足采集要求;将调心后的探测线圈圆心坐标设定为初始化坐标(0,0,0);
(3)然后,运动控制卡发送移动命令至伺服电机,探测线圈驱动系统驱动探测线圈开始移动,测量磁场,探测线圈驱动系统每驱动探测线圈移动一个测量步长后,探测线圈的实际位置坐标通过光栅尺反馈给运动控制卡,运动控制卡对当前位置和预设位置进行比较判断,如果二者是一致的,则控制系统会发出采样信号命令给数据采集系统读取当前该点的磁场测量值,如果二者不一致,控制系统将得出的调整探测线圈位置的运动命令通过控制卡以 数字脉冲或模拟信号的形式发送给伺服电机和调心机构,对探测线圈再次定位,重复以上的过程,直到采样点的位置坐标满足测试要求;
(4)当所有采样点的磁场测量值测量并存储完成之后,控制单元的驱动伺服电机完成原点归位指令,探测线圈驱动系统驱动探测线圈沿着原轨迹返回至起始点(0,0,0)。
(5)将所有符合要求的磁场测量值存储在数据采集系统的数据采集卡上,数据采集卡将所有符合要求的数据传输至控制系统的服务终端上,完成回旋加速器你磁场测量值的数据分析。
工业实用性
本发明提供一种闭环式控制的基于探测线圈的回旋加速器磁场测量系统,采用光栅尺、伺服电机和运动控制卡构成闭环控制系统,从而保证了探测线圈测试磁场的精度;具有操作简单、结构紧凑、定位精确、测量精准、自动采集数据等优点,主要用于测量中平面垂直方向圆柱面上径向方向磁感应强度Br平均值,为超导线圈和磁极的位置安装提供重要而精确的数据。

Claims (10)

  1. 基于探测线圈的回旋加速器磁场测量系统,其特征在于:包括探测线圈调心系统、探测线圈驱动系统、控制系统和数据采集系统;
    所述探测线圈调心系统,用于调整探测线圈的中心与回旋加速器中平面的几何中心相互重合;
    所述探测线圈驱动系统,用于驱动探测线圈在回旋加速器磁极间隙中的磁场测量区域内沿着加速器轴向而移动;
    所述控制系统,负责完成探测线圈的全闭环位置控制;
    所述数据采集系统,与控制系统相互连接,其负责接收控制系统发出的采集磁场测量信号的命令与探测线圈移动系统的位置信息,并及时存储所采集到的磁场测量信号值。
  2. 根据权利要求1所述的基于探测线圈的回旋加速器磁场测量系统,其特征在于:所述探测线圈调心系统包括支撑台、两组丝杆螺母机构;两组丝杆螺母机构呈十字交叉,相互独立,其上方与支撑台焊接固定,支撑台上支撑整个磁测装置;所述探测线圈驱动系统包括伺服电机模组、支撑杆、导柱、导套、红外测距仪、固定盘、探测线圈磁盘支撑盘、探测线圈磁盘;伺服电机模组安装在固定盘上,与探测线圈磁盘支撑盘相连,驱动探测线圈磁盘支撑盘在垂直方向移动,探测线圈磁盘支撑盘上安装支撑杆,并连接至上方探测线圈所在的磁盘;导柱固定安装在固定盘上,导套安装在探测线圈磁盘支撑盘上;红外测距仪安装在固定盘上,通过其检测探测线圈支撑盘移动的距离。
  3. 根据权利要求1所述的基于探测线圈的回旋加速器磁场测量系统,其特征在于:所述控制系统包括位置检测单元,控制单元和执行机构;其中,位置检测单元实时检测探测线圈的位置信息,并反馈至控制单元;控制单元 接收位置信息,根据位置偏差发送驱动指令;执行机构接收驱动指令,驱动伺服电机,控制探测线圈移动系统完成线圈的轴向实时调节。
  4. 根据权利要求3所述的基于探测线圈的回旋加速器磁场测量系统,其特征在于:所述位置检测单元由光栅尺充当,光栅尺的动尺和定尺分别安装在探测线圈移动系统的探测线圈支撑盘和固定盘的上下导轨上,并通过串口与控制单元完成数据传输;所述控制单元为伺服驱动器,伺服驱动器接收光栅尺发送的位置信号,通过位置闭环控制方式,发出驱动指令,伺服驱动器内设有运动控制卡;所述执行机构为伺服电机,伺服电机接收驱动脉冲,控制探测线圈移动系统,实现线圈的轴向移动。
  5. 根据权利要求1所述的基于探测线圈的回旋加速器磁场测量系统,其特征在于:所述数据采集系统包括磁通计、数据采集卡;其中,磁通计通过串口与控制单元通讯连接,数据采集卡内嵌在控制单元中;当控制系统分析判断当前探测线圈中心与加速器几何中心重合一致的时候,控制系统会发出采样信号至磁通计,采集当前磁盘在移动过程中各个位置处的磁场测量值,并及时地存储在数据采集卡上。
  6. 根据权利要求5所述的基于探测线圈的回旋加速器磁场测量系统,其特征在于:所述数据采集卡采用高性能数据采集卡,其型号是NI9403、NI9411、NI9239、NI9239、NI9215、NI9476中的任意一种。
  7. 根据权利要求1所述的基于探测线圈的回旋加速器磁场测量系统,其特征在于:该系统还包括分别与控制系统、数据采集系统连接的服务终端,所述服务终端为电脑或其他可进行数据分析处理的电子产品。
  8. 根据权利要求3所述的基于探测线圈的回旋加速器磁场测量系统,其特征在于:所述伺服电机采取磁场屏蔽保护措施;所述运动控制卡为PCI-7344。
  9. 根据权利要求1-8任一所述的基于探测线圈的回旋加速器磁场测量系 统的测量方法,其特征在于:该测量方法包括以下步骤:
    (1)采用调心系统对磁测装置进行调心,将磁测装置安放在加速器的工位处,通过调心机构调整好探测线圈与回旋加速器的同心度,并检测探测线圈所在平面与回旋加速器中平面的水平度,同时在磁轭外部的磁盘各个支撑杆处标定位置坐标并做记录;
    (2)对控制单元伺服驱动器进行初始化,在运动控制卡中设定伺服电机的运行参数,并预设采样点的位置坐标,预设的坐标是用来与探测线圈实际位置坐标相互比较,以判定采样点是否满足采集要求;将调心后的探测线圈圆心坐标设定为初始化坐标(0,0,0);
    (3)运动控制卡发送移动命令至伺服电机,探测线圈驱动系统驱动探测线圈开始移动,测量磁场,探测线圈驱动系统每驱动探测线圈移动一个测量步长后,探测线圈的实际位置坐标通过光栅尺反馈给运动控制卡,运动控制卡对当前位置和预设位置进行比较判断,如果二者是一致的,则控制系统会发出采样信号命令给数据采集系统读取当前该点的磁场测量值,如果二者不一致,控制系统将得出的调整探测线圈位置的运动命令通过控制卡以数字脉冲或模拟信号的形式发送给伺服电机和调心系统,对探测线圈再次定位,重复以上的过程直到采样点的位置坐标满足测试要求;
    (4)当所有采样点的磁场测量值测量并存储完成之后,控制单元驱动伺服电机完成原点归位指令,探测线圈驱动系统驱动探测线圈沿着原轨迹返回至起始点(0,0,0);
    (5)将所有符合要求的磁场测量值存储在数据采集系统的数据采集卡上,数据采集卡将所有符合要求的数据传输至控制系统的服务终端上,完成回旋加速器磁场测量值的数据分析。
  10. 根据权利要求9所述的测量方法,其特征在于:步骤(1)中,探测线圈与回旋加速器的同心度误差为0.1mm;探测线圈所在平面与回旋加速器 中平面的水平度小于0.1mm。
PCT/CN2018/073258 2017-07-12 2018-01-18 基于探测线圈的回旋加速器磁场测量系统及其测量方法 WO2019010945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710566660.XA CN107340484A (zh) 2017-07-12 2017-07-12 基于探测线圈的回旋加速器磁场测量系统及其测量方法
CN201710566660.X 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019010945A1 true WO2019010945A1 (zh) 2019-01-17

Family

ID=60219679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073258 WO2019010945A1 (zh) 2017-07-12 2018-01-18 基于探测线圈的回旋加速器磁场测量系统及其测量方法

Country Status (2)

Country Link
CN (1) CN107340484A (zh)
WO (1) WO2019010945A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340484A (zh) * 2017-07-12 2017-11-10 合肥中科离子医学技术装备有限公司 基于探测线圈的回旋加速器磁场测量系统及其测量方法
CN107843865A (zh) * 2017-12-12 2018-03-27 合肥中科离子医学技术装备有限公司 基于电磁感应实现回旋加速器磁测系统的校准装置及方法
CN107831455A (zh) * 2017-12-18 2018-03-23 合肥中科离子医学技术装备有限公司 一种超导回旋加速中多组探测线圈的磁场测量装置
CN108549043B (zh) * 2018-06-26 2024-05-31 合肥中科离子医学技术装备有限公司 一种回旋加速器磁测霍尔探头温度控制装置
CN110736943B (zh) * 2018-07-21 2020-07-28 中国原子能科学研究院 多线程双探头超导回旋加速器高精度磁场的测量控制方法
CN111399029B (zh) * 2020-03-30 2022-03-01 合肥中科离子医学技术装备有限公司 一种曲线运动的连续标定方法
CN112240993B (zh) * 2020-10-14 2021-07-20 中国原子能科学研究院 用于紧凑型回旋加速器磁场稳定性测量的评价系统和方法
DE102022123999A1 (de) * 2022-09-19 2024-03-21 Brusa Elektronik Ag Verfahren und Vorrichtung zum Bestimmen einer Korrektur für eine Energiemessung in einem induktiven Ladesystem
CN117452296B (zh) * 2023-10-27 2024-04-19 国电投核力同创(北京)科技有限公司 一种基于六维协助机器人的磁场测量系统和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276082A (ja) * 1990-03-27 1991-12-06 Toshiba Corp 磁場測定装置
CN101706559A (zh) * 2009-12-11 2010-05-12 中国原子能科学研究院 回旋加速器磁场测量装置
CN103064039A (zh) * 2013-01-04 2013-04-24 中国原子能科学研究院 中能紧凑型回旋加速器磁场测量高精度驱动方法
CN103257330A (zh) * 2012-02-20 2013-08-21 上海联影医疗科技有限公司 一种内径支撑单元以及磁场测量装置
CN106125018A (zh) * 2016-07-29 2016-11-16 中国原子能科学研究院 一种超导线圈一次谐波的磁场测量装置及其测量方法
CN106443517A (zh) * 2016-10-24 2017-02-22 合肥中科离子医学技术装备有限公司 一种等时性超导回旋加速器磁场测量系统及其测量方法
CN106772145A (zh) * 2017-03-02 2017-05-31 合肥中科离子医学技术装备有限公司 紧凑超导回旋加速器磁测传感器径向运动装置
CN107340484A (zh) * 2017-07-12 2017-11-10 合肥中科离子医学技术装备有限公司 基于探测线圈的回旋加速器磁场测量系统及其测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269437B2 (ja) * 1997-10-24 2002-03-25 株式会社日立製作所 イオンシンクロトロン

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276082A (ja) * 1990-03-27 1991-12-06 Toshiba Corp 磁場測定装置
CN101706559A (zh) * 2009-12-11 2010-05-12 中国原子能科学研究院 回旋加速器磁场测量装置
CN103257330A (zh) * 2012-02-20 2013-08-21 上海联影医疗科技有限公司 一种内径支撑单元以及磁场测量装置
CN103064039A (zh) * 2013-01-04 2013-04-24 中国原子能科学研究院 中能紧凑型回旋加速器磁场测量高精度驱动方法
CN106125018A (zh) * 2016-07-29 2016-11-16 中国原子能科学研究院 一种超导线圈一次谐波的磁场测量装置及其测量方法
CN106443517A (zh) * 2016-10-24 2017-02-22 合肥中科离子医学技术装备有限公司 一种等时性超导回旋加速器磁场测量系统及其测量方法
CN106772145A (zh) * 2017-03-02 2017-05-31 合肥中科离子医学技术装备有限公司 紧凑超导回旋加速器磁测传感器径向运动装置
CN107340484A (zh) * 2017-07-12 2017-11-10 合肥中科离子医学技术装备有限公司 基于探测线圈的回旋加速器磁场测量系统及其测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUA, MINGDA ET AL.: "Magnetic Field Measurement on the Electron-ring Magnets of HERA Proton-Electron Collider", NUCLEAR TECHNIQUES, 30 September 1991 (1991-09-30), pages 555 - 560, ISSN: 0253-3219 *

Also Published As

Publication number Publication date
CN107340484A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019010945A1 (zh) 基于探测线圈的回旋加速器磁场测量系统及其测量方法
WO2018157645A1 (zh) 紧凑超导回旋加速器磁测传感器径向运动装置
CN107797080B (zh) 采用nmr设备实现霍尔传感器校准标定的设备
CN108761214B (zh) 一种自适应表面磁场测量平台及测量方法
CN106443517A (zh) 一种等时性超导回旋加速器磁场测量系统及其测量方法
CN108152764A (zh) 一种四极磁铁磁场梯度积分测量方法及装置
CN111679231A (zh) 一种回旋加速器扇形二极铁磁场测量系统及测量方法
CN111398877B (zh) 一种可移动的霍尔传感器校准装置
CN213875991U (zh) 一种电子束控制线圈磁场检测系统
CN105676040A (zh) 三维可调式充电桩线圈检测台基架
CN111175674B (zh) 一种高精度磁场测量设备
CN209512678U (zh) 一种钢卷尺的检定装置
CN106707204A (zh) 一种旋转阴极磁棒磁场自动标定装置
CN207586410U (zh) 采用nmr设备实现霍尔传感器校准标定的设备
Newman-Holmes et al. Measurement of the magnetic field of the CDF magnet
CN207502706U (zh) 基于电磁感应实现回旋加速器磁测系统的校准装置
CN211293220U (zh) 用于磁场测试的管型传感器的调试装置
Shaw et al. An automated superconducting magnetometer and demagnetizing system
CN206546423U (zh) 紧凑超导回旋加速器磁测传感器径向运动装置
CN101975932B (zh) 经颅磁刺激线圈三维磁场空间分布的测量方法及装置
CN112462149B (zh) 一种超导线圈电感测量方法
CN110455249B (zh) 基于三坐标测量机的多极磁铁准直方法
CN107843865A (zh) 基于电磁感应实现回旋加速器磁测系统的校准装置及方法
CN201732156U (zh) 经颅磁刺激线圈三维磁场空间分布的测量装置
JPH0782083B2 (ja) 磁場測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832914

Country of ref document: EP

Kind code of ref document: A1