WO2019010832A1 - 一种基于时空大数据的导航多径效应抑制方法 - Google Patents

一种基于时空大数据的导航多径效应抑制方法 Download PDF

Info

Publication number
WO2019010832A1
WO2019010832A1 PCT/CN2017/104203 CN2017104203W WO2019010832A1 WO 2019010832 A1 WO2019010832 A1 WO 2019010832A1 CN 2017104203 W CN2017104203 W CN 2017104203W WO 2019010832 A1 WO2019010832 A1 WO 2019010832A1
Authority
WO
WIPO (PCT)
Prior art keywords
multipath
signal
navigation
big data
module
Prior art date
Application number
PCT/CN2017/104203
Other languages
English (en)
French (fr)
Inventor
王永
孙娟娟
杨楠
陈蒙琪
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2019010832A1 publication Critical patent/WO2019010832A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Definitions

  • the invention relates to a navigation multipath effect suppression method based on spatiotemporal big data, and belongs to the technical field of satellite navigation.
  • Satellite navigation has all-weather, continuous and real-time features, and can provide users with positioning, speed measurement and timing services. It has been widely used in various fields, and its application range is still expanding.
  • the positioning accuracy of the satellite navigation receiver will be affected by various factors, resulting in a certain deviation between the positioning result and the actual position.
  • multipath interference is one of the main sources of error, and this error will change with time and receiver position, which is difficult to eliminate accurately from the positioning algorithm.
  • the autocorrelation function curve of the received signal and the local pseudorandom code is distorted, and the code phase discrimination error and the code phase measurement error are introduced.
  • the multipath signal will also bring errors to the measurement of the carrier phase, which will eventually lead to inaccurate positioning results and even position jumps.
  • the multipath suppression and cancellation methods using digital intermediate frequency signal processing technology are mainly divided into two categories, one is to improve the correlator or code ring discriminator design to achieve the purpose of reducing multipath error, such as narrow-range correlator technology, double Differential discriminator technology, etc.
  • This type of method is simple to implement, but the multipath suppression performance usually cannot meet the high-precision positioning requirements; the other method is to estimate the parameters of each multipath signal component and subtract these multipath signal components from the total received signal.
  • MEDLL multipath estimation delay locked loop
  • Vision correlator etc.
  • these techniques can effectively reduce the multipath effect of code phase and carrier phase measurements.
  • the optimization estimation method for solving multipath signal parameters is complicated, which significantly increases the calculation amount of the decoding algorithm and is limited in low power applications.
  • the present invention proposes a navigation multipath effect suppression method based on spatiotemporal big data.
  • the core idea of the present invention is to collect multipath parameters of urban high-rise buildings and multipath-prone areas, establish a multipath information table based on spatio-temporal big data, and share the multipath information table to other navigation receivers in the area.
  • the user the user corrects the positioning result by retrieving the multipath information table.
  • a navigation multipath effect suppression method based on spatiotemporal big data including the following steps:
  • the spatiotemporal big data multipath information table includes time, coordinates calculated by the original input signal, navigation position coordinate offset, and the spatiotemporal big data multipath information table
  • the time, the coordinate calculated by the original input signal is a two-dimensional index, and the navigation position coordinate offset under the coordinate corresponding to the time and the original input signal is calculated.
  • the time refers to the original input signal receiving time;
  • the coordinate calculated by the original input signal means that the navigation receiver receives the original digital intermediate frequency signal (signal containing one or more multipath signals), and passes the standard.
  • the navigation position coordinate offset refers to the difference between the navigation position coordinates without the multipath error and the coordinates calculated by the original signal described above. ;
  • step (1) (2) sharing the spatio-temporal big data multipath information table obtained in step (1) to other navigation receiver users in the area of establishing the spatiotemporal big data multipath information table in step (1);
  • the step (1), the step-space big data multipath information table is established through the steps A-B, and the steps are as follows:
  • the original input signal s(t) is divided into three branches: the expression of the original input signal s(t) is as shown in the formula (II):
  • s d (t) is a direct wave signal
  • s i (t) is a reflected wave signal i
  • M is the number of reflected waves
  • A is the signal amplitude
  • p (t) is the value Is the exclusive-OR sum of the data code of ⁇ 1 and the pseudo-random code
  • f is the carrier frequency after considering the Doppler effect
  • ⁇ i is the attenuation coefficient of the reflected wave signal i with respect to the direct wave signal
  • ⁇ i is the reflected wave signal i Relative to the propagation delay of the direct wave signal, Is the phase change of the reflected wave i carrier;
  • the original input signal s(t) is sequentially captured, tracked, demodulated, and the navigation position coordinates (X * , Y * , Z * ) including the multipath error are obtained;
  • the original input signal s(t) is pre-captured to determine whether there is a multipath signal in the original input signal s(t), and if so, the signal separator is input to estimate the corresponding multipath parameter.
  • the local reflected wave signal generator generating a local reflected wave signal s'(t) according to the corresponding multipath parameter, if not, the local reflected wave signal generator does not work;
  • the multipath parameter includes the number of reflected waves M
  • the multipath signal, that is, the reflected wave signal means that the reflected wave is a navigation satellite a signal generated after the transmitted signal is reflected;
  • the original input signal s(t) is compared with the local reflected wave signal s'(t) generated by the third branch to obtain a direct wave signal s d (t), and the direct wave signal s d (t) sequentially performing acquisition, tracking, and demodulation to obtain corrected navigation position coordinates (X 0 , Y 0 , Z 0 );
  • the corrected navigation position coordinates (X 0 , Y 0 , Z 0 ) are compared with the navigation position coordinates (X * , Y * , Z * ) including the multipath error to obtain the navigation position coordinate offset ( ⁇ X). , ⁇ Y, ⁇ Z), ie:
  • the local reflected wave signal s'(t) is generated according to the corresponding multipath parameter, and the formula for obtaining s'(t) is as shown in the formula (IV):
  • the other navigation receiver users in the area receive the navigation coordinates (X * ', Y * ', Z * '), including the following steps: the input signal is sequentially captured and tracked. Demodulation calculates navigation coordinates (X * ', Y * ', Z * ').
  • an implementation circuit for establishing a spatio-temporal big data multipath information table includes a capture module 1, a tracking module 1, a demodulation module 1, an adder 1, a capture module 2, a tracking module 2, a demodulation module 2, and an addition.
  • pre-capture module, signal separator, local reflected wave signal generator, space-time big data multipath information table module the original input signal is divided into three branches:
  • the first branch includes the capture module 1 , the tracking module 1 , the demodulation module 1 , and the adder 2 connected in series
  • the second branch includes the adder 1 , the capture module 2 , and the tracking module 2 connected in series
  • the demodulation module 2 and the adder 2 the third branch includes the pre-capture module, the signal separator, the local reflected wave signal generator, the adder 1, the capture module 2, the tracking module 2, and the solution are sequentially connected in series.
  • the module 2 and the adder 2 are connected to the space-time big data multipath information table module.
  • the capturing module 1 and the capturing module 2 are configured to obtain a rough value of a code phase and a carrier frequency of the signal; and the tracking module 1 and the tracking module 2 are configured to obtain a code phase of the signal and an accurate carrier frequency.
  • the demodulation module 1 and the demodulation module 2 are configured to obtain satellite position and pseudorange information contained in the signal, and finally calculate navigation position information; the pre-capture module is configured to acquire an input signal and a local pseudo-random code.
  • the signal separator separating the corresponding multipath parameter in the multipath signal
  • the local reflected wave signal generator is configured to generate a local reflected wave signal
  • the adder has an input end The local reflected wave signal generated by the input signal and the local reflected wave signal generator respectively, and the output end is a signal with a difference between the two inputs, that is, a direct wave signal for removing the reflected wave
  • the input ends of the adder are respectively multipath-containing
  • the navigation position information of the error (X * , Y * , Z * ) and the navigation position information (X 0 , Y 0 , Z 0 ) obtained by multipath suppression, and the output is the difference between the two inputs, that is, the navigation position coordinate deviation
  • the spatio-temporal big data multipath information table is used to store the navigation position coordinate offset ( ⁇ X, ⁇ Y, ⁇ Z) and is shared with other local navigation users
  • the other navigation receiver user in the area solves the navigation coordinates and performs the correction, including the capture module 3, the tracking module 3, the demodulation module 3, and the adder 3.
  • the local database; the capture module 3, the tracking module 3, the demodulation module 3, and the adder 3 are sequentially connected in series, and the space-time big data multipath information table module, the local database, and the adder are sequentially connected in series;
  • the capturing module 3 is configured to obtain a rough value of a code phase and a carrier frequency of the signal; the tracking module 3 is configured to obtain an accurate value of a code phase and a carrier frequency of the signal; and the demodulation module 3 is configured to obtain the signal included Satellite position and pseudorange information, and finally calculate navigation position information (X * ', Y * ', Z * '); the two inputs of the adder 3 are navigation position information including multipath errors respectively ( X * ', Y * ', Z * ') and the navigation position coordinate offset ( ⁇ X, ⁇ Y, ⁇ Z) stored in the local database, output the sum of the two inputs through the output of the adder three, that is, the corrected navigation Information (X, Y, Z).
  • the multipath effect suppression method proposed by the present invention is based on the idea of big data sharing, and through the establishment and sharing of the multipath information table in the region, the navigation receiver user of the region can obtain the navigation position coordinate of the current location at the current time.
  • the shifting amount is corrected to correct the original positioning result, which makes the positioning result more accurate, and also provides a new idea for the current multipath suppression field.
  • the data of the spatiotemporal big data multipath information table in the present invention is obtained after multipath suppression based on multipath parameter estimation, which ensures the positioning accuracy of the present invention; spatiotemporal big data multipath information
  • the sharing of the table enables the navigation users in the area to obtain the current navigation position coordinate offset directly by searching, even when offline, saving the operation time of the multipath parameter estimation in the conventional multipath suppression algorithm, and ensuring the positioning accuracy.
  • the complexity of the multipath suppression algorithm is effectively reduced.
  • FIG. 1 is a flow chart showing the construction of a spatiotemporal big data multipath information table according to the present invention
  • FIG. 2 is a flow chart of a navigation multipath suppression method based on spatiotemporal big data according to the present invention.
  • a navigation multipath suppression method based on spatiotemporal big data taking the application of the digital intermediate frequency signal processing part in the Beidou receiver as an example, including the following steps:
  • the spatio-temporal big data multipath information table includes time, Beidou coordinates calculated by the original input signal, and navigation position coordinate offset
  • the spatio-temporal big data multipath information table takes time and
  • the coordinate calculated by the original input signal is a two-dimensional index
  • the navigation position coordinate offset in the Beidou coordinate calculated by the original input signal is the content corresponding to the time
  • the time refers to the original input signal receiving time
  • the coordinates calculated by the original input signal refer to that the navigation receiver receives the original digital intermediate frequency signal (a signal containing one or more multipath signals), and the multipath error is solved by a standard acquisition, tracking, and demodulation algorithm.
  • Navigation coordinates; the navigation position coordinate offset refers to the difference between the navigation position coordinates without multipath error and the coordinates calculated by the original signal; and the time and space big data multipath information table is established by step AB, as shown in FIG. Shown, including:
  • Beidou B1I digital intermediate frequency signal s(t) is divided into three branches: the expression of the Beidou B1I digital intermediate frequency signal s(t) is as shown in equation (II):
  • s d (t) is a direct wave signal
  • s i (t) is a reflected wave signal i
  • M is the number of reflected waves
  • A is the signal amplitude
  • p (t) is the value Is the exclusive-OR sum of the data code of ⁇ 1 and the pseudo-random code
  • f is the carrier frequency after considering the Doppler effect
  • ⁇ i is the attenuation coefficient of the reflected wave signal i with respect to the direct wave signal
  • ⁇ i is the reflected wave signal i Relative to the propagation delay of the direct wave signal, Is the phase change of the reflected wave i carrier;
  • the Beidou B1I digital intermediate frequency signal s(t) is sequentially captured, tracked, demodulated, and the Beidou navigation position coordinates (X * , Y * , Z * ) including the multipath error are obtained;
  • the Beidou B1I digital intermediate frequency signal s(t) is pre-captured to determine whether there is a multipath signal in the Beidou B1I digital intermediate frequency signal s(t). If it exists, the incoming signal separator estimates the corresponding The multipath parameter enters the local reflected wave signal generator, and generates a local reflected wave signal s'(t) according to the corresponding multipath parameter.
  • the multipath parameter includes the reflected wave a number M, an attenuation coefficient ⁇ i of the reflected wave signal i with respect to the direct wave signal, and a time delay ⁇ i of the reflected wave signal i with respect to the direct wave signal;
  • the multipath signal that is, the reflected wave signal, means the reflected wave is The signal generated by the signal transmitted by the navigation satellite after reflection; the formula for calculating s'(t) is as shown in equation (IV):
  • the Beidou B1I digital intermediate frequency signal s(t) is compared with the local reflected wave signal s'(t) generated by the third branch to obtain a direct wave signal s d (t), the direct wave signal s d (t) sequentially captures, tracks, demodulates, and obtains corrected navigation position coordinates (X 0 , Y 0 , Z 0 );
  • the corrected navigation position coordinates (X 0 , Y 0 , Z 0 ) are compared with the navigation position coordinates (X * , Y * , Z * ) including the multipath error to obtain the navigation position coordinate offset ( ⁇ X). , ⁇ Y, ⁇ Z), ie:
  • step (1) (2) sharing the spatio-temporal big data multipath information table obtained in step (1) to other navigation receiver users in the area of establishing the spatiotemporal big data multipath information table in step (1);
  • the input signal is sequentially captured, tracked, demodulated, and the navigation coordinates (X * ', Y * ', Z * ') are calculated. If the navigation coordinates (X * ', Y * ', Z * ' There is a jump. In the case of multipath signals, the navigation coordinates will change instantaneously. The external performance is that the coordinates jump and jump. Usually, this situation should be encountered when using mobile map navigation. Then, the position and time after the jump are retrieved to obtain the corresponding navigation position coordinate offset ( ⁇ X, ⁇ Y, ⁇ Z), and the positioning result (X, Y, Z) is corrected, and the correction process is as shown in the formula (I). If the navigation coordinates (X * ', Y * ', Z * ') do not show a jump, no coordinate correction is performed.
  • the implementation circuit for establishing a spatio-temporal big data multipath information table includes a capture module 1, a tracking module 1, a demodulation module 1, an adder 1, a capture module 2, a tracking module 2, a demodulation module 2, an adder 2, and a pre-capture module.
  • the signal splitter, the local reflected wave signal generator, and the spatio-temporal big data multipath information table module divide the original input signal into three branches: the first branch includes the capture module one in series, and the tracking module.
  • a demodulation module 1 and an adder 2 wherein the second branch comprises the adder 1 in sequence, the capture module 2, the tracking module 2, the demodulation module 2, the adder 2, and the third branch comprises the serial connection Pre-capture module, signal separator, local reflected wave signal generator, adder 1, capture module 2, tracking module 2, demodulation module 2, adder 2, the adder 2 connects spatio-temporal big data multipath information table module .
  • the capture module 1 and the capture module 2 are used to obtain the code phase of the signal and the rough value of the carrier frequency; the tracking module 1 and the tracking module 2 are used to obtain the exact value of the code phase and the carrier frequency of the signal;
  • the tuning module 2 is configured to obtain satellite position and pseudorange information contained in the signal, and finally calculate navigation position information;
  • the pre-capture module is configured to acquire a correlation function between the input signal and the local pseudo-random code And determining whether there is a multipath signal in the input signal; the signal separator separating the corresponding multipath parameter in the multipath signal;
  • the local reflected wave signal generator is configured to generate a local reflected wave signal;
  • the adder has an input end The local reflected wave signal generated by the input signal and the local reflected wave signal generator respectively, and the output end is a signal with a difference between the two inputs, that is, a direct wave signal for removing the reflected wave; the input ends of the adder are respectively multipath-containing
  • the navigation position information of the error (
  • step (4) the other navigation receiver user in the area solves the navigation coordinates and corrects the implementation circuit, including the capture module three, the tracking module three, the demodulation module three, the adder three, the local database; the capture module three
  • the tracking module 3, the demodulation module 3, and the adder 3 are sequentially connected in series, and the space-time big data multipath information table module, the local database, and the adder are sequentially connected in series;
  • the capturing module 3 is configured to obtain a rough value of a code phase and a carrier frequency of the signal; the tracking module 3 is configured to obtain an accurate value of a code phase and a carrier frequency of the signal; and the demodulation module 3 is configured to obtain a satellite included in the signal.
  • a method for suppressing multipath effect based on spatiotemporal big data according to Embodiment 1 is different in that the digital intermediate frequency signal processing portion is applied in a GPS receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种基于时空大数据的导航多径效应抑制方法,包括步骤如下:(1)建立时空大数据多径信息表;以时间、通过原始输入信号解算出的坐标为二维索引,以对应的导航位置坐标偏移量为内容;(2)将时空大数据多径信息表共享到步骤(1)中建表区域中的其它导航接收机用户;(3)将时空大数据多径信息表加载到本地数据库中;(4)区域中其它导航接收机用户接收到导航坐标时,如果导航坐标出现跳变,则检索本地数据库中的时空大数据多径信息表,检索得到对应的导航位置坐标偏移量并进行修正,得到定位结果。基于共享的思想,在抑制多径效应的同时,降低了导航数字中频信号中多径抑制算法的复杂度。

Description

一种基于时空大数据的导航多径效应抑制方法 技术领域
本发明涉及一种基于时空大数据的导航多径效应抑制方法,属于卫星导航技术领域。
背景技术
卫星导航具有全天候、连续性和实时性的特点,可以给用户提供定位、测速和授时等服务,现已广泛应用于各个领域,并且应用范围仍在不断扩大。
卫星导航接收机定位精度会受到各种因素的影响,导致定位结果与实际位置有一定偏差。在城市高楼林立的环境中,多径干扰是主要误差来源之一,且这种误差会随着时间和接收机的位置变化而变化,从定位算法上难以精确消除。由于多径信号的存在,使得接收信号与本地伪随机码的自相关函数曲线产生畸变,引入码相位鉴别误差和码相位测量误差。同时,多径信号也会给载波相位的测量带来误差,最终导致定位结果不准确,甚至出现位置跳变。
利用数字中频信号处理技术的多径抑制和消除方法主要分为两类,一类是改进相关器或码环鉴别器设计,以达到减小多径误差的目的,如窄距相关器技术、双差鉴别器技术等。这类方法实现简单,但是多径的抑制性能通常无法满足高精度的定位要求;另一类方法是估计出各个多径信号成分的参数,并将这些多径信号成分从总的接收信号中减去而还原出直射波信号,如多径估计延迟锁定环路(MEDLL)、Vision相关器等技术,这些技术可以有效地减少码相位和载波相位测量值的多径效应。但是用于求解多径信号参数的最优化估计方法实现较为复杂,显著增加了解码算法的计算量,在低功耗应用中受到限制。
发明内容
针对现有技术的不足,本发明提出了一种基于时空大数据的导航多径效应抑制方法。
本发明的核心思想是采集城市等高楼林立、易发生多径效应区域的多径参数,建立基于时空大数据的多径信息表,并将该多径信息表共享给该区域的其它导航接收机用户,用户通过检索多径信息表修正定位结果。
本发明的技术方案为:
一种基于时空大数据的导航多径效应抑制方法,包括步骤如下:
(1)建立时空大数据多径信息表;所述时空大数据多径信息表包括时间、通过原始输入信号解算出的坐标、导航位置坐标偏移量,所述时空大数据多径信息表以时间、通过原始输入信号解算出的坐标为二维索引,以对应时间、对应原始输入信号解算出的坐标下的导航位置坐标偏移量为内 容;所述时间是指原始输入信号接收时间;所述通过原始输入信号解算出的坐标是指,导航接收机接收到原始数字中频信号(包含一个或多个多径信号的信号),通过标准捕获、跟踪和解调算法解算出的带有多径误差的导航坐标;所述导航位置坐标偏移量是指不含多径误差的导航位置坐标与上述通过原始信号解算出的坐标的差值;
(2)将步骤(1)得到的时空大数据多径信息表共享到步骤(1)中建立时空大数据多径信息表的区域中的其它导航接收机用户;
(3)所述区域中其它导航接收机用户将步骤(1)得到的时空大数据多径信息表加载到本地数据库中;
(4)所述区域中其它导航接收机用户接收到导航坐标(X*′,Y*′,Z*′)时,如果导航坐标(X*′,Y*′,Z*′)出现跳变,在有多径信号存在的情况下,导航坐标会发生瞬时的变化,外在表现就是坐标跳来跳去,平时用手机地图导航时应该也经常会遇到这种情况。则以跳变后的位置与时间为索引检索本地数据库中的时空大数据多径信息表,检索得到对应的导航位置坐标偏移量(ΔX,ΔY,ΔZ),修正得到定位结果(X,Y,Z),修正过程如式(Ⅰ)所示,如果导航坐标(X*′,Y*′,Z*′)未出现跳变,则不进行坐标修正;
Figure PCTCN2017104203-appb-000001
根据本发明优选的,所述步骤(1),通过步骤A-B建立时空大数据多径信息表,包括步骤如下:
A、将原始输入信号s(t)分为3个支路:原始输入信号s(t)的表达式如式(Ⅱ)所示:
Figure PCTCN2017104203-appb-000002
式(Ⅱ)中,sd(t)为直射波信号,si(t)为反射波信号i,M为反射波数目,0<i≤M,A为信号振幅,p(t)是值为±1的数据码和伪随机码的异或和,f是考虑多普勒效应后的载波频率,αi是反射波信号i相对于直射波信号的衰减系数,τi是反射波信号i相对于直射波信号的传播延时,
Figure PCTCN2017104203-appb-000003
是反射波i载波相位变化;
第一条支路中,将原始输入信号s(t)依次进行捕获、跟踪、解调,获取包含有多径误差的导航位置坐标(X*,Y*,Z*);
第三条支路中,将原始输入信号s(t)进行预捕获,判断原始输入信号s(t)中是否存在多径信号,如果存在,则进入信号分离器估计出对应的多径参数,并进入本地反射波信号发生器,根据对应的多径参数产生本地反射波信号s'(t),如果不存在,则本地反射波信号发生器不工作;所述多径参数包括反射波数目M,反射波信号i相对于直射波信号的衰减系数αi、反射波信号i相对于直射波信号的时延τi;所述多径信号即所述反射波信号,是指反射波为导航卫星发射的信号经过反射后产生的信号;
第二条支路中,原始输入信号s(t)与第三条支路产生的本地反射波信号s'(t)作差,得到直射波信号sd(t),该直射波信号sd(t)依次进行捕获、跟踪、解调,得到修正后的导航位置坐标(X0,Y0,Z0);
B、将修正后导航位置坐标(X0,Y0,Z0)与包含有多径误差的导航位置坐标(X*,Y*,Z*)作差,得到导航位置坐标偏移量(ΔX,ΔY,ΔZ),即:
Figure PCTCN2017104203-appb-000004
记录第二条支路原始输入信号s(t)接收时间为时空大数据多径信息表中的时间,记录第一条支路产生的多径误差的导航位置坐标(X*,Y*,Z*)为通过原始输入信号解算出的坐标,记录得到的导航位置坐标偏移量(ΔX,ΔY,ΔZ)为时空大数据多径信息表中对应上述时间、对应上述原始输入信号解算出的坐标下的导航位置坐标偏移量,以时间、原始输入信号解算出的坐标为二维索引,建立时空大数据多径信息表,存储对应的导航位置坐标偏移量。
根据本发明优选的,根据对应的多径参数产生本地反射波信号s'(t),s'(t)的求取公式如式(Ⅳ)所示:
Figure PCTCN2017104203-appb-000005
根据本发明优选的,所述步骤(4)中,该区域中其它导航接收机用户接收导航坐标(X*′,Y*′,Z*′),包括步骤如下:输入信号依次经过捕获、跟踪、解调解算出导航坐标(X*′,Y*′,Z*′)。
根据本发明优选的,建立时空大数据多径信息表的实现电路,包括捕获模块一、跟踪模块一、解调模块一、加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二、预捕获模块、信号分离器、本地反射波信号发生器、时空大数据多径信息表模块,将原始输入信号分为3个支路:所述 第一支路包括依次串联的所述捕获模块一、跟踪模块一、解调模块一、加法器二,所述第二支路包括依次串联的所述加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二,所述第三支路包括依次串联的所述预捕获模块、信号分离器、本地反射波信号发生器、加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二,所述加法器二连接所述时空大数据多径信息表模块。
根据本发明优选的,所述捕获模块一、捕获模块二用于获得信号的码相位、载波频率的粗略值;所述跟踪模块一、跟踪模块二用于获得信号的码相位、载波频率的精确值;所述解调模块一、解调模块二用于得到信号中包含的卫星位置和伪距信息,并最终解算出导航位置信息;所述预捕获模块用于获取输入信号与本地伪随机码的相关函数
Figure PCTCN2017104203-appb-000006
并判断输入信号中是否存在多径信号;所述信号分离器分离出多径信号中对应的多径参数;所述本地反射波信号发生器用于产生本地反射波信号;所述加法器一输入端分别为输入信号和本地反射波信号发生器产生的本地反射波信号,输出端为两输入作差后的信号,即去除反射波的直射波信号;所述加法器二输入端分别为含多径误差的导航位置信息(X*,Y*,Z*)和经过多径抑制得到的导航位置信息(X0,Y0,Z0),输出端为两输入的差值,即导航位置坐标偏移量(ΔX,ΔY,ΔZ);所述时空大数据多径信息表用于存储导航位置坐标偏移量(ΔX,ΔY,ΔZ),并与本地其它导航用户共享。
根据本发明优选的,所述步骤(4)中,区域中其它导航接收机用户解算导航坐标并进行修正的实现电路,包括捕获模块三、跟踪模块三、解调模块三、加法器三、本地数据库;所述捕获模块三、跟踪模块三、解调模块三、加法器三依次串联,所述时空大数据多径信息表模块、本地数据库、加法器三依次串联;
所述捕获模块三用于获得信号的码相位、载波频率的粗略值;所述跟踪模块三用于获得信号的码相位、载波频率的精确值;所述解调模块三用于得到信号中包含的卫星位置和伪距信息,并最终解算出导航位置信息(X*′,Y*′,Z*′);所述加法器三的两个输入端分别为含多径误差的导航位置信息(X*′,Y*′,Z*′)和本地数据库中存储的导航位置坐标偏移量(ΔX,ΔY,ΔZ),通过加法器三的输出端输出两输入之和,即修正后的导航信息(X,Y,Z)。
本发明的有益效果为:
1、本发明提出的多径效应抑制方法,是基于大数据共享的思想,通过区域内多径信息表的建立和共享,使得该区域导航接收机用户可以获得当前时刻当前地点的导航位置坐标偏移量,修正原始定位结果,使定位结果更加精确,同时也为当前多径抑制领域提供了一种新思路。
2、本发明中时空大数据多径信息表的数据,是在多径参数估计的基础上进行多径抑制后得到的,这一过程保证了本发明的定位准确性;时空大数据多径信息表的共享,使得区域内导航用户即使在离线的情况下也可以直接通过检索获得当前的导航位置坐标偏移量,节省了常规多径抑制算法中多径参数估计的运算时间,在保证定位精度的同时,有效减少了多径抑制算法复杂度。
附图说明:
图1是本发明建立时空大数据多径信息表的流程框图;
图2是本发明基于时空大数据的导航多径效应抑制方法的流程框图。
具体实施方式
下面结合说明书附图和实施例对本发明作进一步描述,但不限于此:
实施例1
一种基于时空大数据的导航多径效应抑制方法,以在北斗接收机中数字中频信号处理部分的应用为例,包括步骤如下:
(1)建立时空大数据多径信息表;时空大数据多径信息表包括时间、通过原始输入信号解算出的北斗坐标、导航位置坐标偏移量,时空大数据多径信息表以时间、通过原始输入信号解算出的坐标为二维索引,以对应时间、通过原始输入信号解算出的北斗坐标下的导航位置坐标偏移量为内容;所述时间是指原始输入信号接收时间;所述通过原始输入信号解算出的坐标是指,导航接收机接收到原始数字中频信号(包含一个或多个多径信号的信号),通过标准捕获、跟踪和解调算法解算出的带有多径误差的导航坐标;所述导航位置坐标偏移量是指不含多径误差的导航位置坐标与上述通过原始信号解算出的坐标的差值;通过步骤A-B建立时空大数据多径信息表,如图1所示,包括:
A、将北斗B1I数字中频信号s(t)分为3个支路:北斗B1I数字中频信号s(t)的表达式如式(Ⅱ)所示:
Figure PCTCN2017104203-appb-000007
式(Ⅱ)中,sd(t)为直射波信号,si(t)为反射波信号i,M为反射波数目,0<i≤M,A为信号振幅,p(t)是值为±1的数据码和伪随机码的异或和,f是考虑多普勒效应后的载波频率,αi是反射波信号i相对于直射波信号的衰减系数,τi是反射波信号i相对于直射波信号的传播延时,
Figure PCTCN2017104203-appb-000008
是反射波i载波相位变化;
第一条支路中,将北斗B1I数字中频信号s(t)依次进行捕获、跟踪、解调,获取包含有多径误 差的北斗导航位置坐标(X*,Y*,Z*);
第三条支路中,将北斗B1I数字中频信号s(t)进行预捕获,判断北斗B1I数字中频信号s(t)中是否存在多径信号,如果存在,则进入信号分离器估计出对应的多径参数,并进入本地反射波信号发生器,根据对应的多径参数产生本地反射波信号s'(t),如果不存在,则本地反射波信号发生器不工作;多径参数包括反射波数目M,反射波信号i相对于直射波信号的衰减系数αi、反射波信号i相对于直射波信号的时延τi;所述多径信号即所述反射波信号,是指反射波为导航卫星发射的信号经过反射后产生的信号;s'(t)的求取公式如式(Ⅳ)所示:
Figure PCTCN2017104203-appb-000009
第二条支路中,北斗B1I数字中频信号s(t)与第三条支路产生的本地反射波信号s'(t)作差,得到直射波信号sd(t),该直射波信号sd(t)依次进行捕获、跟踪、解调,得到修正后的导航位置坐标(X0,Y0,Z0);
B、将修正后导航位置坐标(X0,Y0,Z0)与包含有多径误差的导航位置坐标(X*,Y*,Z*)作差,得到导航位置坐标偏移量(ΔX,ΔY,ΔZ),即:
Figure PCTCN2017104203-appb-000010
记录第二条支路原始输入信号s(t)接收时间为时空大数据多径信息表中的时间,记录第一条支路产生的多径误差的导航位置坐标(X*,Y*,Z*)为通过原始输入信号解算出的坐标,记录得到的导航位置坐标偏移量(ΔX,ΔY,ΔZ)为时空大数据多径信息表中对应上述时间、对应上述原始输入信号解算出的坐标下的导航位置坐标偏移量,以时间、原始输入信号解算出的坐标为二维索引,建立时空大数据多径信息表,存储对应的导航位置坐标偏移量。
(2)将步骤(1)得到的时空大数据多径信息表共享到步骤(1)中建立时空大数据多径信息表的区域中的其它导航接收机用户;
(3)该区域中其它导航接收机用户将步骤(1)得到的时空大数据多径信息表加载到本地数据库中;
(4)如图2所示,输入信号依次经过捕获、跟踪、解调解算出导航坐标(X*′,Y*′,Z*′)如果导航 坐标(X*′,Y*′,Z*′)出现跳变,在有多径信号存在的情况下,导航坐标会发生瞬时的变化,外在表现就是坐标跳来跳去,平时用手机地图导航时应该也经常会遇到这种情况。则以跳变后的位置与时间为检索得到对应的导航位置坐标偏移量(ΔX,ΔY,ΔZ),修正得到定位结果(X,Y,Z),修正过程如式(Ⅰ)所示,如果导航坐标(X*′,Y*′,Z*′)未出现跳变,则不进行坐标修正
Figure PCTCN2017104203-appb-000011
建立时空大数据多径信息表的实现电路,包括捕获模块一、跟踪模块一、解调模块一、加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二、预捕获模块、信号分离器、本地反射波信号发生器、时空大数据多径信息表模块,将原始输入信号分为3个支路:第一支路包括依次串联的所述捕获模块一、跟踪模块一、解调模块一、加法器二,第二支路包括依次串联的所述加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二,第三支路包括依次串联的所述预捕获模块、信号分离器、本地反射波信号发生器、加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二,所述加法器二连接时空大数据多径信息表模块。
捕获模块一、捕获模块二用于获得信号的码相位、载波频率的粗略值;跟踪模块一、跟踪模块二用于获得信号的码相位、载波频率的精确值;所述解调模块一、解调模块二用于得到信号中包含的卫星位置和伪距信息,并最终解算出导航位置信息;所述预捕获模块用于获取输入信号与本地伪随机码的相关函数
Figure PCTCN2017104203-appb-000012
并判断输入信号中是否存在多径信号;所述信号分离器分离出多径信号中对应的多径参数;所述本地反射波信号发生器用于产生本地反射波信号;所述加法器一输入端分别为输入信号和本地反射波信号发生器产生的本地反射波信号,输出端为两输入作差后的信号,即去除反射波的直射波信号;所述加法器二输入端分别为含多径误差的导航位置信息(X*,Y*,Z*)和经过多径抑制得到的导航位置信息(X0,Y0,Z0),输出端为两输入的差值,即导航位置坐标偏移量(ΔX,ΔY,ΔZ);所述时空大数据多径信息表用于存储导航位置坐标偏移量(ΔX,ΔY,ΔZ),并与本地其它导航用户共享。
步骤(4)中,区域中其它导航接收机用户解算导航坐标并进行修正的实现电路,包括捕获模块三、跟踪模块三、解调模块三、加法器三、本地数据库;所述捕获模块三、跟踪模块三、解调模块三、加法器三依次串联,所述时空大数据多径信息表模块、本地数据库、加法器三依次串联;
捕获模块三用于获得信号的码相位、载波频率的粗略值;所述跟踪模块三用于获得信号的码相位、载波频率的精确值;所述解调模块三用于得到信号中包含的卫星位置和伪距信息,并最终解算出导航位置信息(X*′,Y*′,Z*′);所述加法器三的两个输入端分别为含多径误差的导航位置信息(X*′,Y*′,Z*′)和本地数据库中存储的导航位置坐标偏移量(ΔX,ΔY,ΔZ),通过加法器三的输出端输出两输入之和,即修正后的导航信息(X,Y,Z)。
实施例2
根据实施例1所述的一种基于时空大数据的导航多径效应抑制方法,其区别在于,在GPS接收机中数字中频信号处理部分进行应用。

Claims (7)

  1. 一种基于时空大数据的导航多径效应抑制方法,其特征在于,包括步骤如下:
    (1)建立时空大数据多径信息表;所述时空大数据多径信息表包括时间、通过原始输入信号解算出的坐标、导航位置坐标偏移量,所述时空大数据多径信息表以时间、通过原始输入信号解算出的坐标为二维索引,以对应时间、对应原始输入信号解算出的坐标下的导航位置坐标偏移量为内容;所述时间是指原始输入信号接收时间;所述通过原始输入信号解算出的坐标是指,导航接收机接收到原始数字中频信号,通过标准捕获、跟踪和解调算法解算出的带有多径误差的导航坐标;所述导航位置坐标偏移量是指不含多径误差的导航位置坐标与上述通过原始信号解算出的坐标的差值;
    (2)将步骤(1)得到的时空大数据多径信息表共享到步骤(1)中建立时空大数据多径信息表的区域中的其它导航接收机用户;
    (3)所述区域中其它导航接收机用户将步骤(1)得到的时空大数据多径信息表加载到本地数据库中;
    (4)所述区域中其它导航接收机用户接收到导航坐标(X*′,Y*′,Z*′)时,如果导航坐标(X*′,Y*′,Z*′)出现跳变,则以跳变后的位置与时间为索引检索本地数据库中的时空大数据多径信息表,检索得到对应的导航位置坐标偏移量(△X,△Y,△Z),修正得到定位结果(X,Y,Z),修正过程如式(Ⅰ)所示,如果导航坐标(X*′,Y*′,Z*′)未出现跳变,则不进行坐标修正;
    Figure PCTCN2017104203-appb-100001
  2. 根据权利要求1所述的一种基于时空大数据的导航多径效应抑制方法,其特征在于,所述步骤(1),通过步骤A-B建立时空大数据多径信息表,包括步骤如下:
    A、将原始输入信号s(t)分为3个支路:原始输入信号s(t)的表达式如式(Ⅱ)所示:
    Figure PCTCN2017104203-appb-100002
    式(Ⅱ)中,sd(t)为直射波信号,si(t)为反射波信号i,M为反射波数目,0<i≤M,A为信号振幅,p(t)是值为±1的数据码和伪随机码的异或和,f是考虑多普勒效应后的载波频率,αi是反射波信号i相对于直射波信号的衰减系数,τi是反射波信号i相对于直射波信号的传播延时,
    Figure PCTCN2017104203-appb-100003
    是 反射波i载波相位变化;
    第一条支路中,将原始输入信号s(t)依次进行捕获、跟踪、解调,获取包含有多径误差的导航位置坐标(X*,Y*,Z*);
    第三条支路中,将原始输入信号s(t)进行预捕获,判断原始输入信号s(t)中是否存在多径信号,如果存在,则进入信号分离器估计出对应的多径参数,并进入本地反射波信号发生器,根据对应的多径参数产生本地反射波信号s'(t),如果不存在,则本地反射波信号发生器不工作;所述多径参数包括反射波数目M,反射波信号i相对于直射波信号的衰减系数αi、反射波信号i相对于直射波信号的时延τi;所述多径信号即所述反射波信号,是指反射波为导航卫星发射的信号经过反射后产生的信号;
    第二条支路中,原始输入信号s(t)与第三条支路产生的本地反射波信号s'(t)作差,得到直射波信号sd(t),该直射波信号sd(t)依次进行捕获、跟踪、解调,得到修正后的导航位置坐标(X0,Y0,Z0);
    B、将修正后导航位置坐标(X0,Y0,Z0)与包含有多径误差的导航位置坐标(X*,Y*,Z*)作差,得到导航位置坐标偏移量(△X,△Y,△Z),即:
    Figure PCTCN2017104203-appb-100004
    记录第二条支路原始输入信号s(t)接收时间为时空大数据多径信息表中的时间,记录第一条支路产生的多径误差的导航位置坐标(X*,Y*,Z*)为通过原始输入信号解算出的坐标,记录得到的导航位置坐标偏移量(△X,△Y,△Z)为时空大数据多径信息表中对应上述时间、对应上述原始输入信号解算出的坐标下的导航位置坐标偏移量,以时间、原始输入信号解算出的坐标为二维索引,建立时空大数据多径信息表,存储对应的导航位置坐标偏移量。
  3. 根据权利要求1所述的一种基于时空大数据的导航多径效应抑制方法,其特征在于,根据对应的多径参数产生本地反射波信号s'(t),s'(t)的求取公式如式(Ⅳ)所示:
    Figure PCTCN2017104203-appb-100005
  4. 根据权利要求1所述的一种基于时空大数据的导航多径效应抑制方法,其特征在于,所述步骤(4)中,该区域中其它导航接收机用户接收导航坐标(X*′,Y*′,Z*′),包括步骤如下:输入信 号依次经过捕获、跟踪、解调解算出导航坐标(X*′,Y*′,Z*′)。
  5. 根据权利要求1所述的一种基于时空大数据的导航多径效应抑制方法,其特征在于,建立时空大数据多径信息表的实现电路,包括捕获模块一、跟踪模块一、解调模块一、加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二、预捕获模块、信号分离器、本地反射波信号发生器、时空大数据多径信息表模块,将原始输入信号分为3个支路:所述第一支路包括依次串联的所述捕获模块一、跟踪模块一、解调模块一、加法器二,所述第二支路包括依次串联的所述加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二,所述第三支路包括依次串联的所述预捕获模块、信号分离器、本地反射波信号发生器、加法器一、捕获模块二、跟踪模块二、解调模块二、加法器二,所述加法器二连接所述时空大数据多径信息表模块。
  6. 根据权利要求5所述的一种基于时空大数据的导航多径效应抑制方法,所述捕获模块一、捕获模块二用于获得信号的码相位、载波频率的粗略值;所述跟踪模块一、跟踪模块二用于获得信号的码相位、载波频率的精确值;所述解调模块一、解调模块二用于得到信号中包含的卫星位置和伪距信息,并最终解算出导航位置信息;所述预捕获模块用于获取输入信号与本地伪随机码的相关函数
    Figure PCTCN2017104203-appb-100006
    并判断输入信号中是否存在多径信号;所述信号分离器分离出多径信号中对应的多径参数;所述本地反射波信号发生器用于产生本地反射波信号;所述加法器一输入端分别为输入信号和本地反射波信号发生器产生的本地反射波信号,输出端为两输入作差后的信号,即去除反射波的直射波信号;所述加法器二输入端分别为含多径误差的导航位置信息(X*,Y*,Z*)和经过多径抑制得到的导航位置信息(X0,Y0,Z0),输出端为两输入的差值,即导航位置坐标偏移量(△X,△Y,△Z);所述时空大数据多径信息表用于存储导航位置坐标偏移量(△X,△Y,△Z),并与本地其它导航用户共享。
  7. 根据权利要求1所述的一种基于时空大数据的导航多径效应抑制方法,其特征在于,所述步骤(4)中,区域中其它导航接收机用户解算导航坐标并进行修正的实现电路,包括捕获模块三、跟踪模块三、解调模块三、加法器三、本地数据库;所述捕获模块三、跟踪模块三、解调模块三、加法器三依次串联,所述时空大数据多径信息表模块、本地数据库、加法器三依次串联;
    所述捕获模块三用于获得信号的码相位、载波频率的粗略值;所述跟踪模块三用于获得信号的码相位、载波频率的精确值;所述解调模块三用于得到信号中包含的卫星位置和伪距信息,并最终解算出导航位置信息(X*′,Y*′,Z*′);所述加法器三的两个输入端分别为含多径误差的导航位置信息(X*′,Y*′,Z*′)和本地数据库中存储的导航位置坐标偏移量(△X,△Y,△Z),通过加法器三的输出端输 出两输入之和,即修正后的导航信息(X,Y,Z)。
PCT/CN2017/104203 2017-07-14 2017-09-29 一种基于时空大数据的导航多径效应抑制方法 WO2019010832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710576852.9 2017-07-14
CN201710576852.9A CN107367749B (zh) 2017-07-14 2017-07-14 一种基于时空大数据的导航多径效应抑制方法

Publications (1)

Publication Number Publication Date
WO2019010832A1 true WO2019010832A1 (zh) 2019-01-17

Family

ID=60307387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104203 WO2019010832A1 (zh) 2017-07-14 2017-09-29 一种基于时空大数据的导航多径效应抑制方法

Country Status (2)

Country Link
CN (1) CN107367749B (zh)
WO (1) WO2019010832A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567709A (zh) * 2009-05-27 2009-10-28 西华大学 一种减少多径对接收机天线定位精度影响的方法与装置
CN101950023A (zh) * 2010-08-30 2011-01-19 鲁郁 一种利用手机蜂窝网获取辅助信息的快速高精度gps定位终端
CN102508266A (zh) * 2011-11-07 2012-06-20 东南大学 一种抑制多径干扰及噪声的滤波器方法
US8604974B2 (en) * 2010-07-27 2013-12-10 Texas Instruments Incorporated Glonass/GPS de-rotation and filtering with ADC sampling at 60-80 MSPS
CN104502923A (zh) * 2014-10-20 2015-04-08 哈尔滨工程大学 一种机场gnss监测接收系统信号质量监测的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567709A (zh) * 2009-05-27 2009-10-28 西华大学 一种减少多径对接收机天线定位精度影响的方法与装置
US8604974B2 (en) * 2010-07-27 2013-12-10 Texas Instruments Incorporated Glonass/GPS de-rotation and filtering with ADC sampling at 60-80 MSPS
CN101950023A (zh) * 2010-08-30 2011-01-19 鲁郁 一种利用手机蜂窝网获取辅助信息的快速高精度gps定位终端
CN102508266A (zh) * 2011-11-07 2012-06-20 东南大学 一种抑制多径干扰及噪声的滤波器方法
CN104502923A (zh) * 2014-10-20 2015-04-08 哈尔滨工程大学 一种机场gnss监测接收系统信号质量监测的方法

Also Published As

Publication number Publication date
CN107367749A (zh) 2017-11-21
CN107367749B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
JP5607607B2 (ja) Gnss受信装置
EP3258293B1 (en) Navigation signal data pilot frequency combined tracking method and device
US20090147833A1 (en) Multi-path detection method for CDMA recievers
CN101132191A (zh) 一种gnss接收机基带信号处理方法
WO2022052196A1 (zh) 基于频率补偿的gnss信号跟踪环路失锁检测方法
WO2018149076A1 (zh) 辅助导航定位方法及系统
JP2003533937A (ja) コード位相トラッキング方法及び受信機
JP2007228237A (ja) キャリア位相追尾装置および擬似雑音コード信号追尾装置
CN107817506B (zh) 扩频无线电通信信号的基于倒谱的多径抑制
CN113009522B (zh) 多普勒频率残差校正的长时间相干积分捕获算法模块
CN105527635A (zh) 一种捕获微弱信号的方法和装置
CN108897009B (zh) 一种boc导航信号接收机及其码跟踪方法
TW201445167A (zh) Gps接收機及判斷gps接收機跟踪環路狀態的方法
US20070253471A1 (en) Gps Receiver Using Differential Correlation
CN109581436B (zh) 相邻频点导航信号联合接收机和接收方法
US8229031B2 (en) Galileo/GPS receiver with improved positioning accuracy
CN105372678B (zh) 一种正弦boc调制信号的无模糊跟踪方法
KR101673995B1 (ko) AltBOC 신호 추적을 위한 주변 첨두 제거 장치 및 그 방법
JP4700518B2 (ja) 同期タイミング検出装置および受信機
WO2019010832A1 (zh) 一种基于时空大数据的导航多径效应抑制方法
CN111158026A (zh) 一种boc信号的边峰消除方法
Li et al. Highly sensitive weak signal acquisition method for GPS/compass
JP6772194B2 (ja) オフセット搬送波変調測距信号処理方法
CN117590446B (zh) 宽带复合导航信号跟踪方法及装置
CN110764120B (zh) 一种高灵敏卫星导航信号捕获方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917414

Country of ref document: EP

Kind code of ref document: A1