WO2018157645A1 - 紧凑超导回旋加速器磁测传感器径向运动装置 - Google Patents

紧凑超导回旋加速器磁测传感器径向运动装置 Download PDF

Info

Publication number
WO2018157645A1
WO2018157645A1 PCT/CN2017/115354 CN2017115354W WO2018157645A1 WO 2018157645 A1 WO2018157645 A1 WO 2018157645A1 CN 2017115354 W CN2017115354 W CN 2017115354W WO 2018157645 A1 WO2018157645 A1 WO 2018157645A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
slider
pulley
superconducting cyclotron
magnetic field
Prior art date
Application number
PCT/CN2017/115354
Other languages
English (en)
French (fr)
Inventor
宋云涛
陈根
徐曼曼
杨庆喜
Original Assignee
合肥中科等离子医学技术装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥中科等离子医学技术装备有限公司 filed Critical 合肥中科等离子医学技术装备有限公司
Publication of WO2018157645A1 publication Critical patent/WO2018157645A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types

Definitions

  • the invention belongs to the technical field of cyclotron magnetic field measurement, and particularly relates to a sensor radial motion device of a compact cyclotron magnetic field measuring system.
  • Cyclotrons have a wide range of applications in the field of nuclear medicine, especially in the fields of radiopharmaceutical pharmaceuticals, cancer treatment and other fields.
  • Hefei Ion Medical Center has done a lot of research and experimental work on the development of compact superconducting cyclotron.
  • the host system of the superconducting cyclotron is used to extract a stable beam, the electromagnetic field of the cavity accelerates the beam, and the movement of the beam requires the constraint of an isochronous magnetic field.
  • a magnetic field measurement of the cyclotron is required.
  • the magnetic field is a very important component of the cyclotron.
  • the magnetic field provides the binding force and strong focusing force for the beam motion.
  • the field distribution directly determines the performance of the cyclotron.
  • a manual magnetic measuring device driven by a gear is generally used. Since there is a backlash error in the gear positioning, and there is a machining error in the gear processing, the gear is also used. The circumferential positioning accuracy is difficult to guarantee and eventually causes magnetic field measurement errors.
  • the internal air gap is very narrow, the operating space is limited, and the calibration and maintenance are very difficult after the magnetic measuring device is installed.
  • the object of the present invention is to provide a compact superconducting cyclotron magnetic sensor radial motion device with compact structure, accurate positioning, simple operation, accurate measurement and automatic data acquisition, which is mainly used for measuring the Bz value of the vertical direction magnetic induction intensity and
  • the magnetic induction intensity Br value in the radial direction solves the problems of large positioning error and insufficient precision of the Hall sensor during the magnetic field measurement of the cyclotron magnetic field, and provides important and accurate data for the magnetic field compensation and ion beam dynamics calculation.
  • Compact superconducting cyclotron magnetic sensor radial motion device including sensor slide, light ruler, Hall sensor, fiber filament, screw, slider, fixed pulley, servo motor, data transmission line, data collector; the servo motor Driving a slider mounted on the lead screw to move up and down linearly, one end of the fiber filament is fixed on the slider, the other end bypasses the fixed pulley to reach a middle plane of the magnetic field, and the steering is turned into a horizontal direction On the sensor slide, the fixed pulley is finally bypassed to form a closed loop system; the Hall sensor is disposed on the sensor slide; and the data transmission line connects the Hall sensor and the data collector.
  • the servo motor drives the slider to move vertically upward on the lead screw, the filament is pulled downward, and then the sensor slide carries the Hall sensor to approach the physical center of the magnetic field; Moving in the direction of the center of the circle, the range of radial movement of the Hall sensor is -50 mm to 700 mm.
  • the Hall sensor is a three-axis Hall sensor, and the number is two, respectively installed at the front and rear ends of the sensor slider with a pitch of 50 mm; the light ruler is installed in parallel with the sensor slide.
  • a shield cover is mounted outside the servo motor; the servo motor is fixed on the accelerator main body through a flange, and a dust cover is further mounted on the accelerator main body through the flange.
  • a test disc is disposed at a plane of the magnetic field, and a pulley block composed of three pulleys is mounted on the test disc, and a reversing pulley is installed at one end of the test disc, and the fiber filaments are sequentially turned through the pulley block, the reversing pulley, and the pulley block. It becomes horizontal, and then connected to the sensor slide, and finally bypasses the pulley block and the fixed pulley to form a closed loop system.
  • the data transmission line is made of a non-magnetic material and has a length of 4.5 m.
  • the fiber filament is a polyester fiber non-magnetic material having a diameter of ⁇ 1 mm and a length of 2.85 m.
  • the invention has the advantages that the magnetic induction intensity Bz value in the vertical direction of the middle plane and the Br value of the magnetic induction intensity in the radial direction are measured, and the combination of the motor drive system and the positioning system is adopted to realize the azimuth of the Hall sensor. Precise positioning; compact structure, accurate positioning, simple operation, accurate measurement, automatic data acquisition, etc., providing important and accurate data for magnetic field compensation and ion beam dynamics calculation.
  • FIG. 1 is a schematic structural view of a radial motion device of a magnetic measuring sensor of a compact superconducting cyclotron according to the present invention
  • Figure 2 is a schematic view showing the orientation of the closed loop system of the fiber yarn
  • the figure shows: 1-sensor slide, 2-light ruler, 3-Hall sensor, 4-fiber wire, 5-pulley set, 6-data transmission line, 7-data collector, 8-flange, 9-dust cover , 10-screw, 11-slider, 12-station pulley, 13-servo motor, 14-shield.
  • Compact superconducting cyclotron magnetic sensor radial motion device see Figure 1, the structure mainly includes sensor slide 1, light rule 2, Hall sensor 3, fiber filament 4, pulley block 5, flange 8, dust cover 9, Screw 10, slider 11, fixed pulley 12, servo motor 13, shield cover 14, data transmission line 6, data collector 7;
  • a shield cover 14 is installed outside the servo motor 13 to protect the motor from strong magnetic fields; the servo motor 13 is fixed on the accelerator main body through the flange 8; the servo motor 13 is connected to the drive shaft 13 with a slider 11 and a slider 11 Mounted on the lead screw 10;
  • the servo motor 13 drives the slider 11 to perform linear motion on the lead screw 10, and the fiber filament 4 is fixed at one end to the slider 11, and the other end is wound around the fixed pulley 12 to reach the mid-plane of the magnetic field, and is tested at a plane in the magnetic field.
  • the Hall sensor 3 is mounted on the sensor slide 1 described above. Since the magnetic measurement space of the accelerator is very limited, the Hall sensor 3 is relatively small in size, and a three-axis Hall sensor is selected in two quantities, which are respectively mounted on the sensor slide.
  • the front and rear ends of the block 1 are spaced 50 mm apart for improving the magnetic field measurement efficiency;
  • the light rule 2 is mounted in parallel with the sensor slide 1 (the ruler 2 includes the ruler and the ruler, the ruler is mounted on the sensor slide, and moves along with the sensor slide
  • the ruler is fixedly mounted on the test disc) to accurately position the sensor slide to ensure the radial movement accuracy of the sensor.
  • the sensor slide 1 When the slider 11 moves vertically upward on the lead screw 10, the right filament 4 is pulled downward, and then the sensor slide 1 carries the Hall sensor 3 toward the physical center of the magnetic field; otherwise, the movement away from the center of the circle realizes The radial movement of the Hall sensor 3 in the plane of the magnetic field; the range of radial movement of the Hall sensor 3 is -50 mm to 700 mm, that is, 50 mm in the reverse direction beyond the center of the circle, the distance measurement is for the secondary verification of the magnetic field value.
  • the Hall sensor 3 is connected to the data collector 7 through the data transmission line 6.
  • the data transmission line is made of a non-magnetic material, and the data collector 7 has an antimagnetic function and has a length of 4.5 m.
  • the data collector 7 records important information such as the position coordinates, angular position, magnetic induction value, and temperature value of the point, which provides an important reference for the next step of the magnetic field shimming analysis.
  • the dust cover 9 is connected to the accelerator main body through the flange 8, and provides support points for the lower device (the screw shaft 10 and the fixed pulley 12); the dust cover 9 protects the radial movement mechanism from dust pollution, and guarantees the Hall. Positional accuracy of the radial movement of the sensor,
  • the slider 11 is mounted with an automatic pretensioning device for pre-tightening the filament 4 in real time to prevent it from slipping during the movement, thereby ensuring measurement progress and precision.
  • the magnetic permeability of the material used in the present application is less than 1; in the above technical solution, the fiber filament 4 is a polyester fiber non-magnetic material having a diameter of ⁇ 1 mm and a length of 2.85 m.
  • the technical scheme of the invention is mainly used for measuring the Bz value of the vertical direction magnetic induction intensity and the Br value of the radial direction magnetic induction intensity, and has the advantages of compact structure, accurate positioning, simple operation, accurate measurement, automatic data acquisition, etc., and is a magnetic field padding and ion Beam dynamics calculations provide important and accurate data.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Particle Accelerators (AREA)

Abstract

一种紧凑超导回旋加速器磁测传感器径向运动装置,包括传感器滑板(1)、光尺(2)、霍尔传感器(3)、纤维丝(4)、丝杠(10)、滑块(11)、定滑轮(12)、伺服电机(13)、数据传输线(6)、数据采集器(7);伺服电机(13)驱动安装在丝杠(10)上的滑块(11)上下直线运动,纤维丝(4)一端固定在滑块(11)上,另一端绕过定滑轮(12)到达磁场中平面处,转向变为水平方向连接到传感器滑板(1)上,最终绕过定滑轮(12),形成一个闭环系统;传感器滑板(1)上设有霍尔传感器(3);数据传输线(6)连接霍尔传感器(3)和数据采集器(7)。装置具有结构紧凑、定位精确、操作简单、测量精准、自动采集数据等优点,为磁场垫补和离子束流动力学计算提供重要而精确的数据。

Description

紧凑超导回旋加速器磁测传感器径向运动装置 技术领域
本发明属于回旋加速器磁场测量技术领域,尤其涉及一种紧凑型回旋加速器磁场测量系统传感器径向运动装置。
背景技术
回旋加速器在核医学领域有着广泛的应用,尤其是在放射性药物制药,肿瘤治疗等领域有重要意义。合肥离子医学中心对研制紧凑型超导回旋加速器做了大量的调研和实验工作。超导回旋加速器的主机系统用于引出稳定的束流,谐振腔的电磁场对束流进行加速,而且束流的运动需要等时性磁场的约束。为了保证提供等时性磁场,需要对回旋加速器进行磁场测量。磁场是回旋加速器相当重要的组成部分,磁场为束流的运动提供了约束力和强聚焦力,其场型分布直接决定了该回旋加速器的性能。为了精确地测量出磁场分布,目前,在低能回旋加速器磁场测量中,普遍采用的是采用齿轮驱动的手动磁测装置,由于齿轮定位存在齿隙误差,而且齿轮加工时也存在加工误差,所以齿轮周向定位精度难以保证,最终引起磁场测量误差。同时,对于紧凑型回旋加速器,内部气隙非常狭小,操作空间有限,磁测装置安装完成之后,校对和维修都十分困难。
另外,《核技术》第四卷第九期“HERA质子-电子对撞机电子环磁铁的磁场测量”文章中,公开了一种采用螺杆驱动平移线圈的方式测量磁场强度的装置。这种装置不仅存在测量精度低问题,而且系统占据空间比较大,并不适合与紧凑型回旋加速器磁场的测量。
发明内容
本发明的目的在于提供一种结构紧凑、定位精确、操作简单、测量精准、自动采集数据的紧凑超导回旋加速器磁测传感器径向运动装置,主要用于测量中平面垂直方向磁感应强度Bz值和径向方向磁感应强度Br值,解决回旋加 速器磁场磁测过程中霍尔传感器定位误差较大、精准度不够等问题,为磁场垫补和离子束流动力学计算提供重要而精确的数据。
本发明的目的可以通过以下技术方案实现:
紧凑超导回旋加速器磁测传感器径向运动装置,包括传感器滑板、光尺、霍尔传感器、纤维丝、丝杠、滑块、定滑轮、伺服电机、数据传输线、数据采集器;所述伺服电机驱动安装在所述丝杠上的滑块上下直线运动,所述纤维丝一端固定在所述滑块上,另一端绕过所述定滑轮到达磁场中平面处,转向变为水平方向连接到所述传感器滑板上,最终绕过定滑轮,形成一个闭环系统;所述传感器滑板上设有所述霍尔传感器;所述数据传输线连接所述霍尔传感器和所述数据采集器。
所述伺服电机驱动所述滑块在所述丝杠上垂直向上运动时,纤维丝向下拉动,继而所述传感器滑板载着所述霍尔传感器向磁场的物理圆心靠近;反之,向远离向圆心方向运动,所述霍尔传感器径向移动的范围是-50mm到700mm。
所述霍尔传感器选用三轴霍尔传感器,数量为两个,分别安装在所述传感器滑块的前后端,间距为50mm;所述光尺与所述传感器滑板平行安装。
所述伺服电机外安装有屏蔽罩;所述伺服电机通过法兰固定在加速器主机上,在加速器主机上通过所述法兰还安装有防尘罩。
在所述磁场中平面处设有测试盘,该测试盘上安装有由三个滑轮构成的滑轮组,在测试盘的一端部安装有改向滑轮,纤维丝依次通过滑轮组、改向滑轮、滑轮组转向变为水平方向,再连接到传感器滑板上,最终绕过滑轮组、定滑轮形成一个闭环系统。
所述数据传输线采用是非导磁性材料,其长度为4.5m。
所述纤维丝是一种聚酯纤维非导磁性材料,直径为φ1mm,长度为2.85m。
本发明的有益效果:本发明主要用于测量中平面垂直方向磁感应强度Bz 值和径向方向磁感应强度Br值,采用电机驱动系统和定位系统的相结合方式,实现霍尔传感器在方位角上的精确定位;具有结构紧凑、定位精确、操作简单、测量精准、自动采集数据等优点,为磁场垫补和离子束流动力学计算提供重要而精确的数据。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
图1为本发明紧凑超导回旋加速器磁测传感器径向运动装置结构示意图;
图2为本发明纤维丝闭环系统走向示意图;
图中标示:1-传感器滑板、2-光尺、3-霍尔传感器、4-纤维丝、5-滑轮组、6-数据传输线、7-数据采集器、8-法兰、9-防尘罩、10-丝杠、11-滑块、12-定滑轮、13-伺服电机、14-屏蔽罩。
本发明的较佳实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
紧凑超导回旋加速器磁测传感器径向运动装置,参见图1,其结构主要包括传感器滑板1、光尺2、霍尔传感器3、纤维丝4、滑轮组5、法兰8、防尘罩9、丝杠10、滑块11、定滑轮12、伺服电机13、屏蔽罩14、数据传输线6、数据采集器7;
首先,伺服电机13外安装有屏蔽罩14,用以保护电机不受强磁场的影响;伺服电机13通过法兰8固定在加速器主机上;伺服电机13传动轴连接有滑块11,滑块11安装在丝杠10上;
伺服电机13驱动滑块11在丝杠10上做直线运动,而纤维丝4一端固定在滑块11上,另一端绕过定滑轮12后到达磁场中平面处,在磁场中平面处 设有测试盘,该测试盘上安装有由三个滑轮构成的滑轮组5,在测试盘的一端部安装有改向滑轮,纤维丝4依次通过滑轮组5、改向滑轮、滑轮组5转向变为水平方向,再连接到传感器滑板1上,最终绕过滑轮组5、定滑轮12连接到滑块11上,形成一个闭环系统(参见图2中箭头a-b-c-d-e所示);
在上述传感器滑板1上安装有霍尔传感器3,由于加速器磁测空间非常有限,因此,霍尔传感器3尺寸比较小,选用的是三轴霍尔传感器,数量为两个,分别安装在传感器滑块1的前后端,间距为50mm,用以提高磁场测量效率;光尺2与传感器滑板1平行安装(光尺2包括尺身和尺头,尺头安装在传感器滑板上,随着传感器滑板移动,尺身固定安装在测试盘上),精确定位传感器滑板的位置,保证传感器径向移动精度。
当滑块11在丝杠10上垂直向上运动时,右侧纤维丝4向下拉动,继而传感器滑板1载着霍尔传感器3向磁场的物理圆心靠近;反之,向远离圆心方向运动,实现了霍尔传感器3在磁场中平面上的径向运动;霍尔传感器3径向移动的范围是-50mm到700mm,即反向超过圆心50mm处,该距离测量值是为了二次验证磁场值。
霍尔传感器3通过数据传输线6连接数据采集器7,数据传输线采用是非导磁性材料,数据采集器7具有防磁功能,其长度为4.5m。霍尔传感器3每移动一个1mm的步长,数据采集器7则记录该点的位置坐标、角度位置、磁感应强度值、温度值等重要信息,为下一步磁场垫补分析提供重要参考。
防尘罩9通过法兰8将其连接在加速器主机上,为下面装置(丝杠10、定滑轮12)提供支撑点;防尘罩9保护径向运动机构免受灰尘污染,保证了霍尔传感器径向运动的位置精度,
进一步地,上述技术方案中滑块11上安装有自动预紧装置,用于实时预紧所述纤维丝4,防止其在运动过程中打滑,从而保证测量进度和精度。进一步地,本申请采用材料的磁导率均小于1;上述技术方案中,纤维丝4是 一种聚酯纤维非导磁性材料,直径为φ1mm,长度为2.85m。
工业实用性
本发明技术方案主要用于测量中平面垂直方向磁感应强度Bz值和径向方向磁感应强度Br值,具有结构紧凑、定位精确、操作简单、测量精准、自动采集数据等优点,为磁场垫补和离子束流动力学计算提供重要而精确的数据。

Claims (7)

  1. 紧凑超导回旋加速器磁测传感器径向运动装置,其特征在于:包括传感器滑板(1)、光尺(2)、霍尔传感器(3)、纤维丝(4)、丝杠(10)、滑块(11)、定滑轮(12)、伺服电机(13)、数据传输线(6)、数据采集器(7);
    所述伺服电机(13)驱动安装在所述丝杠(10)上的滑块(11)上下直线运动,所述纤维丝(4)一端固定在所述滑块(11)上,另一端绕过所述定滑轮(12)到达磁场中平面处,转向变为水平方向连接到所述传感器滑板(1)上,最终绕过定滑轮(12),形成一个闭环系统;
    所述传感器滑板(1)上设有所述霍尔传感器(3);所述数据传输线(6)连接所述霍尔传感器(3)和所述数据采集器(7)。
  2. 根据权利要求1所述的紧凑超导回旋加速器磁测传感器径向运动装置,其特征在于:所述伺服电机(13)驱动所述滑块(11)在所述丝杠(10)上垂直向上运动时,纤维丝(4)向下拉动,继而所述传感器滑板(1)载着所述霍尔传感器(3)向磁场的物理圆心靠近;反之,向远离向圆心方向运动,所述霍尔传感器(3)径向移动的范围是-50mm到700mm。
  3. 根据权利要求1所述的紧凑超导回旋加速器磁测传感器径向运动装置,其特征在于:所述霍尔传感器(3)选用三轴霍尔传感器,数量为两个,分别安装在所述传感器滑块(1)的前后端,间距为50mm;所述光尺(2)与所述传感器滑板(1)平行安装。
  4. 根据权利要求1所述的紧凑超导回旋加速器磁测传感器径向运动装置,其特征在于:所述伺服电机(13)外安装有屏蔽罩(14);所述伺服电机(13)通过法兰(8)固定在加速器主机上,在加速器主机上通过所述法兰(8)还安装有防尘罩(9)。
  5. 根据权利要求1所述的紧凑超导回旋加速器磁测传感器径向运动装置,其特征在于:在所述磁场中平面处设有测试盘,该测试盘上安装有由三个滑轮构成的滑轮组(5),在测试盘的一端部安装有改向滑轮,纤维丝(4)依次通过滑轮组(5)、改向滑轮、滑轮组(5)转向变为水平方向,再连接到传感器滑板(1)上,最终绕过滑轮组(5)、定滑轮(12)连接到滑块(11)上,形成一个闭环系统。
  6. 根据权利要求1所述的紧凑超导回旋加速器磁测传感器径向运动装置,其特征在于:所述数据传输线(6)采用是非导磁性材料,其长度为4.5m。
  7. 根据权利要求1所述的紧凑超导回旋加速器磁测传感器径向运动装置,其特征在于:所述纤维丝(4)是一种聚酯纤维非导磁性材料,直径为φ1mm,长度为2.85m。
PCT/CN2017/115354 2017-03-02 2017-12-09 紧凑超导回旋加速器磁测传感器径向运动装置 WO2018157645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710120787.9A CN106772145A (zh) 2017-03-02 2017-03-02 紧凑超导回旋加速器磁测传感器径向运动装置
CN201710120787.9 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018157645A1 true WO2018157645A1 (zh) 2018-09-07

Family

ID=58959678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115354 WO2018157645A1 (zh) 2017-03-02 2017-12-09 紧凑超导回旋加速器磁测传感器径向运动装置

Country Status (2)

Country Link
CN (1) CN106772145A (zh)
WO (1) WO2018157645A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772145A (zh) * 2017-03-02 2017-05-31 合肥中科离子医学技术装备有限公司 紧凑超导回旋加速器磁测传感器径向运动装置
CN107340484A (zh) * 2017-07-12 2017-11-10 合肥中科离子医学技术装备有限公司 基于探测线圈的回旋加速器磁场测量系统及其测量方法
CN107702649B (zh) * 2017-11-24 2024-03-15 中国工程物理研究院流体物理研究所 一种霍尔探头高精度位置获取装置
CN107797080B (zh) * 2017-12-12 2023-06-06 合肥中科离子医学技术装备有限公司 采用nmr设备实现霍尔传感器校准标定的设备
CN107843865A (zh) * 2017-12-12 2018-03-27 合肥中科离子医学技术装备有限公司 基于电磁感应实现回旋加速器磁测系统的校准装置及方法
CN108770180A (zh) * 2018-06-27 2018-11-06 中国原子能科学研究院 加速器的剥离靶运动控制系统及其控制方法
CN110736943B (zh) * 2018-07-21 2020-07-28 中国原子能科学研究院 多线程双探头超导回旋加速器高精度磁场的测量控制方法
CN109239626A (zh) * 2018-09-20 2019-01-18 中国原子能科学研究院 一种超导回旋加速器磁场测量装置
CN113345674B (zh) * 2021-05-10 2023-03-07 中国原子能科学研究院 用于超导回旋加速器的超导径向厚线圈及其绕制浸渍方法
CN116256676B (zh) * 2023-01-09 2023-10-31 中国科学院近代物理研究所 一种回旋加速器磁铁等时性磁场测量装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076980A2 (en) * 2008-12-31 2010-07-08 Korea Institute Of Radiological & Medical Sciences Magnetic field profile measuring apparatus for electromagnet of closed-type cyclotron
CN102520378A (zh) * 2011-12-12 2012-06-27 上海大学 高温超导单畴块材磁通冻结场测量装置及方法
CN103064039A (zh) * 2013-01-04 2013-04-24 中国原子能科学研究院 中能紧凑型回旋加速器磁场测量高精度驱动方法
CN103675720A (zh) * 2013-12-18 2014-03-26 中国原子能科学研究院 一种回旋加速器磁场测量装置
WO2016029081A1 (en) * 2014-08-22 2016-02-25 Board Of Trustees Of Michigan State University Precision magnetic field monitoring in high radiation environments
CN106443517A (zh) * 2016-10-24 2017-02-22 合肥中科离子医学技术装备有限公司 一种等时性超导回旋加速器磁场测量系统及其测量方法
CN106772145A (zh) * 2017-03-02 2017-05-31 合肥中科离子医学技术装备有限公司 紧凑超导回旋加速器磁测传感器径向运动装置
CN206546423U (zh) * 2017-03-02 2017-10-10 合肥中科离子医学技术装备有限公司 紧凑超导回旋加速器磁测传感器径向运动装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076980A2 (en) * 2008-12-31 2010-07-08 Korea Institute Of Radiological & Medical Sciences Magnetic field profile measuring apparatus for electromagnet of closed-type cyclotron
CN102520378A (zh) * 2011-12-12 2012-06-27 上海大学 高温超导单畴块材磁通冻结场测量装置及方法
CN103064039A (zh) * 2013-01-04 2013-04-24 中国原子能科学研究院 中能紧凑型回旋加速器磁场测量高精度驱动方法
CN103675720A (zh) * 2013-12-18 2014-03-26 中国原子能科学研究院 一种回旋加速器磁场测量装置
WO2016029081A1 (en) * 2014-08-22 2016-02-25 Board Of Trustees Of Michigan State University Precision magnetic field monitoring in high radiation environments
CN106443517A (zh) * 2016-10-24 2017-02-22 合肥中科离子医学技术装备有限公司 一种等时性超导回旋加速器磁场测量系统及其测量方法
CN106772145A (zh) * 2017-03-02 2017-05-31 合肥中科离子医学技术装备有限公司 紧凑超导回旋加速器磁测传感器径向运动装置
CN206546423U (zh) * 2017-03-02 2017-10-10 合肥中科离子医学技术装备有限公司 紧凑超导回旋加速器磁测传感器径向运动装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LV , YINLONG ET AL.: "Machine Design of Magnetic Field Measuring Apparatus for Main Magnet of 100 MeV Intense Pulsed Proton Circular Accelerator", ANNUAL REPORT OF CHINA INSTITUTE OF ATOMIC ENERGY, 31 July 2018 (2018-07-31), pages 113 - 114 *
ZHONG, JUNQING ET AL.: "The Design of Magnetic Field Measurements System for CYCIAE-100", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, vol. 20, no. 3, 30 June 2010 (2010-06-30), pages 2019 - 2022, XP011304026 *

Also Published As

Publication number Publication date
CN106772145A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018157645A1 (zh) 紧凑超导回旋加速器磁测传感器径向运动装置
CN107797080B (zh) 采用nmr设备实现霍尔传感器校准标定的设备
WO2019010945A1 (zh) 基于探测线圈的回旋加速器磁场测量系统及其测量方法
CN103064039B (zh) 中能紧凑型回旋加速器磁场测量高精度驱动方法
CN113835049B (zh) 检验第五种力v4+5的基于serf原子磁场测量方法及装置
CN107167483B (zh) 可快速切换极化和非极化模式的中子反射谱仪光路结构
CN111398877B (zh) 一种可移动的霍尔传感器校准装置
CN206818854U (zh) 基于核磁共振的自动化三维磁场测定仪
Yang et al. Field measurement for superconducting magnets of ADS injector I
CN213875991U (zh) 一种电子束控制线圈磁场检测系统
CN111679231A (zh) 一种回旋加速器扇形二极铁磁场测量系统及测量方法
CN102103192B (zh) 单方向磁场自动定位测量装置
CN102298121B (zh) 一种三轴磁场线圈正交角度的测量方法
CN201909837U (zh) 单方向磁场自动定位测量装置
CN206546423U (zh) 紧凑超导回旋加速器磁测传感器径向运动装置
CN112240993B (zh) 用于紧凑型回旋加速器磁场稳定性测量的评价系统和方法
CN204302500U (zh) 一种深空粒子激发x射线谱仪的真空定标设备
CN104198964B (zh) 一种超导磁体磁场分布测量装置
CN211293220U (zh) 用于磁场测试的管型传感器的调试装置
Shaw et al. An automated superconducting magnetometer and demagnetizing system
CN219162345U (zh) 一种加速器磁铁磁场测量装置
Arpaia et al. A rotating coil transducer for magnetic field mapping
Zhou et al. AC magnetic field measurement of CSNS/RCS quadrupole prototype
CN107843865A (zh) 基于电磁感应实现回旋加速器磁测系统的校准装置及方法
CN220380451U (zh) 高场磁体的磁中心位置测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898901

Country of ref document: EP

Kind code of ref document: A1